+

WO2006030587A1 - 可変バルブ駆動装置、エンジン及び自動二輪車 - Google Patents

可変バルブ駆動装置、エンジン及び自動二輪車 Download PDF

Info

Publication number
WO2006030587A1
WO2006030587A1 PCT/JP2005/014087 JP2005014087W WO2006030587A1 WO 2006030587 A1 WO2006030587 A1 WO 2006030587A1 JP 2005014087 W JP2005014087 W JP 2005014087W WO 2006030587 A1 WO2006030587 A1 WO 2006030587A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric
cam
shaft
engine
rotation
Prior art date
Application number
PCT/JP2005/014087
Other languages
English (en)
French (fr)
Inventor
Naoki Tsuchida
Takeshi Morikawa
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/575,341 priority Critical patent/US20080017150A1/en
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to JP2006535073A priority patent/JPWO2006030587A1/ja
Priority to EP05768657A priority patent/EP1795718A4/en
Publication of WO2006030587A1 publication Critical patent/WO2006030587A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/024Belt drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0471Assembled camshafts
    • F01L2001/0473Composite camshafts, e.g. with cams or cam sleeve being able to move relative to the inner camshaft or a cam adjusting rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors

Definitions

  • the present invention relates to a variable valve drive device, an engine, and a motorcycle provided in an engine.
  • a cam action angle (Duration) is defined by placing a coupling (eccentric member) between the cam drive shaft portion and the cam shaft portion to cause angular velocity fluctuations. Also known is a technique for making variable.
  • Patent Document 1 a cam drive shaft force cam synchronized with the rotation of a crank at a predetermined rotational speed and a disc-shaped eccentric plate (eccentric member) are inserted, and a pin provided on the cam drive shaft is inserted.
  • the eccentric plate is loosely fitted in a groove extending in the radial direction.
  • the eccentric plate is formed with a groove portion in which the pin of the cam drive shaft is loosely fitted and another groove portion extending in the radial direction across the center position of the eccentric plate.
  • a pin provided on the cam side is loosely fitted in this other groove, and the eccentric plate rotates in an eccentric state with respect to the cam drive shaft via the pin and groove by rotation of the cam drive shaft. Rotate the cam.
  • an eccentric plate which is an eccentric member, is disposed between a sprocket that rotates by a driving force of a crankshaft transmitted via a gear train and a camshaft that is provided integrally with the cam.
  • the eccentric plate is formed with a groove extending in the radial direction across the rotation center of the cam shaft.
  • a sprocket is installed in each of these grooves.
  • the lead pin and the pin provided on the cam shaft are slidably fitted, and the driving force of the cam drive shaft is transmitted to the cam shaft through the eccentric plate configured in this way.
  • the eccentric plate which is an eccentric member, rotates around a point fixed to the engine to which the variable valve timing mechanism itself is mounted.
  • the input contact portion (pin and groove portion) to which the driving force from the cam drive shaft in the eccentric plate is input and the output contact portion (pin and groove portion) that outputs the driving force to the cam side are The rotational phase with respect to the center position of the eccentric plate is 180 °.
  • the locus of the center position of the eccentric plate (one point fixed to the engine) so that the opening or closing timing of the variable valve is constant is substantially a straight line.
  • Patent Document 3 having the same basic configuration as Patent Document 1 is known as a means for ensuring such a degree of freedom of valve timing setting.
  • Patent Document 3 is a structure in which the center of an eccentric plate provided as a coupling that causes an angular velocity fluctuation between the cam drive shaft and the cam can be moved two-dimensionally in a direction perpendicular to the cam drive shaft. It has become.
  • Patent Document 3 can move the center of the eccentric plate, that is, the center of eccentricity to an arbitrary position, and the valve opening timing corresponding to the required output, fuel consumption rate, etc. at the specific engine speed.
  • the optimum closing timing can be set.
  • Patent Document 1 Japanese Patent Publication No. 47-020654
  • Patent Document 2 JP-A-3-43611
  • Patent Document 3 Japanese Patent Application Laid-Open No. 5-118208
  • two actuators are required to move the eccentric plate, and accordingly, the structure in which the eccentric plate is moved by two drive systems. It has become.
  • Patent Document 3 has a complicated structure and Furthermore, there is a problem that the control of the mechanism itself is complicated. There is a problem that the cost increases with the complexity of the structure and control, and the maintainability and reliability are lowered.
  • the present invention has been made in view of the strong point, and has a structure that is simple and low in cost, and has a cam operating angle that is variable so that both the opening side and the closing side are more effective.
  • the purpose is to provide a variable valve drive, engine and motorcycle that can set the optimal valve timing.
  • the variable valve drive device has a cam drive member that is rotated by a drive force transmitted with a crankshaft force, and a shaft that is in the same direction as the rotation axis of the cam drive member by driving the cam drive member. And an eccentric member provided so that the shaft is movable from an axial center position of the rotating shaft to an eccentric position, and is disposed coaxially with the rotating shaft, and is rotated about the rotating shaft by the eccentric member. When the eccentric member is driven to rotate at the eccentric position, the cam shaft rotates periodically at the same rotational phase as the cam shaft.
  • a variable valve driving device comprising a cam piece for driving an exhaust or intake valve, wherein the eccentric member is connected to the cam driving member, and a rotational force of the cam driving member is input thereto.
  • An input connection portion, and an output connection portion that is connected to the cam shaft and outputs the rotational force of the eccentric member itself rotated by the rotational force input through the input connection portion to the cam shaft.
  • the phase angle of the input connecting portion and the output connecting portion with respect to the axis of the eccentric member changes the opening timing of the exhaust or intake valve, which changes by one-way movement of the rotational center position of the eccentric member. And Z or the timing of closing the exhaust or intake valve is uniquely retarded.
  • FIG. 1 is an exploded perspective view of a main part of an engine provided with a variable valve drive device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an essential part showing the variable valve driving device.
  • FIG. 3 is an exploded perspective view of the variable valve drive device.
  • FIG. 4 is a plan view showing an example of an eccentric plate of the variable valve drive device.
  • FIG. 5 is an exploded perspective view of an eccentric boss.
  • FIG. 6 is a schematic diagram showing a positional relationship among the rotation center of the eccentric boss, the axis of the variable cam drive shaft, and the axis of the eccentric plate.
  • FIG. 7 is a diagram showing an example of the positional relationship between the drive pin and the driven pin in a state where the center of the eccentric plate is eccentric with respect to the camshaft in the variable valve drive device according to the present invention.
  • FIG. 8 is a view showing the relationship between the opening timing and closing timing of the intake valve and the eccentric slot phase angle of the eccentric plate in the structure of the variable valve driving device.
  • FIG. 9 is a view showing the relationship between the opening timing and closing timing of the intake valve and the eccentric slot phase angle of the eccentric plate in the structure of the variable valve driving device.
  • FIG. 10 A graph showing the relationship between general engine overlap and idling stability.
  • FIG. 11 is a diagram showing a deviation amount between the center of rotation of the eccentric plate and the radius of rotation.
  • Fig. 12 is a schematic sectional side view showing a main configuration of a motorcycle including the engine drive mechanism according to the embodiment of the present invention.
  • FIG. 13 is a schematic plan view showing a main part of the drive unit of FIG.
  • FIG. 1 is an exploded perspective view of a main part of an engine provided with a variable valve drive apparatus according to an embodiment of the present invention.
  • An engine 100 shown in FIG. 1 includes an engine main body 110 having a cylinder portion 106 and a cylinder head 104 in which a piston 102 is disposed, a crankshaft 130 housed in a crankcase (not shown), and a variable valve. Drive device 200.
  • variable valve drive apparatus 200 is disposed substantially parallel to crankshaft 130.
  • This variable valve driving device 200 provides a periodic phase difference in the rotation of the exhaust cam piece 220 and the intake cam piece 240 so as to correspond to the rotation of the exhaust cam piece 220 and the intake cam piece 240.
  • the timing of the exhaust and intake valves to be opened and closed is varied.
  • the valve speed is set corresponding to the engine speed.
  • -Valap time is variable.
  • engine 100 will be described as a single cylinder SOHC (Single Over Head Camshaft) type mounted on a starter type motorcycle, for example.
  • the engine 100 is not limited to the force described as a single-cylinder SOHC type, and may be any engine as long as it has a variable valve drive device 200.
  • the piston 102 in the cylinder portion 106 can freely move back and forth (up and down) in the cylinder axial direction within the cylinder portion 106, and on the base end side of the piston 102, It is connected to the crankshaft 130 through a small end.
  • the large end of the connecting rod 108 is rotatably attached to a crank pin (not shown) between crank webs 132 provided on the crankshaft 130.
  • a timing gear 134 is provided on the crankshaft 130 adjacent to the crank web 132 (specifically, a crank journal).
  • a cam drive chain 133 as a drive force transmission member is wound around the timing gear 134.
  • the cam drive chain 133, together with the timing gear 134, is wound around a cam sprocket 211 disposed in the cylinder head 104 of the engine main body 110, and the rotational driving force is applied to the cam pieces 220 and 240 of the variable valve drive device 200.
  • the force used as the cam drive chain 1 33 as the drive force transmission member is not limited to this.
  • Any device can be used as long as it can transmit a driving force to 11.
  • a cog belt instead of the cam drive chain 133, a cog belt may be used.
  • a configuration using a cog wheel instead of the timing gear and the cam sprocket 211 is adopted.
  • the transmission line of the cam drive chain 133 (in this embodiment, the chain line) is substantially perpendicular to the crankshaft 130 and is connected to the cylinder shaft of the cylinder portion 106 in which the piston 102 moves forward and backward. It is placed at a close position. This is because, due to the structure of the engine, the crank force that drives the piston 102 also prevents the bending force applied to the crank itself from increasing as the cam drive chain 133 is pulled away as the cam drive chain 133 is separated. .
  • the cam drive chain 133 is disposed in a chain case portion 116 that is integrally provided adjacent to the cylinder portion 106 in the engine main body portion 110.
  • an upper portion 116 a (hereinafter referred to as “case upper portion”) 116 a of the chain case portion 116 is provided integrally with the cylinder head 104.
  • the case upper portion 116a opens in the cylinder head 104 in a direction parallel to the crankshaft.
  • one opening 116b communicates with the space above the cylinder 106, and the other opening 116c is attached with an annular cylinder head cover (hereinafter referred to as "head cover") 10 5. ing.
  • head cover 105 In this annular head cover 105, one end portion side of the variable valve driving device 200 is disposed, and the variable valve driving device 200 is supported by the head force bar 105 on one end portion side thereof.
  • the variable valve driving device 200 includes a cam sprocket 211, an exhaust cam piece 220, a variable cam shaft 230, an intake cam piece 240, an eccentric plate (eccentric member) 250, an eccentric boss (member moving part) 260, and an eccentric motor. 270 and attached to the cylinder head 104 in parallel with the crankshaft 130.
  • the variable valve driving device 200 changes one valve timing with respect to the other valve timing among the valve timings of the intake valve and the exhaust valve to make the valve overlap amount variable.
  • the variable valve driving apparatus 200 will be described as changing the opening timing and closing timing of the intake valve by the intake force piece 240, thereby changing the valve overlap with the exhaust valve.
  • FIG. 2 is a cross-sectional view of a main part showing the variable valve driving device 200 attached to the cylinder head 104
  • FIG. 3 is an exploded perspective view of the variable valve driving device 200.
  • variable valve drive device 200 In this variable valve drive device 200, the rotation axes of the cam sprocket 211, the exhaust cam piece 220, the variable force shaft 230, the intake cam piece 240, the eccentric plate 250, and the eccentric boss 260 are parallel to each other. .
  • variable valve drive device 200 As shown in FIGS. 1 to 3, the intake cam piece 240 and the exhaust cam piece 220 are placed in the cylinder head 104 with the variable cam shaft 230 being passed through. It is arranged at the upper part of the cylinder part 106 in this.
  • the variable camshaft 230 is passed through the force mus socket 211, and the cam sprocket 211 and the eccentric plate 250 116a.
  • the eccentric boss 260 is rotatably attached to the annular head cover 105, and the head cover 105 is fixed to the cylinder head 104. Thereby, the variable valve driving device 200 is fixed to the cylinder head 104.
  • the opening of the cylinder head 104 to which the head cover 105 on which the eccentric boss 260 is arranged is attached has a diameter into which the cam sprocket 211 can be inserted.
  • the cam sprocket 211 has the same axis, and has an exhaust cam piece 220 that opens and closes a valve (here, an exhaust valve) and a cylindrical portion 224 by rotating.
  • a valve here, an exhaust valve
  • the cam sprocket 211, the cylindrical portion 224, and the exhaust cam piece 220 form a cam drive body 210 that directly receives the drive force of the crankshaft 130 and rotates.
  • the cam sprocket 211 is driven by the drive of the crankshaft 130 via the timing gear 134 (see Fig. 1) and the cam drive chain 133 (see Fig. 1). Rotate by ratio.
  • the cam sprocket 211 rotates at a speed of 1Z2 of the rotation of the crankshaft 130! /.
  • the shaft centers of the cam sprocket 211 and the exhaust cam piece 220 are cam shaft shafts, and the force shaft shaft is arranged in parallel with the crankshaft 130 (see FIG. 1) above the cylinder portion 106. Yes.
  • the cam sprocket 211 protrudes in parallel with the rotational axis direction of the cam sprocket 211 and on the opposite side with respect to the exhaust cam piece 220, and is eccentric.
  • a drive pin 212 for rotating the plate 250 is provided.
  • the drive pin 212 is loosely fitted in a slot 252 cut out in the radial direction from the center side of the eccentric plate 250.
  • the shaft center of the drive pin 212 is eccentric with respect to the shaft center of the cam sprocket 211.
  • the drive pin 212 rotates around the shaft center of the cam sprocket 211 and passes through the slot 252.
  • the eccentric plate 250 whose rotation axis is parallel is driven to rotate.
  • the force mus socket 211 is provided with a protruding piece 114 protruding in the radial direction.
  • the protrusion 114 has a rotational position of the sensor 114 attached to the cylinder head 104. Detected by a.
  • the rotational position of the cam sprocket 211 is interlocked with the stroke of the crank. . That is, the rotation position includes information on the crank stroke (in the case of 4 cycles, the intake stroke, the compression stroke, the explosion stroke, and the exhaust stroke). Therefore, the crank stroke can be determined by detecting the position of the protrusion 114 of the cam sprocket 211 by the sensor 114a.
  • a through hole 215 penetrating in the axial direction is formed in the same shaft center portion of each of the cam sprocket 211, the exhaust cam piece 220, and the cylindrical portion 224, that is, the shaft center portion of the cam drive body 210. Is provided.
  • the through hole 215 communicates with a hole 223 opened in the base circle surface 220a of the exhaust cam piece 220 (see FIG. 2).
  • the shaft portion 230a of the variable cam shaft 230 is passed through the through hole 215 so as to be rotatable in the axial direction.
  • the shaft portion 230a of the variable cam shaft 230 protrudes on both sides in the axial direction from the cam drive body 210 to be passed therethrough, and an intake cam adjacent to the exhaust cam piece 220 is provided at a portion protruding on the exhaust cam piece 220 side.
  • a piece 240 is physically attached.
  • variable cam shaft 230 has a cam sprocket 2 of the cam driver 210 at the shaft portion 230a.
  • a driven pin 232 is provided at a portion protruding on the 11 side.
  • the variable cam shaft 230 is disposed so as to cross over the cylinder portion 106 while being passed through the cam driving body 210.
  • the variable cam shaft 230 is rotatably supported by a bearing 104a and a bearing 113 (see FIG. 2).
  • variable cam shaft 230 has a through hole 238 that penetrates in the axial direction in the shaft portion 230a, and the through hole 238 is a sliding portion between members constituting the variable valve drive device 200. It is the main oil passage (main lubrication passage) for the lubricating oil to be supplied.
  • the through hole 238 will be described as the main body oil passage 238.
  • the main body oil passage 238 is provided so as to penetrate the rotation shaft of the cam drive body 210 (particularly, the cam sprocket 211), and the intake cam piece 240 on the other end side of the cam drive body 210. Supply lubricating oil to sliding parts.
  • the body oil passage 238 is connected to one end of the cam driver 210. Lubricating oil is supplied to the sliding part of the eccentric plate 250 at.
  • the main body oil passage 238 communicates with the outer peripheral surface of the shaft shaft 230a through the branch oil passages 239a, 239b, and 239c, and is connected to the end face through the throttle 235 provided on the chain line side in the shaft portion 230a. Opened to the side (eccentric plate 250 side).
  • the branch oil passages 239a, 239b, 239d, and the shaft rod 230a are formed so as to be orthogonal to the main body oil passage 238, respectively, and open to the outer surface portion of the shaft portion 230a.
  • Oil sump grooves 236 and 237 are formed in the outer surface of the branch oil passages 239a and 239b so as to be recessed in the circumferential direction of the shaft portion 230a.
  • These oil sump grooves 236, 237 are formed in the portion that slides in contact with the inner peripheral surface of the through hole 215 constituting the inner peripheral surface portion of the cylindrical portion 224 and the exhaust cam piece 220, Lubricated by the lubricating oil guided to the branch oil passages 239a and 239b.
  • the branch oil passage 239c is formed in the shaft portion 230a so as to be orthogonal to the main body oil passage 238, and is open to an outer surface portion communicating with the hole portion 245 of the intake cam piece 240.
  • the lubricating oil guided by the branch oil passage 239c is supplied to the sliding portion between the shaft portion 230a and the intake cam piece 240, and lubricates the sliding portion.
  • An oil sump groove 246 is formed along the inner peripheral surface of the opening portion of the intake cam piece 240 in a portion of the intake cam piece 240 that slides on the outer peripheral surface of the shaft portion 230a.
  • variable cam shaft 230 is inserted into a bearing 113 attached to the cylinder head 104 in the cylinder head 104.
  • the portion protruding from the bearing 113 is covered with an oil seal cap 115 via an oil seal portion 117 so that the oil seal portion 117 does not leak lubricating oil outside the cylinder head 104.
  • an oil pump discharge port 118 is attached to the cylinder head 104.
  • Lubricating oil is press-fitted into the oil reservoir 119 communicating with the opening 230c at one end of the shaft portion 230a through the discharge port 118, and is guided into the main body oil passage 238 through the oil reservoir 119.
  • the intake cam piece 240 is externally fitted to one end of the shaft portion 230a, and is fixed by fitting the pin 241 into a notch 243 (see FIG. 3) formed in the intake force piece 240. Has been.
  • the intake cam piece 240 and the exhaust cam piece 220 are arranged above the cylinder portion.
  • the intake cam piece 240 rotates about the axis of the variable cam shaft 230, the intake cam piece 240 is driven to rotate about the coaxial center. Further, as shown in FIG. 2, the intake cam piece 240 is formed with a hole 245 that penetrates the base circle surface 240a and the inner surface of the opening that is fitted around one end of the shaft portion 230a. The hole portion 245 communicates with the main body oil passage 238 in the shaft portion 230a.
  • a plate 23 projecting perpendicular to the shaft center of the shaft portion 230a.
  • the plate 234 rotates at a position adjacent to the cam sprocket 211 as the shaft portion 230a rotates.
  • the front end of the plate 234 is provided with a driven pin 232 that protrudes in a direction opposite to the direction in which the shaft portion 230a extends (see FIGS. 1 to 3).
  • the driven pin 232 is opposed to the drive pin 212 with the shaft portion 230a sandwiched between the plate 234, a position parallel to the shaft center of the shaft portion 230a and eccentric with respect to the shaft center of the shaft portion 230a. Is provided.
  • the driven pin 232 loosely fits in the slot 254 in which the central force of the eccentric plate 250 is also cut out in the radial direction, and the rotation of the eccentric plate 250 causes the shaft 230a to Circulate around the axis.
  • the intake cam piece is accompanied by the rotation of the variable cam shaft 230 driven by the rotation of the eccentric plate 250 via the driven pin 232. 240 also rotates.
  • FIG. 4 is a plan view showing an example of an eccentric plate of the valve drive device according to the exemplary embodiment of the present invention.
  • the eccentric plate 250 shown in FIGS. 1 to 4 has a plate-shaped (disc-shaped here) plate main body 256 disposed opposite to the plate 234 of the variable camshaft 230, and a central portion of the plate main body 256.
  • a plate shaft portion 258 that protrudes vertically on the opposite side of the plate 234 is provided.
  • the plate body portion 256 is provided with an input side slot 252 and an output side slot 254 so as to extend in the radial direction with the plate shaft portion 258 interposed therebetween.
  • the input side slot 252 and the output side slot 254 are formed in the plate body portion 256 with a predetermined opening angle P around the axis of the plate shaft portion 258 (see FIG. 4). .
  • the predetermined opening angle P is 160 ° from the 80 ° force to the axis and direction of the plate shaft 258, with the rotational direction of the cam sprocket 211 being the positive direction! It is set to 290 °.
  • the predetermined opening angle ⁇ ⁇ ⁇ is the phase angle of the drive pin 212 and the driven pin 232, and the cam sprocket 211 and the exhaust cam piece 220 that rotate via the drive pin 212 and the driven pin 232, and the intake cam piece 240 and Produces a phase angle difference corresponding to the open angle ⁇ ⁇ ⁇ .
  • the opening angle ⁇ is the phase angle difference of the intake force piece 240 with respect to the exhaust cam piece 220. Therefore, in the following, the open angle ⁇ is referred to as the eccentric slot phase angle ⁇ in terms of its function.
  • the plate shaft portion 258 serving as the rotation shaft of the eccentric plate 250 configured as described above is rotatably inserted into the eccentric hole 262 formed in the eccentric boss 260. .
  • the eccentric boss 260 has a boss body 264 that rotates around the rotation axis parallel to the cam shaft direction inside the head cover 105 (rotation center R shown in FIG. 3).
  • the eccentric boss 260 whose outer diameter of the eccentric boss main body 264 is smaller than the outer diameter of the cam sprocket 211 is arranged at a position overlapping the force mus rocket 211 in the rotation axis direction.
  • the eccentric hole 262 in the eccentric boss 260 is formed in the boss main body 264 at a position eccentric with respect to the rotation center.
  • a rack 266 is provided on a part of the outer periphery of the boss main body 264. Is engaged with a worm gear 272 of an eccentric motor 270 attached to the head cover 105. With this configuration, the eccentric boss 260 rotates around the rotation center R (see FIG. 3) by driving the eccentric motor 270 inside the head cover 105.
  • FIG. 5 is an exploded perspective view of the eccentric boss.
  • the boss body 264 of the eccentric boss 260 is formed by attaching a lid 264b to a body case 264a having a bottomed cylindrical shape and having an eccentric hole 262 formed therein.
  • the surrounding wall 262a is provided with a partition wall 265a, 265b, 265c [compartment compartments 267a, 267b, 267c].
  • the bottom surface of the compartment 267a is provided with an air hole 268 that communicates the compartment 267 with the back side of the eccentric boss, that is, the eccentric plate 250 side.
  • An oil return hole 268a communicating with the outside of the boss body 264 is formed in the peripheral wall portion of the compartment 267a.
  • partition walls 265a and 265b are provided with notches 269, and the compartments 267a and 267b and the compartments 267b and 267c communicate with each other! /.
  • the lid 264b covers the compartments 267a, 267b, 267c.
  • the lid 264b has an opening 264c formed in the ceiling portion of the compartment 267c.
  • the eccentric boss 260 is configured to communicate with the axial direction, that is, the front and back sides via the air hole 268, the compartments 267a, 267b, 267c, the notch 269, and the opening 264c. Yes.
  • the eccentric boss 260 is provided with compartments 267a, 267b, 267c as hollow portions that communicate with the cam sprocket 211 in the rotational axis direction.
  • the eccentric boss 260 communicates the inside and outside of the cylinder head 104 with the eccentric boss 260 attached to the cylinder head 104 via the head cover 105.
  • An oil return hole 105 a is formed in the head cover 105 in parallel with the rotational axis of the eccentric boss 260.
  • the eccentric boss 260 is disposed adjacent to the eccentric plate 250 on the opposite side to the cam sprocket 211, and the plate shaft portion 252 of the eccentric plate 250 is coaxially positioned with respect to the rotation axis of the cam sprocket 211. Can be moved to a position.
  • FIG. 6 is a diagram showing the positional relationship between the rotation center R of the eccentric boss 260, the axis C of the cam sprocket 211, and the axis E of the eccentric plate 250.
  • Fig. 6 (a) is a schematic front view of the eccentric boss 260, cam sprocket 211 and eccentric plate 250
  • Fig. 6 (b) is the rotation center R and axis C shown in Fig. 6 (a). It is an enlarged view of E part.
  • the eccentric boss 260 is rotatably fitted in the head cover 105, and the center of rotation (boss center) R is centered by the eccentric motor 270 (see FIGS. 1 to 3). Rotate.
  • the rotation center R is fixed on the engine side, and the rotation center (camshaft axis) C of the variable cam shaft 230, the exhaust cam piece 220, and the intake cam piece 240 (center of eccentricity) E It is the center of rotation that rotates.
  • the plate shaft portion 258 (the shaft center E of the eccentric plate 250) is rotatably inserted into the eccentric hole 262 of the eccentric boss 260, the shaft center of the eccentric plate 250 is rotated by the rotation of the eccentric boss 260.
  • (Eccentric center) E moves in a circular arc around the center of rotation (boss center) R.
  • the shaft center C of the variable cam shaft 230 that is, the shaft center C of the exhaust cam piece 220 and the intake force piece piece 240 is arranged!
  • the shaft center E and the shaft center C can be matched by the rotation of the eccentric boss 260.
  • the eccentric boss 260 is moved at a position where the shaft center E and the shaft center C coincide with each other, that is, the position of the shaft center E of the eccentric hole 262 of the eccentric boss 260 and the position of the shaft center C of the variable cam shaft 230. Can be fixed. Thereby, the eccentric plate 250 and the variable cam shaft 230 can be rotated around the same axis.
  • the rotational angle position of the eccentric boss 260 in the head cover 105 is detected by angle sensor units 26 and 27 provided on the eccentric boss 260 as shown in FIG.
  • the eccentric position of the eccentric hole 262 is obtained using information detected in this way, information obtained from engine side forces such as engine rotation and engine load, and information obtained by inputting user force via an operation unit (not shown). It is controlled to a preset position (described later) by a control unit (not shown).
  • variable valve drive apparatus 200 in the present embodiment will be described.
  • the cam sprocket 211 is driven by the rotation of the crankshaft 130 through the cam drive chain 133 at half the rotation of the crankshaft 130. .
  • the exhaust cam piece 220 provided integrally with the cam sprocket 211 via the cylindrical portion 224 is driven to rotate. That is, the exhaust cam piece 220 rotates in synchronization with the rotation of the crankshaft 130.
  • the drive pin 212 loosely fitted in the input side slot 252 of the eccentric plate 250 by the rotation of the cam sprocket 211 causes the eccentric plate 250 and the plate shaft portion 258 to pass through the input side slot 252. Press the center and rotate the eccentric plate 250.
  • the rotational center of the eccentric plate 250 that is, the position of the plate shaft portion 258 is decentered by driving the eccentric motor 270, so that even if the cam sprocket 211 rotates at a constant speed.
  • the eccentric plate 250 rotates at a non-uniform speed.
  • FIG. 7 is a schematic diagram showing an example of the positional relationship between the drive pin and the driven pin in a state where the center of the eccentric plate is eccentric with respect to the cam shaft in the variable valve driving device. Specifically, FIG. 7 shows the relative positional relationship between the drive pin 212 and the driven pin 232 when the crank shaft is rotated in the direction of the arrow at a predetermined rotational speed.
  • the drive pin 212 has a crankshaft rotation angle of 0 ° (top dead center position), 45 °, 90 °, 135 °, 180 °, 225 °, 270 °, 315 °, 360 °, respectively.
  • the positional relationship of the driven pin 232 is shown.
  • the predetermined eccentric slot phase angle P formed in the input side slot 252 and the output side slot 254 (see FIGS. 1 and 3) into which the drive pin 212 and the driven pin 232 are loosely fitted is, For example, 155 °.
  • the drive pin 212 is synchronized with the exhaust cam piece 220 (see FIGS. 1 to 3), and the driven pin 232 is synchronized with the rotation of the intake cam piece 240. Since the exhaust valve and the intake valve are opened and closed by the rotation of the exhaust cam piece 220 and the intake cam piece 240, the rotation of the drive pin 212 and the drive pin 232 causes the valve opening / closing timing.
  • the driven pin 232 (intake cam piece 240) has the rotation angle of the drive pin 212. Move more (in Figure 7, it has a rotation angle of about 200 °). That is, the follower pin 232 rotates faster than the drive pin 212 in this section. While the drive pin 212 moves to 0 ° force 135 °, the driven pin rotates periodically at an irregular speed. Specifically, when the drive pin 212 moves from a rotation angle of 0 ° to a rotation angle of 45 °, the driven pin 232 rotates about 55 °. Also, the drive pin 212 has a rotation angle of 45 ° force.
  • follower pin 232 rotates approximately 80 °. Furthermore, if the drive pin 212 moves 90 degrees and the force also moves to 135 degrees, the driven pin 232 rotates about 65 degrees.
  • the driven pin 232 when the drive pin 212 moves at a rotation angle of 135 ° and the force also moves to 360 °, the driven pin 232 has a rotation angle less than that of the drive pin 212 (in FIG. 7, it has a rotation angle of about 160 °). ) It moves and is slower than the rotation speed of the drive pin 212. Specifically, when the drive pin 212 moves to a rotation angle of 135 ° and a force of 180 °, the driven pin 232 rotates about 40 °. In addition, when the driving pin 212 moves to a rotation angle of 180 °, a force of 225 °, the driven pin 232 rotates about 30 °.
  • driven pin 232 rotates approximately 27 °
  • driven pin 232 is approximately 26 ° Rotate.
  • the driven pin 232 rotates about 37 °.
  • the drive pin 212 interlocked with the cam sprocket 211 has the center (rotation axis) of the eccentric plate 250 with respect to the axis C of the cam sprocket 211 E side.
  • the distance between the eccentric plate 250 center E and the drive pin 212 center is It is smaller than the distance between the center of the cam sprocket 211 and the center of the drive pin. Therefore, the rotation angle of the eccentric plate 250 is larger than the rotation angle of the force mus socket 211.
  • the output side slot 254 formed in the plate main body portion 256 of the eccentric plate 250 rotates at a non-uniform speed as the plate main body portion 256 rotates. Since the driven pin 232 loosely fitted in the output side slot 254 is concentric with the cam sprocket 211 and the intake cam piece 240, the inconstant speed motion is transmitted to the driven pin 232 via the output side slot 254.
  • the shaft portion 230a rotates at a non-uniform speed through the driven pin 232 to which the non-uniform speed motion is transmitted, and the suction cam piece 240 rotates at a non-uniform speed.
  • the intake cam piece 220 is driven at an angular velocity faster than half the angular velocity of the crankshaft near the crank angle at which the intake cam piece 240 is open.
  • the crank rotates by an operating angle (for example, 268 °)
  • the cam rotates more than the operating angle, so that the intake valve opens and closes in a shorter time. That is, the operating angle is narrowed.
  • the working angle can be widened.
  • the exhaust cam piece 220 provided integrally with the cam sprocket 211 is rotated with the variable cam shaft 230 driven via the eccentric plate 250.
  • the rotational phase difference of the cam piece 240 fluctuates periodically. That is, the operating angle of the intake cam piece 240 is periodically variable, in other words, the intake cam piece 240 rotates at an unequal speed, and the operating angle and opening / closing timing of the intake valve (variable valve) that opens and closes by this rotation is variable. Become.
  • timing at which the intake cam piece 240 is rotated fast with respect to the exhaust cam piece 220 and at which timing is rotated slowly depends on the center of the eccentric plate 250, the cam nose and each slot relative to the center of the cam sprocket 211. Determined by the positional relationship with 252 and 254.
  • the variable valve drive device 200 includes an eccentric slot phase angle formed by slots 252 and 254. By setting P (see Fig. 4), the intake valve closing timing and opening timing are set separately.
  • the setting position of the plate shaft portion 258 that is the center of the eccentric plate 250 in the variable valve driving apparatus 200 and the predetermined eccentric slot phase angle P (see FIG. 4) in the eccentric plate 250 will be described.
  • the setting position of the plate shaft portion 258 is the same position as the position of the eccentric hole 262 in terms of structure. For this reason, the following description is based on the layout in which the eccentric boss 260 having the eccentric hole 262 is rotatably attached to the cylinder head 104.
  • FIG. 8 and FIG. 9 are diagrams showing the relationship between the opening timing and closing timing of the intake valve and the eccentric slot phase angle of the eccentric plate in the structure of the variable valve driving device 200.
  • the center (0, 0) mm is the center of the rotation axis of the variable cam shaft 230, the exhaust cam piece 220, and the intake cam piece 240 (axis C shown in FIG. 5).
  • the eccentric center that is, the position of the plate shaft portion 252 of the eccentric plate 250 is shown.
  • valve opening timing corresponding to the position of the eccentric center is indicated by the rotation direction of the crankshaft. Is a positive direction, and a line having a constant angle is referred to as an isotiming line. In other words, these equal timing lines indicate a certain valve opening timing corresponding to the operating angle of the crankshaft.
  • These equal timing lines exist for each angle, but in each of FIGS. 8 (a) to (h) and FIGS. 9 (a) to (f), they are shown as equal timing lines every 20 ° for convenience.
  • FIG. 8 (a) is a diagram showing the relationship between the opening timing of the intake valve and the eccentric position when the eccentric slot phase angle is 45 °
  • FIG. b) is a diagram showing the relationship between the intake valve closing timing and the eccentric position at 45 °.
  • Fig. 8 (c) shows the relationship between the opening timing of the intake valve and the eccentric position when the eccentric slot phase angle is 90 °
  • Fig. 8 (d) shows the relationship between the closing timing of the intake valve at 90 °. It is a figure which shows the relationship between and eccentric position.
  • Fig. 8 (e) shows the relationship between the opening timing of the intake valve and the eccentric position when the eccentric slot phase angle is 135 °
  • Fig. 8 (f) shows the intake solenoid at 135 °.
  • Closed tie It is a figure which shows the relationship between a ming and an eccentric position.
  • Fig. 8 (g) shows the relationship between the opening timing of the intake valve and the eccentric position when the eccentric slot phase angle is 180 °
  • Fig. 8 (h) shows the closing timing of the intake valve at 180 °. It is a figure which shows the relationship with an eccentric position.
  • FIG. 9 (a) is a diagram showing the relationship between the opening timing of the intake valve and the eccentric position when the eccentric slot phase angle is 225 °.
  • FIG. 9 (b) is a diagram showing the relationship between the intake valve closing timing and the eccentric position in FIG.
  • Fig. 9 (c) shows the relationship between the opening timing of the intake valve and the eccentric position when the eccentric slot phase angle is 270 °
  • Fig. 9 (d) shows the relationship between the closing timing of the intake valve at 270 °. It is a figure which shows the relationship between and eccentric position.
  • Fig. 9 (e) shows the relationship between the opening timing of the intake valve and the eccentric position when the eccentric slot phase angle is 315 °
  • Fig. 9 (f) shows the closing timing and eccentric position of the intake valve at 315 °. It is a figure which shows the relationship.
  • the eccentric slot phase angle close to 180 ° in order to change the valve timing greatly with a small moving distance of the eccentric center E.
  • the opening and closing timing cannot be changed independently when the eccentric slot phase angle is set close to 180 °.
  • the eccentric slot phase angle is set to an angle other than 180 °, the noble timing variable width is increased with a moving distance with a small eccentric center, and the opening is further increased.
  • the degree of freedom of the closing timing setting is secured.
  • variable width of the intake timing that is, the opening timing and closing timing of the intake valve
  • the exhaust timing has a variable range of timing that is almost the same as the intake timing, and therefore a description thereof is omitted.
  • Fig. 10 is a diagram showing the relationship between the general engine overlap amount and idling stability.
  • the idling stability with respect to the overlap amount is shown by a graph of the speed fluctuation rate
  • the HC (Hydro Carbon: hydrocarbon) emission amount with respect to the overlap amount is also shown by a graph.
  • the HC emission amount increases in proportion to the amount of onolap, as in the tendency of idling stability.
  • the smaller the amount of overlap the better the exhaust gas characteristics with less HC emissions.
  • the exhaust pulsation of the engine can be used effectively at the beginning of the intake stroke, which increases the intake amount of fresh air and increases the volume efficiency. It has been known. As a result, the output torque of the engine can be increased.
  • the appropriate amount of overlap for improving the engine output is about 80 ° at the maximum, and it is preferable that the opening timing of the intake air has a variable range of about 40 ° to 0 °.
  • valve closing timing is generally determined in consideration of the inertial effect of the intake air. To make the most of it. As a result, in the normal engine speed range, The lube closing timing is set to about 0 ° to 70 ° after the bottom dead center of the crankshaft.
  • valve timing that is effective in terms of exhaust gas and engine output.
  • the closing timing is set near the bottom dead center of the crankshaft, while the opening timing is fixed at a minimum.
  • the valve opening timing is kept fixed, and the closing timing is gradually delayed.
  • the opening timing is advanced at the stage when the exhaust pulsation in the high engine speed range can be used effectively (the engine speed range is high) and at the same time the closing timing is delayed.
  • variable valve drive device 200 the axis E of the eccentric plate 250 rotates around a single point fixed to the engine, that is, the rotation center R of the eccentric boss 260. Therefore, according to the variable valve drive apparatus 200, variable valve timing is realized with a simple structure.
  • the axis of the eccentric plate 250 moves on the circumference of a circle having the rotational radius of the eccentric plate axis whose upper limit is determined by the diameter of the opening of the head cover 105. For this reason, a certain amount of deviation occurs with respect to the movement path of the shaft center of the eccentric plate 250 that is most desirable in terms of the exhaust gas and the engine output obtained previously.
  • FIG. 11 is a diagram showing a deviation amount between the center of rotation of the eccentric plate 250 and the rotation radius thereof.
  • This Fig. 11 (a) shows the center of rotation of the eccentric plate 250 (corresponding to the center of rotation of the eccentric boss 260) so that the deviation amount is minimized for each eccentric slot phase angle shown in Figs. The rotation radius is determined, and the maximum deviation is plotted.
  • Figure 11 (b) shows the actually plotted eccentric slot phase angle and the maximum deviation from the optimal locus. It is the data which shows the relationship. Here, it is known that the maximum deviation is 20 ° or less in terms of exhaust gas and engine output.
  • the eccentric slot phase angle P in the eccentric plate 250 is 80 ° to 160 ° or 200 ° to 290. Set to °.
  • variable knob driving device 200 configured as described above, the intake cam piece 240 can be rotated in a state where a periodic rotational phase difference is provided with respect to the exhaust cam piece 220.
  • this rotational phase difference can be changed as appropriate, the valve overlap amount (overlap period) can be varied with the engine stroke.
  • the overlap amount is determined by setting the eccentric slot phase angle P of the eccentric plate 250 to an angle other than 180 °, as shown in Figs. And the closing timing can be adjusted separately.
  • the intake cam piece 240 opens and closes the valve early so as to reduce or eliminate the overlap amount, thereby suppressing the inclusion of residual gas. Gas combustion can be stabilized.
  • blowout can be prevented and exhaust gas can be reduced, and the engine output at the time of low engine speed can be increased to improve fuel efficiency.
  • the intake cam piece 240 that is, the driven pin 232 can be rotated so that the intake valve is fully closed when the piston 102 is located at the bottom dead center.
  • the center of the eccentric plate 250 is fixed to the engine. By rotating it around one point (the center of rotation of the eccentric boss 260), the center position of the eccentricity is moved with a simple structure to achieve variable valve timing.
  • the eccentric boss 260 force supports the plate shaft portion 25 8 of the eccentric plate 250, and the center of the opening of the attached head cover 105 serves as the rotation center of the plate shaft portion 258. The shaft 258 can be moved.
  • the support structure for the plate shaft portion 258 of the eccentric plate 250 and the moving structure for the plate shaft portion 258 need not be provided separately. It has a simple structure. As a result, unlike the conventional case, the control of the variable valve drive device 200 itself is simple, so that the cost can be reduced and maintenance and reliability can be improved.
  • the eccentric boss 260 (boss body 264) has an outer diameter smaller than the outer diameter of the cam sprocket 211.
  • the eccentric boss 260 is arranged inside the outer diameter of the cam sprocket 211 in the direction perpendicular to the rotation axis. It is. Therefore, the engine 100 having the variable valve drive device 200 is larger only in the camshaft axis direction than the engine having a structure without the eccentric boss 260, and projects in a direction perpendicular to the camshaft axis. Nah ...
  • the eccentric slot phase angle P in the eccentric plate 250 is 80 ° to 160 ° or 200 ° to 290 °. It becomes a substantially arc shape (see Fig. 8 and Fig. 9).
  • variable valve drive device 200 can improve the efficiency with which the valve timing can be optimized, sufficiently meet the demands of a wide range of engines, and can be widely adapted to the required engine characteristics. Settings can be made.
  • the opening timing and closing timing of the intake valve or the exhaust valve can be determined according to demand.
  • the rotation center R (see Fig. 6) of the eccentric boss 260 can be located near the center of the arc of the constant opening timing line. .
  • one of the opening timing and closing timing of the intake valve or exhaust valve can be substantially fixed, and only the other timing can be changed.
  • variable valve drive device 200 As described above, in this variable valve drive device 200, the eccentric boss 260 fixed to the cylinder head 104 closes the cylinder head 104, and the compact valve has a compact structure. A variable valve mechanism that can freely change the closing and opening is realized.
  • variable valve driving device 200 configured as described above has an exhaust cam piece 220 and an intake cam on the cam axis as compared with a variable valve drive mechanism, that is, a cam shaft without a so-called variable nove timing mechanism.
  • a variable valve drive mechanism that is, a cam shaft without a so-called variable nove timing mechanism.
  • the positional relationship between the piece 240 and the cam sprocket 211 does not change. Therefore, in a conventional motorcycle without a variable valve drive mechanism, for example, an engine structure of a starter, it can be used as an engine having a variable valve function only by changing the camshaft portion to the variable valve drive device 200. .
  • variable valve driving device 200 In detail, in order to mount the variable valve driving device 200, the dimensions and arrangement positions of each member for driving the camshaft such as the crankshaft, the cylinder portion and cylinder head of the engine body, and the timing gear are specified. There is no change.
  • the engine 100 is a single cylinder SOHC (Single Over Head Camshaft) type of force. Not limited to this, the engine 100 may be a multi-cylinder SOHC type, DOHC (Double Over Head Camshaft) type. ⁇ .
  • SOHC Single Over Head Camshaft
  • DOHC Double Over Head Camshaft
  • the rotational phase difference of the intake cam piece 240 is periodically changed with respect to the exhaust cam piece 220 that changes the working angle of the intake valve. Not limited to this. That is, the rotational phase difference of the exhaust cam piece 220 may be periodically changed with respect to the intake cam piece 240.
  • the variable valve driving device 200 includes an intake cam piece that drives the intake valve by rotating integrally with the cam sprocket 211, and an exhaust cam that drives the exhaust valve on the variable cam shaft 230.
  • the structure is provided with a piece.
  • the exhaust valve The amount of overlap can be changed by varying the working angle of the above, and the same operational effect as described above can be obtained.
  • the opening timing and closing timing of the exhaust valve, which cause the working angle of the exhaust valve can be set separately, similar to the setting of the opening timing and closing timing of the intake valve described above. it can.
  • the power on which the vehicle equipped with engine 100 is described as a starter type motorcycle is not limited to this, and any vehicle as long as it is equipped with engine 100 may be used.
  • Fig. 12 is a schematic side view showing a configuration of a main part of a motorcycle including the variable valve drive device for an engine according to one embodiment of the present invention.
  • front, rear, left, and right mean front, rear, left, and right when viewed in the state of being seated on the seat of the motorcycle.
  • the motorcycle in the present embodiment is described as a starter type motorcycle, the present invention is not limited to this, and any vehicle with a valve driving device may be used.
  • a motorcycle 500 shown in FIG. 12 is a tandem starter type, and includes a tandem seat 504 on the rear side of a vehicle main body 503 that rotatably supports a handle 502 on the front side.
  • the tandem seat 504 is attached to the trunk space 505 arranged at the lower part so as to be freely opened and closed.
  • a drive unit 600 is disposed below the trunk space 505.
  • the front end of the drive unit 600 has a pivot shaft (not shown) horizontally disposed in the vehicle width direction at the rear end of the front main body 503a extending from the lower side of the handle 502 to the lower side of the tandem seat 504. ) And can be swung up and down.
  • a rear wheel 508 is attached to the rear end portion of the drive unit 600 via an axle 510, and a rear portion between the rear end portion and a frame pivot that supports the rear end portion of the trunk space 505 is rear. Suspension 512 is suspended. Note that the front end of the trunk space 505 is disposed in front of the upper end of the front end of the drive unit 600.
  • FIG. 13 is a schematic plan view showing the main part of the drive unit of FIG.
  • the engine 100 is mounted on the front side of the vehicle.
  • the rear wheel 508 is rotated by driving the driving force of the engine 100 to the axle 510 arranged at the rear end of the driving unit 600 via the CVT mechanism 610.
  • the engine 100 is positioned at a substantially central portion in the vehicle front-rear direction below the trunk space 505 with the axis of the cylinder portion 106 substantially horizontal and the crankshaft 130 substantially parallel to the vehicle width direction. ing.
  • a CVT mechanism 610 extending rearward of the vehicle is disposed at the other end of the crankshaft 130, here, at the left end of the vehicle.
  • the binding mechanism 610 is arranged in parallel to the cylinder shaft, and includes a pulley 611 attached to the crankshaft 130, a pulley 612 attached to the axle 510, and a benolet that is wound around the pulleys 611 and 612. 613 and a centrifugal clutch 614.
  • Centrifugal clutch 614 is attached to axle 510.
  • a deceleration gear 615 is attached to the axle 510, and the driving force of the crankshaft 130 transmitted through the pulley 611 and the belt 613 is decelerated.
  • the engine 100 of the present embodiment is provided between a cam drive body 210 corresponding to a cam drive shaft in a conventional engine configuration, and exhaust and intake cam pieces 220, 240 disposed on the upper portion of the cylinder portion 106. Does not arrange the eccentric plate 250 corresponding to the eccentric member.
  • eccentric plate 250 and exhaust and intake cam pieces 220, 240 are arranged on the cam axis with cam drive member 210 interposed therebetween.
  • the eccentric plate 250 and the exhaust and intake cam pieces 220 and 240 are arranged on the cam axis with the cam sprocket 211 arranged on the chain line of the cam drive chain 133 interposed therebetween.
  • the exhaust and intake cam pieces 220 and 240 are arranged on the upper part of the cylinder portion 106 along the cylinder axis CL due to the engine structure. Therefore, unlike the conventional configuration, the cylinder axis and the cam chain line are adjacent to each other. The structure is arranged at a position.
  • the belt 613 line of the CVT mechanism 610 disposed outside the chain line L and in parallel with the chain line L is closer to the cylinder axis CL than in the conventional structure.
  • the lateral width of the drive unit 600 itself is reduced.
  • the left end surface 600a is closer to the right side than the left side surface 600b when the engine equipped with the conventional variable valve drive device is mounted, as the chain line L approaches the cylinder axis CL. Approach the side.
  • starter type motorcycle 500 is structurally provided with components provided outside cam drive chain 133 on the crankshaft such as a sheave for CVT (Continuously Variable Transmission).
  • CVT Continuous Variable Transmission
  • the motorcycle 500 has the same crankcase 112 width as the structure without the variable valve timing mechanism.
  • the eccentric mechanism portion such as the eccentric plate 250 is disposed between the exhaust and intake cam pieces 220, 240 and the cam sprocket 211!
  • variable valve drive device 200 in the engine 100, structures other than the variable valve drive device 200 can use substantially the same components as the engine without the variable valve drive device 200. That is, the variable valve drive device 200 is removed from the cylinder head 104 of the engine main body 110, and the eccentric plate 250, the variable cam shaft 230, the eccentric boss 260, and the head cover 105 are removed. It can be used as an engine without the variable noble drive device 200 just by changing.
  • the overlap period can be changed with a simple configuration.
  • the variable valve drive device includes a cam drive member that is rotated by a drive force transmitted by a crankshaft force, and a rotation shaft of the cam drive member that is driven by the cam drive member.
  • An eccentric member that rotates about an axis in the same direction and that the shaft is movable to an axial center position force eccentric position of the rotary shaft, and is arranged coaxially with the rotary shaft, and is arranged by the eccentric member to A camshaft that is driven to rotate about a rotation shaft, and whose rotational phase difference with respect to the cam drive member periodically varies when the eccentric member is rotationally driven at the eccentric position;
  • a variable valve drive device comprising a cam piece for driving an exhaust or intake valve, wherein the eccentric member is connected to the cam drive member and rotated by the cam drive member.
  • the timing is uniquely advanced, and the closing timing of Z or the exhaust or intake valve is uniquely retarded.
  • the cam shaft rotates periodically at an eccentric position from the rotational axis of the cam drive member. Rotate with random fluctuations.
  • the cam piece that rotates at the same rotational phase as the cam shaft is driven while the rotational phase difference with respect to the cam drive member periodically varies.
  • the operating angle of the cam piece is variable, thereby driving the exhaust valve or the intake valve, and changing the operating angle of the exhaust valve or the intake valve.
  • the phase angle force of the eccentric member with respect to the axis of the eccentric member of the input connecting portion and the output connecting portion of the eccentric member becomes 80 ° to 160 ° or 200 ° to 290 ° with the rotational direction of the eccentric member being positive. Yes.
  • the line at which the timing is constant at the opening and closing timings is an arc, and a predetermined timing at one of the opening and closing timings intersects with the other timing, and the degree of freedom in setting the opening and closing timings is increased. To increase.
  • each of the opening timing and closing timing forming the working angle of the exhaust valve or the intake valve can be arbitrarily set.
  • the cam operating angle can be varied, and more optimal nore timing can be set on both the open side and the close side, thereby reducing exhaust.
  • the valve overlap can be varied by changing the working angle of the valve or the intake valve.
  • variable valve driving device in the configuration described above, the eccentric movement moves the shaft of the eccentric member to a coaxial positional force eccentric position with respect to the rotation shaft of the cam driving member.
  • the structure which has a part is taken.
  • the cam driving member is interposed via the eccentric moving part.
  • the operating angle of the exhaust or intake valve can be varied by periodically varying the rotational phase difference between the cam frame and the cam piece.
  • variable valve drive device employs a configuration in which the eccentric moving portion moves the shaft of the eccentric member in an arc shape.
  • the eccentric moving unit moves the shaft of the eccentric member in an arc shape, it is easy to cope with various circular opening and closing timing constant lines, and the valve timing is optimized. It is possible to improve the efficiency that can be achieved, fully respond to the demands of a wide range of engines, and can be widely set according to the required engine characteristics.
  • variable valve drive apparatus is the above configuration, wherein the cam The driving member is rotated at the same rotational phase as the cam driving member, and has another cam piece arranged at a position adjacent to the cam piece.
  • one of the cam piece and the other cam piece is an intake cam piece that drives the intake valve
  • the other can be an exhaust cam piece that drives an exhaust valve.
  • the cam piece drives an intake valve by rotation
  • the another cam piece drives an exhaust valve by rotation. take.
  • An engine according to a sixth aspect of the present invention includes the variable valve driving device having the above-described configuration, wherein the crankshaft is disposed substantially parallel to a rotation shaft of the cam driving member, and the cam driving member is Then, a configuration is adopted in which the rotation of the crankshaft is interlocked via a driving force transmission portion arranged orthogonal to the crankshaft.
  • the cam shaft when the cam drive member is driven and the eccentric member force is rotationally driven at an eccentric position from the rotation axis of the cam drive member, the cam shaft periodically varies with respect to the cam drive member. Rotate with a rotating phase difference. In the force piece rotating at the same rotational phase as the cam shaft, the rotational phase difference with respect to the cam drive member periodically varies. In other words, the operating angle of the cam piece is variable, thereby driving the exhaust valve or the intake valve and changing the operating angle of the exhaust valve or the intake valve.
  • the phase angle force against the axis of the eccentric member of the input connecting portion and the output connecting portion of the eccentric member From the 80 ° to 160 ° or 200 ° force with the rotational direction of the eccentric member as positive It is 290 °.
  • the line at which the timing is constant at the opening and closing timing is an arc, and a predetermined timing at one of the opening and closing timings intersects with the other timing to increase the degree of freedom in setting the opening and closing timings. . Therefore, each of the opening timing and closing timing forming the working angle of the exhaust valve or the intake valve can be arbitrarily set.
  • the cam operating angle can be varied, and more optimal nore timing can be set on both the open side and the close side, thereby reducing exhaust.
  • the valve overlap can be varied by changing the working angle of the valve or the intake valve.
  • a motorcycle according to a seventh aspect of the present invention employs a configuration in which the engine force having the above-described configuration is mounted with the crankshaft arranged in the vehicle width direction.
  • variable valve drive device, engine, and motorcycle according to the present invention are useful as having an effect of changing the working angle of the cam with a simple configuration without significantly changing the engine configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

 カムスプロケット211は、クランク軸130から伝達される駆動力 により回転して、偏心プレート250を、カムスプロケット211の回転軸と平行な軸で回転させる。偏心プレート250は、カムスプロケット211の軸心位置から偏心位置に移動可能であり、偏心位置で回転して、可変カム軸230を介して吸気カム駒240を、カムスプロケット211に対して周期的に変動する回転位相差で回転駆動する。吸気カム駒240は吸気弁を駆動する。偏心プレート250における、カムスプロケット211及び可動カム軸230のそれぞれとの接続部分の偏心プレート250の軸に対する位相角は、偏心プレート250の回転方向を正として80°から160°或いは200°から290°である。

Description

明 細 書
可変バルブ駆動装置、エンジン及び自動二輪車
技術分野
[0001] 本発明は、エンジンに設けられる可変バルブ駆動装置、エンジン及び自動二輪車 に関する。
背景技術
[0002] 従来、 4サイクルエンジンでは、吸気バルブ及び排気バルブが同時に開放されて!ヽ る期間(バルブオーバラップ)を、エンジンの高回転、低中回転のそれぞれにおいて 変更することによって、エンジンの高出力及び低燃費、さらには排ガスの低減が図ら れている。
[0003] このバルブオーバラップ量をエンジンの回転に応じて変更する構造として、ェンジ ンの回転数に応じてノ レブの開閉タイミングを変化させる可変バルブタイミング (Vari able Valve Timing)機構が知られている。
[0004] この可変バルブタイミング機構では、カム駆動軸部分とカム軸部分との間に角速度 変動を起こさせるカップリング (偏心部材)を配置することによってカムの作用角(Dura tion:「作動角」ともいう。)を可変にする技術が知られている。
[0005] 例えば、特許文献 1では、クランクの回転に所定の回転速度で同期するカム駆動軸 力 カム及び円板状の偏心プレート (偏心部材)に挿通され、カム駆動軸に設けたピ ンが偏心プレートにおいて半径方向に延びる溝部に遊嵌されている。また、偏心プレ ートには、カム駆動軸のピンが遊嵌される溝部とともに、偏心プレートの中心位置を 挟んで、半径方向に延びる別の溝部が形成されている。この別の溝部には、カム側 に設けられたピンが遊嵌されており、偏心プレートは、カム駆動軸の回転によりピン及 び溝部を介してカム駆動軸に対して偏心した状態で回転し、カムを回転する。
[0006] また、特許文献 2では、偏心部材である偏心プレートが、ギアトレインを介して伝達 されるクランク軸の駆動力により回転するスプロケットと、カムに一体的に設けたカム 軸との間に配置されている。この偏心プレートには、カム軸の回転中心を挟んで、半 径方向に延びる溝部が形成されている。これら溝部のそれぞれに、スプロケットに設 けたピンと、カム軸に設けたピンとが摺動自在に遊嵌されており、このように構成され た偏心プレートを介してカム駆動軸の駆動力は、カム軸に伝達されている。
[0007] これら特許文献 1及び 2の構成では、いずれも偏心部材である偏心プレートは、可 変バルブタイミング機構自体が装着されるエンジンに固定された一点を中心に回転 する。また、特許文献 1及び 2では、偏心プレートにおけるカム駆動軸からの駆動力 が入力される入力用接触部分 (ピンと溝部)及びカム側に駆動力を出力する出力用 接触部分 (ピンと溝部)は、偏心プレート中心位置に対する回転位相を 180° として いる。よって、例えば、可変させるバルブの開き或いは閉じタイミングが一定となるよう な偏心プレートの中心位置 (エンジンに固定される一点)の軌跡は略直線となる。
[0008] また、これら特許文献 1及び 2では、構造上、偏心プレートの中心位置は、エンジン 側に固定された一点を中心に回転する構造であるため、実際に可変操作を行う際に おける偏心プレートの中心位置の軌跡は円弧状となる。このため、特許文献 1及び 2 の構造では、偏心プレートの中心位置を移動させる可変動作を行う際に、開き側のタ イミングを変更すると閉じ側のタイミングも大きく変更され、バルブタイミングの最適な 設定を行うための自由度に欠けるという問題がある。
[0009] このようなバルブタイミング設定の自由度を確保するものとして、特許文献 1と同様 な基本的構成を有する特許文献 3が知られて ヽる。
[0010] この特許文献 3は、カム駆動軸とカムとの間に角速度変動を起こさせるカップリング として設けた偏心プレートの中心を、カム駆動軸と直交する方向に、 2次元的に移動 できる構造となっている。これにより、特許文献 3は、偏心プレートの中心、つまり偏心 中心を任意の位置に移動することができ、要求される特定のエンジン回転時におけ る出力、燃費率等に対応してバルブの開きタイミング及び閉じタイミングの最適な設 定を行うことができる。
特許文献 1:特公昭 47— 020654号公報
特許文献 2 :特開平 3—43611号公報
特許文献 3 :特開平 5— 118208号公報 しかし、この特許文献 3では、偏心プレート を移動させるために 2つのァクチユエータが必要であり、これに伴い、偏心プレートの 移動を 2つの駆動系で行う構造となっている。このため、特許文献 3は、複雑な構造と なっており、さらに、機構自体の制御も複雑となるという問題がある。カロえて、これら構 造及び制御の複雑さに伴ってコストがかさみ、さらにメンテナンス性及び信頼性が低 下するという問題がある。
[0011] 本発明は力かる点に鑑みてなされたものであり、簡易でコストの低廉ィ匕が図られる 構造で、カムの作用角を可変して、開き側および閉じ側の両方において、より最適な バルブタイミングを設定できる可変バルブ駆動装置、エンジン及び自動二輪車を提 供することを目的とする。
発明の開示
[0012] 本発明の可変バルブ駆動装置は、クランク軸力 伝達される駆動力により回転する カム駆動部材と、前記カム駆動部材の駆動によって、前記カム駆動部材の回転軸と 同方向の軸を中心に回転するとともに、前記軸が前記回転軸の軸心位置から偏心位 置に移動可能に設けられる偏心部材と、前記回転軸と同軸上に配置され、前記偏心 部材により前記回転軸を中心に回転駆動されるとともに、前記偏心部材が前記偏心 位置で回転駆動する際に、前記カム駆動部材に対する回転位相差が周期的に変動 するカム軸と、前記カム軸により前記カム軸と同じ回転位相で回転され、排気または 吸気弁を駆動するカム駒とを備える可変バルブ駆動装置であって、前記偏心部材は 、前記カム駆動部材に接続され、前記カム駆動部材の回転力が入力される入力接続 部と、前記カム軸に接続され、前記入力接続部を介して入力される回転力により回転 する前記偏心部材自体の回転力を前記カム軸に出力する出力接続部とを有し、前 記入力接続部及び前記出力接続部の前記偏心部材の軸に対する位相角を、前記 偏心部材の回転中心位置の一方向の移動によって変化する前記排気または吸気弁 の開きのタイミングを一意的に進角させ、及び Zまたは前記排気または吸気弁の閉じ のタイミングを一意的に遅角させる構成を採る。
図面の簡単な説明
[0013] [図 1]本発明の一実施の形態に係る可変バルブ駆動装置を備えたエンジンの要部分 解斜視図である。
[図 2]同可変バルブ駆動装置を示す要部断面図である。
[図 3]同可変バルブ駆動装置の分解斜視図である。 [図 4]同可変バルブ駆動装置の偏心プレートの一例を示す平面図である。
[図 5]偏心ボスの分解斜視図である。
[図 6]偏心ボスの回転中心と、可変カム駆動軸の軸心と、偏心プレートの軸心との位 置関係を示す模式図である。
[図 7]本発明に係る可変バルブ駆動装置においてカム軸に対して偏心プレートの中 心を偏心させた状態の駆動ピンと従動ピンの位置関係の一例を示す図である。
[図 8]同可変バルブ駆動装置の構造における、吸気バルブの開きタイミングおよび閉 じタイミングと、偏心プレートの偏心スロット位相角との関係を示す図である。
[図 9]同可変バルブ駆動装置の構造における、吸気バルブの開きタイミングおよび閉 じタイミングと、偏心プレートの偏心スロット位相角との関係を示す図である。
[図 10]—般的なエンジンのオーバラップ量とアイドリング安定性の関係を示す図であ る。
[図 11]偏心プレートの中心の回転中心と、その回転半径とのずれ量を示す図である。
[図 12]本発明の一実施の形態に係るエンジンのノ レブ駆動装置を備える自動二輪 車の要部構成を示す概略側断面図である。
[図 13]図 12の駆動ユニットの要部を示す概略平面図である。
発明を実施するための最良の形態
[0014] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[0015] 図 1は、本発明の一実施の形態に係る可変バルブ駆動装置を備えたエンジンの要 部分解斜視図である。
[0016] 図 1に示すエンジン 100は、内部にピストン 102が配置されるシリンダ部 106及びシ リンダヘッド 104を有するエンジン本体部 110と、図示しないクランクケースに収納さ れるクランク軸 130と、可変バルブ駆動装置 200とを有する。
[0017] なお、エンジン 100では、可変バルブ駆動装置 200は、クランク軸 130と略平行に 配置されている。この可変バルブ駆動装置 200が、排気カム駒 220と吸気カム駒 24 0との回転に周期的な位相差を設けることによって、排気カム駒 220と吸気カム駒 24 0のそれぞれの回転に対応して開閉する排気及び吸気バルブのノ レブタイミングを 可変させている。これにより、エンジン 100では、エンジン回転数に対応してバルブォ ーバラップ時間が可変する。
[0018] 本実施の形態では、エンジン 100は、例えば、スタータ型自動二輪車に搭載される 単気筒 SOHC (Single Over Head Camshaft)型のものとして説明する。なお、本実施 の形態では、エンジン 100は、単気筒 SOHC型のものとして説明する力 これに限ら ず、可変バルブ駆動装置 200を有するものであれば、どのようなエンジンとしてもよい
[0019] 図 1に示すように、シリンダ部 106内のピストン 102は、シリンダ部 106内でシリンダ 軸方向に進退動(上下動)自在であり、ピストン 102の基端部側で、コンロッド 108の 小端を介してクランク軸 130に接続される。なお、コンロッド 108の大端は、クランク軸 130に設けられたクランクウェブ 132間のクランクピン(図示省略)に回動自在に取り 付けられる。これにより、ピストン 102は、クランク軸 130の回転に伴いシリンダ部 106 内を進退動する。
[0020] また、クランク軸 130上には、クランクウェブ 132 (詳細には、クランクジャーナル)に 隣接してタイミングギア 134が設けられている。このタイミングギア 134には、駆動力 伝達部材としてのカム駆動チェーン 133が卷回されている。このカム駆動チェーン 13 3は、タイミングギア 134とともに、エンジン本体部 110におけるシリンダヘッド 104内 に配置されるカムスプロケット 211に卷回され、可変バルブ駆動装置 200のカム駒 22 0、 240に回転駆動力を伝達する。なお、駆動力伝達部材としてカム駆動チェーン 1 33とした力 これに限らず、クランク軸 130からカムスプロケット 2
11に駆動力を伝達するものであれば、どのようなものであってもよい。例えば、カム駆 動チェーン 133に変えて、コグベルトを用いてもよい。この場合、タイミングギア、カム スプロケット 211の変わりにコグホイールを用いた構成となる。
[0021] このカム駆動チェーン 133の伝達ライン (この実施の形態では、チェーンライン)は、 クランク軸 130に対して略直交し、且つ、内部でピストン 102が進退動するシリンダ部 106のシリンダ軸に接近させた位置に配置されている。これは、エンジンの構造上、 ピストン 102を駆動するクランク部力もカム駆動チェーン 133が離間する程、カム駆動 チェーン 133に引っ張り力が加わり、クランク自体に加わる曲げ応力が大きくなるのを 防ぐためである。 [0022] カム駆動チェーン 133は、エンジン本体部 110においてシリンダ部 106に隣接して 一体的に設けられたチェーンケース部 116内に配置されている。なお、チェーンケー ス部 116の上部(以下、「ケース上部」という) 116aは、シリンダヘッド 104に一体的に 設けられている。このケース上部 116aは、シリンダヘッド 104において、クランク軸と 平行な方向に開口している。
[0023] これら開口のうち一方の開口部 116bは、シリンダ部 106上方の空間に連通し、他 方の開口部 116cには、環状のシリンダヘッドカバー(以下、「ヘッドカバー」という) 10 5が取り付けられている。この環状のヘッドカバー 105内には、可変バルブ駆動装置 200の一端部側が配置され、可変ノ レブ駆動装置 200は、その一端部側でヘッド力 バー 105に支持されている。
[0024] 可変バルブ駆動装置 200は、カムスプロケット 211、排気カム駒 220、可変カム軸 2 30、吸気カム駒 240、偏心プレート (偏心部材) 250、偏心ボス (部材移動部) 260、 偏心用モータ 270を有し、シリンダヘッド 104に、クランク軸 130と平行に取り付けら れる。なお、この可変バルブ駆動装置 200は、吸気バルブ及び排気バルブのバルブ タイミングのうち、一方のバルブタイミングを他方のバルブタイミングに対して変更し、 バルブオーバラップ量を可変にする。ここでは、可変バルブ駆動装置 200は、吸気力 ム駒 240による吸気バルブの開きタイミング及び閉じタイミングをそれぞれ変 更し、これにより排気バルブに対するバルブオーバラップを可変させるものとして説明 する。
[0025] 図 2は、シリンダヘッド 104に取り付けられた可変バルブ駆動装置 200を示す要部 断面図、図 3は、同可変バルブ駆動装置 200の分解斜視図である。
[0026] この可変バルブ駆動装置 200では、カムスプロケット 211、排気カム駒 220、可変力 ム軸 230、吸気カム駒 240、偏心プレート 250、偏心ボス 260のそれぞれの回転軸は 互いに平行となっている。
[0027] この可変バルブ駆動装置 200では、図 1から図 3に示すように、吸気カム駒 240及 び排気カム駒 220は、可変カム軸 230が揷通された状態で、シリンダヘッド 104内に おけるシリンダ部 106の上部に配置されている。また、可変カム軸 230は、力ムスプロ ケット 211に揷通され、このカムスプロケット 211及び偏心プレート 250はケース上部 116a内に配置されている。
[0028] そして、偏心ボス 260は、環状のヘッドカバー 105内に回動自在に取り付けられ、こ のヘッドカバー 105がシリンダヘッド 104に固定される。これにより、可変バルブ駆動 装置 200はシリンダヘッド 104に固定される。なお、偏心ボス 260が配置されるヘッド カバー 105が取り付けられるシリンダヘッド 104の開口部は、カムスプロケット 211が 挿入可能な直径を有する。
[0029] 図 1から図 3に示すように、カムスプロケット 211は、同一軸心を有し、回転すること によりバルブ (ここでは、排気バルブ)を開閉する排気カム駒 220と筒状部 224を介し て一体的に形成されている。つまり、これらカムスプロケット 211、筒状部 224及び排 気カム駒 220とで、クランク軸 130の駆動力を直接受けて回転するカム駆動体 210を 形成している。
[0030] カムスプロケット 211は、タイミングギア 134 (図 1参照)及びカム駆動チェーン 133 ( 図 1参照)を介してクランク軸 130の駆動に従動し、クランク軸 130の回転数に対して 一定の減速比で回転する。ここでは、カムスプロケット 211は、クランク軸 130の回転 の 1Z2の速度で回転して!/、る。
[0031] カムスプロケット 211及び排気カム駒 220の軸心は、カムシャフト軸心であり、力ムシ ャフト軸心は、シリンダ部 106の上部でクランク軸 130 (図 1参照)と平行に配置されて いる。
[0032] また、カムスプロケット 211には、図 1から図 3に示すように、カムスプロケット 211の 回転軸方向と平行に、且つ、排気カム駒 220に対して逆側に向力つて突出し、偏心 プレート 250を回転駆動させる駆動ピン 212が設けられている。なお、駆動ピン 212 は、偏心プレート 250の中心側から半径方向に切り欠かれたスロット 252に遊嵌され ている。
[0033] 駆動ピン 212の軸心は、カムスプロケット 211の軸心に対して偏心しており、力ムス プロケット 211が回転すると、カムスプロケット 211の軸心の回りを周回し、スロット 252 を介して、回転軸が平行な偏心プレート 250を回転駆動させる。なお、この力ムスプロ ケット 211には、半径方向に突出する突起片 114が取り付けられて 、る。
[0034] この突起片 114は、その回転位置をシリンダヘッド 104に取り付けられたセンサ 114 aにより検知される。
[0035] また、カムスプロケット 211には、カム駆動チェーン 133 (図 1参照)を介してクランク 軸 130の駆動力が直接伝達されるため、カムスプロケット 211の回転位置は、クランク の行程に連動する。つまり、回転位置には、クランクの行程 (4サイクルの場合、吸入 行程、圧縮行程、爆発行程及び排気行程)の情報が含まれる。このため、センサ 114 aがカムスプロケット 211の突起片 114の位置を検出することによって、クランク行程を 判別できる。
[0036] また、カムスプロケット 211、排気カム駒 220及び筒状部 224のそれぞれにおける 同一の軸心部分、つまり、カム駆動体 210の軸心部分には、軸方向に貫通する揷通 孔 215が設けられている。なお、この揷通孔 215は、排気カム駒 220のベースサーク ル面 220aに開口する孔部 223と連通して 、る(図 2参照)。
[0037] 揷通孔 215には、可変カム軸 230の軸部 230aが軸方向に回転自在に揷通されて いる。
[0038] 可変カム軸 230の軸部 230aは、揷通されるカム駆動体 210から軸方向に両側で 突出し、排気カム駒 220側で突出する部分には、排気カム駒 220と隣り合う吸気カム 駒 240がー体的に取り付けられている。
[0039] また、可変カム軸 230は、軸部 230aにおいて、カム駆動体 210のカムスプロケット 2
11側で突出する部分には従動ピン 232が設けられている。
[0040] 可変カム軸 230は、カム駆動体 210に揷通された状態で、シリンダ部 106の上方を 横切るように配置されている。そして、可変カム軸 230は、ベアリング 104a及びべァリ ング 113により回動自在に支持されて 、る(図 2参照)。
[0041] また、可変カム軸 230は、軸部 230a内に軸方向に貫通する貫通孔 238を有し、こ の貫通孔 238は、可変バルブ駆動装置 200を構成する部材同士の摺動部分に供給 される潤滑油の本体油路(主潤滑路)となっている。以下では、貫通孔 238を本体油 路 238として説明する。
[0042] 詳細には、この本体油路 238は、カム駆動体 210 (特に、カムスプロケット 211)の 回転軸を貫通して設けられ、カム駆動体 210の他端部側における吸気カム駒 240の 摺動部分に潤滑油を供給する。また本体油路 238は、カム駆動体 210の一端部側 における偏心プレート 250の摺動部分に潤滑油を供給する。
[0043] また、本体油路 238は、分岐油路 239a、 239b, 239cにより軸咅 230aの外周面と 連通するとともに、軸部 230a内のチェーンライン側に設けられた絞り 235を介して一 端面側 (偏心プレート 250側)に開口されて 、る。
[0044] 分岐油路 239a、 239b, 239dま、軸咅 230aに、それぞれ本体油路 238力ら直交 するように形成され、それぞれ軸部 230aの外面部分に開口している。これら分岐油 路 239a、 239bが開口する外面部分には、軸部 230aの円周方向に窪み状に形成さ れた油だまり溝 236、 237力 S設けられ、分岐油路 239a、 239bは、油だまり溝 236、 2
37【こ連通して!/ヽる。
[0045] これら油だまり溝 236、 237は、筒状部 224及び排気カム駒 220の内周面部分を構 成する揷通孔 215の内周面に接触して摺動する部分に形成され、分岐油路 239a、 239bに案内される潤滑油により潤滑される。また、分岐油路 239cは、軸部 230aに、 本体油路 238から直交するように形成され、吸気カム駒 240の孔部 245に連通する 外面部分に開口している。
[0046] これにより、分岐油路 239cにより案内される潤滑油は、軸部 230aと吸気カム駒 24 0との摺動部分に供給され、この摺動部分を潤滑する。なお、吸気カム駒 240におい て軸部 230aの外周面上を摺動する部分には、吸気カム駒 240の開口部の内周面に 沿って油だまり溝 246が形成されて 、る。
[0047] また、可変カム軸 230の一端部は、シリンダヘッド 104において、シリンダヘッド 104 に取り付けられたベアリング 113に挿入されている。ベアリング 113から突出する部位 には、オイルシール部 117を介してオイルシールキャップ 115が被せられ、オイルシ ール部 117によりシリンダヘッド 104外部に潤滑油が漏れな 、ようにして!/、る。
[0048] なお、シリンダヘッド 104には、オイルポンプの吐出口 118が取り付けられている。こ の吐出口 118を介して潤滑油は、軸部 230aの一端部の開口 230cと連通するオイル 溜まり 119に圧入され、このオイル溜まり 119を介して、本体油路 238内に案内される
[0049] 吸気カム駒 240は、軸部 230aの一端部側に外嵌されるとともに、ピン 241を吸気力 ム駒 240に形成された切欠部 243 (図 3参照)に嵌合することにより固定されている。 なお、吸気カム駒 240は、排気カム駒 220とともに、シリンダ部の上方に配置されてい る。
[0050] この吸気カム駒 240は、可変カム軸 230の軸心を中心に回転した際に、同軸心を 中心に回転駆動する。また、吸気カム駒 240には、図 2に示すように、ベースサーク ル面 240aと、軸部 230aの一端部に外嵌する開口部内面とを貫通する孔部 245が 形成されている。なお、この孔部 245は、軸部 230a内の本体油路 238と連通してい る。
[0051] この構成により、吐出口 118から潤滑油が吐出されると、シリンダヘッド 104内にお いて、潤滑油は、分岐油路 239c、 239b, 239aを介して、吸気カム駒 240、排気カム 駒 220のそれぞれの摺動部分及びそれぞれのプロファイル部分に供給される。
[0052] この軸部 230aの他端部側には、軸部 230aの軸心と直交して張り出したプレート 23
4が取り付けられている。このプレート 234は、軸部 230aの回転に伴い、カムスプロケ ット 211に隣接する位置で回転する。
[0053] このプレート 234の先端部には、軸部 230aが延びる方向とは逆方向に突出して従 動ピン 232が設けられて 、る(図 1〜図 3参照)。
[0054] この従動ピン 232は、プレート 234に、軸部 230aを挟んで駆動ピン 212に対向し、 軸部 230aの軸心と平行で、且つ、軸部 230aの軸心に対して偏心した位置に設けら れている。
[0055] そして、この従動ピン 232は、偏心プレート 250において、偏心プレート 250の中心 力も半径方向に切り欠かれたスロット 254に遊嵌し、偏心プレート 250の回転によつ て、軸部 230aの軸心の回りを周回する。つまり、カムスプロケット 211の回転とともに 回転する駆動ピン 212が偏心プレート 250を回転駆動させると、従動ピン 232を介し て、偏心プレート 250の回転により従動する可変カム軸 230の回転に伴い、吸気カム 駒 240も回転する。
[0056] なお、偏心プレート 250では、駆動ピン 212が遊嵌するスロット 252を介して駆動力 が入力され、従動ピン 232が遊嵌するスロット 254を介して駆動力が出力されている 。このため、以下では、スロット 252を入力側スロット(駆動スロット)といい、スロット 25 4を出力側スロット(従動スロット) t\ヽぅ。 [0057] 図 4は本発明の実施の形態に係るバルブ駆動装置の偏心プレートの一例を示す平 面図である。
[0058] 図 1〜図 4に示す偏心プレート 250は、可変カム軸 230のプレート 234に対向配置 される板状 (ここでは円盤状)のプレート本体部 256と、プレート本体部 256の中央部 力もプレート 234とは逆側で垂直に突出するプレート軸部 258とを有する。
[0059] プレート本体部 256は、プレート軸部 258を挟んで半径方向に延びるように入力側 スロット 252及び出力側スロット 254が設けられている。
[0060] これら入力側スロット 252及び出力側スロット 254は、プレート本体部 256に、プレ 一ト軸部 258の軸心を中心に所定の開角度 Pを持って形成されている(図 4参照)。
[0061] この所定の開角度 Pは、カムスプロケット 211の回転方向を正方向として、プレート 軸咅 258の軸 、方向に対して、 80° 力ら 160° ある!/ヽ ίま 200° 力ら 290° に設定さ れている。
[0062] これら入力側スロット 252及び出力側スロット 254には、それぞれ駆動ピン 212及び 従動ピン 232がそれぞれ遊嵌している。このため、所定の開角度 Ρは、駆動ピン 212 及び従動ピン 232の位相角度となり、これら駆動ピン 212及び従動ピン 232を介して 回転するカムスプロケット 211及び排気カム駒 220と、吸気カム駒 240とに開角度 Ρ 分の位相角度差が生じる。このように、開角度 Ρは、排気カム駒 220に対する吸気力 ム駒 240の位相角度差となる。よって、以下では、開角度 Ρをその機能上、偏心スロッ ト位相角 Ρという。
[0063] このように構成される偏心プレート 250の回転軸となるプレート軸部 258は、図 3に 示すように、偏心ボス 260に形成された偏心孔 262に、回動自在に挿入されている。
[0064] 偏心ボス 260は、ヘッドカバー 105内部においてカム軸方向と平行な回転軸を中 心(図 3に示す回転中心 R)に回転するボス本体部 264を有する。この偏心ボス本体 部 264の外径は、カムスプロケット 211の外径より小さぐ偏心ボス 260は、力ムスプロ ケット 211に対し、回転軸方向で重なる位置に配置されている。この偏心ボス 260に おける偏心孔 262は、ボス本体部 264に、その回転中心に対して偏心した位置に形 成されている。
[0065] そして、このボス本体部 264の外周の一部にラック 266が設けられ、このラック 266 はヘッドカバー 105に取り付けられる偏心用モータ 270のウォームギア 272に歯合さ れる。この構成により、偏心ボス 260は、ヘッドカバー 105内部において、偏心用モ ータ 270の駆動によって回転中心 R (図 3参照)を中心に回転する。
[0066] 図 5は偏心ボスの分解斜視図である。
[0067] 図 5に示すように、偏心ボス 260のボス本体部 264は、有底円筒状をなし、内部に 偏心孔 262が形成された本体ケース 264aに、蓋部 264bを取り付けることにより構成 される。
[0068] 本体ゲース 264a【こ ίま、偏' し 262の周囲【こ隔壁 265a、 265b, 265c【こより仕切ら れた隔室 267a、 267b, 267c力設けられている。
[0069] 隔室 267aの底面部分には、隔室 267と、偏心ボスの裏面側、つまり、偏心プレート 250側とを連通する空気穴 268が設けられている。また、この隔室 267aの周壁部に は、ボス本体部 264の外部と連通するオイル戻り穴 268aが形成されている。
[0070] また、隔壁 265a、 265bには、切欠咅 269力 ^設けられ、隔室 267aと隔室 267b、隔 室 267bと隔室 267cとを連通させて!/、る。
[0071] 蓋部 264bは、隔室 267a、 267b, 267cを覆う。この蓋部 264bには隔室 267cの天 井部分に開口部 264cが形成されている。
[0072] このように、偏心ボス 260は、空気穴 268、隔室 267a、 267b, 267c,切欠部 269 及び開口部 264cを介して、軸方向、つまり、表裏面側に連通した構成となっている。 言い換えれば、偏心ボス 260内には、カムスプロケット 211の回転軸方向に連通する 中空部としての隔室 267a、 267b, 267cが設けられている。これにより、偏心ボス 26 0は、ヘッドカバー 105を介してシリンダヘッド 104に取り付けられた状態において、 シリンダヘッド 104内外を連通させている。
[0073] ヘッドカバー 105内部には、偏心ボス 260の回転軸心と平行に、オイル戻り穴 105 aが形成されている。これにより、偏心ボス 260内に偏心プレート 250側からの潤滑油 が流入した場合、隔室 267a内部と連通するオイル戻り穴 268aとともに、エンジン 10 0内部に潤滑油を戻す。つまり、隔室 267a、 267b, 267cは、エンジン 100内で生じ たブローバイガス中の潤滑油をエンジン 100外に排出することを防止するブリーザ室 として機能している。 [0074] このように構成された偏心ボス 260の回転によって、偏心孔 262の位置は、ボス本 体部 264の回転中心 Rに対して偏心した位置に移動可能となっている。つまり、偏心 ボス 260は、偏心プレート 250に、カムスプロケット 211とは逆側で隣接して配置され 、偏心プレート 250のプレート軸部 252を、カムスプロケット 211の回転軸に対して同 軸位置力 偏心位置に移動させることができる。
[0075] 図 6は、偏心ボス 260の回転中心 Rと、カムスプロケット 211の軸心 Cと、偏心プレー ト 250の軸心 Eとの位置関係を示す図である。詳細には、図 6 (a)は、偏心ボス 260、 カムスプロケット 211及び偏心プレート 250の概略正面図、図 6 (b)は、図 6 (a)に示 す回転中心 R及び軸心 C、 E部分の拡大図である。
[0076] 図 6に示すように、偏心ボス 260は、ヘッドカバー 105に回動自在に内嵌され、偏心 用モータ 270 (図 1〜図 3参照)により、回転中心 (ボス中心) Rを中心に回転する。な お、回転中心 Rは、エンジン側に固定されており、可変カム軸 230や排気カム駒 220 及び吸気カム駒 240の回転軸心 (カムシャフト軸心) Cに対する軸心 (偏心中心) Eの 回転する回転中心となつている。
[0077] 偏心ボス 260の偏心孔 262には、プレート軸部 258 (偏心プレート 250の軸心 E)が 回動自在に挿入されているため、偏心ボス 260の回転により、偏心プレート 250の軸 心 (偏心中心) Eは、回転中心 (ボス中心) Rを中心に円弧状に移動する。また、この 軸心 Eの移動線上に、可変カム軸 230の軸心 C、つまり、排気カム駒 220及び吸気力 ム駒 240の軸心 Cが配置されて!、る。
[0078] この偏心ボス 260のボス中心 Rを中心とする回動により、偏心プレート 250の軸心 E を、可変カム軸 230の軸心 Cと偏心させて、カムスプロケット 211と一体の排気カム駒 220の回転に対して、可変カム軸 230と一体の吸気カム駒 240の回転に位相差を設 けることができる。
[0079] また、この偏心ボス 260の回動によって、軸心 Eと、軸心 Cとを一致させることができ る。これら軸心 Eと軸心 Cとが一致した位置、つまり、偏心ボス 260における偏心孔 26 2の軸心 Eの位置と可変カム軸 230における軸心 Cの位置とが重なる位置で偏心ボス 260を固定できる。これにより、偏心プレート 250と可変カム軸 230とを、同一軸心を 中心に回転させることができる。 [0080] 偏心ボス 260のヘッドカバー 105内における回転角度位置は、図 2に示すように、 偏心ボス 260に設けられた角度センサ部 26、 27により検出する。このように検出され た情報と、エンジン回転及びエンジン負荷等のエンジン側力 得られる情報と、図示 しない操作部を介してユーザ力も入力される情報などを用いて、偏心孔 262の偏心 位置は、図示しない制御部により、予め設定された位置 (後述する)に制御される。
[0081] 次に、本実施の形態における可変バルブ駆動装置 200の動作について説明する。
[0082] 図 1〜図 3に示す可変バルブ駆動装置 200では、クランク軸 130の回転より、カム駆 動チェーン 133を介してカムスプロケット 211がクランク軸 130回転の 1/2の回転で駆 動する。カムスプロケット 211に、筒状部 224を介して一体的に設けられた 排気カム駒 220は回転駆動する。つまり、排気カム駒 220は、クランク軸 130の回転 に同期して回転する。
[0083] また、カムスプロケット 211の回転により、偏心プレート 250の入力側スロット 252に 遊嵌された駆動ピン 212が、入力側スロット 252を介して、偏心プレート 250を、プレ 一ト軸部 258を中心に押圧し、偏心プレート 250を回転させる。
[0084] この偏心プレート 250の回転中心、つまり、プレート軸部 258の位置は、偏心用モ ータ 270の駆動により偏心させて 、るため、カムスプロケット 211が等速回転して 、る 場合でも、偏心プレート 250は不等速回転する。
[0085] ここで、図 7を参照して、クランク軸 130がー回転する間に駆動ピン 212と、従動ピン 232との間に不規則な角速度の差が発生する点について説明する。図 7は、本可変 バルブ駆動装置において、カム軸に対して偏心プレートの中心を偏心させた状態の 駆動ピンと従動ピンの位置関係の一例を示す模式図である。詳細には、図 7は、クラ ンク軸を所定の回転速度で矢印方向に回転させた場合の駆動ピン 212と従動ピン 2 32との相対的な位置関係を段階的に示す。ここでは、クランク軸の回転角度が 0° ( 上死点位置)、 45° 、 90° 、 135° 、 180° 、 225° 、 270° 、 315° 、 360° のそ れぞれにおける駆動ピン 212と、従動ピン 232の位置関係を示している。
[0086] なお、駆動ピン 212及び従動ピン 232がそれぞれ遊嵌する入力側スロット 252及び 出力側スロット 254 (図 1及び図 3参照)に形成される所定の偏心スロット位相角 Pは、 ここでは、例えば、 155° とする。 [0087] また、駆動ピン 212は、排気カム駒 220 (図 1〜図 3参照)に、従動ピン 232は、吸気 カム駒 240の回転にそれぞれ同期する。これら排気カム駒 220及び吸気カム駒 240 の回転によって排気ノ レブ及び吸気ノ レブは開閉するため、駆動ピン 212及び従 動ピン 232の回転は、バルブの開閉タイミングを生じさせている。
[0088] 図 7に示すように、本可変バルブ駆動装置 200では、クランク軸が回転すると、カム スプロケット 211が連動して回転し、この回転に同期して、駆動ピン 212もカム軸回り に回転する(図 7では矢印方向に回転する)。
[0089] そして、駆動ピン 212 (排気カム駒 220)がカム軸を中心に、回転角度 0° 力も 135 ° まで回転する場合、従動ピン 232 (吸気カム駒 240)は、駆動ピン 212の回転角度 より多く(図 7では、約 200° の回転角度を有している)移動する。つまり、この区間に おいては、従動ピン 232は、駆動ピン 212より速く回転する。駆動ピン 212が 0° 力 135° まで移動する間においても従動ピンは不規則な速度で周期的に回転する。具 体的には、駆動ピン 212が回転角度 0° から回転角度 45° まで移動する場合には、 従動ピン 232は約 55° 回転する。また、駆動ピン 212が回転角度 45° 力も
90° まで移動する場合、従動ピン 232は約 80° 回転する。さらに、駆動ピン 212が 回転角度 90° 力も 135° まで移動する場合、従動ピン 232は約 65° 回転する。
[0090] また、駆動ピン 212が回転角度 135° 力も 360° まで移動する場合、従動ピン 232 は、駆動ピン 212の回転角度より少なく(図 7では、約 160° の回転角度を有している )移動し、駆動ピン 212の回転速度より遅い。具体的には、駆動ピン 212が回転角度 135° 力も 180° まで移動する場合には、従動ピン 232は約 40° 回転する。また、 駆動ピン 212が回転角度 180° 力 225° まで移動する場合、従動ピン 232は約 30 ° 回転する。さらに、駆動ピン 212が回転角度 225° から 270° まで移動する場合、 従動ピン 232は約 27° 回転し、駆動ピン 212が回転角度 270° 力も 315° まで移動 する場合、従動ピン 232は約 26° 回転する。また、駆動ピン 212が回転角度 315° 力も 360° まで移動する場合、従動ピン 232は約 37° 回転する。
[0091] このように構成される可変バルブ駆動装置 200では、カムスプロケット 211に連動す る駆動ピン 212がカムスプロケット 211の軸心 Cに対して偏心プレート 250の中心(回 転軸心) E側にある場合、偏心プレート 250中心 Eと駆動ピン 212中心間の距離が、 カムスプロケット 211中心と駆動ピン中心間の距離より小さくなる。よって、力ムスプロ ケット 211の回転角より、偏心プレート 250の回転角の方が大きくなる。
[0092] 一方、駆動ピン 212がその反対側、つまり、カムスプロケット 211に対して偏心プレ ート 250の中心力 離間する側にある場合、偏心プレート 250中心と駆動ピン 212中 心間の距離が、カムスプロケット 211中心と駆動ピン中心間の距離より大きくなる。よ つて、カムスプロケット 211の回転角より、偏心プレート 250の回転角の方が小さくな る。
[0093] また、偏心プレート 250のプレート本体部 256に形成された出力側スロット 254は、 プレート本体部 256の回転に伴い、不等速回転する。この出力側スロット 254に遊嵌 された従動ピン 232は、カムスプロケット 211及び吸気カム駒 240と同心であるため、 出力側スロット 254を介して不等速運動が従動ピン 232に伝達される。不等速運動が 伝達される従動ピン 232を介して、軸部 230aは不等速な回転を行い、これに伴い吸 気カム駒 240は不等速な回転を行う。
[0094] 例えば、吸気カム駒 240が開いているクランク角付近で、吸気カム駒 220はクランク 軸の角速度の 1/2より速い角速度で駆動するものとする。このとき、クランクが作用角 分 (例えば、 268° )回転する場合に、カムは作用角より多く回転するため、吸気バル ブはそれよりも短い時間で開閉させるものとなる。つまり、作用角は狭くなる。一方、 吸気カムが遅く回転する場合には作用角を広くとることができる。
[0095] このように可変バルブ駆動装置 200では、カムスプロケット 211と一体的に設けられ た排気カム駒 220に対して、偏心プレート 250を介して駆動する可変カム軸 230とと もに回転する吸気カム駒 240の回転位相差が周期的に変動する。つまり、吸気カム 駒 240の作用角は周期的に可変、言い換えれば、吸気カム駒 240は不等速に回転 し、この回転により開閉する吸気バルブ (可変バルブ)の作用角及び開閉タイミングは 可変となる。
[0096] なお、吸気カム駒 240を排気カム駒 220に対し、どのタイミングで速く回転させ、ど のタイミングで遅く回転させるかは、カムスプロケット 211中心に対する、偏心プレート 250中心と、カムノーズ及び各スロット 252、 254との位置関係で決定する。
[0097] 本可変バルブ駆動装置 200は、スロット 252、 254により形成する偏心スロット位相角 P (図 4参照)を設定することによって、吸気ノ レブの閉じタイミング及び開きタイミング を別々に設定している。
[0098] ここで、本可変バルブ駆動装置 200における偏心プレート 250中心であるプレート 軸部 258の設定位置、及び偏心プレート 250における所定の偏心スロット位相角 P ( 図 4参照)について説明する。なお、プレート軸部 258の設定位置は、構造上、偏心 孔 262の位置と同様の位置である。このため、以下では、偏心孔 262を有する偏心 ボス 260がシリンダヘッド 104に回転自在に取り付けられるレイアウトも踏まえて説明 する。
[0099] 図 8及び図 9は、上記可変バルブ駆動装置 200の構造における、吸気バルブの開 きタイミングおよび閉じタイミングと、偏心プレートの偏心スロット位相角との関係を示 す図である。なお、これら図 8及び図 9のそれぞれの図では、中心(0、 0) mmを可変 カム軸 230や排気カム駒 220及び吸気カム駒 240の回転軸心(図 5で示す軸心 C) の位置として、偏心中心、つまり、偏心プレート 250のプレート軸部 252の位置を示し ている。
[0100] さらに、図 8 (a)〜図 8 (h)及び図 9 (a)〜図 9 (f)では、それぞれ、偏心中心の位置 に対応するバルブの開きタイミングを、クランク軸の回転方向を正方向とした角度とし 、その角度が一定である線を等タイミング線と称して示す。つまり、これら等タイミング 線は、それぞれクランク軸の作用角に対応した一定のバルブの開きタイミングを示し ている。なお、これら等タイミング線は、角度毎に存在するが、図 8 (a)〜(h)及び図 9 (a)〜 (f)のそれぞれでは、便宜上、 20° 毎の等タイミング線として示す。
[0101] 図 8及び図 9を詳細に述べると、まず、図 8 (a)は、偏心スロット位相角 45° の場合 における吸気バルブの開きタイミングと偏心位置との関係を示す図、図 8 (b)は、同 4 5° における吸気バルブの閉じタイミングと偏心位置との関係を示す図である。
[0102] 図 8 (c)は、偏心スロット位相角 90° の場合における吸気バルブの開きタイミングと 偏心位置との関係を示し、図 8 (d)は同 90° における吸気バルブの閉じタイミング とのと偏心位置との関係を示す図である。
[0103] また、図 8 (e)は、偏心スロット位相角 135° の場合における吸気バルブの開きタイ ミングと偏心位置との関係を示し、図 8 (f)は同 135° における吸気ノ レブの閉じタイ ミングと偏心位置との関係を示す図である。さらに、図 8 (g)は、偏心スロット位相角 18 0° の場合における吸気バルブの開きタイミングと偏心位置との関係を示し、図 8 (h) は、同 180° における吸気バルブの閉じタイミングと偏心位置との関係を示す図であ る。
[0104] また、図 9 (a)は、偏心スロット位相角 225° の場合における吸気ノ レブの開きタイ ミングと偏心位置との関係を示す図であり、図 9 (b)は、同 225° における吸気ノ レブ の閉じタイミングと偏心位置との関係を示す図である。
[0105] 図 9 (c)は、偏心スロット位相角 270° の場合における吸気バルブの開きタイミング と偏心位置との関係を示し、図 9 (d)は同 270° における吸気バルブの閉じタイミング とのと偏心位置との関係を示す図である。また、図 9 (e)は、偏心スロット位相角 315 ° の場合における吸気バルブの開きタイミングと偏心位置との関係を示し、図 9 (f)は 同 315° における吸気バルブの閉じタイミングと偏心位置との関係を示す図である。
[0106] これら図 8及び図 9に示すように、偏心スロット位相角が 0° に近い程、等タイミング 線では曲がり(曲率の絶対値)が大きくなり、 180° に近い程、直線に近くなつている 。また、単位偏心中心 (偏心プレート 250の中心 E)移動距離当たりのタイミング変化 量 (等タイミング線の間隔)は、偏心スロット位相角が 180° に近いほど大きく(等タイ ミング線の間隔は小さく)なる。
[0107] よって、少ない偏心中心 Eの移動距離によって、大きくバルブタイミングを変化させ るためには偏心スロット位相角を 180° 近くに設定することが好ましい。しかし、偏心 ボス 260の回転によって偏心プレート 250の偏心中心を回転する構成において、偏 心スロット位相角を 180° 近くに設定する場合、開きと閉じタイミングを独立に変化さ せることができない。
[0108] この点を踏まえて、本可変バルブ駆動装置 200では、偏心スロット位相角を 180° 以外の角度として、偏心中心の少ない移動距離でノ レブタイミング可変幅を大きくと り、さらに、開きと閉じのタイミング設定の自由度を確保している。
[0109] このような適切な偏心スロット位相角 Pの範囲の決定には、要求されるタイミングの 変化幅と、偏心孔 262の位置を移動させる偏心ボス 260がヘッドカバー 105内を回 転するレイアウト上において好適な偏心ボス 260の回転半径と、を設定する必要が生 じる。
[0110] まず、要求されるタイミングの可変幅の設定について説明する。なお、ここでは、吸 気タイミングの可変幅、つまり、吸気バルブの開きタイミングと、閉じタイミングについ て説明する。排気タイミングについては、ほぼ吸気タイミングと同様のタイミングの可 変幅であるので説明は省略する。
[0111] 吸気バルブの開きタイミングについては、オーバラップの大きさと、エンジンの特性 との関係について着目し、吸気バルブの閉じタイミングについては、吹き返し量と慣 性過給効果に着目する。
[0112] 図 10は、一般的なエンジンのオーバラップ量とアイドリング安定性の関係を示す図 である。なお、図 10では、オーバラップ量に対するアイドリング安定性を、速度変動 率のグラフで示すとともに、オーバラップ量に対する HC (Hydro Carbon:炭化水素) 排出量をグラフで示して 、る。
[0113] 図 10に示すように、一般的なエンジンでは、オーバラップ量が増えるに従ってアイ ドリング安定性が悪ィ匕する。よって、図 10に示すように、適切なアイドリング安定性を 保持させるためには、オーバラップ量を確保するために、 20° 以下、すなわちクラン ク軸の上死点前 10° 以降に吸気バルブを開くことが適切である。
[0114] また、図 10に示すように、 HC排出量は、アイドリング安定性の傾向と同様に、ォー ノ ラップ量に比例して増加する。これにより、オーバラップ量の少ない方が、 HC排出 量も少なぐ好適な排ガス特性であることとなる。
[0115] 一方、オーバラップ量を増力!]させた場合、エンジンの排気脈動を吸気行程初期に 有効に利用することができ、これにより、新気の吸入量が増加し、体積効率が上がる ことが知られている。その結果、エンジンの出力トルクを増加させることができる。この ようなエンジン出力向上のための適切なオーバラップ量は、最大でおよそ 80° 程度 であり、これより、吸気の開きタイミングは 40° 〜0° 程度の可変幅を持たせること が好ましい。
[0116] これに対し、バルブ閉じのタイミングは、吸気の慣性効果を考慮して決定することが 一般的であり、吸気の慣性効果は、高回転で遅ぐ低回転で早く閉じることによって その効果を最大限に利用できる。これにより、通常のエンジン回転範囲では、吸気バ ルブの閉じのタイミングは、クランク軸の下死点後 0° 〜70° 程度に設定している。
[0117] これらの点を鑑みて、排ガス及びエンジン出力上有効であるバルブタイミングを得る ため、次のように制御する。この制御では、エンジン回転数が低い範囲においては、 開きタイミングはオーバラップ量を最小限に固定しつつ、閉じタイミングをクランク軸の 下死点付近に設定する。そして、エンジン回転数の上昇に伴ってバルブ開きタイミン グは固定の状態に維持させつつ、閉じタイミングを徐々に遅らせる。次いで、ェンジ ンの高回転域の排気脈動が有効に利用できる領域 (エンジン回転数が高い範囲)に 至った段階で開きタイミングを進めていくと同時に閉じタイミングを遅らせるようにする
[0118] このように排ガス及びエンジン出力上有効であるバルブタイミングを得るため、ノ レ ブの開閉を制御することによって決定した最適な開きと閉じのタイミングを、図 8及び 図 9に示す等タイミング線図上にプロットする。これらプロットした開きタイミング及び閉 じタイミングの等タイミング線図を重ねて、両者の要求を満たす一点を決定する。この 決定した点をプロットしていくことによって、排ガス及びエンジン出力上もっとも望まし い偏心プレート 250の軸心の移動軌跡を得ることができる。
[0119] 一方、本可変バルブ駆動装置 200では、偏心プレート 250の軸心 Eは、エンジンに 固定される一点、つまり、偏心ボス 260の回転中心 Rを中心に回転移動する。よって 、可変バルブ駆動装置 200によれば、簡易な構造で、可変バルブタイミングを実現し ている。
[0120] このレイアウトでは、偏心プレート 250の軸心は、ヘッドカバー 105の開口部の径に よって上限が決定する偏心プレート軸心の回転半径を持つ円の円周上を移動する。 このため、先に求めた排ガス及びエンジン出力上、もっとも望ましい偏心プレート 250 の軸心の移動軌跡に対しては、ある程度のずれが生じる。
[0121] 図 11は、偏心プレート 250の中心の回転中心と、その回転半径とのずれ量を示す 図である。この図 11 (a)は、図 8及び図 9で示す偏心スロット位相角毎に、そのずれ 量が最小になるように偏心プレート 250の中心の回転中心(偏心ボス 260の回転中 心に相当)と、その回転半径を決定し、その最大のずれ量をプロットしたものである。
[0122] 図 11 (b)は、実際にプロットした偏心スロット位相角と、最適軌跡からの最大ずれ量 との関係を示すデータである。ここで、最大ずれ量は 20° 以下であることが排ガス及 びエンジン出力上必要であることが知られている。
[0123] これらの点を踏まえて図 11を参照して考察することにより、可変バルブ駆動装置 20 0では、偏心プレート 250における偏心スロット位相角 Pは、 80° 〜160° あるいは 2 00° 〜290° に設定されている。
[0124] したがって、上述のように構成された可変ノ レブ駆動装置 200によれば、吸気カム 駒 240を、排気カム駒 220に対して周期的な回転位相差を設けた状態で回転させる ことができるとともに、この回転位相差を適宜変更できるため、バルブオーバラップ量 (オーバラップの期間)を、エンジン行程に伴い可変させることができる。
[0125] 詳細には、オーバラップ量は、図 8及び図 9で示すように、偏心プレート 250の偏心 スロット位相角 Pを 180° を除く角度に設定することによって、吸気ノ レブの開きタイ ミングと閉じタイミングとをそれぞれ別々に設定することにより調整できる。
[0126] よって、オーバラップ量をコントロールして、アイドリング時には、吸気カム駒 240に よるバルブの開閉を早めに行うことでオーバラップ量を小さくするまたは無くことによ つて、残留ガスの混入を抑え、ガスの燃焼を安定させることができる。
[0127] また、排気脈動の効果による残留ガスの掃気及び吹き返しの低減ィ匕を図ることがで き、さらに、混合気の吸入効果を向上させて、十分な混合気を吸入して、アイドリング の安定化、始動性の向上を図ることができる。
[0128] また、吹き抜けを防止し、排ガスを減少させることができるとともに、エンジン低回転 時でのエンジン出力を上げて、燃費の向上を図ることができる。
[0129] 特にエンジン低回転時には、ピストン 102が下死点に位置した時に吸気バルブが 全閉するように吸気カム駒 240、つまり、従動ピン 232を回転させることができる。
[0130] また、エンジン中速回転時(中負荷域)では、吸気バルブを早くから大きく開いてォ ーバラップ量を大きくとることによりボンピングダロスを少なくして、燃焼効率を上げる ことができるとともに、燃費向上を図ることができる。エンジン高回転時にも同様に、ェ ンジン回転数に対応したオーバラップ量とすることができ、燃費向上を図ることができ る。
[0131] また、可変バルブ駆動装置 200では、偏心プレート 250の中心は、エンジンに固定 の一点 (偏心ボス 260の回転中心)を中心に回転移動させることによって、簡単な構 造で偏心中心位置を移動させて可変バルブタイミングを実現している。詳細には、可 変バルブ駆動装置 200では、偏心ボス 260力 偏心プレート 250のプレート軸部 25 8を支持するとともに、取り付けられたヘッドカバー 105の開口部の中心をプレート軸 部 258の回転中心としてプレート軸部 258の移動を可能にしている。
[0132] このような偏心ボス 260を備える可変バルブ駆動装置 200では、偏心プレート 250 のプレート軸部 258の支持構造と、プレート軸部 258の移動構造とを別々に設ける必 要がなぐコンパクトに配置された簡易な構造となっている。これにより、従来と異なり 、可変バルブ駆動装置 200自体の制御も簡単であり、コストの低廉ィ匕を図ることがで きるとともに、メンテナンス性及び信頼性の向上を図ることができる。また、偏心ボス 2 60 (ボス本体部 264)の外径は、カムスプロケット 211の外径より小さぐ偏心ボス 260 は、回転軸と直交する方向において、カムスプロケット 211の外径より内側に配置さ れている。よって、可変バルブ駆動装置 200を備えるエンジン 100では、偏心ボス 26 0を備えない構造のエンジンと比べて、カムシャフト軸心方向にのみ大きくなり、カム シャフト軸心と直交する方向に張り出すことがな 、。
[0133] また、本可変バルブ駆動装置 200では、偏心プレート 250における偏心スロット位 相角 Pは 80° 〜160° あるいは 200° 〜290° であるため、バノレブの開き及び閉じ タイミング一定のラインは、略円弧状になる(図 8及び図 9参照)。
[0134] このように、偏心プレート 250における偏心スロット位相角 Pを 80° 〜160° あるい は、 200° 〜290° 内の値に設定することによって、従来の位相角 180° 固定の構 造とは異なり、多様な曲線のタイミング線を得ることとなる。
[0135] よって、偏心ボス 260により、ヘッドカバー 105内において偏心プレート 250の中心 を移動させる構成において、円弧状の偏心プレート 250の中心軌跡に、多様な曲線 のタイミング線を対応させることができる。これにより、エンジン 100では、可変バルブ 駆動装置 200は、バルブタイミングを最適化できる効率を向上させることができ、広範 なエンジンからの要求に十分対応し、要求されるエンジンの特性に合わせて広 ヽ設 定を行うことができる。
[0136] したがって、要求により、吸気バルブまたは排気バルブの開きタイミング及び閉じタ イミングの一方を略固定したまま、他方のタイミングのみを変更する場合、開きタイミン グ一定ラインの円弧の中心付近に、偏心ボス 260の回転中心 R (図 6参照)が位置す るように構成できる。これにより、吸気バルブまたは排気バルブの開きタイミング及び 閉じタイミングの一方を略固定したまま、他方のタイミングのみを変更することができる
[0137] このように本可変バルブ駆動装置 200では、シリンダヘッド 104に固定される偏心 ボス 260により、シリンダヘッド 104を閉塞した状態で、コンパクトな構造で、この偏心 ボス 260により、可変するバルブの閉じ開きをそれぞれ適宜変更自在な可変バルブ 機構を実現している。
[0138] さらに、このように構成される可変バルブ駆動装置 200は、可変バルブ駆動機構、 所謂、可変ノ レブタイミング機構が無いカムシャフトと比べ、カム軸線上において、排 気カム駒 220及び吸気カム駒 240と、カムスプロケット 211との位置関係は変わらな い。よって、可変ノ レブ駆動機構がない従来の自動二輪車、例えば、スタータのェン ジン構造において、カムシャフト部分を可変バルブ駆動装置 200に変更するのみで 、可変ノ レブ機能を備えたエンジンとして利用できる。
[0139] 詳細には、可変バルブ駆動装置 200を搭載するために、クランク軸、エンジン本体 のシリンダ部及びシリンダヘッド、タイミングギア等のカム軸を駆動するために各部材 の寸法、配置位置などを変更することがない。
[0140] 本実施の形態では、エンジン 100は、単気筒 SOHC (Single Over Head Camshaft) 型のものとしている力 これに限らず、多気筒の SOHC型、 DOHC (Double Over He ad Camshaft)としてもよ ヽ。
[0141] なお、本可変バルブ駆動装置 200では、吸気バルブの作用角を可変させるベぐ 排気カム駒 220に対して、吸気カム駒 240の回転位相差を周期的に変動するものと したが、これに限らない。つまり、吸気カム駒 240に対して、排気カム駒 220の回転位 相差を周期的に変動するものとしてもよい。
[0142] この場合、上記可変バルブ駆動装置 200は、カムスプロケット 211と一体に回転す ることにより吸気バルブを駆動する吸気カム駒を備えるとともに、可変カム軸 230に、 排気バルブを駆動する排気カム駒を備えた構成とする。この構成により、排気バルブ の作用角を可変させることで、オーバラップ量を変更することができ、上記と同様の作 用効果を有することができる。詳細には、排気バルブの作用角形成の要因となる排 気バルブの開きタイミング及び閉じタイミングを、上述した吸気バルブでの開きタイミ ング及び閉じタイミングの設定と同様に、それぞれ別途に設定することができる。
[0143] 次に、この可変バルブ駆動装置 200を備えるエンジン 100が搭載された車両につ いて説明する。
[0144] ここでは、エンジン 100を搭載する車両を、スタータ型の自動二輪車として説明する 力 これに限らず、エンジン 100が搭載される車両であればどのような車両でもよい。
[0145] 図 12は、本発明の一実施の形態に係るエンジンの可変バルブ駆動装置を備える 自動二輪車の要部構成を示す概略側面図である。なお、本実施の形態において前 、後、左、右とは、上記自動二輪車のシートに着座した状態で見た場合の前、後、左 、右を意味する。また、本実施の形態における自動二輪車は、スタータ型二輪車とし て説明するが、これに限らず、バルブ駆動装置付きの車両であれば、どのような車両 でも良い。
[0146] 図 12に示す自動二輪車 500は、タンデム型スタータタイプであり、前側でハンドル 5 02を回動自在に支持する車両本体 503の後側にタンデムシート 504を備える。この タンデムシート 504は、下部に配置されたトランクスペース 505に対し開閉自在に取り 付けられている。このトランクスペース 505の下方には、駆動ユニット 600が配置され ている。
[0147] この駆動ユニット 600の前端部は、ハンドル 502の下方から後方に向けてタンデム シート 504の下方まで延びる前側本体 503aの後端部に、車幅方向に水平配置され たピボット軸(図示せず)を介して上下に揺動自在に取り付けられている。
[0148] また、駆動ユニット 600の後端部には、後輪 508が車軸 510を介して取り付けられ、 その後端部と、トランクスペース 505の後端部を支持するフレームピボットとの間には リアサスペンション 512が懸架されている。なお、駆動ユニット 600の前端部の上部前 方には、トランクスペース 505の前端部が配置されて 、る。
[0149] 図 13は、図 12の駆動ユニットの要部を示す概略平面図である。
[0150] 図 13に示すように、駆動ユニット 600では、車両の前側にエンジン 100が搭載され 、エンジン 100の駆動力を、駆動ユニット 600の後端部に配置された車軸 510に、 C VT機構部 610を介して回転駆動することによって後輪 508を回転させる。
[0151] エンジン 100は、そのシリンダ部 106の軸線を略水平にし、且つ、クランク軸 130を 車幅方向と略平行にして、トランクスペース 505の下方で車両前後方向の略中央部 分に位置されている。
[0152] クランク軸 130の他端部側、ここでは、車両の左側の端部には、車両後方に延びる CVT機構部 610が配置されている。じ¥丁機構部610は、シリンダ軸と平行に配置さ れ、クランク軸 130に取り付けられるプーリ 611と、車軸 510に取り付けられるプーリ 6 12と、これらプーリ 611、 612と〖こ掛け渡されたべノレト 613と、遠心クラッチ 614とを有 する。
[0153] 遠心クラッチ 614は、車軸 510に取り付けられている。また、この車軸 510には、減 速ギア 615が取り付けられ、プーリ 611及びベルト 613を介して伝達されるクランク軸 130の駆動力を減速する。
[0154] モータサイクルでは、排ガス規制問題等により、可変バルブタイミング機構を搭載す ることが考えられ、特に、スタータ型の車両 (以下、「スタータ」という)等においては、 車両寸法の制限上、エンジン構造は、より簡略ィ匕されることが望ましい。
[0155] 本実施の形態のエンジン 100は、従来エンジン構成におけるカム駆動軸に相当す るカム駆動体 210と、シリンダ部 106の上部に配置される排気及び吸気カム駒 220、 240との間には、偏心部材に相当する偏心プレート 250を配置していない。
[0156] エンジン 100では、カム駆動体 210を挟んで、カム軸線上に、偏心プレート 250と、 排気及び吸気カム駒 220、 240とを配置している。
[0157] すなわち、カム駆動チェーン 133のチェーンライン上に配置されるカムスプロケット 2 11を挟んで、カム軸線上に、偏心プレート 250と、排気及び吸気カム駒 220、 240と が配置されている。
[0158] 排気及び吸気カム駒 220、 240は、エンジン構造上、シリンダ部 106の上部に、シリ ンダ軸線 CLに沿って配置されるため、従来構成と異なり、シリンダ軸線と、カムチェ ーンラインは隣り合う位置に配設された構造となっている。
[0159] このため、図 13に示すように、エンジン 100のチェーンライン Lは、カムスプロケット 2 11と排気及び吸気カム駒 220、 240との間に偏心部材が配置された従来構成の場 合のチェーンライン LAと比べて、シリンダ軸線 CLに接近した位置に配置される。
[0160] これにより、チェーンライン Lの外側で、チェーンライン Lと平行に配置される CVT機 構部 610のベルト 613ラインは、従来構造の場合より、シリンダ軸線 CLに近くなる。
[0161] よって、駆動ユニット 600自体の横幅が小さくなる。詳細には、駆動ユニット 600に おいて、左側端面 600aが、チェーンライン Lがシリンダ軸線 CLに接近する分、従来 構成の可変バルブ駆動装置装備のエンジンを搭載した場合の左側側面 600bよりも 、右側側面に接近する。
[0162] つまり、スタータ型の自動二輪車 500は、構造上、 CVT (Continuously Variable Tra nsmission:無段階変速装置)用のシーブなどクランク軸上においてカム駆動チェーン 133より外側に設けられる部品を備える。
[0163] このような自動二輪車 500に搭載されるエンジン 100では、カム軸上において、力 ム駆動チェーン 133のチェーンライン Lと、シリンダ軸線 CLとの間に可変バルブ駆動 のための部材を設けることがない。これにより、クランク軸 130上でも、その部材と対応 する分のスペースを設ける必要がなく、従来の可変バルブタイミング機構を備えたェ ンジンと比べて、カムスプロケット 211と各カム駒 220、 240とが離間しない。
[0164] 言い換えれば、クランク軸 130に対して略直交配置されるカム駆動チ ーン 133の チェーンライン L力 シリンダ軸線 CL力も離間することがない。
[0165] これにより、 自動二輪車 500は、可変バルブタイミング機構を搭載しない構造と同様 のクランクケース 112幅を有するものとなる。
[0166] よって、自動二輪車 500における十分なバンク角を取ることが出来、車両の運動特 性の低下を防ぎ、車両の運動性を確保することができる。
[0167] さらに、可変バルブ駆動装置 200では、偏心プレート 250等の偏心機構部分は、排 気及び吸気カム駒 220、 240とカムスプロケット 211との間に配置されて!、な!/、。
[0168] このため、エンジン 100において、可変バルブ駆動装置 200以外の構造は、可変 バルブ駆動装置 200を備えな 、エンジンと略同様の構成部材を用いることができる。 つまり、エンジン本体部 110のシリンダヘッド 104から可変バルブ駆動装置 200を抜 いて、偏心プレート 250、可変カム軸 230、偏心ボス 260及び、ヘッドカバー 105を 変更するだけで、可変ノ レブ駆動装置 200を備えな 、エンジンとして用いることがで きる。
[0169] よって、自動二輪車に搭載する場合でも、従来のエンジンに対して大幅に構造を変 更する必要は生じることがなぐ従来のエンジンと非可変仕様のエンジンでシリンダへ ッドなどの主なエンジン構成部品を共通にすることができる。
[0170] また、エンジンに、カムスプロケットと、カム軸との間に偏心プレート等の偏心機構が 配置されて ヽな 、ため、カムスプロケットがシリンダ軸力 離間するために生じるクラン クの曲げ強度は低下しない。
[0171] また、カム駆動軸そのものを軸方向に移動させる構造と異なり、簡易な構成でォー バラップ期間の可変を実現することができる。
[0172] 本発明の第 1の態様に係る可変バルブ駆動装置は、クランク軸力 伝達される駆動 力により回転するカム駆動部材と、前記カム駆動部材の駆動によって、前記カム駆動 部材の回転軸と同方向の軸を中心に回転するとともに、前記軸が前記回転軸の軸心 位置力 偏心位置に移動可能に設けられる偏心部材と、前記回転軸と同軸上に配 置され、前記偏心部材により前記回転軸を中心に回転駆動されるとともに、前記偏心 部材が前記偏心位置で回転駆動する際に、前記カム駆動部材に対する回転位相差 が周期的に変動するカム軸と、前記カム軸により前記カム軸と同じ回転位相で回転さ れ、排気または吸気弁を駆動するカム駒とを備える可変バルブ駆動装置であって、 前記偏心部材は、前記カム駆動部材に接続され、前記カム駆動部材の回転力が入 力される入力接続部と、前記カム軸に接続され、前記入力接続部を介して入力され る回転力により回転する前記偏心部材自体の回転力を前記カム軸に出力する出力 接続部とを有し、前記入力接続部及び前記出力接続部の前記偏心部材の軸に対す る位相角を、前記偏心部材の回転中心位置の一方向の移動によって変化する前記 排気または吸気弁の開きのタイミングを一意的に進角させ、及び Zまたは前記排気 または吸気弁の閉じのタイミングを一意的に遅角させる構成を採る。
[0173] この構成によれば、カム駆動部材の駆動により偏心部材力 カム駆動部材の回転 軸心からの偏心位置で回転駆動する際に、カム軸は、カム駆動部材に対する回転位 相差が周期的な変動を伴い回転する。 [0174] このカム軸と同じ回転位相で回転するカム駒は、カム駆動部材に対する回転位相 差が周期的に変動しつつ駆動する。つまり、カム駒の作用角が可変し、これにより、 排気弁または吸気弁を駆動し、排気弁または吸気弁の作用角を可変する。
[0175] その際に、偏心部材が有する入力接続部及び出力接続部の前記偏心部材の軸に 対する位相角力 偏心部材の回転方向を正として 80° から 160° 或いは 200° から 290° となっている。このため、開き及び閉じタイミングにおいてタイミング一定となる ラインが円弧状となり、開き及び閉じタイミングの一方における所定のタイミングが、他 方のタイミングと複数交差することとなり、開き及び閉じタイミングの設定自由度が増 加する。
[0176] よって、排気弁または吸気弁の作用角を形成する開きタイミング及び閉じタイミングの それぞれを任意に設定することができる。
[0177] このように、簡易でコストの低廉ィ匕が図られる構造で、カムの作用角を可変して、開 き側および閉じ側の両方において、より最適なノ レブタイミングを設定により、排気弁 または吸気弁の作用角を可変して、バルブオーバラップを可変させることができる。
[0178] 本発明の第 2の態様に係る可変バルブ駆動装置は、上記構成において、前記偏心 部材の軸を、前記カム駆動部材の回転軸に対して同軸位置力 偏心位置に移動さ せる偏心移動部を有する構成を採る。
[0179] この構成によれば、偏心部材の軸を、カム駆動部材の回転軸に対して同軸位置か ら偏心位置に移動させる偏心移動部を備えるため、偏心移動部を介して、カム駆動 部材とカム駒の回転位相差を周期的に変動させて、排気または吸気バルブの作用 角を可変できる。
[0180] 本発明の第 3の態様に係る可変バルブ駆動装置は、上記構成において、前記偏心 移動部は、前記偏心部材の軸を、円弧状に移動させる構成を採る。
[0181] この構成によれば、偏心移動部は、偏心部材の軸を円弧状に移動させるため、円 弧状である多様の開き及び閉じタイミング一定のラインに対応させやすくなり、バルブ タイミングを最適化できる効率を向上させることができ、広範なエンジンからの要求に 十分対応し、要求されるエンジンの特性に合わせて広 、設定を行うことができる。
[0182] 本発明の第 4の態様に係る可変バルブ駆動装置は、上記構成において、前記カム 駆動部材により前記カム駆動部材と同じ回転位相で回転するととともに、前記カム駒 と隣り合う位置に配置される別のカム駒を有する構成を採る。
[0183] この構成によれば、カム駆動部材と同じ回転位相で回転する別のカム駒を備えるた め、カム駒及び別のカム駒のうち一方を、吸気バルブを駆動する吸気用カム駒とし、 他方を、排気バルブを駆動する排気用カム駒とすることができる。これにより、吸気弁 及び排気弁を同じカム軸に配置する SOHCタイプのエンジンに、容易に搭載するこ とができ、可変バルブ機構の採用自由度を向上させることができる。
[0184] 本発明の第 5の態様に係る可変バルブ駆動装置は、上記構成において、前記カム 駒は、回転により吸気弁を駆動し、前記別のカム駒は回転により排気弁を駆動する 構成を採る。
[0185] この構成によれば、カム駒の回転により吸気弁を駆動し、別のカム駒の回転により 排気弁を駆動するため、排気弁の作用角に対して、吸気弁の開きタイミング及び閉じ タイミングのそれぞれを任意に可変させることにより、所望の作用角可変を行うことが できる。これにより、低速回転時では、吸気弁の開き時期を長くとることにより、オーバ ラップを広くとることができ、低速回転時の出力性能を犠牲にすることなぐ高速回転 時の性能を確保することができる。
[0186] 本発明の第 6の態様に係るエンジンは、上記構成の可変バルブ駆動装置を具備し 、前記クランク軸は、前記カム駆動部材の回転軸と略平行に配置され、前記カム駆動 部材は、前記クランク軸に対して直交して配置される駆動力伝達部を介して前記クラ ンク軸の回転と連動する構成を採る。
[0187] この構成によれば、カム駆動部材の駆動により偏心部材力 カム駆動部材の回転 軸心からの偏心位置で回転駆動する際に、カム軸は、カム駆動部材に対して周期的 に変動する回転位相差を持って回転する。このカム軸と同じ回転位相で回転する力 ム駒では、カム駆動部材に対する回転位相差が周期的に変動する。つまり、カム駒 の作用角が可変となり、これにより、排気弁または吸気弁を駆動し、排気弁または吸 気弁の作用角を可変する。
[0188] その際に、偏心部材が有する入力接続部及び出力接続部の前記偏心部材の軸に 対する位相角力 偏心部材の回転方向を正として 80° から 160° 或いは 200° 力 290° となっている。このため、開き及び閉じタイミングにおいてタイミング一定となる ラインが円弧状となり、開き及び閉じタイミングの一方における所定のタイミングが、他 方のタイミングと複数交差し、開き及び閉じタイミングの設定自由度が増加する。よつ て、排気弁または吸気弁の作用角を形成する開きタイミング及び閉じタイミングのそ れぞれを任意に設定することができる。
[0189] このように、簡易でコストの低廉ィ匕が図られる構造で、カムの作用角を可変して、開 き側および閉じ側の両方において、より最適なノ レブタイミングを設定により、排気弁 または吸気弁の作用角を可変して、バルブオーバラップを可変させることができる。
[0190] 本発明の第 7の態様に係る自動二輪車は、上記構成のエンジン力 前記クランク軸 を車幅方向に配置して搭載される構成を採る。
[0191] この構成によれば、上記構成のエンジンと同様の効果を有する自動二輪車を実現 できる。
産業上の利用可能性
[0192] 本発明に係る可変バルブ駆動装置、エンジン及び自動二輪車は、エンジン構成を 大幅に変更することなぐ簡易な構成でカムの作用角を可変する効果を有するものと して有用である。

Claims

請求の範囲
[1] クランク軸から伝達される駆動力により回転するカム駆動部材と、
前記カム駆動部材の駆動によって、前記カム駆動部材の回転軸と同方向の軸を中 心に回転するとともに、前記軸が前記回転軸の軸心位置から偏心位置に移動可能 に設けられる偏心部材と、
前記回転軸と同軸上に配置され、前記偏心部材により前記回転軸を中心に回転駆 動されるとともに、前記偏心部材が前記偏心位置で回転駆動する際に、前記カム駆 動部材に対する回転位相差が周期的に変動するカム軸と、
前記カム軸により前記カム軸と同じ回転位相で回転され、排気または吸気弁を駆動 するカム駒とを備える可変バルブ駆動装置であって、
前記偏心部材は、前記カム駆動部材に接続され、前記カム駆動部材の回転力が 入力される入力接続部と、
前記カム軸に接続され、前記入力接続部を介して入力される回転力により回転す る前記偏心部材自体の回転力を前記カム軸に出力する出力接続部とを有し、 前記入力接続部及び前記出力接続部の前記偏心部材の軸に対する位相角を、前 記偏心部材の回転中心位置の一方向の移動によって変化する前記排気または吸気 弁の開きのタイミングを一意的に進角させ、及び Zまたは前記排気または吸気弁の 閉じのタイミングを一意的に遅角させることを特徴とする可変バルブ駆動装置。
[2] 前記偏心部材の軸を、前記カム駆動部材の回転軸に対して同軸位置力 偏心位 置に移動させる偏心移動部を有することを特徴とする請求項 1記載の可変バルブ駆 動装置。
[3] 前記偏心移動部は、前記偏心部材の軸を、円弧状に移動させることを特徴とする 請求項 2記載の可変バルブ駆動装置。
[4] 前記カム駆動部材により前記カム駆動部材と同じ回転位相で回転するととともに、 前記カム駒と隣り合う位置に配置される別のカム駒を有することを特徴とする請求項 1 記載の可変バルブ駆動装置。
[5] 前記カム駒は、回転により吸気弁を駆動し、前記別のカム駒は回転により排気弁を 駆動することを特徴とする請求項 4記載の可変バルブ駆動装置。
[6] 請求項 1記載の可変バルブ駆動装置を具備し、
前記クランク軸は、前記カム駆動部材の回転軸と略平行に配置され、
前記カム駆動部材は、前記クランク軸に対して直交して配置される駆動力伝達部を 介して前記クランク軸の回転と連動することを特徴とするエンジン。
[7] 請求項 6記載のエンジンが、前記クランク軸を車幅方向に配置して搭載されることを 特徴とする自動二輪車。
PCT/JP2005/014087 2004-09-15 2005-08-02 可変バルブ駆動装置、エンジン及び自動二輪車 WO2006030587A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/575,341 US20080017150A1 (en) 2004-09-15 2004-08-02 Variable Valve Drive Device, Engine, and Motorcycle
JP2006535073A JPWO2006030587A1 (ja) 2004-09-15 2005-08-02 可変バルブ駆動装置、エンジン及び自動二輪車
EP05768657A EP1795718A4 (en) 2004-09-15 2005-08-02 VARIABLE VALVE DRIVE DEVICE, MOTOR AND MOTORCYCLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-268892 2004-09-15
JP2004268892 2004-09-15

Publications (1)

Publication Number Publication Date
WO2006030587A1 true WO2006030587A1 (ja) 2006-03-23

Family

ID=36059848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014087 WO2006030587A1 (ja) 2004-09-15 2005-08-02 可変バルブ駆動装置、エンジン及び自動二輪車

Country Status (4)

Country Link
US (1) US20080017150A1 (ja)
EP (1) EP1795718A4 (ja)
JP (1) JPWO2006030587A1 (ja)
WO (1) WO2006030587A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125565A1 (de) * 2007-04-13 2008-10-23 Mahle International Gmbh Nockenwelle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7530337B1 (en) * 2008-04-15 2009-05-12 Gm Global Technology Operations, Inc. High overlap camshaft for improved engine efficiency
US7870843B2 (en) * 2008-11-26 2011-01-18 Gm Global Technology Operations, Inc. Torque control system with scavenging
JP5582195B2 (ja) * 2010-11-08 2014-09-03 トヨタ自動車株式会社 可変動弁装置
CN102032007A (zh) * 2011-01-27 2011-04-27 李云合 机动车的发动机低震动节能配气凸轮轴
US8613267B1 (en) * 2011-07-19 2013-12-24 Lightsail Energy, Inc. Valve
EP3325845B1 (en) 2015-07-20 2021-08-04 National Machine Group Motor driven electromechanical actuator
US11220934B2 (en) * 2018-07-12 2022-01-11 LSE R&D Engineering, LLC Intake and exhaust valve system for an internal combustion engine
US11988160B2 (en) * 2018-12-18 2024-05-21 Hd Hyundai Infracore Co., Ltd. Valve control apparatus for engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277937A (ja) * 1995-04-06 1996-10-22 Honda Motor Co Ltd パワーユニットの伝動ケース防水構造
JPH08338212A (ja) * 1995-06-14 1996-12-24 Mitsubishi Motors Corp 内燃機関の可変動弁機構
JPH09203306A (ja) * 1996-01-24 1997-08-05 Mitsubishi Motors Corp 可変動弁機構
JP2703595B2 (ja) * 1987-05-14 1998-01-26 ブリティッシュ・テクノロジー・グループ・リミテッド 二回転体間の駆動継ぎ手
JPH1113437A (ja) * 1997-06-27 1999-01-19 Unisia Jecs Corp 内燃機関の吸排気弁駆動制御装置
JP2001263186A (ja) * 2000-03-15 2001-09-26 Suzuki Motor Corp 自動二輪車

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965643A (ja) * 1982-10-06 1984-04-13 Honda Motor Co Ltd 自動2輪車用エンジンのバランサ
IT1179561B (it) * 1984-01-17 1987-09-16 Fiat Auto Spa Giunto a rotazione non omocinetica con fasatura variabile particolarmente per un comando dell'albero di distribuzione per motori endotermici
DE4039494A1 (de) * 1990-12-11 1992-06-25 Ulrich Von Mallinckrodt Anordnung einer nockenwelle und eines nockenwellenrades am gehaeuse eines verbrennungsmotors
DE19502834A1 (de) * 1995-01-30 1996-08-08 Erwin Korostenski Anordnung zur Lagerung eines Bauteils
KR100253609B1 (ko) * 1995-05-25 2000-04-15 다케이치 기미요시 가변동 밸브 기구
WO1997007324A2 (de) * 1995-08-19 1997-02-27 Erwin Korostenski Brennkraftmaschine und arbeitsverfahren eines ventiltriebs einer brennkraftmaschine
GB2306621B (en) * 1995-10-18 1998-01-28 Unisia Jecs Corp Phase changing mechanism for camshaft of internal combustion engine
DE19546366C2 (de) * 1995-12-12 2002-01-17 Erwin Korostenski Ventiltrieb einer Brennkraftmaschine
EP0852287B1 (en) * 1997-01-07 2001-09-26 Unisia Jecs Corporation Apparatus and method for controlling valve timing of engine
JP3899576B2 (ja) * 1997-02-07 2007-03-28 三菱自動車工業株式会社 可変動弁機構及び可変動弁機構付き内燃機関
DE19825307A1 (de) * 1998-06-05 1999-12-09 Bayerische Motoren Werke Ag Ventilsteuerung für eine Brennkraftmaschine
DE10258249A1 (de) * 2002-12-13 2004-07-15 Dr.Ing.H.C. F. Porsche Ag Verfahren zum Verändern der Ventilsteuerzeiten einer Brennkraftmaschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703595B2 (ja) * 1987-05-14 1998-01-26 ブリティッシュ・テクノロジー・グループ・リミテッド 二回転体間の駆動継ぎ手
JPH08277937A (ja) * 1995-04-06 1996-10-22 Honda Motor Co Ltd パワーユニットの伝動ケース防水構造
JPH08338212A (ja) * 1995-06-14 1996-12-24 Mitsubishi Motors Corp 内燃機関の可変動弁機構
JPH09203306A (ja) * 1996-01-24 1997-08-05 Mitsubishi Motors Corp 可変動弁機構
JPH1113437A (ja) * 1997-06-27 1999-01-19 Unisia Jecs Corp 内燃機関の吸排気弁駆動制御装置
JP2001263186A (ja) * 2000-03-15 2001-09-26 Suzuki Motor Corp 自動二輪車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1795718A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125565A1 (de) * 2007-04-13 2008-10-23 Mahle International Gmbh Nockenwelle

Also Published As

Publication number Publication date
EP1795718A4 (en) 2009-03-18
US20080017150A1 (en) 2008-01-24
EP1795718A1 (en) 2007-06-13
JPWO2006030587A1 (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2006025174A1 (ja) 可変バルブ駆動装置、エンジン及び自動二輪車
JP4229867B2 (ja) 圧縮比可変機構を備える内燃機関を備える動力装置
JP4747158B2 (ja) 位相制御手段を備える動弁装置
JP2008162489A (ja) 自動二輪車用エンジン
JP2021501846A (ja) エンジン用の可変バルブタイミングシステム
TW200538663A (en) Sound-proof structure in power unit
WO2006030587A1 (ja) 可変バルブ駆動装置、エンジン及び自動二輪車
JP6213200B2 (ja) エンジンのカムキャップ
JPH0988625A (ja) 内燃エンジン
US6848406B2 (en) Starting device for vehicular engine
EP1439286B1 (en) Internal combustion engine with decompression device
US6857408B2 (en) Internal combustion engine provided with decompressing mechanism
JP4220949B2 (ja) 可変バルブ駆動装置の潤滑油路、可変バルブ駆動装置、エンジン及び自動二輪車
JP4657177B2 (ja) 内燃機関
JP3963084B2 (ja) 船外機用4サイクルエンジン
WO2006038370A1 (ja) 可変バルブ駆動装置、エンジン及び自動二輪車
JP2000154732A (ja) エンジンのダンパープーリー構造
JP2017048774A (ja) Ohv型4サイクルエンジン
TWI267599B (en) Driven pulley device of V-belt type automatic transmission
JP4068410B2 (ja) 船外機用エンジン
US12173677B2 (en) Internal combustion engine
JP6542828B2 (ja) 内燃機関
JP2001107708A (ja) 頭上弁式内燃機関の動弁装置
JP2004225535A (ja) 内燃機関
JP2004225534A (ja) 内燃機関

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535073

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11575341

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005768657

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005768657

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11575341

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载