+

WO2006030571A1 - 移動局装置および上り回線送信電力制御方法 - Google Patents

移動局装置および上り回線送信電力制御方法 Download PDF

Info

Publication number
WO2006030571A1
WO2006030571A1 PCT/JP2005/011424 JP2005011424W WO2006030571A1 WO 2006030571 A1 WO2006030571 A1 WO 2006030571A1 JP 2005011424 W JP2005011424 W JP 2005011424W WO 2006030571 A1 WO2006030571 A1 WO 2006030571A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
station apparatus
transmission power
power control
tpc command
Prior art date
Application number
PCT/JP2005/011424
Other languages
English (en)
French (fr)
Inventor
Jinsong Duan
Hidenori Kayama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/575,017 priority Critical patent/US7570970B2/en
Priority to EP05753451A priority patent/EP1777840A4/en
Publication of WO2006030571A1 publication Critical patent/WO2006030571A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff

Definitions

  • the present invention relates to a mobile station apparatus and an uplink transmission power control method, and more particularly to a mobile station apparatus and an uplink transmission power control method for executing soft handover when moving between cells.
  • HSUPA High Speed Uplink Packet Acces
  • W-CDMA Wideband-Code Division Multiple Access
  • E-DCH Enhanced Dedicated CHannel
  • the mobile station apparatus has the ability to transmit packets to the base station apparatus using this E-DCH.
  • transmission power appropriate for packet transmission of the mobile station apparatus differs depending on the distance between the mobile station apparatus and the base station apparatus. Therefore, transmission power control (TPC: Transmission Power Control) is performed in E-DCH as well as the conventional uplink.
  • TPC Transmission Power Control
  • the transmission power control method for example, there is a closed loop type transmission power control.
  • the base station apparatus measures the line quality using the received signal of the mobile station apparatus power, compares the measured line quality with the target line quality, A TPC command that instructs increase / decrease in transmission power is sent to the mobile station equipment so that the measured line quality approaches the target line quality. Then, the mobile station apparatus increases or decreases the transmission power according to the TPC command transmitted from the base station apparatus.
  • a mobile station apparatus when a mobile station apparatus moves between cells covered by the base station apparatus, it may perform soft handover to communicate with a plurality of base station apparatuses. That is, for example, as shown in FIG. 14, when the mobile station apparatus M is located near the boundary between the cell C1 and the cell C2, the mobile station apparatus M covers the base station apparatus B1 and the cell C2 that cover the cell C1. Communicates with both base station devices B2. At this time, if the above-described closed-loop transmission power control is performed, the mobile station apparatus M is connected to the base station apparatus B1 and the base station apparatus B2. TPC commands will be received from both sides. In such a case, the contents of the TPC commands transmitted from the base station device B1 and the base station device B2 may conflict with each other due to the difference in propagation environment in each cell.
  • the mobile station apparatus transmits the TPC commands of the base station apparatuses.
  • the method of selecting and reducing the transmission power is called the or of down method.
  • the mobile station device has excessive transmission power for any of the other base station devices (that is, the base station device that transmitted “Down”)! Further, since the transmission power is not increased, it is possible to prevent an increase in interference in the entire system and increase the subscriber capacity.
  • the mobile station apparatus measures the downlink channel quality, ignores the TPC command transmitted on the downlink with poor channel quality, and applies the over-down method. It is disclosed.
  • Patent Document 1 JP-A-8-18503
  • Patent Document 2 Japanese Patent Laid-Open No. 9-312609
  • an uplink is used to select a TPC command that the mobile station apparatus adopts in actual transmission power control from a plurality of TPC commands transmitted during soft handover.
  • Propagation environment is fully considered, and is a problem There is. That is, in the above conventional technology, the TPC command used for actual transmission power control is based on the content of the TPC command that reflects only the uplink channel quality and the downlink channel quality on which the TPC command is transmitted. Is selected.
  • the TPC command transmitted by the base station device is generated by measuring the channel quality of the uplink
  • the TPC command shows the comparison result between the measured channel quality and a predetermined target channel quality held in advance by the base station device. It only reflects the transmission quality of the uplink packet, and does not directly reflect it. Therefore, only the over-down method based on the contents of the TPC command does not necessarily improve the transmission quality of uplink packets.
  • An object of the present invention is to select a TPC command that more reliably improves the transmission quality of an uplink packet, and as a result, reduces retransmission on the uplink and improves sector throughput.
  • a mobile station apparatus uses a reception means for receiving a reception confirmation response and a transmission power control command for an uplink signal from a plurality of base station apparatuses, and a plurality of received reception confirmation responses.
  • a configuration having selection means for selecting a transmission power control command having the highest priority among a plurality of received transmission power control commands, and control means for controlling transmission power according to the selected transmission power control command. take.
  • An uplink transmission power control method includes a step of receiving a reception confirmation response and a transmission power control command for an uplink signal by a plurality of base station devices, and a plurality of received reception confirmation responses. And selecting a transmission power control command having the highest priority among the plurality of received transmission power control commands, and controlling transmission power according to the selected transmission power control command. did.
  • FIG. 1 is a block diagram showing a main configuration of a base station apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a main configuration of the mobile station apparatus according to Embodiment 1.
  • FIG. 3 is a block diagram showing an internal configuration of a TPC command selection unit according to the first embodiment.
  • FIG. 4 is a flowchart showing a TPC command selection operation according to the first embodiment.
  • FIG. 5 shows an example of an ACKZNACK history according to the first embodiment.
  • FIG. 6 is a block diagram showing an internal configuration of a TPC command selection unit according to the second embodiment of the present invention.
  • FIG. 7 is a flowchart showing a TPC command selection operation according to the second embodiment.
  • FIG. 8 shows an example of an ACKZNACK history according to the second embodiment.
  • FIG. 9 is a block diagram showing an internal configuration of a TPC command selection unit according to the third embodiment of the present invention.
  • FIG. 10 is a flowchart showing a TPC command selection operation according to the third embodiment.
  • FIG. 11 shows an example of an ACKZNACK history according to the third embodiment.
  • FIG. 12 is a block diagram showing an internal configuration of a TPC command selection unit according to the fourth embodiment of the present invention.
  • FIG. 13 is a flowchart showing TPC command selection operation according to the fourth embodiment.
  • FIG. 14 shows an example of a mobile communication system
  • FIG. 15 is a diagram showing an example of an over-down method in transmission power control
  • HSDw Hybrid Automatic Repeat reQuest
  • HSDPA High Speed Downlink Packet Access
  • FIG. 1 is a block diagram showing a main configuration of the base station apparatus according to Embodiment 1 of the present invention.
  • the base station apparatus according to the present embodiment includes an RF (Radio Frequency) reception unit 100, a demodulation unit 110, an error correction decoding unit 120, a channel quality measurement unit 130, and a TPC command generation.
  • Unit 140 ACKZNACK generation unit 150, error correction coding unit 160, modulation unit 170, and RF transmission unit 180.
  • the RF receiving unit 100 receives an uplink packet to which the mobile station apparatus power has also been transmitted via an antenna, and performs predetermined radio reception processing (down-conversion, AZD conversion, etc.) on the received packet.
  • predetermined radio reception processing down-conversion, AZD conversion, etc.
  • Demodulation section 110 demodulates the received packet and outputs it to error correction decoding section 120 and line quality measurement section 130.
  • the error correction decoding unit 120 performs error detection 'error correction using, for example, a CRC (Cyclic Redundancy Check) code on the demodulated received packet, and receives the error from the received packet after error correction. Data is output and the error detection result is output to the ACKZNAC K generation unit 150.
  • CRC Cyclic Redundancy Check
  • Channel quality measurement section 130 measures the uplink channel quality such as SIR (Signal to Interference Ratio) using the demodulated received packet.
  • SIR Signal to Interference Ratio
  • the TPC command generation unit 140 compares the measured line quality measured by the line quality measurement unit 130 with the target line quality that is preliminarily held and generates a TPC command according to the comparison result. To do. Specifically, if the measured line quality does not meet the target line quality, the TPC command generation unit 140 generates a TPC command “Up” instructing an increase in transmission power, while the measured line quality satisfies the target line quality. If exceeded, the TPC command “Down” is generated to instruct a decrease in transmission power.
  • ACKZNACK generation section 150 generates ACK or NACK that is a reception confirmation response according to the error detection result output from error correction decoding section 120. Specifically, as a result of error detection, ACKZ NACK generation unit 150 generates an ACK if there is no error in the received data, and generates a NACK if there is an error in the received data.
  • Error correction coding section 160 performs error correction coding on a transmission signal obtained by mapping transmission data, a TPC command, and ACKZNACK using, for example, a CRC code.
  • Modulation section 170 modulates the transmission signal after error correction coding, and outputs the modulated transmission signal to RF transmission section 180.
  • RF transmission section 180 performs predetermined radio transmission processing (DZA conversion, up-conversion, etc.) on the transmission signal, and transmits it to the mobile station apparatus via the antenna.
  • predetermined radio transmission processing DZA conversion, up-conversion, etc.
  • FIG. 2 is a block diagram showing a main configuration of the mobile station apparatus according to Embodiment 1.
  • mobile station apparatus according to the present embodiment includes RF receiving section 200, demodulating section 210, error correction decoding section 220, data retransmission control section 230, TPC command selection section 240, transmission data notifier.
  • Unit 250 error correction coding unit 260, modulation unit 270, transmission power control unit 280, and RF transmission unit 290.
  • RF receiving section 200 receives a signal, which is also transmitted from the base station apparatus, via an antenna, and performs predetermined radio reception processing (down-conversion, AZD conversion, etc.) on the received signal. Note that the RF receiver 200 receives signals transmitted from a plurality of base station devices during soft handover of the mobile station device.
  • Demodulation section 210 demodulates the received signal and outputs it to error correction decoding section 220 and TPC command selection section 240. Note that the demodulation unit 210 outputs the received signal for each base station device corresponding to each of the plurality of base station devices to the error correction decoding unit 220 and the TPC command selection unit 240 during the soft node or handover of the mobile station device.
  • the error correction decoding unit 220 performs error detection 'error correction using, for example, a CRC code on the demodulated received signal, outputs the received signal power after error correction, and receives the received data.
  • the included ACK / NACK is output to the data retransmission control unit 230 and the TPC command selection unit 240.
  • Error correction decoding section 220 outputs ACKZNACK for each base station apparatus corresponding to each of a plurality of base station apparatuses to data retransmission control section 230 and TPC command selection section 240 during handover of the mobile station apparatus. To do.
  • Data retransmission control section 230 determines whether or not to retransmit the packet according to ACKZNACK output from error correction decoding section 220, and determines whether or not retransmission is performed by transmission data buffer section 25. Notify 0. Specifically, when ACK is output from error correction decoding section 220, data retransmission control section 230 assumes that the packet that has also transmitted the mobile station apparatus power has been transmitted without error to the base station apparatus, and Notify the transmission data buffer unit 250 that the packet is to be transmitted. On the other hand, when only NACK is output from error correction decoding section 220, it is assumed that the transmitted packet is transmitted to all base station apparatuses by mistake, and the transmission data buffer indicates that this packet is retransmitted. Notify Department 250.
  • TPC command selection section 240 extracts the TPC command included in the received signal and outputs it to transmission power control section 280.
  • the TPC command selection unit 240 has a priority that should be preferentially adopted when performing actual transmission power control among TPC commands transmitted by a plurality of base station apparatus powers. Select the largest TPC command based on the ACKZ NACK information. The internal configuration and operation of the TPC command selection unit 240 will be described in detail later.
  • Transmission data buffer section 250 temporarily stores transmission data that has already been transmitted, and outputs the transmission data to error correction coding section 260.
  • the transmission data buffer unit 250 discards the stored transmission data while being notified of the packet retransmission. In this case, the stored transmission data is output again to the error correction code key unit 260.
  • the error correction code encoding unit 260 performs error correction encoding on the transmission data output from the transmission data buffer unit 250 using, for example, a CRC code. Note that the error correction code unit 260 may reduce the possibility that a packet to be retransmitted will be erroneous during transmission by changing the code rate in the case of packet retransmission.
  • Modulation section 270 modulates the transmission data after error correction coding and outputs the modulated transmission data to RF transmission section 290. Note that the modulation unit 270 may reduce the possibility that a packet to be retransmitted will be erroneous during transmission by changing the modulation method in the case of packet retransmission.
  • Transmission power control section 280 determines transmission power according to the content of the TPC command with the highest priority output from TPC command selection section 240, and controls the transmission power of transmission data. Specifically, the transmission power control unit 280 increases the current transmission power when the TPC command is “13 ⁇ 4”, and increases the current transmission power when the TPC command is “Down”. Decrease. In addition, when a plurality of TPC commands with the highest priority are output from the TPC command selection unit 240, the transmission power control unit 280 determines the transmission power by the orb down method. That is, if at least one of the plurality of TPC commands includes “Down”, the transmission power control unit 280 decreases the current transmission power.
  • RF transmission section 290 performs predetermined radio transmission processing (DZA conversion, up-conversion, etc.) on transmission data for which transmission power is controlled, packetizes it, and transmits it to the base station apparatus via the antenna. Send.
  • predetermined radio transmission processing DZA conversion, up-conversion, etc.
  • TPC command selection section 240 of the mobile station apparatus will be described.
  • the TPC command selection unit 240 includes an ACKZNACK determination unit 242 and a TPC command extraction unit 244. These ACKZNACK determination unit 242 and TPC command extraction unit 244 mainly operate when the mobile station apparatus is in soft node over (that is, when signals are received from a plurality of base station apparatuses).
  • ACKZNACK determination section 242 determines whether ACKZNACK for each base station apparatus output from error correction decoding section 220 is the ACK transmitted from each base station apparatus or whether NACK is transmitted. To do. At this time, ACKZNACK determination unit 242 determines the most recently received ACKZNACK. In this way, by determining the latest ACKZNACK, for example, even when the timings of data retransmission control and transmission power control are shifted, ACKZN ACK is reliably used as an indicator of the latest uplink propagation environment. Can be used.
  • the ACKZNACK determination unit 242 determines that the transmission quality of the packet on the uplink is good for the base station apparatus that has transmitted the ACK, and the TPC command of the base station apparatus that has transmitted the ACK. Is the TPC command with the highest priority, and the TPC command extraction unit 244 is instructed to extract this TPC command.
  • TPC command extraction section 244 extracts the TPC command of the base station apparatus instructed to extract from the TPC commands included in the received signal for each base station apparatus, and outputs the extracted TPC command to transmission power control section 280 .
  • ACKZNACK generation section 150 generates an ACK if there is no error in the received packet, and generates a NACK if there is an error in the received packet.
  • the generated ACKZNACK is output to error correction code section 160.
  • channel quality measuring section 130 measures uplink channel quality from the demodulated received packet.
  • the measured measurement line quality is compared with a predetermined target line quality by the TPC command generation unit 140. If the measurement line quality is lower, the TPC command “UPJ is generated, and if the measurement line quality is higher, the TPC command “Down” is generated.
  • the generated TPC command is output to error correction code key section 160.
  • the transmission signal including transmission data, ACK / NACK, and TPC command is subjected to error correction code unit 160 by error correction code unit 160, modulated by modulation unit 170, and RF transmission unit A predetermined radio transmission process is performed by 180 and then transmitted to the mobile station apparatus via the antenna.
  • the mobile station device since the mobile station device is in soft handover, a packet transmitted from one mobile station device is received by a plurality of base station devices. Therefore, in the following explanation, the mobile station device in soft handover is communicating with three base station devices, for example, base station device # 1, base station device # 2, and base station device # 3. Shall. These base station apparatuses # 1 to # 3 respectively generate ACKZNACK and TPC commands by the above-described operation, and transmit them to the mobile station apparatus. At this time, since the uplink propagation environment between the mobile station apparatus and the base station apparatuses # 1 to # 3 is different for each base station apparatus, the base station apparatuses # 1 to # 3 have the same ACKZNACK and It does not necessarily send a TPC command. [0050] Next, an operation in which the mobile station apparatus performs transmission power control by selecting a TPC command under such circumstances will be described.
  • Signals transmitted by base station apparatuses # 1 to # 3 are received by the mobile station apparatus shown in FIG. Specifically, when a signal is received by the RF reception unit 200, a predetermined radio reception process is performed, and then the reception signal corresponding to each of the base station apparatuses # 1 to # 3 is demodulated by the demodulation unit 210. Is done. The demodulated received signal for each base station apparatus is output to error correction decoding section 220 and TPC command extraction section 244 (FIG. 3) of TPC command selection section 240.
  • the demodulated received signal for each base station apparatus is subjected to error detection and error correction by error correction decoding section 220, and received data is output, and ACK or NA CK for each base station apparatus is a data retransmission control section. 230 and the ACKZNACK determination unit 242 of the TPC command selection unit 240. Then, when all the base station apparatus power NACKs are transmitted by the data retransmission control unit 230, the transmission data buffer unit 250 is notified that the packet is to be retransmitted. If ACK is transmitted even from one base station apparatus, the transmission data buffer unit 250 is notified that the next packet will be transmitted.
  • TPC command selection section 240 selects a TPC command to be used for actual transmission power control according to the flow shown in FIG.
  • ACKZNACK determining section 242 determines which of each of base station apparatuses # 1 to # 3 has received a power ACK or NACK (ST1000). At this time, the ACKZNACK determined by the ACKZNACK determination unit 242 is the most recently received ACKZNACK for each base station apparatus. That is, for example, when the ACKZNACK history for each transmission time interval (TTI: Transmission Time Interval) is as shown in FIG. 5, the ACKZNACK determination unit 242 determines whether the ACK or the ACK for the latest TTI # 0 surrounded by the broken line 300 is Judgment is made for NACK. As a result, ACKZNACK that always reflects the latest uplink status can be used to select the TPC command.
  • TTI Transmission Time Interval
  • the uplink propagation environment is better than base station apparatus # 2, and the packets transmitted from the mobile station apparatus are transmitted. It is determined that the packet is transmitted without error. Therefore, by performing transmission power control according to such a TPC command from the base station apparatus, it is considered that the transmission quality of the uplink packet is kept good and the number of retransmissions can be reduced.
  • the ACKZNACK determination unit 242 has the highest priority of the TPC commands from the base station apparatus # 1 and the base station apparatus # 3 that transmitted the ACK among the base station apparatuses # 1 to # 3, It is determined. Further, the ACKZNACK determination unit 242 notifies the TPC command extraction unit 244 of an instruction to extract the TPC command that has also been transmitted from these base station apparatus capabilities. Then, TPC commands of base station apparatus # 1 and base station apparatus # 3 are extracted by TPC command extraction section 244 (ST1100) and output to transmission power control section 280.
  • transmission power control section 280 determines whether or not only one TPC command with the highest priority is extracted (ST1200). As a result, when there is one extracted TPC command, in other words, when ACK is transmitted from only one base station apparatus, transmission power control is performed according to the TPC command of this base station apparatus ( ST1300).
  • the over-down method is applied to the TPC command of these base station devices (ST140 0). That is, if either of the base station apparatus # 1 and the base station apparatus # 3 transmits “Down” as the TPC command !, the transmission power control unit 280 decreases the current transmission power. Also, if both base station apparatus # 1 and base station apparatus # 3 transmit “Upj!” As a TPC command, transmission power control section 280 increases the current transmission power.
  • Transmission data or retransmission data that has passed through transmission data buffer section 250, error correction coding section 260, and modulation section 270 is transmitted from RF transmission section 290 with the transmission power controlled as described above. And transmitted via an antenna.
  • the priority of the TPC command transmitted from the base station apparatus that transmitted the ACK is determined by determining the most recent ACKZNACK transmitted by each of the plurality of base station apparatuses. Since the mobile station device performs actual transmission power control, the transmission quality of uplink packets is more reliably reflected by reflecting the latest uplink propagation environment. TPC commands to be improved can be selected, and as a result, it is possible to reduce retransmission on the uplink and improve sector-one throughput.
  • a feature of Embodiment 2 of the present invention is that the number of ACKs transmitted within a predetermined time is taken as the score of the base station device, and the priority of the TPC command from the base station device that has transmitted the most ACK is maximized.
  • the mobile station apparatus performs transmission power control.
  • the configuration of the base station apparatus according to the present embodiment is the same as that of the base station apparatus (FIG. 1) according to Embodiment 1, and thus the description thereof is omitted.
  • the configuration of the mobile station apparatus according to the present embodiment is the same as that of the mobile station apparatus according to Embodiment 1 (FIG. 2), but only the internal configuration of TPC command selection section 240 is different from Embodiment 1. Is different.
  • TPC command selection section 240 of the mobile station apparatus will be described.
  • the same parts as those in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • TPC command selection section 240 includes buffer section 402, ACK counting section 404, and TPC command extraction section 244. These buffer unit 402, ACK counting unit 404, and TPC command extracting unit 244 operate mainly during the soft handover of the mobile station apparatus.
  • Buffer section 402 temporarily stores ACKZ NACK for each base station apparatus output from error correction decoding section 220. At this time, the notifier unit 402 stores whether ACK or NACK is returned for each base station apparatus and for each TTI.
  • the ACK counting section 404 sets a TTI interval (number of TTIs) for counting ACKs according to the maximum Doppler frequency that is an index of fading fluctuation speed, and the number of ACKs corresponding to this TTI interval. Count.
  • the ACK counting unit 404 is considered to change the propagation environment in a short period of time, and therefore, from the latest ⁇ to the relatively new ⁇ . Set as ⁇ section.
  • the ACK counting unit 404 is considered that the propagation environment does not change so much over a long time. Ward Set as between.
  • ACK counting section 404 determines that the transmission quality of the packet in the uplink is stable and good for the base station apparatus that has transmitted the most ACK in the TTI interval, and the ACK count is the largest.
  • the TPC command of the base station apparatus is regarded as the TPC command having the highest priority, and the TPC command extraction unit 244 is instructed to extract this TPC command.
  • the TPC command selection operation during soft handover of the mobile station apparatus configured as described above will be specifically described with reference to FIG. 7 and FIG.
  • the operations until the TPC command and ACKZN ACK are transmitted from the base station device to the mobile station device and the operations until the mobile station device performs demodulation and error correction of the received signal are performed.
  • the explanation is omitted because it is the same as Form 1.
  • error correction decoding section 220 outputs ACK ZNACK for each base station apparatus to buffer section 402 of TPC command selection section 240.
  • ACK ZNACKs are stored by the buffer unit 402 as a history. Specifically, for example, as shown in FIG. 8, ACKZNACK for each TTI of base station apparatuses # 1 to # 3 is stored.
  • TPC command selection section 240 selects a TPC command to be used for actual transmission power control according to the flow shown in FIG.
  • ACK counting section 404 sets a TTI interval corresponding to the maximum Doppler frequency (ST2000).
  • the TTI interval in this embodiment is the number of TTIs for which ACKs are counted. It is relatively new when the propagation environment changes frequently, only TTI is targeted, and the propagation environment should not change much. It is set to target up to relatively old burial mounds. Therefore, when the maximum Doppler frequency is large, a relatively short ⁇ section is set, and when the maximum Doppler frequency is small, a relatively long ⁇ section is set.
  • ACK counting section 404 the number of ACKs for each base station apparatus in the eaves section Is counted (ST2100) and repeated until counting of ACKs for all base station apparatuses is completed (ST2200).
  • ST2100 the number of ACKs for each base station apparatus in the eaves section
  • ST2200 the number of ACKs for all base station apparatuses is completed.
  • four ⁇ s of TTI # 0 to # 3 surrounded by a broken line are set to ⁇ interval 500, and first, the ACK of base station device # 1 is counted and the result 3 is obtained. The ACK of base station apparatus # 2 is counted to obtain 1, and finally, the ACK of base station apparatus # 3 is counted to obtain 2. The number of these ACKs becomes the score of each base station device.
  • the ACK counting unit 404 determines that the priority of the TPC command from the base station apparatus # 1 that has transmitted the most ACKs in the ⁇ interval 500 among the base station apparatuses # 1 to # 3 is the highest. Is done. Further, the ACK counting unit 404 notifies the TPC command extracting unit 244 of an instruction to extract the TPC command transmitted from the base station apparatus # 1. Then, TPC command extraction section 244 extracts the TPC command of base station apparatus # 1 (ST2300) and outputs it to transmission power control section 280.
  • transmission power control section 280 determines whether or not only one TPC command with the highest priority is extracted (ST2400). As a result, as shown in Fig. 8, the base station device that has transmitted the most ACK is only base station device # 1 (that is, only one TPC command with the highest priority is extracted). Is used to control transmission power by adopting one corresponding TPC command (ST2500) o
  • the TPC commands of these base station apparatuses The orb down method is applied for (ST2600). That is, if any one of the base station apparatuses transmits “Down” as the TPC command, the transmission power control unit 280 decreases the current transmission power. All base station devices are If “Up” is transmitted as a command! //, the transmission power control unit 280 increases the current transmission power.
  • Transmission data or retransmission data that has passed through transmission data buffer section 250, error correction coding section 260, and modulation section 270 is transmitted from RF transmission section 290 with the transmission power controlled as described above. And transmitted via an antenna.
  • the TPC transmitted from the base station apparatus that transmitted the largest number of ACKs for the packets in the long interval set according to the maximum Doppler frequency In order to maximize the command priority, it is possible to reflect whether or not the uplink propagation environment is stable and good in the selection of the TPC command.
  • the ACK for the first transmission packet is counted as one time, while the ACK for the retransmission packet is counted as 0.5 times, and weighting according to the number of retransmissions. It is okay to count ACKs.
  • the ACK for a new TTI may be increased in the TTI interval.
  • the ACK for the most recent TTI is counted as one time, while the ACK for the previous TTI is counted as 0.5 times, and weighting according to the old and new of the corresponding TTI is performed. You can count ACK.
  • a feature of Embodiment 3 of the present invention is that a base station apparatus having the highest score is obtained by assigning numerical values to ACKs and NACKs within a predetermined time and assigning points, and setting the average of the points as the score of the base station apparatus. This is the point that the mobile station device performs transmission power control by maximizing the priority of the TPC command from. Since the configuration of the base station apparatus according to the present embodiment is the same as that of the base station apparatus (FIG. 1) according to Embodiment 1, the description thereof is omitted. The configuration of the mobile station apparatus according to the present embodiment is the same as that of the mobile station apparatus according to Embodiment 1 (FIG. 2), but only the internal configuration of TPC command selection section 240 is different from Embodiment 1. Is different.
  • TPC command selection section 240 of the mobile station apparatus will be described.
  • parts that are the same as those in FIGS. 3 and 6 are given the same reference numerals, and descriptions thereof are omitted.
  • TPC command selection section 240 has buffer section 402, score display section 602, addition average calculation section 604, and TPC command extraction section 244.
  • the These buffer unit 402, scoring unit 602, addition average calculation unit 604, and TPC command extraction unit 244 operate mainly when the mobile station apparatus is soft and over.
  • the score unit 602 sets a target TTI interval in which ACKZNACK is scored according to the maximum Doppler frequency, and assigns a score to ACKZNACK for each base station measure in this TTI interval.
  • the score field 602 sets the latest TT I to a relatively new ⁇ as the ⁇ interval, while if the maximum Doppler frequency is low ⁇
  • the latest TTI to a relatively old TTI is set as the TTI interval.
  • the score key unit 602 assigns a score by giving a numerical value such as 1 point for ACK and 0 point for NACK in the TTI interval, and the like.
  • the number of points is output to the addition average calculation unit 604.
  • Addition average calculating section 604 calculates the addition average of points for each base station apparatus, and determines that the transmission quality of packets on the uplink is stable and good for the base station apparatus having the highest addition average. Then, the TPC command of the base station apparatus having the maximum addition average is set as the TPC command having the highest priority, and the TPC command extraction unit 244 is instructed to extract this TPC command.
  • the TPC command selection operation during soft handover of the mobile station apparatus configured as described above will be specifically described with reference to FIG. 10 and FIG.
  • the TPC command and ACKZ are transmitted from the base station apparatus to the mobile station apparatus. Since the operation until the NACK is transmitted and the operation until the mobile station apparatus performs demodulation and error correction of the received signal are the same as in Embodiment 1, the description thereof is omitted.
  • ACKZNA CK for each base station apparatus is output from error correction decoding section 220 to buffer section 402.
  • These ACKZNAC K are stored by the buffer unit 402 as a history. Specifically, for example, as shown in FIG. 11, ACKZNACK for each TTI of base station apparatuses # 1 to # 3 is stored.
  • TPC command selection section 240 selects a TPC command to be used for actual transmission power control according to the flow shown in FIG.
  • the TTI section corresponding to the maximum Doppler frequency is set by the score display unit 602 (ST3000).
  • the TTI interval in this embodiment is the number of targets for which ACKZNACK is scored.
  • it is set to target relatively old ⁇ TTI. Therefore, when the maximum Doppler frequency is large, a relatively short ⁇ section is set, and when the maximum Doppler frequency is small, a relatively long TTI section is set.
  • ACKZNAC K for each base station apparatus in the TTI section is scored by score key unit 602 (ST3100).
  • ACK is 1 point and NACK is 0 point.
  • the score for each base station apparatus is output to the addition average calculation section 604, and the addition average calculation section 604 calculates the average of the scores for each base station apparatus (ST3 200), and adds the scores for all base station apparatuses. The process is repeated until the average is calculated (ST3300).
  • the denominator when calculating the addition average is equal to U in all base station apparatuses # 1 to # 3. If the TTI interval in each base station device differs according to the maximum Doppler frequency, the denominator for the arithmetic mean calculation also differs. In this way, when the TTI interval differs depending on the base station device, the transmission quality of the uplink cannot be compared only with the number of ACKs in the TTI interval, but according to this embodiment, the base station devices # 1 to ## are simply compared. By comparing the three scores, the transmission quality of the uplink can be compared.
  • the uplink propagation ring is higher than other base station apparatuses # 2 and # 3. It is determined that the boundary is stable and good, and the packet transmitted from the mobile station device is transmitted without error. Therefore, by performing transmission power control according to such a TPC command from the base station apparatus, it is considered that the transmission quality of uplink packets can be kept good and the number of retransmissions can be reduced.
  • the addition average calculation unit 604 has the highest addition average of points in the TTI section 700 among the base station apparatuses # 1 to # 3, and the highest priority of the TPC command from the base station apparatus # 1. It is determined that Furthermore, the addition average calculation unit 604 notifies the TPC command extraction unit 244 that the TPC command to which the base station apparatus # 1 power has also been transmitted is extracted. Then, TPC command extraction section 244 extracts the TPC command of base station apparatus # 1 (ST3400) and outputs it to transmission power control section 280.
  • transmission power control section 280 determines whether only one TPC command with the highest priority is extracted (ST3500). As a result, as shown in Fig. 11, when only the base station device # 1 is the base station device with the highest point average (that is, when only one TPC command with the highest priority is extracted) ), One corresponding TPC command is adopted and transmission power control is performed (ST3600) o
  • the TPC commands of these base station apparatuses The over-down method is applied to the command (ST3700). That is, If one base station device transmits “Down” as a TPC command, the transmission power control unit 280 decreases the current transmission power. Also, if all the base station devices transmit “Up” as a TPC command! / ⁇ , transmission power control section 280 increases the current transmission power.
  • Transmission data or retransmission data that has passed through transmission data buffer section 250, error correction coding section 260, and modulation section 270 is transmitted from RF transmission section 290 with the transmission power controlled as described above. And transmitted via an antenna.
  • the base station apparatus power that gives the score to the ACKZNACK for the packet in the TTI interval set according to the maximum Doppler frequency and has the maximum sum of the scores.
  • the selection of the TPC command can reflect whether the uplink propagation environment is stable and good.
  • the calculated average for each base station apparatus is compared with a predetermined threshold, and the over-down method is applied to the base station apparatus whose average is equal to or greater than the predetermined threshold. You may make it do.
  • the ratio of ACK and NACK in the TTI section is considered. For this reason, it is possible to set an absolute reference for the ratio of ACK and NACK by performing threshold judgment on the average of points, and to reliably eliminate base station apparatuses with poor uplink transmission quality. it can. Therefore, by performing the threshold determination, it is possible to reflect the quality of the transmission quality of the absolute uplink rather than only the relative comparison between the base station apparatuses.
  • Embodiment 4 of the present invention is that a numerical value is assigned to ACK and NACK newly transmitted from the base station device after multiplying the score for each base station device calculated in the past by the forgetting factor.
  • the result of adding the points is the score of the base station device, and the mobile station device performs transmission power control by maximizing the priority of the TPC command from the base station device with the highest score.
  • the configuration of the base station apparatus according to the present embodiment is the same as that of the base station apparatus according to Embodiment 1 (Fig. 1). Since this is the same, the description thereof is omitted.
  • the configuration of the mobile station apparatus according to the present embodiment is the same as that of the mobile station apparatus according to Embodiment 1 (FIG. 2), but only the internal configuration of TPC command selection section 240 is different from Embodiment 1. Is different.
  • TPC command selection section 240 of the mobile station apparatus will be described.
  • the same parts as those in FIGS. 3 and 6 are denoted by the same reference numerals, and the description thereof is omitted.
  • TPC command selection section 240 has buffer section 402, weighting point count section 802, and TPC command extraction section 244.
  • the buffer unit 402, the weighted score unit 802, and the TPC command extraction unit 244 mainly operate during the soft handover of the mobile station apparatus.
  • the weighting score field 802 determines the forgetting factor for the previously calculated score according to the maximum Doppler frequency, and the previous score obtained by multiplying the score given to a new ACK or NACK by the forgetting factor. Add this to the current score.
  • the weighting score ⁇ part 802 multiplies the previous score by a forgetting factor with a relatively small weight of the previous score, while the maximum Doppler frequency is If it is small, the previous score is multiplied by the forgetting factor that makes the weight of the previous score relatively large.
  • the weighted score field unit 802 adds the previous score multiplied by the forgetting factor to the score corresponding to the ACKZNACK transmitted from the base station apparatus after the previous score calculation (for example, ACK is 1). Points, NACK is 0 points), and the current score is calculated. Further, the weighting score ⁇ part 802 determines that the transmission quality of the packet on the uplink is stable and good for the base station apparatus with the highest calculated score, and the highest score is obtained this time.
  • the TPC command of the base station apparatus is set as the TPC command having the highest priority, and the TPC command extraction unit 244 is instructed to extract this TPC command.
  • the TPC command selection operation during soft handover of the mobile station apparatus configured as described above will be described with reference to FIG.
  • ACKZNA CK for each base station apparatus is output from error correction decoding section 220 to buffer section 402.
  • These ACKZNAC K are stored by the buffer unit 402 as a history.
  • TPC command selection section 240 selects a TPC command employed in actual transmission power control according to the flow shown in FIG.
  • the weighted score field 802 calculates a weighted score for each base station apparatus (ST4000). Specifically, first, forgetting coefficient corresponding to the maximum Doppler frequency is determined by weighting point number section 802, and the previously calculated score is multiplied by forgetting coefficient.
  • the forgetting factor is determined to be a value that relatively reduces the weight of the previous score when the propagation environment changes frequently, and is determined to be a value that relatively increases the weight of the previous score when the propagation environment does not change much. The Accordingly, when the maximum Doppler frequency is large, a relatively small forgetting factor is determined, and when the maximum Doppler frequency is small, a relatively large forgetting factor is determined.
  • a score is given to a new ACKZNACK transmitted from the base station apparatus after the previous score calculation.
  • Points are assigned to ACKZNACK by, for example, numerical values such that ACK is 1 point and NACK is 0 point.
  • the weighted score field 802 adds the new ACKZNACK score to the previous score after multiplying by the forgetting factor, and calculates the current score. Note that the weighting score field 802 sets the forgetting factor to 0 and does not consider the previous score when calculating the first score. In this way, the weighted score section 802 calculates a score that is time-weighted for each base station apparatus, and the process is repeated until the current score is calculated for all base station apparatuses (ST4100). ).
  • the uplink propagation environment is good even if the situation up to the previous score is taken into consideration, and the base station apparatus is transmitted from the mobile station apparatus. It is determined that the received packet is transmitted without error. Therefore, such base station equipment By performing transmit power control according to the TPC command from the device, it is considered that the transmission quality of uplink packets can be kept good and the number of retransmissions can be reduced.
  • the weighting score field 802 determines that the priority of the TPC command from the base station apparatus with the highest score this time is the highest. Further, the weighting point number section 802 notifies the TPC command extraction section 244 of an instruction to extract the TPC command with the highest priority. Then, the TPC command notified from weighting point number input section 802 is extracted by TPC command extraction section 244 (ST4200) and output to transmission power control section 280.
  • transmission power control section 280 determines whether only one TPC command with the highest priority is extracted (ST4300). As a result, when there is only one base station device with the highest score this time (that is, when only one TPC command with the highest priority is extracted), the corresponding one TPC command is adopted. Then, transmission power control is performed (ST4400).
  • the transmission power control unit 280 decreases the current transmission power. Further, if all the base station apparatuses transmit “Upj! / Tup” as the TPC command, the transmission power control unit 280 increases the current transmission power.
  • Transmission data or retransmission data that has passed through transmission data buffer section 250, error correction encoding section 260, and modulation section 270 is transmitted from RF transmission section 290 with the transmission power controlled as described above. And transmitted via an antenna.
  • the previous score is multiplied by the forgetting factor determined according to the maximum Doppler frequency, and a new ACKZ NACK score is added to the previous score after the forgetting factor multiplication. Is added to calculate the current score. Base station equipment with the highest score this time In order to maximize the priority of the transmitted TPC command, it is necessary to select the TPC command to determine whether the uplink propagation environment is stable and good. To reflect Togashi.
  • the maximum Doppler frequency is used for setting the TTI interval and determining the forgetting factor, but each base station apparatus measures the maximum Doppler frequency in the uplink. However, it is sufficient to notify the mobile station device.
  • the TTI section set according to the maximum Doppler frequency is common to all base station apparatuses # 1 to # 3. Therefore, different TTI intervals may be set for each base station apparatus # 1 to # 3.
  • the forgetting factor in Embodiment 4 may be different for each base station apparatus.
  • the ACK score for a packet transmitted for the first time may be increased, and the ACK score for a retransmitted packet may be decreased. Even if the ACK is the same, the ACK immediately after the NACK is transmitted means that it is an ACK for the retransmitted packet, and the fact that retransmission has occurred means that the uplink transmission quality is not good. Become. Therefore, an ACK transmitted continuously twice or more is determined to be an ACK for the first transmission packet, and by assigning a high score to such an ACK, the uplink propagation environment can be more accurately determined. Can be reflected.
  • the score may be inclined according to the number of consecutive NACKs before ACK. That is, for example, if there is only one NACK before ACK, it means that retransmission has occurred only once, so a relatively high score is given, and if NACK power is consecutive ⁇ times before ACK Since the retransmission occurred twice, a relatively low score may be given.
  • the mobile station apparatus includes a reception means for receiving a reception confirmation response and transmission power control command for an uplink signal from a plurality of base station apparatuses, and a plurality of received receptions.
  • a selection unit that selects a transmission power control command having the highest priority among a plurality of received transmission power control commands using an acknowledgment; a control unit that controls transmission power according to the selected transmission power control command; The structure which has is taken.
  • the reception confirmation response received from each of the plurality of base station devices is used to select and transmit the TPC command corresponding to each base station device with the highest priority. Perform power control.
  • the information on whether or not the signal transmitted through the uplink is received by the base station apparatus without error is reflected in the selection of the TPC command, and the transmission quality of the uplink bucket is more reliably improved.
  • a TPC command can be selected, and as a result, it is possible to reduce retransmission in the uplink and improve sector-one throughput.
  • the mobile station apparatus is the mobile station apparatus according to the first aspect, wherein the selection means is that the reception confirmation response for each base station apparatus received most recently indicates successful reception. Or a NACK indicating reception failure, and an extraction unit that extracts a transmission power control command transmitted from the base station apparatus whose reception confirmation response is ACK as a result of the determination. Take the configuration.
  • the selection means uses transmission acknowledgments received in the past to transmit power with the highest priority.
  • the control command is selected.
  • the TPC command since the TPC command is selected using the reception confirmation response received in the past, the TPC command having the base station apparatus power with a stable uplink transmission quality over a long period is selected. be able to.
  • the selection unit reflects a past reception confirmation response in selection of a transmission power control command according to a maximum Doppler frequency. The structure to do is taken.
  • the selecting means includes a buffer means for storing a history of reception confirmation responses for each received base station apparatus, It is configured to include a digitizing means for digitizing the received acknowledgment response to obtain a score for each base station apparatus, and a base station apparatus power having the highest score, and an extracting means for extracting the transmitted transmission power control command. .
  • the score for each base station apparatus is determined by numerically entering ACK and NACK, and the base station apparatus with the highest score is transmitted. Extracted TPC commands. As a result, past acknowledgments can be reliably reflected in the selection of the TPC command, and processing can be facilitated by the numerical values of ACK and NACK.
  • the mobile station apparatus is the base station apparatus according to the fifth aspect, wherein the numerical value calculating means counts the number of ACKs in a reception confirmation response within a predetermined interval. A configuration having a counting unit for each score is adopted.
  • the numerical value calculating means assigns a score to a reception confirmation response within a predetermined interval.
  • a calculation unit that calculates an average of points for each base station device within a predetermined section and obtains a score for each base station device.
  • the numerical value means is newly received after weighting the score for each previous base station apparatus.
  • Receive A configuration having a weighted scoring unit that calculates the score for each base station device by adding the points given to the confirmation response is adopted.
  • the weight of the previous score for each base station apparatus is weighted, and the new reception confirmation response score is added to obtain the current score. Therefore, it is possible to compare the transmission quality of the uplink, and to select the TPC command that has the capability of the base station apparatus with good uplink transmission quality more reliably.
  • the mobile station apparatus is the mobile station apparatus according to the eighth aspect, wherein the weighted point number field is weighted to the score for each previous base station apparatus according to the maximum Doppler frequency.
  • Adopt a configuration to attach.
  • the forgetting factor can be determined in consideration of the speed of fading fluctuation, and the uplink channel can be determined. Long-term transmission quality can be more accurately reflected in TPC command selection.
  • the digitizing means sets the ACK for the first transmitted signal and the ACK for the retransmitted signal to different values.
  • the control means transmits the transmission power to decrease the transmission power when a plurality of transmission power control commands are selected. If at least one control command is selected, the transmission power is reduced.
  • any one of the plurality of TPC commands is to reduce the transmission power, the transmission power is reduced, so that an increase in interference in the entire system can be prevented. , Subscriber capacity can be increased.
  • An uplink transmission power control method is provided for uplink signals.
  • a plurality of base station apparatus receiving the reception confirmation response and the transmission power control command to be transmitted, and the transmission having the highest priority among the plurality of received transmission power control commands by using the plurality of reception confirmation responses received.
  • the method includes a step of selecting a power control command and a step of controlling transmission power in accordance with the selected transmission power control command.
  • the reception confirmation response received by each of the plurality of base station devices is used for V, and the TPC command corresponding to each base station device is selected and transmitted with the highest priority. Perform power control. For this reason, the information on whether or not the signal transmitted through the uplink is received by the base station apparatus without error is reflected in the selection of the TPC command, and the transmission quality of the uplink bucket is more reliably improved.
  • a TPC command can be selected, and as a result, retransmission on the uplink can be reduced and sector-one throughput can be improved.
  • the mobile station apparatus and uplink transmission power control method according to the present invention can select a TPC command that more reliably improves the transmission quality of the uplink bucket, and as a result, perform retransmission on the uplink. It can be reduced to improve the sector-by-sector throughput. For example, it is useful as a mobile station apparatus that executes soft handover when moving between cells and an uplink transmission power control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 上り回線のパケットの伝送品質をより確実に改善するTPCコマンドを選択し、結果として、上り回線における再送を低減してセクタースループットを向上させる移動局装置。この移動局装置では、復調部(210)は、基地局装置ごとの受信信号を誤り訂正復号部(220)およびTPCコマンド選択部(240)へ出力する。誤り訂正復号部(220)は、基地局装置ごとのACK/NACKをデータ再送制御部(230)およびTPCコマンド選択部(240)へ出力する。TPCコマンド選択部(240)は、優先度が最大のTPCコマンドをACK/NACKの情報に基づいて選択する。送信電力制御部(280)は、優先度が最大のTPCコマンドの内容に応じて送信電力を決定する。また、送信電力制御部(280)は、TPCコマンド選択部(240)から複数の優先度が最大のTPCコマンドが出力された場合、オアオブダウン方式によって送信電力を決定する。

Description

明 細 書
移動局装置および上り回線送信電力制御方法
技術分野
[0001] 本発明は、移動局装置および上り回線送信電力制御方法に関し、特に、セル間を 移動する際にソフトハンドオーバを実行する移動局装置および上り回線送信電力制 御方法に関する。
背景技術
[0002] 近年、 W—CDMA (Wideband- Code Division Multiple Access)における上り回線 のパケット通信を高速化する伝送規格として、 HSUPA(High Speed Uplink Packet A ccess)が検討されている。 HSUPAにおいては、上り回線パケットを伝送する専用の チャネルとして E— DCH (Enhanced- Dedicated CHannel)が設けられる。
[0003] 移動局装置は、この E— DCHにて基地局装置へパケットを送信する力 一般に、 移動局装置と基地局装置の距離に応じて移動局装置のパケット送信に適正な送信 電力が異なるため、 E - DCHにお 、ても従来の上り回線と同様に送信電力制御 (T PC : Transmission Power Control)が行われる。送信電力制御方法の一例としては、 例えばクローズドループ型の送信電力制御がある。上り回線におけるクローズドルー プ型の送信電力制御では、基地局装置は、移動局装置力 の受信信号を用いて回 線品質を測定し、測定された回線品質を目標とする回線品質と比較し、測定回線品 質が目標回線品質に近づくように送信電力の増減を指示する TPCコマンドを移動局 装置へ送信する。そして、移動局装置は、基地局装置から送信された TPCコマンド に応じて送信電力を増減する。
[0004] ところで、移動局装置は、基地局装置力カバーするセル間を移動する際に、ソフト ハンドオーバを行って複数の基地局装置と通信を行うことがある。すなわち、例えば 図 14に示すように、移動局装置 Mがセル C1とセル C2との境界付近に位置する際、 移動局装置 Mは、セル C1をカバーする基地局装置 B1およびセル C2をカバーする 基地局装置 B2の双方と通信する。このとき、上述したクローズドループ型の送信電 力制御が行われていると、移動局装置 Mは、基地局装置 B1および基地局装置 B2の 双方から TPCコマンドを受信することになる。このような場合、それぞれのセルにおけ る伝搬環境の差によって、基地局装置 B1および基地局装置 B2からそれぞれ送信さ れる TPCコマンドの内容が相反することがある。
[0005] そこで、例えば特許文献 1に開示された技術では、ソフトハンドオーバ中に複数の 基地局装置から TPCコマンドが送信された場合、少なくとも 1つの基地局装置が送信 電力の減少を指示すれば、移動局装置はその基地局装置の TPCコマンドを選択し て送信電力を減少させている。すなわち、上述した例では、図 15に示すように、基地 局装置 B1または基地局装置 B2の少なくともいずれか一方が送信電力の減少を指示 する TPCコマンド「Down」を送信した場合、移動局装置 Mの送信電力が減少する。 そして、基地局装置 B1および基地局装置 B2の双方が送信電力の増加を指示する T PCコマンド「Up」を送信した場合にのみ、移動局装置 Mの送信電力が増加する。
[0006] このように、複数の基地局装置から TPCコマンドが送信された場合、少なくとも 1つ の基地局装置から「Down」が送信されれば、移動局装置がその基地局装置の TPC コマンドを選択して送信電力を減少させる方式を、オアォブダウン(or of down)方式 と呼ぶ。オアォブダウン方式によれば、移動局装置が通信相手のいずれかの基地局 装置 (すなわち「Down」を送信した基地局装置)にとつて過剰な送信電力を有して!/、 るにも拘わらず、さらに送信電力を増カロさせることがないため、システム全体における 干渉の増大を防止することができるとともに、加入者容量を増カロさせることができる。
[0007] また、特許文献 2においては、移動局装置が下り回線の回線品質を測定し、回線品 質が劣悪な下り回線で伝送された TPCコマンドを無視した上でオアォブダウン方式 を適用することが開示されている。
特許文献 1 :特開平 8— 18503号公報
特許文献 2:特開平 9 - 312609号公報
発明の開示
発明が解決しょうとする課題
[0008] しかしながら、上述した従来の技術においては、ソフトハンドオーバ中に伝送される 複数の TPCコマンドから、移動局装置が実際の送信電力制御の際に採用する TPC コマンドを選択するのに、上り回線の伝搬環境が十分に考慮されて 、な 、と 、う問題 がある。すなわち、上記従来の技術においては、上り回線の回線品質のみが反映さ れた TPCコマンドの内容や TPCコマンドが伝送される下り回線の回線品質に基づい て、実際の送信電力制御に用いられる TPCコマンドが選択される。
[0009] 基地局装置が送信する TPCコマンドは、上り回線の回線品質を測定して生成され るものの、測定回線品質と基地局装置によってあらかじめ保持されている所定の目標 回線品質との比較結果を反映しているのみであって、上り回線のパケットの伝送品質 を直接的に反映したものではない。したがって、 TPCコマンドの内容に基づくオアォ ブダウン方式のみでは、必ずしも上り回線のパケットの伝送品質が改善されるとは限 らない。
[0010] 本発明の目的は、上り回線のパケットの伝送品質をより確実に改善する TPCコマン ドを選択することができ、結果として、上り回線における再送を低減してセクタースル 一プットを向上させることができる移動局装置および上り回線送信電力制御方法を提 供することである。
課題を解決するための手段
[0011] 本発明に係る移動局装置は、上り回線の信号に対する受信確認応答および送信 電力制御コマンドを複数の基地局装置から受信する受信手段と、受信された複数の 受信確認応答を用いて、受信された複数の送信電力制御コマンドのうち優先度が最 大の送信電力制御コマンドを選択する選択手段と、選択された送信電力制御コマン ドに従って送信電力を制御する制御手段と、を有する構成を採る。
[0012] 本発明に係る上り回線送信電力制御方法は、上り回線の信号に対する受信確認 応答および送信電力制御コマンドを複数の基地局装置力 受信するステップと、受 信された複数の受信確認応答を用いて、受信された複数の送信電力制御コマンドの うち優先度が最大の送信電力制御コマンドを選択するステップと、選択された送信電 力制御コマンドに従って送信電力を制御するステップと、を有するようにした。
発明の効果
[0013] 本発明によれば、上り回線のパケットの伝送品質をより確実に改善する TPCコマン ドを選択することができ、結果として、上り回線における再送を低減してセクタースル 一プットを向上させることができる。 図面の簡単な説明
[0014] [図 1]本発明の実施の形態 1に係る基地局装置の要部構成を示すブロック図
[図 2]実施の形態 1に係る移動局装置の要部構成を示すブロック図
[図 3]実施の形態 1に係る TPCコマンド選択部の内部構成を示すブロック図
[図 4]実施の形態 1に係る TPCコマンド選択動作を示すフロー図
[図 5]実施の形態 1に係る ACKZNACKの履歴の一例を示す図
[図 6]本発明の実施の形態 2に係る TPCコマンド選択部の内部構成を示すブロック図 [図 7]実施の形態 2に係る TPCコマンド選択動作を示すフロー図
[図 8]実施の形態 2に係る ACKZNACKの履歴の一例を示す図
[図 9]本発明の実施の形態 3に係る TPCコマンド選択部の内部構成を示すブロック図 [図 10]実施の形態 3に係る TPCコマンド選択動作を示すフロー図
[図 11]実施の形態 3に係る ACKZNACKの履歴の一例を示す図
[図 12]本発明の実施の形態 4に係る TPCコマンド選択部の内部構成を示すブロック 図
[図 13]実施の形態 4に係る TPCコマンド選択動作を示すフロー図
[図 14]移動体通信システムの一例を示す図
[図 15]送信電力制御におけるオアォブダウン方式の一例を示す図
発明を実施するための最良の形態
[0015] 本発明者らは、 HSUPAにおける上り回線の再送制御として、 HSDPA (High Spee d Downlink Pac et Access)と に HARw (Hybrid Automatic Repeat reQuest:ノヽ イブリツド自動再送制御)が有効であることに着目した。さらに、 HSUPAにおける HA RQでは、上り回線を伝送されたパケットの受信確認応答である ACKZNACKを基 地局装置が移動局装置へ返送することに着目した。
[0016] そして、本発明者らは、基地局装置が移動局装置へ返送する ACKZNACKは、 直接的に上り回線のパケットの伝送品質の指標となることを見出すとともに、上り回線 のパケットの伝送品質が良好である基地局装置力 の TPCコマンドに従った送信電 力制御により、パケット再送の低減が可能であることを見出し、本発明をするに至った [0017] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[0018] (実施の形態 1)
図 1は、本発明の実施の形態 1に係る基地局装置の要部構成を示すブロック図で ある。同図に示すように、本実施の形態に係る基地局装置は、 RF (Radio Frequency :無線周波数)受信部 100、復調部 110、誤り訂正復号部 120、回線品質測定部 13 0、 TPCコマンド生成部 140、 ACKZNACK生成部 150、誤り訂正符号化部 160、 変調部 170、および RF送信部 180を有して 、る。
[0019] RF受信部 100は、移動局装置力も送信された上り回線のパケットをアンテナを介し て受信し、受信パケットに対して所定の無線受信処理 (ダウンコンバート、 AZD変換 など)を施す。
[0020] 復調部 110は、受信パケットを復調し、誤り訂正復号部 120および回線品質測定部 130へ出力する。
[0021] 誤り訂正復号部 120は、復調後の受信パケットに対して、例えば CRC (Cyclic Redu ndancy Check:巡回冗長検査)符号などによる誤り検出'誤り訂正を行い、誤り訂正 後の受信パケットから受信データを出力するとともに、誤り検出結果を ACKZNAC K生成部 150へ出力する。
[0022] 回線品質測定部 130は、復調後の受信パケットを用いて、例えば SIR (Signal to Int erference Ratio:信号対干渉比)などの上り回線の回線品質を測定する。
[0023] TPCコマンド生成部 140は、回線品質測定部 130によって測定された測定回線品 質とあら力じめ保持している目標回線品質とを比較し、比較結果に応じた TPCコマン ドを生成する。具体的には、 TPCコマンド生成部 140は、測定回線品質が目標回線 品質に満たなければ、送信電力の増加を指示する TPCコマンド「Up」を生成する一 方、測定回線品質が目標回線品質を超過していれば、送信電力の減少を指示する TPCコマンド「Down」を生成する。
[0024] ACKZNACK生成部 150は、誤り訂正復号部 120から出力される誤り検出結果 に応じて受信確認応答である ACKまたは NACKを生成する。具体的には、 ACKZ NACK生成部 150は、誤り検出の結果、受信データに誤りがなければ ACKを生成 し、受信データに誤りがあれば NACKを生成する。 [0025] 誤り訂正符号化部 160は、送信データ、 TPCコマンド、および ACKZNACKがマ ッビングされて得られた送信信号に対して、例えば CRC符号などを用いて誤り訂正 符号化する。
[0026] 変調部 170は、誤り訂正符号化後の送信信号を変調し、 RF送信部 180へ出力す る。
[0027] RF送信部 180は、送信信号に対して所定の無線送信処理 (DZA変換、アップコ ンバートなど)を施し、アンテナを介して移動局装置へ送信する。
[0028] 図 2は、実施の形態 1に係る移動局装置の要部構成を示すブロック図である。同図 に示すように、本実施の形態に係る移動局装置は、 RF受信部 200、復調部 210、誤 り訂正復号部 220、データ再送制御部 230、 TPCコマンド選択部 240、送信データ ノ ッファ部 250、誤り訂正符号化部 260、変調部 270、送信電力制御部 280、および RF送信部 290を有して!/、る。
[0029] RF受信部 200は、基地局装置力も送信された信号をアンテナを介して受信し、受 信信号に対して所定の無線受信処理 (ダウンコンバート、 AZD変換など)を施す。な お、 RF受信部 200は、移動局装置のソフトハンドオーバ中には、複数の基地局装置 から送信された信号を受信する。
[0030] 復調部 210は、受信信号を復調し、誤り訂正復号部 220および TPCコマンド選択 部 240へ出力する。なお、復調部 210は、移動局装置のソフトノ、ンドオーバ中には、 複数の基地局装置それぞれに対応する基地局装置ごとの受信信号を誤り訂正復号 部 220および TPCコマンド選択部 240へ出力する。
[0031] 誤り訂正復号部 220は、復調後の受信信号に対して、例えば CRC符号などによる 誤り検出'誤り訂正を行い、誤り訂正後の受信信号力 受信データを出力するともに 、受信データ中に含まれる ACK/NACKをデータ再送制御部 230および TPCコマ ンド選択部 240へ出力する。なお、誤り訂正復号部 220は、移動局装置のハンドォ ーバ中には、複数の基地局装置それぞれに対応する基地局装置ごとの ACKZNA CKをデータ再送制御部 230および TPCコマンド選択部 240へ出力する。
[0032] データ再送制御部 230は、誤り訂正復号部 220から出力される ACKZNACKに 従って、パケットを再送するか否かを決定し、再送の有無を送信データバッファ部 25 0へ通知する。具体的には、データ再送制御部 230は、誤り訂正復号部 220から AC Kが出力された場合は、移動局装置力も送信したパケットが基地局装置へ誤らずに 伝送されたものとして、次のパケットを送信する旨を送信データバッファ部 250へ通 知する。一方、誤り訂正復号部 220から NACKのみが出力された場合は、移動局装 置力 送信したパケットがすべての基地局装置へ誤って伝送されたものとして、この パケットを再送する旨を送信データバッファ部 250へ通知する。
[0033] TPCコマンド選択部 240は、受信信号に含まれる TPCコマンドを抽出して、送信電 力制御部 280へ出力する。また、移動局装置のソフトハンドオーバ中、 TPCコマンド 選択部 240は、複数の基地局装置力 送信される TPCコマンドのうち、実際の送信 電力制御を行う際に優先して採用すべき、優先度が最大の TPCコマンドを ACKZ NACKの情報に基づ 、て選択する。 TPCコマンド選択部 240の内部構成および動 作は、後に詳述する。
[0034] 送信データバッファ部 250は、既に送信した送信データを一時的に記憶するととも に、送信データを誤り訂正符号化部 260へ出力する。また、送信データバッファ部 25 0は、データ再送制御部 230から次のパケットを送信する旨が通知された場合は、記 憶している送信データを破棄する一方、パケット再送の旨が通知された場合は、記憶 している送信データを再度誤り訂正符号ィ匕部 260へ出力する。
[0035] 誤り訂正符号ィ匕部 260は、送信データバッファ部 250から出力された送信データに 対して、例えば CRC符号などを用いて誤り訂正符号ィ匕する。なお、誤り訂正符号ィ匕 部 260は、パケット再送の場合は符号ィ匕率を変更するなどして、再送するパケットが 伝送中に誤る可能性を低減するようにしても良 、。
[0036] 変調部 270は、誤り訂正符号化後の送信データを変調し、 RF送信部 290へ出力 する。なお、変調部 270は、パケット再送の場合は変調方式を変更するなどして、再 送するパケットが伝送中に誤る可能性を低減するようにしても良 、。
[0037] 送信電力制御部 280は、 TPCコマンド選択部 240から出力される優先度が最大の TPCコマンドの内容に応じて送信電力を決定し、送信データの送信電力を制御する 。具体的には、送信電力制御部 280は、 TPCコマンドが「1¾」であった場合は現在 の送信電力を増加させ、 TPCコマンドが「Down」であった場合は現在の送信電力を 減少させる。また、送信電力制御部 280は、 TPCコマンド選択部 240から複数の優 先度が最大の TPCコマンドが出力された場合、オアォブダウン方式によって送信電 力を決定する。すなわち、送信電力制御部 280は、複数の TPCコマンドに 1つでも「 Down]が含まれて 、た場合は現在の送信電力を減少させる。
[0038] RF送信部 290は、送信電力が制御された送信データに対して所定の無線送信処 理 (DZA変換、アップコンバートなど)を施し、パケットィ匕した上でアンテナを介して 基地局装置へ送信する。
[0039] 次に、図 3を参照して、本実施の形態に係る移動局装置の TPCコマンド選択部 24 0の内部構成について説明する。
[0040] 図 3に示すように、 TPCコマンド選択部 240は、 ACKZNACK判定部242ぉょび TPCコマンド抽出部 244を有して!/、る。これらの ACKZNACK判定部 242および T PCコマンド抽出部 244は、主に移動局装置がソフトノヽンドオーバ中(すなわち、複数 の基地局装置から信号を受信する場合)に動作する。
[0041] ACKZNACK判定部 242は、誤り訂正復号部 220から出力された基地局装置ご との ACKZNACKについて、それぞれの基地局装置から ACKが送信された力、ま たは NACKが送信されたかを判定する。このとき、 ACKZNACK判定部 242は、最 も新しく受信された ACKZNACKを判定する。このように、直近の ACKZNACKを 判定することにより、例えばデータ再送制御と送信電力制御の処理のタイミングがず れているような場合でも、確実に最新の上り回線の伝搬環境の指標として ACKZN ACKを用いることができる。
[0042] そして、 ACKZNACK判定部 242は、 ACKを送信した基地局装置につ!、ては、 上り回線におけるパケットの伝送品質が良好であると判断し、 ACKを送信した基地 局装置の TPCコマンドを優先度が最大の TPCコマンドとして、この TPCコマンドの抽 出を TPCコマンド抽出部 244に指示する。
[0043] TPCコマンド抽出部 244は、基地局装置ごとの受信信号に含まれる TPCコマンド のうち、抽出を指示された基地局装置の TPCコマンドを抽出して、送信電力制御部 2 80へ出力する。
[0044] 次!、で、上述のように構成された移動局装置のソフトハンドオーバ中における TPC コマンド選択動作について、図 4および図 5を参照して具体的に説明する。
[0045] まず、基地局装置から移動局装置へ TPCコマンドおよび ACKZNACKが送信さ れるまでの動作につ!、て説明する。
[0046] 図 1に示した基地局装置において、移動局装置力 送信されたパケットが RF受信 部 100によって受信されると、所定の無線受信処理が行われた後、復調部 110によ つて復調される。復調された受信パケットは、誤り訂正復号部 120によって誤り検出' 誤り訂正され、受信データが出力されるとともに、誤り検出結果が ACKZNACK生 成部 150へ出力される。そして、 ACKZNACK生成部 150によって、受信パケット に誤りがなければ ACKが生成され、受信パケットに誤りがあれば NACKが生成され る。生成された ACKZNACKは、誤り訂正符号ィ匕部 160へ出力される。
[0047] 一方、回線品質測定部 130によって、復調された受信パケットから上り回線の回線 品質が測定される。測定された測定回線品質は、 TPCコマンド生成部 140によって 所定の目標回線品質と比較され、測定回線品質の方が小さければ TPCコマンド「U PJが生成され、測定回線品質の方が大きければ TPCコマンド「Down」が生成される 。生成された TPCコマンドは、誤り訂正符号ィ匕部 160へ出力される。
[0048] そして、送信データ、 ACK/NACK,および TPCコマンドからなる送信信号は、誤 り訂正符号ィ匕部 160によって誤り訂正符号ィ匕が施され、変調部 170によって変調さ れ、 RF送信部 180によって所定の無線送信処理が行われた上で、アンテナを介して 移動局装置へ送信される。
[0049] ここでは、移動局装置がソフトハンドオーバ中であるため、 1つの移動局装置から送 信されたパケットが複数の基地局装置によって受信される。そこで、以下の説明にお いては、ソフトハンドオーバ中の移動局装置が、例えば基地局装置 # 1、基地局装置 # 2、および基地局装置 # 3の 3つの基地局装置と通信を行っているものとする。これ らの基地局装置 # 1〜 # 3は、上述の動作によってそれぞれ ACKZNACKおよび T PCコマンドを生成し、移動局装置へ送信する。このとき、移動局装置と基地局装置 # 1〜# 3との間の上り回線の伝搬環境は、基地局装置ごとに異なっているため、基 地局装置 # 1〜 # 3が同一の ACKZNACKおよび TPCコマンドを送信するとは限 らない。 [0050] 次に、このような状況の下で、移動局装置が TPCコマンドを選択して送信電力制御 を行う動作について説明する。
[0051] 基地局装置 # 1〜# 3によって送信された信号は、図 2に示す移動局装置によって 受信される。具体的には、 RF受信部 200によって信号が受信されると、所定の無線 受信処理が行われた後、復調部 210によって、それぞれの基地局装置 # 1〜# 3に 対応する受信信号が復調される。復調された基地局装置ごとの受信信号は、誤り訂 正復号部 220および TPCコマンド選択部 240の TPCコマンド抽出部 244 (図 3)へ出 力される。
[0052] 復調された基地局装置ごとの受信信号は、誤り訂正復号部 220によって誤り検出- 誤り訂正され、受信データが出力されるとともに、基地局装置ごとの ACKまたは NA CKがデータ再送制御部 230および TPCコマンド選択部 240の ACKZNACK判定 部 242へ出力される。そして、データ再送制御部 230によって、基地局装置 # 1〜# 3すべての基地局装置力 NACKが送信されて 、る場合は、パケットを再送する旨 が送信データバッファ部 250へ通知され、 、ずれか 1つの基地局装置からでも ACK が送信されている場合は、次のパケットを送信する旨が送信データバッファ部 250へ 通知される。
[0053] 一方、 TPCコマンド選択部 240においては、図 4に示すフローに従って、実際の送 信電力制御に採用される TPCコマンドが選択される。
[0054] すなわち、まず、 ACKZNACK判定部 242によって、基地局装置 # 1〜 # 3のそ れぞれ力 ACKまたは NACKのどちらが送信されたかが判定される(ST1000)。こ のとき、 ACKZNACK判定部 242によって判定される ACKZNACKは、最も新しく 受信された基地局装置ごとの ACKZNACKである。つまり、例えば送信時間間隔( TTI : Transmission Time Interval)ごとの ACKZNACKの履歴が図 5に示すものの ような場合、 ACKZNACK判定部 242は、破線 300で囲まれた直近の TTI # 0に対 する ACKまたは NACKを対象にして判定を行う。これにより、常に最新の上り回線の 状態を反映した ACKZNACKを TPCコマンドの選択に用いることができる。
[0055] 図 5において、 ACKを送信した基地局装置 # 1および基地局装置 # 3に関しては、 基地局装置 # 2よりも上り回線の伝搬環境が良好で、移動局装置から送信されたパ ケットが誤りなく伝送されると判断される。したがって、このような基地局装置からの TP Cコマンドに従って送信電力制御を行うことにより、上り回線のパケットの伝送品質が 良好に保たれ、再送が発生する回数を低減することができると考えられる。
[0056] そこで、 ACKZNACK判定部 242によって、基地局装置 # 1〜 # 3のうち、 ACK を送信した基地局装置 # 1および基地局装置 # 3からの TPCコマンドの優先度が最 大であると決定される。さらに、 ACKZNACK判定部 242によって、これらの基地局 装置力も送信された TPCコマンドを抽出する旨の指示が TPCコマンド抽出部 244へ 通知される。そして、 TPCコマンド抽出部 244によって、基地局装置 # 1および基地 局装置 # 3の TPCコマンドが抽出され (ST1100)、送信電力制御部 280へ出力され る。
[0057] そして、送信電力制御部 280によって、優先度が最大の TPCコマンドが 1つのみ抽 出されたか否かが判定される(ST1200)。この結果、抽出された TPCコマンドが 1つ である場合、換言すれば、 1つの基地局装置のみから ACKが送信された場合は、こ の基地局装置の TPCコマンドに従って送信電力制御が行われる(ST1300)。
[0058] 一方、図 5に示したように、基地局装置 # 1および基地局装置 # 3の 2つの基地局 装置から ACKが送信され、対応する 2つの TPCコマンドが抽出された場合は、これ らの基地局装置の TPCコマンドについてオアォブダウン方式が適用される(ST140 0)。すなわち、基地局装置 # 1または基地局装置 # 3のいずれか一方でも TPCコマ ンドとして「Down」を送信して!/ヽれば、送信電力制御部 280は現在の送信電力を減 少させる。また、基地局装置 # 1および基地局装置 # 3の双方が TPCコマンドとして「 Upjを送信して!/ヽれば、送信電力制御部 280は現在の送信電力を増加させる。
[0059] そして、送信データバッファ部 250、誤り訂正符号化部 260、および変調部 270を 経た送信データまたは再送データは、上述のように制御された送信電力で、 RF送信 部 290から、パケットィ匕された上でアンテナを介して送信される。
[0060] 以上のように、本実施の形態によれば、複数の基地局装置それぞれ力 送信され た直近の ACKZNACKを判定し、 ACKを送信した基地局装置から送信された TP Cコマンドの優先度を最大にして、移動局装置が実際の送信電力制御を行うため、 最新の上り回線の伝搬環境を反映して、上り回線のパケットの伝送品質をより確実に 改善する TPCコマンドを選択することができ、結果として、上り回線における再送を低 減してセクタ一スループットを向上させることができる。
[0061] (実施の形態 2)
本発明の実施の形態 2の特徴は、所定の時間内に送信した ACKの数を基地局装 置の得点とし、最も多くの ACKを送信した基地局装置からの TPCコマンドの優先度 を最大にして、移動局装置が送信電力制御を行う点である。
[0062] 本実施の形態に係る基地局装置の構成は、実施の形態 1に係る基地局装置(図 1) と同様であるため、その説明を省略する。また、本実施の形態に係る移動局装置の 構成は、実施の形態 1に係る移動局装置(図 2)と同様であるが、 TPCコマンド選択部 240の内部構成のみが実施の形態 1とは異なっている。
[0063] そこで、図 6を参照して、本実施の形態に係る移動局装置の TPCコマンド選択部 2 40の内部構成について説明する。なお、図 6において、図 3と同じ部分には同じ符号 を付し、その説明を省略する。
[0064] 図 6に示すように、本実施の形態に係る TPCコマンド選択部 240は、バッファ部 40 2、 ACK計数部 404、および TPCコマンド抽出部 244を有している。これらのバッフ ァ部 402、 ACK計数部 404、および TPCコマンド抽出部 244は、主に移動局装置が ソフトハンドオーバ中に動作する。
[0065] バッファ部 402は、誤り訂正復号部 220から出力された基地局装置ごとの ACKZ NACKを一時的に記憶する。このとき、ノ ッファ部 402は、基地局装置ごとかつ TTI ごとに ACKまたは NACKのどちらが返送されてきたかを記憶する。
[0066] ACK計数部 404は、フェージング変動の速さの指標となる最大ドップラー周波数 に応じて ACKを計数する対象の TTI区間 (TTIの数)を設定し、この TTI区間に対応 する ACKの数を計数する。
[0067] 具体的には、 ACK計数部 404は、最大ドップラー周波数が大きくフ ージング変動 が速い場合は、伝搬環境が短期間で変化すると考えられるため、最新の ΤΠから比 較的新しい ΤΠまでを ΤΠ区間として設定する。一方、 ACK計数部 404は、最大ドッ ブラー周波数力 、さくフェージング変動が遅い場合は、伝搬環境が長時間にわたつ てあまり変化しないと考えられるため、最新の ΤΠ力 比較的古い ΤΠまでを ΤΠ区 間として設定する。
[0068] そして、 ACK計数部 404は、 TTI区間において最も多く ACKを送信した基地局装 置については、上り回線におけるパケットの伝送品質が安定して良好であると判断し 、ACK数が最大の基地局装置の TPCコマンドを優先度が最大の TPCコマンドとして 、この TPCコマンドの抽出を TPCコマンド抽出部 244に指示する。
[0069] 次!、で、上述のように構成された移動局装置のソフトハンドオーバ中における TPC コマンド選択動作について、図 7および図 8を参照して具体的に説明する。なお、本 実施の形態において、基地局装置から移動局装置へ TPCコマンドおよび ACKZN ACKが送信されるまでの動作、ならびに移動局装置によって受信信号の復調 '誤り 訂正が行われるまでの動作は、実施の形態 1と同様であるため、その説明を省略する
[0070] したがって、以下では、主に、移動局装置の TPCコマンド選択部 240における TP Cコマンド選択動作について説明する。
[0071] 本実施の形態においては、誤り訂正復号部 220によって、基地局装置ごとの ACK ZNACKが TPCコマンド選択部 240のバッファ部 402へ出力される。これらの ACK ZNACKは、履歴としてバッファ部 402によって記憶される。具体的には、例えば図 8に示すように、基地局装置 # 1〜 # 3それぞれの TTIごとの ACKZNACKが記憶 される。
[0072] そして、 TPCコマンド選択部 240においては、図 7に示すフローに従って、実際の 送信電力制御に採用される TPCコマンドが選択される。
[0073] すなわち、まず、 ACK計数部 404によって、最大ドップラー周波数に応じた TTI区 間が設定される(ST2000)。本実施の形態における TTI区間は、 ACKを計数する 対象の TTIの数であり、伝搬環境が頻繁に変化する場合は比較的新 、TTIのみを 対象とし、伝搬環境があまり変化しな ヽ場合は比較的古 ヽ ΤΠまでを対象とするよう に設定される。したがって、最大ドップラー周波数が大きい場合は、比較的短い ΤΤΙ 区間が設定され、最大ドップラー周波数が小さい場合は、比較的長い ΤΠ区間が設 定される。
[0074] そして、 ACK計数部 404によって、 ΤΤΙ区間における基地局装置ごとの ACKの数 が計数され (ST2100)、すべての基地局装置に関して ACKの計数が終了するまで 繰り返される(ST2200)。図 8に示す例では、破線によって囲まれる TTI # 0〜# 3の 4つの ΤΤΙが ΤΤΙ区間 500に設定され、まず基地局装置 # 1の ACKが計数されて 3 という結果が得られ、次に基地局装置 # 2の ACKが計数されて 1が得られ、最後に 基地局装置 # 3の ACKが計数されて 2が得られる。これらの ACKの数は、それぞれ の基地局装置の得点となる。
[0075] 図 8において、得点が高い(すなわち、 ΤΤΙ区間 500における ACKの送信回数が 最も多 、)基地局装置 # 1に関しては、他の基地局装置 # 2、 # 3よりも上り回線の伝 搬環境が安定して良好で、移動局装置から送信されたパケットが誤りなく伝送される と判断される。したがって、このような基地局装置からの TPCコマンドに従って送信電 力制御を行うことにより、上り回線のパケットの伝送品質が良好に保たれ、再送が発 生する回数を低減することができると考えられる。
[0076] そこで、 ACK計数部 404によって、基地局装置 # 1〜 # 3のうち、 ΤΤΙ区間 500に ACKを最も多く送信した基地局装置 # 1からの TPCコマンドの優先度が最大である と決定される。さらに、 ACK計数部 404によって、基地局装置 # 1から送信された TP Cコマンドを抽出する旨の指示が TPCコマンド抽出部 244へ通知される。そして、 TP Cコマンド抽出部 244によって、基地局装置 # 1の TPCコマンドが抽出され(ST230 0)、送信電力制御部 280へ出力される。
[0077] そして、送信電力制御部 280によって、優先度が最大の TPCコマンドが 1つのみ抽 出されたカゝ否かが判定される(ST2400)。この結果、図 8に示したように、最も多くの ACKを送信した基地局装置が基地局装置 # 1のみである場合 (すなわち、優先度が 最大の TPCコマンドが 1つのみ抽出された場合)は、対応する 1つの TPCコマンドが 採用されて送信電力制御が行われる (ST2500) o
[0078] 一方、優先度が最大の TPCコマンドが 2つ以上である場合、換言すれば、複数の 基地局装置から最多かつ同数の ACKが送信された場合は、これらの基地局装置の TPCコマンドについてオアォブダウン方式が適用される(ST2600)。すなわち、いず れか 1つの基地局装置でも TPCコマンドとして「Down」を送信して ヽれば、送信電力 制御部 280は現在の送信電力を減少させる。また、すべての基地局装置が TPCコマ ンドとして「Up」を送信して!/ヽれば、送信電力制御部 280は現在の送信電力を増加さ せる。
[0079] そして、送信データバッファ部 250、誤り訂正符号化部 260、および変調部 270を 経た送信データまたは再送データは、上述のように制御された送信電力で、 RF送信 部 290から、パケットィ匕された上でアンテナを介して送信される。
[0080] 以上のように、本実施の形態によれば、最大ドップラー周波数に応じて設定された ΤΠ区間のパケットに対し、最も多くの ACKを送信した基地局装置カゝら送信された T PCコマンドの優先度を最大にするため、 TPCコマンドの選択において、上り回線の 伝搬環境が安定して良好である力否かを反映させることができる。
[0081] なお、本実施の形態においては、単純に ACKを計数するものとした力 初めて送 信されたパケットに対する ACKのみを計数するようにしても良い。同じ ACKでも、 N ACKが送信された直後の ACKは、再送されたパケットに対する ACKであることを意 味しており、再送が発生して 、ると 、うことは上り回線の伝送品質が良好ではな 、こと になる。したがって、 2回以上連続して送信された ACKは、初回送信のパケットに対 する ACKであると判断され、このような ACKのみを計数することにより、さらに正確に 上り回線の伝搬環境を反映することができる。
[0082] 同様に考えて、例えば、初回送信のパケットに対する ACKを 1回と計数するのに対 し、再送のパケットに対する ACKを 0. 5回と計数するようにして、再送回数に応じた 重み付けを行って ACKを計数しても良 、。
[0083] また、本実施の形態においては、 TTI区間において新しい TTIに対する ACKほど 重みを高くするようにしても良い。すなわち、例えば、直近の TTIに対する ACKを 1 回と計数するのに対し、 1つ前の TTIに対する ACKを 0. 5回と計数するようにして、 対応する TTIの新旧に応じた重み付けを行って ACKを計数しても良 、。
[0084] (実施の形態 3)
本発明の実施の形態 3の特徴は、所定の時間内における ACKおよび NACKに数 値を割り当てて点数ィ匕し、点数の加算平均を基地局装置の得点とし、得点が最も高 い基地局装置からの TPCコマンドの優先度を最大にして、移動局装置が送信電力 制御を行う点である。 [0085] 本実施の形態に係る基地局装置の構成は、実施の形態 1に係る基地局装置(図 1) と同様であるため、その説明を省略する。また、本実施の形態に係る移動局装置の 構成は、実施の形態 1に係る移動局装置(図 2)と同様であるが、 TPCコマンド選択部 240の内部構成のみが実施の形態 1とは異なっている。
[0086] そこで、図 9を参照して、本実施の形態に係る移動局装置の TPCコマンド選択部 2 40の内部構成について説明する。なお、図 9において、図 3および図 6と同じ部分に は同じ符号を付し、その説明を省略する。
[0087] 図 9に示すように、本実施の形態に係る TPCコマンド選択部 240は、バッファ部 40 2、点数ィ匕部 602、加算平均算出部 604、および TPCコマンド抽出部 244を有してい る。これらのバッファ部 402、点数化部 602、加算平均算出部 604、および TPCコマ ンド抽出部 244は、主に移動局装置がソフトノ、ンドオーバ中に動作する。
[0088] 点数ィ匕部 602は、最大ドップラー周波数に応じて ACKZNACKを点数ィ匕する対 象の TTI区間を設定し、この TTI区間における基地局措置ごとの ACKZNACKに 点数を付与する。
[0089] 具体的には、点数ィ匕部 602は、最大ドップラー周波数が大きい場合は、最新の TT Iから比較的新しい ΤΠまでを ΤΠ区間として設定する一方、最大ドップラー周波数が 小さ ヽ場合は、最新の TTIから比較的古 ヽ TTIまでを TTI区間として設定する。
[0090] そして、点数ィ匕部 602は、基地局装置ごとに、例えば TTI区間における ACKには 1 点、 NACKには 0点などのように数値ィ匕して点数を付与し、基地局装置ごとの点数を 加算平均算出部 604へ出力する。
[0091] 加算平均算出部 604は、基地局装置ごとの点数の加算平均を算出し、加算平均が 最も高い基地局装置については、上り回線におけるパケットの伝送品質が安定して 良好であると判断し、加算平均が最大の基地局装置の TPCコマンドを優先度が最大 の TPCコマンドとして、この TPCコマンドの抽出を TPCコマンド抽出部 244に指示す る。
[0092] 次 、で、上述のように構成された移動局装置のソフトハンドオーバ中における TPC コマンド選択動作について、図 10および図 11を参照して具体的に説明する。なお、 本実施の形態において、基地局装置から移動局装置へ TPCコマンドおよび ACKZ NACKが送信されるまでの動作、ならびに移動局装置によって受信信号の復調 '誤 り訂正が行われるまでの動作は、実施の形態 1と同様であるため、その説明を省略す る。
[0093] したがって、以下では、主に、移動局装置の TPCコマンド選択部 240における TP Cコマンド選択動作について説明する。
[0094] 本実施の形態においては、実施の形態 2と同様に、基地局装置ごとの ACKZNA CKが誤り訂正復号部 220からバッファ部 402へ出力される。これらの ACKZNAC Kは、履歴としてバッファ部 402によって記憶される。具体的には、例えば図 11に示 すように、基地局装置 # 1〜 # 3それぞれの TTIごとの ACKZNACKが記憶される
[0095] そして、 TPCコマンド選択部 240においては、図 10に示すフローに従って、実際の 送信電力制御に採用される TPCコマンドが選択される。
[0096] すなわち、まず、点数ィ匕部 602によって、最大ドップラー周波数に応じた TTI区間 が設定される(ST3000)。本実施の形態における TTI区間は、 ACKZNACKを点 数ィ匕する対象の ΤΠの数であり、伝搬環境が頻繁に変化する場合は比較的新しい T TIのみを対象とし、伝搬環境があまり変化しな ヽ場合は比較的古!ヽ TTIまでを対象 とするように設定される。したがって、最大ドップラー周波数が大きい場合は、比較的 短い ΤΠ区間が設定され、最大ドップラー周波数が小さい場合は、比較的長い TTI 区間が設定される。
[0097] そして、点数ィ匕部 602によって、 TTI区間における基地局装置ごとの ACKZNAC Kが点数化される(ST3100)。ここでは、例えば ACKが 1点、 NACKが 0点として点 数化されるものとする。基地局装置ごとの点数は、加算平均算出部 604へ出力され、 加算平均算出部 604によって、基地局装置ごとの点数の加算平均が算出され (ST3 200)、すべての基地局装置に関して点数の加算平均が算出されるまで処理が繰り 返される(ST3300)。図 11に示す例では、破線によって囲まれる TTI # 0〜 # 3の 4 つの TTIが TTI区間 700に設定され、まず基地局装置 # 1の加算平均が 0. 75 ( = 3 Z4)と算出され、次に基地局装置 # 2の加算平均が 0. 25 ( = 1Z4)と算出され、最 後に基地局装置 # 3の加算平均が 0. 5 ( = 2Z4)と算出される。これらの点数の加算 平均は、それぞれの基地局装置の得点となる。
[0098] なお、ここでは、基地局装置 # 1〜 # 3すべての ΤΠ区間を 4としたため、加算平均 を算出する際の分母がすべての基地局装置 # 1〜 # 3で等 U、が、最大ドップラー 周波数に応じて各基地局装置における TTI区間が異なる場合は、加算平均算出の 分母も異なる。このように TTI区間が基地局装置によって異なる場合は、 TTI区間の ACKの数のみでは上り回線の伝送品質の比較はできないが、本実施の形態によれ ば、単純に基地局装置 # 1〜# 3の得点を比較することで、上り回線の伝送品質を比 較することができる。
[0099] 図 11において、得点が高い (すなわち、 ΤΠ区間における点数の加算平均が最も 高 、)基地局装置 # 1に関しては、他の基地局装置 # 2、 # 3よりも上り回線の伝搬環 境が安定して良好で、移動局装置から送信されたパケットが誤りなく伝送されると判 断される。したがって、このような基地局装置からの TPCコマンドに従って送信電力 制御を行うことにより、上り回線のパケットの伝送品質が良好に保たれ、再送が発生 する回数を低減することができると考えられる。
[0100] そこで、加算平均算出部 604によって、基地局装置 # 1〜 # 3のうち、 TTI区間 70 0における点数の加算平均が最も高 、基地局装置 # 1からの TPCコマンドの優先度 が最大であると決定される。さらに、加算平均算出部 604によって、基地局装置 # 1 力も送信された TPCコマンドを抽出する旨が TPCコマンド抽出部 244へ通知される。 そして、 TPCコマンド抽出部 244によって、基地局装置 # 1の TPCコマンドが抽出さ れ (ST3400)、送信電力制御部 280へ出力される。
[0101] そして、送信電力制御部 280によって、優先度が最大の TPCコマンドが 1つのみ抽 出された力否かが判定される(ST3500)。この結果、図 11に示したように、点数の加 算平均が最大の基地局装置が基地局装置 # 1のみである場合 (すなわち、優先度が 最大の TPCコマンドが 1つのみ抽出された場合)は、対応する 1つの TPCコマンドが 採用されて送信電力制御が行われる (ST3600) o
[0102] 一方、優先度が最大の TPCコマンドが 2つ以上である場合、換言すれば、複数の 基地局装置の点数の加算平均が最大かつ等 、場合は、これらの基地局装置の TP Cコマンドについてオアォブダウン方式が適用される(ST3700)。すなわち、いずれ 力 1つの基地局装置でも TPCコマンドとして「Down」を送信して ヽれば、送信電力制 御部 280は現在の送信電力を減少させる。また、すべての基地局装置が TPCコマン ドとして「Up」を送信して!/ヽれば、送信電力制御部 280は現在の送信電力を増加さ せる。
[0103] そして、送信データバッファ部 250、誤り訂正符号化部 260、および変調部 270を 経た送信データまたは再送データは、上述のように制御された送信電力で、 RF送信 部 290から、パケットィ匕された上でアンテナを介して送信される。
[0104] 以上のように、本実施の形態によれば、最大ドップラー周波数に応じて設定された TTI区間のパケットに対する ACKZNACKに点数を付与し、点数の加算平均が最 大である基地局装置力 送信された TPCコマンドの優先度を最大にするため、 TPC コマンドの選択において、上り回線の伝搬環境が安定して良好である力否かを反映 させることがでさる。
[0105] なお、本実施の形態においては、算出された基地局装置ごとの加算平均を所定の 閾値と比較し、加算平均が所定の閾値以上である基地局装置に対してオアォブダウ ン方式を適用するようにしても良い。本実施の形態においては、 ΤΠ区間における A CKZNACKに点数を付与することにより、実施の形態 2とは異なり、 TTI区間にお ける ACKと NACKの割合まで考慮したことになる。このため、点数の加算平均に対 して閾値判定を行うことにより、 ACKと NACKの割合に絶対的な基準を設けて、上り 回線の伝送品質が劣悪な基地局装置を確実に排除することができる。したがって、 閾値判定を行うことにより、基地局装置間の相対的な比較のみではなぐ絶対的な上 り回線の伝送品質の良否を反映することができる。
[0106] (実施の形態 4)
本発明の実施の形態 4の特徴は、過去に算出された基地局装置ごとの得点に忘却 係数を乗じた上で、新たに基地局装置カゝら送信された ACKおよび NACKに数値を 割り当てた点数を加算した結果を基地局装置の得点とし、得点が最も高い基地局装 置からの TPCコマンドの優先度を最大にして、移動局装置が送信電力制御を行う点 である。
[0107] 本実施の形態に係る基地局装置の構成は、実施の形態 1に係る基地局装置(図 1) と同様であるため、その説明を省略する。また、本実施の形態に係る移動局装置の 構成は、実施の形態 1に係る移動局装置(図 2)と同様であるが、 TPCコマンド選択部 240の内部構成のみが実施の形態 1とは異なっている。
[0108] そこで、図 12を参照して、本実施の形態に係る移動局装置の TPCコマンド選択部 240の内部構成について説明する。なお、図 12において、図 3および図 6と同じ部分 には同じ符号を付し、その説明を省略する。
[0109] 図 12に示すように、本実施の形態に係る TPCコマンド選択部 240は、バッファ部 4 02、重み付け点数ィ匕部 802、および TPCコマンド抽出部 244を有している。これらの バッファ部 402、重み付け点数ィ匕部 802、および TPCコマンド抽出部 244は、主に移 動局装置がソフトハンドオーバ中に動作する。
[0110] 重み付け点数ィ匕部 802は、前回算出された得点に対する忘却係数を最大ドッブラ 一周波数に応じて決定し、新たな ACKまたは NACKに付与される点数を忘却係数 が乗じられた前回の得点に加算して今回の得点を算出する。
[0111] 具体的には、重み付け点数ィ匕部 802は、最大ドップラー周波数が大きい場合は、 前回の得点の重みが比較的小さくなる忘却係数を前回の得点に乗算する一方、最 大ドップラー周波数が小さい場合は、前回の得点の重みが比較的大きくなる忘却係 数を前回の得点に乗算する。
[0112] そして、重み付け点数ィ匕部 802は、忘却係数が乗算された前回の得点に、前回の 得点算出以後に基地局装置カゝら送信された ACKZNACKに対応する点数 (例え ば ACKは 1点、 NACKは 0点)を加算して今回の得点を算出する。さらに、重み付け 点数ィ匕部 802は、算出された今回の得点が最も高い基地局装置については、上り回 線におけるパケットの伝送品質が安定して良好であると判断し、今回の得点が最大 の基地局装置の TPCコマンドを優先度が最大の TPCコマンドとして、この TPCコマ ンドの抽出を TPCコマンド抽出部 244に指示する。
[0113] 次 、で、上述のように構成された移動局装置のソフトハンドオーバ中における TPC コマンド選択動作について、図 13を参照して説明する。なお、本実施の形態におい て、基地局装置から移動局装置へ TPCコマンドおよび ACKZNACKが送信される までの動作、ならびに移動局装置によって受信信号の復調 ·誤り訂正が行われるま での動作は、実施の形態 1と同様であるため、その説明を省略する。
[0114] したがって、以下では、主に、移動局装置の TPCコマンド選択部 240における TP Cコマンド選択動作について説明する。
[0115] 本実施の形態においては、実施の形態 2と同様に、基地局装置ごとの ACKZNA CKが誤り訂正復号部 220からバッファ部 402へ出力される。これらの ACKZNAC Kは、履歴としてバッファ部 402によって記憶される。
[0116] そして、 TPCコマンド選択部 240においては、図 13に示すフローに従って、実際の 送信電力制御に採用される TPCコマンドが選択される。
[0117] すなわち、まず、重み付け点数ィ匕部 802によって、基地局装置ごとの重み付けされ た得点が算出される(ST4000)。具体的には、まず、重み付け点数ィ匕部 802によつ て、最大ドップラー周波数に応じた忘却係数が決定され、前回算出された得点に忘 却係数が乗算される。忘却係数は、伝搬環境が頻繁に変化する場合は前回の得点 の重みを比較的小さくする値に決定され、伝搬環境があまり変化しない場合は前回 の得点の重みを比較的大きくする値に決定される。したがって、最大ドップラー周波 数が大きい場合は、比較的小さい忘却係数が決定され、最大ドップラー周波数が小 さい場合は、比較的大きい忘却係数が決定される。
[0118] そして、重み付け点数ィ匕部 802によってバッファ部 402が参照されることにより、前 回の得点算出以後に基地局装置カゝら送信された新たな ACKZNACKに点数が付 与される。 ACKZNACKに対する点数の付与は、例えば ACKを 1点、 NACKを 0 点とするように数値ィ匕して行われる。さらに、重み付け点数ィ匕部 802によって、忘却 係数を乗算後の前回の得点に新たな ACKZNACKの点数が加算され、今回の得 点が算出される。なお、重み付け点数ィ匕部 802は、初回の得点算出時には、忘却係 数を 0として前回の得点は考慮しない。このように、重み付け点数ィ匕部 802によって、 基地局装置ごとの時間的な重み付けが施された得点が算出され、すべての基地局 装置に関して今回の得点が算出されるまで処理が繰り返される(ST4100)。
[0119] このように算出された今回の得点が最も高い基地局装置に関しては、前回の点数 化までの状況を考慮に入れても上り回線の伝搬環境が良好で、移動局装置から送 信されたパケットが誤りなく伝送されると判断される。したがって、このような基地局装 置からの TPCコマンドに従って送信電力制御を行うことにより、上り回線のパケットの 伝送品質が良好に保たれ、再送が発生する回数を低減することができると考えられる
[0120] そこで、重み付け点数ィ匕部 802によって、今回の得点が最も高い基地局装置から の TPCコマンドの優先度が最大であると決定される。さらに、重み付け点数ィ匕部 802 によって、優先度が最大の TPCコマンドを抽出する旨の指示が TPCコマンド抽出部 244へ通知される。そして、 TPCコマンド抽出部 244によって、重み付け点数ィ匕部 80 2から通知された TPCコマンドが抽出され(ST4200)、送信電力制御部 280へ出力 される。
[0121] そして、送信電力制御部 280によって、優先度が最大の TPCコマンドが 1つのみ抽 出された力否かが判定される(ST4300)。この結果、今回の得点が最大の基地局装 置が 1つのみである場合 (すなわち、優先度が最大の TPCコマンドが 1つのみ抽出さ れた場合)は、対応する 1つの TPCコマンドが採用されて送信電力制御が行われる ( ST4400)。
[0122] 一方、抽出された TPCコマンドが 2つ以上である場合、換言すれば、複数の基地局 装置の今回の得点が最大かつ等し 、場合は、これらの基地局装置の TPCコマンドに ついてオアォブダウン方式が適用される(ST4500)。すなわち、いずれか 1つの基 地局装置でも TPCコマンドとして「Down」を送信して ヽれば、送信電力制御部 280 は現在の送信電力を減少させる。また、すべての基地局装置が TPCコマンドとして「 Upjを送信して!/ヽれば、送信電力制御部 280は現在の送信電力を増加させる。
[0123] そして、送信データバッファ部 250、誤り訂正符号化部 260、および変調部 270を 経た送信データまたは再送データは、上述のように制御された送信電力で、 RF送信 部 290から、パケットィ匕された上でアンテナを介して送信される。
[0124] 以上のように、本実施の形態によれば、最大ドップラー周波数に応じて決定された 忘却係数を前回の得点に乗算し、忘却係数乗算後の前回の得点に新たな ACKZ NACKの点数を加算して今回の得点を算出する。そして、今回の得点が最大である 基地局装置力 送信された TPCコマンドの優先度を最大にするため、 TPCコマンド の選択にぉ 、て、上り回線の伝搬環境が安定して良好である力否かを反映させるこ とがでさる。
[0125] なお、上記実施の形態 2〜4においては、 TTI区間の設定および忘却係数の決定 に最大ドップラー周波数を用いるが、最大ドップラー周波数は、各基地局装置が上り 回線の最大ドップラー周波数を測定し、移動局装置へ通知するようにすれば良 、。 また、図 8および図 11に示した例では、最大ドップラー周波数に応じて設定される T TI区間を全基地局装置 # 1〜# 3に共通のものとしたが、実際には各基地局装置に おいて測定される最大ドップラー周波数が異なっていると考えられるため、それぞれ の基地局装置 # 1〜# 3で異なる TTI区間を設定しても良い。同様に、実施の形態 4 における忘却係数も基地局装置ごとに異なって ヽても良 ヽ。
[0126] また、上記実施の形態 3、 4においては、 ACKに 1点、 NACKに 0点を付与して数 値ィ匕するものとしたが、それぞれに付与される点数は任意で良い。
[0127] また、上記実施の形態 3、 4において、初めて送信されたパケットに対する ACKの 点数を高くし、再送されたパケットに対する ACKの点数を低くするようにしても良 、。 同じ ACKでも、 NACKが送信された直後の ACKは、再送されたパケットに対する A CKであることを意味しており、再送が発生しているということは上り回線の伝送品質 が良好ではないことになる。したがって、 2回以上連続して送信された ACKは、初回 送信のパケットに対する ACKであると判断され、このような ACKに対して高い点数を 付与することにより、さらに正確に上り回線の伝搬環境を反映することができる。
[0128] 同様に考えて、 ACKの前に NACKが連続した回数に応じて、点数に傾斜を設け るようにしても良い。すなわち、例えば、 ACKの前に NACKが 1回のみであれば、再 送が 1回のみ発生したことになるため比較的高い点数を付与し、 ACKの前に NACK 力 ^回連続していれば、再送が 2回発生したことになるため比較的低い点数を付与す るようにしても良い。
[0129] 本発明の第 1の態様に係る移動局装置は、上り回線の信号に対する受信確認応答 および送信電力制御コマンドを複数の基地局装置から受信する受信手段と、受信さ れた複数の受信確認応答を用いて、受信された複数の送信電力制御コマンドのうち 優先度が最大の送信電力制御コマンドを選択する選択手段と、選択された送信電力 制御コマンドに従って送信電力を制御する制御手段と、を有する構成を採る。 [0130] この構成によれば、複数の基地局装置からそれぞれ受信された受信確認応答を用 V、て、各基地局装置に対応する TPCコマンドのうち優先度が最大のものを選択して 送信電力制御を行う。このため、上り回線を伝送された信号が基地局装置によって誤 りなく受信された力否かの情報を TPCコマンドの選択に反映して、上り回線のバケツ トの伝送品質をより確実に改善する TPCコマンドを選択することができ、結果として、 上り回線における再送を低減してセクタ一スループットを向上させることができる。
[0131] 本発明の第 2の態様に係る移動局装置は、上記第 1の態様において、前記選択手 段は、最も新しく受信された基地局装置ごとの受信確認応答が受信成功を示す AC Kであるか受信失敗を示す NACKであるかを判定する判定部と、判定の結果、受信 確認応答が ACKである基地局装置から送信された送信電力制御コマンドを抽出す る抽出部と、を有する構成を採る。
[0132] この構成によれば、最新の受信確認応答として ACKを送信した基地局装置からの TPCコマンドを抽出するため、最新の上り回線の伝送品質を反映して TPCコマンド を選択することができるとともに、簡便な回路構成で適切な TPCコマンド選択を実現 することができる。
[0133] 本発明の第 3の態様に係る移動局装置は、上記第 1の態様において、前記選択手 段は、過去に受信された受信確認応答を用いて、優先度が最大である送信電力制 御コマンドを選択する構成を採る。
[0134] この構成によれば、過去に受信された受信確認応答を用いて TPCコマンドを選択 するため、上り回線の伝送品質が長期にわたって安定して良好な基地局装置力 の TPCコマンドを選択することができる。
[0135] 本発明の第 4の態様に係る移動局装置は、上記第 3の態様において、前記選択手 段は、最大ドップラー周波数に応じて過去の受信確認応答を送信電力制御コマンド の選択に反映する構成を採る。
[0136] この構成によれば、最大ドップラー周波数に応じて過去の受信確認応答を用いる ため、フェージング変動の速さを考慮して対象とする受信確認応答の区間や過去の 受信確認応答に対する重みを決定することができ、上り回線の長期にわたる伝送品 質をさらに正確に TPCコマンドの選択に反映することができる。 [0137] 本発明の第 5の態様に係る移動局装置は、上記第 3の態様において、前記選択手 段は、受信された基地局装置ごとの受信確認応答の履歴を記憶するバッファ手段と 、受信された受信確認応答を数値化して基地局装置ごとの得点とする数値化手段と 、得点が最も高い基地局装置力 送信された送信電力制御コマンドを抽出する抽出 手段と、を含む構成を採る。
[0138] この構成によれば、基地局装置ごとの受信確認応答の履歴において、 ACKおよび NACKを数値ィ匕して基地局装置ごとの得点を決定し、得点が最も高 ヽ基地局装置 力 送信された TPCコマンドを抽出する。このため、過去の受信確認応答を TPCコ マンドの選択に確実に反映することができるとともに、 ACKおよび NACKの数値ィ匕 によって処理を容易にすることができる。
[0139] 本発明の第 6の態様に係る移動局装置は、上記第 5の態様において、前記数値ィ匕 手段は、所定の区間内の受信確認応答における ACKの数を計数して基地局装置ご との得点とする計数部、を有する構成を採る。
[0140] この構成によれば、所定区間内の ACKの数を基地局装置ごとの得点とするため、 少ない演算量で上り回線の伝送品質が安定して良好な基地局装置を選択すること ができる。
[0141] 本発明の第 7の態様に係る移動局装置は、上記第 5の態様において、前記数値ィ匕 手段は、所定の区間内の受信確認応答に対して点数を付与する点数ィヒ部と、所定 の区間内における基地局装置ごとの点数の加算平均を算出して基地局装置ごとの 得点とする算出部と、を有する構成を採る。
[0142] この構成によれば、所定区間内における受信確認応答の点数を加算平均して基地 局装置ごとの得点とするため、所定区間が基地局装置ごとに異なっている場合でも、 単純に基地局装置ごとの得点を比較して、上り回線の伝送品質が安定して良好な基 地局装置を選択することができる。また、加算平均を所定の閾値と比較することにより 、基地局装置間の相対的な比較のみではなぐ上り回線の伝送品質に絶対的な基 準を設けることができる。
[0143] 本発明の第 8の態様に係る移動局装置は、上記第 5の態様において、前記数値ィ匕 手段は、前回の基地局装置ごとの得点に重み付けをした上で新たに受信された受信 確認応答に付与される点数を加算して今回の基地局装置ごとの得点を算出する重 み付け点数化部、を有する構成を採る。
[0144] この構成によれば、前回の基地局装置ごとの得点に重み付けをした上で、新たな 受信確認応答の点数を加算して今回の得点とするため、過去の受信確認応答をす ベて考慮に入れて上り回線の伝送品質を比較することができ、より確実に上り回線の 伝送品質が良好な基地局装置力もの TPCコマンドを選択することができる。
[0145] 本発明の第 9の態様に係る移動局装置は、上記第 8の態様において、前記重み付 け点数ィ匕部は、最大ドップラー周波数に応じて前回の基地局装置ごとの得点に重み 付けする構成を採る。
[0146] この構成によれば、最大ドップラー周波数に応じて前回の基地局装置ごとの得点に 重み付けするため、フェージング変動の速さを考慮して忘却係数を決定することがで き、上り回線の長期にわたる伝送品質をさらに正確に TPCコマンドの選択に反映す ることがでさる。
[0147] 本発明の第 10の態様に係る移動局装置は、上記第 5の態様において、前記数値 化手段は、初めて送信された信号に対する ACKと再送された信号に対する ACKと を異なる値に数値化する構成を採る。
[0148] この構成によれば、初回送信の信号に対する ACKと再送の信号に対する ACKと に異なる点数を付与するため、初回送信の信号に対する ACKのみを ACKとして計 数したり、再送の信号に対する ACKに低い点数を付与したりするなど、より厳密に上 り回線の伝送品質を評価することができる。
[0149] 本発明の第 11の態様に係る移動局装置は、上記第 1の態様において、前記制御 手段は、複数の送信電力制御コマンドが選択された場合に、送信電力を下げる旨の 送信電力制御コマンドが少なくとも 1つ選択されていれば送信電力を減少させる構成 を採る。
[0150] この構成によれば、複数の TPCコマンドのうち 1つでも送信電力を下げる旨のもの があれば、送信電力を減少させるため、システム全体における干渉の増大を防止す ることができるとともに、加入者容量を増加させることができる。
[0151] 本発明の第 12の態様に係る上り回線送信電力制御方法は、上り回線の信号に対 する受信確認応答および送信電力制御コマンドを複数の基地局装置力 受信する ステップと、受信された複数の受信確認応答を用いて、受信された複数の送信電力 制御コマンドのうち優先度が最大の送信電力制御コマンドを選択するステップと、選 択された送信電力制御コマンドに従って送信電力を制御するステップと、を有するよ うにした。
[0152] この方法によれば、複数の基地局装置力 それぞれ受信された受信確認応答を用 V、て、各基地局装置に対応する TPCコマンドのうち優先度が最大のものを選択して 送信電力制御を行う。このため、上り回線を伝送された信号が基地局装置によって誤 りなく受信された力否かの情報を TPCコマンドの選択に反映して、上り回線のバケツ トの伝送品質をより確実に改善する TPCコマンドを選択することができ、結果として、 上り回線における再送を低減してセクタ一スループットを向上させることができる。
[0153] 本明細書は、 2004年 9月 13日出願の特願 2004— 265491に基づく。この内容は すべてここに含めておく。
産業上の利用可能性
[0154] 本発明に係る移動局装置および上り回線送信電力制御方法は、上り回線のバケツ トの伝送品質をより確実に改善する TPCコマンドを選択することができ、結果として、 上り回線における再送を低減してセクタ一スループットを向上させることができ、例え ばセル間を移動する際にソフトハンドオーバを実行する移動局装置および上り回線 送信電力制御方法として有用である。

Claims

請求の範囲
[1] 上り回線の信号に対する受信確認応答および送信電力制御コマンドを複数の基地 局装置から受信する受信手段と、
受信された複数の受信確認応答を用いて、受信された複数の送信電力制御コマン ドのうち優先度が最大の送信電力制御コマンドを選択する選択手段と、
選択された送信電力制御コマンドに従って送信電力を制御する制御手段と、 を有する移動局装置。
[2] 前記選択手段は、
最も新しく受信された基地局装置ごとの受信確認応答が受信成功を示す ACKで あるか受信失敗を示す NACKであるかを判定する判定部と、
判定の結果、受信確認応答が ACKである基地局装置から送信された送信電力制 御コマンドを抽出する抽出部と、
を有する請求項 1記載の移動局装置。
[3] 前記選択手段は、
過去に受信された受信確認応答を用いて、優先度が最大である送信電力制御コマ ンドを選択する請求項 1記載の移動局装置。
[4] 前記選択手段は、
最大ドップラー周波数に応じて過去の受信確認応答を送信電力制御コマンドの選 択に反映する請求項 3記載の移動局装置。
[5] 前記選択手段は、
受信された基地局装置ごとの受信確認応答の履歴を記憶するバッファ手段と、 受信された受信確認応答を数値化して基地局装置ごとの得点とする数値化手段と 得点が最も高い基地局装置力 送信された送信電力制御コマンドを抽出する抽出 手段と、
を含む請求項 3記載の移動局装置。
[6] 前記数値化手段は、
所定の区間内の受信確認応答における ACKの数を計数して基地局装置ごとの得 点とする計数部、
を有する請求項 5記載の移動局装置。
[7] 前記数値化手段は、
所定の区間内の受信確認応答に対して点数を付与する点数ィ匕部と、
所定の区間内における基地局装置ごとの点数の加算平均を算出して基地局装置 ごとの得点とする算出部と、
を有する請求項 5記載の移動局装置。
[8] 前記数値化手段は、
前回の基地局装置ごとの得点に重み付けをした上で新たに受信された受信確認 応答に付与される点数を加算して今回の基地局装置ごとの得点を算出する重み付 け点数化部、
を有する請求項 5記載の移動局装置。
[9] 前記重み付け点数ィ匕部は、
最大ドップラー周波数に応じて前回の基地局装置ごとの得点に重み付けする請求 項 8記載の移動局装置。
[10] 前記数値化手段は、
初めて送信された信号に対する ACKと再送された信号に対する ACKとを異なる 値に数値化する請求項 5記載の移動局装置。
[11] 前記制御手段は、
複数の送信電力制御コマンドが選択された場合に、送信電力を下げる旨の送信電 力制御コマンドが少なくとも 1つ選択されていれば送信電力を減少させる請求項 1記 載の移動局装置。
[12] 上り回線の信号に対する受信確認応答および送信電力制御コマンドを複数の基地 局装置から受信するステップと、
受信された複数の受信確認応答を用いて、受信された複数の送信電力制御コマン ドのうち優先度が最大の送信電力制御コマンドを選択するステップと、
選択された送信電力制御コマンドに従って送信電力を制御するステップと、 を有する上り回線送信電力制御方法。
PCT/JP2005/011424 2004-09-13 2005-06-22 移動局装置および上り回線送信電力制御方法 WO2006030571A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/575,017 US7570970B2 (en) 2004-09-13 2005-06-22 Mobile station device, and upstream circuit power control method
EP05753451A EP1777840A4 (en) 2004-09-13 2005-06-22 MOBIL STATION APPARATUS AND METHOD FOR CONTROLLING THE POWER OF THE CIRCUIT IN UPWARD DIRECTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004265491A JP4418334B2 (ja) 2004-09-13 2004-09-13 移動局装置および上り回線送信電力制御方法
JP2004-265491 2004-09-13

Publications (1)

Publication Number Publication Date
WO2006030571A1 true WO2006030571A1 (ja) 2006-03-23

Family

ID=36059832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011424 WO2006030571A1 (ja) 2004-09-13 2005-06-22 移動局装置および上り回線送信電力制御方法

Country Status (5)

Country Link
US (1) US7570970B2 (ja)
EP (1) EP1777840A4 (ja)
JP (1) JP4418334B2 (ja)
CN (1) CN101019345A (ja)
WO (1) WO2006030571A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4458251B2 (ja) * 2004-07-13 2010-04-28 日本電気株式会社 移動通信システム、移動通信システムにおける送信電力制御方法及び移動局
JP2006081126A (ja) * 2004-09-13 2006-03-23 Matsushita Electric Ind Co Ltd 移動局装置および上り回線伝送レート制御方法
US7437161B2 (en) * 2005-03-16 2008-10-14 Lucent Technologies Inc. Method of fast data transmission of mobile stations via the same base station
US7706827B2 (en) * 2006-02-15 2010-04-27 Broadcom Corporation Method and apparatus for processing transmit power control (TPC) commands in a wideband CDMA (WCDMA) network based on a sign metric
US7907961B2 (en) 2006-06-07 2011-03-15 Broadcom Corporation Method and apparatus for improving noise power estimate in a WCDMA network
WO2007119752A1 (ja) * 2006-04-11 2007-10-25 Mitsubishi Electric Corporation 移動機の送信電力制御装置および送信電力制御方法
US8493941B2 (en) * 2006-04-21 2013-07-23 Alcatel Lucent Method to control the effects of out-of-cell interference in a wireless cellular system using over-the-air feedback control
JP4805016B2 (ja) * 2006-05-19 2011-11-02 京セラ株式会社 通信システム、通信装置、及び通信レート変更方法
US8150447B2 (en) * 2006-12-21 2012-04-03 Telefonaktiebolaget Lm Ericsson (Publ) Multi mode outer loop power control in a wireless network
WO2008129655A1 (ja) * 2007-04-16 2008-10-30 Panasonic Corporation 通信端末装置及び通信方法
JP4978327B2 (ja) * 2007-06-19 2012-07-18 富士通株式会社 再送制御方法及びその装置
CN101170320B (zh) * 2007-11-28 2015-09-16 中兴通讯股份有限公司 交叉主备倒换的方法
US8250425B2 (en) 2008-08-15 2012-08-21 Apple Inc. Management of ARQ detection threshold in communication networks
EP2244515A1 (en) * 2009-04-23 2010-10-27 Panasonic Corporation Logical channel prioritization procedure for generating multiple uplink transport blocks
EP2244514A1 (en) 2009-04-23 2010-10-27 Panasonic Corporation Logical channel prioritization procedure for generating multiple uplink transport blocks
CN104092520B (zh) 2009-12-03 2018-09-21 华为技术有限公司 载波聚合时反馈ack/nack信息的方法、基站和用户设备
US8908582B2 (en) * 2010-02-12 2014-12-09 Qualcomm Incorporated User equipment operation mode and channel or carrier prioritization
KR101790593B1 (ko) 2010-04-01 2017-10-26 선 페이턴트 트러스트 물리적 랜덤 액세스 채널들에 대한 송신 전력 제어
WO2012050506A1 (en) * 2010-10-12 2012-04-19 Telefonaktiebolaget L M Ericsson (Publ) Uplink power control
US20120182893A1 (en) * 2011-01-17 2012-07-19 Solomon Trainin Method, apparatus and system for controlling power of wireless communication device
CN102595585B (zh) * 2011-01-17 2015-08-19 英特尔公司 用于控制无线通信装置的功率的方法、设备和系统
TWI508589B (zh) * 2011-02-18 2015-11-11 Realtek Semiconductor Corp 功率調整裝置與其調整方法
EP2575401B1 (en) * 2011-09-30 2014-09-24 Alcatel Lucent Transmit power control
WO2013141594A1 (ko) 2012-03-22 2013-09-26 엘지전자 주식회사 Ack/nack 신호 전송 또는 수신 방법
JP5571116B2 (ja) * 2012-03-23 2014-08-13 株式会社東芝 無線通信装置
CN104661298A (zh) * 2013-11-25 2015-05-27 华为技术有限公司 一种功控处理方法、用户设备和基站
US11057921B2 (en) * 2014-10-01 2021-07-06 Samsung Electronics Co., Ltd. System and method for improving spectral efficiency and coverage for user equipments
JP2016195413A (ja) * 2016-06-20 2016-11-17 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US11381435B2 (en) * 2016-11-11 2022-07-05 Qualcomm Incorporated Configuration for data and reference signal transmissions with shortened transmission time intervals
CN111108782B (zh) * 2017-09-28 2023-08-22 联想(新加坡)私人有限公司 用于传输功率调整的发送功率控制命令

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312609A (ja) * 1996-05-20 1997-12-02 N T T Ido Tsushinmo Kk Cdma移動通信システムにおける送信電力制御方法およびcdma移動通信システム
JP2002009741A (ja) * 2000-06-26 2002-01-11 Ntt Docomo Inc 自動再送要求を行う通信方法及び基地局装置
WO2003010903A1 (fr) * 2001-07-24 2003-02-06 Ntt Docomo, Inc. Dispositif et procede pour commande de puissance d'emission dans un systeme de communication mobile, station mobile, et dispositif de communication
JP2003244063A (ja) * 2002-02-15 2003-08-29 Matsushita Electric Ind Co Ltd 基地局装置及びパケット伝送方法
JP2004215058A (ja) * 2003-01-07 2004-07-29 Matsushita Electric Ind Co Ltd 無線データ通信装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2904335B2 (ja) 1994-04-27 1999-06-14 エヌ・ティ・ティ移動通信網株式会社 送信電力制御方法および移動局装置
TW331584B (en) 1996-05-20 1998-05-11 Fujitsu General Ltd The air conditioner
US6233439B1 (en) * 1998-04-08 2001-05-15 Nortel Networks Limited Signal to noise estimation of forward link traffic channel for fast power control
AU2002213703A1 (en) * 2000-10-24 2002-05-06 Nortel Networks Limited Shared channel structure, arq systems and methods
CN1586048B (zh) * 2001-11-16 2012-07-11 皇家飞利浦电子股份有限公司 无线通信系统
US7133688B2 (en) * 2002-04-05 2006-11-07 Lucent Technologies Inc. Method for improving uplink control channel efficiency in a wireless communication system
JP2004080235A (ja) * 2002-08-14 2004-03-11 Nec Corp セルラシステム、移動局、基地局及びそれに用いる送信電力制御方法並びにそのプログラム
KR20040060274A (ko) * 2002-12-30 2004-07-06 엘지전자 주식회사 무선링크의 전력제어방법
JP3969405B2 (ja) * 2003-07-09 2007-09-05 トヨタ自動車株式会社 火花点火式内燃機関
US7738901B2 (en) * 2003-07-10 2010-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Secondary link power control in a wireless communication network
US7346314B2 (en) * 2003-08-15 2008-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Forward link transmit power control based on observed command response
US7437175B2 (en) * 2004-05-06 2008-10-14 Telefonaktiebolaget L M Ericsson (Publ) Synchronization detection methods and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312609A (ja) * 1996-05-20 1997-12-02 N T T Ido Tsushinmo Kk Cdma移動通信システムにおける送信電力制御方法およびcdma移動通信システム
JP2002009741A (ja) * 2000-06-26 2002-01-11 Ntt Docomo Inc 自動再送要求を行う通信方法及び基地局装置
WO2003010903A1 (fr) * 2001-07-24 2003-02-06 Ntt Docomo, Inc. Dispositif et procede pour commande de puissance d'emission dans un systeme de communication mobile, station mobile, et dispositif de communication
JP2003244063A (ja) * 2002-02-15 2003-08-29 Matsushita Electric Ind Co Ltd 基地局装置及びパケット伝送方法
JP2004215058A (ja) * 2003-01-07 2004-07-29 Matsushita Electric Ind Co Ltd 無線データ通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1777840A4 *

Also Published As

Publication number Publication date
US20080057994A1 (en) 2008-03-06
US7570970B2 (en) 2009-08-04
EP1777840A4 (en) 2010-01-13
EP1777840A1 (en) 2007-04-25
JP4418334B2 (ja) 2010-02-17
JP2006081085A (ja) 2006-03-23
CN101019345A (zh) 2007-08-15

Similar Documents

Publication Publication Date Title
WO2006030571A1 (ja) 移動局装置および上り回線送信電力制御方法
AU2004300630B2 (en) Apparatus and method for transmitting reverse packet data in mobile communication system
EP1424869B1 (en) Radio communication apparatus and transfer rate decision method
EP1614231B1 (en) Power control and automatic repeat request (arq) in a radio communications system
JP4737553B2 (ja) 無線通信システム、移動局、基地局及びそれらに用いる無線通信システム制御方法並びにそのプログラム
US8189505B2 (en) Transmission power control method and mobile station
EP1511192A1 (en) Base station device and packet transmission power control method
US20060062167A1 (en) Hybrid ARQ technique for data transmission
JPWO2004075589A1 (ja) 無線基地局及び移動通信システム
US20120157152A1 (en) Uplink Power Control
JP4069034B2 (ja) 無線送信装置、無線受信装置、無線通信システム、無線送信方法及び無線受信方法
JP4880590B2 (ja) 確認応答をマッピングするarq通信システム及び方法
WO2006030647A1 (ja) 移動局装置および上り回線伝送レート制御方法
JP2013162519A (ja) 無線通信システムにおけるデータ送信方法及び装置
EP2015499A2 (en) Retransmitting control method and transmitting device
CN101247211B (zh) 通信装置、无线通信终端、无线基站以及通信方法
KR101128238B1 (ko) 통신 방법
US20080056180A1 (en) Method of determining a serving sector switch with minimum forward link MAC channel feedback in a wireless communication system
CN107409019A (zh) 提早harq分组重传
KR100737075B1 (ko) 무선 기지국 및 그 데이터 송신 방법
JP2004297118A (ja) 通信端末、無線通信システム及び無線通信方法
JP2011139243A (ja) 移動端末および送信電力制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005753451

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11575017

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580030662.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005753451

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11575017

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载