+

WO2006028197A1 - 抗a33抗体 - Google Patents

抗a33抗体 Download PDF

Info

Publication number
WO2006028197A1
WO2006028197A1 PCT/JP2005/016576 JP2005016576W WO2006028197A1 WO 2006028197 A1 WO2006028197 A1 WO 2006028197A1 JP 2005016576 W JP2005016576 W JP 2005016576W WO 2006028197 A1 WO2006028197 A1 WO 2006028197A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
seq
variable region
acid sequence
ferm
Prior art date
Application number
PCT/JP2005/016576
Other languages
English (en)
French (fr)
Inventor
Shiro Kataoka
Takafumi Tomura
Noriko Otani
Original Assignee
Kirin Beer Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Beer Kabushiki Kaisha filed Critical Kirin Beer Kabushiki Kaisha
Priority to EP05778552A priority Critical patent/EP1801208A4/en
Priority to CN2005800298522A priority patent/CN101010427B/zh
Priority to US11/629,779 priority patent/US7579187B2/en
Priority to AU2005280975A priority patent/AU2005280975B2/en
Priority to CA2579391A priority patent/CA2579391C/en
Priority to JP2006535830A priority patent/JP4088655B2/ja
Publication of WO2006028197A1 publication Critical patent/WO2006028197A1/ja
Priority to HK07111099.0A priority patent/HK1105993A1/xx
Priority to US12/053,461 priority patent/US7432359B2/en
Priority to US12/421,431 priority patent/US20090299039A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to anti-A33 antibodies that specifically bind to A33 antigen. Furthermore, the present invention relates to a preventive or therapeutic agent for diseases caused by cells expressing A33, particularly a malignant tumor therapeutic agent, comprising an anti-A33 antibody as an active ingredient.
  • Cancer is the leading cause of death in Japan, and the number of patients is increasing year by year, and the development of highly effective and safe drugs and treatment methods is strongly desired. Among them, colorectal cancer accounted for 12.2% of all cancers in the survey in fiscal 1999, and the death rate was 3rd for men and 2nd for women. In the future, colon cancer is expected to overtake stomach cancer with morbidity and mortality.
  • Gastric cancer
  • tumor-specific antigens are useful for the treatment of pathological conditions that exhibit the characteristics of heterologous cells.
  • the antibody binds to a tumor-specific antigen, a protein expressed on the cell surface, and effectively targets such cells.
  • tuximab monoclonal antibodies such as humanized antibodies targeting Her2 / neu have been used as target diseases for malignant tumors, and their therapeutic effects have been observed.
  • An antibody is characterized by a long half-life in blood and high specificity to an antigen, and is particularly useful as an antitumor agent. For example, in the case of an antibody that targets a tumor-specific antigen, it is estimated that the administered antibody accumulates in the tumor.
  • mouse antibodies were used as target animals for the first antibody production.
  • the use of mouse antibodies in vivo is limited for a number of reasons.
  • Mouse antibodies that are recognized as foreign by human hosts elicit a so-called “human anti-mouse antibody” or “HAMA” response (see Schiff et al., Cane. Res. (1985), 45, 879-885). ).
  • HAMA human anti-mouse antibody
  • the Fc portion of mouse antibodies is not effective in stimulating human complement or cytotoxic activity.
  • Chimeric antibodies have been developed as one approach to avoid such problems (see European patent applications 120694 and 125023).
  • a chimeric antibody contains a portion of an antibody from two or more species (such as the variable region of a mouse antibody and the constant region of a human antibody). The advantages of such a chimeric antibody retain the characteristics of a mouse antibody, but have human Fc and can stimulate human complement or cytotoxic activity. However, such chimeric antibodies still elicit a “human anti-chimeric antibody” or “HACA” response (see Bruggemann, et al., J. Exp. Med., 170, 2153-2157, 1989).
  • CDR complementarity determining region
  • a mouse anti-A33 antibody and an arsenic antibody against an antigen that is a class I cell membrane protein called “A33” and one of the Ig superfamily and a tumor-specific antigen has been reported (Patent Document 1 and Non-Patent Document). 1 to 5).
  • This antigen is It is known to be related to colon cancer and gastric cancer (see Patent Document 2, Patent Document 3 and Non-Patent Document 6).
  • Phase I clinical trials have been conducted for colon cancer patients using this humanized A33 antibody (see Non-Patent Documents 4 and 5). In the former report of single antibody administration, partial reaction was observed in 1 out of 11 patients who could receive antibody.
  • the humanized A33 antibody showed a very high tumor response in Phase I clinical trials, but both trials produced human anti-humanized antibodies (ie “HAHA”) with a high probability of more than 50%. It was done. Interestingly, HAHA was not observed in patients with high tumor reactivity.
  • Patent Document 1 US Patent No. 5958412
  • Patent Document 2 US Pat.
  • Patent Document 3 US Patent No. 5160723
  • Non-Patent Document 1 King DJ et a British J. Cancer (1995) 72, 1364-1372
  • Non-Patent Document 2 Welt S, et al., J. Clinical Oncology (1994), 12, 1561-1571
  • Non-Patent Document 3 Welt S. et al., J. Clinical Oncology (1996), 14, 1787-1797
  • Non-patent document 4 Welt S. et al., Clinical Cancer Res. (2003), 9, 1338-1346
  • Non-patent document 5 Welt S. et al., Clinical Cancer Res. (2003), 9, 1347-1353
  • the object of the present invention is to convert tumor cells that can bind to and express A33 to ADCC or CDC. It is intended to provide a preventive or therapeutic agent for various malignant tumors such as solid tumors that are currently difficult to treat by developing antibodies that specifically attack using the immune system of and that does not produce HAHA.
  • antibodies targeting the A33 antigen are considered suitable for application as antitumor agents. Moreover, antibodies that do not produce HAHA may have a higher antitumor effect. Therefore, as a result of earnest research on the production of antibodies against A33, the present inventors succeeded in obtaining monoclonal antibodies that exhibit antitumor effects against cancer cells expressing A33, and further, in the variable region of the monoclonal antibodies. The sequence was specified and the present invention was completed.
  • the present invention in its first aspect, is preferably produced by a monoclonal antibody that binds to A33 produced by a mouse-mouse hybridoma, such as 263A17, 125M10AA 125M165 arm, 125M96ABA, 125N26F6AA, 125Q47BA, 125Q54AAAA or 125R5AAAA.
  • Monoclonal antibodies that are antibodies or functional fragments thereof are provided.
  • the type of monoclonal antibody produced by 263A17, 125M10AA, 125M165DAAA, 125M96ABA, 125 ⁇ 6AA, 125Q47BA, 125Q54AAAA or 125R5AAAA is human immunoglobulin G (IgG).
  • 125M10AA, 125M165DAAA, 125M96ABA, 125N2 & F6AA, 125Q47BA, 125Q54AAAA or 125R5AAAA of the above-mentioned high pridors are listed on 1 August 24, 2004, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (Tsukuba Sakai Higashi, Ibaraki, Japan) Autonomous number 1 in the middle of the 6th), the order number FERM BP-10107 (for identification: M10), FERM BP-10106 (for identification: M165), FERM BP-10108 (for identification) Indication for: M96), FERM BP-10109 (Indication for identification: N26), FERM BP-10104 (Indication for identification: Q47), FERM BP-10145 (Indication for identification: Q54) and FERM Deposited as BP-10103 (Indication for identification: R5).
  • the antibody of the present invention is an antibody or a functional fragment thereof having a variable region of an antibody produced by the above-mentioned hyperdrioma.
  • the antibody of the present invention also includes an antibody with a modified subclass, wherein the antibody produced by hybridoma 263A17 has a subclass of human IgG1, Human IgG2, human IgG3 or human IgG4 antibody or functional fragment thereof, antibody produced by hybridoma 125M10AA and subclass of human IgG1, human IgG2, human IgG3 or human IgG4 or functional fragment thereof, Antibody produced by the domain 125M165DAAA and subclass is human IgGl, human IgG2, human IgG3 or human IgG4 or a functional fragment thereof, antibody produced by the hybridoma 125M96ABA and subclass is human IgGl, human IgG2 , An antibody that is human IgG3 or human IgG4 or a functional fragment thereof, or an antibody produced by Hypridoma 125N26F6AA, whose subclass is human IgG1, human IgG2, human IgG3 or human IgG4, or
  • the present invention relates to an antibody that binds to A33 or a functional thereof, comprising the variable region of an antibody produced by Hyperidoma 263A17, 125M10AA, 15M165DAAA, 125M96ABA, 125N26F6AA, 125Q47BA, 125Q54AAAA, or 125R5AAAA Provide a fragment.
  • the antibody of the present invention is an antibody having a variable region of the amino acid sequence shown in SEQ ID NOs: 23 and 25 or a functional fragment thereof. In another embodiment of the present invention, the antibody of the present invention is an antibody having a variable region of the amino acid sequence shown in SEQ ID NOs: 27 and 29 or a functional fragment thereof. In another embodiment of the present invention, the antibody of the present invention is an antibody having a variable region of the amino acid sequence shown in SEQ ID NOs: 31 and 33 or a functional fragment thereof. In another embodiment of the present invention, the antibody of the present invention is an antibody having a variable region of the amino acid sequence shown in SEQ ID NOs: 35 and 37 or a functional fragment thereof.
  • the present invention further provides, in another aspect, the above-described antibody or a functional fragment thereof, wherein the antibody suppresses the growth of a tumor (eg, derived from a colon cancer cell line C0L0205 cell transplanted into a nude mouse) or Provide functional fragments thereof.
  • a tumor eg, derived from a colon cancer cell line C0L0205 cell transplanted into a nude mouse
  • the amount of the antibody of the present invention or a functional fragment thereof administered to a test animal carrying a tumor for example, a tumor-bearing experimental animal such as a colon cancer cell-bearing mouse model having a body weight of 20 g
  • the dose is 100 g / body or 5 mg / kg, preferably 10 g / body or 0.5 mg / kg.
  • the antibody of the present invention has any of the following characteristics.
  • ADCC antibody-dependent cellular cytotoxicity
  • CDC complement-dependent cytotoxicity
  • the present invention further provides, in another embodiment, Hypridoma 125M10AA (Accession Number FE ⁇ BP-10107), 125M165DAAA (Accession Number BP BP-10106), 125M96ABA (Accession Number FERM BP-10108), 125N26F6AA (Accession Number FERM BP ⁇ 10109), 125Q47BA (Accession No.FERM BP-10104), 125Q54AAAA (Accession No.FERM BP-10105) and Hypridoma 125R5AAAA (Accession No.FERM BP-10103)
  • a nucleic acid encoding the functional fragment of the antibody or the antibody, a protein encoded by the nucleic acid, an expression vector having the nucleic acid, Escherichia coli, yeast cells, insect cells, mammalian cells having the expression vector And a host selected from the group consisting of plant cells and mammals.
  • the present invention further provides, in another embodiment, a gene encoding an anti-A33 monoclonal antibody from a hyperprideoma selected from the group consisting of hyperprideoma 263M7, 125M10AA, 125M165DAAA, 125M96ABA, 125N26F6AA, 125Q47BA> 125Q54AAAA and hyperprideoma 125R5AAAA
  • a gene encoding a variable region of a heavy chain amino acid sequence and a gene encoding a variable region of a light chain amino acid sequence are isolated, an expression vector having the gene is constructed, and the expression vector is introduced into a host.
  • the host is cultured, the monoclonal antibody is expressed, and the anti-A33 monoclonal antibody or a functional fragment thereof is collected from the resulting host, the culture supernatant of the host, or a culture of the host secretion.
  • the present invention further provides a preventive, therapeutic or diagnostic agent for tumors containing the antibody or functional fragment thereof as an active ingredient.
  • colon cancer colon cancer
  • rectal cancer stomach cancer, knee cancer, breast cancer, melanoma
  • renal cell cancer cervical cancer
  • endometrial cancer ovarian cancer
  • esophageal cancer prostate cancer
  • the present invention further relates to Hypridoma M96 (accession number: FE BP), an antibody that binds to A33, which recognizes the same epitope as that recognized by the antibody produced by Hypridoma M10 (Accession number: FE BP-10107).
  • FIG. 1A shows ADCC activity when each monoclonal purified antibody is used to target COL0205 cells.
  • FIG. 1B shows CDC activity when each monoclonal purified antibody is used to target C0L0205 cells.
  • FIG. 1C shows ADCC activity when each monoclonal purified antibody is used to target NCI-H508 cells.
  • FIG. 1D shows CDC activity when each monoclonal purified antibody is used to target NCI-H508 cells.
  • FIG. 2A shows ADCC activity when a recombinant antibody is used to target C0L0205 cells.
  • FIG. 2B shows CDC activity when a recombinant antibody is used to target COL0205 cells.
  • FIG. 2C shows ADCC activity when recombinant antibodies are used to target NCI-H508 cells.
  • FIG. 2D shows the CDC activity when recombinant antibodies are used to target NCI-H508 cells.
  • Fig. 3A is a photograph showing the results of Western plot analysis using purified and recombinant antibodies.
  • Fig. 3B is a photograph showing the results of Western plot analysis using purified and recombinant antibodies.
  • FIG. 4 is a photograph showing the results of immunohistochemical staining of human colon cancer tissue with purified antibody and recombinant antibody.
  • FIG. 5 is a photograph showing the results of immunohistochemical staining of human normal small intestine tissue with purified antibody and recombinant antibody.
  • FIG. 6 is a photograph showing the results of immunohistochemical staining of human normal colon tissue with purified antibody and recombinant antibody.
  • FIG. 7A is a graph showing the antitumor effect of recombinant antibodies cA33 and rec263 against a mouse tumor-bearing model when COL0205 cells are transplanted.
  • FIG. 7B shows the antitumor effect of recombinant antibodies cA33 and rec263 against a mouse tumor-bearing model when NCI-H508 cells are transplanted.
  • FIG. 7C is a diagram showing the antitumor effect of purified purified hybridoma antibodies 125M10AA, 125M165DAAA and 125M96ABA against a mouse tumor-bearing model when COL0205 cells are transplanted.
  • FIG. 7D is a graph showing the antitumor effect of recombinant antibodies recN26 and recM165 on mouse tumor-bearing models when NCI-H508 cells are transplanted.
  • FIG. 7E is a graph showing the antitumor effect of recombinant antibodies recN26 and recM165 against mouse tumor-bearing models when NCI-H508 cells were transplanted with Matriziel.
  • FIG. 7F is a graph showing the antitumor effect of recombinant antibodies recMlO and recQ54 against mouse tumor-bearing models when NCI-H508 cells were transplanted with Matriziel.
  • mouse anti-A33 antibody and humanized anti-A33 antibody have already been obtained, and mouse anti-A33 antibody (Wel t S. et al., J. Clini cal Oncology (1994), 12, 1561-1571 We lt S. et al., J. Cl onical Oncology (1996), 14, 1787-1797) or humanized A33 antibody (Wel t S. et al., Cl inical Cancer Res. (2003), 9, 1338-1346; Wel t S. et al., Clinical Cancer Res. (2003), 9, 1347-1353), reported that Phase I clinical trials were conducted in patients with colon cancer Has been.
  • HAMA or HAHA is produced in antibody-treated patients with a very high probability, and no subsequent clinical trials have been completed.
  • patients with tumor reactivity in clinical trials of humanized anti-A33 antibody failed to produce HAHA.
  • the novel rabbit anti-A33 monoclonal antibody of the present invention is a complete rabbit antibody, and the antigenicity against a portion consisting of a mouse sequence, which is always a problem with mouse antibodies or humanized antibodies, has already been avoided. That is, in the above-mentioned clinical trial reports, HAHA was produced because a humanized antibody was used. However, since the novel human anti-A33 monoclonal antibody of the present invention is a fully human antibody, the antigenicity of the antibody is avoided, and HAHA is Since it is not produced, a high antitumor effect can be expected for colon cancer patients.
  • Immunoglobulin G (IgG), A (IgA), E (IgE), and M (IgM) are used as the antibody class, and IgG is preferred.
  • IgGK IgG2, IgG3, and IgG4 are used as the IgG subclass, preferably IgGl, IgG2, and IgG4, and more preferably IgGl.
  • the “antibody that binds to A33” in the present invention is reactive to A33 or a part thereof. Or an antibody that recognizes A33 or a part thereof.
  • “Functional fragment” means a part (partial fragment) of an antibody that retains at least one action of an antibody on an antigen. Specifically, F (ab ′) 2 , Fab ′ , Fab, Fv, disulfide bond Fv, single chain Fv (scFv), and polymers thereof [DJ King., Applicat ions and Engineering of Monoclonal Ant ibod ies., 1998 TJ Internat ional Ltd ].
  • a “functional fragment” is a fragment of an antibody that can bind to an antigen.
  • baboon antibody means an antibody that is an expression product of a human-derived antibody gene.
  • a human antibody can be obtained by introducing a human antibody locus as described below and administering an antigen to a transgenic animal having the ability to produce a human-derived antibody. Examples of the transgenic animal include mice.
  • a method for producing a mouse capable of producing a human antibody is described in, for example, International Publication No. W002 / 43478.
  • Examples of the antibody of the present invention include various antibodies that exhibit an antitumor effect at a low concentration against cancer cells expressing A33, which are described in Examples below.
  • the antibody of the present invention includes a heavy chain having an amino acid sequence in which one or several amino acids are deleted, substituted, or added in each amino acid sequence of a heavy chain and / or a light chain constituting the antibody. Alternatively, a monoclonal antibody consisting of a light chain is also included.
  • the partial modification (deletion, substitution, insertion, addition) of the amino acid as described above is performed by partially modifying the base sequence encoding the amino acid sequence. Can be introduced.
  • This partial modification of the nucleotide sequence can be introduced by a conventional method using a known site-specific mutagenesis method [Proc Natl Acad Sci USA., 1984 Vol 81 : 5662].
  • the antibody means that all regions including the heavy chain variable region and the heavy chain constant region constituting the immunoglobulin and the light chain variable region and the light chain constant region are derived from the gene encoding the immunoglobulin. It is.
  • the antibodies of the present invention include antibodies having any immunoglopurin class and isotype.
  • the anti-A33 antibody of the present invention can be produced by the following production method. That is, for example, A33, a part thereof or a part thereof and an appropriate agent for enhancing the antigenicity of the antigen Conjugates with carrier substances (eg bovine serum albumin), together with immunostimulants (eg, Freund's complete or incomplete adjuvant), if necessary, for non-human mammals such as baboon antibody producing transgenic mice Immunize.
  • A33 can be either natural A33 or recombinant A33.
  • immunization can be carried out by introducing a gene encoding A33 and administering animal cells overexpressing A33 on the cell surface.
  • Monoclonal antibodies are obtained by culturing a hybridoma obtained by fusing an antibody-producing cell obtained from an immunized animal with a myeloma cell (myeloma cell) that does not have autoantibody-producing ability, and used as an antigen for immunization. It can be obtained by selecting a clone that produces a monoclonal antibody exhibiting a specific affinity for it.
  • the antibodies of the present invention may be modified by genetic engineering modifications well known to those skilled in the art (eg, European patents).
  • ADCC is induced by binding to the antibody constant region via Fc Receptor expressed on the surface of Macrophage, NK cells, neutrophils, etc., and activation of the recognized cell.
  • CDC refers to the cytotoxic activity caused by the activated complement system when an antibody binds to an antigen.
  • an anti-cancer drug if the antibody alone has no cell death-inducing activity, it depends on antibody-dependent cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) via Fc receptors.
  • ADCC antibody-dependent cytotoxicity
  • CDC complement-dependent cytotoxicity
  • An antibody having antitumor activity is desirable, but if the antibody alone has cell death-inducing activity, an antibody having a low degree of binding to the Fc receptor may be more desirable.
  • antibodies that do not have ADCC activity or CDC activity are desirable, such as when sterically inhibiting only the binding between T cells and antigen-presenting cells.
  • ADCC activity or CDC activity can cause toxicity
  • an antibody that avoids the activity causing toxicity by changing the Fc portion mutation or subclass may be desirable.
  • Myeloma cells are prepared (4) ) Cell fusion between antibody-producing cells and myeloma, (5) Selection of the hyperidoma group producing the desired antibody, (6) Division into single cell clones (cloning), (7) In some cases, Culture of high-pridoma to produce a large amount of monoclonal antibodies, or breeding of animals transplanted with high-pridoma. (8) Examination of physiological activity and recognition specificity of monoclonal antibodies produced in this way. Is a sign test Tests for drug properties, etc.
  • A33 has a polymorphism
  • the antibody of the present invention recognizes and binds to all the currently known A33 polymorphisms, so that the present invention can be used regardless of differences in the A33 type of patients.
  • Therapeutic / preventive agents containing these antibodies work effectively.
  • a method for producing an anti-A33 monoclonal antibody will be described in detail according to the above steps.
  • the method for producing the antibody is not limited thereto, and for example, antibody-producing cells other than spleen cells and myeloid cells may be used. it can.
  • a transformant itself obtained by incorporating DNA encoding A33 into an expression vector for animal cells, introducing the expression vector into animal cells, and the like can be used.
  • the primary structure of the A33 protein is known [GenBank access ion No. NPJ05305, SEQ ID NO: 12]
  • a peptide is chemically synthesized from the amino acid sequence of A33 by a method well known to those skilled in the art, It can also be used as 'As an immunogen, cells in which the entire length of A33 is introduced into FM3A cells or L929 cells and A33 is excessively expressed on the cell surface are also effective.
  • p A EGFP-N1-A33 is a DNA encoding the A33 protein, and is an animal cell expression vector p A EGFP-N1 (modified pEGFP-N 1 [Becken. Dickinson-Biosciences, Clontech] In which the region encoding EGFP protein is deleted).
  • DNA encoding A33, vector, host, etc. are not limited to these.
  • a transformed strain obtained by transforming FM3 A cells or L929 cells with P ⁇ EGFP-N 1 -A33 is cultured, and neo-obtained in cells into which the pAEGFP-N1 vector has been inserted. It is possible to produce FM3A cells or L929 cells that overexpress A33 on the cell surface using the characteristics of mycin resistance and confirmation of A33 expression using mouse A33 antibody (AKC No. HB-8779) as an index. it can.
  • the antigen obtained in (1) is mixed with an adjuvant such as Freund's complete or incomplete adjuvant, or karimiyoban, and an experimental animal is immunized as an immunogen.
  • an adjuvant such as Freund's complete or incomplete adjuvant, or karimiyoban
  • Transgenic mice having the ability to produce human-derived antibodies are most preferably used as experimental animals. Such mice are described in Totsuka et al. [Tomizuka. Et al., Proc Natl Acad Sc i USA., 2000 Vol 97: 722].
  • the immunogen administration method for mouse immunization may be subcutaneous injection, intraperitoneal injection, intravenous injection, intradermal injection, intramuscular injection, footpad injection, but intraperitoneal injection, footpad injection or intravenous injection Is preferred. Immunization can be performed once or multiple times at appropriate intervals (preferably at intervals of 2 to 4 weeks). Thereafter, the antibody titer against the antigen in the serum of the immunized animal is measured, and if an animal with a sufficiently high antibody titer is used as a source of antibody-producing cells, the effect of the subsequent operation can be enhanced. In general, antibody-derived cells derived from animals 3 to 5 days after the final immunization are preferably used for subsequent cell fusion.
  • the antibody titers used here include radioisotope immunoassay (hereinafter referred to as “RIA method”), solid-phase enzyme immunoassay (hereinafter referred to as “ELISA method”), fluorescent antibody method, passive blood cell Various known techniques such as the agglutination reaction method can be mentioned, but the RIA method or the ELISA method is more preferable from the viewpoint of detection sensitivity, rapidity, accuracy, and possibility of automation of operation.
  • RIA method radioisotope immunoassay
  • ELISA method solid-phase enzyme immunoassay
  • fluorescent antibody method passive blood cell
  • passive blood cell Various known techniques such as the agglutination reaction method can be mentioned, but the RIA method or the ELISA method is more preferable from the viewpoint of detection sensitivity, rapidity, accuracy, and possibility of automation of operation.
  • Measurement of the antibody titer in the present invention can be carried out according to the procedure described below, for example, by ELISA.
  • a solid phase surface such as a 96-well plate for ELISA, and the solid surface on which no antigen is adsorbed is covered with a protein unrelated to the antigen, such as ushi serum albumin (BSA).
  • BSA ushi serum albumin
  • the sample is contacted with a serially diluted sample (eg, mouse serum) as a primary antibody, and the anti-A33 antibody in the sample is bound to the antigen.
  • an antibody against a human antibody labeled with an enzyme as a secondary antibody is added and bound to the human antibody.
  • the substrate of the enzyme is added, and the change in absorbance due to color development based on the decomposition of the substrate is measured. Is calculated.
  • mice having no autoantibody-producing ability derived from mammals such as mice, rats, guinea pigs, hamsters, rabbits or humans can be used.
  • cell lines obtained from mice for example, 8-Azaguanine resistant mice
  • DMEM Dulbecco's Modified medium
  • normal medium eg, DMEM medium containing 10% FCS
  • Antibody-producing cells are plasma cells and lymphocytes that are precursor cells thereof, which may be obtained from any part of the individual, and generally include the spleen, lymph nodes, bone marrow, tonsils, terminal blood, or these Spleen cells are most commonly used, although they can be obtained from appropriate combinations.
  • Spleen cells and myeloma are thoroughly washed with serum-free medium (eg, DMEM) or phosphate buffered saline (hereinafter referred to as “PBS”), and the ratio of the number of spleen cells to myeloma is 5: 1
  • serum-free medium eg, DMEM
  • PBS phosphate buffered saline
  • IL-6 normal medium
  • HAT hypoxanthine, aminopterin and thymidine
  • IL-6 chick interleukin-6
  • the myeloma cell is an 8-azaguanine resistant strain, that is, when it is a hypoxanthine'guanine-phospholiposyltransferase (HGPRT) deficient strain
  • HGPRT hypoxanthine'guanine-phospholiposyltransferase
  • the myeloma cell that has not fused, and the fusion cell between myeloma cells Cannot survive in medium containing HAT.
  • fused cells between antibody-producing cells, or a hyperidoma between antibody-producing cells and myeloma cells can survive, but fused cells between antibody-producing cells have a lifetime. Therefore, by continuing the culture in the HAT-containing medium, only the hyperidoma, which is a fusion cell of the antibody-producing cell and the myeloma cell, survives, and as a result, the hyperidoma can be selected.
  • Hypridoma grown in colonies change the medium to a medium in which aminopterin is removed from the HAT medium (hereinafter referred to as “HT medium”). Thereafter, a part of the culture supernatant is collected, and the anti-A33 antibody titer is measured by, for example, ELISA.
  • HT medium a medium in which aminopterin is removed from the HAT medium
  • ELISA anti-A33 antibody titer
  • the method using the 8-azaguanine-resistant cell line has been exemplified above, but other cell lines can be used depending on the selection method of the hyperidoma, and in this case, the composition of the medium used also changes.
  • This cloning method includes limiting dilution, in which one well of the plate is diluted so that one hyperidoma is contained, the soft agar method in which the colonies are collected by culturing in a soft agar medium, and a micromanipulator. Examples include the method of taking out one cell at a time and culturing it, and the “So-Ichiyu clone” in which one cell is separated by Cell Soryu, but the limiting dilution method is simple and often used.
  • cloning by limiting dilution Repeat 2 to 4 times and select the one with stable antibody titer as the anti-A33 monoclonal antibody-producing hybridoma strain.
  • mouse anti-A33 monoclonal antibody of the present invention mouse-mouse hyperpridoma 125M10AA ⁇ 125M165DAAA, 125M96ABA ⁇ 125N26F6AA, 125Q47BA, 125Q54AAAA, or 125R5AAAA, is an incorporated administrative agency industry on August 24, 2004 The Research Center for Biological Biology (in Japan, 1st, 1st, 1st, 1st, 1st, Tsukuba City, Ibaraki Prefecture, Japan), with the accession numbers FERM BP-10107 (indication for identification: M10), FERM BP- 10106 (Indication for identification: M165), FE BP-10108 (Indication for identification: M96), FERM BP-10109 (Indication for identification: N26), FERM BP-10104 (Indication for identification : Q47), FERM BP-10105 (Indication for identification: Q54) and FERM BP-10103 (Indication for identification: R5).
  • the hybridoma is cultured by changing the medium from HT medium to normal medium.
  • Large-scale culture is performed by rotary culture using a large culture bottle, spinner culture, or culture using a holo-fiber system.
  • An anti-A33 monoclonal antibody can be obtained by purifying the supernatant in this large-scale culture using a method well known to those skilled in the art, such as gel filtration.
  • ascites containing a large amount of anti-A33 monoclonal antibody can be obtained by growing the hybridoma in the abdominal cavity of the same strain (e.g. BALB / c) or nu / nu mouse, rat, guinea pig, hamster or rabbit.
  • a commercially available monoclonal antibody purification kit for example, AbTrap GI I kit; manufactured by Amersham Pharmacia Piotech
  • the like can be used as a simple purification method.
  • the monoclonal antibody thus obtained has a high antigen specificity for A33.
  • the isotype and subclass of the monoclonal antibody thus obtained can be determined as follows. 'First, the identification method
  • the octelloni method is simple, but concentration is necessary when the concentration of the monoclonal antibody is low.
  • the ELISA method or the RIA method is used, the culture supernatant is reacted with the antigen-adsorbing solid phase as it is, and further, antibodies corresponding to various immunoglobulin isotypes and subclasses are used as secondary antibodies. It is possible to identify isotypes and subclasses.
  • protein quantification can be carried out by a foreign lawy method, a method of calculating from the absorbance at 280 nm [1.4 (OD280) nimunoglopurin lmg / mL], and the like.
  • Identification of a monoclonal antibody recognition epitope can be performed as follows. First, various partial structures of molecules recognized by monoclonal antibodies are prepared. In preparing the partial structure, a method for preparing various partial peptides of the molecule using a known oligopeptide synthesis technique, and a DNA sequence encoding the target partial peptide using a gene recombination technique are suitable expression plasmids. However, it is common to use both in combination for the above purpose. For example, after preparing a series of polypeptides sequentially shortened by an appropriate length from the C-terminus or N-terminus of an antigen protein using genetic recombination techniques well known to those skilled in the art, the reactivity of monoclonal antibodies against them is examined. Determine the rough recognition site.
  • kits for example, SPOTs kit (manufactured by Dienosis Biotechnologies), a series of multipin peptide synthesis kits using multipin synthesis method (manufactured by Chiron)) Etc.
  • SPOTs kit manufactured by Dienosis Biotechnologies
  • a series of multipin peptide synthesis kits using multipin synthesis method manufactured by Chiron
  • a gene encoding rabbit monoclonal antibody is cloned from antibody-producing cells such as hypridoma and incorporated into an appropriate vector, which is then used as a host (eg, mammalian cell line, E. coli, yeast cell, insect cell, plant cell). Etc.) and the residue Recombinant antibodies produced using gene recombination technology can also be prepared
  • the present invention relates to a nucleic acid comprising an antibody gene sequence possessed by a hyperprideoma that produces the antibody of the present invention, particularly a heavy chain variable region and a light chain variable region of an antibody produced by the below-described hyperpride monomer of the present invention.
  • nucleic acids are also included.
  • the nucleic acid includes DNA and RNA.
  • DNAs encoding the L chain V region, L chain C region, H chain V region and H chain C region of the monoclonal antibody are prepared by PCR or the like. Is adopted.
  • an oligo DNA designed from an anti-A33 antibody gene or an amino acid sequence can be used, and a DNA prepared from a hybridoma can be used as a cage. These DNAs are incorporated into one appropriate vector and introduced into a host for expression, or each of these DNAs is incorporated into an appropriate vector for co-expression.
  • a phage or a plasmid capable of autonomously growing in a host microorganism is used.
  • plasmids include plasmids derived from E. coli, Bacillus subtilis, or yeast, and examples of phage MA include ⁇ phage.
  • the host used for transformation is not particularly limited as long as it can express the target gene. Examples include bacteria (E. coli, Bacillus subtilis, etc.), yeast, animal cells (COS cells, CH0 cells, etc.), and insect cells.
  • bacteria E. coli, Bacillus subtilis, etc.
  • yeast yeast
  • animal cells COS cells, CH0 cells, etc.
  • insect cells insect cells.
  • Methods for introducing a gene into a host are well known, and any method (for example, a method using calcium ion, an electoporet method, a spheroplast method, a lithium acetate method, a calcium phosphate method, a lipofuxion method, etc.) can be mentioned.
  • Examples of the method for introducing a gene into an animal described later include a microinjection method, a method for introducing a gene into ES cells using a lipopoxion method, and a nuclear transfer method.
  • the antibody is collected by disrupting the cells or cells.
  • the target antibody is produced outside the cells or cells, use the culture medium as it is, or remove the cells or cells by centrifugation or the like. Thereafter, the target antibody is isolated and purified from the culture by using a general biochemical method using various chromatographs used for protein isolation and purification alone or in appropriate combination. Can do.
  • the animal host in which the gene of the target antibody has been incorporated into the endogenous gene such as Transgeneic Cushion, Transgeneic Goat, ⁇ Lanceienic Hedge or Transgenic Beverage. It is also possible to obtain a large amount of monoclonal antibodies derived from the antibody gene from milk produced and secreted from the transgenic animal (Wright, G., et al.
  • Hypridoma When cultivating Hypridoma in vitro, the hybridoma is grown, maintained and stored according to various conditions such as the characteristics of the cell type to be cultured, the purpose of the research and the culture method, etc. It can be carried out using a known nutrient medium such as that used to produce null antibodies or any nutrient medium prepared and prepared from a known basic medium.
  • the antibody of the present invention has any of the following characteristics.
  • ADCC antibody-dependent cellular cytotoxicity
  • CDC complement-dependent cytotoxicity
  • antibodies examples include antibodies produced by the hybridomas 263A17, 125M10AA, 125M165 ⁇ , 125M96ABA, 125N26F6AA, 125Q47BA, 125Q54AAAA, and hyperidoma 125R5AAAA, and 125M10AA, 125M165DAAA. As of August 24, 2004, 5AAAA will be assigned to the Patent Organism Depositary Center of the National Institute of Advanced Industrial Science and Technology (1st East, 1st Street, Tsukuba City, Ibaraki, Japan, 1st 6th).
  • Formulations containing the human anti-A33 antibody of the present invention are also included within the scope of the present invention.
  • Such formulations preferably contain a physiologically acceptable diluent or carrier in addition to the antibody, and may be a mixture with other antibodies or other agents such as antibiotics.
  • Suitable carriers include, but are not limited to, physiological saline, phosphate buffered saline, phosphate buffered saline glucose solution, and buffered saline.
  • the antibody may be freeze-dried (freeze-dried) and reconstituted by adding a buffered aqueous solution as described above when needed.
  • Such prophylactic or therapeutic agents can be administered in various forms, such as tablets, capsules, granules, powders, syrups, etc. Oral administration or parenteral administration such as injection, infusion, suppository and the like can be mentioned.
  • oral administration is about 0.01 mg to 1000 ing per day for adults, which are administered once or divided into several times be able to.
  • parenteral administration about 0.01 mg to 1000 mg can be administered once by subcutaneous injection, intramuscular injection or intravenous injection.
  • the present invention also includes a method for preventing or treating the above-mentioned diseases using the antibody or pharmaceutical composition of the present invention, and the present invention further includes the use of the antibody of the present invention for the manufacture of a preventive or therapeutic agent for the above-mentioned diseases. Include.
  • Tumors that can be prevented or treated with the antibodies of the present invention or functional fragments thereof are colon cancer, colon cancer, rectal cancer, stomach cancer, knee cancer, breast cancer, melanoma, renal cell cancer, cervical cancer, endometrium Cancer, ovarian cancer, esophageal cancer, prostate cancer, testicular cancer, mesothelioma cancer, etc.
  • the tumor when applying the antibody of the present invention is not limited to one type, and may be a combination of multiple types of tumors. 3. Formulation example
  • the molecules of the present invention are provided for use as ampoules in sterile solutions or suspensions dissolved in water or other pharmacologically acceptable solutions.
  • a sterile powder preparation (preferably lyophilized the molecule of the present invention) may be filled in an ampoule and diluted with a pharmaceutically acceptable solution at the time of use.
  • Type Culture Collection (ATCC) No. HB-8779) was purchased and hypridoma was cultured according to the ATCC instruction manual. This hyperidoma was stored frozen. afterwards,
  • AS33 Hypridoma was conditioned to 10% Low IgG Fetal Bovine Serum (High Clone) -containing eRDF medium (Kyokuto Pharmaceutical). This acclimated high-pridoma is kept frozen. Existed.
  • Ushiinsulin (5 g / ml, manufactured by Gibco Beer Luel)
  • human transferrin (5 ⁇ g / ml, manufactured by Gibco PRL)
  • ethanol Miner (0.01 Sigma
  • sodium selenite 2.5xl (T 5 mM, Sigma)
  • 13 ⁇ 4 Low IgG Fetal Bovine Serum (Haikuguchi)
  • the culture supernatant was recovered and the concentration of the purified hybridoma-derived antibody in the recovered supernatant was measured by measuring the absorbance at 280 nm and calculating 1 mg / mL as 1.40 D.
  • Example 2 Preparation of chimeric anti-A33 antibody
  • a chimeric anti-A33 antibody in which the heavy chain and light chain constant regions were human IgG1 was prepared.
  • DMEM medium Gibco®
  • the total RNA was purified according to the protocol using the RNA extraction reagent IS0GEN (Nitsubon Gene), then 01 igotexTM-dT30 ⁇ Super> (Takara Bio)
  • the polyA + RNA was purified using the SMARi RACE cDNA Amplification Kit (Becton / Dickinson / Bioscience 'Clontech) using the resulting polyA + RNA (2.5MS) as a material. Cloning experiments were performed to obtain the variable region cDNA
  • reaction solution having the above composition was incubated at 70 ° C for 2 minutes, the following reagents and enzymes were added and incubated at 42 ° C for 1.5 hours to synthesize cDNA.
  • mouse anti-A33 antibody heavy chain hereinafter also referred to as heavy chain variable region and light chain (hereinafter, light chain also referred to as L chain) variable region DNA 3 ' PCR primer specific to each end (for H chain: GPAHvR3Nlie (5 '-GCC CTT GGT GCT AGC TGAAGAGAC GGT GAC CAG AGT CCC TTG-3') (SEQ ID NO: 1)), for L chain: GPALvR3Bsi, ( 5'-GTG CAC GCC GCT GGT CAG GGC GCC TG-3 ') (SEQ ID NO: 2)) and the UPM primer included in the SMART RACE cDNA Amplification Kit (prepared at the 5' end of the synthesized cDNA) Oligonucleotide complementary to the common sequence) is used as a primer set to amplify the H chain leader sequence and variable region (hereinafter also referred to as HV) and L chain leader sequence and variable
  • GSP Gene specific primers
  • the amplification reaction conditions for thermal cycling were as follows.
  • the amplified PCR fragment was recovered by ethanol precipitation, recovered by agarose gel electrophoresis, and purified by QIAduick Gel Extraction Kit (Qiagen), which is a DNA purification kit using a membrane.
  • Qiagen is a DNA purification kit using a membrane.
  • the purified HV and LV amplified fragments were subcloned into the PCR Blunt-T0P0 vector of Zero Blunt TOPO PCR Cloning Kit (manufactured by Invitrogen), respectively.
  • the plasmid DNA of the resulting clone was inserted into the base of insert MA. The sequence was analyzed.
  • M13FW (5′-GTAAAACGACGGCCAGTG-3 ′) (SEQ ID NO: 3) and M13RV (5′-CAG GAA ACA GCT ATG AC-3 ′) (SEQ ID NO: 4) were used as primers for determining the DNA base sequence.
  • the amino acid sequence of the antibody encoded in the determined HV and LV gene regions is the mouse anti-A33 antibody reported by KingD. J. et al. (Br J Cancer. 1995 Dec; 72 (6): 1364-72) Completely matched the amino acid sequence of the variable region.
  • CTTAGTT-3 ' (SEQ ID NO: 5) and primer GMHvR3Nhe (SEQ ID NO: 1)) were used to amplify mouse anti-A33 antibody HV by PCR (94 ° C 3 minutes ⁇ 94 ° C 10 seconds, 68 ⁇ 45 seconds)
  • the amplified fragment of HV was purified and then subcloned with PCI Blim ⁇ T0P0 vector.
  • the DNA base sequence analysis of the inserted portion of the subclone was performed, and a plasmid DNA having a sequence as designed that was not different from the caged gene sequence was selected.
  • the plasmid DNA is converted into restriction enzymes Sail and Nliel And digested with agarose gel electrophoresis to recover and purify about 440 bp of DNA.
  • the vector N5KG ⁇ Val Lark modified vector of I DEC Pharmaceuticals, N5KG1 (US patent 6001358) was similarly treated with restriction enzymes Sail and Nhel, and then dephosphorylated as Alkal.
  • restriction enzymes Sail and Nhel After treatment with ine Phosphatase (E. coli C75) (manufactured by Carabio Co., Ltd.), about 8.9 kb of DNA was recovered by agarose gel electrophoresis and a DNA purification kit. These two fragments were subjected to a ligation reaction with DNA Ligation Kit Ver. 2.1 (manufactured by Yubara Bio Inc.) and then introduced into E. coli DH5 Q! To obtain a transformant.
  • N5KGl_GPA33Hv (clone # 2), a clone into which the target HV was inserted, was selected by screening transformants.
  • this plasmid DNA was sequentially digested with restriction enzymes Bgl II and BsiWI, further dephosphorylated, and then subjected to an approximately 9.2 kb vector.
  • One DNA was purified.
  • plasmid DNA containing LV of mouse anti-A33 antibody was used as a saddle, and the LV region was amplified by PCR.
  • GPALv2FBgl (5′-AGA GAG AGA GAT CTC TCA CCA TGG GCA TCA AGA TGG AGT TTC AG-3,) (SEQ ID NO: 6) and GPALvR3Bsi (SEQ ID NO: 2) were used as a primer set for amplification.
  • the purified LV amplified fragment was subcloned with PCR 4 Blunt-T0P0.
  • DNA sequence analysis of the inserted portion was performed, and plasmid ⁇ A having a sequence as designed that was not different from the ⁇ type gene sequence was selected.
  • the DNA was digested with restriction enzymes Bglll and BsiWI, and about 400 b of DNA was recovered and purified by agarose gel electrophoresis.
  • This DM was ligated to the above-mentioned N5KG and A33Hv vector fragment digested with restriction enzymes Bglll and BsiWI, and introduced into E. coli to obtain a transformant.
  • the transformant was screened and a clone into which the target LV was inserted, N5KG and GPA33HvLv (clone # 2) were selected.
  • the finally obtained chimeric anti-A33 antibody expression plasmid DNA was purified in large quantities, and it was confirmed that there were no mutations in the L- and H-chain DNA fragment insertion fragments and the DNA base sequence around the insertion site.
  • the DNA encoding the heavy chain variable region and the light chain variable region of the chimeric anti-A33, and the amino acid sequences of the heavy chain variable region and the light chain variable region are shown below, respectively.
  • VPFAYWGQGT LVTYSSAS VPFAYWGQGT LVTYSSAS.
  • CAACAGAAAC CAGGGCAGTC TCCTAAAACA CTGATTTACT TGGCCTCCAA CCGGCACACT
  • the boundary between the antibody variable region and the antibody constant region in the heavy chain nucleic acid sequence is located between the 408th adenine (A) and the 409th guanine (G), and the heavy chain amino acid sequence (SEQ ID NO: 8).
  • the boundary between the signal sequence and the antibody variable region in the heavy chain nucleic acid sequence is located between the 57th thymine (T) and 58th guanine (G), and the heavy chain amino acid sequence (SEQ ID NO: 8 ) Is located between the 19th cysteine (C) and the 20th glutamic acid (E).
  • the nucleic acid sequence (SEQ ID NO: 7) of the variable region of the chimeric anti-A33 antibody heavy chain is from the 58th guanine (G) to the 408th adenine (A).
  • the amino acid sequence of the variable region of the heavy chain (SEQ ID NO: 8) is from the 20th glutamic acid (E) to the 6th serine (S).
  • the nucleic acid sequence (SEQ ID NO: 9) of the variable region of the light chain of the chimeric anti-A33 antibody is from the 73rd guanine (G) to the 393rd adenine (A).
  • the amino acid sequence of the light chain variable region (SEQ ID NO: 10) is from the 25th aspartic acid (D) to the 131st lysine (K).
  • Table 5 below shows the base sequence of the synthetic DNA.
  • the chimeric anti-A33 recombinant antibody expression vector thus prepared was introduced into a host cell to produce a recombinant antibody-expressing cell.
  • Host cells for expression include, for example, dhfr-deficient strains of CH0 cells (ATCC CRL-9096), CHO-Ras (Katakura Y., et al., Cytotecnology, 31: 103-109, 1999), HEK293T ( ATCC CRL-11268) is used.
  • the vector was introduced into the host cell by electroporation or lipofection.
  • electroporation approximately 2 g of the antibody expression vector was linearized with a restriction enzyme, and the gene was introduced into 4 ⁇ 10 6 CH0 cells under conditions of 350 V and 500 F using a Bio-Rad electroporator. l Seeded on a culture plate. Lipofection was performed according to the manual using LipofectAMINE Plus (Gibco BRL). After the introduction of the vector, a drug corresponding to the selection marker of the expression vector was added and the culture was continued. After confirming the colonies, antibody-expressing strains were selected by the method shown in Example 6. Antibody purification from the sorted cells was performed according to Example 8.
  • Example 3 Antigen preparation was performed according to Example 8.
  • an expression plasmid vector of A33 full-length amino acid was prepared.
  • Encoding A33]) NA was prepared by PCR.
  • a) Preparation of full-length A33 expression vector In order to prepare a full-length A33 expression vector, a plasmid vector pAEGFP-N1-GPA33 carrying cDNA encoding A33 was prepared. pAEGFP-N ⁇ GPA33 was prepared by the following method. Full-length A33 DNA (GenBankDNA NMJ05814: SEQ ID NO: 11, protein NP—005305: SEQ ID NO: 12), EcoRI sequence at its 5 'end, polymerase chain for adding Notl sequence and stop codon at its 3' end The reaction (PCR) was performed for modification. Becton Dickinson's Bioscience Hmnan purchased from Clontech
  • Colon Marathon-Ready cDNA is a saddle type, A33-F2 as a primer
  • ⁇ 33 incorporated into EGFP-N1-GPA33 encodes a 977 bp cDNA.
  • gene PCR PCR System 9700 manufactured by Perkin Elma Japan Co., Ltd. was used for reaction temperature control of all PCRs in the Examples.
  • pAEGFP-N1-GPA33 prepared in a) was introduced into two cell lines, FM3A cells (Ministry of Health, Labor and Welfare Research Resource Bank (JCRB) No. 0701) and L929 cells (ATCC No. CCL-1). Two types of A33-expressing cells were prepared.
  • FM3A cells the electro-volition method was used. 20 g of pAEGFP-N ⁇ A33 vector was introduced into 5 ⁇ 10 6 FM3A cells using a BTX electroboretor at 350 V and 950 F and seeded in a 6-well culture plate. . 37 ° (: After incubation for 48 hours under 5.0% carbon dioxide, G418
  • L929 cells were introduced using Trans IT-LT1 (manufactured by Yukara Bio). Gene transfer was performed by the manual method. After culturing at 37 ° C under 5.0% carbon dioxide for 24 hours, G418 (Gibco BRL) was added to lmg / iiiL and cultured for 1 week. As in the case of FM3A cells, the A33 antigen expressed on the cell membrane surface was confirmed using the culture supernatant of AS33 hypridoma. Flow cytometer using AS33 Hypridoma (ATCC No.
  • HB-8779 as primary antibody and R-pliycoerytlirin-labeled goat anti-mouse Ig gamma F (a) 2 antibody (Dakoichi) as secondary antibody FCM (manufactured by Becton Dickinson) was analyzed, and among the cells that had acquired G418 resistance in the transfected cells, cells expressing A33 on the cell membrane surface were selectively sorted.
  • FM3A cells that highly expressed A33 antigen protein were named FM3A / A33, and L929 cells were named L929 / A33.
  • the shA33EX-liFc protein was prepared for use in immunogens or ELI SA for antibody screening.
  • sM33EX-hFc a plasmid vector carrying the cDNA encoding the extracellular region of A33 pTracer-CMV- ImmanFc-A33EXR was made.
  • pTracer-CMV-humanFc-A33EXR was produced by the following method.
  • A33 DNA SEQ ID NO: 11
  • extracellular signal sequence including secretory signal sequence, EcoRI sequence at its 5 'end, and polymerase chain reaction (PCR) to add Notl sequence and stop codon at its 3' end Qualified.
  • PCR polymerase chain reaction
  • CTCGAGCGGCCGCCAGTTCATGGAGGGAGATCTGACG -3 '(SEQ ID NO: 15) was synthesized, and ⁇ -plus
  • PCR reaction of 30 cycles was performed.
  • the synthesized sequence was digested with EcoRI-Notl, isolated as an EcoRI-Notl fragment, and the pTracer-CMV-umanFc vector (modified pTracer-CMV [manufactured by Invitrogen Life Technologies), which had been cleaved with the same enzyme]
  • the plasmid obtained by ligating the FLAG and human IgGl Fc regions into plasmids (I and Apa I sites) was named pTracer-CMV-humanFc-A33EXR.
  • Oligonucleotides such as PCR primers were all synthesized using an automated DNA synthesizer (Model 3948; manufactured by PerkinElmer Co., Ltd., Japan Applied Biosystems) according to the manual [Matteucci, MD and Caruthers, MH (1981) J. Am. Chem. So 103, 3185-3191]. After the synthesis, each oligonucleotide was cleaved from the support and deprotected. The resulting solution was dried and dissolved in distilled water, and stored frozen at ⁇ 20 ° C. until use.
  • the SM33EX-hFc protein expression vector constructed in c) was introduced into a host cell to produce soluble extracellular A33 protein expression cells.
  • Host cells for expression include, for example, dhir deficient strains of CH0 cells (ATCC CRL-9096), CHO-as (KatakuraY., Et al., Cyto technology, 31: 103-109, 1999), HEK293T (ATCC CRL-11268) is used.
  • the vector was introduced into the host cells by electroporation or lipofection.
  • electro-bolition approximately 2 ⁇ g of shA33EX-hFc protein expression vector was linearized with restriction enzymes, and the gene was introduced into 4X10 6 CH0 cells using Bio-Rad electroplioreter under conditions of 350V and 500F. And seeded in a 96-well culture plate. Lipofection was performed according to the manual using LipoiectAMINE Plus (manufactured by Gibco Beerell). After the introduction of Vector 1, a drug corresponding to the selection marker of the expression vector was added, and the culture was continued.
  • the shA33EX-hFc protein was purified from the culture supernatant by the following method. s The culture supernatant containing the A33EX-hFc protein was assayed using Hitrap Protein A FF (Amersham Pharmacia Biotech), PBS as the adsorption buffer, 20 mM sodium citrate, 50 ⁇ sodium chloride ( ⁇ 2 .7) Made. . The elution fraction was adjusted to ppHH55..55 by adding 5500 mmMM solution of sodium natritriphosphate ((ppHH 77 .. 00)). It was. .
  • AA3333 Tatanpung protein solution is prepared using AAmmiiccoonn UUll tt rraa-1155 (manufactured by Amamikoncon Co., Ltd.). Replaced with PPBBSS, and the hole diameter is 00 .. One by one
  • the mouse used for immunization has a homozygous genetic background for both endogenous Ig heavy chain and / c light chain disruption, and a chromosome 14 fragment containing the human Ig heavy chain locus ( SC20) and human Ig / c chain transgene (KCo5) are retained simultaneously.
  • SC20 human Ig heavy chain locus
  • KCo5 human Ig / c chain transgene
  • This mouse was produced by crossing a strain A mouse with a human Ig heavy chain locus with a strain B mouse having a human Ig K chain transgene.
  • Strain A is a mouse strain that is homozygous for both endogenous Ig heavy chain and kappa light chain disruption and carries a descendant transferable chromosome 14 fragment (SC20) .
  • Strain B is a mouse strain (transgenic mouse) that is homozygous for both endogenous Ig heavy chain and / c light chain disruption and carries the human Ig / c chain transgene (KCo5).
  • KCo5 human Ig / c chain transgene
  • A33-expressing FM3A cells (1 X 10 7 cells / mouse) prepared in Example 3 with RIBI adjuvant (manufactured by Corixa) in a human antibody-producing mouse. And immunized for the first time. Since the first immunization, the same cells and RIBI adjuvant were immunized 8 times a week.
  • shA33EX-hFc protein 20 / ⁇ g / mouse was administered to the tail vein and 5 xg / mouse of Recombinant Human IL-6 was subcutaneously administered.
  • SM33EX-hFc protein 10 ig / mouse was mixed with CpG adjuvant (Qiagen) for the first immunization. Since the first immunization, the same protein and CpG adjuvant were immunized twice every two weeks, and then only the same protein was immunized two weeks later. Three days before the spleen acquisition described below, the SM33EX-hFc protein mouse mice were administered via the tail vein.
  • CpG adjuvant Qiagen
  • shA33EX-liFc protein 10_ig / mouse and A33-expressing FM3A cells were immunized intraperitoneally with RIBI adjuvant, and immunized 1 to 4 times every 2 weeks.
  • SM33EX-hFc protein 5 g / mouse was administered intraperitoneally.
  • the spleen was surgically obtained from the immunized mouse and 350 mg / mL sodium bicarbonate,
  • Serum-free DMEM medium (Gipco BRL) containing 50 units / mL penicillin and 50 g / mL streptomycin (hereinafter referred to as “serum-free DMEM medium”) placed in 10 mL, mesh (cell strainer: Falcon) ) Smashed with a spatula above. After centrifuging the cell suspension that passed through the mesh to precipitate the cells, the cells were washed twice with serum-free DMEM medium, then suspended in serum-free EM medium, and the number of cells was measured.
  • Hypridoma is selected from 10% FCS, IL-6 (lOng / mL) (or 10% Hypridoma cloning factor (hereinafter referred to as “HCF”: Biobase)) and hypoxanthine 00, amino This was carried out by culturing in an EM medium containing pterin (A) and thymidine (T) (hereinafter referred to as “HAT”: manufactured by Sigma). In addition, HT (manufactured by Sigma), 10% FCS, 10% FCS,
  • IL-6 (or 10% HCF) -containing orchid EM medium was used to make a single clone by the limiting dilution method.
  • the culture was performed in a 96-well microtiter plate (Becton Dickinson).
  • Screening The selection of the high-pridoma clones that produce anti-A33 rabbit monoclonal antibodies (screening) and the characterization of the human monoclonal antibodies produced by each of the hyperidomas are described in the enzyme-linked immunosorbent assay (ELISA) and flow cytometry (FMC) described below. ).
  • the name of the hybridized clone may represent the name of the antibody.
  • the following high-pridor clones represent single clones: 263A17, 125M10AA, 125M165DAAA, 125M96ABA, 125N26F6AA, 125Q47BA,
  • 125Q54AAAA and 125R5AAAA 1 5M10AA, 125M165DAAA, 125M96ABA, 125N26F6AA, 125Q47BA, 125Q54AAAA and 125R5AAAA are registered in the National Institute of Advanced Industrial Science and Technology Patent Biology Deposit Sen Yuichi (1st East, 1st Street, Tsukuba City, Ibaraki Prefecture, Japan) on August 24, 2004.
  • FERM BP-10107 (Indication for identification: M10), FERM BP-10106 (Indication for identification: M165), Fuji BP-10108 (Indication for identification: M96), FERM BP-10109 (Indication for identification: N26), FERM BP-10104 (Indication for identification: Q47), FERM BP-10105 (Indication for identification: Q54) and FERM ABP-10103 (Indication for identification: R5).
  • Example 6 Selection of clones producing human anti-A33 monoclonal antibody having human immunoglobulin chain (hlg T) and human immunoglobulin light chain / (Ig ⁇ )
  • the plate was washed twice with PBS containing 2% FCS, and TMB chromogenic substrate (manufactured by DAK0) was added to each well, and incubated at room temperature for 20 minutes.
  • 0.5M sulfuric acid 100 xL / well was added to each well to stop the reaction.
  • Absorbance at a wavelength of 450 ⁇ was measured with a microplate reader (1420 ARV0 multilabel counter: manufactured by WALLAC), and antibody-producing clones that showed a positive reaction were selected.
  • FM3A cells not expressing the A33 antigen were used as a negative control. That is, a culture supernatant that reacted with FM3A / A33 cells but did not react with FM3A cells was selected as an antibody-producing clone that showed a positive reaction.
  • the procedure was as follows. Add 50 liters of the shA33EX-Fc protein prepared in Example 3 to lg / ml carbonate buffer pH 9.4, and add to each well of a 96-well microplate for ELISA (Maxison ?, manufactured by Nunk). The shA33EX-hFc protein was adsorbed on the microplate by incubating at room temperature for 1 hour or overnight at 4 ° C. Next, discard the supernatant, add PBS to each well with 10% FCS, and incubate at 37 ° C for 1 hour to bind the sliA33EX-hFc protein. The part which is not done was blocked.
  • microplates were prepared in which each well was coated with SM33EX-hFc protein.
  • Each hybridoma culture supernatant (50 1) was added to each well, allowed to react at room temperature for 1 hour, and each well was washed twice with PBS containing 0.1% Tween20 (PBS-T).
  • PBS-T PBS containing 0.1% Tween20
  • a Hedge anti-human Ig / antibody 50 1 / well, manufactured by The Binding Site) labeled with horseradish radish xydase was added to each well and incubated at 37 ° C for 1 hour.
  • TMB chromogenic substrate solution manufactured by DAK0
  • 0.5M sulfuric acid 100 ⁇ 1 / well
  • Absorbance at a wavelength of 450 nm was measured with a microplate reader (VersaMax, manufactured by Molecular Devices), and antibody-producing clones that showed a positive reaction were selected.
  • FMC hyperidoma culture supernatant to human colon cancer cell line C0LO205 cells expressing A33 antigen was examined.
  • the COLO205 cell line was suspended in Staining Buf fer (SB) in PBS containing 0. ⁇ N 3 and 2 FCS at a concentration of 2 ⁇ lOVml.
  • the cell suspension 50 Zwell was dispensed into 96-wel round bottom plates (Becton Dickinson).
  • the culture supernatant (50 il l) of each hyperidoma was added and incubated for 30 minutes at ice temperature.
  • a negative IgG control antibody was prepared using a human IgGl antibody (manufactured by Sigma) to a concentration of 2 g / ml in a hybridoma culture medium, and incubated at 50 ° C for 30 minutes at ice temperature. .
  • RPE fluorescently labeled goat anti-human IgG F (ab ′) 2 antibody (Southern Biotech) 50 / i 1 was added and incubated at ice temperature for 30 minutes.
  • the suspension was suspended in 300 1 FACS buffer, and the average fluorescence intensity of each cell was measured with FACS (FACScal ibur, Becton Dickinson).
  • FACS Fluorescence intensity of each cell was measured with FACS (FACScal ibur, Becton Dickinson).
  • a microplate was prepared by coating each well with shA33EX-liFc protein. Next, it was washed twice with 0.1% Tween20-containing PBS (PBS-T), and each well was labeled with horseradish peroxidase, respectively.
  • Hedge anti-human IgGl antibody, Hedge anti-human IgG2 antibody Hedge anti-human IgG3 antibody or Hedge anti-human IgG4 antibody (1600, 6400, 25000, 25000-fold dilution, 50 / well, manufactured by The Binding Site, respectively) was added and incubated at room temperature for 1.5 hours.
  • substrate buffer (TMB, lOO ⁇ L / well, DAK0) was added to each well and incubated at room temperature for 20 minutes . Then 0.5M sulfuric acid (100 iL / well) was added to stop the reaction. Absorbance at a wavelength of 450 nm (reference wavelength 570 nm) was measured with a microplate reader (VersaMax, manufactured by Molecular Devices), and the subclass of each clone was determined. Since human anti-A33 antibodies place importance on ADCC and CDC activities, only those with subclass IgG1 were selected.
  • the human anti-A33 monoclonal antibody was purified from the culture supernatant of the hybridoma obtained from Example 6 by the following method.
  • Culture supernatant containing human anti-A33 monoclonal antibody was cultured in SFM medium (Invitrogen) containing 10% ultra low IgGFBS (Invitrogen).
  • Protein A Fast Flow gel (Amasitech) was purified using PBS as an adsorption buffer and 0.02M glycine buffer (PH3.6) as an elution buffer. The elution fraction was adjusted to pH 7.2 by adding lMTris ((8.0).
  • the prepared antibody solution is a Sephadex G25 desalting column (NAP column;
  • human colon cancer cell lines C0L0205, LoVo cells (ATCC No. CCL-229), LS174T cells (ATCC No. CL-188) and NCI-H508 cells (ATCC No. CCL-253) expressing A33 antigen The reactivity of each monoclonal antibody obtained in 8 was examined by FCM.
  • human colon cancer cell line HT-29 cells (ATCC No. HTB-38) not expressing A33 antigen were also used as negative control cells.
  • Each cell line was suspended in Staining Buf fer (SB) in PBS containing 0.1% NaN 3 2% FCS at a concentration of 2 ⁇ 10 6 / ml.
  • FITC fluorescent-labeled goat anti-human IgG F (ab ′) 2 antibody 50 1 manufactured by Southern Biotech was added and incubated at ice temperature for 30 minutes. After washing once with SB, the suspension was suspended in 3001 FACS buffer, and the average fluorescence intensity of each cell was measured with FACS (FACScan, manufactured by Becton Dickinson).
  • Example 8 Whether each monoclonal purified antibody obtained in Example 8 recognizes the same epitope as the mouse anti-A33 antibody was examined in a competition experiment using FCM.
  • the C0L0205 cell line was suspended at a concentration of 2 ⁇ 10 Vml in Staining Buffer (SB) of PBS containing 0.1% NaN 3 and 23 ⁇ 4 FCS. Cell suspension (50 1Z uel) was dispensed into 96-well round bottom plates (Becton Dickinson). Then, add the mouse anti-A33 purified antibody prepared in Example 1 at a concentration of 100 g / ml and the one not added together with 1 ig / ml of each monoclonal purified antibody (50 / l).
  • normal human peripheral blood-derived mononuclear cells were prepared according to a conventional method using Ficoll (Ficoll-PauePLUS: Amersham-Falmacia Biotech). Normal human blood collected in a blood collection bag (manufactured by Terumo) containing sodium citrate solution as an anticoagulant was layered on Ficoll, and mononuclear cells were separated by specific gravity centrifugation (800 G, room temperature for 15 minutes). . The intermediate layer was extracted as mononuclear cells, diluted with PBS, and centrifuged at 200 G for 10 minutes three times to remove platelets remaining in the supernatant.
  • Ficoll Ficoll-PauePLUS: Amersham-Falmacia Biotech.
  • PBMC Normal human peripheral blood mononuclear cells
  • Antibody-mediated cytotoxic activity is NI (having killer activity such as cells or neutrophils).
  • NI having killer activity such as cells or neutrophils.
  • ADCC antibody-dependent cellular cytotoxicity
  • CDC complement-Dependent Cytotoxicity
  • ADCC Atsey uses 500000 healthy human peripheral blood mononuclear cells obtained by the method described in Example 11 for 5,000 51 Cr-labeled target cells in a V-bottom 96-well plate (Course Yuichi). in the whole volume 200 ⁇ L, and 4 hours at 37 ° C, 5% C0 2 presence with each antibody concentration.
  • CDC Atsey uses a 5 % Cr-labeled target cell with 5% human serum complement (Sigma) at a final concentration of 5% in a V-bottom 96-well plate with a total volume of 200 L for each antibody. concentration with 37 ° C, and cultured for 4 hours in the presence 53 ⁇ 4 C0 2.
  • the plate After culturing with both ADCC and CDC assembly, the plate is centrifuged to sink the cells, and each monoclonal antibody is prepared at 0.4-500 ng / ml, and 50 is a 96-well plate containing powder scintillation overnight (L-abdominal aplateTM) -96: Packard) and dried at 55 ° C for 1.5 hours. After confirming drying, the plate was covered with a special cover (TopSealTM-A: 96-well Microplates: Packard), and the dose was measured with a scintillation counter (Topcount: Packard).
  • > 1000 ng / ml, it is indicated as +, and when no specific dissolution rate is observed, it is indicated as 1.
  • ADCC ADCC
  • CA33 and 125Q54AAAA showed high injury activity.
  • 125 M 10AA showed high damage activity.
  • 1st strand cDNA was prepared using 5 S total RNA as a saddle.
  • GSP Gene specific primers
  • reaction solution having the composition described above was subjected to PCR with a final volume of 50 ⁇ 1 with double-distilled water.
  • Amplification of the heavy chain gene of 263A17 was carried out using UPM primer and IgGlp primer (5'-TCTTGTCCACCTTGGTGTTGCTGGGCTTGTG-3 ') (SEQ ID NO: 16) attached to SMART RACE c ⁇ Amplification Kit at 98 ° C for 1 second and 68 ° C for 30 seconds. The cycle was repeated 30 times.
  • amplification of the light chain gene of 263A17 was performed at 98 ° C for 1 second using UPM primer and lik-2 (5'-GTT GAA GCT CTT TGT GAC GGG CGA GC -3 ') (SEQ ID NO: 17) primer.
  • Amplification was performed by repeating 30 cycles of 68 ° C for 30 seconds.
  • reaction conditions were the same as in (2) 1-1.
  • a UPM primer and IgGlp primer SEQ ID NO: 16 were used, and a cycle of 98 seconds at 68 ° C for 30 seconds was repeated 30 times.
  • this reaction solution 1 ⁇ 1 is made into a vertical type, and NUPM primer (SMART RACE cDNA amplification Kit; Becton 'Dickinson Bioscience ⁇ Clontech) and IgG2p / G134 primer (5,-TGC ACG CCG CTG GTC AGG Using GCG CCT GAG TTC C-3 ′) (SEQ ID NO: 18), a cycle of 98 ° C. for 1 second and 68 ° C. for 30 seconds was repeated 20 times.
  • NUPM primer SMART RACE cDNA amplification Kit
  • IgG2p / G134 primer 5,-TGC ACG CCG CTG GTC AGG Using GCG CCT GAG TTC C-3 ′
  • 125M 125, 125M96ABA, 125Q47BA, 125Q54AAAA and 125R5AAAA light chain genes were amplified using UPM primer and hk-2 primer (SEQ ID NO: 17) at a cycle of 98 ° C for 1 second and 68 ° C for 30 seconds. Amplified repeatedly. Furthermore, this reaction solution ll is made into a saddle type, and NUPM primer and 1 ⁇ -5 primer (5'-AGG CAC ACA ACA GAG GCA GTT CCA GAT TTC-3 ') (SEQ ID NO: 19) are used. The cycle of 68 seconds at 68 ° C was repeated 20 times.
  • (2) -3 Amplification of heavy and light chain genes by PCR of Hypridor 125M165DAAA and 125N26F6AA
  • reaction conditions were the same as (2) -1.
  • Amplification of 125M165DAAA and 125N26F6AA heavy chain genes was carried out using UPM primer and hh-2 primer (5′-GCT GGA GGG CAC GGT CAC CAC GCT G-3 ′) (SEQ ID NO: 20), 98 ° C. for 1 second, 68 The cycle of ° C for 30 seconds was repeated 30 times.
  • 1 liter of this reaction solution was made into a saddle type, and NUPM primer and hh-4 primer (5'-GGT GCC AGG GGG AAG ACC GAT GG-3 ') (SEQ ID NO: 21) were used.
  • Second, a cycle of 68 ° C for 30 seconds was repeated 20 times.
  • amplification of 125M165DAAA and 125N26F6AA light chain genes was performed by repeating 30 cycles of 98 ° C for 1 second and 68 ° C for 30 seconds using ⁇ primer and hk-2 primer (SEQ ID NO: 17). . Further, 1 l of this reaction solution was made into a vertical type, and a cycle of 98 ⁇ 0 1 second and 68 ° C 30 seconds was repeated 20 times using NUPM primer and hk-5 primer (SEQ ID NO: 19).
  • PCR fragments of each heavy chain and light chain amplified as described above were collected by ethanol precipitation, recovered by agarose gel electrophoresis, and QIAduick Gel Extraction Kit (DNA purification kit using membrane). (Manufactured by Qiagen).
  • the purified HV amplified fragment or LV amplified fragment was subcloned into the PCR 4 Blunt-T0P0 vector of Zero Blunt T0P0 PC Cloning Kit (Invitrogen), respectively. I prayed for the arrangement.
  • M13FW SEQ ID NO: 3
  • M13RV SEQ ID NO: 4 were used as primers for determining the DNA base sequence.
  • the border between the antibody variable region and the antibody constant region in the heavy chain nucleic acid sequence (SEQ ID NO: 22) is located between the 429th adenine (A) and the 430th guanine (G), and the heavy chain amino acid sequence (SEQ ID NO: 23). ) ⁇ The boundary between the antibody variable region and antibody constant region is located between the 143rd serine (S) and the 144th alanine (A).
  • the boundary between the signal sequence and the antibody variable region in the heavy chain nucleic acid sequence is located between the 57th thymine (T) and 58th guanine (G), and the heavy chain amino acid sequence (SEQ ID NO: 23 ) Is located between the 19th cysteine (C) and the 20th dalamic acid (E).
  • nucleic acid sequence of the variable region of the heavy chain of the 263A17 antibody is from the 58th guanine (G) to the 429th adenine (A).
  • amino acid sequence of the variable region of the heavy chain is from the 20th glutamic acid (E) to the 143rd serine (S).
  • the boundary between the antibody variable region and the antibody constant region in the light chain nucleic acid sequence is located between the 387th adenine (A) and the 388th cytosine (C), and the light chain amino acid sequence (SEQ ID NO: 25).
  • the boundary between the signal sequence and the antibody variable region in the light chain nucleic acid sequence (SEQ ID NO: 24) is located between the 66th cytosine (C) and the 67th guanine (G). 25)
  • the boundary between the signal sequence and the antibody variable region in (22) is the 22nd cysteine (C) and the 23rd Located between sparagic acid (D).
  • the nucleic acid sequence (SEQ ID NO: 24) of the variable region of the 263A17 antibody light chain is from the 67th guanine (G) to the 387th adenine (A).
  • the amino acid sequence of the variable region of the light chain (SEQ ID NO: 25) is from the 23rd aspartic acid (D) to the 129th lysine (K).
  • the DNAs encoding the heavy chain variable region and light chain variable region of 125M10AA, and the amino acid sequences of the heavy chain variable region and light chain variable region are shown below.
  • the boundary between the antibody variable region and the antibody constant region in the heavy chain nucleic acid sequence is located between the 441th adenine (A) and the 442nd guanine (G), and the heavy chain amino acid sequence (SEQ ID NO: 27 ) Is located between the 147th serine (S) and the 148th alanine (A).
  • the boundary between the signal sequence and the antibody variable region in the heavy chain nucleic acid sequence (SEQ ID NO: 26) is the 78th cytosine (C).
  • the nucleic acid sequence (SEQ ID NO: 26) of the variable region of the 125M10AA antibody heavy chain is from the 79th cytosine (C) to the 441th adenine (A).
  • the amino acid sequence of the variable region of the heavy chain (SEQ ID NO: 27) is from the 27th glutamine (Q) to the 147th serine (S).
  • the boundary between the antibody variable region and the antibody constant region in the light chain nucleic acid sequence is located between the 381st adenine (A) and the 382rd cytosine (C), and the light chain amino acid sequence (SEQ ID NO: 29).
  • the boundary between the signal sequence and the antibody variable region in the light chain nucleic acid sequence (SEQ ID NO: 28) is located between the 60th adenine (A) and 61st guanine (G), and the light chain amino acid sequence (SEQ ID NO: In 29), the boundary between the signal sequence and the antibody variable region is located between the 20th dalysin (21) and the 21st dalumate (E).
  • the nucleic acid sequence (SEQ ID NO: 28) of the variable region of the 125M10AA antibody light chain is from the 61st guanine (G) to the 381st adenine (A).
  • the amino acid sequence of the variable region of the light chain (SEQ ID NO: 29) is from the 21st glutamic acid (E) to the 127th lysine (K).
  • the DNAs encoding the 125M165DAAA heavy chain variable region and the light chain variable region, and the amino acid sequences of the heavy chain variable region and the light chain variable region are shown below, respectively.
  • the border between the antibody variable region and the antibody constant region in the heavy chain nucleic acid sequence (SEQ ID NO: 30) is located between the 420th adenine (A) and the 421st guanine (G), and the heavy chain amino acid sequence (SEQ ID NO: 31).
  • the boundary between the signal sequence and the antibody variable region in the heavy chain nucleic acid sequence (SEQ ID NO: 30) is located between the 57th thymine (T) and the 58th cytosine (C), and the heavy chain amino acid sequence (SEQ ID NO: 31).
  • the nucleic acid sequence (SEQ ID NO: 30) of the variable region of the 125M165DAAA antibody heavy chain is from the 58th cytosine (C) to the 420th adenine (A).
  • the amino acid sequence of the variable region of the heavy chain (SEQ ID NO: 31) is from the 20th glutamine (Q) to the 140th serine (S).
  • the nucleic acid sequence (SEQ ID NO: 32) of the variable region of the 125M165DAAA antibody light chain is from the 61st guanine (G) to the 381st adenine (A).
  • the amino acid sequence of the light chain variable region (SEQ ID NO: 33) is from the 21st glutamic acid (E) to the 127th lysine (K). .
  • the boundary between the antibody variable region and the antibody constant region in the heavy chain nucleic acid sequence is located between the 420th adenine (A) and the 421st guanine (G), and the heavy chain amino acid sequence (SEQ ID NO: 35).
  • the nucleic acid sequence (SEQ ID NO: 34) of the variable region of the heavy chain of 125M96ABA antibody is from the 58th cytosine (C) to the 420th adenine (A).
  • the amino acid sequence of the variable region of the heavy chain (SEQ ID NO: 35) is from the 20th glutamine (Q) to the 140th serine (S).
  • nucleic acid sequence (SEQ ID NO: 36) of the variable region of the 125M165DAAA antibody light chain is from the 61st guanine (G) to the 381st adenine (A).
  • amino acid sequence of the light chain variable region (SEQ ID NO: 37) is from the 21st glutamic acid (E) to the 127th lysine (K).
  • the boundary between the antibody variable region and the antibody constant region in the heavy chain nucleic acid sequence (SEQ ID NO: 38) is located between the 420th adenine (A) and the 421st guanine (G), and the heavy chain amino acid sequence (SEQ ID NO: 39).
  • the boundary between the signal sequence and the antibody variable region in the heavy chain nucleic acid sequence (SEQ ID NO: 38) is located between the 57th thymine (T) and the 58th cytosine (C).
  • the boundary between the antibody variable region and the antibody constant region in the light chain nucleic acid sequence is located between the 388th adenine (A) and the 389th cytosine (C), and the light chain amino acid sequence (SEQ ID NO: 41).
  • the boundary between the signal sequence and the antibody variable region in the light chain nucleic acid sequence is located between the 57th thymine (T) and the 58th guanine (G). 41)
  • the boundary between the signal sequence and the antibody variable region is located between the 19th glycine (G) and the 20th dalamic acid (E).
  • the nucleic acid sequence (SEQ ID NO: 40) of the variable region of the 125M96ABA antibody light chain is 58th From guanine (G) to 388th adenine (A).
  • the amino acid sequence of the variable region of the light chain (SEQ ID NO: 41) is from the 20th glutamic acid (E) to the 126th lysine (K).
  • the DNAs encoding the heavy chain variable region and light chain variable region of 125Q47BA, and the amino acid sequences of the heavy chain variable region and the light chain variable region are shown below.
  • CAGCCTGAAG ATTTTGCAAC TTATTACTGC CAACAGTATA ATAGTTACCC GTACACTTTT
  • the border between the antibody variable region and the antibody constant region in the heavy chain nucleic acid sequence (SEQ ID NO: 42) is located between the 420th adenine (A) and the 421st guanine (G), and the heavy chain amino acid sequence (SEQ ID NO: 43).
  • the boundary between the signal sequence and the antibody variable region in the heavy chain nucleic acid sequence (SEQ ID NO: 42) is the 57th thymine (T).
  • the nucleic acid sequence (SEQ ID NO: 42) of the variable region of the 125Q47BA antibody heavy chain is from the 58th guanine (G) to the 420th adenine (A).
  • the amino acid sequence of the variable region of the heavy chain (SEQ ID NO: 43) is from the 20th glutamic acid (E) to the 140th serine (S).
  • the boundary between the antibody variable region and the antibody constant region in the light chain nucleic acid sequence (SEQ ID NO: 44) is located between the 387th adenine (A) and the 388th cytosine (C), and the light chain amino acid sequence (SEQ ID NO: 45).
  • the boundary between the signal sequence and the antibody variable region in the light chain nucleic acid sequence (SEQ ID NO: 44) is located between the 66th thymine (T) and the 67th guanine (G).
  • the boundary between the signal sequence and antibody variable region in No. 45) is located between the 22nd cysteine (C) and the 23rd aspartic acid (D).
  • nucleic acid sequence of the variable region of the 125Q47BA antibody light chain is from the 67th guanine (G) to the 387th adenine (A).
  • amino acid sequence of the variable region of the light chain is from the 23rd aspartic acid (D) to the 129th lysine (K).
  • the DNAs encoding the heavy chain variable region and light chain variable region of 125Q54AAAA and the amino acid sequences of the heavy chain variable region and the light chain variable region are shown below.
  • CAGCCTGAAG ATTTTGCAAC TTATTACTGC CAACAGTATA ATAGTTACCC GTACACTTTT
  • the boundary between the antibody variable region and the antibody constant region in the heavy chain nucleic acid sequence (SEQ ID NO: 46) is located between the 420th adenine (A) and the 421st guanine (G), and the heavy chain amino acid sequence (SEQ ID NO: 47).
  • the boundary between the signal sequence and the antibody variable region in the heavy chain nucleic acid sequence (SEQ ID NO: 46) is located between the 57th thymine (T) and 58th guanine (G), and the heavy chain amino acid sequence (SEQ ID NO: 47).
  • nucleic acid sequence (SEQ ID NO: 46) of the variable region of the 125Q54AAAA antibody heavy chain is from the 58th guanine (G) to the 420th adenine (A).
  • amino acid sequence of the variable region of the heavy chain (SEQ ID NO: 47) is from the 20th glutamic acid (E) to the 140th serine (S).
  • the boundary between the antibody variable region and the antibody constant region in the light chain nucleic acid sequence is located between the 387th adenine (A) and the 388th cytosine (C), and the light chain amino acid sequence (SEQ ID NO: 53).
  • the boundary between the signal sequence and the antibody variable region in the light chain nucleic acid sequence is located between the 66th thymine (T) and the 67th guanine (G).
  • T 66th thymine
  • G 67th guanine
  • the boundary between the signal sequence and the antibody variable region is located between the 22nd cysteine (C) and the 23rd aspartic acid (D).
  • the nucleic acid sequence (SEQ ID NO: 52) of the variable region of the 125MAAAA antibody light chain is from the 67th guanine (G) to the 387th adenine (A).
  • the amino acid sequence of the variable region of the light chain (SEQ ID NO: 53) is from the 23rd aspartic acid (D) to the 129th lysine (K).
  • Example 1 4 Determination of full-length sequence including human antibody heavy chain gene and light chain gene constant region expressed in Hypridor 125N26F6AA and 125M10AA
  • amplification of the light chain ( ⁇ ) of 125N26F6AA is based on the primer for L chain 5 ': N26KA10Minor L Bgl (SEQ ID NO: 64) and primer for L chain 3'-: L_3UTR_823 (5 '-GAAAGATGAGCTGGAGGACCGCAATA-3', SEQ ID NO: 76).
  • the composition of the reaction solution other than the primer was the same as that of Example 13 (2) -1.
  • Each amplified PCR fragment was recovered by ethanol precipitation, then recovered by agarose gel electrophoresis, and purified by QIAQiiick Gel Extension Kit (Qiagen Co., Ltd.).
  • the purified amplified fragments were each subcloned into the PCR 4 Blunt-TOPO vector of Zero Blunt TOPO PCR Cloning Kit (Invitrogen).
  • For the obtained clones use the DNA sequencing reagent, Te Immediately iPM ⁇ DNA Amplification Kit (Amersham Biosciences Co., Ltd.). After preparation, the base sequence of the insert DNA was determined.
  • M13FW (SEQ ID NO: 3), M13RV (SEQ ID NO: 4), 4 (SEQ ID NO: 21), hlil (5'-CCAAGGGCCCATCGGTCTTCCCCCTGGCAC-3 ') (SEQ ID NO: 77) as primers for DNA sequence analysis of human antibody heavy chains ), CMVH903F (5'-GACACCCTCATGATCTCCCGGACC-3 ') (sequence number 78), CMVHR1303 (5'-TGTTCTCCGGCTGCCCATTGCTCT-3') (sequence number 79), hh-6 (5'-GGTCCGGGAGATCATGAGGGTGTCC-3 (SEQ ID NO: 80), hh-2 (SEQ ID NO: 20), H_3UTR1848 (SEQ ID NO: 74), and H-3UTR1875 (SEQ ID NO: 75), and primers for DNA sequence analysis of human antibody light chain ( ⁇ ) M13FW (SEQ ID NO: 3), M13RV (SEQ ID NO: 4
  • CTGGACTCCG ACGGCTCCTT
  • CTTCCTCTAC AGCAAGCTCA CCGTGGACAA GAGCAGGTGG
  • CAGTCTCCAA AGCTCCTCAT CAAGTATGCT TCCCAGTCCT TCTCAGGGGT CCCCTCGAGG
  • CTCATGATCT CCCGGACCCC TGAGGTCACA TGCGTGGTGG TGGACGTGAG CCACGAAGAC
  • VDKKVEPKSC DKTHTCPPCP APELLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED
  • GAGAGTGTCA CAGAGCAGGA CAGCAAGGAC AGCACCTACA GCCTCAGCAG CACCCTGACG
  • 125M165DAAA and 125N26F6AA antibodies use a plasmid DNA containing the HV chain of the obtained antibody as a saddle and add a restriction enzyme site (5 'terminal SalL 3' unsided Nhel) to the end.
  • the designed primer was used. Specific primers are as follows.
  • the HV of each A33 antibody was amplified by PGR (94C 3 min-94 10 sec, 68 ° C 45 sec (35 cycles) ⁇ n. C 7 min).
  • the amplified DNA fragment was digested with Sall and Nhel and introduced into the N5KG ⁇ Val Lark vector (modified vector of IDEC Pharmaceuticals, N5KG1 (US patent 6001358)) that had been cleaved with the same enzyme.
  • the inserted sequence is subcloned. It was confirmed by sequencing using a vector as a saddle that it was the same as that determined by DNA nucleotide sequence analysis of the processed HV.
  • LV was inserted into the plasmid vector into which the obtained HV was inserted.
  • the obtained plasmid DNA containing the LV chain of the antibody was used as a cage, and a primer designed to add restriction enzyme sites (5'-end BglII, 3'-end BsiWI) for ligation to the ends was used. .
  • Specific primers are as follows.
  • Primer for LV chain 5 ' A33 2-6A2 K L19 Bglll (SEQ ID NO: 60)
  • Primer for LV chain 3 ' A33 2-6A2 K L19 BsiWI (SEQ ID NO: 61)
  • LV of each A33 antibody was amplified by PCR (3 minutes at 94 ⁇ 94 ° C for 10 seconds, 68 ° C for 45 seconds (35 cycles) ⁇ n. C for 7 minutes).
  • the amplified DNA fragment was digested with BglII and BsiWI and introduced into the N5 KG ⁇ HV vector that had been cleaved with the same enzyme.
  • the inserted sequence was confirmed to be identical to that determined by DNA sequencing of the subcloned LV by sequencing the vector as a saddle.
  • plasmid DNA containing the LV chain of the obtained antibody as a saddle and add restriction enzyme sites (5 'terminal BglII, 3' terminal BsiWI) to the ends.
  • restriction enzyme sites 5 'terminal BglII, 3' terminal BsiWI.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 A33に結合でき、かつA33を発現する腫瘍細胞をADCCやCDCによる免疫システムを用いて特異的に攻撃し、さらにHAHAの産生されない抗体またはその抗体断片の提供ならびに該抗体またはその抗体断片を含む、現在治療困難な固形腫瘍をはじめとした各種悪性腫瘍の予防又は治療剤の提供。 A33に結合できる抗体、またはその機能的断片であって、ハイブリドーマM10(受託番号:FERM BP-10107)、M96(受託番号:FERM BP-10108)、M165(受託番号:FERM BP-10106)、N26(受託番号:FERM BP-10109)、Q47(受託番号:FERM BP-10104)、Q54(受託番号:FERM BP-10105)またはR5(受託番号:FERM BP-10107)により産生されるA33に結合する抗体、またはその機能的断片、ならびに該抗体、またはその機能的断片を含む腫瘍の予防または治療剤。

Description

明 細 書 抗 A33抗体 技術分野
本発明は A33抗原に特異的に結合する抗 A33抗体に関する。 さらに本発明は、 抗 A33抗体を有効成分とする、 A33を発現している細胞に起因する疾患に対する 予防又は治療剤、 特に悪性腫瘍治療剤に関する。 背景技術
癌(腫瘍)は、 わが国における死亡原因の第一位を占め、 さらに患者数は年々増 加してきており、 有効性及び安全性の高い薬剤や治療法の開発が強く望まれてい る。 中でも、 大腸癌は、 1 9 9 9年度の調査で全癌の 1 2 . 2 %を占めており、 死 亡率は、 男性では第 3位、 女性では第 2位であるが、 近年では著しく増加して今 後、大腸癌は罹患率や死亡率で胃癌を追い抜くと予想されている。また、胃癌は、
1 9 9 9年度の調査で全癌の 1 7. 4 %を占めており、死亡率は、男性では第 2位、 女性では第 1位である。
治療薬としての抗体の使用は、 種々の病態(癌型)の治療におけ ί重要かつ価値 のあるアプローチとして認められつつある。 抗体の特異性により、 腫瘍特異的抗 原が異種細胞の特性を示す病態の治療に有用である。 抗体は、 細胞表面に発現す る蛋白質である腫瘍特異的抗原に結合し、 このような細胞を有効に標的とする。 現在、 細胞膜上に存在するレセプ夕一である CD20 を標的としたキメラ抗体
(Ri tuximab) , Her2/neu を標的としたヒト化抗体などのモノクローナル抗体が、 悪性腫瘍を対象疾患として使用されており、 その治療効果が認められている。 抗 体は、 血中半減期が長く、 抗原への特異性が高いという特徴を持ち、 抗腫瘍剤と して特に有用である。 例えば、 腫瘍特異的な抗原を標的とした抗体であれば、 投 与した抗体は腫瘍に集積することが推定されるので、 補体依存性細胞傷害活性
(CDC) や抗体依存的細胞性細胞傷害活性 (ADCC) による、 免疫システムの癌細胞 に対する攻撃が期待できる。 また、 その抗体に放射性核種や細胞毒性物質などの 薬剤を結合しておくことにより、 結合した薬剤を効率よく腫瘍部位に送達するこ とが可能となり、同時に、非特異的な他組織への該薬剤到達量が減少することで、 副作用の軽減も見込むことができる。 腫瘍特異的抗原に細胞死を誘導するような 活性がある場合はァゴニスティックな活性を持つ抗体を投与することで、 また、 腫瘍特異的抗原が細胞の増殖及び生存に関与する場合は中和活性を持つ抗体を投 与することで、 腫瘍特異的な抗体の集積と、 抗体の活性による腫瘍の増殖停止又 は退縮が期待される。 抗体は、 上記のようにその特徴から抗腫瘍剤として適用す るのに適切であると考えられる。 - 最初の抗体製造への進出には、 対象動物としてマウスが使用された。 しかしな がら、 多数の理由によりマウス抗体の in vivoでの使用は制限されている。 ヒト 宿主によって外来物として認識されるマウス抗体は、 いわゆる 「ヒト抗マウス抗 体」 すなわち 「HAMA」 応答を惹起する (Schi f f et al. , Cane. Res. (1985) , 45, 879-885参照)。 さらに、 マウス抗体の Fc部分は、 ヒト補体または細胞傷害活性 の刺激に有効ではない。
このような問題を回避するためのアプローチのひとつとしてキメラ抗体が開発 された (欧州特許出願 120694及び 125023参照)。 キメラ抗体は、 2つまたはそれ 以上の種由来の抗体の一部(マウス抗体の可変領域及びヒト抗体の定常領域など) を含む。 このようなキメラ抗体の利点はマウス抗体の特徴は保持するが、 ヒト Fc を持っためヒト補体または細胞傷害活性を刺激することができる。 しかし、 この ようなキメラ抗体も依然として 「ヒト抗キメラ抗体」 すなわち 「HACA」 応答を惹 起する (Bruggemann, et al. , J. Exp. Med. , 170, 2153-2157, 1989参照)。 さらに、 置換された抗体の一部のみが相補性決定領域 (すなわち 「CDR」) であ る組換え抗体が開発された (英国特許 GB2188638A及び米国特許第 5585089号)。 CDR移植技術を使用してマウス CDR、ヒト可変部フレームワーク及び定常領域から なる抗体 (すなわち 「ヒト化抗体」) が産生されている (Riechmaim, et al. , Nature (1988) , 332, 323- 327参照)。
「A33」 と呼ばれるクラス Iの細胞膜タンパクで Igスーパーファミリーのひと つであり腫瘍特異的抗原である抗原に対するマウス抗 A33抗体及びヒ卜化抗体に ついて報告されている(特許文献 1及び非特許文献 1から 5を参照)。この抗原は、 結腸癌及び胃癌に関連することが公知である (特許文献 2、 特許文献 3及び非特 許文献 6を参照)。 また、 このヒト化 A33抗体を用いて、 近年、 フェーズ Iの臨床 試験を結腸癌患者を対象に行っている (非特許文献 4および 5を参照)。前者の抗 体単独投与の報告では、抗体投与可能な患者 11名のうち 1名に部分反応が認めら れた。 また、 後者の抗体と化学療法との併用試験を行った報告では、 抗体投与可 能な患者 12 名のうち 3名に部分反応、 1 名に混合反応が認められた。 近年、 Genentech 社より開発が進められているアバスチン (ベバシズマブ; ヒト化抗 VEGF抗体)でさえも、 フェーズ I臨床試験において、 標準化学療法との併用で 12 名中 1名の部分反応を示したという報告がある (Margolin I(. et al. , J. Clin. Oncol. (2001) 19, 85卜 856)。 このことからも、 抗体単独投与で 11名中 1名に部 分反応が認められたことは、 大腸癌において高い抗腫瘍効果を示すことが期待さ れる。
しかしながら、 上記のようにフェーズ I臨床試験において非常に高い腫瘍反応 をヒト化 A33抗体は示したが、両試験とも 50%以上の高い確率でヒト抗ヒト化抗 体 (すなわち 「HAHA」) が産生された。 興味深いことに、 腫瘍反応性の高かった患 者に関しては、 HAHAが認められなかった。
特許文献 1 米国特許第 5958412号明細書
特許文献 2 米国特許第 5643550号明細書
特許文献 3 米国特許第 5160723号明細書
非特許文献 1 King D. J. et aに British J. Cancer (1995) 72, 1364-1372 非特許文献 2 Welt S, et al. , J. Clinical Oncology (1994), 12, 1561-1571 非特許文献 3 Welt S. et al. , J. Clinical Oncology (1996), 14, 1787-1797 非特許文献 4 Welt S. et al. , Clinical Cancer Res. (2003), 9, 1338-1346 非特許文献 5 Welt S. et al. , Clinical Cancer Res. (2003), 9, 1347-1353 非特許文献 6 Garin-ChesaP. G. et al. , International J. Oncology (1996), 9, 465-471 発明の開示
本発明の目的は、 A33に結合でき、 かつ A33を発現する腫瘍細胞を ADCCや CDC による免疫システムを用いて特異的に攻撃し、さらに HAHAの産生されない抗体を 開発することにより現在治療困難な固形腫瘍をはじめとした各種悪性腫瘍の予防 又は治療剤を提供することにある。
上述のように、 A33 抗原を標的とした抗体は、 抗腫瘍剤として適用するのに適 切であると考えられる。 しかも、 HAHAの産生されない抗体であれば、 さらに高い 抗腫瘍効果が得られる可能性がある。 そこで、 本発明者らは、 A33 に対する抗体 の作製に関して鋭意研究した結果、 A33 を発現する癌細胞に対して抗腫瘍効果を 示すモノクローナル抗体の取得に成功し、 さらに該モノクローナル抗体の可変領 域の配列を特定し、 本発明を完成するに至った。
すなわち、'本発明は以下の通りである。
本発明は、その第 1の態様において、マウス-マウスハイプリ ドーマにより産生 される A33と結合するモノクローナル抗体、例えば 263A17、 125M10AA 125M165腕、 125M96ABA, 125N26F6AA, 125Q47BA, 125Q54AAAA又は 125R5AAAAにより産生され る好ましくはヒト抗体であるモノクローナル抗体又はその機能的断片を提供する。 263A17, 125M10AA, 125M165DAAA, 125M96ABA, 125讓 6AA、 125Q47BA, 125Q54AAAA 又は 125R5AAAAにより産生されるモノクローナル抗体のタイプはヒトイムノグロ ブリン G (IgG) 型である。 上述ハイプリ ドーマのうち 125M10AA、 125M165DAAA、 125M96ABA, 125N2&F6AA, 125Q47BA, 125Q54AAAA又は 125R5AAAAは、 2004年 8月 24日付で独立行政法人産業技術総合研究所 特許生物寄託センター(日本国 茨 城県つくば巿東 1丁自 1番地 1中央第 6 ) に、 それぞれ順番に受託番号 FERM BP - 10107 (識別のための表示: M10)、 FERM BP-10106 (識別のための表示: M165)、 FERM BP- 10108 (識別のための表示: M96)、 FERM BP- 10109 (識別のための表示: N26)、 FERM BP- 10104 (識別のための表示: Q47)、 FERM BP- 10145 (識別のための 表示: Q54) および FERM BP- 10103 (識別のための表示: R5) として寄託されてい る。
本発明の実施形態において、 本発明の抗体は上記ハイプリ ドーマが産生する抗 体の可変領域を有する、 抗体又はその機能的断片である。
本発明の別の実施形態において、 本発明の抗体はサブクラスが改変された抗体 も含み、ハイブリドーマ 263A17が産生する抗体であってサブクラスがヒト IgGl、 ヒト IgG2、 ヒト IgG3若しくはヒト IgG4である抗体若しくはその機能的断片、 ハ イブリドーマ 125M10AAが産生する抗体であってサブクラスがヒト IgGl、ヒト IgG2、 ヒト IgG3若しくはヒト IgG4である抗体若しくはその機能的断片、 ハイプリ ド一 マ 125M165DAAAが産生する抗体であってサブクラスがヒト IgGl、 ヒト I gG2、 ヒト IgG3 若しくはヒト IgG4 である抗体若しくはその機能断片、 ハイプリ ドーマ 125M96ABAが産生する抗体であってサブクラスがヒト IgGl、 ヒト IgG2、 ヒト IgG3 若しくはヒト IgG4 である抗体若しくはその機能的断片、 ハイプリ ドーマ 125N26F6AAが産生する抗体であってサブクラスがヒト IgGl、ヒト IgG2、ヒト IgG3 若しくはヒト IgG4である抗体若しくはその機能的断片、ハイプリドーマ 125Q47BA が産生する抗体であってサブクラスがヒト IgGl、 ヒト IgG2、 ヒト IgG3若しくは ヒ卜 IgG4である抗体若しくはその機能的断片、 ハイプリドーマ 125Q54AAAAが産 生する抗体であってサブクラスがヒト IgGl、 ヒト IgG2、 ヒト IgG3若しくはヒト IgG4である抗体若しくはその機能的断片、 またはハイプリドーマ 125R5AAAAが産 生する抗体であってサブクラスがヒト IgGl、 ヒト IgG2、 ヒト IgG3若しくはヒト IgG4である抗体若しくはその機能的断片である。
また、本発明の別の態様において、本発明はハイプリ ドーマ 263A17、 125M10AA, 1 5M165DAAA, 125M96ABA, 125N26F6AA, 125Q47BA, 125Q54AAAA又は 125R5AAAAが 産生する抗体の可変領域を含む、 A33 と結合する抗体又はその機能的断片を提供 する。
本発明の実施形態において、 本発明の抗体は配列番号 23及び 25に示されるァ ミノ酸配列の可変領域を有する抗体又はその機能的断片である。 本発明の別の実 施形態において、 本発明の抗体は配列番号 27及び 29に示されるアミノ酸配列の 可変領域を有する抗体又はその機能的断片である。 本発明の別の実施形態におい て、 本発明の抗体は配列番号 31及び 33に示されるアミノ酸配列の可変領域を有 する抗体又はその機能的断片である。 本発明の別の実施形態において、 本発明の 抗体は配列番号 35及び 37に示されるアミノ酸配列の可変領域を有する抗体又は その機能的断片である。 本発明の別の'実施形態において、 本発明の抗体は配列番 号 39及び 41に示されるアミノ酸配列の可変領域を有する抗体又はその機能的断 片である。 本発明の別の実施形態において、 本発明の抗体は配列番号 43及び 45 に示されるアミノ酸配列の可変領域を有する抗体又はその機能的断片である。 本 発明の別の実施形態において、 本発明の抗体は配列番号 47及び 49に示されるァ ミノ酸配列の可変領域を有する抗体又はその機能的断片である。 本発明の別の実 施形態において、 本発明の抗体は配列番号 51及び 53に示されるアミノ酸配列の 可変領域を有する抗体又はその機能的断片である。 本発明の別の実施形態におい て、 本発明の抗体は配列番号 87および 89に示されるアミノ酸配列の全領域を有 する抗体又はその機能的断片である。
本発明はさらに、別の態様において、上記の抗体又はその機能的断片であって、 腫瘍 (例えばヌードマウスに移植された大腸癌細胞株 C0L0205細胞に由来するも の) の増殖を抑制する抗体又はその機能的断片を提供する。 腫瘍の抑制の際、 腫 瘍を担持する被検動物 (例えば結腸癌細胞担癌マウスモデル等の担癌実験動物、 体重 20gとする)に本発明の抗体又はその機能的断片を投与する量は、 lO ^ g/body 〜100 g/bodyである。 例えば、 投与量として 100 g/body又は 5mg/kg、 好まし くは 10 g/body又は 0. 5mg/kgが挙げられる。
本発明の実施形態において、 本発明の抗体は下記のいずれかの特性を有する。
(a) ADCC試験
正常ヒト末梢血由来単核球存在下において、 A33 を発現したヒト癌細胞に対し て抗体依存的細胞性細胞障害活性 (ADCC) を示す。
(b) CDC試験
ヒト血清由来補体存在下において、 A33 を発現したヒト癌細胞に対して補体依 存性細胞障害活性 (CDC) を示す。
(c) In vivo試験
A33を発現したヒト癌細 を担持した非ヒト動物に対して抗腫瘍効果を示す。
(d) 競合試験
キメラ抗 A33 (ハイプリ ドーマ ATCC HB- 8779が産生する抗体の重鎖可変領域お よび軽鎖可変領域と、 ヒト IgGlの重鎖定常領域および軽鎖定常領域から成る) と (i)強く競合する (ブロッカー)、 (i i)弱く競合する (パーシャルブロッカー)、 あ るいは(i i i)競合しない (ノンブロッカー)。
(e) 免疫組織化学試験 ヒト成人結腸癌組織、 ヒト成人正常結腸組織およびヒト正常小腸組織を染色す る。
本発明はさらに、別の態様において、ハイプリドーマ 125M10AA (受託番号 FE丽 BP- 10107)、 125M165DAAA (受託番号 誦 BP - 10106)、 125M96ABA (受託番号 FERM BP - 10108)、 125N26F6AA (受託番号 FERM BP - 10109)、 125Q47BA (受託番号 FERM BP- 10104)、 125Q54AAAA (受託番号 FERM BP- 10105)及びハイプリドーマ 125R5AAAA (受託番号 FERM BP-10103) からなる群から選択されるハイプリドーマの保有す る抗体をコードする核酸又は該抗体の機能的断片をコードする核酸、 該核酸によ りコードされるタンパク質、 前記核酸を有する発現べク夕一、 該発現ベクターを 有する大腸菌、 酵母細胞、 昆虫細胞、 哺乳動物細胞及び植物細胞並びに哺乳動物 からなる群から選ばれる宿主を提供する。
本発明はさらに、 別の態様において、 ハイプリ ドーマ 263M7、 125M10AA、 125M165DAAA, 125M96ABA, 125N26F6AA, 125Q47BA> 125Q54AAAA及びハイプリ ドー マ 125R5AAAAからなる群から選択されるハイプリドーマから抗 A33モノクローナ ル抗体をコードする遺伝子、 例えば重鎖アミノ酸配列の可変領域をコードする遺 伝子および軽鎖アミノ酸配列の可変領域をコードする遺伝子を単離し、 該遺伝子 を有する発現ベクターを構築し、 該発現べクタ一を宿主に導入して、 該宿主を培 養し、 該モノクローナル抗体を発現せ'しめ、 得られる宿主、 宿主の培養上清又は 宿主の分泌物等の培養物から抗 A33モノクローナル抗体またはその機能的断片を 採取することを含む、 抗 A33モノクローナル抗体またはその機能的断片の製造方 法を提供する。
本発明はさらに、 別の態様において、 上記抗体又はその機能的断片を有効成分 として含有する、 腫瘍の予防、 治療又は診断剤を提供する。
予防又は治療可能な腫瘍として、 大腸癌、 結腸癌、 直腸癌、 胃癌、 膝臓癌、 乳 癌、 黒色腫、 腎細胞癌、 子宮頸癌、 子宮内膜癌、 卵巣癌、 食道癌、 前立腺癌、 睾 丸癌、 中皮癌からなる群から選ばれる少なくとも 1つが挙げられる。
本発明のさらに別の実施形態において、 本発明の抗体又はその機能的断片は、
COL0205 細胞が移植された担癌ヌードマウスにおいて、 腫瘍移植後に前記抗体又 はその機能的断片の投与量 10 または lOO g/kg で Vehicl e 投与群または抗 DNP-IgGl抗体投与群と比べて有意に腫瘍の抑制が認められることを特徴とする。 本発明は、 さらにハイプリドーマ M10 (受託番号: FE應 BP- 10107) により産生 される抗体が認識するェピトープと同じェピトープを認識する A33に結合する抗 体、 ハイプリドーマ M96 (受託番号: FE應 BP- 10108) により産生される抗体が認 識するェピトープと同じェピトープを認識する A33に結合する抗体、 ハイプリド 一マ M165 (受託番号: FE丽 BP-10106) により産生される抗体が認識するェピト ープと同じェピトープを認識する A33に結合する抗体、 ハイプリドーマ N26 (受 託番号:FERM BP- 10109) により産生される抗体が認識するェピトープと同じェピ トープを認識する A33 に結合する抗体、 ハイプリ ドーマ Q47 (受託番号: FERM BP- 10104) により産生される抗体が認識するェピトープと同じェピトープを認識 する A33に結合する抗体、 ハイプリドーマ Q54 (受託番号: FERM BP- 10105) によ り産生される抗体が認識するェピトープと同じェピトープを認識する A33に結合 する抗体、 およびハイプリドーマ R5 (受託番号: FE應 BP- 10103) により産生さ れる抗体が認識するェピトープと同じェピト一プを認識する A33に結合する抗体 である。
本明細書は本願の優先権の基礎である日本国特許出願 2004-259090号の明細書 および または図面に記載される内容を包含する。 図面の簡単な説明
図 1 Aは、 各モノクローナル精製抗体を用いて、 COL0205 細胞を標的としたと きの ADCC活性を示す図である。
図 1 Bは、 各モノクローナル精製抗体を用いて、 C0L0205 細胞を標的としたと きの CDC活性を示す図である。
図 1 Cは、 各モノクローナル精製抗体を用いて、 NCI-H508細胞を標的としたと きの ADCC活性を示す図である。
図 1 Dは、 各モノクローナル精製抗体を用いて、 NCI - H508細胞を標的としたと きの CDC活性を示す図である。
図 2 Aは、 組換え型抗体を用いて、 C0L0205細胞を標的としたときの ADCC活性 を示す図である。 図 2 Bは、 組換え型抗体を用いて、 COL0205細胞を標的としたときの CDC活性 を示す図である。
図 2 Cは、 組換え型抗体を用いて、 NCI- H508細胞を標的としたときの ADCC活 性を示す図である。
図 2 Dは、 組換え型抗体を用いて、 NCI- H508細胞を標的としたときの CDC活性 を示す図である。
図 3 Aは、 精製抗体及び組換え型抗体によるウエスタンプロット解析の結果を 示す写真である。
図 3 Bは、 精製抗体及び組換え型抗体によるウエスタンプロット解析の結果を 示す写真である。
図 4は、 精製抗体及び組換え型抗体によるヒト結腸癌組織の免疫組織染色の結 果を示す写真である。
図 5は、 精製抗体及び組換え型抗体によるヒト正常小腸組織の免疫組織染色の 結果を示す写真である。
図 6は、 精製抗体及び組換え型抗体によるヒト正常結腸組織の免疫組織染色の 結果を示す写真である。
図 7 Aは、 COL0205 細胞を移植したときのマウス担癌モデルに対する組換え型 抗体 cA33および rec263の抗腫瘍効果を示す図である。
図 7 Bは、 NCI-H508細胞を移植したときのマウス担癌モデルに対する組換え型 抗体 cA33および rec263の抗腫瘍効果を示す図である。
図 7 Cは、 COL0205 細胞を移植したときのマウス担癌モデルに対するハイプリ ドーマ精製抗体 125M10AA、 125M165DAAAおよび 125M96ABAの抗腫瘍効果を示す図 である。
図 7 Dは、 NCI-H508細胞を移植したときのマウス担癌モデルに対する組換え型 抗体 recN26および recM165の抗腫瘍効果を示す図である。
図 7 Eは、 NCI- H508細胞をマトリジエルと共に移植したときのマウス担癌モデ ルに対する組換え型抗体 recN26および recM165の抗腫瘍効果.を示す図である。 図 7 Fは、 NCI- H508細胞をマトリジエルと共に移植したときのマウス担癌モデ ルに対する組換え型抗体 recMlOおよび recQ54の抗腫瘍効果を示す図である。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
A33について、 すでにマウス抗 A33抗体及びヒト化抗 A33抗体が取得されてお り、 マウス抗 A33 抗体 (Wel t S. e t al. , J. Cl ini cal Onco logy (1994) , 12, 1561-1571 ; We l t S. e t al. , J. Cl inical Oncology (1996) , 14, 1787-1797 照) あるいはヒト化 A33抗体 (Wel t S. e t al. , Cl inical Cancer Res. (2003) , 9, 1338-1346 ; Wel t S. e t al. , Cl inical Cancer Res. (2003) , 9, 1347 - 1353参照) を用いて、 結腸癌患者を対象にしたフェーズ Iの臨床試験を実施したことも報告 されている。 しかしながら、 非常に高い確率で HAMAあるいは HAHAが抗体投与患 者に産生されてしまい、 その後の臨床試験には至っていない。 一方、 非常に興味 深いことに、ヒト化抗 A33抗体の臨床試験で腫瘍反応性が認められた患者は、 HAHA の産生が認められなかつた。
本発明の新規ヒ卜抗 A33モノクローナル抗体は完全ヒ卜抗体であり、 マウス抗 体あるいはヒト化抗体で常に問題となるマウスの配列からなる部分に対する抗原 性については、 すでに回避されている。 すなわち、 上述した臨床試験の報告では ヒト化抗体を用いたため HAHAが産生されたが、本発明の新規ヒト抗 A33モノクロ ーナル抗体は完全ヒト抗体であるため、 抗体の抗原性が回避され、 HAHAが産生さ れないので、 結腸癌患者に対して、 高い抗腫瘍効果が期待できる。
該抗体のクラスとしてはィムノグロブリン G (IgG)、 同 A (IgA)、 同 E (IgE)お よび同 M (IgM) が用いられるが、 好ましくは IgGである。 更に IgGのサブクラス としては、 IgGK IgG 2、 IgG3、 IgG4が用いられるが、 好ましくは IgGl、 IgG 2お よび IgG4であり、 更に好ましくは IgGlである。
以下、 本発明で用いる語句の意味を明らかにすることにより、 本発明を詳細に 説明する。
1 . A33及びその抗体
本発明の抗体は、クラス Iの細胞膜タンパクで Igスーパーファミリ一のひとつ である A33に対する抗体である。
本発明における 「A33と結合する抗体」 とは、 A33又はその一部に反応性を有す る抗体、 または A33またはその一部を認識する抗体である。 「機能的断片」 とは、 抗体の一部分 (部分断片) であって、 抗体の抗原への作用を 1つ以上保持するも のを意味し、 具体的には F (ab' ) 2、 Fab'、 Fab、 Fv、 ジスルフィ ド結合 Fv、 一本 鎖 Fv (scFv)、 及びこれらの重合体等が挙げられる [D. J. King. , Appl icat ions and Engineering of Monoc lonal Ant ibod ies. , 1998 T. J. Internat ional Ltd]。 ある いは、 「機能的断片」 は、 抗体の断片であって抗原と結合しうる断片である。 本発明で 「ヒ卜抗体」 とは、 ヒト由来の抗体遺伝子の発現産物である抗体を意 味する。 ヒト抗体は、 後述のようにヒト抗体遺伝子座を導入し、 ヒト由来抗体を 産生する能力を有するトランスジエニック動物に抗原を投与することにより得る ことができる。 該トランスジエニック動物としてマウスが挙げられ、 ヒト抗体を 産生し得るマウスの作出方法は、例えば、国際公開 W002/43478号公報に記載され ている。
本発明の抗体としては、 例えば、 後述の実施例に記載される、 A33 を発現する 癌細胞に対して低濃度で抗腫瘍効果を示す各種の抗体、 を挙げることができる。 本発明の抗体には、抗体を構成する重鎖及び/又は軽鎖の各々のアミノ酸配列に おいて、 1 又は数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列を 有する重鎖及び/又は軽鎖からなるモノク口一ナル抗体も包含される。本発明の抗 体のアミノ酸配列中に、前記のようなアミノ酸の部分的改変(欠失、置換、挿入、 付加) は、 そのアミノ酸配列をコードする塩基配列を部分的に改変することによ り導入することができる。 この塩基配列の部分的改変は、 既知の部位特異的変異 導入法 (s i te spec i f ic mu tagenes i s) を用いて定法により導入することができる [Proc Nat l Acad Sc i USA. , 1984 Vol 81 : 5662]。 ここで、 抗体とは、 ィムノグロ プリンを構成する重鎖可変領域及び重鎖定常領域、 並びに軽鎖の可変領域及び軽 鎖の定常領域を含む全ての領域が、 ィムノグロプリンをコードする遺伝子に由来 するィムノグロプリンである。
本発明の抗体は、 いずれのィムノグロプリンクラス及びアイソタイプを有する 抗体をも包含する。
本発明の抗 A33抗体は、下記のような製造方法によって製造することができる。 即ち、 例えば、 A33、 その一部又はその一部と抗原の抗原性を高めるための適当な キャリア物質 (例えば、 牛血清アルブミン等) との結合物を、 必要に応じて免疫 賦活剤 (フロインドの完全又は不完全アジュバント等) とともに、 ヒ卜抗体産生 トランスジエニックマウスなどの非ヒト哺乳動物に免疫する。 A33は、天然の A33 もリコンビナント A33も用いることもできる。 あるいは、 A33 をコードする遺伝 子を導入し、 A33 を細胞表面に過剰に発現している動物細胞を投与することによ り、 免疫感作を行うことができる。 モノクローナル抗体は、 免疫感作動物から得 た抗体産生細胞と、 自己抗体産生能のない骨髄腫系細胞 (ミエローマ細胞) を融 合することにより得られるハイプリ ドーマを培養し、 免疫に用いた抗原に対して 特異的親和性を示すモノクローナル抗体を産生するクローンを選択することによ つて取得することができる。
本発明の抗体は、 当業者に周知である遺伝子工学的改変 (例えば、 欧州特許
EP314161公報を参照のこと)により異なるサブクラスのものに変換されたものも 包含する。 すなわち、 本発明の抗体の可変領域をコードする DNAを用いて遺伝子 工学的手法を用いて元のサブクラスとは異なるサブクラスの抗体を得ることがで きる。 ADCCは、 Macrophage, NK細胞、好中球などの表面に発現している Fc Receptor を介して、 抗体の定常領域と結合することにより細胞を認識し、 認識した細胞が 活性化することにより誘導される、 細胞障害活性のことを言う。 一方、 CDC は抗 体が抗原と結合することによって、 活性化された補体系によって引き起こされる 細胞障害活性のことを言う。 これらの活性は、 抗体のサブクラスによって、 その 活性の強弱が異なることが解っており、 それは、 抗体の定常領域の構造の違いに 起因することがわかっている (Charl es A. Janeway e t. al. Immunobiology, 1997,
Current B i o logy Ltd/Garl and Publ i shing In )。 例えば、 本発明の抗体のサブ クラスを IgG2又は IgG4に変換することにより、 Fcレセプ夕一に対する結合度の 低い抗体を取得することができる。 逆に、 本件発明の抗体のサブクラスを IgGl 又は IgG3に変換することにより、 Fc レセプターに対する結合度の高い抗体を取 得することができる。 さらに、 本発明の抗体の定常領域のアミノ酸配列を遺伝子 工学的に改変すること、 あるいはそのような配列を有する定常領域配列と結合す ることにより、 Fcレセプターに対する結合度を変化させること (Janeway CA. Jr. and Travers P. (1997) , I匪画 bi o l ogy, Tlii rd Ed i t ion, Current Bi o l ogy Ltd. /Garland P ul ishing Inc.参照)、 あるいは補体に対する結合度を変化させる こと (Mi - Hua Tao, e t al. 1993. J. Exp. Med参照) は可能である。 例えば、 重鎖
Figure imgf000014_0001
(Se uences of pro te ins of inmumologicai interes t, NIH Publ icat ion No. 91-3242 を参照)における 331番目のプロリン(P) をコードする配列 CCCをセリン(S) をコードする TCCに変異させプロリンをセリ ンに置換することにより補体に対する結合度を変化させることができる。 仮に抗 癌剤について考えた場合、 抗体単独で細胞死誘導活性がない場合は、 Fcレセプ夕 一を介した抗体依存性細胞障害活性 (ADCC) や補体依存性細胞傷害活性 (CDC) に よる抗腫瘍活性を有する抗体が望ましいが、 抗体単独で細胞死誘導活性がある場 合は Fcレセプターとの結合度が低い抗体がより望ましい場合もある。また免疫抑 制剤について考えた場合、 T細胞と抗原提示細胞の結合のみを立体的に阻害する 場合など ADCC活性或いは CDC活性を有さない抗体が望ましい。 また、 ADCC活性 或いは CDC活性が毒性の原因となりうる場合、毒性の原因となる活性を Fc部分の 変異あるいはサブクラスを変更することにより回避した抗体が望ましい場合もあ る。
本発明において、 モノクローナル抗体の製造にあたっては、 下記の作業工程を 包含する。 すなわち、 (1) 免疫原として使用する、 生体高分子の精製及び/又は抗 原タンパク質を細胞表面に過剰に発現している細胞の作製、 (2) 抗原を動物に注 射することにより免疫した後、 血液を採取しその抗体価を検定して脾臓等の摘出 の時期を決定してから、 抗体産生細胞を調製する工程、 (3) 骨髄腫細胞 (ミエ口 一マ) の調製、 (4) 抗体産生細胞とミエローマとの細胞融合、 (5) 目的とする抗 体を産生するハイプリドーマ群の選別、 (6) 単一細胞クローンへの分割 (クロー ニング)、 (7) 場合によっては、 モノクローナル抗体を大量に製造するためのハイ プリドーマの培養、 又はハイプリドーマを移植した動物の飼育、 (8) このように して製造されたモノクローナル抗体の生理活性及びその認識特異性の検討、 ある いは標識試薬としての特性の検定、 等である。
A33 には、 多型が存在するが、 本発明の抗体は、 現在知られている全ての A33 多型を認識して結合するので、 患者の有する A33の型の違いにかかわらず、 本発 明の抗体を含む治療 ·予防剤は有効に作用する。 以下、 抗 A33モノクローナル抗体の作製法を上記工程に沿って詳述するが、 該 抗体の作製法はこれに制限されず、 例えば脾細胞以外の抗体産生細胞及びミエ口 一マを使用することもできる。
(1) 抗原の精製
抗原としては、 A33をコードする DNAを動物細胞用発現ベクターに組み込み、 該発現ベクターを動物細胞に導入し、取得した形質転換株そのものを使用できる。 因みに、 A33 のタンパク質の一次構造は公知である [GenBank access ion No. NPJ05305, 配列番号 1 2 ] ので、 当業者に周知の方法により、 A33のアミノ酸配 列からペプチドを化学合成し、 これを抗原として使用することもできる。 ' また、 免疫原としては、 A33の全長を FM3A細胞又は L929細胞に導入し、 細胞 表面に A33を過剰に発現している細胞も有効である。 p A EGFP- N1- A33は、 A33夕 ンパク質をコードする DNA を、 動物細胞用発現ベクター p A EGFP- N1 (改変 pEGFP-N 1 [べク卜ン.ディキンソン-バイオサイエンス'クロンテック社製]の EGFP タンパク質をコードしている領域を削除した)に組み込むことにより作製できる。 ただし、 A33をコードする DNA、 ベクタ一、 宿主等はこれらに限定されない。 具体的には、 P△ EGFP- N 1 -A33で FM3 A細胞又は L929細胞を形質転換して得られ た形質転換株を培養し、 p AEGFP- N1ベクターが挿入された細胞に獲得されるネオ マイシン耐性の形質及びマウス A33抗体 (AKC No. HB-8779) を用いた A33発現 の確認とを指標に、 A33をその細胞表面に過剰に発現している FM3A細胞又は L929 細胞を作製することができる。
(2) 抗体産生細胞の調製工程
(1) で得られた抗原と、 フロインドの完全若しくは不完全アジュパント、 又は カリミヨウバンのような助剤とを混合し、 免疫原として実験動物に免疫する。 実 験動物としては、 ヒト由来の抗体を産生する能力を有するトランスジエニックマ ウスが最も好適に用いられるが、そのようなマウスは富塚らの文献 [Tomizuka. et al., Proc Nat l Acad Sc i USA. , 2000 Vol 97 : 722] に記載されている。
マウス免疫の際の免疫原投与法は、 皮下注射、 腹腔内注射、 静脈内注射、 皮内 注射、 筋肉内注射、 足蹢注射などいずれでもよいが、 腹腔内注射、 足躕注射又は 静脈内注射が好ましい。 免疫は、 一回、 又は、 適当な間隔で (好ましくは 2週間から 4週間間隔で) 複 数回繰返し行うことができる。 その後、 免疫した動物の血清中の抗原に対する抗 体価を測定し、 抗体価が十分高くなつた動物を抗体産生細胞の供給源として用い れば、 以後の操作の効果を高めることができる。 一般的には、 最終免疫後 3〜5 日後の動物由来の抗体産生細胞を、 後の細胞融合に用いることが好ましい。
ここで用いられる抗体価の測定法としては、放射性同位元素免疫定量法 (以下、 「RIA法」 という)、 固相酵素免疫定量法 (以下、 「ELISA法」 という)、 蛍光抗体 法、受身血球凝集反応法など種々の公知技術があげられるが、検出感度、迅速性、 正確性、 及び操作の自動化の可能性などの観点から、 RIA法又は ELISA法がより 好適である。
本発明における抗体価の測定は、 例えば ELISA法によれば、 以下に記載するよ うな手順により行うことができる。 まず、 ヒト抗体に対する抗原を ELISA用 96 穴プレート等の固相表面に吸着させ、 さらに抗原が吸着していない固相表面を抗 原と無関係なタンパク質、 例えばゥシ血清アルブミン (BSA) により覆い、 該表面 を洗浄後、 一次抗体として段階希釈した試料 (例えばマウス血清) に接触させ、 上記抗原に試料中の抗 A33抗体を結合させる。 さらに二次抗体として酵素標識さ れたヒト抗体に対する抗体を加えてヒト抗体に結合させ、 洗浄後該酵素の基質を 加え、 基質分解に基づく発色による吸光度の変化等を測定することにより、 抗体 価を算出する。
(3) ミエローマの調製工程
ミエローマとしては、 マウス、 ラット、 モルモット、 ハムスター、 ゥサギ又は ヒト等の哺乳動物に由来する自己抗体産生能のない細胞を用いることが出来るが、 一般的にはマウスから得られた株化細胞、 例えば 8 -ァザグァニン耐性マウス
(BALB/c由来) ミエ口一マ株 P3X63Ag8U. 1 (P3-U1) [Ye I t on, D. E. e l. Current
Topics in Microb iology and Immunology, 81, 1-7 ( 1978) ]、 P3/NSI/1- Ag4- 1 (NS - 1)
[Ko l er, G. e t al. European J. I匪 unol ogy, 6, 51 1-519 ( 1976) ]、 Sp2/0-Agl4
(SP-2) [Shulman, M. e t al. Nature, 276, 269-270 ( 1978) ]、 P3X63Ag8. 653
(653) [Kearney, J. F. e t al. J. I腿画 logy, 123, 1548-1550 ( 1979) ]、 P3X63Ag8
(X63) [Horibat a, K. and Harr i s, A. I Nature, 256, 495-497 ( 1975) ] など を用いることが好ましい。 これらの細胞株は、 適当な培地、 例えば 8-ァザグァニ ン培地 [グルタミン、 2-メルカプトエタノール、 ゲンタマイシン及びゥシ胎児血 清 (以下、 「FCS」 という) を加えた RPMI-1640培地に 8-ァザグァニンを加えた培 地]、 イスコフ改変ダルベッコ培地 (I scove' s Mod i f i ed Dulbecco' s Med ium ;以 下、 riMDMjという)、又はダルべッコ改変ィ―ダル培地 (Dulbecco' s Mod i f ied Eagl e Med ium ;以下、 「DMEM」 という) で継代培養するが、 細胞融合の 3〜4日前に正常 培地 (例えば、 10% FCSを含む DMEM培地) で継代培養し、 融合当日に 2 X 107以 上の細胞数を確保しておく。
(4) 細胞融合
抗体産生細胞は、 形質細胞、 及びその前駆細胞であるリンパ球であり、 これは 個体のいずれの部位から得てもよく、 一般には脾臓、 リンパ節、 骨髄、 扁桃、 末 梢血、 又はこれらを適宜組み合わせたもの等から得ることができるが、 脾細胞が 最も一般的に用いられる。
最終免疫後、所定の抗体価が得られたマウスから抗体産生細胞が存在する部位、 例えば脾臓を摘出し、 抗体産生細胞である脾細胞を調製する。 次いで、 脾細胞と ミエローマを融合させればよい。 この脾細胞と工程 (3) で得られたミエローマを 融合させる手段として現在最も一般的に行われているのは、 細胞毒性が比較的少 なく融合操作も簡単な、 ポリエチレングリコールを用いる方法である。 この方法 は、 例えば以下の手順よりなる。
脾細胞とミエローマとを無血清培地(例えば、 DMEM)、 又はリン酸緩衝生理食塩 液(以下、 「PBS」 という) でよく洗浄し、 脾細胞とミエ口一マの細胞数の比が 5 : 1
〜10 : 1程度になるように混合し、 遠心分離する。 上清を除去し、 沈澱した細胞群 をよくほぐした後、 撹拌しながら lmLの 50 % (w/v) ポリエチレングリコール(分 子量 1000〜4000) を含む無血清培地を滴下する。 その後、 10mLの無血清培地をゆ つくりと加えた後遠心分離する。 再び上清を捨て、 沈澱した細胞を適量のヒポキ サンチン ·アミノプテリン ·チミジン (以下 「HAT」 という) 液及びヒ卜インター ロイキン- 6 (以下、 「IL-6」 という) を含む正常培地 (以下、 「HAT培地」 という) 中に懸濁して培養用プレート (以下、 「プレート」 という) の各ゥエルに分注し、
5 %炭酸ガス存在下、 37°Cで 2週間程度培養する。 途中適宜 HAT培地を補う。 (5) 八イブリド一マ群の選択
上記ミエローマ細胞が、 8-ァザグァニン耐性株である場合、 すなわち、 ヒポキ サンチン'グァニン ·ホスホリポシルトランスフェラーゼ (HGPRT) 欠損株である 場合、 融合しなかった該ミエローマ細胞、 及びミエローマ細胞どうしの融合細胞 は、 HAT含有培地中では生存できない。 一方、 抗体産生細胞どうしの融合細胞、 あるいは、 抗体産生細胞とミエローマ細胞とのハイプリドーマは生存することが できるが、 抗体産生細胞どうしの融合細胞には寿命がある。 従って、 HAT含有培 地中での培養を続けることによって、 抗体産生細胞とミエローマ細胞との融合細 胞であるハイプリドーマのみが生き残り、 結果的にハイプリ ドーマを選択するこ とができる。
コロニー状に生育してきたハイプリドーマについて、 HAT 培地からアミノプテ リンを除いた培地 (以下、 「HT 培地」 という) への培地交換を行う。 以後、 培養 上清の一部を採取し、例えば、 ELISA法により抗 A33抗体価を測定する。ただし、 ELI SA用の抗原として上記融合タンパク質を用いる場合は、 ヒト IgGの Fc領域に 特異的に結合する抗体を産生するクローンを選択しないように、 該クローンを除 外する操作が必要である。 そのようなクローンの有無は、 例えばヒト IgG の Fc 領域を抗原とした EL I SA等により確認することができる。
以上、 8-ァザグァニン耐性の細胞株を用いる方法を例示したが、 その他の細胞 株もハイプリドーマの選択方法に応じて使用することができ、 その場合使用する 培地組成も変化する。
(6) クローニング工程
(2) の記載と同様の方法で抗体価を測定することにより、 特異的抗体を産生す ることが判明したハイプリドーマを、 別のプレートに移しクローニングを行う。 このクローニング法としては、 プレートの 1ゥエルに 1個のハイプリドーマが含 まれるように希釈して培養する限界希釈法、 軟寒天培地中で培養しコロニーを回 収する軟寒天法、 マイクロマニュピレーターによって 1個づつの細胞を取り出し 培養する方法、 セルソー夕一によつて 1個の細胞を分離する 「ソ一夕クローン」 などが挙げられるが、 限界希釈法が簡便であり、 よく用いられる。
抗体価の認められたゥエルについて、 例えば限界希釈法によるクローニングを 2〜4回繰返し、安定して抗体価の認められたものを抗 A33モノクローナル抗体産 生ハイプリ ドーマ株として選択する。
なお、 本発明のヒト抗 A33モノク口一ナル抗体の產生細胞であるマウス一マウ スハイプリ ドーマ 125M10AAゝ 125M165DAAA、 125M96ABAゝ 125N26F6AA, 125Q47BA, 125Q54AAAA又は 125R5AAAAは、平成 16年 8月 24日付で独立行政法人産業技術総 合研究所 特許生物寄託センター (日本国 茨城県つくば市東 1丁目 1番地 1中 央第 6 ) に、 それぞれ順番に受託番号 FERM BP- 10107 (識別のための表示: M10)、 FERM BP- 10106 (識別のための表示: M165)、 FE應 BP- 10108 (識別のための表示: M96)、 FERM BP- 10109 (識別のための表示: N26)、 FERM BP- 10104 (識別のための 表示: Q47)、 FERM BP- 10105 (識別のための表示: Q54) および FERM BP- 10103 (識 別のための表示: R5) として寄託されている。
(7) ハイプリ ドーマ培養によるモノクローナル抗体の調製
クローニングを完了したハイプリ ドーマは、培地を HT培地から正常培地に換え て培養される。 大量培養は、 大型培養瓶を用いた回転培養、 スピナ一培養、 ある いはホロ一ファイバーシステム等を用いた培養で行われる。 この大量培養におけ る上清を、ゲルろ過等、 当業者に周知の方法を用いて精製することにより、抗 A33 モノクローナル抗体を得ることができる。 また、 同系統のマウス (例えば BALB/c) 若しくは nu/nuマウス、 ラット、 モルモット、 ハムスター又はゥサギ等の腹腔内 で該ハイプリ ド一マを増殖させることにより、 抗 A33モノクローナル抗体を大量 に含む腹水を得ることができる。 精製の簡便な方法としては、 市販のモノクロ一 ナル抗体精製キット (例えば、 AbTrap GI I キット ; アマシャムフアルマシアパ ィォテク社製) 等を利用することもできる。
かくして得られるモノクローナル抗体は、 A33 に対して高い抗原特異性を有す る。
(8) モノクローナル抗体の検定
かくして得られたモノクローナル抗体のアイソタイプ及びサブクラスの決定は 以下のように行う ことができる。 'まず、 同定法としてはォクテルロニー
(Oucht.erlony) 法、 ELISA法、 又は RIA法が挙げられる。 ォクテルロニー法は簡 便ではあるが、モノクローナル抗体の濃度が低い場合には濃縮操作が必要である。 一方、 ELISA法又は RIA法を用いた場合は、 培養上清をそのまま抗原吸着固相と 反応させ、 さらに二次抗体として各種ィムノグロブリンアイソタイプ、 サブクラ スに対応する抗体を用いることにより、 モノクローナル抗体のアイソタイプ、 サ ブクラスを同定することが可能である。
さらに、 タンパク質の定量は、 フォーリンロウリー法、 及び 280nmにおける吸 光度 [1. 4 (OD280) ニイムノグロプリン lmg/mL] より算出する方法等により行う ことができる。
モノクローナル抗体の認識ェピトープの同定は以下のようにして行うことがで きる。 まず、 モノクローナル抗体の認識する分子の様々な部分構造を作製する。 部分構造の作製にあたっては、 公知のオリゴペプチド合成技術を用いてその分子 の様々な部分ペプチドを作成する方法、 遺伝子組換え技術を用いて目的の部分べ プチドをコードする DNA配列を好適な発現プラスミドに組み込み、 大腸菌等の宿 主内外で生産する方法等があるが、 上記目的のためには両者を組み合わせて用い るのが一般的である。 例えば、 抗原タンパク質の C末端又は N末端から適当な長 さで順次短くした一連のポリペプチドを当業者に周知の遺伝子組換え技術を用い て作製した後、 それらに対するモノクローナル抗体の反応性を検討し、 大まかな 認識部位を決定する。
その後、 さらに細かく、 その対応部分のオリゴペプチド、 又は該ペプチドの変 異体等を、 当業者に周知のオリゴペプチド合成技術を用いて種々合成し、 本発明 の予防又は治療剤が有効成分として含有するモノクローナル抗体のそれらぺプチ ドに対する結合性を調べるか、 又は該モノクローナル抗体と抗原との結合に対す るペプチドの競合阻害活性を調べることによりェピトープを限定する。 多種のォ リゴペプチドを得るための簡便な方法として、 市販のキット (例えば、 SPOTs キ ット (ジエノシス 'バイオテクノロジーズ社製)、 マルチピン合成法を用いた一連 のマルチピン ·ペプチド合成キット (カイロン社製) 等) を利用することもでき る。
又、 ハイプリドーマ等の抗体産生細胞からヒ卜モノクローナル抗体をコードす る遺伝子をクローニングし、 適当なベクターに組み込んで、 これを宿主 (例えば 哺乳類細胞細胞株、 大腸菌、 酵母細胞、 昆虫細胞、 植物細胞など) に導入し、 遺 伝子組換え技術を用いて産生させた組換え型抗体を調製することもできる
( P. J. De lves. , ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES. , 1997 WILEY、 P. Shepherd and C. Dean. , Monoc lonal Ant ibodi es. , 2000 OXFORD UNIVERSITY PRESS J. W. God ing. , Monoclonal Ant ibod ies : pr inc ip l es and pract ice. , 1993 ACADEMIC PRESS)
本発明は、 本発明の抗体を産生するハイプリドーマが保有する抗体の遺伝子配 列を含む核酸、 特に後述の本発明のハイプリド一マの産生する抗体の重鎖可変領 域及ぴ軽鎖可変領域の核酸も包含する。 ここで、 核酸には DNA及び RNAが含まれ る。
ハイプリドーマからモノクローナル抗体をコードする遺伝子を調製するには、 モノクローナル抗体の L鎖 V領域、 L鎖 C領域、 H鎖 V領域及び H鎖 C領域をそれ ぞれコードする DNAを PCR法等により調製する方法が採用される。プライマーは、 抗 A33抗体遺伝子又はアミノ酸配列から設計したオリゴ DNAを、 錶型としてはハ イブリ ドーマから調製した DNAを使用することができる。 これらの DNAを 1つの 適当なベクタ一に組み込み、 これを宿主に導入して発現させるか、 あるいはこれ らの DNAをそれぞれ適当なベクターに組み込み、 共発現させる。
ベクタ一には、 宿主微生物で自律的に増殖し得るファージ又はプラスミドが使 用される。 プラスミド としては、 '大腸菌、 枯草菌又は酵母由来のプラスミド などが挙げられ、 ファージ MAとしては λファージが挙げられる。
形質転換に使用する宿主としては、 目的の遺伝子を発現できるものであれば特 に限定されるものではない。 例えば、 細菌 (大腸菌、 枯草菌等)、 酵母、 動物細胞 (COS細胞、 CH0細胞等)、 昆虫細胞が挙げられる。
宿主への遺伝子の導入方法は公知であり、 任意の方法 (例えばカルシウムィォ ンを用いる方法、 エレクト口ポレーシヨン法、 スフエロプラスト法、 酢酸リチウ ム法、 リン酸カルシウム法、 リポフエクシヨン法等) が挙げられる。 また、 後述 の動物に遺伝子を導入する方法としては、 マイクロインジェクション法、 ES細胞 にエレクトロポレーシヨンゃリポフエクシヨン法を使用して遺伝子を導入する方 法、 核移植法などが挙げられる。
本発明において、 抗 A33抗体は、 形質転換体を培養し、 その培養物から採取す ることにより得ることができる。 「培養物」 とは、 (a) 培養上清、 (b) 培養細胞若 しくは培養菌体又はその破砕物、 (c) 形質転換体の分泌物のいずれをも意味する ものである。 形質転換体を培養するには、 使用する宿主に適した培地を用い、 静 置培養法、 ローラーポトルによる培養法などが採用される。
培養後、 目的タンパク質が菌体内又は細胞内に生産される場合には、 菌体又は 細胞を破砕することにより抗体を採取する。 また、 目的抗体が菌体外又は細胞外 に生産される場合には、 培養液をそのまま使用するか、 遠心分離等により菌体又 は細胞を除去する。 その後、 タンパク質の単離精製に用いられる各種クロマトグ ラフィ一を用いた一般的な生化学的方法を単独で又は適宜組み合わせて用いるこ とにより、 前記培養物中から目的の抗体を単離精製することができる。
さらに、 トランスジエニック動物作製技術を用いて、 目的抗体の遺伝子が内在 性遺伝子に組み込まれた動物宿主、 例えばトランスジエニックゥシ、 トランスジ エニックャギ、卜ランスジエニックヒッジ又はトランスジエニックブ夕を作製し、 そのトランスジエニック動物から分泌されるミルク中からその抗体遺伝子に由来 するモノクローナル抗体を大量に取得することも可能である(Wright, G. , et al.
( 1991) B io/Technology 9, 830-834)。 ハイプリドーマをインビトロで培養する 場合には、 培養する細胞種の特性、 試験研究の目的及び培養方法等の種々条件に 合わせて、 ハイブリ ドーマを増殖、 維持及び保存させ、 培養上清中にモノクロ一 ナル抗体を産生させるために用いられるような既知栄養培地、 あるいは既知の基 本培地から誘導調製されるあらゆる栄養培地を用いて実施することが可能である。
(9) 抗体の性質
本発明の抗体は下記のいずれかの特性を有する。
(a) ADCC試験
正常ヒト末梢血由来単核球存在下において、 A33 を発現したヒト癌細胞に対し て抗体依存的細胞性細胞障害活性 (ADCC) を示す。
(b) CDC試験
ヒト血清由来補体存在下において、 A33 を発現したヒト癌細胞に対して補体依 存性細胞障害活性 (CDC) を示す。
(c) In vivo試験 A33を発現したヒト癌細胞を担持した非ヒト動物に対して抗腫瘍効果を示す。
(d) 競合試験
キメラ抗 A33 (ハイプリドーマ ATCC HB-8779が産生する抗体の重鎖可変領域お よび軽鎖可変領域と、 ヒト IgGlの重鎖定常領域および軽鎖定常領域から成る) と (i)強く競合する (ブロッカー)、 (i i)弱く競合する (パーシャルブロッカー)、 あ るいは(i i i)競合しない (ノンブロッカー)。
(e) 免疫組織化学試験
ヒト成人結腸癌組織、 ヒト成人正常結腸組織およびヒト正常小腸組織を染色す る。
このような抗体として、例えばハイプリ ド一マ 263A17, 125M10AA, 125M165匪、 125M96ABA, 125N26F6AA, 125Q47BA, 125Q54AAAA及びハイプリドーマ 125R5AAAA の産生する抗体が挙げられ、 125M10AA、 125M165DAAA. 125M96ABA, 125N26F6AA, 125Q47BA. 125Q54AAAA又は 125 5AAAAは、 2004年 8月 24日付で独立行政法人産 業技術総合研究所 特許生物寄託センタ一 (日本国 茨城県つくば市東 1丁目 1 番地 1中央第 6 ) に、 それぞれ順番に受託番号 FERM BP- 10107 (識別のための表 示: M10)、 FE丽 BP- 10106 (識別のための表示: M165)、 FERM BP-10108 (識別のた めの表示: M96)、 FERM BP- 10109 (識別のための表示: N26)、 FERM BP-10104 (識 別のための表示: Q47)、 FERM BP- 10105 (識別のための表示: Q54) および FERM BP - 10103 (識別のための表示: R5) として寄託されている。
2 . 医薬組成物
本発明のヒト抗 A33抗体を含有する製剤もまた、 本発明の範囲内に含まれる。 このような製剤は、 好ましくは、 抗体に加えて、 生理学的に許容され得る希釈剤 又はキャリアを含んでおり、 他の抗体又は抗生物質のような他の薬剤との混合物 であってもよい。 適切なキャリアには、 生理的食塩水、 リン酸緩衝生理食塩水、 リン酸緩衝生理食塩水グルコース液、 及び緩衝生理食塩水が含まれるが、 これら に限定されるものではない。 或いは、 抗体は凍結乾燥 (フリーズドライ) し、 必 要とされるときに上記のような緩衝水溶液を添加することにより再構成して使用 してもよい。 かかる予防又は治療剤は、 種々の形態で投与することができ、 それ らの投与形態としては、 錠剤、 カプセル剤、 顆粒剤、 散剤、 シロップ剤等による 経口投与、 又は、 注射剤、 点滴剤、 坐薬等による非経口投与を挙げることができ る。
その投与量は、症状、年齢、体重などによって異なるが、 通常、経口投与では、 成人に対して、 1日約 0. 01mg〜1000ingであり、 これらを 1回、 又は数回に分けて 投与することができる。 また、 非経口投与では、 1回約 0. 01mg〜1000mgを皮下注 射、 筋肉注射又は静脈注射によって投与することができる。
本発明は、 本発明の抗体又は医薬組成物を用いた上記疾患の予防又は治療法を も包含し、 さらに本発明は本発明の抗体の上記疾患の予防又は治療剤の製造への 使用をも包含する。
本発明の抗体またはその機能的断片により予防'治療が可能な腫瘍は、大腸癌、 結腸癌、 直腸癌、 胃癌、 膝臓癌、 乳癌、 黒色腫、 腎細胞癌、 子宮頸癌、 子宮内膜 癌、 卵巣癌、 食道癌、 前立腺癌、 睾丸癌、 中皮癌等であり、 本発明の抗体を適用 する際の腫瘍は 1種類に限られず、 複数種類の腫瘍が併発したものでもよい。 3 . 製剤例
本発明の分子は、 水又はそれ以外の薬理学的に許容し得る溶液に溶解した無菌 性溶液又は懸濁液のアンプルとして使用に供される。 また、 無菌粉末製剤 (本発 明の分子を凍結乾燥するのが好ましい) をアンプルに充填しておき、 使用時に薬 理学的に許容し得る溶液で希釈してもよい。
以下、 実施例を以て本発明をさらに詳細に説明するが、 本発明がその実施例に 記載される態様のみに限定されるものではない。 実施例 1 マウス抗 A33抗体の調製
ヒトモノクローナル抗体産生ハイプリドーマのスクリーニングや様々な実験に 使用するためのポジティブコントロール抗体として、 マウス抗 A33抗体の調製を 実施した。 ATCCよりマウス抗 A33抗体を産生する AS33ハイプリドーマ(American
Type Cul ture Col lect ion (ATCC) No. HB-8779) を購入し、 ATCCの付属説明書に 従い、ハイプリドーマを培養した。このハイプリドーマを凍結保存した。その後、
AS33ハイプリドーマを 10% Low IgG Fe tal Bovine Serum (ハイクローン社製) 含 有 eRDF培地 (極東製薬社製) に馴化した。 この馴化したハイプリドーマを凍結保 存した。 次に、 その一部を抗体精製を目的として、 ゥシインシュリン (5 g/ml、 ギブコ ·ビーァ一ルエル社製)、 ヒトトランスフェリン (5^g/ml、 ギブコ · ピー アールエル社製)、 エタノールァミン (0.01 シグマ社製)、 亜セレン酸ナトリ ゥム (2.5xl(T5mM、 シグマ社製)、 1¾ Low IgG Fetal Bovine Serum (ハイク口一 ン社製) 含有 eRDF培地 (極東製薬社製) に馴化した。 フラスコにて培養し、 培養 上清を回収した。 回収した上清中のハイブリドーマ由来精製抗体の濃度は 280nm の吸光度を測定し、 lmg/mLを 1.4 0Dとして算出した。 実施例 2 キメラ抗 A33抗体の調製
ヒトモノクローナル抗体産生ハイプリドーマのスクリーニングや様々な実験に 使用するためのポジティブコントロール抗体として、 重鎖及び軽鎖の定常領域が ヒト IgGlであるキメラ抗 A33抗体の調製を実施した。 ' ( 1 ) キメラ抗 A33抗体遺伝子の cDNAクローニングと発現ベクター作製 実施例 1で購入したマウス抗 A33抗体産生ハイプリド一マ AS33 を 1(W Fetal Bovine Serum (ハイクローン社製)含有 DMEM培地(ギブコ ·ビーアールエル社製) で培養し、 RNA抽出試薬 IS0GEN (二ツボンジーン社製) を用いてプロトコールに 従い、 Total RNA を精製した。次に、 Total RNA より 01 igotexTM-dT30<Super> (タ カラバイオ社製) により polyA+RNAを精製した。 得られた polyA+RNA (2.5MS) を材料として SMARi RACE cDNA Amplification Kit (べクトン ·ディキンソン · バイオサイエンス 'クロンテック社) を用いて、 その添付の説明書に従ってクロ —ニング実験を実施して、 抗体遺伝子の可変領域の cDNAを取得した。
1) 1st strand cDNA の合成
polyA+RNA (2.5 ig) /3^1
5 - CDS primer 1 ιι 1
SMART II A oligo 1^1
上記組成の反応液を 70°Cで 2分間インキュベートした後、下記の試薬及び酵素 を加え 42°Cで 1.5時間インキュベートして cDNAの合成を行なった。
5X First-Strand buffer 2μΛ
DTT (20 mM) 1 n 1 dNTP Mix (10 mM) 1 zl
Po bowerScript Reverse Transcriptase 1 1
反応終了後、 100 Iの Tricine Bufferを加えて 72°Cで 7分間ィンキュベ一ト した。
2) PCIMこよる重鎖遺伝子、 軽鎖遺伝子の増幅
得られた cMAを鎳型として、 マウス抗 A33抗体の重鎖 (以下、 重鎖は H鎖とも 称す) 可変領域、 および軽鎖 (以下、 軽鎖は L鎖とも称す) 可変領域 DNAの 3' 末端各々に特異的な PCR用プライマ一(H鎖用: GPAHvR3Nlie (5' - GCC CTT GGT GCT AGC TGAAGAGAC GGT GAC CAG AGT CCC TTG-3') (配列番号 1))、 L鎖用: GPALvR3Bsi、 (5' -GTG CAC GCC GCT GGT CAG GGC GCC TG-3') (配列番号 2)) のいずれか一方 と、 SMART RACE cDNA Amplification Kit付属の UPMプライマ一 (合成した cDNA の 5' 末端に作製される共通配列に相補的なオリゴヌクレオチド) をプライマー セットとして使用し、 PCRによる H鎖リーダ配列と可変領域(以下、 HVとも称す) 及び L鎖リーダ配列と可変領域 (以下、 LVとも称す) の増幅を行った。 cDNAの増 幅は、 K0D- Plus- DNA ポリメラーゼ (1 ^一ョーボー社製)を用いて下記の反応液を 調製して実施した。
sterile H20 29.5 1
cDNA 2.5 1
KOD-Plus- buffer (10X) 5 1
dNTP Mix (2mM) An\
2n\
KOD-Plus-DNA polimerase (1 unit/^l) \n\
Universal primer A mix (UPM) (10X) 5
Gene specific primers (GSP) \tl\
Total volume 50^1
サーマルサイクリングの増幅反応条件は下記のとおりで実施した。
5 cycles:
94°C 30 sec
72°C 1 min 5 cycles:
94°C 30 sec
70°C 30 sec
72°C 1 miii
:S
94。C 30 sec
68°C 30 sec
72°C 1 min
増幅した PCR断片は、 エタノール沈殿で回収した後、 ァガロースゲル電気泳動 で回収し、 メンブランを用いる DNA精製キットである QIAduick Gel Extraction Kit (キアゲン社製) にて精製した。 精製した HV及び LVの増幅断片は、 それぞ れ Zero Blunt TOPO PCR Cloning Ki t (インビトロジェン社製)の PCR 4 Blunt- T0P0 ベクターにサブクローニングを行い、 得られたクローンのプラスミド DNAについ てインサート MAの塩基配列を解析した。 DNA塩基配列決定のためにプライマー として、 M13FW (5' -GTAAAACGACGGCCAGTG-3' ) (配列番号 3 ) 及び M13RV (5' - CAG GAA ACA GCT ATG AC -3' ) (配列番号 4) を用いた。 決定した HV及び LV の遺伝子領域中にコードされる抗体のアミノ酸配列は、 KingD. J.らの報告してい るマウス抗 A33抗体 (Br J Cancer. 1995 Dec;72 (6) :1364-72) 可変領域のァミノ 酸配列と完全に一致した。
3) キメラ抗 A33抗体の発現べクタ一 (N5KGし mVhCA33) の作製
取得した抗体の HV鎖を含むプラスミド DNAを鎢型として、末端に連結のための 制限酵素部位を付加するようにデザインしたプライマ一 (増幅のためのプライマ
—セット GPAHv2F5Sal (5' 一 AGA GAG AGG TCG ACC CAC CAT GAA CTT TGG GCT GAG
CTTAGTT- 3' ) (配列番号 5) 及びプライマー GMHvR3Nhe (配列番号 1)) を用い て、 マウス抗 A33抗体の HVを PCRで増幅 (94°C 3 分→94°C 10秒、 68^ 45秒
(35サイクル)→72°C 7分)した。 HVの増幅断片は精製した後、 PCI Blim卜 T0P0 ベクターでサブクローニングを行った。 サブクローンについて挿入部分の DNA塩 基配列解析を行い、 錶型とした遺伝子配列と相違がないデザィンどおりの配列を 有するプラスミド DNAを選択した。 そのプラスミド DNAを制限酵素 Sailと Nliel で消化して、ァガロースゲル電気泳動で約 440 bpの DNAを回収し精製した。他方、 ベクターである N5KG卜 Val Lark ( I DEC Pharmaceu t icals, N5KG1 (US patent 6001358)の改変ベクター) については同様に制限酵素 Sai lと Nhelで処理を行つ た後、 脱リン酸化処理として Alkal ine Phosphat ase (E. col i C75) (夕カラバ ィォ社製) にて処理した後に、 ァガロースゲル電気泳動と DNA精製キットで約 8. 9kbの DNAを回収した。 これら 2つの断片を DNA Ligat ion ki t Ver2. 1 (夕カラ バイオ社製) にてライゲーシヨン反応した後、 大腸菌 DH5 Q!へ導入して形質転換 体を得た。形質転換体をスクリーニングして目的とする HVが挿入されたクロ一ン、 N5KGl_GPA33Hv (クローン #2) を選択した。 こうして得られた N5KG1— GPA33HV に LVを挿入するため、 本プラスミド DNAを制限酵素 Bgl I I、 及び、 Bs iWIで順次切 断し、さらに脱リン酸化を行つた後、約 9. 2 kbのべクタ一 DNAを精製した。他方、 マウス抗 A33抗体の LVを含むプラスミド DNAを錶型として、 LV領域を PCRで増 幅した。増幅のためのプライマ一セットは、 GPALv2FBgl (5 ' - AGA GAG AGA GAT CTC TCA CCA TGG GCA TCA AGA TGG AGT TTC AG - 3, ) (配列番号 6 ) 及び GPALvR3Bs i (配列番号 2 ) を用いた。 精製した LVの増幅断片は PCR 4 Blunt- T0P0にてサブ クローニングを行った。 サブクローンについて挿入部分の DNA塩基配列解析を行 い、 鐃型とした遺伝子配列と相違がないデザインどおりの配列を有するプラスミ ド丽 Aを選択した。 その DNAを制限酵素 Bgl l l と Bs iWIで消化して、 ァガロース ゲル電気泳動で約 400 b の DNAを回収し精製した。 この DMを制限酵素 Bgl l l と Bs iWI切断処理した前記の N5KGし A33Hvベクター断片にライゲーシヨンして、 大腸菌へ導入して形質転換体を得た。 形質転換体をスクリーニングして、 目的と する LVが挿入されたクローン、 N5KGし GPA33HvLv (クローン # 2 ) を選択した。 最 終的に得られたキメラ抗 A33抗体発現プラスミド DNAの大量精製を行い、 L鎖と H 鎖の DNA断片挿入断片とその挿入部位周辺の DNA塩基配列に変異がないことを確 認した。
キメラ抗 A33の重鎖可変領域、 及び軽鎖可変領域をコードする DNA並びに重鎖 可変領域及び軽鎖可変領域のアミノ酸配列をそれぞれ以下に示す。
くキメラ抗 A33重鎖核酸配列〉 (配列番号 7)
10 20 30 40 50 60 ATGAACTTTG GGCTGAGCTT GATTTTCCTT GTCCTAATTT TAAAAGGTGT CCAGTGTGAA
70 80 90 100 110 120
GTGAAGCTGG TGGAGTCTGG GGGAGGCTTA GTGAAGCCTG GAGGGTCCCT GAAACTCTCC
130 140 150 160 170 180
TGTGCAGCCT CTGGATTCGC TTTCAGTACC TATGACATGT CTTGGGTTCG CCAGACTCCG
' 190 200 210 220 230 240
GAGAAGAGGC TGGAGTGGGT CGCAACCATT AGTAGTGGTG GTAGTTACAC CTACTATTTA
250 260 270 280 290 300
GACAGTGTGA AGGGCCGATT CACCATCTCC AGAGACAGTG CCAGGAACAC CCTATACCTG
310 320 330 340 350 360
CAAATGAGCA GTCTGAGGTC TGAGGACACG GCCTTGTATT ACTGTGCACC GACTACGGTA
370 380 390 400 410 420
GTCCCGTTTG CTTACTGGGG CCAAGGGACT CTGGTCACCG TCTCTTCAGC TAGC
くキメラ抗 A33重鎖アミノ酸配列〉 (配列番号 8)
10 20 30 40 50 60
MNFGLSLIFL VLILKGVQCE VKLVESGGGL VKPGGSLKLS CAASGFAFST YDMSWVRQTP
70 80 90 100 110 120
EKRLEWVATI SSGGSYTYYL DSVKGRFTIS RDSARNTLYL QMSSLRSEDT ALYYCAPTTV
130 140
VPFAYWGQGT LVTYSSAS. .
くキメラ抗 A33軽鎖核酸配列〉 (配列番号 9)
10 20 30 40 50 60
ATGGGCATCA AGATGGAGTT TCAGACCCAG GTCTTTGTAT TCGTGTTGCT CTGGTTGTCT
70 80 90 100 110 120
GGTGTTGATG GAGACATTGT GATGACCCAG TCTCAAAAAT TCATGTCCAC ATCAGTAGGA
130 140 150 160 170 180
GACAGGGTCA GCATCACCTG CAAGGCCAGT CAGAATGTTC GTACTGTTGT AGCCTGGTAT
190 200 210 220 230 240
CAACAGAAAC CAGGGCAGTC TCCTAAAACA CTGATTTACT TGGCCTCCAA CCGGCACACT
_ OS _ 250 260 270 280 290 300
GGAGTCCCTG ATCGCTTCAC AGGCAGTGGA TCTGGGACAG ATTTCACTCT CACCATTAGC
310 320 330 340 350 360
AATGTGCAAT CTGAAGACCT GGCAGATTAT TTCTGTCTGC AACATTGGAG TTATCCTCTC
370 380 390 400
ACGTTCGGCT CGGGGACAAA GTTGGAAGTA AAACGT. . · .
くキメラ抗 A33軽鎖アミノ酸配列〉 (配列番号 10)
10 20 30 40 50 60
MGIKMEFQTQ VFVFVLL LS GYDGDIVMTQ SQKFMSTSVG DRVSITCKAS QNVRTVVAWY
70 80 90 100 110 120
QQKPGQSPKT LIYLASNRHT GVPD FTGSG SGTDFTLTI S NVQSEDLADY FCLQHWSYPL
130 140
TFGSGTKLEV KR.
重鎖核酸配列(配列番号 7)における抗体可変領域と抗体定常領域の境界は 408 番目のアデニン (A) と 409番目のグァニン (G) の間に位置し、 重鎖アミノ酸配 列 (配列番号 8) における抗体可変領域と抗体定常領域の境界は 136番目のセリ ン (S) と 137番目のァラニン (A) の間に位置する。 また、 重鎖核酸配列 (配列 番号 7) におけるシグナル配列と抗体可変領域の境界は 57番目のチミン(T)と 58 番目のグァニン (G) の間に位置し、 重鎖アミノ酸配列 (配列番号 8) におけるシ グナル配列と抗体可変領域の境界は 19番目のシスティン(C) と 20番目のグルタ ミン酸 (E) の間に位置する。
以上より、 キメラ抗 A33抗体重鎖の可変領域の核酸配列 (配列番号 7) は 58番 目のグァニン (G) から 408番目のアデニン (A) までである。 また、 重鎖の可変 領域のアミノ酸配列 (配列番号 8) は 20番目のグルタミン酸 (E) から Π6番目 のセリン (S) までである。
軽鎖核酸配列(配列番号 9)における抗体可変領域と抗体定常領域の境界は 393 番目のアデニン (A) と 394番目のシ卜シン (C) の間に位置し、 軽鎖アミノ酸配 列 (配列番号 10) における抗体可変領域と抗体定常領域の境界は 131番目のリジ ン (K) と 132番目のアルギニン (R) の間に位置する。 また、 軽鎖核酸配列 (配 列番号 9) におけるシグナル配列と抗体可変領域の境界は 72番目のアデニン (A) と 73番目のグァニン (G) の間に位置し、 軽鎖アミノ酸配列 (配列番号 10) にお けるシグナル配列と抗体可変領域の境界は 24番目のグァニン(G)と 25番目のァス パラギン酸 (D) の間に位置する。
以上より、 キメラ抗 A33抗体軽鎖の可変領域の核酸配列 (配列番号 9) は 73番 目のグァニン (G) から 393番目のアデニン (A) までである。 また、 軽鎖の可変 領域のアミノ酸配列 (配列番号 10) は 25番目のァスパラギン酸 (D) から 131番 目のリジン (K) までである。
後述する表 5に合成 DNAの塩基配列を示す。
このように調製されたキメラ抗 A33組換え型抗体発現ベクターを宿主細胞に導 入し、組換え型抗体発現細胞を作製した。発現のための宿主細胞には、例えば CH0 細胞の dhf r 欠損株 (ATCC CRL- 9096 )、 CHO-Ras ( Katakura Y. , et al. , Cytotec nology, 31 : 103-109, 1999)、 HEK293T (ATCC CRL - 11268) などが用いら れる。
宿主細胞へのベクターの導入はエレクトロポレーションゃリポフエクシヨンに などにより実施した。エレクトロポレーシヨンは抗体発現ベクター約 2 gを制限 酵素で線状化し、 Bio- Rad electrop oreterをもちいて 350V、 500 Fの条件で、 4 X 106個の CH0細胞に遺伝子を導入し、 96wel l cul ture plateに播種した。 リポ フエクシヨンは、 LipofectAMINE Plus (ギブコ · ビーアールエル社製) を用いて マニュアルに従って実施した。 ベクターの導入処理後、 発現べクタ一の選択マー カーに対応した薬剤を添加して培養を継続した。 コロニーを確認した後、 実施例 6に示した方法によって、 抗体発現株を選別した。 選別した細胞からの抗体精製 は、 実施例 8に従って行った。 実施例 3 抗原の調製
免疫原や抗体のスクリーニングなどで使用する A33が細胞膜上に過剰発現して いる細胞を得るため、 A33 全長アミノ酸の発現プラスミ ドベクターを作製した。 A33をコードする ]) NAは、 PCR法により作製した。
a) 全長 A33発現ベクターの調製 全長 A33発現ベクターを調製するために、 A33をコードする cDNAを保持するプ ラスミドベクター pAEGFP- N1- GPA33を作製した。 pAEGFP- N卜 GPA33は以下の方法 で作製された。 完全長 A33 DNA (GenBankDNA NMJ05814: 配列番号 11, タンパク 質 NP— 005305:配列番号 12)を、その 5'末端に EcoRI配列を、その 3'末端に Notl 配列と終止コドンを付加する為のポリメラーゼ連鎖反応 (PCR) を行い修飾した。 べクトン ·ディキンソン'バイォサイエンス ·クロンテック社より購入した Hmnan
Colon Marathon-Ready cDNA を铸型 と し、 プライ マ一 と して A33 - F2
5 ' -GCAGACGAATTCAAGACCATGGTGGGGAAGAT -3' (配列番号 13) 及び A33-R1 5'-
CTCGAGCGGCCGCTCTGCTGCTGGCCTGTCACTGGTCGAGGTG -3' (配列番号 14) を合成し、
KOD-plusDNAポリメラーゼ(トーョーポー社製)を使用して、(94° (:、 15秒; 60°C、
30秒; 68°C、 60秒間) X30サイクルの PCR反応を行った。 合成された配列を、
EcoRI- Notlで消化し、 EcoRI- Notl断片として単離し、 同一酵素で解裂されていた pAEGFP- N1 -ベクター (改変 pEGFP- N1 [べクトン 'ディキンソン -バイオサイェン ス · クロンテック社製]の EGFPタンパク質をコードしている領域を削除した) に 連結した。 得られたプラスミ ドを p Δ EGFP- N卜 GPA33 と命名した。 ρΔ
EGFP-N1-GPA33に組み込まれた Α33は、 977bpの cDNAがコードされている。以下、 実施例中のすべての PCRの反応温度調節は、ジーンアンプ PCRシステム 9700; (株) パーキンエルマ一 ·ジャパン社製を使用した。
b) A33発現細胞の作製
a)で作製した pAEGFP- N1- GPA33を、 FM3A細胞 (厚生労働省研究資源バンク事 業 (JCRB) No. 0701) 及び L929細胞 (ATCC No. CCL-1) の 2つの細胞株に導入し て、 2種類の A33発現細胞を作製した。 FM3A細胞には、 エレクトロボレ一シヨン 法を用いた。 pAEGFP- N卜 A33ベクタ一 20 gを、 BTX社製エレクトロボレ一ター をもちいて 350V、 950 Fの条件で、 5 X 106個の FM3A細胞に遺伝子を導入し、 6 well culture plateに播種した。 37° (:、 5.0%炭酸ガス下で 48時間培養した後、 G418
(ギブコ · ビーアールエル社製) を lmg/mLになるように加え、 1週間培養した。 細胞膜表面上に発現している A33 抗原の確認は、 AS33 ハイプリ ドーマ (ATCC
No. HB-8779) の培養上清を用いて行った。 AS33ハイプリ ドーマ培養上清を一次抗 体、 R-pliycoerytlirin標識したャギ抗マウス Ig gamma F(ab' )2抗体 (ダコ一社 製) を 2次抗体として用いたフローサイ 1、メーター (FCM :べクトンディキンソン 社製)解析を行い、遺伝子導入された細胞で G418耐性の形質を獲得したもののう ち、 細胞膜表面上に A33を発現している細胞を選択的にソーティングした。
L929細胞へは、 Trans IT-LT1 (夕カラバイオ社製) を用いて導入した。 遺伝子 導入はマニュアルの方法にて行った。 37°C、 5. 0%炭酸ガス下で 24時間培養した 後、 G418 (ギブコ ·ビーアールエル社製) を lmg/iiiLになるように加え、 1週間培 養した。 FM3A細胞のときと同様に、 細胞膜表面上に発現している A33抗原の確認 は、 AS33ハイプリドーマの培養上清を用いて行った。 AS33ハイプリドーマ (ATCC No. HB - 8779) を 1 次抗体、 R-pliycoerytlirin 標識したャギ抗マウス Ig gamma F (a )2抗体(ダコ一社製)を 2次抗体として用いたフローサイトメーター(FCM : べク トンディキンソン社製)解析を行い、遺伝子導入された細胞で G418耐性の形 質を獲得したもののうち、 細胞膜表面上に A33を発現している細胞を選択的にソ 一ティングした。
両細胞株ともヒト全長 A33抗原を高発現するシングルクローンが取得できた。 A33抗原タンパク質を高発現した FM3A細胞を FM3A/A33と、 L929細胞を L929/A33 と命名した。
shA33EX-liFc タンパク質を免疫原あるいは、 抗体をスクリーニングする際の ELI SAに使用するために作製した。
c ) 可溶型細胞膜外 A33ヒト Fc融合タンパク質発現ベクターの調製
可溶型細胞膜外 A33ヒト Fc融合タンパク質発現ベクター(以下 sM33EX-hFcと 示す)を調製するために、 A33 の細胞膜外領域をコードする cDNAを保持するブラ ス ミ ド ベ ク タ ー pTracer- CMV- ImmanFc- A33EXR を 作 製 し た 。 pTracer-CMV-humanFc-A33EXRは以下の方法で作製された。分泌シグナル配列を含 む細胞膜外領域 A33 DNA (配列番号 11) を、 その 5 ' 末端に EcoRI配列を、 その 3 ' 末端に Not l配列と終止コドンを付加する為のポリメラーゼ連鎖反応 (PCR) を行 い修飾した。 a)で作製した p A EGFP- Nl- A33cDNA を鎳型とし、 プライマーとして A33-F2 (配列番号 13)及び GPA-EXCRR2' 5' -
CTCGAGCGGCCGCCAGTTCATGGAGGGAGATCTGACG -3' (配列番号 15) を合成し、麵 - plus
DNAポリメラーゼ (ト一ョーボー社製) を使用して、 (94° (:、 15秒; 60°C、 30秒; 68°C, 60秒間) X 30サイクルの PCR反応を行った。合成された配列を、 EcoRI-Notl で消化し、 EcoRI- Notl 断片として単離し、 同一酵素で解裂されていた pTracer-CMV- umanFcベクター (改変 pTracer- CMV [インビトロジェンライフテク ノロジーズ社製]の Xba I部位と Apa I部位のところに FLAG及びヒト IgGlの Fc 領域を導入したプラス ミ ド) に連結 した得 ら れたプラ ス ミ ド を pTracer-CMV-humanFc-A33EXRと命名した。
PCR用プライマー等のオリゴヌクレオチドの合成は、 全て DNA自動合成機 (モ デル 3948; (株) パーキンエルマ一 ' ジャパン ·アプライドバイオシステムズ事 業部製) を用いて、 そのマニュアルに従って行った [Matteucci, M.D. and Caruthers, M. H. (1981) J. Am. Chem. So 103, 3185- 3191 参照]。 各オリゴヌクレ ォチドは合成終了後、 支持体から開裂させ脱保護を行い、 得られた溶液を乾固し た後蒸留水に溶解し、 使用するまで- 20°Cで凍結保存した。
d) shA33EX-hFc 'タンパク質の発現と精製
c)で構築した SM33EX- hFcタンパク質発現ベクターを宿主細胞に導入し、 可溶 型細胞膜外 A33タンパク質発現細胞を作製した。 発現のための宿主細胞には、 例 えば CH0細胞の dhir欠損株 (ATCC CRL- 9096)、 CHO- as (KatakuraY. , et al. , Cyto technology, 31: 103-109, 1999)、 HEK293T (ATCC CRL-11268) などが用いら れる。
宿主細胞へのベクタ一の導入はエレクトロポレーシヨンゃリポフエクシヨンに などにより実施した。 エレクトロボレ一シヨンは shA33EX-hFcタンパク質発現べ クタ一約 2^gを制限酵素で線状化し、 Bio- Rad electroplioreterをもちいて 350V、 500 Fの条件で、 4X106個の CH0細胞に遺伝子を導入し、 96well culture plate に播種した。 リポフエクシヨンは、 LipoiectAMINE Plus (ギブコ · ビーァ一ルェ ル社製) を用いてマニュアルに従って実施した。 ベクタ一の導入処理後、 発現べ クタ一の選択マーカーに対応した薬剤を添加して培養を継続した。
培養上清からの shA33EX- hFc タンパク質の精製は以下の方法で行った。 s A33EX-hFc夕ンパク質を含む培養上清を Hitrap Protein A FF (アマシャムファ ルマシアバイオテク社製)を用い、吸着緩衝液として PBS、溶出緩衝液として 20 mM クェン酸ナトリウム、 50πιΜ塩化ナトリウム (ρΗ2.7) を用いてァフィ二ティー精 製製ししたた。。 溶溶出出画画分分はは 5500 mmMM リリンン酸酸ナナトトリリウウムム溶溶液液 ((ppHH 77.. 00)) をを添添加加ししてて ppHH55.. 55にに 調調製製ししたた。。 調調製製さされれたた可可溶溶型型細細胞胞膜膜外外 AA3333 タタンンパパクク質質溶溶液液はは、、 AAmmiiccoonn UUll tt rraa -- 1155 ((アアミミココンン社社製製)) をを用用いいてて PPBBSSにに置置換換しし、、 孔孔径径 00..
Figure imgf000035_0001
一一
MILLEX-GV (ミリポア社製) でろ過滅菌し、 精製 SM33EX- hFcタンパク質を得た。 SM33EX- hFcタンパク質の濃度は 280nmの吸光度を測定し、 lmg/mL を 1. 4 0Dと して算出した。 実施例 4 ヒト抗体産生マウスの作製
免疫に用いたマウスは、内因性 Ig重鎖及び/ c軽鎖破壊の両者についてホモ接合 体の遺伝的背景を有しており、 かつ、 ヒト Ig重鎖遺伝子座を含む 14番染色体断 片 (SC20) 及びヒト Ig /c鎖トランスジーン (KCo5) を同時に保持する。 このマウ スはヒト Ig重鎖遺伝子座を持つ系統 Aのマウスと、 ヒト Ig K鎖トランスジーン を持つ系統 Bのマウスとの交配により作製された。系統 Aは、 内因性 Ig重鎖及び κ軽鎖破壊の両者についてホモ接合体であり、 子孫伝達可能な 14 番染色体断片 (SC20) を保持するマウス系統であり、 例えば富塚らの報告 [Tomizuka. e t al. , Proc Nat l Acad Sc i USA. , 2000 Vol97 : 722]に記載されている。 また、 系統 Bは 内因性 Ig重鎖及び/ c軽鎖破壊の両者についてホモ接合体であり、 ヒト Ig /c鎖ト ランスジーン (KCo5) を保持するマウス系統 (トランスジエニックマウス) であ り、 例えば Fishwi l d らの報告 [Nat B iotechnol, ( 1996) , 1 14 : 845]に記載されて いる。
系統 Αの雄マウスと系統 Βの雌マウス、 あるいは系統 Aの雌マウスと系統 Bの 雄マウスの交配により得られた、血清中にヒト I g重鎖及び/ 軽鎖が同時に検出さ れる個体 [Ishida&Lonberg, IBC s 11 th Ant ibody Engineer ing, Abs t ract 2000] を、 以下の免疫実験に用いた。 なお、 前記ヒト抗体産生マウス (KMマウスと称す る) は、 契約を結ぶことによって、 キリンビール株式会社より入手可能である。 実施例 5 A33に対するヒトモノクローナル抗体の調製
本実施例におけるモノクローナル抗体の作製は、 単クローン抗体実験操作入門 (安東民衛ら著作、講談社発行 1991)等に記載されるような一般的方法に従って 調製した。免疫原としての A33は、実施例 1で調製した A33発現 FM3A細胞あるい は shA33EX- hFcタンパク質を用いた。 被免疫動物は、 実施例 2で作製したヒト免 疫グロプリンを産生するヒ卜抗体産生マウスを用いた。
A33 に対するヒトモノクローナル抗体の調製を目的として、 ヒト抗体産生マウ スに、 実施例 3で作製した A33発現 FM3A細胞 (1 X 107細胞/匹) を腹腔内に RIBI アジュパント (コリクサ社製) と混合して初回免疫した。 初回免疫から以降、 同 細胞と RIBIアジュバントを毎週計 8回免疫した。以下に述べる脾臓の取得 3 日前 に、 shA33EX-hFcタンパク質 20 /^ g/マウス個体を尾静脈投与及び 5 x g/マウス個 体の Recombinant Human IL- 6を皮下投与した。
また、 SM33EX- hFcタンパク質 10 i g/マウス個体を CpGアジュバント (キアゲ ン社製) と混合して初回免疫した。 初回免疫から以降、 同タンパク質と CpGアジ ュバントを 2週間毎に 2回免疫し、さらに 2週間後に同タンパク質のみ免疫した。 以下に述べる脾臓の取得 3日前に、 SM33EX- hFcタンパク貲 マウス個体を 尾静脈投与した。
また、 shA33EX-liFcタンパク質 10 _i g/マウス個体と A33発現 FM3A細胞 (5 X 106 細胞/匹) を RIBIアジュバントとともに腹腔内に免疫し、 2週間毎に 1〜4回免疫 した。以下に述べる脾臓の取得 4日前に、 SM33EX- hFcタンパク質 5 g/マウス個 体を腹腔内投与した。
免疫されたマウスから脾臓を外科的に取得し、 350mg/mL 炭酸水素ナトリウム、
50単位/ mL ペニシリン、 50 g/mL ストレプトマイシンを含む無血清 DMEM培地(ギ プコ · ビーアールエル社製) (以下 「無血清 DMEM培地」 という) 10mL中に入れ、 メッシュ (セルストレイナ一: ファルコン社製) 上でスパーテルを用いてつぶし た。 メッシュを通過した細胞懸濁液を遠心して細胞を沈澱させた後、 この細胞を 無血清 DMEM培地で 2回洗浄してから、 無血清丽 EM培地に懸濁して細胞数を測定 した。 一方、 10% FCS (シグマ社製) を含む DMEM培地 (ギブコ ·ビーアールエル 社製) (以下、 「血清入り丽 EM培地」 という) にて、 37°C、 5 %炭酸ガス存在下で 細胞濃度が 1 X 106細胞/ mL を越えないように培養したミエローマ細胞 SP2/0
(ATCC No. CRL-1581) を同様に無血清丽 EM培地で洗浄し、 無血清丽 EM培地に懸 濁して細胞数を測定した。 回収した細胞の懸濁液とマウスミエローマ懸濁液とを 細胞数 5 : 1で混合し、 遠心後、 上清を完全に除去した。 このペレットに、 融合剤 として 50% (w/v) ポリエチレングリコール 1500 (ベーリンガーマンハイム社製) lmLを、 ピぺッ卜の先でペレツトを撹拌しながらゆつくり添加した後、 予め 37°C に加温しておいた無血清 DMEM培地 lmLを 2回に分けてゆつくり添加し、 さらに
7mLの無血清丽 EM培地を添加した。遠心後、上清を除去して得られた融合細胞を、 以下に記載する限界希釈法によるスクリーニングに供した。 ハイプリ ドーマの選 択は、 10%FCS、 IL-6 (lOng/mL) (または 10%ハイプリドーマクローニングファ クタ一 (以下 「、 HCF」 という。 :バイオベース社製)) 及びヒポキサンチン 00、 アミノプテリン (A)、 チミジン (T) (以下、 「HAT」 という。 :シグマ社製) を含有 する丽 EM培地中で培養することにより行った。さらに、 HT (シグマ社製)、 10%FCS、
IL-6 (または 10% HCF) 含有蘭 EM培地を用いて限界希釈法によりシングルクロ ーンにした。 培養は、 96穴マイクロタイタープレート (べクトンディッキンソン 社製) 中で行った。 抗 A33ヒ卜モノクローナル抗体を産生するハイプリドーマク ローンの選択 (スクリーニング) 及び各々のハイプリドーマが産生するヒトモノ クローナル抗体の特徴付けは、 後述する酵素標識免疫吸着アツセィ (ELISA)及び フローサイトメトリー (FMC) で測定することにより行った。
実施例 6に述べる Cel l ELISA、 タンパク ELISA、 並びに FMC解析により、 ヒト 免疫グロプリンァ鎖 (hlg r ) 及びヒト免疫グロブリン軽鎖/ を有し、 かつ A33 に特異的な反応性を有するヒトモノクローナル抗体を産生する多数のハイプリド 一マを得た。 なお、 本実施例を含め以下のいずれの実施例中、 並びに実施例にお ける試験結果として示した表又は図中においては、 各々の本発明のヒト抗 A33モ ノクロ一ナル抗体を産生するハイプリ ド一マクローンは記号を用いて命名した。 また、 当該記号の前後に 「抗体」 を付したものは、 それぞれのハイプリドーマに より産生される抗体、 または当該ハイプリ ドーマから単離された抗体遺伝子 (全 長あるいは可変領域) を保持する宿主細胞により生産された組換え抗体を意味す る。 また文脈上明らかな範囲において、 ハイプリ ドー了クローンの名称が抗体の 名称をあらわす場合がある。 以下のハイプリ ドーマクローンはシングルクローン を表す: 263A17、 125M10AA, 125M165DAAA、 125M96ABA, 125N26F6AA、 125Q47BA,
125Q54AAAA及び 125R5AAAA。 1 5M10AA, 125M165DAAA, 125M96ABA, 125N26F6AA, 125Q47BA, 125Q54AAAA又は 125R5AAAAは、 2004年 8月 24日付で独立行政法人産 業技術総合研究所 特許生物寄託セン夕一 (日本国 茨城県つくば市東 1丁目 1 番地 1中央第 6 ) に、 それぞれ順番に受託番号 FERM BP- 10107 (識別のための表 示: M10)、 FERM BP-10106 (識別のための表示: M165)、 藤 BP - 10108 (識別のた めの表示: M96)、 FERM BP- 10109 (識別のための表示: N26)、 FERM BP- 10104 (識 別のための表示: Q47)、 FERM BP- 10105 (識別のための表示: Q54) および FERM ABP-10103 (識別のための表示: R5) として寄託されている。 実施例 6 ヒト免疫グロブリンァ鎖(hlg T )及びヒト免疫グロブリン軽鎖/ (Ig κ ) を有する、 ヒト抗 A33モノクローナル抗体産生クローンの選択
Ce l l ELISAの場合、 以下のように実施した。 実施例 3で作製した FM3A/A33を 96穴プレート (ファルコン社製) の各ゥエルに 1 X 105個加えた後、 ハイプリ ドー マ上清を加え、 4· で 30分間インキュベートした。 次いで、 2 %FCS入りの PBS で 2回洗浄し、西洋ヮサビペルォキシダーゼで標識されたャギ抗ヒト IgG F (ab ' ) 2 抗体 (50 x g/ゥエル: IBL社製) を加え、 4°Cで 30分間インキュベートした。 2 % FCS入り PBSで 2回洗浄し、 TMB発色基質 (DAK0社製) を各ゥエルに I OO Lずつ 加え、 室温下で 20分間インキュベートした。 各ゥエルに 0. 5M硫酸(100 xL/ゥェ ル) を加え、 反応を止めた。 波長 450ηπι (参照波長 570nm) での吸光度をマイクロ プレートリーダ一 (1420 ARV0 マルチラベルカウンター: WALLAC社製) で測定し て陽性反応を示した抗体産生クローンを選択した。 この際に、 A33 抗原を発現し ていない FM3A 細胞をネガティブコントロールとして使用した。 すなわち、 FM3A/A33細胞に反応し、 FM3A細胞に反応しない培養上清を、 陽性反応を示した抗 体産生クローンとして選択した。
また、 タンパク EUSAの場合は、 以下のように実施した。 実施例 3で作製した shA33EX- Fc タンパク質を l g/ml 炭酸緩衝液 pH 9. 4 に調製したものを 50 l ずつ、 ELISA用 96穴マイクロプレート (Maxison?、 ヌンク社製) の各ゥエルに加 え、室温で 1時間あるいは 4°Cで一晩インキュベートし、 shA33EX-hFcタンパク質 をマイクロプレートに吸着させた。 次いで、 上清を捨て、 各ゥエルに 10% FCS入 り PBSを加え、 37°Cで 1時間インキュベートし、 sliA33EX- hFcタンパク質が結合 していない部位をブロックした。 このようにして、 各ゥエルを SM33EX- hFcタン パク質でコーティングしたマイクロプレートを作製した。 各ゥエルに、 各々のハ イブリ ドーマの培養上清(50 1)を加え、室温下で 1時間反応させた後、各ゥエル を 0. 1 % Tween20含有 PBS (PBS- T)で 2回洗浄した。 次いで、 西洋ヮサビペル才キ シダーゼで標識されたヒッジ抗ヒト Ig / 抗体 (50 1/ゥエル、 The Binding Si te 社製) を 0. 1 % Tween20含有 PBS (PBS- T)で 2500倍に希釈した溶液を、 各ゥエル に 50 1加え、 37°C 1時間インキュベートした。 マイクロプレートを、 PBS- Tで 3 回洗浄後、 TMB発色基質液(DAK0社製) を各ゥエルに 100 1ずつ加え、 室温下で 20分間インキュベートした。 各ゥエルに 0. 5M硫酸 (100 ^ 1/ゥエル) を加え、 反 応を止めた。 波長 450nm (参照波長 570M1) での吸光度をマイクロプレートリーダ 一 (VersaMax, モレキュラーデバイス社製) で測定して、 陽性反応を示した抗体 産生クローンを選択した。
さらに、 FMCの場合は、 以下のように実施した。 A33抗原を発現するヒト大腸癌 細胞株 C0LO205細胞に対するハイプリドーマ培養上清の反応性の検討を行った。 2 x lOVmlの濃度で COLO205細胞株を 0.隐 N3、 2 FCS含有 PBSの Staining Buf fer (SB) に浮遊させた。細胞浮遊液(50 Zゥエル) を 96- wel l 丸底プレート (ベ クトンディッキンソン社製) に分注した。 各々のハイプリドーマの培養上清 (50 il l ) を加え、 氷温下 30分閬インキュベートした。 陰性コント口一ルは各サブク ラスに応じ、 ヒト IgGl抗体 (シグマ社製) を用い、 ハイプリ ドーマ培養培地で 2 g/mlの濃度に調製し、 50 /x l添加後氷温下 30分間インキュベートした。 SBで 2回洗浄した後、 RPE蛍光標識ャギ抗ヒ卜 IgG F (ab' ) 2抗体(Southern Biotech 社製) 50 /i 1を加え、 氷温下 30分間インキュベートした。 SBで 1回洗浄した後、 300 1の FACS緩衝液に懸濁し、 FACS (FACScal ibur、 べクトンディッキンソン社 製) で各細胞の平均蛍光強度を測定した。 その結果、 C0L0205 細胞株に強い結合 活性を有することから、 細胞に発現している A33と結合する抗体であることが判 明した。 実施例 7 各モノクローナル抗体培養上清のサブクラス同定
shA33EX- hFcタンパク質を l g/ml 炭酸緩衝液 (以下、 「PBS」 という。) に調製 したものを 50 1ずつ、 EUSA用 96穴マイクロプレート (Maxi sorp、ヌンク社製) の各ゥエルに加え、 室温で 1 時間あるいは 4°Cで一晩インキュベートし、 sM33EX-liFcタンパク質をマイクロプレートに吸着させた。次いで、上清を捨て、 各ゥエルに 10%FCS入り PBSを加え、 室温で 1時間あるいは 4°Cでー晚ィンキュ ペートし、 shA33EX- hFc タンパク質が結合していない部位をブロックした。 この ようにして、 各ゥエルを shA33EX-liFcタンパク質でコーティングしたマイクロプ レートを作製した。 次いで、 0. 1 % Tween20含有 PBS (PBS-T)で 2回洗浄し、 各ゥ エルにそれぞれ西洋ヮサビペルォキシダ一ゼで標識されたヒッジ抗ヒ卜 IgGl 抗 体、 ヒッジ抗ヒト IgG2抗体、 ヒッジ抗ヒト IgG3抗体又はヒッジ抗ヒト IgG4抗体 (それぞれ 1600、 6400、 25000、 25000倍希釈、 50 /ゥェル、 The B ind ing Si te 社製) を加え、 室温下で 1. 5 時間インキュベートした。 0. 1 % Tween20 含有 PBS (PBS-T)で, 3回洗浄後、 基質緩衝液 (TMB、 l OO ^ L/ゥエル、 DAK0社製) を各ゥ エルに加え、 室温下で 20分間インキュベートした。 次いで、 0. 5M硫酸 (100 i L/ ゥエル) を加え、 反応を止めた。 波長 450nm (参照波長 570nm) での吸光度をマイ クロプレートリーダ一 (VersaMax、 モレキュラーデバイス社製) で測定し、 各ク ローンのサブクラスを決定した。 ヒト抗 A33抗体は、 ADCC及び CDC活性を重要視 しているため、 サブクラスが IgGlのもののみ選抜した。
最終的に選択したクローンのみの結果を表 1に示す。
表 1
Figure imgf000041_0001
実施例 8 各抗体の調製
実施例 6から得られたハイプリ ドーマの培養上清からのヒト抗 A33モノクロ一 ナル抗体の精製は以下の方法で行った'。 ヒト抗 A33モノクローナル抗体を含む培 養上清を 10 % ultra low IgGFBS (インビトロジェン社製) を含む SFM培地 (ィ ンビトロジェン社製) で培養した培養上清を Protein A Fast Flow gel (アマシ ォテク社製) を用い、 吸着緩衝液として PBS、 溶出緩衝液 として 0.02M グリシン緩衝液 (PH3.6) を用いてァフィ二ティー精製した。 溶出 画分は lMTris ( Η 8.0) を添加して pH7.2付近に調整した。 調製された抗体溶 液は、 Sephadex G25脱塩カラム (NAPカラム ;
Figure imgf000041_0002
ク社製) を用いて PBSに置換し、孔径 0. のメンブランフィルター MILLEX - GV (ミリポア社製) でろ過滅菌し、 精製ヒト抗 A33モノクローナル抗体を得た。 精 製抗体の濃度は 280 Iの吸光度を測定し、 lmg/mLを 1.40Dとして算出した。 実施例 9 A33発現細胞に対する各モノクローナル精製抗体の反応試験
A33 抗原を発現するヒト大腸癌細胞株 C0L0205 細胞、 LoVo 細胞 (ATCC No. CCL-229) , LS174T細胞 (ATCC No. CL-188)及び NCI- H508細胞 (ATCC No. CCL-253) に対する実施例 8 で取得した各モノクローナル精製抗体の反応性の検討を、 FCM で行った。 また、 陰性コントロール細胞として A33抗原を発現していないヒト大 腸癌細胞株 HT- 29細胞 (ATCC No. HTB-38) も行った。 2 X 106/mlの濃度で各細胞 株を 0. l¾NaN3 2%FCS含有 PBS の Staining Buf fer (SB) に浮遊させた。 細胞浮 遊液 (50 1Zゥエル) を 96- wel l 丸底プレート (べクトンディッキンソン社製) に分注した。 各々のモノクローナル精製抗体を SBで 2000、 400、 80、 16ng/nilを 50 I加え、 氷温下 30分間インキュベートした。 陰性コントロールはサブクラス に応じ、 ヒト IgGl抗体 (シグマ社製) を用い、 SBで 2000、 400、 80、 16ng/mlの 濃度に調製し、 1添加後氷温下 30分間ィンキュベ一トした。 SBで 2回洗浄し た後、 FITC蛍光標識ャギ抗ヒト IgG F (ab' ) 2抗体(Southern B iotech社製) 50 1を加え、 氷温下 30分間インキュベートした。 SBで 1回洗浄した後、 300 1の FACS 緩衝液に懸濁し、 FACS (FACScan, べクトンディッキンソン社製) で各細胞 の平均蛍光強度を測定した。
その結果を表 2に示す。 C0L0205細胞では、 平均蛍光強度半値を 90、 LoVo細胞 では、平均蛍光強度半値を 25、LS174T細胞では、平均蛍光強度半値を 125、NCI- H508 細胞では、 平均蛍光強度半値を 125 とし、 そこに達する抗体濃度が 10Ox< 100ng/ml のときは + +十、 100<=x< 1000ng/ml のときは + +、 ΙΟΟΟΟχく 10000ng/mlのときは +、 結合が認められなかった場合は、 一と示した。 A33抗原 を発現しているどの細胞に対しても、各モノクローナル精製抗体は結合を示した。
表 2 抗体名 CO固 5 LoVo LS174T NCI-H508 HT-29 抗 MP- IgGl 一 - - - - cA33 +++ +++ ++ ++ -
263A17 ++ ++ ++ ++ 一
125M10AA +++ +++ +++ +++ 一
125M165DAAA +++ +++ ++ ++ 一
125M96ABA +++ +++ ++ ++ ―
125N26F6AA +++ +++ ++ ++ ―
125Q47BA +++ +++ ++ ++ ―
125Q54AAAA +++ +++ ++ ++ 一
125 5AAAA +++ +++ ++ 1+ 一
平均蛍光強度半値 90 平均蛍光強度半値 25 平均蛍光強度半値 125 平均蛍光強度半値 125 10<=x<100 ng/ml; +++ 10<=x<100 ng/ml; +++ 10<=x<100 ng/ml; +++ 10<=x<100 ng/ml; +++ ΙΟΟ χぐ 1000 ng/ml : ++ 100ぐ =χぐ 1000 ng/ml; ++ 100<=x<1000 ng/ml; ++ 100<=x<1000 ng/ml; ++
1000<=x<10000 ng/ml; + 1000く =x< 10000 ng/ml : + ΙΟΟΟΟχく 10000 ng/ml ; + 1000く =xく 10000 ng/ml ; +
結合なし; - in□ ,よし;- ί し;- 結合なし;-
実施例 1 0 各モノクローナル精製抗体のマウス抗 A33抗体との競合試験
実施例 8で取得した各モノクローナル精製抗体が、 マウス抗 A33抗体と同様な ェピト プを認識するか否かを FCM を用いた競合実験にて検討した。 2X10Vml の濃度で C0L0205細胞株を 0. l%NaN3、 2¾FCS含有 PBSの Staining Buffer (SB) に浮遊させた。 細胞浮遊液 (50 1Zゥエル) を 96- well丸底プレート (べクトン ディッキンソン社製) に分注した。 そこに、 実施例 1で調製したマウス抗 A33精 製抗体を 100 g/mlの濃度で加えたものと加えないものを、 1 ig/mlの各モノク ローナル精製抗体 (50/ l) とともにゥエルに加え、 氷温下 30分間インキュベー トした。抗 A33精製抗体を加えないマウス陰性コントロールは、ヒト IgGl抗体(シ ダマ社製) を用い、 SBで l g/mlの濃度に調製し、 50^1添加後氷温下 30分間ィ ンキュペートした。 SBで 2回洗浄した後、 FITC蛍光標識ャギ抗ヒト IgGF(ab' )2 抗体(アイビ一エル社製) 50 1 を加え、 氷温下 30 分間インキュベートした。 SB で 1回洗浄した後、 300^1の FACS緩衝液に懸濁し、 FACS (FACScan, べクトンデ イツキンソン社製) で各細胞の平均蛍光強度を測定した。 各モノクローナル精製 抗体のマウス A33抗体との阻害率を下記式により算出した:阻害率 = { 100-(100x マウス A33抗体プレインキュベートした後の平均蛍光強度) / (マウス A33抗体な しでプレインキュペートした後の平均蛍光強度) }。 阻害率が 25%以下のものを 「ノンブロッカー」、 25%以上 90未満のものを 「パーシャルブロッカー」、 90%以 上のものを「ブロッカー」と命名した。その結果、 263A17, 125M10AA及び 125M96ABA は、「ノンブロッカー」、 125M165DAAA及び 125N26F6AAは「ブロッカー」、 125Q47BA, 125Q54AAAA及び 125R5AAAAは、 「パーシャルブロッカー」 と分類された。 その結 果を表 3に示す。
表 3 抗体名 阻害率(%) 飾 cA33 942 ブロッカー
263A17 3.7 ノンブロッカー
125M10AA 5.0 ノンブロッカー
1腿 65醒 96.0 ブロッカー
125M96ABA 22.8 ノンブロッカー
125N26F6AA 98.0 ブロッカー
125Q47BA 64.1 パーシャルブロッカー
125Q54AAAA 46.5 パーシャルブロッカー
125R5AAAA 63.9 パーシャルブロッカー 実施例 11_ 正常ヒト単核球の取得方法
最初に正常ヒト末梢血由来単核球を Ficoll (Ficoll-Pa uePLUS: アマシャム - フアルマシア ·バイオテック社製) を用いて定法に従って調製した。 抗凝固剤と してクェン酸ナトリウム液を含んだ採血バッグ (テルモ社製) に採取した正常ヒ ト血液を Ficollに重層し、 比重遠心 (800G、 室温 15分間) により単核細胞を分 離した。 中間層を単核球として抽出して PBSで希釈して 200Gで 10分間遠心分離 を 3回繰り返し、 上清中に残留した血小板を除去した。 以上の方法で正常ヒト末 梢血由来単核球(以下 PBMCという)を取得し、実施例 12の PBMCとして使用した。 さらに、 PBMC から CD4+ T cell Isolation kit II (ミルテニバイオテック社製) を用い、 付属の説明書に従って CD4+ T細胞を単離した残りの細胞群も実施例 12 の PBMCとして使用した。 実施例 12 各モノクローナル精製抗体での細胞傷害性試験
抗体を介した細胞傷害性活性は、 NI (細胞或いは好中球などのキラー活性を有す る細胞と抗体の存在下でターゲッ卜細胞への傷害活性 (抗体依存性細胞性細胞傷 害活性 (Ant ibody- Dependent Cel lular Cytotoxic i ty) , 以下、 ADCC)ゝ 及び補体 と抗体の存在下で夕一ゲッ ト細胞への傷害活性 (補体依存性細胞傷害活性 (Complement-Dependent Cytotoxici ty)以下、 CDC) の測定を実施した。 抗体は、 実施例 8で作製した各モノク口一ナル精製抗体と抗 A33抗体のコントロールとし て cA33組換え型抗体を用いた。 さらに、 陰性コントロールとして抗 DNP IgGl抗 体を用いた。
方法は簡単には、 ターゲット細胞に放射性クロム (51Cr) を細胞質内に取り込 ませ、 細胞死により培養液中に遊離される 51Cr量をァ線量で測定した。
具体的には、 夕ーゲット細胞として大腸癌細胞株 COL0205 (ATCC No. CCL-86) 及び NCI- H508細胞(ATCC No. CCL- 253)を 106個を 15 Lの Fetal Cal f Serum (FCS) に懸濁し、 (37MBq/mL) の 51Cr ラベルされたクロム酸ナトリウム ひ、。ーキ エルマ一社製:以下、 "Crと書く) を添加し、 1時間 37°Cで培養した。 次に、 培 地を 10mL添加し、遠心して培地を捨てることを 3回繰り返すことで、細胞内に取 り込まれていない 51Crを除いた。
ADCCアツセィは、 51Crラベルしたターゲット細胞 5000個に対して、 実施例 11 記載の方法で取得した健常人末梢血単核球 500000個を、 V底 96ゥエルプレート (コース夕一社製) 中で全体容量 200^ Lで、 各抗体濃度とともに 37°C、 5% C02 存在下で 4時間培養した。
CDCアツセィは、5' Crラベルしたターゲット細胞 5000個に対して、最終濃度 5% のヒト血清由来補体 (シグマ社製) を、 V底 96ゥエルプレート中で全体容量 200 Lで、 各抗体濃度とともに 37°C、 5¾ C02存在下で 4時間培養した。
ADCC · CDC アツセィともに培養後、 プレートを遠心して細胞を沈めた後、 各モ ノクローナル精製抗体を 0. 4-500ng/mlに調製し 50 を粉末シンチレ一夕一含有 の 96穴プレート (L腹 aplateTM- 96:パッカード社製) に移し、 55°C、 1. 5時間で 乾燥した。 乾燥を確認後、 専用カバー (TopSealTM- A: 96- wel l Micropl ates:パッ カード社製) でプレートをカバーし、 シンチレ一シヨンカウンター (トップカウ ント :パッカード社製) でァ線量を測定した。
その結果を図 1A〜図 1 D、 表 4に示す。 ADCCは、 COL0205細胞の場合は、 特異 的溶解率半値を 15%とし、 そこに達する抗体濃度が 1<=χく lOng/ml のときは + +十、 10<=x<100ng/nilのときは +十、 100<=x<1000ng/mlのときは十、 特異的 溶解率が認められなかった場合は、 一と示した。 また、 NCI - H508 細胞の場合は、 特異的溶解率半値を 15%とし、 そこに達する抗体濃度が 1ぐ =x<10ng/mlのとき は + +十、 10<=x<100 ng/mlのときは +十、 100く =x<1000 ng/mlのときは" 特異的溶解率が認められなかった場合は、 —と示した。
CDCでは、 C0L0205細胞の場合は、 特異的溶解率半値を 10%とし、 そこに達す る抗体濃度が 10Ox<100ng/ml のときは + +十、 100<=x<1000ng/ml のときは +十、 >=1000ng/ml のときは +、 特異的溶解率が認められなかった場合は、 一 と示した。 また、 NCI-H508細胞の場合は、 特異的溶解率半値を 25%とし、 そこに 達する抗体濃度が 10Ox<100 ng/mlのときは + +十、 100<=x<1000 ng/ml の ときは + +、 x〉= 1000 ng/mlのときは十、 特異的溶解率が認められなかった場合 は、 一と示した。 ·
ADCCでは、 CA33及び 125Q54AAAAが高い傷害活性を示した。 一方、 CDCでは、 125 M 10AAが高い傷害活性を示した。
表 4
細胞名 CO固 5 NCI-H508 抗体名 ADCC CDC ADCC CDC 抗 DNP- IgGl ― ― 一
cA33 +++ — +H 一
263A17 ++ ++ Ή+ ++
125M10AA ++ +++
+++ +++
125M165醒 + +++ ++ '
125M96ABA + ++ ++ +++
125N26F6AA ++ ― ++ +
I25Q47BA ++ ++ ++ ++
125Q54AAAA +++ ++ +++ ++
125 5AAAA ++ ++ +++ ++
特異的溶解率半値 15% 特異的溶解率半値 10% 特異的溶解率半値 15% 特異的溶解率半値 25%
K=x< 10 ng/ml; +++ 10<=x<100 ng/ml; +++ K=x<10 ng/ml; +++ 10<=x<100 ng/ml; +++
10<=x<100 ng/ml; ++ 100<=x<1000 ng/ml; ++ 10<=x<100 ng/ml; 十+ 100く =xく 1000 ng/ml; 十+
100< く 1000 ng/ml : + x>=1000 ng/ml ; + 100<=x<1000 ng/ml; + x>=1000 ng/ml ; + 特異的溶解なし;一 特異的溶解なし; - 特異的溶解なし; - 特異的溶解なし: -
実施例 1 3 各モノクローナル抗体をコードする遺伝子の調製
(1) 各モノクローナル抗体の cDNA合成
ハイプリドーマ 263A17、 125M10AA、 125M165DAAA, 125M96ABA, 125N26F6AAゝ 125Q47BA, 125Q54AAAA及び 125R5AAAAを lOng/mL IL - 6または 10% HCF (バイオ ベース社製)、 10% Fetal Bovine Serum (ハイクローン社製) 含有 DMEM培地 (ギ ブ: i ·ビーアールエル社製)で培養し、遠心分離により細胞を集めた後 IS0GEN (日 本ジーン社製) を添加し、 取扱説明書にしたがって Total RNAを抽出した。 抗体 cDNA の可変領域のクローニングは、 SMART RACE cDNA amplification Kit (べク トン ·ディキンソン 'バイオサイエンス 'クローンテック社製) を用い、 添付の 説明書にしたがって行った。
5 Sの total RNAを鐯型として、 1st strand cDNAを作製した。
1st strand cDNA の合成
Total RNA 5' g/3 1
5' CDS 1^1
SMART oligo 1 1
上記組成の反応液を 70°Cで 2分間ィンキュペートした後、
5XBuffer ln\
DTT \ιι\
DNTP mi
PowerScript Reverse Transcriptase 1 n 1
を加え 42°Cで 1.5時間ィンキュベートした。
さらに、 の Tricine Bufferを加えた後、 72°Cで 7分間インキュベート し、 1st strand cDNAを取得した。
(2) PCRによる重鎖遺伝子、 軽鎖遺伝子の増幅と塩基配列の確認
(2) - 1 ;ハイブリドーマ 263ΑΠの PCRによる重鎖遺伝子、 軽鎖遺伝子の増幅 cDNAの増幅は、 K0D- Plus- DNAポリメラ一ゼ (ト一ョーボー社製) を用いて下記 の反応液を調製して実施した。
sterile H20 29.5 ^1
cDNA 2.5 1 KOD-Plus- buffer 画 521
dNTP Mix (2EM) 4/il
Figure imgf000050_0001
KOD- Plus- (1 unit/Ml) l l
Universal primer A mix (UPM) (10X) 5 1
Gene specific primers (GSP) l
Total volume 50/^1
上記組成の反応液を再蒸留水にて最終容量 50^1とし、 PCRに供した。
263A17の重鎖遺伝子の増幅は、 SMART RACE c匪 Amplification Kit付属の UPM プライマと IgGlpプライマー (5' -TCTTGTCCACCTTGGTGTTGCTGGGCTTGTG-3 ' ) (配列 番号 16)を用い、 98°C 1秒、 68°C30秒のサイクルを 30回繰り返した。一方、 263A17 の軽鎖遺伝子の増幅は、 UPMプライマーと lik- 2 (5' -GTT GAA GCT CTT TGT GAC GGG CGA GC -3') (配列番号 17) プライマ一を使って、 98°C 1秒、 68°C30秒のサイク ルを 30回繰り返して増幅した。
(2) _2 ;ハイプリドーマ 125M謹、 125M96ABA, 125Q47BA, 125Q54AAAA及び 125R5AAAAの PCRによる重鎖遺伝子、 軽鎖遺伝子の増幅
反応条件は、' ( 2) 一 1と同様に行った。 125M10AA、 125M96ABA, 125Q47BA, 125Q54AAAA及び 125R5AAAAの重鎖遺伝子の増幅は、 UPMプライマーと IgGlpブラ イマ一 (配列番号 16) を用い、 98で 1秒、 68°C 30秒のサイクルを 30回繰り返し た。 さらに、 この反応液 1 ^1 を铸型とし、 NUPM プライマー (SMART RACE cDNA amplificationKit;べクトン 'ディキンソン ·バイオサイエンス ·クローンテツ ク社製) と IgG2p/G134プライマー (5, - TGC ACG CCG CTG GTC AGG GCG CCT GAG TTC C-3') (配列番号 18) を用いて、 98°C 1秒、 68°C30秒のサイクルを 20回繰り 返した。 一方、 125M匪、 125M96ABA, 125Q47BA, 125Q54AAAA及び 125R5AAAAの 軽鎖遺伝子の増幅は、 UPMプライマーと hk- 2プライマー(配列番号 17)を使って、 98°C 1秒、 68°C30秒のサイクルを 30回繰り返して増幅した。 さらに、 この反応 液 l lを鐯型とし、 NUPMプライマーと 1Λ- 5プライマ一 (5' - AGG CAC ACA ACA GAG GCA GTT CCA GAT TTC-3') (配列番号 19) を用いて、 98°C 1秒、 68°C30秒の サイクルを 20回繰り返した。 ( 2 ) -3;ハイプリ ドーマ 125M165DAAA及び 125N26F6AAの PCRによる重鎖遺伝 子、 軽鎖遺伝子の増幅
反応条件は、 (2 ) — 1と同様に行った。 125M165DAAA及び 125N26F6AAの重鎖 遺伝子の増幅は、 UPMプライマーと hh- 2プライマー (5 ' -GCT GGA GGG CAC GGT CAC CAC GCT G-3 ') (配列番号 20) を用い、 98°C 1秒、 68°C30秒のサイクルを 30回繰 り返した。 さらに、 この反応液 1 lを鐯型とし、 NUPMプライマ一と hh - 4プライ マー (5 ' - GGT GCC AGG GGG AAG ACC GAT GG-3 ' ) (配列番号 21) を用いて、 98°C 1秒、 68°C 30秒のサイクルを 20回繰り返した。一方、 125M165DAAA及び 125N26F6AA の軽鎖遺伝子の増幅は、 ϋΡΜプライマーと hk- 2プライマー (配列番号 17) を使つ て、 98°C 1秒、 68°C 30秒のサイクルを 30回繰り返して増幅した。 さらに、 この 反応液 1 l を鎳型とし、 NUPMプライマーと hk- 5プライマー (配列番号 19) を 用いて、 98^0 1秒、 68°C30秒のサイクルを 20回繰り返した。
以上のように増幅した各々の重鎖及び軽鎖の PCR断片は、 ェタノール沈殿で回 収した後、 ァガロースゲル電気泳動で回収し、 メンブランを用いる DNA精製キッ トである QIAduick Ge l Extract ion Ki t (キアゲン社製) にて精製した。 精製し た HV増幅断片あるいは LV増幅断片は、それぞれ Zero Blunt T0P0 PC Cloning Ki t (インビトロジェン社製)の PCR 4 Blunt- T0P0ベクターにサブクローニングを行 い、 得られたクローンのプラスミド DNAについてインサート DNAの塩基配列を解 祈した。 DNA塩基配列決定のためにプライマーとして、 M13FW (配列番号 3)及び M13RV (配列番号 4) を用いた。
263A17の重鎖可変領域、及び軽鎖可変領域をコードする DNA並びに重鎖可変領 域及び軽鎖可変領域のアミノ酸配列をそれぞれ以下に示す。
〈263Α17重鎖核酸配列〉 (配列番号 22)
10 20 30 40 50 60
ATGGAGTTTG GGCTGAGCTG GCTTTTTCTT GTGGCTATTT TAAAAGGTGT CCAGTGTGAG
70 80 90 100 110 120
GTGCAGTTGT TGGAGTCTGG GGGAGGCTTG GTACAGCCTG GGGGGTCCCT GAGACTCTCC
130 140 150 160 170 180
TGTGCAGCCT CTGGATTCAC CTTTAGCAGC TATGCCATGA GCTGGATCCG CCAGGCTCCA 190 200 210 220 230 240
GGGAAGGGGC TGGAGTGGGT CTCAGCTATT AGTGCTAGTG GTGGTAGCAC ATACTACGCA
250 260 270 280 290 300
GACTCCGTGA AGGGCCGGTT CACCATCTCC AGAGACAATT CCAAGAACAC GCTGTATCTG
310 320 330 340 350 360
CAAATGAACA GCCTGAGAGC CGAGGACACG GCCGTATATT ACTGTGCGAA AGATCGGATA
370 380 390 400 410 420
GTGGGAGCTA CGAACTACTA CTACGGTATG GACGTCTGGG GCCAAGGGAC CACGGTCACC
430 440 450 460 470 480
GTCTCCTCAG CTAGC
く 263A17重鎖アミノ酸配列〉 (配列番号 23)
10 20 30 40 50 60
MEFGLSWLFL VAILKGVQCE VQLLESGGGL VQPGGSLRLS CAASGFTFSS YAMSWIRQAP
70 80 90 100 110 120
GKGLEWVSAI SASGGSTYYA DSVKGRFTIS RDNSKNTLYL QMNSLRAEDT AVYYCAKDRI
130 140 150 160 170 180
VGATNYYYGM DVWGQGTTVT VSSAS
<263A17軽鎖核酸配列〉 (配列番号 24)
10 20 30
ATGGACATGA GGGTCCCCGC TCAGCTCCTG GGGCTCCTGC TGCTCTGGTT CCCAGGTTCC
70 80 90 100 110 120
AGATGCGACA TCCAGATGAC CCAGTCTCCA CCTTCCGTGT CTGCATCTGT AGGAGACAGA
130 140 150 160 170 180
GTCACCATCA CTTGTCGGGC GAGTCAGGGT ATTAGCAGCT GGTTAGCCTG GTATCAGCAT
190 200 210 220 230 240
AAACCAGGGA AAGCCCCAAA GCTCCTGATC TATGGTGCAT CCAGTTTGCA AAGTGGGGTC
250 260 270 280 290 300
CCATCAAGGT TCAGCGGCAG TGGATCTGGG ACAGATTTCA CTCTCACCAT CAGCAGCCTG
310 320 330 340 350 360 CAGCCTGAAG ATTTTGCAAC TTACTATTGT CAACAGGCTA ATAGTTTCCC TATCACCTTC
370 380 390
GGCCAAGGGA CACGACTGGA GATTAAACGT
<263A17 軽鎖アミノ酸配列〉 (配列番号 25)
10 20 30 40 50 60
MDMRVPAQLL GLLLL FPGS RCDIQMTQSP PSVSASVGDR VTITCRASQG ISSWLA YQH
70 80 90 100 110 120
KPGKAPKLLI YGASSLQSGV PSRFSGSGSG TDFTLTISSL QPEDFATYYC QQANSFPITF
130
GQGTRLEIKR
重鎖核酸配列(配列番号 22)における抗体可変領域と抗体定常領域の境界は 429 番目のアデニン (A) と 430番目のグァニン (G) の間に位置し、 重鎖アミノ酸配 列 (配列番号 23) ·における抗体可変領域と抗体定常領域の境界は 143番目のセリ ン (S) と 144番目のァラニン (A) の間に位置する。 また、 重鎖核酸配列 (配列 番号 22)におけるシグナル配列と抗体可変領域の境界は 57番目のチミン(T)と 58 番目のグァニン (G) の間に位置し、 重鎖アミノ酸配列 (配列番号 23) における シグナル配列と抗体可変領域の境界は 19番目のシスティン(C) と 20番目のダル 夕ミン酸 (E) の間に位置する。
以上より、 263A17抗体重鎖の可変領域の核酸配列 (配列番号 22) は 58番目の グァニン (G) から 429番目のアデニン (A) までである。 また、 重鎖の可変領域 のアミノ酸配列 (配列番号 23) は 20番目のグルタミン酸 (E) から 143番目のセ リン (S) までである。
軽鎖核酸配列(配列番号 24)における抗体可変領域と抗体定常領域の境界は 387 番目のアデニン (A) と 388番目のシトシン (C) の間に位置し、 軽鎖アミノ酸配 列 (配列番号 25) における抗体可変領域と抗体定常領域の境界は 129番目のリジ ン (K) と 130番目のアルギニン (R) の間に位置する。 また、 軽鎖核酸配列 (配 列番号 24)におけるシグナル配列と抗体可変領域の境界は 66番目のシトシン(C) と 67番目のグァニン (G) の間に位置し、 軽鎖アミノ酸配列 (配列番号 25) にお けるシグナル配列と抗体可変領域の境界は 22番目のシスティン(C)と 23番目のァ スパラギン酸 (D) の間に位置する。
以上より、 263A17抗体軽鎖の可変領域の核酸配列 (配列番号 24) は 67番目の グァニン (G) から 387番目のアデニン (A) までである。 また、 軽鎖の可変領域 のアミノ酸配列 (配列番号 25) は 23番目のァスパラギン酸 (D) から 129番目の リジン (K) までである。
125M10AAの重鎖可変領域、及び軽鎖可変領域をコードする DNA並びに重鎖可変 領域及び軽鎖可変領域のアミノ酸配列をそれぞれ以下に示す。
く 125M1GAA重鎖核酸配列〉 (配列番号 26)
10 20 30 40 50 60
ATGGATCTCA TGTGCAAGAA AATGAAGCAC CTGTGGTTCT TCCTCCTGCT GGTGGCGGCT
70 80 90 100 110 120
CCCAGATGGG TCCTGTCCCA GCTGCAGGTG CAGGAGTCGG GCCCAGGACT GGTGAAGCCT
130 • 140 150 160 170 180
TCGGAGACCC TGTCCCTCAT CTGCACTGTC TCTGGTGGCT CCATCAGGAC CAGTGGTTAC
190 200 210 220 230 240
TACTGGGGCT GGTTCCGCCA GCCCCCAGGG AAGGGACTGG AGTGGATTGG GACTAGTCAT
250 260 270 280 290 300
AATAGTGGGA GCACCTACTA CAACCCGTCC CTCAAGAGTC GAGTCACCAT ATCCGTAGAC
310 320 330 340 350 360
ACGTCCAAGA ACCAGTTCTC CCTGAAGCTG AACTCTGTGA CCGCCGCAGA CACGGCTGTG
370 380 390 400 410 420
TATTACTGTG CGAGACAAGG TTACGATTTT AAAGTCAATA TAGACGTCTG GGGACAAGGG
430 440 450
ACCACGGTCA CCGTCTCCTC AGCTAGC. · ·
〈125M10AA重鎖アミノ酸配列〉 (配列番号 27)
10 20 30 40 50 60
MDLMCKKMKH LWFFLLLVAA PRWVLSQLQV QESGPGLVKP SETLSLICTV SGGSIRTSGY
70 80 90 100 110 120
YWGWFRQPPG KGLEWIGTSH NSGSTYYNPS LKSRVTISYD TSKNQFSLKL NSVTAADTAV 130 140 】50
YYCARQGYDF KVNIDVWGQG TTVTVSSAS.
25M10AA軽鎖核酸配列〉 (配列番号 28)
10 20 30 40 50 60
ATGGAAGCCC CAGCTCAGCT TCTCTTCCTC CTGCTACTCT GGCTCCCAGA TACCACCGGA
70 80 90 100 110 120
GAAATTGTGT TGACACAGTC TCCAGCCACC CTGTCTTTGT CTCCAGGGGA AAGAGCCACC
130 140 150 160 170 180
CTCTCCTGCA GGGCCAGTCA GAGTGTTAGC AGCTACTTAG CCTGGTACCA ACAGAAACCT
190 200 210 220 230 240
GGCCAGGCTC CCAGGCTCCT CATCTATGAT GCATCCAACA GGGCCACTGG CATCCCAGCC
250 260 270 280 290 300
AGGTTCAGTG GCAGTGGGTC TGGGACAGAC TTCACTCTCA CCATCAGCAG CCTAGAGCCT
310 320 330 340 350 360
GAAGATTTTG CAGTTTATTA CTGTCAGCAG CGTAGCAACT GGCCGCTCAC TTTCGGCGGA
370 380 390
GGGACCAAGG TGGAGATCAA ACGA
<125M10AA 軽鎖アミノ酸配列〉 (配列番号 29)
10 20 30 40 50 60
MEAPAQLLFL LLLWLPDTTG EIVLTQSPAT LSLSPGERAT LSCRASQSVS SYLAWYQQKP
70 80 90 100 110 120
GQAPRLLIYD ASNRATGIPA FSGSGSGTD FTLTISSLEP EDFAVYYCQQ RSNWPLTFGG
130
GTKVEIKR. .
重鎖核酸配列(配列番号 26)における抗体可変領域と抗体定常領域の境界は 441 番目のアデニン (A) と 442番目のグァニン (G) の間に位置し、 重鎖アミノ酸配 列 (配列番号 27) における抗体可変領域と抗体定常領域の境界は 147番目のセリ ン (S) と 148番目のァラニン (A) の間に位置する。 また、 重鎖核酸配列 (配列 番号 26) におけるシグナル配列と抗体可変領域の境界は 78番目のシトシン(C)と 79番目のシトシン (C) の間に位置し、 重鎖アミノ酸配列 (配列番号 27) におけ るシグナル配列と抗体可変領域の境界は 26番目のセリン(S) と 27番目のダル夕 ミン (Q) の間に位置する。
以上より、 125M10AA抗体重鎖の可変領域の核酸配列 (配列番号 26) は 79番目 のシトシン(C)から 441番目のアデニン (A) までである。 また、 重鎖の可変領域 のアミノ酸配列 (配列番号 27) は 27番目のグルタミン (Q) から 147番目のセリ ン (S) までである。
軽鎖核酸配列(配列番号 28)における抗体可変領域と抗体定常領域の境界は 381 番目のアデニン (A) と 382番目のシトシン (C) の間に位置し、 軽鎖アミノ酸配 列 (配列番号 29) における抗体可変領域と抗体定常領域の境界は 127番目のリジ ン (K) と 128番目のアルギニン (R) の間に位置する。 また、 軽鎖核酸配列 (配 列番号 28)におけるシグナル配列と抗体可変領域の境界は 60番目のアデニン(A) と 61番目のグァニン (G) の間に位置し、 軽鎖アミノ酸配列 (配列番号 29) にお けるシグナル配列と抗体可変領域の境界は 20番目のダリシン )と 21番目のダル 夕ミン酸 (E) の間に位置する。
以上より、 125M10AA抗体軽鎖の可変領域の核酸配列 (配列番号 28) は 61番目 のグァニン (G) から 381番目のアデニン (A) までである。 また、 軽鎖の可変領 域のアミノ酸配列 (配列番号 29) は 21·番目のグルタミン酸 (E) から 127番目の リジン (K) までである。
125M165DAAA重鎖可変領域、 及び軽鎖可変領域をコードする DNA並びに重鎖可 変領域及び軽鎖可変領域のアミノ酸配列をそれぞれ以下に示す。
く 125M165DAAA重鎖核酸配列〉 (配列番号 30)
10 20 30 40 50 60
ATGGAGTTTG GGCTGAGCTG GGTTTTCCTC GTTGCTCTTT TAAGAGGTGT CCAGTGTCAG
70 80 90 100 110 120
GTGCAGCTGG TGGAGTCTGG GGGAGGCGTG GTCCAGCCTG GGAGGTCCCT GAGACTCTCC
130 140 150 160 170 180
TGTGCAGCGT CTGGATTCAC CTTCAGTTAT TATGGCATGC ACTGGGTCCG CCAGGCTCCA
190 200 210 220 230 240 GGCAAGGGGC TGGAGTGGGT GGCAGTTATA TGGTATGATG GAAGTAATAA ATACTATGCA
250 260 270 280 290 300
GACTCCGTGA AGGGCCGATT CACCATCTCC AGAGACAATT CCAAGAAAAC GCTGTATCTG
310 320 330 340 350 360
CAAATGAACA GCCTGAGAGC CGAGGACACG GCTGTGTATT ACTGTGCGAG AGATGGGCAT
370 380 390 400 410 420
AGCAGTGGCT GGGGGGACTT CCAGCACTGG GGCCAGGGCA CCCTGGTCAC CGTCTCCTCA
430
GCTAGC. . . .
く 125M165DAAA重鎖アミノ酸配列〉 (配列番号 31)
10 20 30 40 50 60
MEFGLSWVFL VALLRGVQCQ VQLVESGGGV VQPGRSLRLS CAASGFTFSY YGMHWVRQAP
70 80 90 100 110 120
GKGLEWYAVI WYDGSNKYYA DSVKGRFTIS RDNSKKTLYL QMNSLRAEDT AVYYCARDGH
130 140 150
SSGWGDFQHW GQGTLVTVSS AS
〈125M165DAAA軽鎖核酸配列〉 (配列番号 32)
10 20 30 '
ATGGAAGCCC CAGCTCAGCT TCTCTTCCTC CTGCTACTCT GGCTCCCAGA TACCACCGGA
70 80 90 100 110 120
GAAATTGTGT TGACACAGTC TCCAGCCACC CTGTCTTTGT CTCCAGGGGA AAGAGCCACC
130 140 150 160 170 180
CTCTCCTGCA GGGCCAGTCA GAGTGTTAGC AGCTCCTTAG CCTGGTACCA ACAGAAACCT
190 200 210 220 230 240
GGCCAGGCTC CCAGGCTCCT CATCTATGAT GCATCCAACA GGGCCACTGG CATCCCAGCC
250 260 270 280 290 300
AGGTTCAGTG GCAGTGGGTC TGGGACAGAC TTCACTCTCA CCATCAGCAG CCTAGAGCCT
310 320 330 340 350 360
GAAGATTTTG CAATTTATTA CTGTCAGCAG CGTAGCAACT GGCCTCCGAC GTTCGGCCAA 370 380 390
GGGACCAAGG TGGAAATCAA ACGA
<125M165DAAA軽鎖アミノ酸配列〉 (配列番号 33)
10 20 30 40 50 60
MEAPAQLLFL LLLWLPDTTG EIVLTQSPAT LSLSPGERAT LSCRASQSVS SSLAWYQQKP
70 80 90 100 110 120
GQAPRLLIYD ASNRATGIPA RFSGSGSGTD FTLTISSLEP EDFAIYYCQQ RSNWPPTFGQ
130
GTKVEIKR. .
重鎖核酸配列(配列番号 30)における抗体可変領域と抗体定常領域の境界は 420 番目のアデニン (A) と 421番目のグァニン (G) の間に位置し、 重鎖アミノ酸配 列 (配列番号 31) における抗体可変領域と抗体定常領域の境界は 140番目のセリ ン (S) と 141番目のァラニン (A) の間に位置する。 また、 重鎖核酸配列 (配列 番号 30)におけるシグナル配列と抗体可変領域の境界は 57番目のチミン(T)と 58 番目のシトシン (C) の間に位置し、 重鎖アミノ酸配列 (配列番号 31) における シグナル配列と抗体可変領域の境界は 19番目のシスティン(C) と 20番目のダル 夕ミン (Q) の間に位置する。
以上より、 125M165DAAA 抗体重鎖の可変領域の核酸配列 (配列番号 30) は 58 番目のシトシン(C)から 420番目のアデニン (A) までである。 また、 重鎖の可変 領域のアミノ酸配列 (配列番号 31) は 20番目のグルタミン (Q) から 140番目の セリン (S) までである。
軽鎖核酸配列(配列番号 32)における抗体可変領域と抗体定常領域の境界は 381 番目のアデニン (A) と 382番目のシトシン (C) の間に位置し、 軽鎖アミノ酸配 列 (配列番号 33) における抗体可変領域と抗体定常領域の境界は 127番目のリジ ン (10 と 128番目のアルギニン (R) の間に位置する。 また、 軽鎖核酸配列 (配 列番号 32)におけるシグナル配列と抗体可変領域の境界は 60番目のアデニン(A) と 61番目のグァニン (G) の間に位置し、 軽鎖アミノ酸配列 (配列番号 33) にお けるシグナル配列と抗体可変領域の境界は 20番目のグリシン(G)と' 21番目のダル 夕ミン酸 (E) の間に位置する。 以上より、 125M165DAAA抗体軽鎖の可変領域の核酸配列 (配列番号 32) は 61 番目のグァニン (G) から 381番目のアデニン (A) までである。 また、 軽鎖の可 変領域のアミノ酸配列 (配列番号 33) は 21番目のグルタミン酸 (E) から 127番 目のリジン (K) までである。 .
125M96ABA重鎖可変領域、 及び軽鎖可変領域をコードする DNA並びに重鎖可変 領域及び軽鎖可変領域のアミノ酸配列をそれぞれ以下に示す。
く 125M96ABA重鎖核酸配列〉 (配列番号 34)
10 20 30 40 50 60
ATGAAGCACC TGTGGTTCTT CCTCCTGCTG GTGGCGGCTC CCAGATGGGT CCTGTCCCAA
70 80 90 100 110 120
CTGCAGCTGC AGGAGTCGGG CCCAGGACTG GTGAAGCCTT CGGAGACCCT GTCCCTCACC
130 140 150 160 170 180
TGCACTGTCT CTGGTGGCTC CATCAGCACT AGTAGTTACT ACTGGGGCTG GATCCGCCAG
190 200 210 220 230 240
CCCCCCGGGA AGGGCCTGGA ATGGATTGGG ACTATCTATT ATAATGGGAG CACCTACTAC
250 260 270 280 290 300
AGCCCGTCCC TCAAGAGTCG AGTCAGTATA TCCGTAGACA CGTCCAAGAA CCAGTTCTCC
310 320 330 340 350 360
CTGAAGCTGA GCTCTGTGAC CGCCGCAGAC ACGTCTGTGT ATTACTGTGC GAGACAAGGT
370 380 390 400 410 420
TACGATATTA AAATCAATAT AGACGTCTGG GGCCAAGGGA CCACGGTCAC CGTCTCCTCA
430
GCTAGC. . . .
く 125M96ABA重鎖アミノ酸配列〉 (配列番号 35)
10 20 30 40 50 60
MKHLWFFLLL VAAPRWVLSQ LQLQESGPGL VKPSETLSLT CTVSGGSIST SSYYWGWIRQ
70 80 90 100 110 120
PPGKGLEWIG TIYYNGSTYY SPSLKSRVSI SVDTSKNQFS LKLSSVTAAD TSVYYCARQG
130 140 150 YDIKINIDVW GQGTTVTVSS AS
く 125M96ABA軽鎖核酸配列〉 (配列番号 36)
10 . 20 30 40 50 60
ATGGAAGCCC CAGCTCAGCT TCTCTTCCTC CTGCTACTCT GGCTCCCAGA TACCACCGGA
70 80 90 100 110 120
GAAATTGTGT TGACACAGTC TCCAGCCACC CTGTCTTTGT CTCCAGGGGA AAGAGCCACC
130 140 150 160 170 180
CTCTCCTGCA GGGCCAGTCA GAGTGTTAGC AGCTACTTAG CCTGGTACCA ACAGAAACCT
190 200 210 220 230 240
GGCCAGGCTC CCAGGCTCCT CATCTATGTT GCATCCAACA GGGCCACTGG CATCCCAGCC
250 260 270 280 290 300
AGGTTCAGTG GCAGTGGGTC TGGGACAGAC TTCACTCTCA CCATCAGCAG CCTAGAGCCT
310 320 330 340 350 360
GAAGATTTTG CAGTTTATTA CTGTCAGCAG CGTAGCAACT GGCCGCTCAC TTTCGGCGGA
370 380 390
GGGACCAAGG TGGAGATCAA ACGA
<125M96ABA 軽鎖アミノ酸配列〉 (配列番号 37)
Figure imgf000060_0001
MEAPAQLLFL LLLWLPDTTG EIVLTQSPAT LSLSPGERAT LSCRASQSVS SYLAWYQQKP
70 80 90 100 110 120
GQAPRLLIYV ASNRATGIPA FSGSGSGTD FTLTISSLEP EDFAVYYCQQ RSNWPLTFGG
130
GTKVEIKR. .
重鎖核酸配列(配列番号 34)における抗体可変領域と抗体定常領域の境界は 420 番目のアデニン (A) と 421番目のグァニン (G) の間に位置し、 重鎖アミノ酸配 列 (配列番号 35) における抗体可変領域と抗体定常領域の境界は 140番目のセリ ン (S) と 141番目のァラニン (A) の間に位置する。 また、 重鎖核酸配列 (配列 番号 34) におけるシグナル配列と抗体可変領域の境界は 57番目のシトシン (C) と 58番目のシトシン (C) の間に位置し、 重鎖アミノ酸配列 (配列番号 35) にお けるシグナル配列と抗体可変領域の境界は 19番目のセリン(S) と 20番目のダル 夕ミン (Q) の間に位置する。
以上より、 125M96ABA抗体重鎖の可変領域の核酸配列 (配列番号 34) は 58番目 のシトシン(C)から 420番目のアデニン (A) までである。 また、 重鎖の可変領域 のアミノ酸配列 (配列番号 35) は 20番目のグルタミン (Q) から 140番目のセリ ン (S) までである。
軽鎖核酸配列 (配列番号 36)における抗体可変領域と抗体定常領域の境界は 381 番目のアデニン (A) と 382番目のシトシン (C) の間に位置し、 軽鎖アミノ酸配 列 (配列番号 37) における抗体可変領域と抗体定常領域の境界は 127番目のリジ ン (K) と 128番目のアルギニン (R) の間に位置する。 また、 軽鎖核酸配列 (配 列番号 36)におけるシグナル配列と抗体可変領域の境界は 60番目のアデニン(A) と 61番目のグァニン (G) の間に位置し、 軽鎖アミノ酸配列 (配列番号 37) にお けるシグナル配列と抗体可変領域の境界は 20番目のグリシン(G)と 21番目のダル 夕ミン酸 (E) の間に位置する。
以上より、 125M165DAAA抗体軽鎖の可変領域の核酸配列 (配列番号 36) は 61 番目のグァニン (G) から 381番目のアデニン (A) までである。 また、 軽鎖の可 変領域のアミノ酸配列 (配列番号 37) は 21番目のグルタミン酸 (E) から 127番 目のリジン (K) までである。
125N26F6AA重鎖可変領域、及び軽鎖可変領域をコードする DNA並びに重鎖可変 領域及び軽鎖可変領域のアミノ酸配列'をそれぞれ以下に示す。
〈125N26F6AA重鎖核酸配列〉 (配列番号 38)
10 20 30 40 50 60
ATGGAGTTTG GGCTGAGCTG GGTTTTCCTC GTTGCTCTTT TAAGAGGTGT CCAGTGTCAG
70 80 90 100 110 120
GTGCAGTTGG TGGAGTCTGG GGGAGGCGTG GTCCAGCCTG GGAGGTCCCT GAGACTCTCC
130 140 150 160 170 180
TGTGCAGCGT CTGGATTCAC CTTCAGTCAC TATGGCATGC ACTGGGTCCG CCAGGCTCCA
190 200 210 220 230 240
GGCAAGGGGC TGGAGTGGGT GGCACTTATA TGGTATGATG GAAGTAATAA ATACTATGCA 250 260 270 280 290 300
GACTCCGTGA AGGGCCGATT CACCATGTCC AGAGACAATT CCAAGAACAC GCTGTATCTG
310 320 330 340 350 360
CAAATGAAGA GCCTGAGAGC CGAGGACACG GCTGTGTATT ACTGTGCGAG AGATCCCTTA
370 380 390 400 410 420
GCAGCTGGTA CGTCCTACTT TGACTACTGG GGCCAGGGAA CCCTGGTCAC CGTCTCCTCA
430
GCTAGC. . . ·
く 125N26F6AA重鎖アミノ酸配列〉 (配列番号 39)
10 20 30 40 50 60
MEFGLSWVFL VALLRGVQCQ VQLVESGGGV VQPGRSLRLS CAASGFTFSH YGMHWYRQAP
70 80 90 100 110 120
GKGLEWVALI WYDGSNKYYA DSYKGRFTIS RDNSKNTLYL QMNSLRAEDT AVYYCARDPL
130 140 150
AAGTSYFDYW GQGTLVTVSS AS
く 125N26F6AA軽鎖核酸配列〉 (配列番号 40)
10 20 30 40 50 60
ATGTCGCCAT CACAACTCAT TGGGTTTCTG CTGCTCTGGG TTCCAGCCTC CAGGGGTGAA
70 80 90 100 110 120
ATTGTGCTGA CTCAGTCTCC AGACTTTCAG TCTGTGACTC CAAAGGAGAA AGTCACCATC
130 140 150 160 170 180
ACCTGCCGGG CCAGTCAGAG CATTGGTAGT AGCTTACACT GGTACCAGCA GAAACCAGAT
190 200 210 220 230 240
CAGTCTCCAA AGCTCCTCAT CAAGTATGCT TCCCAGTCCT TCTCAGGGGT CCCCTCGAGG
250 260 270 280 290 300
TTCAGTGGCA GTGGATCTGG GACAGATTTC ACCCTCACCA TCAATAGCCT GGAAGCTGAA
310 320 330 340 350 360
GATGCTGCAG CGTATTACTG TCATCAGAGT AGTAGTTTAC CATTCACTTT CGGCCCTGGG
370 380 ACCAAAGTGG ATATCAAACG A
く 125N26F6AA軽鎖アミノ酸配列〉 (配列番号 41)
• 10 20 30 40 50 60
MSPSQLIGFL LLWVPASRGE IVLTQSPDFQ SVTPKEKVTI TCRASQSIGS SLH YQQKPD
70 80 90 100 110 120
QSPKLLIKYA SQSFSGVPSR FSGSGSGTDF TLTINSLEAE DAAAYYCHQS SSLPFTFGPG
130
TKVDIKR. . .
重鎖核酸配列(配列番号 38)における抗体可変領域と抗体定常領域の境界は 420 番目のアデニン (A) と 421番目のグァニン (G) の間に位置し、 重鎖アミノ酸配 列 (配列番号 39) における抗体可変領域と抗体定常領域の境界は 140番目のセリ ン (S) と 141番目のァラニン (A) の間に位置する。 また、 重鎖核酸配列 (配列 番号 38) におけるシグナル配列と抗体可変領域の境界は 57番目のチミン (T) と 58番目のシトシン (C) の間に位置し、 重鎖アミノ酸配列 (配列番号 39) におけ るシグナル配列と抗体可変領域の境界は 19番目のシスティン(C) と 20番目のグ ル夕ミン (Q) の間に位置する。
以上より、 125M96ABA抗体重鎖の可変領域の核酸配列 (配列番号 38) は 58番目 のシトシン(C)から 420番目のアデニン (A) までである。 また、 重鎖の可変領域 のアミノ酸配列 (配列番号 39) は 20番目のグルタミン (Q) から 140番目のセリ ン (S) までである。
軽鎖核酸配列(配列番号 40)における抗体可変領域と抗体定常領域の境界は 388 番目のアデニン (A) と 389番目のシトシン (C) の間に位置し、 軽鎖アミノ酸配 列 (配列番号 41) における抗体可変領域と抗体定常領域の境界は 126番目のリジ ン (K) と 127番目のアルギニン (R) の間に位置する。 また、 軽鎖核酸配列 (配 列番号 40) におけるシグナル配列と抗体可変領域の境界は 57番目のチミン (T) と 58番目のグァニン (G) の間に位置し、 軽鎖アミノ酸配列 (配列番号 41) にお けるシグナル配列と抗体可変領域の境界は 19番目のグリシン(G)と 20番目のダル 夕ミン酸 (E) の間に位置する。
以上より、 125M96ABA抗体軽鎖の可変領域の核酸配列(配列番号 40) は 58番目 のグァニン (G) から 388番目のアデニン (A) までである。 また、 軽鎖の可変領 域のアミノ酸配列 (配列番号 41) は 20番目のグルタミン酸 (E) から 126番目の リジン (K) までである。
125Q47BAの重鎖可変領域、及び軽鎖可変領域をコードする DNA並びに重鎖可変 領域及び軽鎖可変領域のアミノ酸配列をそれぞれ以下に示す。
く 125Q47BA重鎖核酸配列〉 (配列番号 42)
10 20 30 40 50 60
ATGGAGTTTG GGCTGAGCTG GCTTTTTCTT GTGGCTATTT TAAAAGGTGT CCAGTGTGAG
70 80 90 100 110 120
GTGCAGCTGT TGGAGTCTGG GGGAGGCTTG GTACAGCCTG GGGGGTCCCT GAGACTCTCC
130 140 150 160 170 180
TGTGCAGCCT CTGGATTCAC CTTTAGCAGC TATGCCATGA GCTGGGTCCG CCAGGCTCCA
190 200 210 220 230 240
GGGAAGGGGC TGGAGTGGGT CTCAGATATT AGTGGTAGTG GTGGTTACAC ATACTACGCA
250 260 270 280 290 300
GACTCCGTGA AGGGCCGGTT CACCATCTCC AGAGACAATT CCAAGAACAC GCTGTATCTG
310 320 330 340 350 360
CAAATGAACA GCCTGAGAGC CGAGGACACG GCCGTATATT ACTGTGCGAA AACAGGCGAT
370 380 390 400 410 420
GGTTCGGGGA GTTATTCCCC TGACTCCTGG GGCCAGGGAA CCCTGGTCAC CGTCTCCTCA
430
GCTAGC. . . .
25Q47BA重鎖アミノ酸配列〉 (配列番号 43)
10 20 30 40 50 60
MEFGLSWLFL VAILKGVQCE VQLLESGGGL VQPGGSLRLS CAASGFTFSS YAMTWVRQAP
70 80 90 100 110 120
GKGLEWVSDI SGSGGYTYYA DSVKGRFTIS RDNSKNTLYL 圃 SLRAEDT AVYYCAKTGA
130 140 150
GSGSYSPDSW GQGTLVTVSS AS く 125Q47BA軽鎖核酸配列〉 (配列番号 44)
10 20 30 40 50 60
ATGGACATGA GGGTCCTCGC TCAGCTCCTG GGGCTCCTGC TGCTCTGTTT CCCAGGTGCC
70 80 90 100 110 120
AGATGTGACA TCCAGATGAC CCAGTCTCCA TCCTCACTGT CTGCATCTGT AGGAGACAGA
130 140 150 160 170 180
GTCACCATCA CTTGTCGGGC GAGTCAGGGT ATTAGCAGCT GGTTAGCCTG GTATCAGCAG
190 200 210 220 230 240
AAACCAGAGA AAGCCCCTAA GTCCCTGATC TATGCTGCAT CCAGTTTGCA AAGTGGGGTC
250 260 270 280 290 300
CCATCAAGGT TCAGCGGCAG TGGATCTGGG ACAGATTTCA CTCTCACCAT CAGCAGCCTG
310 320 330 340 350 360
CAGCCTGAAG ATTTTGCAAC TTATTACTGC CAACAGTATA ATAGTTACCC GTACACTTTT
370 380 390
GGCCAGGGGA CCAAGCTGGA GATCAAACGA
<125Q47BA 軽鎖アミノ酸配列〉 (配列番号 45)
10 20 30 40 50 60
MDMRYLAQLL GLLLLCFPGA RCDIQMTQSP SSLSASVGDR VTITCRASQG ISSWLAWYQQ
70 80 90 100 110 120
KPEKAPKSLI YAASSLQSGV PSRFSGSGSG TDFTLTISSL QPEDFATYYC QQYNSYPYTF
130
GQGTKLEIKR
重鎖核酸配列(配列番号 42)における抗体可変領域と抗体定常領域の境界は 420 番目のアデニン (A) と 421番目のグァニン (G) の間に位置し、 重鎖アミノ酸配 列 (配列番号 43) における抗体可変領域と抗体定常領域の境界は 140番目のセリ ン (S) と 141番目のァラニン (A) の間に位置する。 また、 重鎖核酸配列 (配列 番号 42) におけるシグナル配列と抗体可変領域の境界は 57番目のチミン (T) と
58番目のグァニン (G) の間に位置し、 重鎖アミノ酸配列 (配列番号 43) におけ るシグナル配列と抗体可変領域の境界は 19番目のシスティン(C) と 20番目のグ ル夕ミン酸 (E) の間に位置する。
以上より、 125Q47BA抗体重鎖の可変領域の核酸配列 (配列番号 42) は 58番目 のグァニン (G) から 420番目のアデニン (A) までである。 また、 重鎖の可変領 域のアミノ酸配列 (配列番号 43) は 20番目のグルタミン酸 (E) から 140番目の セリン (S) までである。
軽鎖核酸配列 (配列番号 44)における抗体可変領域と抗体定常領域の境界は 387 番目のアデニン (A) と 388番目のシトシン (C) の間に位置し、 軽鎖アミノ酸配 列 (配列番号 45) における抗体可変領域と抗体定常領域の境界は 129番目のリジ ン (K) と 130番目のアルギニン (R) の間に位置する。 また、 軽鎖核酸配列'(配 列番号 44) におけるシグナル配列と抗体可変領域の境界は 66番目のチミン (T) と 67番目のグァニン (G) の間に位置し、 軽鎖アミノ酸配列 (配列番号 45) にお けるシグナル配列と抗体可変領域の境界は 22番目のシスティン(C)と 23番目のァ スパラギン酸 (D) の間に位置する。
以上より、 125Q47BA抗体軽鎖の可変領域の核酸配列 (配列番号 44) は 67番目 のグァニン (G) から 387番目のアデニン (A) までである。 また、 軽鎖の可変領 域のアミノ酸配列 (配列番号 45) は 23番目のァスパラギン酸 (D) から 129番目 のリジン (K) までである。
125Q54AAAAの重鎖可変領域、及び軽鎖可変領域をコードする DNA並びに重鎖可 変領域及び軽鎖可変領域のアミノ酸配列をそれぞれ以下に示す。
<125Q54AAAA重鎖核酸配列〉 (配列番号 46)
10 20 30 40 50 60
ATGGAGTTTG GGCTGAGCTG GCTTTTTCTT GTGGCTATTT TAAAAGGTGT CCAGTGTGAG
70 80 90 100 110 120
GTGCAGCTGT TGGAGTCTGG GGGAGGCTTG GTACAGCCTG GGGGGTCCCT GAGACTCTCC
130 140 150 160 170 180
TGTGCAGCCT CTGGATTCAC CTTTAGCAGC TATGCCATGA GCTGGGTCCG CCAGGCTCCA
190 200 210 220 230 240
GGGAAGGGGC TGGAGTGGGT CTCAGATATT AGTGGTAGTG GTGGTTACAC ATACTACGCA
250 260 270 280 290 300 GACTCCGTGA AGGGCCGGTT CACCATCTCC AGAGACAATT CCAAGAACAC GCTGTATCTG
310 320 330 340 350 360
CAAATGAACA GCCTGAGAGC CGAGGACACG GCCGTATATT ACTGTGCGAA AACAGGCGAT
370 380 390 400 410 420
GGTTCGGGGA GTTATTCCCC TGACTCCTGG GGCCAGGGAA CCCTGGTCAC CGTCTCCTCA
430
GCTAGC. . . .
く 125Q54AAAA重鎖アミノ酸配列〉 (配列番号 47)
10 20 30 40 50 60
MEFGLSWLFL VAILKGVQCE VQLLESGGGL VQPGGSLRLS CAASGFTFSS YAMSWVRQAP
70 80 90 100 110 120
GKGLEWVSDI SGSGGYTYYA DSVKGRFTIS RDNSKNTLYL QMNSLRAEDT AVYYCAKTGD
130 140 150
GSGSYSPDSW GQGTLVTVSS AS
く 125Q54AAAA軽鎖核酸配列〉 (配列番.号 48)
10 20 30 40 50 60
ATGGACATGA GGGTCCTCGC TCAGCTCCTG GGGCTCCTGC TGCTCTGTTT CCCAGGTGCC
70 80 90 100 110 120
AGATGTGACA TCCAGATGAC CCAGTCTCCA TCCTCACTGT CTGCATCTGT AGGAGACAGA
130 140 150 160 170 180
GTCACCATCA CTTGTCGGGC GAGTCAGGGT ATTAGCAGGT GGTTAGCCTG GTATCAGCAG
190 200 210 220 230 240
AAACCAGAGA AAGCCCCTAA GTCCCTGATC TATGCTGCAT CCAGTTTGCA AAGTGGGGTC
250 260 270 280 290 300
CCATCAAGGT TCAGCGGCAG TGGATCTGGG ACAGATTTCA CTCTCACCAT CAGCAGCCTG
310 320 330 340 350 360
CAGCCTGAAG ATTTTGCAAC TTATTACTGC CAACAGTATA ATAGTTACCC GTACACTTTT
370 380 390
GGCCAGGGGA CCAAGCTGGA GATCAAACGA く 125Q54AAAA軽鎖アミノ酸配列〉 (配列番号 49)
10 20 30 40 50 60
M丽 RVLAQLL GLLLLCFPGA RCDIQMTQSP SSLSASVGDR VTITCRASQG ISR1LAWYQQ
70 80 90 100 110 120
KPEKAPKSLI YAASSLQSGV PSRFSGSGSG TDFTLTISSL QPEDFATYYC QQYNSYPYTF
130
GQGTKLEIKR
重鎖核酸配列(配列番号 46)における抗体可変領域と抗体定常領域の境界は 420 番目のアデニン (A) と 421番目のグァニン (G) の間に位置し、 重鎖アミノ酸配 列 (配列番号 47) における抗体可変領域と抗体定常領域の境界は 140番目のセリ ン (S) と 141番目のァラニン (A) の間に位置する。 また、 重鎖核酸配列 (配列 番号 46) におけるシグナル配列と抗体可変領域の境界は 57番目のチミン (T) と 58番目のグァニン (G) の間に位置し、 重鎖アミノ酸配列 (配列番号 47) におけ るシグナル配列と抗体可変領域の境界は 19番目のシスティン(C) と 20番目のグ ル夕ミン酸 (E) の間に位置する。
以上より、 125Q54AAAA抗体重鎖の可変領域の核酸配列 (配列番号 46) は 58番 目のグァニン (G) から 420番目のアデニン (A) までである。 また、 重鎖の可変 領域のアミノ酸配列 (配列番号 47) は 20番目のグルタミン酸 (E) から 140番目 のセリン (S) までである。
軽鎖核酸配列(配列番号 48)における抗体可変領域と抗体定常領域の境界は 387 番目のアデニン (A) と 388番目のシトシン (C) の間に位置し、 軽鎖アミノ酸配 列 (配列番号 49) における抗体可変領域と抗体定常領域の境界は 129番目のリジ ン (10 と 130番目のアルギニン (R) の間に位置する。 また、 軽鎖核酸配列 (配 列番号 48) におけるシグナル配列と抗体可変領域の境界は 66番目のチミン (T) と 67番目のグァニン (G) の間に位置し、 軽鎖アミノ酸配列 (配列番号 49) にお けるシグナル配列と抗体可変領域の境界は 22番目のシスティン(C)と 23番目のァ スパラギン酸 (D) の間に位置する。 - 以上より、 125Q54AAAA抗体軽鎖の可変領域の核酸配列 (配列番号 48) は 67番 目のグァニン (G) から 387番目のアデニン (A) までである。 また、 軽鎖の可変 領域のアミノ酸配列 (配列番号 49) は 23番目のァスパラギン酸 (D) から 129番 目のリジン (K) までである。
125R5AAAAの重鎖可変領域、 及び軽鎖可変領域をコードする DNA並びに重鎖可 変領域及び軽鎖可変領域のアミノ酸配列をそれぞれ以下に示す。
く 125R5AAAA重鎖核酸配列〉 (配列番号 50)
10 20 30 40 50 60
ATGGAGTTTG GGCTGAGCTG GCTTTTTCTT GTGGCTATTT TAAAAGGTGT CCAGTGTGAG
70 80 90 100 110 120
GTGCAGCTGT TGGAGTCTGG GGGAGGCTTG GTACAGCCTG GGGGGTCCCT GAGACTCTCC
130 140 150 160 170 180
TGTGCAGCCT CTGGATTCAC CTTTAGCAGC TATGCCATGA GCTGGGTCCG CCAGGCTCCA
.190 200 210 220 230 240
GGGAAGGGGC TGGAGTGGGT CTCAGATATT AGTGGTAGTG GTGGTTACAC ATACTACGCA
250 260 270 280 290 300
GACTCCGTGA AGGGCCGGTT CACCATCTCC AGAGACAATT CCAAGAAAAC GCTGTATCTG
310 320 330 340 350 360
CAAATGAACA GCCTGAGAGC CGAGGACACG GCCGTATATT ACTGTGCGAA AACAGGCGAT
370 380 390 400 410 420
GGTTCGGGGA GTTATTCCCC TGACTACTGG GGCCAGGGAA CCCTGGTCAC CGTCTCCTCA
430
GCTAGC. . . .
く 125R5AAAA重鎖アミノ酸配列〉 (配列番号 51)
10 20 30 40 50 60
MEFGLSWLFL VAILKGVQCE VQLLESGGGL VQPGGSLRLS CAASGFTFSS YAMSWVRQAP
70 80 90 100 1 10 120
GKGLEWVSDI SGSGGYTYYA DSVKGRFTIS RDNSKKTLYL Q丽 SLRAEDT AVYYCAKTGD
130 140 150
GSGSYSPDYW GQGTLVTVSS AS
く 125R5AAAA軽鎖核酸配列〉 (配列番号 52) 10 20 30 40 50 60
ATGGACATGA GGGTCCTCGC TCAGCTCCTG GGGCTCCTGC TGCTCTGTTT CCCAGGTGCC
+ 70 80 90 100 110 120
AGATGTGACA TCCAGATGAC CCAGTCTCCA TCCTCACTGT CTGCATCTGT AGGAGACAGA
130 140 150 160 170 180
GTCACCATCA CTTGTCGGGC GAGTCAGGGT ATTAGCAGCT GGTTAGCCTG GTATCAGCAG
190 200 210 220 230 240
AAACCAGAGA AAGCCCCTAA GTCCCTGATC TATGCTGCAT CCAGTTTGCA AAGTGGGGTC
250 260 270 280 290 300
CCATCAAGGT TCAGCGGCAG TGGATCTGGG ACAGATTTCA CTCTCACCAT CAGCAGCCTG
310 320 330 340 350 360
CAGCCTGAAG ATTTTGCAAC TTATTACTGC CAACAGTATA ATAGTTACCC GTACACTTTT
370 380 390
GGCCAGGGGA CCAAGCTGGA GATCAAACGA
<125R5AAAA 軽鎖アミノ酸配列〉 (配列番号 53)
10 20 30 40 50 60
MDMRVLAQLL GLLLLCFPGA RCDIQMTQSP SSLSASVGDR VTITCRASQG ISSWLAWYQQ
70 80 90 100 110 120
KPEKAPKSLI YAASSLQSGV PSRFSGSGSG TDFTLTISSL QPEDFATYYC QQYNSYPYTF
130
GQGTKLEIKR
重鎖核酸配列(配列番号 50)における抗体可変領域と抗体定常領域の境界は 420 番目のアデニン (A) と 421番目のグァニン (G) の間に位置し、 重鎖アミノ酸配 列 (配列番号 51) における抗体可変領域と抗体定常領域の境界は 140番目のセリ ン (S) と 141番目のァラニン (A) の間に位置する。 また、 重鎖核酸配列 (配列 番号 50) におけるシグナル配列と抗体可変領域の境界は 57番目のチミン (T) と
58番目のグァニン (G) の間に位置し、 重鎖アミノ酸配列 (配列番号 51) におけ るシグナル配列と抗体可変領域の境界は 19番目のシスティン(C) と 20番目のグ ル夕ミン酸 (E) の間に位置する。 + 以上より、 125R5AAAA抗体重鎖の可変領域の核酸配列 (配列番号 50) は 58番目 のグァニン (G) から 420番目のアデニン (A) までである。 また、 重鎖の可変領 域のアミノ酸配列 (配列番号 51) は 20番目のグルタミン酸 (E) から 140番目の セリン (S) までである。
軽鎖核酸配列(配列番号 52)における抗体可変領域と抗体定常領域の境界は 387 番目のアデニン (A) と 388番目のシトシン (C) の間に位置し、 軽鎖アミノ酸配 列 (配列番号 53) における抗体可変領域と抗体定常領域の境界は 129番目のリジ ン (K) と 130番目のアルギニン (R) の間に位置する。 また、 軽鎖核酸配列 (配 列番号 52) におけるシグナル配列と抗体可変領域の境界は 66番目のチミン (T) と 67番目のグァニン (G) の間に位置し、 軽鎖アミノ酸配列 (配列番号 53) にお けるシグナル配列と抗体可変領域の境界は 22番目のシスティン(C)と 23番目のァ スパラギン酸 (D) の間に位置する。
以上より、 125MAAAA抗体軽鎖の可変領域の核酸配列(配列番号 52) は 67番目 のグァニン (G) から 387番目のアデニン (A) までである。 また、 軽鎖の可変領 域のアミノ酸配列 (配列番号 53) は 23番目のァスパラギン酸 (D) から 129番目 のリジン (K) までである。 実施例 1 4 ハイプリ ドーマ 125N26F6AA及び 125M10AAに発現するヒト抗体重鎖 遺伝子、 軽鎖遺伝子の定常領域を含む全長配列の決定
実施例 13において、各抗体の抗体可変領域の DNA塩基配列及びアミノ酸配列を 決定したが、 KMマウス由来ハイプリドーマ 125N26F6AA及び 125M10AAについて定 常領域を含む全長配列の解析を実施した。 cDMの合成は実施例 13に従って、 ハ イブリ ドーマ 125N26F6AA及び 125M10AAより調製した Tot al RNAを材料として SMART RACE cDNA a即 l i f icat ion Ki t (べクトン ·ディキンソン ·バイオサイェン ス * クローンテック社製) を用いて行なった。
1s t s t rand cDNA の合成
Total RNA 5 i g/3 1
3, CDS primer 1 H20 Ιβ \
上記組成の反応液を 70°Cで 2分間ィンキュベートした後、
5XBuffer 2 \ dNTP mix ln l
PowerScript Reverse Transcriptase 1 n 1
を加え 42 で 1.5時間ィンキュベー卜した。
さらに、 50 1の Tricine Bufferを加えた後、 72 で 7分間ィンキュペートし、 1st strand cDNAを取得した。 定常領域のコ一ド領域全体を含む DNAを取得するために、上記の合成した cDNA をテンプレートとし、 また各抗体遺伝子の 5'端の ATGィニシエーションコドン付 近に結合する配列を有する合成丽 A (5 'プライマー) とヒト抗体遺伝子 3'非翻 訳領域に特異的に結合する合成 DNA (3 ' プライマー) をプライマーセットとし て用いて、 PC による増幅反応を行った。この増幅反応により、抗体遺伝子(cDNA) の ATGイニシエーションコドンから、 ストップコドンを含む 3'非翻訳領域までの 全長配列を得ることができる。
125N26F6AAの重鎖の DNA増幅は、 H鎖 5'プライマ一: N26H5Sal 1 (配列番号 58) と H鎖 3, プライマ一: HJUTR1848 (5'- CGGGGTACGTGCCAAGCATCCTCGTG -3'、 配列 番号 74) のプライマーセット、 または、 H鎖 5' プライマー: N26H5Sall (配列番 号 58)と H鎖 3,プライマ一 :H_3UTR1875 (5'- ATGCTGGGCGCCCGGGAAGTATGTAC -3\ 配列番号 75) のプライマーの組合せで、 94°C15秒、 68°C2分のインキュベーシ ヨンサイクルを 35 回繰り返した。 一方、 125N26F6AAの軽鎖 (κ) の増幅は、 L 鎖 5' 用プライマ一: N26KA10Minor L Bgl (配列番号 64) と L鎖 3' 用プライマ -: L_3UTR_823 (5 ' - GAAAGATGAGCTGGAGGACCGCAATA -3 '、 配列番号 76) のプライ マ一セットを用いて行なった。プライマー以外の反応液組成は実施例 13の (2)- 1 と同じ組成にて実施した。
125M10AAの重鎖の DNA増幅用としては、 H鎖 5' 用プライマ一: M10H5Sal (配 列番号 70) と H鎖 3' 用プライマー: H— 3UTR1848 (配列番号 74) のプライマー セット、 または、 H鎖 5 ' プライマー: M10H5Sal (配列番号 70) と H鎖 3 ' プライ マー: H_3UTR1875 (配列番号 75) であり、 125M10AAの軽鎖 (κ ) の DNA増幅用と しては、 L鎖 5 '用プライマー: MlOKBgl (配列番号 66) と L鎖 3 ' 用プライマー: L_3UTR_823 (配列番号 76) のプライマ一セットである。
増幅した各 PCR断片は、 エタノール沈殿で回収した後、 ァガロースゲル電気泳 動で回収し、 QIAQiiick Gel Ext ract ion Ki t (㈱キアゲン社製) にて精製した。 精製した増幅断片は、 それぞれ Zero Blunt TOPO PCR Cloning Ki t (Invi t rogen 社製)の PCR 4 Blunt- TOPOベクターにサブクローニングした。 取得したクローン について、 シーケンシング錶型用 DNA 調製試薬である Te即 l iPM · DNA Ampl i f icat ion Ki t (アマシャムバイオサイエンス株式会社製) を使用して、 添付 のプロトコールに従ってシーゲンシング鍩型用 DNAを調製して、 インサート DNA の塩基配列を決定した。 ヒト抗体重鎖の DNA塩基配列解析のプライマーとして、 M13FW (配列番号 3)、 M13RV (配列番号 4)、 4 (配列番号 21)、 hlil (5'- CCAAGGGCCCATCGGTCTTCCCCCTGGCAC-3' ) ( 配 列 番 号 77 ) 、 CMVH903F ( 5'-GACACCCTCATGATCTCCCGGACC-3' ) ( 配 列 番 号 78 ) 、 CMVHR1303 ( 5'-TGTTCTCCGGCTGCCCATTGCTCT-3' ) ( 配 列 番 号 79 ) 、 hh-6 (5'-GGTCCGGGAGATCATGAGGGTGTCCTT-3') (配列番号 80)、 hh-2 (配列番号 20)、 H_3UTR1848 (配列番号 74)、 及び H— 3UTR1875 (配列番号 75) を、 また、 ヒト抗体 軽鎖 (κ ) の DNA塩基配列解析用のプライマーとして、 M13FW (配列番号 3)、 M13RV ( 配 列 番 号 4 ) 、 k-5 ( 配 列 番 号 19 ) 、 及 び hk-1 (5'-TGGCTGCACCATCTGTCTTCATCTTC-3') (配列番号 81) を用いた。
125N26F6AA抗体の重鎖、及び軽鎖全領域をコードする DNA並びに重鎖及び軽鎖 全領域のアミノ酸配列をそれぞれ以下に示す。
く 125N26F6AA重鎖核酸配列〉 (配列番号 82)
10 20 30 40 50 60
ATGGAGTTTG GGCTGAGCTG GGTTTTCCTC GTTGCTCTTT TAAGAGGTGT CCAGTGTCAG
70 80 90 100 110 120 3§33i 1v。svs so。si議應。。v。 i ggggov
§讓S{}33iS3JLV。 V "
O
Figure imgf000074_0001
§
Vs V¾sQJGlv3g g¾J§。3v3vV n VJv
i。飄:。。。。3誘。醫3。v。。。 31V33JS9。。V。。。。V V1
Figure imgf000074_0002
OS OS
。 0應。。讓。。133譲30g3303 VVV。。。 JUvv 33 V31。。i1JL333 ϋ讀isvVV3。。3。。3誘。ν3 w
gn3J33 V。3 3033。I。謹麵謹3VV3V33。。。i。。。。v義 v
Figure imgf000075_0001
I 06ΠI ! 09 s oUΠni us O33。議。!VW。 3S 30V3。33S 3v:gv V3V33VMi3V333vV3V 1270 1280 1290 1300 1310 1320
CTGGACTCCG ACGGCTCCTT CTTCCTCTAC AGCAAGCTCA CCGTGGACAA GAGCAGGTGG
1330 1340 1350 1360 1370 1380
CAGCAGGGGA ACGTCTTCTC ATGCTCCGTG ATGCATGAGG CTCTGCACAA CCACTACACG
1390 1400 1410
CAGAAGAGCC TCTCCCTGTC TCCGGGTAAA TGA く 125N26F6AA重鎖アミノ酸配列〉 (配列番号 83)
10 20 30 40 50 60
MEFGLSWVFL VALLRGVQCQ YQLVESGGGV VQPGRSLRLS CAASGFTFSH YGMHWVRQAP
70 80 90 100 110 120
GKGLEWVALI WYDGSNKYYA DSVKGRFTIS RDNSKNTLYL QMNSLRAEDT AVYYCARDPL
130 140 150 ' 160 170 180
AAGTSYFDYW GQGTLVTVSS ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS
190 200 210 220 230 240
WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT YICNVNHKPS NTKVDKKVEP
250 260 270 280 290 300
KSCDKTHTCP PCPAPELLGG PSYFLFPPKP KDTLMISRTP EVTCVVVDVS HEDPEVKF丽
310 320 330 ' 340 350 360
YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK EYKCKYSNKA LPAPIEKTIS 370 380 390 400 410 420
KAKGQPREPQ VYTLPPSRDE LTKNQVSLTC LVKGFYPSDI AYEWESNGQP ENNYKTTPPV
430 440 450 460 470 480
LDSDGSFFLY SKLTVDKSRW QQGNVFSCSV MHEALHNHYT QKSLSLSPGK く 125N26F6AA軽鎖核酸配列〉 (配列番号 84)
10 20 30 40 50 60
ATGTCGCCAT CACAACTCAT TGGGTTTCTG CTGCTCTGGG TTCCAGCCTC CAGGGGTGAA
70 80 90 100 110 120
ATTGTGCTGA CTCAGTCTCC AGACTTTCAG TCTGTGACTC CAAAGGAGAA AGTCACCATC
130 140 150 160 170 180
ACCTGCCGGG CCAGTCAGAG CATTGGTAGT AGCTTACACT GGTACCAGCA GAAACCAGAT
190 200 210 220 230 240
CAGTCTCCAA AGCTCCTCAT CAAGTATGCT TCCCAGTCCT TCTCAGGGGT CCCCTCGAGG
250 260 270 280 290 300
TTCAGTGGCA GTGGATCTGG GACAGATTTC ACCCTCACCA TCAATAGCCT GGAAGCTGAA
310 320 330 340 350 360
GATGCTGCAG CGTATTACTG TCATCAGAGT AGTAGTTTAC CATTCACTTT CGGCCCTGGG
370 380 390 400 410 420
ACCAAAGTGG ATATCAAACG AACTGTGGCT GCACCATCTG TCTTCATCTT CCCGCCATCT
430 440 450 460 470 480 GATGAGCAGT TGAAATCTGG AACTGCCTCT GTTGTGTGCC TGCTGAATAA CTTCTATCCC
490 500 510 520 530 540
AGAGAGGCCA AAGTACAGTG GAAGGTGGAT AACGCCCTCC AATCGGGTAA CTCCCAGGAG
550 560 570 580 590 600
AGTGTCACAG AGCAGGACAG CAAGGACAGC ACCTACAGCC TCAGCAGCAC CCTGACGCTG
610 620 630 640 650 660
AGCAAAGCAG ACTACGAGAA ACACAAAGTC TACGCCTGCG AAGTCACCCA TCAGGGCCTG
670 680 690 700 .
AGCTCGCCCG TCACAAAGAG CTTCAACAGG GGAGAGTGTT AG く 125N26F6AA軽鎖アミノ酸配列〉 (配列番号 85)
10 20 30 40 50 60
MSPSQLIGFL LLWVPASRGE IVLTQSPDFQ SVTPKEKVTI TCRASQSIGS SLHWYQQKPD
70 80 90 100 110 120
QSPKLLIKYA SQSFSGYPSR FSGSGSGTDF TLTINSLEAE DAAAYYCHQS SSLPFTFGPG
130 140 150 160 170 180
TKVDIKRTVA APSVFIFPPS DEQLKSGTAS WCLL丽 FYP REAKVQWKVD NALQSGNSQE
190 200 210 220 230
SVTEQDSKDS TYSLSSTLTL SKADYEKHKV YACEVTHQGL SSPVTKSFNR GEC
125M10AA抗体の重鎖、及び軽鎖全領域をコードする DNA並びに重鎖及び軽鎖全 領域のアミノ酸配列をそれぞれ以下に示す。
-つつ- 〈125M1QAA重鎖核酸配列〉 (配列番号 86)
10 20 30 40 50 60
ATGGATCTCA TGTGCAAGAA AATGAAGCAC CTGTGGTTCT TCCTCCTGCT GGTGGCGGCT
70 80 90 100 110 120
CCCAGATGGG TCCTGTCCCA GCTGCAGGTG CAGGAGTCGG GCCCAGGACT GGTGAAGCCT
130 140 150 160 170 180
TCGGAGACCC TGTCCCTCAT CTGCACTGTC TCTGGTGGCT CCATCAGGAC CAGTGGTTAC
190 200 210 220 230 240
TACTGGGGCT GGTTCCGCCA GCCCCCAGGG AAGGGACTGG AGTGGATTGG GACTAGTCAT
250 260 270 280 290 300
AATAGTGGGA GCACCTACTA CAACCCGTCC CTCAAGAGTC GAGTCACCAT ATCCGTAGAC
310 320 330 340 350 360
ACGTCCAAGA ACCAGTTCTC CCTGAAGCTG AACTCTGTGA CCGCCGCAGA CACGGCTGTG
370 380 390 400 410 420
TATTACTGTG CGAGACAAGG TTACGATTTT AAAGTCAATA TAGACGTCTG GGGACAAGGG
430 440 450 460 470 480
ACCACGGTCA CCGTCTCCTC AGCCTCCACC AAGGGCCCAT CGGTCTTCCC CCTGGCACCC
490 500 510 520 530 540
TCCTCCAAGA GCACCTCTGG GGGCACAGCG GCCCTGGGCT GCCTGGTCAA GGACTACTTC
550 560 570 580 590 600 CCCGAACCGG TGACGGTGTC GTGGAACTCA GGCGCCCTGA CCAGCGGCGT GCACACCTTC
610 620 630 640 650 660
CCGGCTGTCC TACAGTCCTC AGGACTCTAC TCCCTCAGCA GCGTGGTGAC CGTGCCCTCC
670 680 690 700 710 720
AGCAGCTTGG GCACCCAGAC CTACATCTGC AACGTGAATC ACAAGCCCAG CAACACCAAG
730 740 750 760 770 780
GTGGACAAGA AAGTTGAGCC CAAATCTTGT GACAAAACTC ACACATGCCC ACCGTGCCCA
790 800 810 820 830 840
GCACCTGAAC TCCTGGGGGG ACCGTCAGTC TTCCTCTTCC CCCCAAAACC CAAGGACACC
850 860 870 880 890 900
CTCATGATCT CCCGGACCCC TGAGGTCACA TGCGTGGTGG TGGACGTGAG CCACGAAGAC
910 920 930 940 950 960
CCTGAGGTCA AGTTCAACTG GTACGTGGAC GGCGTGGAGG TGCATAATGC CAAGACAAAG
970 980 990 1000 1010 1020
CCGCGGGAGG AGCAGTACAA CAGCACGTAC CGTGTGGTCA GCGTCCTCAC CGTCCTGCAC
1030 1040 1050 1060 1070 1080
CAGGACTGGC TGAATGGCAA GGAGTACAAG TGCAAGGTCT CCAACAAAGC CCTCCCAGCC
1090 1100 1110 1120 1130 1140
CCCATCGAGA AAACCATCTC CAAAGCCAAA GGGCAGCCCC GAGAACCACA GGTGTACACC 1150 1160 1170 1180 1190 1200
CTGCCCCCAT CCCGGGATGA GCTGACCAAG AACCAGGTCA GCCTGACCTG CCTGGTCAAA
1210 1220 1230 1240 1250 1260
GGCTTCTATC CCAGCGACAT CGCCGTGGAG TGGGAGAGCA ATGGGCAGCC GGAGAACAAC
1270 1280 1290 1300 1310 . 1320
TACAAGACCA CGCCTCCCGT GCTGGACTCC GACGGCTCCT TCTTCCTCTA CAGCAAGCTC
1330 1340 1350 1360 1370 1380
ACCGTGGACA AGAGCAGGTG GCAGCAGGGG AACGTCTTCT CATGCTCCGT GATGCATGAG
1390 1400 1410 1420 1430
GCTCTGCACA ACCACTACAC GCAGAAGAGC CTCTCCCTGT CTCCGGGTAA ATGA く 125M10AA重鎖ァ.ミノ酸配列〉 (配列番号 87)
10 20 30 40 50 60
MDLMCKKMKH LWFFLLLVAA PRWVLSQLQV QESGPGLVKP SETLSLICTV SGGSIRTSGY
70 80 90 100 110 120
YWGWFRQPPG KGLEWIGTSH NSGSTYYNPS LKSRVTISVD TSKNQFSLKL NSVTAADTAV
130 140 150 160 170 180
YYCARQGYDF KVNIDVWGQG TTVTVSSAST KGPSVFPLAP SSKSTSGGTA ALGCLVKDYF
190 200 210 220 230 240
PEPVTVSWNS GALTSGVHTF PAVLQSSGLY SLSSVVTVPS SSLGTQTYIC NVNHKPSNTK
250 260 270 280 290 300 VDKKVEPKSC DKTHTCPPCP APELLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED
310 320 330 340 350 360
PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RYVSVLTVLH QDWLNGKEYK CKVSNKALPA
370 380 390 400 410 420
PIEKTISKAK GQPREPQVYT LPPSRDELTK NQVSLTCLVK GFYPSDIAVE WESNGQPE匪
430 440 450 460 470 480
YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK く 125M10AA軽鎖核酸配列〉 (配列番号 88)
10 20 30 40 50 60
ATGGAAGCCC CAGCTCAGCT TCTCTTCCTC CTGCTACTCT GGCTCCCAGA TACCACCGGA
70 80 90 100 110 120
GAAATTGTGT TGACACAGTC TCCAGCCACC CTGTCTTTGT CTCCAGGGGA AAGAGCCACC
130 140 150 160 170 180
CTCTCCTGCA GGGCCAGTCA GAGTGTTAGC AGCTACTTAG CCTGGTACCA ACAGAAACCT
190 200 210 220 230 240
GGCCAGGCTC CCAGGCTCCT CATCTATGAT GCATCCAACA GGGCCACTGG CATCCCAGCC
250 260 270 280 290 300
AGGTTCAGTG GCAGTGGGTC TGGGACAGAC TTCACTCTCA CCATCAGCAG CCTAGAGCCT
310 320 330 340 350 360
GAAGATTTTG CAGTTTATTA CTGTCAGCAG CGTAGCAACT GGCCGCTCAC TTTCGGCGGA 370 380 390 400 410 420
GGGACCAAGG TGGAGATCAA ACGAACTGTG GCTGCACCAT CTGTCTTCAT CTTCCCGCCA
430 440 450 460 470 480
TCTGATGAGC AGTTGAAATC TGGAACTGCC TCTGTTGTGT GCCTGCTGAA TAACTTCTAT
490 500 510 520 530 540
CCCAGAGAGG CCAAAGTACA GTGGAAGGTG GATAACGCCC TCCAATCGGG TAACTCCCAG
550 560 570 580 590 600
GAGAGTGTCA CAGAGCAGGA CAGCAAGGAC AGCACCTACA GCCTCAGCAG CACCCTGACG
610 620 630 640 650 660
CTGAGCAAAG CAGACTACGA GAAACACAAA GTCTACGCCT GCGAAGTCAC CCATCAGGGC
670 680 690 700
CTGAGCTCGC CCGTCACAAA GAGCTTCAAC AGGGGAGAGT GTTAG
<125M10AA軽鎖アミノ酸配列〉 (配列番号 89)
10 20 30 40 50 60
MEAPAQLLFL LLLWLPDTTG EIVLTQSPAT LSLSPGERAT LSCRASQSVS SYLAWYQQKP
70 80 90 100 110 120
GQAPRLLIYD ASNRATGIPA RFSGSGSGTD FTLTISSLEP EDFAVYYCQQ RSNWPLTFGG
130 140 150 160 170 180
GTKVEIKRTV AAPSVFIFPP SDEQLKSGTA SWCLL匪 FY PREAKVQWKV DNALQSGNSQ 190 200 210 220 230
ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC 実施例 1 5 組換え抗体発現ベクターの構築
263A17, 125M10AA 125M165DAAA, 125N26F6AA及び 125Q54AAAA抗体については、 組換え抗体発現ベクターを構築した。
263A17, 125M165DAAA及び 125N26F6AA抗体については、 取得した抗体の HV鎖 を含むプラスミド DNAを錶型として、 末端に連結のための制限酵素部位 (5' 末側 SalL 3' 未側 Nhel) を付加するように設計したプライマーを用いた。 具体的な プライマーは、 以下のとおり。
263A17;
HV鎖 5' 用プライマー: A33 2-6A2 H VH3-23 Sal I (配列番号 54)
5, -GCG ACT AAG TCG ACC ATG GAG TTT GGG CTG AGC TG- 3,
HV鎖 3' 用プライマー: A33 2-6A2 H VH3-23 Nhe I (配列番号 55)
5' - TGG GCC CTT GGT GCT AGC TGA GGA GAC GGT GAC CG-3'
■125M165DAAA;
HV鎖 5' 用プライマー: M165H5Sal (配列番号 56)
5' -AGA GAG AGA GGT CGA CCA CCA TGG AGT TTG GGC TGA GCT GGG TTT -3, HV鎖 3' 用プライマ一: M165H3Nhe (配列番号 57)
5, - AGA GAG AGA GGC TAG CTG AGG AGA CGG TGA CCA GGG TGC - 3,
125N26F6AA;
HV鎖 5' 用プライマー: N26H5Sall (配列番号 58)
5' -AGA GAG AGA. GGT CGA CCA CCA TGG AGT TTG GGC TGA GCT GGG TTT -3,
HV鎖 3' 用プライマー: N26H3Nhel (配列番号 59)
5, - AGA GAG AGA GGC TAG CTG AGG AGA CGG TGA CCA GGG TTC CC - 3,
各 A33抗体の HVを PGRで増幅 (94C 3 分— 94 10 秒、 68°C 45秒 (35サイ クル) →n。C 7 分) した。 増幅された DNA断片を Sall、 Nhelで消化し、 同一酵 素で解裂されていた N5KG卜 Val Larkベクター (IDEC Pharmaceuticals, N5KG1 (US patent 6001358) の改変ベクター) に導入した。 挿入された配列がサブクロー二 ングした HVの DNA塩基配列解析によって決定されたものと同一であることを、ベ クターを錶型として配列を決定することにより確認した。
引き続いて、 得られた HVが挿入されたプラスミドベクタ一に LVの挿入を行な つた。取得した抗体の LV鎖を含むプラスミド DNAを铸型として、末端に連結のた めの制限酵素部位 (5' 末側 BglII、 3' 末側 BsiWI) を付加するように設計したプ ライマーを用いた。 具体的なプライマーは、 以下のとおり。
263A17;
LV鎖 5' 用プライマー: A33 2-6A2 K L19 Bglll (配列番号 60)
5' -ATC ACA GAT CTC TCA CCA TGG ACA TGA GGG TCC CC-3'
LV鎖 3' 用プライマー: A33 2-6A2 K L19 BsiWI (配列番号 61)
5, - ACA GAT GGT GCA GCC ACC GTA CGT TTA ATC TCC AG- 3,
125M165DAAA; "
LV鎖 5' 用プライ'マ一: M165K5L6Bgl2 (配列番号 62)
5' -AGA GAG AGA GAG ATC TCA CCA TGG AAG CCC CAG CTC AGC TTC TCT-3'
LV鎖 3' 用プライマ一: M165K3L6BsiWl (配列番号 63)
5' - AGA GAG AGA GCG TAC GTT TGA TTT CCA CCT TGG TCC CTT GGC-3'
125N26F6AA;
LV鎖 5' 用プライマー: N26KA10Minor L Bgl (配列番号 64)
5, -AGA GAG AGA GAT CTC TCA CCA TGT CGC CAT CAC AAC TCA TTG GG -3'
LV鎖 3' 用プライマー: N26KA10Minor L Bsi (配列番号 65)
5' -AGA GAG AGA GCG TAC GTT TGA TAT CCA CTT TGG TCC CAG GG- 3,、
各 A33抗体の LVを PCRで増幅 (94で 3 分→94°C 10 秒、 68°C 45秒 (35サイ クル) →n。C 7 分) した。 増幅した DNA断片を BglII、 BsiWIで消化し、 同一酵 素で解裂されていた N5 KG卜 HVベクターに導入した。挿入された配列がサブクロー ニングした LVの DNA塩基配列解析に.よって決定されたものと同一であることを、 ベクターを鎳型として配列を決定することにより確認した。
125M10AA及び 125Q54AAAA抗体については、取得した抗体の LV鎖を含むプラス ミド DNAを錶型として、 末端に連結のための制限酵素部位 (5' 末側 BglII、 3' 末側 BsiWI) を付加するように設計したプライマ一を用いた。 具体的なプライマ 一は、 以下のとおり。
125M10AA ;
LV鎖 用プライマー: MlOKBgl (配列番号 66)
5 ' -AGAGAGAGAGAGATCTCACCATGGAAGCCCCAGCTCAGCTTCTCT - 3,
LV鎖 3' 用プライマー: MlOKBs i (配列番号 67)
5, - AGAGAGAGAGCGTACGTTTGATCTCCACCTTGGTCCCTCCG -3 '
125Q54AAAA;
LV鎖 5 ' 用プライマー: Q54K5Bgl (配列番号 68)
5 ' -AGAGAGAGAGAGATCTCACCATGGACATGAGGGTCCTCGCTCAGC -3 '
LV鎖 3 ' 用プライマー: Q54K3Bs i (配列番号 69)
5, - AGAGAGAGAGCGTACGTTTGATCTCCAGCTTGGTCCCCTGG -3,
各 A33抗体の LVを PCRで増幅 (94°C 3 分— 94°C 10 秒、 68 45秒 (35サイ クル) →72°C 7 分) した。 増幅した DNA断片を Bgl I I、 Bs iWrで消化し、 同一酵 素で解裂されていた N5KG卜 Val Larkベクタ一に導入した。挿入された配列がサブ クローニングした LVの DNA塩基配列解析によって決定されたものと同一であるこ とを、 ベクターを鐯型として配列を決定することにより確認した。 · 引き続いて、 得られた LVが揷入されたプラスミドベクターに HVの挿入を行な つた。取得した抗体の HV鎖を含むプラスミド DNAを铸型として、末端に連結のた めの制限酵素部位 (5 ' 末側 Sal l、 3 ' 末側 Nhel) を付加するように設計したブラ イマ一を用いた。 具体的なプライマ一は、 以下のとおり。
125 M10AA;
HV鎖 5 ' 用プライマー: M10H5Sal (配列番号 70)
5, - AGA GAG AGA GGT CGA CCA CCA TGG ATC TCA TGT GCA AGA AAA TGA AGC - 3,
HV鎖 3 ' 用プライマ一: M10H3Nlie (配列番号 71)
5 ' AGA GAG AGA GGC TAG CTG AGG AGA CGG TGA CCG TGG TCC CT - 3,
125 Q54AAAA;
HV鎖 5 ' 用プライマ一: Q54H5Sal (配列番号 72)
5, - AGA GAG AGA GGT CGA CCA CCA TGG AGT TTG GGC TGA GCT GGC TTT-3 '
HV鎖 3 ' 用プライマー: Q54H3Nhe (配列番号 73) 5, - AGA GAG AGA GGC TAG CTG AGG AGA CGG TGA CCA GGG TTC CC-3 ' 各 A33抗体の HVを PCRで増幅 (94°C 3 分→94°C 10 秒、 68°C 45秒 (35サイ クル) →72°C 7 分) した。 増幅した DNA断片を Sal l、 Nhelで消化し、 同一酵素 で解裂されていた N5KG卜 LVベクターに導入した。挿入された配列がサブクロー二 ングした HVの DNA塩基配列解析によって決定されたものと同一であることを、ベ クタ一を铸型として配列を決定することにより確認した。
表 5に合成 DNAの塩基配列を、 表 6に組換えべクタ一及び産生される抗体の名 称を示す。
表 5
Figure imgf000088_0001
表 6
Figure imgf000089_0002
実施例 1 6 組換え型抗体の作製
実施例 15で構築した組換え型抗体発現ベクターを宿主細胞に導入し、組換え型 抗体発現細胞を作製した。 発現のための宿主細胞には、 例えば CHO 細胞の dhfr 欠損株 (ATCC CRL- 9096)、 CHO-Ras (Katakura Y. , et a Cytotec nology, 31: 103-109, 1999)、 HEK293T (ATCC CRL- 11268) などが用いられる。
宿主細胞へのベクターの導入はエレクトロポレーシヨンゃリポフエクシヨンに などにより実施した。エレクトロポレ一シヨンは抗体発現ベクター約 2 _igを制限 酵素で線状化し、 Bio- Rad electrophoreterをもちいて 350V、 500 /Fの条件で、 4X106個の CH0細胞に遺伝子を導入し、 96well culture plateに播種した。 リポ フエクシヨンは、 LipoiectAMINE Plus (ギブコ · ビーアールエル社製) を用いて マニュアルに従って実施した。 ベクターの導入処理後、 発現ベクターの選択マー カーに対応した薬剤を添加して培養を継続した。 コロニーを確認した後、 実施例 6に示した方法によって、 抗体発現株を選別した。 選別した細胞からの抗体精製 は、 吸着後 PBSで洗浄して、 Mab Select Protein A 3.2X 10cm カラム (アマシャ
Figure imgf000089_0001
を用い、 吸着後 PBSで洗浄して、 20πιΜ (グリシ ン) クェン酸ナトリウム、 50mMNaCl (pH2.7)緩衝液で溶出した。 溶出液を 50 リ ン酸ナトリウム緩衝液 (pH7.0) にて中和した。 次に、 陰イオン交換カラムである Hitrap Q HP Sepliarose カラム (アマシャムフアルマシアバイオテク社製) で、 さらに同じく陽イオンカラムである Hitrap SP HP Sepliaroseカラム (アマシャム フアルマシアバイオテク社製)で精製した。調製された抗体溶液は、透析膜(10000 カット、 Spectmni Laboratories社製) を用いて PBSに置換し、 孔径 0.22 ΠΙの メンブランフィルター MILLEX-GV (ミリポア社製) でろ過滅菌し、 純度を少なく とも 95%以上、 エンドトキシン 0. ΙΕϋ/mg以下の精製抗体を取得した。 組換え型 の精製抗 A33抗体の濃度は 280nniの吸光度を測定し、 lmg/mL を 1.4 0Dとして算 出した。 実施例 1 7 組換え型抗体による反応試験
A33 抗原を発現するヒト大腸癌細胞株 COLO205 細胞、 LS174T 細胞 (ATCC No. CL-188) 及び NCI-H508細胞 (ATCC No. CCL-253) に対する実施例 16で取得した 組換え型抗体の反応性の検討を、 FCM で行った。 また、 陰性コントロール細胞と して A33抗原を発現していないヒト大腸癌細胞株 HT- 29細胞 (ATCC No. HTB-38) も行った。 試験方法は、 実施例 9と同様に行った。
その結果を表 7に示す。 C0L0205細胞では、 平均蛍光強度半値を 45、 LS174T細 胞では、 平均蛍光強度半値を 100、 NCI-H508細胞では、 平均蛍光強度半値を 175 とし、 そこに達する抗体濃度が 10<=xぐ lOOng/ml のときは + +十、 100<=x< 1000ng/mlのときは +十、 1000く =x< 10000ng/mlのときは十、 結合が認められな かった場合は、 —と示した。 A33 抗原を発現しているどの細胞に対しても、 組換 え型抗体は結合を示した。
表 7
抗体名 ■ 205 LS174T NCI-H508 HT-29 抗匿- IgGl 一 ― ― ― cA33 +++ +++ +++ 一 rec263 ++ ++ ++ 一 recMlO +++ +++ +++ ― recM165 ++ . ++ ++
recN26 ++ +++ +++ ― recQ54 +++ +++ +++ ― 平均蛍光強度半値 45 平均蛍光強度半値 100 平均蛍光強度半値 175
10<=x<100 ng/ml; +++ 10<=x<100 ng/ml ; +++ 10<=x<100 ng/ml; +++
100<=x<1000 ng/ml : ++ 100<=x<1000 ng/ml : ++ ΙΟΟΟχく 1000 ng/ml ; ++
1000<=x<10000 ng/ml; + 1000ぐ =x< 10000 ng/il; + 1000<=x<10000 ng/ml; +
結 し;― 結'口-なし;一 結合なし; -
実施例 1 8 組換え型抗体のマウス抗 A33抗体との競合試験
実施例 16で取得した組換え型抗体をマウス抗 A33抗体と同様なェピトープを認 識するか否かを FCMを用いた競合実験にて検討した。試験方法は、実施例 10と同 様に行った。
実施例 10の各モノク口一ナル精製抗体の結果と同様に、 rec263及び recMlOは、 「ノンブロッカー」、 recM165及び recN26は 「ブロッカー」、 recQ54は、 「パーシ ャルブロッカー」 と分類された。 その結果を表 8に示す。
表 8
Figure imgf000092_0001
実施例 1 9 組換え型抗体での細胞傷害性試験
実施例 16で取得した組換え型抗体での ADCC及び CDCの測定を実施した。 ADCC アツセィは、 51Crラベルしたターゲット細胞 (COL0205あるいは NCI- H508) 5000 個に対して、 実施例 11記載の方法で取得した健常人末梢血単核球 50万個を、 V 底 96ゥエルプレート (コースター社製) 中で全体容量 200 _i Lで、 各抗体濃度と ともに 37t:、 5% C02存在下で 4時間培養した。
CDCアツセィは、 51Crラベルしたターゲット細胞 (COL0205あるいは NCI- H508) 5000個に対して、 最終濃度 5 %のヒト血清由来補体 (シグマ社製) を、 V底 96ゥ エルプレート中で全体容量 200 z Lで、 各抗体濃度とともに 37 、 5% C02存在下 で 4時間培養した。 試験方法は、 実施例 12と同様に行った。
その結果を図 2A〜図 2Dおよび表 9に示す。 ADCCは、特異的溶解率半値を COLO205 細胞をターゲットとしたときは、 12. 5 %とし、 NCI- H508細胞をターゲットとした ときは、 30%とした。 そこに達する抗体濃度が 1く =x< 10ng/mlのときは + +十、 10<=x< 100ng/mlのときは +十、 100<=x< 1000ng/mlのときは十、特異的溶解率 が認められなかった場合は、 一と示した。 CDCでは、 特異的溶解率半値を COLO205 細胞をターゲットとしたときは、 7 %とし、 NCI-H508細胞をターゲッ卜としたと きは、 20%とした。 そこに達する抗体濃度が 10<=xぐ 100ng/mlのときは + +十、 100く =x< 1000ng/nilのときは + +、 x〉= 1000ng/mlのときは +、 特異的溶解率が 認められなかった場合は、 一と示した。 ADCCでは、 cA33, recMlO及び recQ54が 高い傷害活性を示した。 一方、 CDCでは、 recMlOが高い傷害活性を示した。
表 9
細胞名 CO画 5 NCI-H508
抗体 ¾ ADCC CDC ADCC CDC
抗匿 -IgGl ― 一 - 一
cA33 + + + 士 + + + + rec263 + + + + + + + + recMlO + + + + + + + + + + + recM165 + + + + + ' + + recN26 + + + + + + + recQ54 + + + + + + + + +
特異的溶解率半値 12. 5% 特異的溶解率半値 1% 特異的溶解率半値 30% 特異的溶解率半値 20%
K=x<10 ng/ml; +++ 10<=x<100 ng/ml; +++ 1く =xく 10 ng/ml; +++ ΙΟΟχく 100 ng/ml; +++
10<=x<100 ng/ml; ++ 100<=x<1000 ng/ml; ++ 10<=x<100 ng/ml; ++ 100<=x<1000 ng/ml; ++
100く =xく 1000 ng/ml; + 1000Ox< 10000 ng/ml; + 100<=x<1000 ng/ml; + 1000<=x<10000 ng/ml; + 特異的溶解なし; - x>=10000 ng/ml ;土 特異的溶解なし; - x>=10000 ng/ml;士
特異的溶解なし; - 特異的溶解なし; ―
実施例 2 0 精製抗体及び組換え型抗体によるウエスタンブロット解析
マウス抗 A33抗体及び humanized A33抗体は、 コンフオメーショナルなェピト ープを認識すると報告されている。すなわち、ウェスタンブロッテイング解析で、 還元条件(5 % ;6 -メルカプトエタノール)下では、反応性が認められないと報告さ れている。 そこで、 ヒト抗 A33精製抗体及び組換え型抗体の反応性について調べ ることを目的とし、 ウェスタンプロット解析を実施した。
実施例 3で調製した shA33EX - hFcタンパク質を還元(5 % /3 -メルカプトエタノ ール)及び非還元条件下で、 10〜20%ポリアクリルアミドグラジェントゲル (第一 化学薬品社製) による SDS- PAGE によって分離した。 このとき、 1 レーンあたり shA33EX-liFcタンパク質が 2. 5ngになるように希釈した。 一方、 マ一カーとして ビォチン化 SDS-PAGEスタンダード ブロードレンジ (バイォラッド社製)も 1レ ーンにアプライした。 SM33EX- hFcタンパク質を PVDF膜にパンザーセミドライエ レクトロブロッター(第一化学薬品)にて 150mA/枚、 1時間プロットした。 TBS緩 衝液及び 0. 05 %Tween入り TBS (TTBS) にて、 タンパク質がブロッテイングされ た膜を洗浄し、 ブロックエース (大日本製薬社製) にてブロッキングを行った。 TTBSにて 2回を洗浄した。 125M10AA、 125Q54AAAA, 125M96ABA、 125Q47BA, 及び 125R5AAAAは、 ハイプリ ドーマ精製抗体を l g/mlで、 室温 6 0分にて反応させ た。一方、キメラ抗 A33抗体、 125M165DAAA (すなわち recM165)及び 125N26F6AA (す なわち recN26)は、組換え型抗体を l g/mlで、室温 6 0分にて反応させた。 TTBS で洗浄した後、 検出用抗体として、 1000倍希釈した西洋ヮサビペルォキシダーゼ で標識されたャギ抗ヒト Kappa鎖 F (ab ' ) 2抗体 (バイオソース社製) を用いた。 このとき、マ一力一を検出するために 3000倍希釈した西洋ヮサビペルォキシダー ゼで標識されたストレプトアビジンも加えて反応させた。 TTBSで 2回、 PBSで 1 回洗浄したのち、 ウエスタンプロッティングディテクションシステム ECL-plus (アマシャム ·バイオサイエンス社製) を用い、 バンドの検出を行った。 ィメー ジアナライザー LAS- 1 0 0 (フジフィルム社製) を用い、 化学発光を取り込み、 画像処理を行った。
結果を図 3Aおよび図 3Bに示す。 その結果、 125Q54AAAAのみ還元条件下でも約
6 7 kDタンパク質のバンドと反応した。 その他の抗体は、 キメラ抗 A33抗体と同 様に非還元条件下でのみ反応が認められた。 実施例 2 1 精製抗体及び組換え型抗体での免疫組織化学
ヒト抗 A33抗体の特異性、 選択性がキメラ抗 A33抗体と同等か否かを評価する ために、 免疫組織化学によつて腫瘍組織切片及び正常組織切片との反応性を解析 した。
( 1 ) 精製抗体及び組換え型抗体の蛍光標識
実施例 8によって調製された各モノクローナル精製抗体あるいは実施例 16 で 調製された組換え型抗体、 rec263、 125M匪、 recM165、 recN26 及び 125Q54AAA を Al exa Flour™488 (モリキュラー ·プローブ社製) で直接標識した。 陽性コン トロールとしてキメラ抗 A33抗体、陰性コントロールとして抗 DNP- IgGl抗体も同 様に直接標識した。 精製抗体及ぴ組換え型抗体の蛍光標識化は以下のように行つ た。 Alexa FluorTM488を付属の説明書に従い、 実施例 8あるいは実施例 16で調製 した抗 A33抗体に結合させた。 2mg/ml の精製抗体及び組換え型抗体 0. 5ml に 50 H iの 1M炭酸緩衝液を添加後、 Al exa Fluor™488と混合し、 撹拌しながら室温 1 時間反応させた。ヒドロキシルァミンを添加し反応を止め、ゲルろ過カラム(NAP5、 アマシャム ·フアルマシア ·バイオテック社製) に混合液を供し、 抗体に未結合 の Al exa FluorTM488を除去した。 この条件で抗体 1分子に 4-6つの蛍光物質が結 合した。 蛍光標識された抗体は COL0205細胞に結合し、 その結合活性は標識され ていない抗体と同等であった。
( 2 ) 免疫組織化学
使用した組織切片は、 ヒト成人結腸癌凍結組織切片(バイオチェーン社製)、 ヒ ト成人正常結腸凍結組織切片(バイオチェーン社製)、 ヒ卜成人小腸凍結組織切片
(バイオチェーン社製) 及びヒト成人胃凍結組織切片 (バイオチェーン社製) で ある。 10 %ャギ血清 (ギブコ · ビーアールエル社製) 含有 PBSで、 室温にて 1-2 時間ブロッキングした。 PBSにて 2回洗浄し、 実施例 21 ( 1 ) で Al exa F luorTM488 にて標識された各モノクローナル精製抗体あるいは組換え型抗体を l ^ g/mlで室 温 30〜60分反応させた。 その後、 封入し、 蛍光顕微鏡 (BX51、 ォリンパス社製) で観察し、 画像はオリンパス社製 DP70にて解析した。 その結果を図 4〜6に示す。 Gar in-Cliesa P. らの報告している大腸癌組織の免疫 組織染色(Int. J. 0ncology l996 9 : 465- 471)と同; にキメラ抗 A33抗体、 rec263、 125M10AA recM165、 recN26及び 125Q54AAAとも結腸癌組織の腺上皮細胞や形成 異常腺構造に幅広く、 均一に強く染色することが認められた(図 4 )。 また、 正常 小腸組織(図 5 )、 正常結腸組織(図 6 )にもキメラ抗 A33抗体と同様な染色が認め られた。 一方、 正常胃組織では、 論文でも染色が認められなつたのと同様本抗体 でも染色が認められなかった。 また、 陰性コントロールの抗 DNP- IgGl抗体では、 すべての組織で染色は認められなかった。 実施例 2 2 マウス担癌モデルに対するハイプリドーマ精製抗体及び組換え型抗 体の効果
実施例 16から得られたヒト抗 A33組換え型抗体の効果を、以下に記載する方法 に従ってマウス担癌モデルを用いて検討した。使用した大腸癌細胞株は、 COLO205 細胞と NCI- H508細胞である。
C0L0205 細胞株を使用したマウス担癌モデルの作製方法は、 以下のとおりであ る。 6週齢の Balb/cヌードマウス (日本クレア社より購入) の背部皮下に、 大腸 癌細胞株 COL0205を 5 X 106/マウス個体で移植した。 移植後 1、 2、 7及び 10日 後に 10匹 1群として、担癌マウスの腹腔内に、キメラ抗 A33及ぴ rec263抗体 10、 100 i g/マウス個体(200 1の 1 %ヌードマウス血清含有 PBSに溶解したもの)を 投与し、 移植 7、 9、 11、 14、 17、 21 日後の腫瘍の大きさを測定した。 抗体の陰性 コントロール (Cont rol ) として、 同量のヒト抗 DNP- IgGl 抗体を使用した。 「vehic l e」は抗体投与をするにあたり溶解するための媒体として使用した 1 %ヌ 一ドマウス血清含有 PBS (200 ^ 1 ) を示す。
NCI-H508細胞株を使用したマウス担癌モデルの作製方法は、'以下のとおりであ る。 6週齢の Balb/cヌードマウス (日本クレア社より購入) の背部皮下に、 大腸 癌細胞株 NCI- H508 を腫瘍細胞の生着性を高めるマウス悪性肉腫からなるマトリ ジエル(べクトン ·ディキンソン ·バイオサイエンス社製)と 1 : 1の容量になるよ うに、 1 X 107/マウス個体で移植した。 移植後 1 , 4及び 7日後に 10匹 1群とし て、 担癌マウスの腹腔内に、 キメラ抗 A33及び rec263抗体 10、 100 ^ g/マウス個 体(200μ1の 1%ヌードマウス血清含有 PBSに溶解したもの) を投与し、移植 7、 11、 14、 18、 21、 27、 33、 40、 48、 55、 62日後の腫瘍の大きさを測定した。 抗体 の陰性コントロール(Control)として、同量のヒト抗 DNP- IgGl抗体を使用した。 「veliicle」は抗体投与をするにあたり溶解するための媒体として使用した 0.1% ヌードマウス血清含有 PBS (200 il) を示す。
以上の実験の結果を図 7に示す。
COL0205細胞株を移植した系では、 rec263抗体を 10^g/マウス個体で投与した 群では、 Vehicle投与群と比較して、 移植後 7、 9、 11 日後に腫瘍を有意に抑制す ることが認められた(p<0.05)。抗 DNP- 1 gGl抗体投与群と比較して、移植後 7、 9、 11、 14 日後に腫瘍の大きさに有意な差が認められた (p<0.05)。 また、 100 g/マウス個体で投与した群では、 抗 DNP- IgGl抗体投与群と比較して、 移植後 14, 17日後に腫瘍を有意に抑制することが認められた (p<0.05)。 一方、 キメラ 抗 A33組換え型抗体を lO^ g/マウス個体で投与した群では、 Vehicle投与群と比 較して、移植後 7、 11日後に腫瘍を有意に抑制することが認められた(p<0.05)。 抗 DNP- IgGl抗体投与群と比較して、 移植後 7、 9、 11、 14、 17、 21 日後に腫瘍を 有意に抑制することが認められた (p<0.05)。 また、 100 xg/マウス個体で投与 した群では、 Vehicle投与群と比較して、 移植後 7, 9, 14日後に腫瘍を有意に抑制 することが認められた (p<0.05)。 抗 DNP-IgGl抗体投与群と比較して、 移植後 7、 9、 11、 14、 17、 21日後に腫瘍を有意に抑制することが認められた (pく 0.05) (図 7A)。
—方、 NCI-H508細胞株を移植した系では、 rec263抗体を /マウス個体で 投与した群では、 抗腫瘍効果を全く示さなかった。 一方、 100 g/マウス個体で投 与した群では、 Vehicle投与群と比較して、 移植後 18日後以降で腫瘍を有意に抑 制することが認められた(Pく 0.05)。また、抗 DNP- IgGl抗体投与群と比較して、 ほぼすベての測定日で腫瘍を有意に抑制することが認められた(Pぐ 0.05)。一方、 キメラ抗 A33組換え型抗体を 10 ig/マウス個体で投与した群では、 Vehicle投与 群と比較して、 移植後 21、 55、 62日後に腫瘍を有意に抑制することが認められた
(Pく 0.05)。 また、 抗 DNP- IgGl抗体投与群と比較して、 移植後 7、 21、 33日後 に腫瘍を有意に抑制することが認められた (p<0.05)。 また、 lOO g/マウス個 体で投与した群では、 Vehicle 投与群と比較して、 ほぼすベての測定日で腫瘍を 有意に抑制することが認められた (p <0. 05)。 また、 抗 DNP-I g Gl抗体投与群と 比較して、移植後 33日後まで腫瘍を有意に抑制することが認められた(pぐ 0. 05)。 以上のことから、 本発明の抗体は 2種類の大腸癌細胞株を用いたマウス担癌モ デルで高い抗腫瘍効果を有することが示された (図 7 B)。
' ヒト抗 A33産生ハイプリ ドーマ精製抗体及びヒト抗 A33組換え型抗体の効果を、 マウス担癌モデルを用いて検討した。 使用した大腸癌細胞株は、 C0L0205 細胞と NCI- H508細胞である。
( 125M10AA, 125M165DAAA 及び 125M96ABA ハイプリ ドーマより精製した抗体の C0LO205細胞株を使用したときの抗腫瘍効果)
6週齢の Balb/cヌードマウス (日本クレア社より購入) の背部皮下に、 大腸癌 細胞株 COLO205を 5x l06/マウス個体で移植した。 移植後 1、 3、 7、 10、 14、 17 日後に 10匹 1群として(Vehicle投与群は、 15匹 1群)、担癌マウスの腹腔内に、 125M10AA, 125M165DAAA及び 125M96ABA抗体 20 g/マウス個体 (200 1の 1 %ヌ 一ドマウス血清含有 PBSに溶解したもの) を投与し、 移植 7、 10、 12、 14、 17日 後の腫瘍の大きさを測定した。 「vehick」 は抗体投与をするにあたり溶解するた めの媒体として使用した 1 %ヌードマウス血清含有 PBS (200 ^ 1) を示す。
以上の実験の結果を図 7 Cに示す。 図 7 C中、 M10は 125M10AA抗体を、 M96は 125M96ABA抗体を、 M165は 125M165DAAA抗体を示す。 125M10AA抗体を投与した群 では、 Vehicle 投与群と比較して、 移植後すベての測定日において腫瘍を有意に 抑制することが認められた (pぐ 0. 05)。 また、 125M165DAAA抗体を投与した群で は、 Vehicl e投与群と比較して、 移植後 12、 14、 17日後に腫瘍を有意に抑制する ことが認められた(pぐ 0. 05)。一方、 125M96ABA抗体を投与した群では、 Vehicle 投与群と比較して、移植後 12、 14日後に腫瘍.を有意に抑制することが認められた
( Pく 0. 05)。
(N26及び M165組換え型抗体の COL0205及び NCI- H508細胞株を使用したときの 抗腫瘍効果)
6週齢の Balb/cヌードマウス (日本クレア社より購入) の背部皮下に、 大腸癌 細胞株 COLO205を 5χ106/マウス個体で移植した。 移植後 1、 3、 6日後に 10匹 1 群として、担癌マウスの腹腔内に、 recN26及び recM165抗体 10及び 100 ^ g/マウ ス個体 (200 / lの 1%ヌードマウス血清含有 PBSに溶解したもの) を投与し、 移 植 8、 10、 13、 15、 17、 20、 23日後の腫瘍の大きさを測定した。
以上の実験の結果を図 7Dに示す。 図 7D中、 M165- 10は recM165抗体 (lO ig/ 匹投与) を、 M165- 100 は recM165抗体 (lOO g/匹投与) を、 N26- 10 は recN26 抗体(10 g/匹投与)を、 N26-100は recN26抗体 (lOO g/匹投与)を示す。 recN26 抗体を 10 g/headで投与した群では、 Vehicle投与群と比較して、移植後 10、 13 日後において腫瘍を有意に抑制することが認められた (p<0.05)。 recN26 抗体 を 100 ig/headで投与した群では、 Vehicle投与群と比較して、 移植後 8、 10、 13、 15、 17,20日後において腫瘍を有意に抑制することが認められた(p<0.05)。 また、 recM165抗体を 100 g/headで投与した群では、 Vehicle投与群と比較して、 移植後 8、 10、 13、 15、 17、 20日後に腫瘍を有意に抑制することが認められた(p <0.05)。
6週齢の Balb/cヌードマウス (日本クレア社より購入) の背部皮下に、大腸癌 細胞株 NCI- H508 を腫瘍細胞の生着性を高めるマウス悪性肉腫からなるマトリジ エル(べクトン ·ディキンソン ·バイオサイエンス社製)と 1:1の容量になるよう に、 lxlO7/マウス個体で移植した。移植後 1、 4及び 7日後に 10匹 1群(Vehicle 投与群は、 12匹 1群) として、 担癌マウスの腹腔内に、 recN26及び recM165抗体 10及び 100 ig/マウス個体 (200 /_Uの i%ヌードマウス血清含有 PBSに溶解した もの) を投与し、 移植後 11、 18、 28、 36、 43、 50、 57、 64日後の腫瘍の大きさを 測定した。
以上の実験の結果を図 7Eに示す。 図 7E中、 N26- 10は recN26抗体 匹 投与) を、 N26- 100は recN26抗体 (10(^g/匹投与) を、 M165- 10は recM165抗体
(10 g/匹投与)を、 M165-100は recM165抗体 (100 g/匹投与〉を示す。 NCI-H508 細胞株を移植した系では、 recN26 抗体を 10 g/マウス個体で投与した群では、
Vehicle投与群と比較して、 移植後 11、 18、 36、 43日後に腫瘍を有意に抑制する ことが認められた (p<0.05)。 また、 100 g/マウス個体で投与した群では、
Vehicle投与群と比較して、 移植後 11、 18、 28、 36、 50日後に腫瘍を有意に抑制 することが認められた (p<0.05)。一方、 recM165抗体を 10 xg/マウス個体で投 与した群では、 Vehicle投与群と比較して、 移植後 11、 18日後に腫瘍を有意に抑 制することが認められた (ρ<0·05)。 また、 lOO g/マウス個体で投与した群で は、 Vehicle 投与群と比較して、 移植後全ての測定日において腫瘍を有意に抑制 することが認められた (p<0.05)。
(M10及び Q54組換え型抗体の NCI- H508細胞株を使用したときの抗腫瘍効果) 6週齢の Balb/cヌードマウス (日本クレア社より購入) の背部皮下に、 大腸癌 細胞株 NCI- H508 を腫瘍細胞の生着性を高めるマウス悪性肉腫からなるマトリジ エル(べクトン ·ディキンソン 'バイオサイエンス社製)と 1:1の容量になるよう に、 ΙχΙΟ7/マウス個体で移植した。 移植後 1、 4及び 7日後に 10匹 1群として、 担癌マウスの腹腔内に、 recMlO及ぴ recQ54抗体 10及び 100^ g/マウス個体(200 β \の 1%ヌードマウス血清含有 PBSに溶解したもの) を投与し、移植後 14、 21、 28、 35、 42、 49、 56、 63日後の腫瘍の大きさを測定した。
以上の実験の結果を図 7 Fに示す。 図 7F中、 M10- 10は recMlO抗体 (10/ g/匹 投与) を、 M10- 100は recMlO抗体(100^ g/匹投与) を、 Q54- 10は recQ54抗体(10 ^g/匹投与) を、 Q54- 100は recQ54抗体 (100^g/匹投与) を示す。 NCI - H508細 胞株を移植した系では、 recMlO 抗体を lO^g/マウス個体で投与した群では、 Vehicle投与群と比較して、 移植後 14、 21、 28、 42、 49、 56日後に腫瘍を有意に 抑制することが認められた (p<0.05)。 また、 100 g/マウス個体で投与した群 では、 Vehicle投与群と比較して、 移植後 14、 21、 28、 35、 42、 49、 56日後に腫 瘍を有意に抑制することが認められた (p<0.05)。 一方、 recQ54抗体を 10 zg/ マウス個体で投与した群では、 Vehicle投与群と比較して、 移植後 28、 42日後に 腫瘍を有意に抑制することが認められた (pぐ 0.05)。 また、 100 zg/マウス個体 で投与した群では、 Vehicle投与群と比較して、 移植後 14、 21、 28、 35、 42、 56 日後に腫瘍を有意に抑制することが認められた (Pぐ 0.05) 本明細書に引用されたすベての刊行物は、 その内容の全体を本明細書に取り込 むものとする。 また、 添付の請求の範囲に記載される技術思想及び発明の範囲を 逸脱しない範囲内で本発明の種々の変形及び変更が可能であることは当業者には 容易に理解されるであろう。 本発明はこのような変形及び変更をも包含すること を意図している。 産業上の利用可能性
本発明により、 A33 を発現している細胞に起因する疾患に対する予防又は治療 剤、 特に悪性腫瘍治療薬として A33多型を有する患者にも有用である分子が提供 された。 ·
現在 A33の mRNAには 9つの多型が知られているが、そのうちの 7つは非翻訳領 域における多型である。 また、 残りの 2つのうちの 1つは 3番目のコドンにおけ る多型であるためアミノ酸置換をしないサイレントミューテーシヨンである。 ま た、 残りの 2つのうちのもう 1つはアミノ酸置換を伴う多型であるがシグナル配 列内にある。 以上のことから、 本抗体は、 A33 の多型にかかわらず治療、 予防剤 に有効である。
本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。

Claims

請求の範囲
1 . A33に結合するヒト抗体またはその機能的断片。
2 . 抗体重鎖定常領域のクラスが IgGである、 請求項 1に記載のヒト抗体ま たはその機能的断片。
3 . IgGのサブクラスが IgGlである、 請求項 2に記載のヒト抗体またはその 機能的断片。
4 . 以下の(a)〜(g)からなる群から選択されるハイブリドーマにより産生さ れる、 請求項 1〜3のいずれか 1項に記載のヒト抗体またはその機能的断片。
(a) M10 (受託番号: FE M BP- 10107)、
(b) M96 (受託番号: FERM BP- 10108)、
(c) M165 (受託番号: FERM BP- 10106)、
(d) N26 (受託番号: FERM BP - 10109)、
(e) Q47 (受託番号: FERM BP - 10104)、
(f) Q54 (受託番号: FERM BP- 10105) および
(g) 5 (受託番号: FERM BP- 10103)
5 . 以下の(a)〜(g)からなる群から選択されるハイプリドーマにより産生さ れる抗体が認識するェピトープと同じェピ 1 ^一プを認識する、 請求項 1〜3のい ずれか 1項に記載のヒト抗体またはその機能的断片。
(a) M10 (受託番号: FERM BP- 10107)、
(b) M96 (受託番号: FERM BP - 10108)、
(c) M165 (受託番号: FERM BP- 10106)、
(d) N26 (受託番号: FERM BP - 10109)、
(e) Q47 (受託番号: FERM BP- 10104)、
(f) Q54 (受託番号: FERM BP- 10105) および
(g) R5 (受託番号: FERM BP - 10103)
6 . 以下の(a)〜(g)からなる群から選択されるハイプリドーマにより産生さ れる抗体の重鎖可変領域および軽鎖可変領域を有する、 請求項 1〜 3のいずれか
1項に記載のヒト抗体またはその機能的断片。 (a) M10 (受託番号: FERM BP - 10107)、
(b) M96 (受託番号: FERM BP - 10108)、
(c) M165 (受託番号: FERM BP - 10106)、
(d) N26 (受託番号: FERM BP- 10109)、
(e) Q47 (受託番号: FERM BP- 10104)、
(f) Q54 (受託番号: FERM BP- 10105) および
(g) R5 (受託番号: FERM BP - 10103)
7 . 以下の(W〜(0)からなる群から選択される重鎖可変領域および軽鎖可変 領域を有する、 請求項 1〜3のいずれか 1項に記載のヒト抗体またはその機能的 断片。
( ) 配列番号 23で示される重鎖アミノ酸配列の可変領域おょぴ配列番号 25で示 される軽鎖ァミノ酸配列の可変領域、
(i) 配列番号 27で示される重鎖アミノ酸配列の可変領域および配列番号 29で示 される軽鎖アミノ酸配列の可変領域、
(j) 配列番号 31で示される重鎖アミノ酸配列の可変領域および配列番号 33で示 される軽鎖ァミノ酸配列の可変領域、
(k) 配列番号 35で示される重鎖ァミノ酸配列の可変領域および配列番号 37で示 される軽鎖アミノ酸配列の可変領域、
(I) 配列番号 39で示される重鎖アミノ酸配列の可変領域および配列番号 41で示 される軽鎖アミノ酸配列の可変領域、
(m) 配列番号 43で示される重鎖アミノ酸配列の可変領域および配列番号 45で示 される軽鎖アミノ酸配列の可変領域、
(n) 配列番号 47で示される重鎖アミノ酸配列の可変領域および配列番号 49で示 される軽鎖アミノ酸配列の可変領域および
(0) 配列番号 51で示される重鎖ァミノ酸配列の可変領域および配列番号 53で示 される軽鎖アミノ酸配列の可変領域
8 . 請求項 1〜7のいずれか 1項に記載のヒト抗体またはその機能的断片を 有効成分とする、 医薬組成物。
9 . 請求項 1〜 7のいずれか 1項に記載のヒ卜抗体またはその機能的断片を 有効成分とする、 腫瘍の予防または治療剤。
1 0 . 腫瘍が、 A33 を発現している癌細胞を含む腫瘍である、 請求項 9に記 載の腫瘍の予防または治療剤。
1 1 . 腫瘍が、 大腸癌、 結腸癌、 直腸癌、 胃癌、 膝臓癌、 乳癌、 黒色腫、 腎 細胞癌、 子宮頸癌、 子宮内膜癌、 卵巣癌、 食道癌、 前立腺癌、 睾丸癌および中皮 癌からなる群から選択される、 請求項 9または 1 0に記載の腫瘍の予防または治 療剤。
1 2 . 以下の(a)〜(g)からなる群から選択されるハイプリドーマ。
(a) M10 (受託番号: FERM BP- 10107)、
(b) M96 (受託番号: FERM BP- 10108)、
(c) M165 (受託番号: FERM BP - 10106)、
(d) N26 (受託番号: FERM BP- 10109)、
(e) Q47 (受託番号: FERM BP- 10104) ,
(f) Q54 (受託番号: FERM BP- 10105) および
(g) 5 (受託番号: FERM BP- 10103)
1 3 . 請求項 1 2に記載のハイプリドーマを培養し、 培養物から抗体を取得 することを特徴とする、 抗体の製造方法。
1 4 . 請求項 1 2に記載のハイプリドーマから A33に結合する抗体をコード する遺伝子を単離し、 該遺伝子を有する発現ベクターを作製し、 該発現ベクター を宿主に導入して、 該宿主を培養し、 培養物から該抗体を取得することを特徴と する、 抗体の製造方法。
1 5 . 請求項 1 2に記載のハイプリドーマから A33に結合する抗体の重鎖可 変領域および軽鎖可変領域をコードする遺伝子を単離し、 該遺伝子を有する発現 ベクターを作製し、 該発現ベクターを宿主に導入して、 該宿主を培養し、 培養物 から該抗体を取得することを特徴とする、 抗体の製造方法。
1 6 . 以下の(p) - (w)からなる群から選択される重鎖可変領域およぴ軽鎖可変 領域を有する発現ベクターを作製し、 該発現ベクターを宿主に導入して、 該宿主 を培養し、 培養物から該抗体を取得することを特徴とする、 抗体の製造方法。
(P) 配列番号 22で示される重鎖核酸配列の可変領域および配列番号 24で示され る軽鎖核酸配列の可変領域、
(Q) 配列番号 26で示される重鎖核酸配列の可変領域および配列番号 28で示され る軽鎖核酸配列の可変領域、
(r) 配列番号 30で示される重鎖核酸配列の可変領域および配列番号 32で示され る軽鎖核酸配列の可変領域、.
(s) 配列番号 34で示される重鎖核酸配列の可変領域および配列番号 36で示され る軽鎖核酸配列の可変領域、
(t) 配列番号 38で示される重鎖核酸配列の可変領域および配列番号 40で示され る軽鎖核酸配列の可変領域、
(u) 配列番号 42で示される重鎖核酸配列の可変領域および配列番号 44で示され る軽鎖核酸配列の可変領域、
(v) 配列番号 46で示される重鎖核酸配列の可変領域および配列番号 48で示され る軽鎖核酸配列の可変領域および
(w) 配列番号 50で示される重鎖核酸配列の可変領域および配列番号 52で示され る軽鎖核酸配列の可変領域
1 7 . 宿主が、 大腸菌、 酵母細胞、 昆虫細胞、 哺乳動物'細胞、 植物細胞、 植 物および哺乳動物からなる群から選択される、 請求項 1 3〜 1 6のいずれか 1項 に記載の製造方法。
PCT/JP2005/016576 2004-09-06 2005-09-02 抗a33抗体 WO2006028197A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP05778552A EP1801208A4 (en) 2004-09-06 2005-09-02 ANTI-A33 ANTIBODY
CN2005800298522A CN101010427B (zh) 2004-09-06 2005-09-02 抗a33抗体
US11/629,779 US7579187B2 (en) 2004-09-06 2005-09-02 Anti-A33 antibody
AU2005280975A AU2005280975B2 (en) 2004-09-06 2005-09-02 Anti-A33 antibody
CA2579391A CA2579391C (en) 2004-09-06 2005-09-02 Anti-a33 antibody
JP2006535830A JP4088655B2 (ja) 2004-09-06 2005-09-02 抗a33抗体
HK07111099.0A HK1105993A1 (en) 2004-09-06 2007-10-15 Anti-a33 antibody
US12/053,461 US7432359B2 (en) 2004-09-06 2008-03-21 Anti-A33 antibody
US12/421,431 US20090299039A1 (en) 2004-09-06 2009-04-09 Anti-a33 antibody

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004259090 2004-09-06
JP2004-259090 2004-09-06

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US11/629,779 A-371-Of-International US7579187B2 (en) 2004-09-06 2005-09-02 Anti-A33 antibody
US12/053,461 Continuation-In-Part US7432359B2 (en) 2004-09-06 2008-03-21 Anti-A33 antibody
US12/421,431 Division US20090299039A1 (en) 2004-09-06 2009-04-09 Anti-a33 antibody

Publications (1)

Publication Number Publication Date
WO2006028197A1 true WO2006028197A1 (ja) 2006-03-16

Family

ID=36036478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016576 WO2006028197A1 (ja) 2004-09-06 2005-09-02 抗a33抗体

Country Status (10)

Country Link
US (2) US7579187B2 (ja)
EP (2) EP2145954A1 (ja)
JP (2) JP4088655B2 (ja)
KR (1) KR100918746B1 (ja)
CN (1) CN101010427B (ja)
AU (1) AU2005280975B2 (ja)
CA (1) CA2579391C (ja)
HK (1) HK1105993A1 (ja)
TW (1) TW200621803A (ja)
WO (1) WO2006028197A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008049098A3 (en) * 2006-10-19 2009-04-09 Merck & Co Inc ANTIBODY ANTAGONISTS OF INTERLEUKIN-13 RECEPTOR α1
US20110182913A1 (en) * 2007-02-14 2011-07-28 Kyowa Hakko Kirin Co., Ltd. Anti fgf23 antibody and a pharmaceutical composition comprising the same
US20120309031A1 (en) * 2007-11-07 2012-12-06 Celldex Therapeutics Inc. Antibodies that bind human dendritic and epithelial cell 205 (dec-205)
JP2016504370A (ja) * 2012-12-28 2016-02-12 プレシジョン・バイオロジクス・インコーポレイテッド 結腸癌及び膵臓癌の診断ならびに治療のための、ヒト化モノクローナル抗体及び使用方法
US9550824B2 (en) 2008-07-08 2017-01-24 Geneuro Sa Therapeutic use of specific ligand in MSRV associated diseases

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2207808B1 (en) 2007-11-02 2013-05-08 Novartis AG Improved nogo-a binding molecules and pharmaceutical use thereof
WO2014074528A2 (en) * 2012-11-06 2014-05-15 Medimmune, Llc Combination therapies using anti-pseudomonas psl and pcrv binding molecules
EP2777714A1 (en) 2013-03-15 2014-09-17 NBE-Therapeutics LLC Method of producing an immunoligand/payload conjugate by means of a sequence-specific transpeptidase enzyme
US11746159B2 (en) * 2015-02-10 2023-09-05 Minerva Biotechnologies Corporation Humanized anti-MUC1* antibodies
EP3684369A4 (en) * 2017-09-23 2021-06-23 Memorial Sloan Kettering Cancer Center A33-ANTIBODY COMPOSITIONS AND METHOD OF USING THEREOF IN RADIOIMMUNOTHERAPY
CN110540591A (zh) * 2019-08-09 2019-12-06 无锡傲锐东源生物科技有限公司 一种抗糖蛋白A33(Glycoprotein A33)单克隆抗体及其免疫检测应用
AU2021381768A1 (en) * 2020-11-18 2023-06-22 Memorial Sloan Kettering Cancer Center Anti-gpa33 multi-specific antibodies and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111697A (ja) * 1985-04-19 1987-05-22 スロ−ン − ケツタリング インステイテユ−ト フオ− キヤンサ− リサ−チ ヒトの消化器ガンに対するモノクロ−ナル抗体
JP2004515230A (ja) * 2000-11-30 2004-05-27 メダレックス,インコーポレーテッド ヒト抗体作製用トランスジェニック染色体導入齧歯動物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8308235D0 (en) 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5851526A (en) 1985-04-19 1998-12-22 Ludwig Institute For Cancer Research Methods of treating colon cancer utilizing tumor-specific antibodies
US5160723A (en) 1985-04-19 1992-11-03 Sloan-Kettering Institute For Cancer Research Method of imaging colorectal carcinoma lesion and composition for use therein
US5431897A (en) 1985-04-19 1995-07-11 Sloan-Kettering Institute For Cancer Research Method of imaging colorectal carcinoma lesion and composition for use therein
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
FI884924L (fi) 1987-10-28 1989-04-29 Oncogen Humanimmuglobulin som producerats med hybrid-dna-teknik.
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
GB2278357B (en) * 1992-12-10 1997-03-05 Celltech Ltd Humanised antibodies directed against A33 antigen
US6307026B1 (en) * 1992-12-10 2001-10-23 Celltech Limited Humanized antibodies directed against A33 antigen
US6001358A (en) 1995-11-07 1999-12-14 Idec Pharmaceuticals Corporation Humanized antibodies to human gp39, compositions containing thereof
AU1102401A (en) 1999-10-22 2001-05-08 Ludwig Institute For Cancer Research Methods for reducing the effects of cancers that express a33 antigen using a33 antigen specific immunoglobulin products
US6643550B2 (en) * 2000-12-15 2003-11-04 Cardiac Pacemakers, Inc. Multi-polar connector
JP2004259090A (ja) 2003-02-27 2004-09-16 Toshiba Corp 情報処理装置および情報処理方法
US7432359B2 (en) * 2004-09-06 2008-10-07 Kirin Pharma Kabushiki Kaisha Anti-A33 antibody
JP4976741B2 (ja) * 2006-05-16 2012-07-18 株式会社東芝 平面アンテナ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111697A (ja) * 1985-04-19 1987-05-22 スロ−ン − ケツタリング インステイテユ−ト フオ− キヤンサ− リサ−チ ヒトの消化器ガンに対するモノクロ−ナル抗体
JP2004515230A (ja) * 2000-11-30 2004-05-27 メダレックス,インコーポレーテッド ヒト抗体作製用トランスジェニック染色体導入齧歯動物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP1801208A4 *
TOMIZUKA K. ET AL: "Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies", PROC.NATL.ACAD.SCI. USA, vol. 97, no. 2, 18 January 2000 (2000-01-18), pages 722 - 727, XP002150871 *
WELT S. ET AL: "Preliminary report of a phase I study of combination chemotherapy and humanized A33 antibody immunotherapy in patients with advanced colorectal cancer", CLIN. CANCER RES., vol. 9, no. 4, April 2003 (2003-04-01), pages 1347 - 1353, XP002995035 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207304B2 (en) 2006-10-19 2012-06-26 Csl Limited Antibody antagonists of interleukin-13 receptor α1
WO2008049098A3 (en) * 2006-10-19 2009-04-09 Merck & Co Inc ANTIBODY ANTAGONISTS OF INTERLEUKIN-13 RECEPTOR α1
US9290569B2 (en) * 2007-02-14 2016-03-22 Kyowa Hakko Kirin Co., Ltd. Anti FGF23 antibody and a pharmaceutical composition comprising the same
US20110182913A1 (en) * 2007-02-14 2011-07-28 Kyowa Hakko Kirin Co., Ltd. Anti fgf23 antibody and a pharmaceutical composition comprising the same
US10202446B2 (en) 2007-02-14 2019-02-12 Kyowa Hakko Kirin Co., Ltd. Anti FGF23 antibody and a pharmaceutical composition comprising the same
US8586720B2 (en) * 2007-11-07 2013-11-19 Celldex Therapeutics Inc. Antibodies that bind human dendritic and epithelial cell 205 (DEC-205)
US9624300B2 (en) 2007-11-07 2017-04-18 Celldex Therapeutics Inc. Antibodies that bind human dendritic and epithelial cell 205 (DEC-205)
US20120309031A1 (en) * 2007-11-07 2012-12-06 Celldex Therapeutics Inc. Antibodies that bind human dendritic and epithelial cell 205 (dec-205)
US9550824B2 (en) 2008-07-08 2017-01-24 Geneuro Sa Therapeutic use of specific ligand in MSRV associated diseases
US9815888B2 (en) 2008-07-08 2017-11-14 Geneuro Sa Therapeutic use of specific ligand in MSRV associated diseases
US10059758B2 (en) 2008-07-08 2018-08-28 Geneuro Sa Therapeutic use of specific ligand in MSRV associated diseases
JP2016504370A (ja) * 2012-12-28 2016-02-12 プレシジョン・バイオロジクス・インコーポレイテッド 結腸癌及び膵臓癌の診断ならびに治療のための、ヒト化モノクローナル抗体及び使用方法
US9938344B2 (en) 2012-12-28 2018-04-10 Precision Biologics, Inc. Humanized monoclonal antibodies and methods of use for the diagnosis and treatment of colon and pancreas cancer
JP2019080572A (ja) * 2012-12-28 2019-05-30 プレシジョン・バイオロジクス・インコーポレイテッド 結腸癌及び膵臓癌の診断ならびに治療のための、ヒト化モノクローナル抗体及び使用方法
US10689443B2 (en) 2012-12-28 2020-06-23 Precision Biologics, Inc. Humanized monoclonal antibodies and methods of use for the diagnosis and treatment of colon and pancreas cancer
JP7003071B2 (ja) 2012-12-28 2022-02-04 プレシジョン・バイオロジクス・インコーポレイテッド 結腸癌及び膵臓癌の診断ならびに治療のための、ヒト化モノクローナル抗体及び使用方法
US11505604B2 (en) 2012-12-28 2022-11-22 Precision Biologics, Inc. Humanized monoclonal antibodies and methods of use for the diagnosis and treatment of colon and pancreas cancer

Also Published As

Publication number Publication date
CA2579391C (en) 2010-10-26
JPWO2006028197A1 (ja) 2008-05-08
TWI359154B (ja) 2012-03-01
CA2579391A1 (en) 2006-03-16
JP4088655B2 (ja) 2008-05-21
US20070141054A1 (en) 2007-06-21
US20090299039A1 (en) 2009-12-03
EP1801208A4 (en) 2009-04-01
US7579187B2 (en) 2009-08-25
TW200621803A (en) 2006-07-01
AU2005280975A1 (en) 2006-03-16
KR100918746B1 (ko) 2009-09-24
CN101010427A (zh) 2007-08-01
EP1801208A1 (en) 2007-06-27
KR20070088570A (ko) 2007-08-29
CN101010427B (zh) 2011-07-27
AU2005280975B2 (en) 2009-06-18
HK1105993A1 (en) 2008-02-29
JP2008138004A (ja) 2008-06-19
EP2145954A1 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
AU2021200264B2 (en) Anti-pd-1 antibodies
US20090299039A1 (en) Anti-a33 antibody
KR101751965B1 (ko) 암 치료를 위한 claudin-18에 대한 모노클로날 항체
AU2003230183B2 (en) Humanized immunomodulatory monoclonal antibodies for the treatment of neoplastic disease or immunodeficiency
CA2648618C (en) Novel anti-cd98 antibody
WO2012147713A1 (ja) 抗b7-h3抗体
CN110964108A (zh) 抗pd-l1抗体
CN101312989A (zh) 用于治疗癌症的针对密蛋白-18的单克隆抗体
CN101124240A (zh) 肝细胞生长因子的特异性结合物
KR20220071177A (ko) 인간화 항-vegf 단클론 항체
US7432359B2 (en) Anti-A33 antibody
KR20220131279A (ko) 항lag3단일 클론 항체 및 그 제조 방법과 응용
AU2020316495A1 (en) Humanized anti-VEGF Fab antibody fragment and use thereof
CN113226371A (zh) 与TfR结合的双特异性抗体
CN117425500A (zh) 抗dll3抗体-药物缀合物
RU2802960C2 (ru) Fab ФРАГМЕНТ ГУМАНИЗИРОВАННОГО АНТИТЕЛА ПРОТИВ VEGF И ЕГО ПРИМЕНЕНИЕ
CN115028722B (zh) 抗tslp抗体及其制备方法和用途
EP4541816A1 (en) Anti-cldn18.2 antibody, and pharmaceutical composition and use thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006535830

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007141054

Country of ref document: US

Ref document number: 11629779

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580029852.2

Country of ref document: CN

Ref document number: 2579391

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005778552

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005280975

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020077007788

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11629779

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005778552

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载