WO2006033894A2 - Volet de rechauffeur - Google Patents
Volet de rechauffeur Download PDFInfo
- Publication number
- WO2006033894A2 WO2006033894A2 PCT/US2005/032574 US2005032574W WO2006033894A2 WO 2006033894 A2 WO2006033894 A2 WO 2006033894A2 US 2005032574 W US2005032574 W US 2005032574W WO 2006033894 A2 WO2006033894 A2 WO 2006033894A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- graphite
- riser
- heat riser
- flexible graphite
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 163
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 148
- 239000010439 graphite Substances 0.000 claims abstract description 148
- 230000017525 heat dissipation Effects 0.000 claims abstract description 35
- 229920005989 resin Polymers 0.000 claims description 35
- 239000011347 resin Substances 0.000 claims description 35
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- 239000002245 particle Substances 0.000 description 57
- 239000000463 material Substances 0.000 description 33
- 238000009830 intercalation Methods 0.000 description 25
- 230000002687 intercalation Effects 0.000 description 21
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 17
- 239000000835 fiber Substances 0.000 description 17
- 239000000654 additive Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 238000012546 transfer Methods 0.000 description 14
- 230000006835 compression Effects 0.000 description 11
- 238000007906 compression Methods 0.000 description 11
- 230000000996 additive effect Effects 0.000 description 10
- 239000007770 graphite material Substances 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 238000004299 exfoliation Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- -1 webs Chemical compound 0.000 description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 238000005087 graphitization Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 238000000137 annealing Methods 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229910021382 natural graphite Inorganic materials 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 238000003490 calendering Methods 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 4
- 150000007524 organic acids Chemical class 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 125000005907 alkyl ester group Chemical group 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- NXQMCAOPTPLPRL-UHFFFAOYSA-N 2-(2-benzoyloxyethoxy)ethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCOCCOC(=O)C1=CC=CC=C1 NXQMCAOPTPLPRL-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- 235000012241 calcium silicate Nutrition 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- NZNMSOFKMUBTKW-UHFFFAOYSA-N cyclohexanecarboxylic acid Chemical compound OC(=O)C1CCCCC1 NZNMSOFKMUBTKW-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- KSMVZQYAVGTKIV-UHFFFAOYSA-N decanal Chemical compound CCCCCCCCCC=O KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.000 description 2
- IQDXNHZDRQHKEF-UHFFFAOYSA-N dialuminum;dicalcium;dioxido(oxo)silane Chemical compound [Al+3].[Al+3].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O IQDXNHZDRQHKEF-UHFFFAOYSA-N 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000000138 intercalating agent Substances 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002557 mineral fiber Substances 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- SJWFXCIHNDVPSH-UHFFFAOYSA-N octan-2-ol Chemical compound CCCCCCC(C)O SJWFXCIHNDVPSH-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 235000013824 polyphenols Nutrition 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- QLOKJRIVRGCVIM-UHFFFAOYSA-N 1-[(4-methylsulfanylphenyl)methyl]piperazine Chemical compound C1=CC(SC)=CC=C1CN1CCNCC1 QLOKJRIVRGCVIM-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- LNETULKMXZVUST-UHFFFAOYSA-N 1-naphthoic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1 LNETULKMXZVUST-UHFFFAOYSA-N 0.000 description 1
- 229940044613 1-propanol Drugs 0.000 description 1
- QINYBRXZAIWZBM-UHFFFAOYSA-N 2-(3-oxobutanoylamino)benzoic acid Chemical class CC(=O)CC(=O)NC1=CC=CC=C1C(O)=O QINYBRXZAIWZBM-UHFFFAOYSA-N 0.000 description 1
- FKOKUHFZNIUSLW-UHFFFAOYSA-N 2-Hydroxypropyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(C)O FKOKUHFZNIUSLW-UHFFFAOYSA-N 0.000 description 1
- XDZMPRGFOOFSBL-UHFFFAOYSA-N 2-ethoxybenzoic acid Chemical class CCOC1=CC=CC=C1C(O)=O XDZMPRGFOOFSBL-UHFFFAOYSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- ALKYHXVLJMQRLQ-UHFFFAOYSA-N 3-Hydroxy-2-naphthoate Chemical compound C1=CC=C2C=C(O)C(C(=O)O)=CC2=C1 ALKYHXVLJMQRLQ-UHFFFAOYSA-N 0.000 description 1
- OCISOSJGBCQHHN-UHFFFAOYSA-N 3-hydroxynaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC(O)=CC2=C1 OCISOSJGBCQHHN-UHFFFAOYSA-N 0.000 description 1
- NIOAVQYSSKOCQP-UHFFFAOYSA-N 4-hydroxynaphthalene-2-carboxylic acid Chemical compound C1=CC=CC2=CC(C(=O)O)=CC(O)=C21 NIOAVQYSSKOCQP-UHFFFAOYSA-N 0.000 description 1
- NYYMNZLORMNCKK-UHFFFAOYSA-N 5-hydroxynaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1O NYYMNZLORMNCKK-UHFFFAOYSA-N 0.000 description 1
- SMAMQSIENGBTRV-UHFFFAOYSA-N 5-hydroxynaphthalene-2-carboxylic acid Chemical compound OC1=CC=CC2=CC(C(=O)O)=CC=C21 SMAMQSIENGBTRV-UHFFFAOYSA-N 0.000 description 1
- KAUQJMHLAFIZDU-UHFFFAOYSA-N 6-Hydroxy-2-naphthoic acid Chemical compound C1=C(O)C=CC2=CC(C(=O)O)=CC=C21 KAUQJMHLAFIZDU-UHFFFAOYSA-N 0.000 description 1
- FSXKKRVQMPPAMQ-UHFFFAOYSA-N 7-hydroxynaphthalene-2-carboxylic acid Chemical compound C1=CC(O)=CC2=CC(C(=O)O)=CC=C21 FSXKKRVQMPPAMQ-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- QSACCXVHEVWNMX-UHFFFAOYSA-N N-acetylanthranilic acid Chemical class CC(=O)NC1=CC=CC=C1C(O)=O QSACCXVHEVWNMX-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- VZFUCHSFHOYXIS-UHFFFAOYSA-N cycloheptane carboxylic acid Natural products OC(=O)C1CCCCCC1 VZFUCHSFHOYXIS-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid group Chemical group C(CCCCC)(=O)O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000005209 naphthoic acids Chemical class 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N pentanoic acid group Chemical group C(CCCC)(=O)O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical class OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229960003424 phenylacetic acid Drugs 0.000 description 1
- 239000003279 phenylacetic acid Substances 0.000 description 1
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 229940093625 propylene glycol monostearate Drugs 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/20409—Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
- H05K7/20418—Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing the radiating structures being additional and fastened onto the housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F7/00—Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/095—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
- H01L2924/097—Glass-ceramics, e.g. devitrified glass
- H01L2924/09701—Low temperature co-fired ceramic [LTCC]
Definitions
- the present invention relates to a heat riser for bridging the gap between the heat source in an electronic device and a heat dissipation apparatus. More particularly, the inventive heat riser comprises a resin- impregnated graphite artifact formed of compressed particles of exfoliated graphite.
- microprocessors and integrated circuits in electronic and electrical components including those capable of increasing processing speeds and higher frequencies, having smaller size and more complicated power requirements, and exhibiting other technological advances, such as microprocessors and integrated circuits in electronic and electrical components, high capacity and response memory components such as hard drives, electromagnetic sources such as light bulbs in digital projectors, as well as in other devices such as high power optical devices, relatively extreme temperatures can be generated.
- microprocessors, integrated circuits and other sophisticated electronic components typically operate efficiently only under a certain range of threshold temperatures. The excessive heat generated during operation of these components can not only harm their own performance, but can also degrade the performance and reliability of the overall system and can even cause system failure.
- the increasingly wide range of environmental conditions, including temperature extremes, in which electronic systems are expected to operate exacerbates the negative effects of excessive heat.
- thermal management becomes an increasingly important element of the design of electronic products.
- performance reliability and life expectancy of electronic equipment are inversely related to the component temperature of the equipment. For instance, a reduction in the operating temperature of a device such as a typical silicon semiconductor can correspond to an increase in the processing speed, reliability and life expectancy of the device. Therefore, to maximize the life-span and reliability of a component, controlling the device operating temperature within the limits set by the designers is of paramount importance.
- One group of relatively light weight materials suitable for use in the dissipation of heat from heat sources such as electronic components are those materials generally known as graphites, but in particular graphites such as those based on natural graphites and flexible graphite as described below. These materials are anisotropic and allow thermal dissipation devices to be designed to preferentially transfer heat in selected directions.
- Graphite materials are much lighter in weight than metals like copper and aluminum and graphite materials, even when used in combination with metallic components, provide many advantages over copper or aluminum when used to dissipate heat by themselves.
- Tzeng in U.S. Patent No. 6,482,520 teaches a graphite based thermal management system which includes a heat sink formed of a graphite article formed so as to have a heat collection surface and at least one heat dissipation surface.
- Krassowski and Chen take the Tzeng concept a step further in International Patent Application No. PCT/US02/38061, where they teach the use of high conducting inserts in a graphite base.
- sheets of compressed particles of exfoliated graphite i.e., flexible graphite
- has been suggested as thermal spreaders, thermal interfaces and as component parts of heat sinks for dissipating the heat generated by a heat source see, for instance, U.S. Patent Nos. 6,245,400; 6,503,626; and 6,538,892).
- gaps between the heat source and dissipation device can often be too large for gap fillers commonly used.
- gaps can range from about 15 mm to about 50 mm, or even as high as 65 mm.
- the gap in these instances can be too small for use of a conventional heat transfer device like a heat pipe, which in addition would generally not have sufficient contact surface to bridge a gap between a heat source and a heat sink (and is likely cost prohibitive for this use in any event).
- a way to efficiently transfer heat from the heat source to the thermal dissipation device like a heat sink is needed.
- Graphites are made up of layer planes of hexagonal arrays or networks of carbon atoms. These layer planes of hexagonally arranged carbon atoms are substantially flat and are oriented or ordered so as to be substantially parallel and equidistant to one another.
- the substantially flat, parallel equidistant sheets or layers of carbon atoms usually referred to as graphene layers or basal planes, are linked or bonded together and groups thereof are arranged in crystallites.
- Highly ordered graphites consist of crystallites of considerable size: the crystallites being highly aligned or oriented with respect to each other and having well ordered carbon layers. In other words, highly ordered graphites have a high degree of preferred crystallite orientation. It should be noted that graphites possess anisotropic structures and thus exhibit or possess many properties that are highly directional e.g. thermal and electrical conductivity and fluid diffusion. [0009]Briefly, graphites may be characterized as laminated structures of carbon, that is, structures consisting of superposed layers or laminae of carbon atoms joined together by weak van der Waals forces. In considering the graphite structure, two axes or directions are usually noted, to wit, the "c" axis or direction and the "a" axes or directions.
- the "c" axis or direction may be considered as the direction perpendicular to the carbon layers.
- the “a” axes or directions may be considered as the directions parallel to the carbon layers or the directions perpendicular to the "c” direction.
- the graphites suitable for manufacturing flexible graphite sheets possess a very high degree of orientation.
- Graphite flake which has been greatly expanded and more particularly expanded so as to have a final thickness or "c" direction dimension which is as much as about 80 or more times the original "c" direction dimension can be formed without the use of a binder into cohesive or integrated sheets of expanded graphite, e.g. webs, papers, strips, tapes, foils, mats or the like (typically referred to as "flexible graphite").
- the sheet material has also been found to possess a high degree of anisotropy with respect to thermal and electrical conductivity and fluid diffusion, comparable to the natural graphite starting material due to orientation of the expanded graphite particles and graphite layers substantially parallel to the opposed faces of the sheet resulting from very high compression, e.g. roll pressing. Sheet material thus produced has excellent flexibility, good strength and a very high degree of orientation.
- the process of producing flexible, binderless anisotropic graphite sheet material comprises compressing or compacting under a predetermined load and in the absence of a binder, expanded graphite particles which have a "c" direction dimension which is as much as about 80 or more times that of the original particles so as to form a substantially flat, flexible, integrated graphite sheet.
- the expanded graphite particles that generally are worm-like or vermiform in appearance, once compressed, will maintain the compression set and alignment with the opposed major surfaces of the sheet.
- the density and thickness of the sheet material can be varied by controlling the degree of compression.
- the density of the sheet material can be within the range of from about 0.04 g/cm 3 to about 2.0 g/cm 3 .
- the flexible graphite sheet material exhibits an appreciable degree of anisotropy due to the alignment of graphite particles parallel to the major opposed, parallel surfaces of the sheet, with the degree of anisotropy increasing upon roll pressing of the sheet material to increase orientation.
- the thickness, i.e. the direction perpendicular to the opposed, parallel sheet surfaces comprises the "c" direction and the directions ranging along the length and width, i.e. along or parallel to the opposed, major surfaces comprises the "a” directions and the thermal, electrical and fluid diffusion properties of the sheet are very different, by orders of magnitude, for the "c" and "a” directions.
- the present invention provides a graphite-based heat riser formed from compressed particles of exfoliated graphite. More specifically, the inventive heat riser is formed of articles of epoxy impregnated graphite compressed (such as by calendering) and then cured at elevated temperatures and pressures. The resultant material exhibits unexpectedly good mechanical and thermal properties and also possesses good machinability. The thermal properties exhibited by the graphite article permit efficient transfer of heat from a heat source to a heat dissipation device such as a heat sink. Because of the efficiency of this thermal transfer, heat generated by the heat source is dissipated to a greater extent that previously anticipated.
- the inventive heat riser comprises compressed particles of exfoliated graphite (sometimes referred to with the term of art “flexible graphite”).
- the term “flexible graphite” also refers to sheets of pyrolytic graphite, either singly or as a laminate.
- the flexible graphite article employed in the inventive heat riser has an in-plane thermal conductivity substantially higher than its through-plane thermal conductivity.
- the article of the present invention has a relatively high (on the order of 10 or greater) thermal anisotropic ratio.
- the thermal anisotropic ratio is the ratio of in-plane thermal conductivity to through-plane thermal conductivity.
- a heat riser article can be provided to effectively bridge the gap between a heat source and a thermal dissipation device.
- the inventive heat riser can be shaped to fit in the required shape, and provide a direct heat transfer path to enable optimal heat transfer.
- the inventive heat riser comprises two operative surfaces, one of which is arrayed in operative contact with a heat source, such as a hard drive or electronics chip in an electronic device.
- a heat source such as a hard drive or electronics chip in an electronic device.
- the heat riser can be placed in direct contact with the heat source; alternatively, a thermal interface or like material can be disposed between the heat riser and the heat source.
- the second operative surface of the inventive heat riser is placed in operative contact with a heat dissipation device like the base of a heat sink. Direct contact between the heat riser and a heat sink, or with a thermal interface therebetween, can be maintained.
- the inventive heat riser is formed of anisotropic flexible graphite, the planes of high thermal conductivity in the heat riser can be arrayed such that heat is transmitted between the heat source and the thermal dissipation device in as efficient a manner as possible.
- the heat from the heat source is transmitted equally along all surfaces of the metallic material.
- the use of an anisotropic flexible graphite heat riser permits the heat to be primarily directed from one major surface of the heat riser to the other.
- the inventive heat riser is shaped to optimize thermal transfer between the heat source and the heat dissipation device, although the most common shape is as a rectangular block, with the operative surfaces comprising two opposing surfaces of the heat riser.
- contact between the heat riser and the heat source and/or the heat dissipation device is maintained by pressure exerted on the respective devices by clamps or other holding devices.
- Adhesives are undesirable since they may degrade thermal transfer, although at times adhesives can be employed if they are thermally conductive or applied as a thin enough layer to reduce the amount of thermal degradation in the transfer of heat between the heat riser and heat source and between the heat riser and heat sink.
- Still another object of the present invention is the provision of a heat riser having a sufficiently high thermal anisotropic ratio to function effectively for optimized heat transfer from a heat source to a heat dissipation article or material.
- a heat riser which can be formed in a variety of shapes and which provides heat transfer in an environment where available space is otherwise impractical.
- a heat riser for bridging the gap between a heat source and a heat dissipation device in an electronic device, the heat riser comprising a flexible graphite article having two operative surfaces, one of which is in operative contact with a surface of the heat source and the other of which is in operative contact with a surface of the heat dissipation device.
- the invention also comprises a thermal dissipation system for an electronic component which includes the inventive heat riser in combination with the heat source and heat dissipation device.
- the inventive heat riser is preferably formed of a flexible graphite article which comprises at least one sheet of resin impregnated flexible graphite pressure cured at an elevated temperature.
- the flexible graphite sheet can be pressure cured at a temperature of at least about 9O 0 C and at a pressure of at least about 7 Mpa, resulting in a density greater than about 1.85 g/cm 3 .
- the heat riser exhibits a thermal conductivity which is anisotropic in nature and is at least about 300 WVm 0 K in one plane. Most preferably, the anisotropic thermal conductivity varies by a factor of at least 15 as between a plane with a higher thermal conductivity and a plane with lower thermal conductivity.
- the sheet of flexible graphite should preferably have a resin content of at least about 3% by weight, more preferably from about 5% to about 35% by weight.
- the inventive heat riser should be formed such that the operative surface of the heat riser in operative contact with the thermal dissipation device generally corresponds in size and shape to the surface of the heat dissipation device contacted by the heat riser. Contrariwise, the operative surface of the heat riser in operative contact with the heat source should advantageously be larger in size than the surface of the heat source contacted by the heat riser.
- FIGs. IA and IB are perspective views of a first embodiment of the heat riser of the present invention.
- Fig. 2 is a partial side plan view of a laptop having the inventive heat riser of Figs. IA and IB disposed between a component of the laptop and a heat dissipation device.
- the inventive heat riser is formed from compressed particles of exfoliated graphite, commonly known as flexible graphite.
- Graphite is a crystalline form of carbon comprising atoms covalently bonded in flat layered planes with weaker bonds between the planes.
- the crystal structure of the graphite reacts to form a compound of graphite and the intercalant.
- the treated particles of graphite are hereafter referred to as "particles of intercalated graphite.”
- the intercalant within the graphite decomposes and volatilizes, causing the particles of intercalated graphite to expand in dimension as much as about 80 or more times its original volume in an accordion-like fashion in the "c" direction, i.e. in the direction perpendicular to the crystalline planes of the graphite.
- the exfoliated graphite particles are vermiform in appearance, and are therefore commonly referred to as worms.
- the worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes.
- Graphite starting materials suitable for use in the present invention include highly graphitic carbonaceous materials capable of intercalating organic and inorganic acids as well as halogens and then expanding when exposed to heat. These highly graphitic carbonaceous materials most preferably have a degree of graphitization of about 1.0. As used in this disclosure, the term "degree of graphitization" refers to the value g according to the formula:
- d(002) is the spacing between the graphitic layers of the carbons in the crystal structure measured in Angstrom units.
- the spacing d between graphite layers is measured by standard X-ray diffraction techniques.
- the positions of diffraction peaks corresponding to the (002), (004) and (006) Miller Indices are measured, and standard least-squares techniques are employed to derive spacing which minimizes the total error for all of these peaks.
- highly graphitic carbonaceous materials include natural graphites from various sources, as well as other carbonaceous materials such as graphite prepared by chemical vapor deposition, high temperature pyrolysis of polymers, or crystallization from molten metal solutions and the like. Natural graphite is most preferred.
- the graphite starting materials used in the present invention may contain non-graphite components so long as the crystal structure of the starting materials maintains the required degree of graphitization and they are capable of exfoliation.
- any carbon-containing material, the crystal structure of which possesses the required degree of graphitization and which can be exfoliated is suitable for use with the present invention.
- Such graphite preferably has a purity of at least about eighty weight percent. More preferably, the graphite employed for the present invention will have a purity of at least about 94%. In the most preferred embodiment, the graphite employed will have a purity of at least about 98%.
- Examples include those containing oxidizing agents and oxidizing mixtures, such as solutions containing nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid, and the like, or mixtures, such as for example, concentrated nitric acid and chlorate, chromic acid and phosphoric acid, sulfuric acid and nitric acid, or mixtures of a strong organic acid, e.g. trifluoroacetic acid, and a strong oxidizing agent soluble in the organic acid.
- an electric potential can be used to bring about oxidation of the graphite.
- Chemical species that can be introduced into the graphite crystal using electrolytic oxidation include sulfuric acid as well as other acids.
- the intercalating agent is a solution of a mixture of sulfuric acid, or sulfuric acid and phosphoric acid, and an oxidizing agent, i.e. nitric acid, perchloric acid, chromic acid, potassium permanganate, hydrogen peroxide, iodic or periodic acids, or the like.
- the intercalation solution may contain metal halides such as ferric chloride, and ferric chloride mixed with sulfuric acid, or a halide, such as bromine as a solution of bromine and sulfuric acid or bromine in an organic solvent.
- the quantity of intercalation solution may range from about 20 to about 350 pph and more typically about 40 to about 160 pph. After the flakes are intercalated, any excess solution is drained from the flakes and the flakes are water-washed. Alternatively, the quantity of the intercalation solution may be limited to between about 10 and about 40 pph, which permits the washing step to be eliminated as taught and described in U.S. Patent No. 4,895,713, the disclosure of which is also herein incorporated by reference.
- the particles of graphite flake treated with intercalation solution can optionally be contacted, e.g. by blending, with a reducing organic agent selected from alcohols, sugars, aldehydes and esters which are reactive with the surface film of oxidizing intercalating solution at temperatures in the range of 25 0 C and 125°C.
- a reducing organic agent selected from alcohols, sugars, aldehydes and esters which are reactive with the surface film of oxidizing intercalating solution at temperatures in the range of 25 0 C and 125°C.
- Suitable specific organic agents include hexadecanol, octadecanol, 1-octanol, 2-octanol, decylalcohol, 1, 10 decanediol, decylaldehyde, 1-propanol, 1,3 propanediol, ethyleneglycol, polypropylene glycol, dextrose, fructose, lactose, sucrose, potato starch, ethylene glycol monostearate, diethylene glycol dibenzoate, propylene glycol monostearate, glycerol monostearate, dimethyl oxylate, diethyl oxylate, methyl formate, ethyl formate, ascorbic acid and lignin-derived compounds, such as sodium lignosulfate.
- the amount of organic reducing agent is suitably from about 0.5 to 4% by weight of the particles of graphite flake.
- an expansion aid applied prior to, during or immediately after intercalation can also provide improvements. Among these improvements can be reduced exfoliation temperature and increased expanded volume (also referred to as "worm volume").
- An expansion aid in this context will advantageously be an organic material sufficiently soluble in the intercalation solution to achieve an improvement in expansion. More narrowly, organic materials of this type that contain carbon, hydrogen and oxygen, preferably exclusively, may be employed. Carboxylic acids have been found especially effective.
- a suitable carboxylic acid useful as the expansion aid can be selected from aromatic, aliphatic or cycloaliphatic, straight chain or branched chain, saturated and unsaturated monocarboxylic acids, dicarboxylic acids and polycarboxylic acids which have at least 1 carbon atom, and preferably up to about 15 carbon atoms, which is soluble in the intercalation solution in amounts effective to provide a measurable improvement of one or more aspects of exfoliation.
- Suitable organic solvents can be employed to improve solubility of an organic expansion aid in the intercalation solution.
- saturated aliphatic carboxylic acids are acids such as those of the formula H(CEb) n COOH wherein n is a number of from 0 to about 5, including formic, acetic, propionic, butyric, pentanoic, hexanoic, and the like.
- the anhydrides or reactive carboxylic acid derivatives such as alkyl esters can also be employed.
- alkyl esters are methyl formate and ethyl formate.
- Sulfuric acid, nitric acid and other known aqueous intercalants have the ability to decompose formic acid, ultimately to water and carbon dioxide.
- dicarboxylic acids are aliphatic dicarboxylic acids having 2-12 carbon atoms, in particular oxalic acid, fumaric acid, malonic acid, maleic acid, succinic acid, glutaric acid, adipic acid, 1,5-pentanedicarboxylic acid, 1,6-hexanedicarboxylic acid, 1,10- decanedicarboxylic acid, cyclohexane-l,4-dicarboxylic acid and aromatic dicarboxylic acids such as phthalic acid or terephthalic acid.
- alkyl esters are dimethyl oxylate and diethyl oxylate.
- Representative of cycloaliphatic acids is cyclohexane carboxylic acid and of aromatic carboxylic acids are benzoic acid, naphthoic acid, anthranilic acid, p-aminobenzoic acid, salicylic acid, o-, m- and p-tolyl acids, methoxy and ethoxybenzoic acids, acetoacetamidobenzoic acids and, acetamidobenzoic acids, phenylacetic acid and naphthoic acids.
- hydroxy aromatic acids are hydroxybenzoic acid, 3-hydroxy-l-naphthoic acid, 3-hydroxy-2-naphthoic acid, 4-hydroxy-2-naphthoic acid, 5-hydroxy-l-naphthoic acid, 5-hydroxy-2- naphthoic acid, 6-hydroxy-2-naphthoic acid and 7-hydroxy-2-naphthoic acid.
- Prominent among the polycarboxylic acids is citric acid.
- the intercalation solution will be aqueous and will preferably contain an amount of expansion aid of from about 1 to 10%, the amount being effective to enhance exfoliation.
- the expansion aid can be admixed with the graphite by suitable means, such as a V-blender, typically in an amount of from about 0.2% to about 10% by weight of the graphite flake.
- the blend After intercalating the graphite flake, and following the blending of the intercalant coated intercalated graphite flake with the organic reducing agent, the blend is exposed to temperatures in the range of 25° to 125 0 C to promote reaction of the reducing agent and intercalant coating.
- the heating period is up to about 20 hours, with shorter heating periods, e.g., at least about 10 minutes, for higher temperatures in the above-noted range. Times of one half hour or less, e.g., on the order of 10 to 25 minutes, can be employed at the higher temperatures.
- the thusly treated particles of graphite are sometimes referred to as "particles of intercalated graphite.”
- the particles of intercalated graphite Upon exposure to high temperature, e.g. temperatures of at least about 160°C and especially about 700°C to 1000°C and higher, the particles of intercalated graphite expand as much as about 80 to 1000 or more times their original volume in an accordion-like fashion in the c-direction, i.e. in the direction perpendicular to the crystalline planes of the constituent graphite particles.
- the expanded, i.e. exfoliated, graphite particles are vermiform in appearance, and are therefore commonly referred to as worms.
- the worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes.
- Flexible graphite sheet and foil are coherent, with good handling strength, and are suitably compressed, e.g. by roll pressing, to a thickness of about 0.075 mm to 3.75 mm and a typical density of about 0.1 to 1.5 grams per cubic centimeter (g/cm 3 ). From about 1.5-30% by weight of ceramic additives can be blended with the intercalated graphite flakes as described in U.S. Patent No. 5,902,762 (which is incorporated herein by reference) to provide enhanced resin impregnation in the final flexible graphite product.
- the additives include ceramic fiber particles having a length of about 0.15 to 1.5 millimeters.
- the width of the particles is suitably from about 0.04 to 0.004 mm.
- the ceramic fiber particles are non-reactive and non-adhering to graphite and are stable at temperatures up to about HOO 0 C, preferably about 1400 0 C or higher.
- Suitable ceramic fiber particles are formed of macerated quartz glass fibers, carbon and graphite fibers, zirconia, boron nitride, silicon carbide and magnesia fibers, naturally occurring mineral fibers such as calcium metasilicate fibers, calcium aluminum silicate fibers, aluminum oxide fibers and the like.
- the above described methods for intercalating and exfoliating graphite flake may beneficially be augmented by a pretreatment of the graphite flake at graphitization temperatures, i.e. temperatures in the range of about 3000° C and above and by the inclusion in the intercalant of a lubricious additive, as described in International Patent Application No. PCT/US02/39749.
- the pretreatment, or annealing, of the graphite flake results in significantly increased expansion (i.e., increase in expansion volume of up to 300% or greater) when the flake is subsequently subjected to intercalation and exfoliation.
- the increase in expansion is at least about 50%, as compared to similar processing without the annealing step.
- the temperatures employed for the annealing step should not be significantly below 3000°C, because temperatures even 100°C lower result in substantially reduced expansion.
- the annealing of the present invention is performed for a period of time sufficient to result in a flake having an enhanced degree of expansion upon intercalation and subsequent exfoliation.
- the time required will be 1 hour or more, preferably 1 to 3 hours and will most advantageously proceed in an inert environment.
- the annealed graphite flake will also be subjected to other processes known in the art to enhance the degree expansion — namely intercalation in the presence of an organic reducing agent, an intercalation aid such as an organic acid, and a surfactant wash following intercalation.
- the intercalation step may be repeated.
- the annealing step of the instant invention may be performed in an induction furnace or other such apparatus as is known and appreciated in the art of graphitization; for the temperatures here employed, which are in the range of 3000°C, are at the high end of the range encountered in graphitization processes.
- a lubricious additive to the intercalation solution facilitates the more uniform distribution of the worms across the bed of a compression apparatus (such as the bed of a calender station conventionally used for compressing (or "calendering") graphite worms into flexible graphite sheet.
- the resulting sheet therefore has higher area weight uniformity and greater tensile strength.
- the lubricious additive is preferably a long chain hydrocarbon, more preferably a hydrocarbon having at least about 10 carbons. Other organic compounds having long chain hydrocarbon groups, even if other functional groups are present, can also be employed.
- the lubricious additive is an oil, with a mineral oil being most preferred, especially considering the fact that mineral oils are less prone to rancidity and odors, which can be an important consideration for long term storage. It will be noted that certain of the expansion aids detailed above also meet the definition of a lubricious additive. When these materials are used as the expansion aid, it may not be necessary to include a separate lubricious additive in the intercalant. [0049]
- the lubricious additive is present in the intercalant in an amount of at least about 1.4 pph, more preferably at least about 1.8 pph.
- lubricous additive is not as critical as the lower limit, there does not appear to be any significant additional advantage to including the lubricious additive at a level of greater than about 4 pph.
- the thus treated particles of graphite are sometimes referred to as "particles of intercalated graphite.”
- the particles of intercalated graphite expand as much as about 80 to 1000 or more times their original volume in an accordion-like fashion in the c-direction, i.e. in the direction perpendicular to the crystalline planes of the constituent graphite particles.
- the expanded i.e.
- graphite particles are vermiform in appearance, and are therefore commonly referred to as worms.
- the worms may be compressed together into flexible articles that, unlike the original graphite flakes, can be formed and cut into various shapes and provided with small transverse openings by deforming mechanical impact as hereinafter described.
- Fiber-based graphite articles are coherent, with good handling strength, and are suitably compressed, e.g. by roll-pressing, to a thickness of about 0.075 mm to 3.75 mm and a typical density of about 0.1 to 1.5 grams per cubic centimeter (g/cc).
- ceramic additives can be blended with the intercalated graphite flakes as described in U.S. Patent No. 5,902,762 (which is incorporated herein by reference) to provide enhanced resin impregnation in the final flexible graphite product.
- the additives include ceramic fiber particles having a length of about 0.15 to 1.5 millimeters. The width of the particles is suitably from about 0.04 to 0.004 mm.
- the ceramic fiber particles are non-reactive and non-adhering to graphite and are stable at temperatures up to about 1100°C, preferably about 1400°C or higher.
- Suitable ceramic fiber particles are formed of macerated quartz glass fibers, carbon and graphite fibers, zirconia, boron nitride, silicon carbide and magnesia fibers, naturally occurring mineral fibers such as calcium metasilicate fibers, calcium aluminum silicate fibers, aluminum oxide fibers and the like.
- the flexible graphite material is treated with resin and the absorbed resin, after curing, enhances the moisture resistance and handling strength, i.e. stiffness, of the flexible graphite article as well as "fixing" the morphology of the article.
- Suitable resin content is preferably at least about 5% by weight, more preferably about 10 to 35% by weight, and suitably up to about 60% by weight.
- Resins found especially useful in the practice of the present invention include acrylic-, epoxy- and phenolic-based resin systems, fluoro-based polymers, or mixtures thereof.
- Suitable epoxy resin systems include those based on diglycidyl ether of bisphenol A (DGEBA) and other multifunctional resin systems; phenolic resins that can be employed include resole and novolac phenolics.
- the flexible graphite may be impregnated with fibers and/or salts in addition to the resin or in place of the resin. Additionally, reactive or non-reactive additives may be employed with the resin system to modify properties (such as tack, material flow, hydrophobicity, etc.).
- the flexible graphite sheets of the present invention may utilize particles of reground flexible graphite sheets rather than freshly expanded worms, as discussed in International Patent Application No. PCT/US02/16730.
- the sheets may be newly formed sheet material, recycled sheet material, scrap sheet material, or any other suitable source.
- the processes of the present invention may use a blend of virgin materials and recycled materials.
- the source material for recycled materials may be sheets or trimmed portions of sheets that have been compression molded as described above, or sheets that have been compressed with, for example, pre-calendering rolls, but have not yet been impregnated with resin. Furthermore, the source material may be sheets or trimmed portions of sheets that have been impregnated with resin, but not yet cured, or sheets or trimmed portions of sheets that have been impregnated with resin and cured.
- the source material may also be recycled flexible graphite proton exchange membrane (PEM) fuel cell components such as flow field plates or electrodes. Each of the various sources of graphite may be used as is or blended with natural graphite flakes.
- the source material of flexible graphite sheets can then be comminuted by known processes or devices, such as a jet mill, air mill, blender, etc. to produce particles.
- a majority of the particles have a diameter such that they will pass through 20 U.S. mesh; more preferably a major portion (greater than about 20%, most preferably greater than about 50%) will not pass through 80 U.S. mesh.
- Most preferably the particles have a particle size of no greater than about 20 mesh. It may be desirable to cool the flexible graphite sheet when it is resin-impregnated as it is being comminuted to avoid heat damage to the resin system during the comminution process.
- the size of the comminuted particles may be chosen so as to balance machinability and formability of the graphite article with the thermal characteristics desired. Thus, smaller particles will result in a graphite article which is easier to machine and/or form, whereas larger particles will result in a graphite article having higher anisotropy, and, therefore, greater in-plane electrical and thermal conductivity.
- the source material is comminuted, it is then re-expanded.
- the re-expansion may occur by using the intercalation and exfoliation process described above and those described in U.S. Patent No. 3,404,061 to Shane et al. and U.S. Patent No. 4,895,713 to Greinke et al.
- the particles are exfoliated by heating the intercalated particles in a furnace.
- intercalated natural graphite flakes may be added to the recycled intercalated particles.
- the particles are expanded to have a specific volume in the range of at least about 100 cc/g and up to about 350 cc/g or greater.
- the re-expanded particles may be compressed into flexible articles, as hereinafter described.
- the resin should preferably be at least partially removed from the particles. This removal step should occur between the comminuting step and the re- expanding step.
- Flexible graphite materials prepared according to the foregoing description can also be generally referred to as compressed particles of exfoliated graphite. Since the materials are resin-impregnated, the resin in the sheets needs to be cured before the sheets are used in their intended applications, such as for electronic thermal management.
- Flexible graphite materials are, on a microscopic level, in fact comprised of individual graphite layers.
- resin-impregnated flexible graphite materials prepared as described above are compressed to the desired thickness and shape, commonly a thickness of about 0.35 mm to 0.5 mm, at which time the impregnated flexible mats have a density of about 1.4 g/cm 3 to about 1.9 g/cm 3 .
- the flexible graphite material is passed through a vessel and impregnated with the resin system from, e.g. spray nozzles, the resin system advantageously being "pulled through the mat" by means of a vacuum chamber.
- the resin system is solvated to facilitate application into the flexible graphite.
- the resin is thereafter preferably dried, reducing the tack of the resin and the resin-impregnated article.
- the pressure employed for curing will be somewhat a function of the temperature utilized, but will be sufficient to ensure that the lamellar structure is densified without adversely impacting the thermal properties of the structure. Generally, for convenience of manufacture, the minimum required pressure to densify the structure to the required degree will be utilized. Such a pressure will generally be at least about 7 megapascals (Mpa, equivalent to about 1000 pounds per square inch), and need not be more than about 35 Mpa (equivalent to about 5000 psi), and more commonly from about 7 to about 21 Mpa (1000 to 3000 psi).
- the curing time may vary depending on the resin system and the temperature and pressure employed, but generally will range from about 0.5 hours to 2 hours. After curing is complete, the composites are seen to have a density of at least about 1.8 g/cm 3 and commonly from about 1.8 g/cm 3 to 2.0 g/cm 3 .
- the exfoliated graphite particles can be compression molded into a net shape or near net shape.
- the end application requires an article, such as a heat sink or heat spreader, assuming a certain shape or profile, that shape or profile can be molded into the flexible graphite article, before or after resin impregnation. Cure would then take place in a mold assuming the same shape; indeed, in the preferred embodiment, compression and curing will take place in the same mold. Machining to the final shape can then be effected.
- expansion of the particles of intercalated graphite can take place in situ in the compression mold, rather than by passing the graphite particles through a flame, followed by compression, resin impregnation and cure.
- the temperature- and pressure-cured graphite/resin composites of the present invention provide for the first time a graphite-based composite material having in-plane thermal conductivity rivaling or exceeding that of copper, at a fraction of the weight of copper, and which exhibits in-plane thermal conductivity of about 300 W/m°K or higher, and an anisotropic ratio of at least about 15 (that is, the thermal conductivity varies by a factor of at least 15 as between a plane with a higher thermal conductivity and a plane with lower thermal conductivity).
- the inventive heat riser can be formed in the shape desired.
- the inventive heat riser can be formed as a laminate of individual flexible graphite articles, most preferably, flexible graphite sheets, with or without an adhesive between laminate layers.
- Non-graphite layers may be included in the laminate stack, although this may necessitate the use of adhesives, which can be disadvantageous, since it can slow thermal dissipation across the plane of the laminate stack.
- Such non-graphite layers may include metals, plastics or other non-metallics such as fiberglass or ceramics.
- the thusly-formed sheets of compressed particles of exfoliated graphite are anisotropic in nature; that is, the thermal conductivity of the sheets is greater in the in-plane, or "a" directions, as opposed to the through-sheet, or "c” direction.
- the anisotropic nature of the graphite sheet directs the heat along the planar direction of the heat riser (i.e., in the "a" direction along the graphite sheet).
- Such a sheet generally has a thermal conductivity in the in-plane direction of at least about 140, more preferably at least about 200, and most preferably at least about 300 W/m°K and in the through-plane direction of no greater than about 20, more preferably no greater than about 10, and most preferably no greater than about 6 W/m°K.
- the heat riser has a thermal anistropic ratio (that is, the ratio of in-plane thermal conductivity to through-plane thermal conductivity) of no less than about 10 and most preferably at least about 15.
- the cross-sectional shape and area of the operative surface of the inventive heat riser which abuts the heat dissipation device should correspond as closely as possible to the cross-sectional shape and area of the base of the heat dissipation device, in order to facilitate thermal transfer between the heat riser and the heat dissipation device.
- the cross- sectional shape and area of the operative surface of the heat riser which abuts the heat source can be greater than the surface of the heat source against which the heat riser abuts. This permits some thermal spreading across the heat riser, and permits greater thermal dissipation from the heat source through the heat riser to the heat sink or other thermal dissipation device.
- Heat riser 10 comprises a graphite block having operative surfaces 10a and 10b formed as a laminate of sheets of compressed particles of exfoliated graphite (the individual sheet making up the laminate are not shown).
- One operative surface 10b of heat riser 10 is positioned in operative contact with a heat source 100 while the other operative surface 10a is in operative contact with a heat dissipation device, such as a heat sink 110, as illustrated in Fig. 2, such that heat generated by heat source 100 is transferred to heat dissipation device 110 through heat riser 10 and is thereby dissipated.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Thermal Sciences (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2005800314506A CN101084704B (zh) | 2004-09-17 | 2005-09-13 | 热提升装置 |
EP05798089A EP1794530A4 (fr) | 2004-09-17 | 2005-09-13 | Volet de rechauffeur |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/943,338 US20060070720A1 (en) | 2004-09-17 | 2004-09-17 | Heat riser |
US10/943,338 | 2004-09-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006033894A2 true WO2006033894A2 (fr) | 2006-03-30 |
WO2006033894A3 WO2006033894A3 (fr) | 2007-06-07 |
Family
ID=36090472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/032574 WO2006033894A2 (fr) | 2004-09-17 | 2005-09-13 | Volet de rechauffeur |
Country Status (5)
Country | Link |
---|---|
US (1) | US20060070720A1 (fr) |
EP (1) | EP1794530A4 (fr) |
KR (1) | KR20070083642A (fr) |
CN (1) | CN101084704B (fr) |
WO (1) | WO2006033894A2 (fr) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4299261B2 (ja) * | 2005-03-31 | 2009-07-22 | 東洋炭素株式会社 | 伝熱シート、放熱構造体および伝熱シートの使用方法 |
DE202006010757U1 (de) * | 2006-07-11 | 2006-11-02 | Sgl Carbon Ag | Kühlvorrichtung |
US20100009174A1 (en) * | 2008-07-10 | 2010-01-14 | Reis Bradley E | Heat Dissipation For Low Profile Devices |
WO2010016890A1 (fr) * | 2008-08-04 | 2010-02-11 | Clustered Systems Company | Boîtier électronique refroidi par contact |
US8955580B2 (en) | 2009-08-14 | 2015-02-17 | Wah Hong Industrial Corp. | Use of a graphite heat-dissipation device including a plating metal layer |
TW201035513A (en) * | 2009-03-25 | 2010-10-01 | Wah Hong Ind Corp | Method for manufacturing heat dissipation interface device and product thereof |
US8537553B2 (en) * | 2011-02-14 | 2013-09-17 | Futurewei Technologies, Inc. | Devices having anisotropic conductivity heatsinks, and methods of making thereof |
CN103415184A (zh) * | 2013-07-23 | 2013-11-27 | 苏州天脉导热科技有限公司 | 一种热传递与热扩散器件的结合方法 |
US9706684B2 (en) | 2013-12-26 | 2017-07-11 | Terrella Energy Systems Ltd. | Exfoliated graphite materials and composite materials and devices for thermal management |
US9700968B2 (en) | 2013-12-26 | 2017-07-11 | Terrella Energy Systems Ltd. | Apparatus and methods for processing exfoliated graphite materials |
US11840013B2 (en) | 2018-02-27 | 2023-12-12 | Matthews International Corporation | Graphite materials and devices with surface micro-texturing |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB991581A (en) * | 1962-03-21 | 1965-05-12 | High Temperature Materials Inc | Expanded pyrolytic graphite and process for producing the same |
US4895713A (en) * | 1987-08-31 | 1990-01-23 | Union Carbide Corporation | Intercalation of graphite |
US4961991A (en) * | 1990-01-29 | 1990-10-09 | Ucar Carbon Technology Corporation | Flexible graphite laminate |
US5198063A (en) * | 1991-06-03 | 1993-03-30 | Ucar Carbon Technology Corporation | Method and assembly for reinforcing flexible graphite and article |
US5260124A (en) * | 1991-11-25 | 1993-11-09 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Intercalated hybrid graphite fiber composite |
US5390734A (en) * | 1993-05-28 | 1995-02-21 | Lytron Incorporated | Heat sink |
US5545473A (en) * | 1994-02-14 | 1996-08-13 | W. L. Gore & Associates, Inc. | Thermally conductive interface |
US5566752A (en) * | 1994-10-20 | 1996-10-22 | Lockheed Fort Worth Company | High heat density transfer device |
US5902762A (en) * | 1997-04-04 | 1999-05-11 | Ucar Carbon Technology Corporation | Flexible graphite composite |
US6060166A (en) * | 1998-02-05 | 2000-05-09 | Raytheon Company | Flexible graphite fiber thermal shunt |
US6245400B1 (en) * | 1998-10-07 | 2001-06-12 | Ucar Graph-Tech Inc. | Flexible graphite with non-carrier pressure sensitive adhesive backing and release liner |
US6404061B1 (en) * | 1999-02-26 | 2002-06-11 | Rohm Co., Ltd. | Semiconductor device and semiconductor chip |
JP2000273196A (ja) * | 1999-03-24 | 2000-10-03 | Polymatech Co Ltd | 熱伝導性樹脂基板および半導体パッケージ |
EP2248645A1 (fr) * | 1999-04-07 | 2010-11-10 | GrafTech International Holdings Inc. | Article de graphite flexible et son procédé de fabrication |
US6165612A (en) * | 1999-05-14 | 2000-12-26 | The Bergquist Company | Thermally conductive interface layers |
US6286591B1 (en) * | 1999-11-08 | 2001-09-11 | Space Systems/Loral, Inc. | Thermal harness using thermal conductive fiber and polymer matrix material |
US6841250B2 (en) * | 2000-02-25 | 2005-01-11 | Advanced Energy Technology Inc. | Thermal management system |
US6482520B1 (en) * | 2000-02-25 | 2002-11-19 | Jing Wen Tzeng | Thermal management system |
US6503626B1 (en) * | 2000-02-25 | 2003-01-07 | Graftech Inc. | Graphite-based heat sink |
US6407922B1 (en) * | 2000-09-29 | 2002-06-18 | Intel Corporation | Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader |
US6469381B1 (en) * | 2000-09-29 | 2002-10-22 | Intel Corporation | Carbon-carbon and/or metal-carbon fiber composite heat spreader |
US7027304B2 (en) * | 2001-02-15 | 2006-04-11 | Integral Technologies, Inc. | Low cost thermal management device or heat sink manufactured from conductive loaded resin-based materials |
US6351386B1 (en) * | 2001-03-13 | 2002-02-26 | Motorola, Inc. | Component shim for mounting a component on a heat spreader |
US20020157819A1 (en) * | 2001-04-04 | 2002-10-31 | Julian Norley | Graphite-based thermal dissipation component |
US20020157818A1 (en) * | 2001-04-04 | 2002-10-31 | Julian Norley | Anisotropic thermal solution |
US6538892B2 (en) * | 2001-05-02 | 2003-03-25 | Graftech Inc. | Radial finned heat sink |
US7232601B2 (en) * | 2001-05-31 | 2007-06-19 | Advanced Energy Technology Inc. | Method for preparing composite flexible graphite material |
US6777086B2 (en) * | 2001-08-31 | 2004-08-17 | Julian Norley | Laminates prepared from impregnated flexible graphite sheets |
JP3938681B2 (ja) * | 2001-11-21 | 2007-06-27 | 信越化学工業株式会社 | 放熱構造体 |
US6758263B2 (en) * | 2001-12-13 | 2004-07-06 | Advanced Energy Technology Inc. | Heat dissipating component using high conducting inserts |
US7108055B2 (en) * | 2002-03-29 | 2006-09-19 | Advanced Energy Technology Inc. | Optimized heat sink using high thermal conducting base and low thermal conducting fins |
US20040118553A1 (en) * | 2002-12-23 | 2004-06-24 | Graftech, Inc. | Flexible graphite thermal management devices |
US20050016714A1 (en) * | 2003-07-09 | 2005-01-27 | Chung Deborah D.L. | Thermal paste for improving thermal contacts |
US6874573B2 (en) * | 2003-07-31 | 2005-04-05 | National Starch And Chemical Investment Holding Corporation | Thermal interface material |
US7160619B2 (en) * | 2003-10-14 | 2007-01-09 | Advanced Energy Technology Inc. | Heat spreader for emissive display device |
US6982874B2 (en) * | 2003-11-25 | 2006-01-03 | Advanced Energy Technology Inc. | Thermal solution for electronic devices |
-
2004
- 2004-09-17 US US10/943,338 patent/US20060070720A1/en not_active Abandoned
-
2005
- 2005-09-13 KR KR1020077008137A patent/KR20070083642A/ko not_active Withdrawn
- 2005-09-13 EP EP05798089A patent/EP1794530A4/fr not_active Withdrawn
- 2005-09-13 WO PCT/US2005/032574 patent/WO2006033894A2/fr active Search and Examination
- 2005-09-13 CN CN2005800314506A patent/CN101084704B/zh not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of EP1794530A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20060070720A1 (en) | 2006-04-06 |
EP1794530A4 (fr) | 2009-04-29 |
CN101084704A (zh) | 2007-12-05 |
CN101084704B (zh) | 2011-08-10 |
KR20070083642A (ko) | 2007-08-24 |
WO2006033894A3 (fr) | 2007-06-07 |
EP1794530A2 (fr) | 2007-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7393587B2 (en) | Sandwiched finstock | |
EP1875790B1 (fr) | Materiau thermique a structure en sandwich | |
US20070221369A1 (en) | Composite Heat Sink With Metal Base And Graphite Fins | |
US7292441B2 (en) | Thermal solution for portable electronic devices | |
US6982874B2 (en) | Thermal solution for electronic devices | |
US6771502B2 (en) | Heat sink made from longer and shorter graphite sheets | |
US6749010B2 (en) | Composite heat sink with metal base and graphite fins | |
US20070030653A1 (en) | Anisotropic thermal solution | |
US20070257359A1 (en) | Thermal Management Device For A Memory Module | |
EP1680274B1 (fr) | Solution thermique en sandwich | |
US7494712B2 (en) | Resin-impregnated flexible graphite articles | |
US20060070720A1 (en) | Heat riser | |
WO2006088598A2 (fr) | Dissipateur thermique pour cartes de circuits imprimes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005798089 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580031450.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077008137 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2005798089 Country of ref document: EP |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) |