+

WO2006025367A1 - 試料前処理装置とそれに用いるプローブ - Google Patents

試料前処理装置とそれに用いるプローブ Download PDF

Info

Publication number
WO2006025367A1
WO2006025367A1 PCT/JP2005/015734 JP2005015734W WO2006025367A1 WO 2006025367 A1 WO2006025367 A1 WO 2006025367A1 JP 2005015734 W JP2005015734 W JP 2005015734W WO 2006025367 A1 WO2006025367 A1 WO 2006025367A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile phase
probe
tube
additive
tip
Prior art date
Application number
PCT/JP2005/015734
Other languages
English (en)
French (fr)
Inventor
Yosuke Iwata
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to JP2006532707A priority Critical patent/JP4306729B2/ja
Priority to US11/661,083 priority patent/US7752896B2/en
Publication of WO2006025367A1 publication Critical patent/WO2006025367A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • G01N2030/8411Intermediate storage of effluent, including condensation on surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • G01N2030/8429Preparation of the fraction to be distributed adding modificating material
    • G01N2030/8441Preparation of the fraction to be distributed adding modificating material to modify physical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize

Definitions

  • the present invention relates to a probe for dropping a sample liquid eluted from a liquid feeding mechanism such as a high performance liquid chromatograph as a droplet onto a plate such as a microplate or a sample plate as a droplet,
  • a sample pretreatment apparatus including the probe.
  • the amount of droplets dropped on a sample plate for MALDI is at most 2 L.
  • a liquid chromatograph usually has a flow scale of lmLZmin.
  • a force that uses a pipe with an inner diameter of about 0.3 mm with a normal flow scale A proportional relationship is maintained between the flow scale and the pipe inner diameter, and diffusion of components separated by the separation column can be kept to a minimum. Where possible, the pipe inner diameter will be even smaller, 1.5 ⁇ m on the microscale and 60 nm on the nanoscale.
  • piping with an inner diameter of 0 to 50 111 is used in consideration of blockage of the piping due to contamination.
  • the pipe capacity is 1 ⁇ when the pipe length is 500 mm.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-184149
  • the peak width is wider than the peak width confirmed by the UV detector and is spotted on the well at the peak width.
  • the broadening of the peaks on the wells was several times larger, making it meaningless to be separated by high performance liquid chromatography.
  • An object of the present invention is to prevent diffusion due to pipe capacity.
  • the sample pretreatment apparatus of the present invention includes a microscale or nanoscale high-performance liquid chromatograph equipped with a capillary column and a probe integrally configured at the tip of the chiral column, and a plurality of tubes are coaxial.
  • the innermost tube is the tip of the above-mentioned column column, and one of the outer tubes is an additive supply tube that joins the additive solution to the eluate from which the column column force is also dissolved.
  • a probe that forms a droplet containing the eluate and the additive and drops the tip force of the probe; and an additive supply channel that supplies the additive to the additive supply pipe It is.
  • the ability to use various additive solutions As a preferred example, a matrix compound solution for sample preparation for analysis by mass spectrometry based on matrix-assisted laser desorption / ionization .
  • An example of a multiple tube structure is a triple tube structure, in which case the second tube with an inner force second tube is used as an additive supply tube, and the outermost tube is different from the mobile phase in the eluate.
  • the formed droplet contains the eluent, the additive, and the second mobile phase.
  • the form of the sample pretreatment device provided with such a triple tube structure probe further includes a second mobile phase supply channel for supplying the second mobile phase to the second mobile phase supply tube. It becomes.
  • a solution of water and acetonitrile is used as a mobile phase without changing the composition by a gradient-type liquid feeding mechanism.
  • the mobile phase composition changes to a state force rich in water components and a state rich in acetonitrile.
  • the components in the droplets are different immediately after the start of dispensing and immediately before the end of dispensing, and contain a lot of water components immediately after the beginning of dispensing, and contain a lot of acetonitrile in the immediately before dispensing.
  • the surface tension of the droplets changes, and uniform size droplets are not formed.
  • the shape of the droplet formed at the probe tip is different immediately after the start of dispensing and immediately before the end of dispensing. It will be. That is, the height of the droplets formed at the probe tip in the direction of the sample plate is different, so the probe tip and the sample plate Even with a sensor that keeps the distance constant when dropping, the droplet does not come into contact with the sample plate, especially when the amount of droplet is very small, and the droplet cannot be moved to the sample plate. Sometimes.
  • the composition of the mobile phase in the droplets is made constant by mixing the second mobile phase with the mobile phase in the eluate.
  • the matrix solution When the matrix solution is added to the eluate from the separation column at the probe tip and dispensed from the tip, if the mobile phase composition immediately after the start of dispensing contains a large amount of water components, it is mixed with the matrix solution. As a result, the matrix in the saturated matrix solution is deposited on the probe tip, which hinders stable dispensing operation, and there is a problem of carry-over due to penetration of the component to be measured into the matrix.
  • the mobile phase composition in the droplet formed at the probe tip is kept constant as described above, the matrix can be prevented from being analyzed at the probe tip.
  • the multiple tube is provided with a cleaning solution supply tube which can send a cleaning solution dissolving the precipitate from the additive solution to the tip of the probe on the outermost side.
  • the form of the sample pretreatment apparatus including the probe including the cleaning liquid supply pipe is further provided with a cleaning liquid supply flow path for supplying the cleaning liquid to the cleaning liquid supply pipe.
  • the matrix compound deposited on the tip of the probe can be automatically removed.
  • a preferred embodiment of the sample pretreatment device further includes a gas supply channel that supplies the drying gas by switching to the cleaning solution supply channel.
  • Probe tip force When the gas is ejected and the cleaning liquid remaining on the probe tip after the cleaning is dried and evaporated by the gas, the dropping position of the liquid droplet does not shift and the biological sample is continuously performed. Fractionation can be performed uniformly.
  • a plate for collecting droplets dropped by the probe a support mechanism for moving the plate or the probe at least in the vertical direction, Distance measuring means for measuring the distance between the tip and the plate, and a distance in which the distance between the probe tip and the plate is set in advance based on the measurement result of the distance measuring means when droplets are dropped from the probe
  • a control unit for controlling the movement of the support mechanism.
  • the distance between the probe tip and the plate may be too far or too close to contact. Can be prevented.
  • FIG. 1 is a diagram schematically showing an embodiment of a MALDI-TOF-MS pretreatment apparatus to which the present invention is applied.
  • J2 is a three-way joint for joining the pipe 17 for feeding the second mobile phase and the probe 1.
  • the liquid feeding mechanism for the second mobile phase may be the same gradient type liquid feeding mechanism as described above, but here, it is assumed that a single mobile phase is supplied.
  • the tip of the probe 1 has a triple tube structure, and the eluate from the capillary column 2, the matrix solution joined at the three-way joint J1, and the second mobile phase joined at the three-way joint J2 are the probes.
  • the liquid is mixed at the tip of 1 to form a droplet and dropped onto the sample plate 36.
  • FIG. 2 is a cross-sectional view showing in detail the structure of the probe portion of this embodiment.
  • the first column of the first T-type 3-way joint J1 on the upstream side passes through the non-orthogonal joints a and b through the column 2 where the eluate from the high-speed liquid chromatograph is fed.
  • the joint a on the upstream side is sealed with piping parts 10a such as a mail nut.
  • a sleeve 12 or the like is used as necessary.
  • a pipe 16 through which the matrix liquid is fed is connected to the orthogonal joint c of the T-shaped three-way joint J1, and sealed with a pipe part 10c such as a mail nut.
  • the column 2 protrudes At the joint b, the force to seal the pipe 4 with the pipe 4 on the outside of the column 2 and seal it with pipe parts 10b such as a mail nut, etc.
  • a sleeve 22 or the like is used.
  • the tip of the probe 1 has a triple tube structure with the capillary columns 2 and 4 and the pipe 8, and the eluate from the high-performance liquid chromatograph flows through the column 2 that is the innermost flow path, The matrix liquid flows through the first flow path, and the second mobile phase flows through the outermost flow path. These liquids are mixed at the tip of the probe 1 to form droplets, and are dropped onto the sample plate 36 when a predetermined droplet amount is reached.
  • the spot interval is also 30 seconds, and the target component does not diffuse, but one component at a time in the range of 1 well or 2 well. Will be spotted.
  • FIG. 3 is a schematic configuration diagram showing an example of a fractionation device for dropping droplets from the probe tip in the embodiment.
  • This fractionation device is arranged on the side of the tip of the probe 1 for dropping the eluate from the high performance liquid chromatograph and the tip of the probe 1, and measures the distance between the tip of the probe 1 and the sample plate 36.
  • Proximity sensor 35 as distance measurement means
  • sample plate 36 for MALDI-TOF-MS which is placed below the tip of probe 1 and collects droplet 6 dropped from probe 1
  • sample plate 36 A stage 37 that is mounted and moves in the vertical and in-plane directions, and a control device 38 that controls the operation of the stage 37 are provided.
  • the sample plate 36 is mounted on the stage 37 and is moved in the vertical direction and the in-plane direction. Usually, for example, 192 or 384 dropping positions are determined on the sample plate 36, and the droplet 6 containing the sample component is dropped from the probe 1 at these dropping positions.
  • the detection point of the proximity sensor 35 can be arbitrarily set by the operator. Further, the initial position of the sample plate 36 can be arbitrarily changed. [0039]
  • HPLC that performs separation analysis of biological samples is analyzed by a gradient method, and a low value of the organic solvent concentration is selected as the initial value of the mobile phase composition, and the ratio of water as the mobile phase component is Get higher. Since water has a high surface tension, if the proportion of water in the mobile phase is high, there is a strong tendency for the liquid droplets coming out of the probe tip to travel up the outside of the probe.
  • the contact angle can be used as one measure for evaluating the hydrophobicity / hydrophilicity of a substance. The larger the contact angle, the stronger the hydrophobicity.
  • the components in the droplets are different immediately after the start of dispensing and immediately before the end of dispensing.
  • the surface tension of the droplets formed at the probe tip changes, resulting in a uniform Large droplets are not formed.
  • the first mobile phase is almost completely occupied by solution A (water) immediately after the start of dispensing.
  • the proportion of solution B is linear with time. Will increase.
  • the second mobile phase is almost completely occupied by the liquid B (acetonitrile) immediately after the start of dispensing.
  • the ratio of the liquid A increases linearly with time. I will do it.
  • the yarn is adjusted so that it becomes.
  • the size (height) of the droplet formed at the probe tip is made constant. Therefore, stable dispensing operation can be performed.
  • the chiral column 2 is used as in the embodiment described in FIG. 1.
  • An injection port 46 is provided on the mobile phase inlet side of the chiral column 2.
  • the capillary column 2 extends to the probe 1 and is configured integrally with the probe 1.
  • a three-way solenoid valve may be used instead of the T-joint J3. In this case, the cleaning liquid does not need to consider back flow to the gas valve 28 side.
  • FIG. 1 is a flow chart schematically showing an embodiment of a sample pretreatment apparatus.
  • FIG. 3 is a schematic view showing an embodiment relating to a support mechanism and a distance measuring means.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】  配管容量による拡散を防ぐ。 【解決手段】  キャピラリカラム2を備えたミクロスケール又はナノスケールの高速液体クロマトグラフと、キャピラリカラム2の先端に一体的に構成されたプローブ1と、添加剤供給流路16を備えている。プローブ1は複数の管が同軸上に配置された多重管構造をもち、最内側の管はキャピラリカラム2の先端部であり、外側の管の1つがそのキャピラリカラム2から溶出される溶出液に添加剤溶液を合流させる添加剤供給管となっており、溶出液と添加剤を含む液滴を形成してこのプローブ1の先端から滴下させる。流路の途中に検出器がないため、試料が拡散することはない。

Description

明 細 書
試料前処理装置とそれに用いるプローブ
技術分野
[0001] 本発明は、高速液体クロマトグラフなどの送液機構力ゝら溶出される試料液を液滴と して先端部からマイクロプレートやサンプルプレートなどのプレート上に滴下するため のプローブと、そのプローブを含む試料前処理装置に関する。
背景技術
[0002] 従来、高速液体クロマトグラフの分離カラムで分離した試料成分の溶出液を、例え ば MALDI— TuF— MS Matrix assisted laser desorption ionization time of flight mass spectrometry:マトリクス支援レーザ脱離イオンィ匕法飛行時間型質量分析)用サ ンプルプレート〖こ自動的に滴下して分画捕集を行なう場合、高速液体クロマトグラフ( HPLC)用分離カラムで測定対象成分の分離を行 ヽ、分離カラムの先端に配管を介 して UV検出器に接続していた (特許文献 1参照。 ) 0
[0003] 通常、 MALDI用サンプルプレートに滴下させる液滴量は、多くても 2 Lであり、こ のような微量の液滴を滴下させるためには、液体クロマトグラフは流量スケールとして lmLZminの通常の流量ではなぐ 5 μ LZminのミクロスケールや 200nLZminの ナノスケールを用いる。これは、 lmLZminで ごとに滴下させようと思うと、 0. 0 Olminごとのスポットとなり、実質上不可能だ力 である。
[0004] 通常の流量スケールでは内径が 0. 3mm程度の配管が使われる力 流量スケール と配管内径に比例関係を保たせ、分離カラムで分離された成分の拡散を最小限に留 めることが可能である場合、配管内径はさらに小さくなり、ミクロスケールでは 1. 5 μ m、ナノスケールでは 60nmの配管内径になる。
しかし、実際にはコンタミネーシヨン (異物)の混入による配管の閉塞を考慮し、内径 カ^0〜50 111の配管を用ぃてぃる。例えば内径が 50 mの配管を用いる場合、配 管の長さが 500mmのときの配管容量は 1 μ になる。
[0005] その配管容量の大きさは、通常スケールで考えた場合、 lmLZminの流量に対し て 5mLの配管容量に相当するものであり、その多大な配管容量のため、分離カラム で分離された目的成分は拡散してしまう。ナノスケールでの分析を行なった場合には 、配管容量の影響はより顕著である。
[0006] MALDI— TOF— MSを用いた場合、高速液体クロマトグラフで分離させることによ り、理想的には 1つの目的成分が 1ゥエル上に滴下されることが要求される。
このような要請は MALDI—TOF— MS用の試料を作成する場合に限らず、高速 液体クロマトグラフからの溶出液に反応液などの添加剤を添加する場合にも同様に 存在する。
特許文献 1 :特開 2004— 184149号公報
発明の開示
発明が解決しょうとする課題
[0007] 分離カラムの後ろに UV検出器を備えた場合は、ミクロスケールの分析では UV検 出器で確認されるピーク幅よりも広 、ピーク幅でゥエル上にスポットされてしまう。ナノ スケールの分析に適用した場合、ゥエル上のピークの広がりはさらに数倍に広がり、 高速液体クロマトグラフで分離させた意味がなくなってしまっていた。
本発明は配管容量による拡散を防ぐことを目的とする。
課題を解決するための手段
[0008] 本発明のプローブは、複数の管が同軸上に配置された多重管構造をもち、最内側 の管はミクロスケール又はナノスケールの高速液体クロマトグラフの分離用キヤビラリ カラムの先端部であり、外側の管の 1つがそのキヤビラリカラム力も溶出される溶出液 に添加剤溶液を合流させる添加剤供給管であり、それにより前記溶出液と前記添カロ 剤を含む液滴を形成してこのプローブの先端力 滴下させるものである。
[0009] 本発明の試料前処理装置は、キヤビラリカラムを備えたミクロスケール又はナノスケ ールの高速液体クロマトグラフと、前記キヤビラリカラムの先端に一体的に構成された プローブであって、複数の管が同軸上に配置された多重管構造をもち、最内側の管 は前記キヤビラリカラムの先端部であり、外側の管の 1つがそのキヤビラリカラム力も溶 出される溶出液に添加剤溶液を合流させる添加剤供給管となっており、前記溶出液 と前記添加剤を含む液滴を形成してこのプローブの先端力 滴下させるプローブと、 前記添加剤供給管に添加剤を供給する添加剤供給流路とを備えたものである。 [0010] 添加剤溶液としては種々のものを使用することができる力 好ましい一例は、マトリク ス支援レーザ脱離イオン化法による質量分析法で分析を行なうための試料作成用の マトリクス化合物用溶液である。
[0011] 多重管構造の一例は 3重管構造であり、その場合、内側力 2番目の管を添加剤 供給管とし、最外側の管を溶出液中の移動相とは異なる第 2移動相が流れる第 2移 動相供給管とするか、内側力 2番目の管を溶出液中の移動相とは異なる第 2移動 相が流れる第 2移動相供給管とし、最外側の管を添加剤供給管とすることができる。 この場合、形成される液滴は溶出液、添加剤及び第 2移動相を含むものとなる。
[0012] このような 3重管構造のプローブを備えた試料前処理装置の形態は、その第 2移動 相供給管に第 2移動相を供給する第 2移動相供給流路をさらに備えたものとなる。 例えば、高速液体クロマトグラフを用いてタンパク質の分析を行なう場合、移動相と して水とァセトニトリルの溶液をグラジェント方式の送液機構により組成を変化させな 力 送液している。この高圧グラジェント分析では、移動相の組成が水成分を多く含 んだ状態力 ァセトニトリルを多く含んだ状態へと遷移して 、く。液滴をプローブ先端 部に形成し、その液滴が一定の大きさになったときにプローブ又はサンプルプレート を上下動させて液滴とサンプルプレートを接触させて液滴を移動させる装置では、分 注開始直後と分注終了直前では液滴中の成分が異なり、分注開始直後は水成分が 多く含まれ、分注終了直前ではァセトニトリルが多く含まれるために、プローブ先端部 に形成される液滴の表面張力が変化して、均一な大きさの液滴が形成されな ヽ。
[0013] また、プローブ先端部においてキヤビラリカラム力もの溶出液にマトリクス液を添加し て先端部より分注する場合、プローブ部のマトリクス添加管の材質として、液滴がマト リクス添加管を這 、上がってこな!/、ようにフッ素榭脂など疎水性物質が用いられて ヽ ることが多い。その場合、分注開始直後は液滴が水成分を多く含んでいるためにマト リクス添加管の内径側に液滴が形成される力 分注終了直前の液滴にはァセトニトリ ルが多く含まれるためにマトリクス添加管の外径側に液滴が形成され、液滴の体積が 一定である場合、分注開始直後と分注終了直前とではプローブ先端部に形成される 液滴の外形が異なったものとなる。すなわち、プローブ先端部に形成される液滴のサ ンプルプレート方向への高さが異なるために、プローブ先端とサンプルプレートとの 距離を滴下する際に一定に保つセンサを備えていても、特に液滴量が微量である場 合には液滴がサンプルプレートと接触せず、液滴をサンプルプレートに移動させるこ とができないことがある。
[0014] そのため、本発明の好ましい形態は、前記第 2移動相は前記溶出液中の移動相と 混合することによって前記液滴中の移動相の組成を一定にするものである。
これにより、移動相の組成変化による液滴の外形の変化を抑制することができ、安 定した分注動作を行なうことが可能となる。
[0015] マトリクス液の溶媒としては、水:ァセトニトリル = 1 : 1の飽和溶液がよく用いられる。
プローブ先端部において、分離カラムからの溶出液にマトリクス液を添加して先端部 より分注する場合、分注開始直後の移動相組成が水成分を多く含んだ状態であれ ば、マトリクス液と混合されることで飽和マトリクス液中のマトリクスがプローブ先端に析 出し、安定な分注動作の阻害となり、また、マトリクス中への測定対象成分の浸入によ るキャリーオーバーが問題となる。しかし、上記のようにプローブ先端部に形成される 液滴中の移動相組成を一定に保つようにすれば、プローブ先端部でのマトリクスの析 出を防止することもできる。
[0016] 本発明の他の好ましい形態は、前記多重管のうち前記液滴と接触する最も外側の 管が疎水性材料で構成されているものである。これにより、液滴がプローブ先端部の 外側表面に付着すると ヽぅ不具合を防止することができ、均一な液滴をサンプルプレ ート上にスポットすることができる。疎水性材料の一例はフッ素榭脂である。
[0017] 分画動作の前にプローブ先端を手動で洗浄する操作は煩わしぐ作業性も悪い。
そのため、本発明のプローブの他の好ましい形態は、前記多重管はその最外側に前 記添加剤溶液からの析出物を溶解する洗浄液をこのプローブの先端部に送ることの できる洗浄液供給管を備えて 、る。
[0018] この洗浄液供給管を備えたプローブを備えた試料前処理装置の形態は、前記洗浄 液供給管に洗浄液を供給する洗浄液供給流路をさらに備えたものとなる。
このように、洗浄液供給管を備えれば、プローブ先端部に析出したマトリックス化合 物を自動で除去することができるようになる。
[0019] 洗浄液がプローブに残留した場合、それを布で取り除くこともできる力 その際に布 がプローブに触れるためプローブ位置がずれてしま ヽ、滴下位置が正確でなくなつ てしまうことがある。
そこで、試料前処理装置の好ましい形態は、洗浄液供給流路に洗浄液と切り替え て乾燥用の気体を供給する気体供給流路をさらに備えている。プローブ先端力 気 体を噴出させて、洗浄後にプローブ先端部に残った洗浄液をその気体により乾燥さ せて蒸発させるようにすれば、液滴の滴下位置がずれることがなぐ引き続き行なわ れる生体試料の分画を均一に行なうことができる。
[0020] 本発明の試料前処理装置のさらに好ましい形態は、前記プローブにより滴下された 液滴を捕集するプレートと、前記プレート又は前記プローブを少なくとも上下方向に 移動する支持機構と、前記プローブの先端部と前記プレートとの距離を測定する距 離測定手段と、前記プローブからの液滴滴下時に前記距離測定手段の測定結果に 基づいて前記プローブ先端と前記プレートとの距離が予め設定された距離となるよう に前記支持機構の移動を制御する制御部とをさらに備えたものである。
このように、プローブ先端部とプレートとの距離を測定する手段を設けて、その距離 を一定の距離に接近させることができるようにすれば、プローブと MALDIプレートの 距離が離れすぎたり接触したりすることを防ぐことができる。
発明の効果
[0021] 本発明によれば、プローブ内にキヤビラリカラムをプローブの先端まで延在させたこ とにより、分画する目的成分が配管による拡散の影響を受けることなぐ MALDIプレ ートにスポットすることができる。
発明を実施するための最良の形態
[0022] 図 1は本発明を適用した MALDI— TOF— MS用前処理装置の一実施例を概略 的に示す図である。
高速液体クロマトグラフの分析流路に移動相を供給する送液機構として、流路切換 えバルブ 51、送液ポンプ 48、ミキサ 52を備えている。この送液機構は、流路切換え バルブ 51により流路を切り換えながら、 A液と B液を送液ポンプ 48により吸入してミキ サ 52に送って混合し、それらの溶液を移動相として分析流路に供給するグラジェント 方式の送液機構である。 A液、 B液は例えば水とァセトニトリルである。本発明の送液 機構はグラジェント方式に限られず、単一の移動相を使用する方式でもよい。
[0023] 分析流路としてはキヤビラリカラム 2を用いており、キヤビラリカラム 2の移動相入り口 側には、インジェクションポート 46が設けられている。キヤビラリカラム 2はプローブ 1ま で延在し、プローブ 1と一体的に構成されている。
試料はインジェクションポート 46に注入されるとキヤビラリカラム 2で分離され、プロ ーブ 1の先端力 溶出してサンプルプレート 36上に滴下される。
[0024] J 1は添加剤溶液としてマトリクス液を送液する配管 16とプローブ 1とを合流させる 3 方ジョイントである。配管 16はポンプ 49を備え、マトリクス液をプローブ 1に供給する。 マトリクスとなる化合物としては、ニコチン酸、 2—ピラジンカルボン酸、シナピン酸( 3, 5—ジメトキシ一 4—ヒドロキシケィ皮酸)、 2, 5—ジヒドロキシ安息香酸、 5—メトキ シサリチル酸、痫—シァノ—4—ヒドロキシケィ皮酸(CHCA)、 3—ヒドロキシピコリン 酸、ジァミノナフタレン、 2— (4—ヒドロキシフエ-ルァゾ)安息香酸、ジスラノール、コ ハク酸、 5- (トリフルォロメチル)ゥラシル、グリセリン等を使用することができる。
[0025] J2は第 2移動相を送液する配管 17とプローブ 1とを合流させる 3方ジョイントである。
配管 17は第 2移動相を供給する送液機構として、流路切換えバルブ 54、送液ポンプ 50、ミキサ 56を備えている。
[0026] 第 2移動相用の送液機構は、上記と同じグラジェント方式の送液機構であってもよ いが、ここでは単一の移動相を供給するものとする。
[0027] プローブ 1の先端部は 3重管構造となっており、キヤビラリカラム 2からの溶出液と、 3 方ジョイント J1で合流したマトリクス液、及び 3方ジョイント J2で合流した第 2移動相が プローブ 1の先端で混合されて液滴となって、サンプルプレート 36に滴下される。
[0028] 図 2はこの実施例のプローブ部の構造を詳細に示す断面図である。
上流側の第 1T型 3方ジョイント J1の直交しないジョイント a,bの 2つを高速液体クロマ トグラフからの溶出液が送液されるキヤビラリカラム 2が貫通する。上流側のジョイント a はメイルナットなどの配管部品 10aを用いて密封する力 その際必要に応じてスリー ブ 12などを用いる。
[0029] T型 3方ジョイント J1の直交するジョイント cにはマトリクス液が送液される配管 16が 接続され、メイルナットなどの配管部品 10cで密封する。キヤビラリカラム 2が突出して いるジョイント bには、キヤビラリカラム 2の外側にキヤビラリ 4をかぶせてメイルナットな どの配管部品 10bを用いて密封する力 その際必要に応じてスリーブ 22などを用い る。
[0030] 下流側の T型 3方ジョイント J2には、上流側のジョイント aからキヤビラリカラム 2とキヤ ビラリ 4の二重キヤビラリが挿入され、メイルナットなどの配管部品 20aを用いて密封す る力 その際必要に応じてスリーブ 32などを用いる。二重キヤビラリカラム 2,4と直交 するジョイント cには第 2移動相を供給する管 17が接続され、メイルナットなどの配管 部品 20cで密封する。最も下流側のジョイント bでは、二重キヤビラリカラム 2、 4のキヤ ビラリ 4の外側に配管 8をかぶせて、メイルナットなどの配管部品 20bを用いて密封す る。
[0031] プローブ 1の先端部はキヤビラリカラム 2, 4及び配管 8により 3重管構造となっており 、最内側の流路であるキヤビラリカラム 2を高速液体クロマトグラフからの溶出液が流 れ、その外側の流路をマトリクス液が流れ、最外側の流路を第 2移動相が流れる。こ れらの液体はプローブ 1の先端で混合されて液滴となり、所定の液滴量となったとこ ろでサンプルプレート 36に滴下される。
[0032] MALDI—TOF— MSで分析を行なう生体試料は高速液体クロマトグラフで分離さ れ、本装置で MALDI—TOF— MS用サンプルプレート 36に滴下して分画される。 マトリクスがプローブ先端で高速液体クロマトグラフの移動相と混合され、サンプルプ レート 36に滴下されていく。
[0033] 一例として、高速液体クロマトグラフの流量が 200nLZmin (0. 1%TFA水 0. 1 %TFAァセトニトリル グラジェント)、キヤビラリカラム 2の外径が 350 m、内径が 7 5 m、長さ力 lOOmm、マトリクス流量が 200nLZmin、マトリクス液が lOmgZmL CHCA溶液、スポット間隔が 30秒とする。ここで TFAとはトリフルォロ酢酸である。
[0034] このような場合、キヤビラリカラム 2による目的成分のピーク幅が 30秒だとすると、ス ポット間隔も 30秒になり、 目的成分は拡散することなぐ 1ゥエル又は 2ゥエルの範囲 で 1成分ずつプレート上にスポッティングされていく。
したがって、 MALDIによるイオン化を各目的成分 1つ 1つについて効率よく行なえ 、イオンィ匕効率のよくない成分でも検出が可能となる。 [0035] 図 3は同実施例においてプローブ先端から液滴を滴下させるための分画装置の一 例を示す概略構成図である。
この分画装置は、高速液体クロマトグラフからの溶出液を滴下するプローブ 1と、プ ローブ 1の先端部の側方に配置され、プローブ 1の先端とサンプルプレート 36との間 の距離を測定する距離測定手段としての近接センサー 35と、プローブ 1先端部の下 方に配置され、プローブ 1から滴下される液滴 6を捕集する MALDI— TOF— MS用 のサンプルプレート 36と、サンプルプレート 36を搭載して上下方向と平面内方向に 移動するステージ 37と、ステージ 37の動作を制御する制御装置 38とを備えて 、る。
[0036] 近接センサー 35としては、例えば、超音波センサーや渦電流センサーを用いること ができる。 MALDI— TOF— MSによる質量分析では、必要とされる試料液の量が 1 μ L以下と非常に微量であることが多いため、近接センサー 35の検出距離は 1〜1. 5mm程度である。
サンプルプレート 36はステージ 37に搭載されて上下方向及び平面内方向に移動 させられる。通常、サンプルプレート 36は、例えば、 192個又は 384個の滴下位置が 定められており、それらの滴下位置にプローブ 1より試料成分を含む液滴 6を滴下す る。
[0037] 制御装置 38はステージ 37の移動を制御する力 その制御としては以下の 2つが挙 げられる。
(1)ステージ 37を水平面内で移動させてサンプルプレート 36上の所定の滴下位置 に正確に液滴が滴下されるように位置決めを行なう平面内制御。
(2)液滴の滴下時にプローブ 1の先端にできた液滴 6とサンプルプレート 36の滴下 位置が接触するようにステージ 37を制御してサンプルプレート 36をプローブ 1に接近 させる上下方向制御。
[0038] ステージ 37に MALDI—TOF—MS用のサンプルプレート 36に代えて FT—IR用 のサンプルプレートを搭載しても、同様の効果を得ることができる。
プローブ 1から滴下する液滴量は任意に変更することができる。
また、近接センサー 35の検出点はオペレータが任意に設定することができる。また 、サンプルプレート 36の初期位置も任意に変更することができる。 [0039] 通常、生体試料の分離分析を行なう HPLCはグラジェント法により分析が行なわれ 、移動相組成の初期値としては有機溶媒濃度の低い値が選択され、移動相成分とし て水の割合が高くなる。水は表面張力が大きいため、移動相中の水の割合が高いと プローブ先端部から出てくる液滴がプローブの外側を伝って上ってくる傾向が強くな る。
[0040] 物質の疎水性'親水性を評価するひとつの目安として接触角を用いることができ、 接触角が大き 、ほど疎水性が強 、。
疎水性材料の好ましい例はフッ素榭脂である。そのようなフッ素榭脂としては、四フ ッ化エチレン榭脂(PTFE)を初めてとして、それを改質した種々のフッ素榭脂を用い ることができる。そのような改質フッ素榭脂としては、四フッ化工チレン一六フッ化プロ ピレン榭脂(FEP)、四フッ化工チレン パーフルォロアルコキシエチレン共重合体 榭脂(PFA)のほか、四フッ化工チレン エチレン共重合体榭脂 (ETFE)なども用い ることがでさる。
[0041] 一般にプローブの材料として用いられて!/、るものの中で最も接触角の大き 、PEEK
(ポリエーテルエーテルケトン)は約 88度であるのに対し、 FEPの接触角は約 120度 である。この実施例では液滴と接触する最も外側の管としてのキヤビラリ 4として FEP チューブを用いるようにすれば、疎水性に優れ、高速液体クロマトグラフ力 の移動 相とマトリクス液との混合液の液滴がキヤビラリ 4の外側に伝わりにくぐプローブ 1の 先端部に均一な液滴を形成することが可能となるので、その液滴はステージの上昇 によりサンプルプレート 36と接触し、サンプルプレート 36上に均一に分画されていく 。なお、キヤビラリカラム 2は溶融石英製、プローブ最外側の配管 8はステンレス製で ある。
[0042] 次に、第 2移動相を改良した実施例を説明する。
グラジェント分析では、分注開始直後と分注終了直前では液滴中の成分が異なる 。例えば、分注開始直後は水成分が多く含まれ、分注終了直前ではァセトニトリルが 多く含まれるようなグラジェント分析では、プローブ先端部に形成される液滴の表面 張力が変化して、均一な大きさの液滴が形成されない。
[0043] また、プローブ先端部において分離カラム力 の溶出液にマトリクス液を添加して先 端部より分注する場合、プローブ部のマトリクス添加管の材質として、液滴がマトリクス 添加管を這 、上がってこな 、ようにフッ素榭脂などの疎水性物質を用いており、分注 開始直後は液滴が水成分を多く含んでいるためにマトリクス添加管の内径側に液滴 が形成される力 分注終了直前の液滴にはァセトニトリルが多く含まれるためにマトリ タス添加管の外径側に液滴が形成され、液滴の体積が一定である場合、分注開始 直後と分注終了直前とではプローブ先端部に形成される液滴の外形が異なったもの となる。すなわち、プローブ先端部に形成される液滴のサンプルプレート方向への高 さが異なるために、プローブ先端とサンプルプレートとの距離を滴下する際に一定に 保つセンサを備えて 、ても、特に液滴量が微量である場合には液滴がサンプルプレ ートと接触せず、液滴をサンプルプレートに移動させることができないことがある。
[0044] 図 4にポンプ 48によって送液される移動相(第 1移動相)と第 2移動相の組成の時 間的変化を示す。(A)は第 1移動相の組成の時間的変化を示す図であり、(B)は第 2移動相の組成の時間的変化を示す図である。
第 2移動相を供給する第 2移動相供給流路は図 5に示されたものである。第 2移動 相を送液する配管 17は第 2移動相を供給する送液機構として、流路切換えバルブ 5 4、送液ポンプ 50、ミキサ 56を備えている。
[0045] 第 2移動相用の送液機構は、流路切換えバルブ 54により流路を切り換えながら、 A 液と B液を送液ポンプ 50により吸入してミキサ 56に送って混合し、それらの溶液を移 動相として分析流路に供給するグラジェント方式の第 1移動相供給流路 2の送液機 構と同じものである。ミキサ 56で混合される A液と B液の溶液の混合比は、分離用の 第 1移動相を作成するミキサ 52で混合される A液と B液の溶液の混合比の逆となるよ うに調整される。
[0046] 図 4 (A)に示されるように、第 1移動相は分注開始直後は A液 (水)の溶液中に占め る割合がほとんどである力 B液の割合は時間とともに直線的に増加していく。それに 対し、(B)に示されるように、第 2移動相は分注開始直後は B液 (ァセトニトリル)の溶 液中に占める割合がほとんどである力 A液の割合は時間とともに直線的に増加して いく。
第 2移動相は、第 1移動相と第 2移動相の混合液の組成が常時、 A液: 液= 1: 1と なるようにその糸且成が調節されて 、る。
[0047] 例えば、分注開始後ある時間が経過したときに第 1移動相の組成が A液 90%、 B液 10%であったとすると、第 2移動相の組成は A液 10%、 B液 90%となるように調節さ れている。したがって、プローブ 1先端部において混合された溶出液と第 2移動相中 の水とァセトニトリルの混合比は、水:ァセトニトリル = 1 : 1となる。
[0048] MALDI— TOF— MS分析において、分注される液滴量は微量である上に一定で あることが前提であるため、前述のように液滴内の移動相の組成が変化するとプロ一 ブ先端に形成される液滴の形状が変化してしまう。分注開始直後のプローブ先端と 液滴先端との距離は大きくなり、分注終了直前にはその距離は小さくなつてしまうの で、特に分注の液滴設定量力 、さい場合にはその距離の差は顕著になり、予め設 定したプローブとプレートの間の距離では、液滴をプレートに移動させることができな いことがある。
[0049] この実施例では、プローブ先端に形成される液滴内の移動相組成を一定にするよ うにしたので、プローブ先端に形成される液滴の大きさ(高さ)を一定にすることができ 、安定した分注動作を行なうことができる。
[0050] 次に、本発明のさらに他の実施例を図 6と図 7により説明する。
分画動作の前にプローブ先端を手動で洗浄する操作は煩わしぐ作業性も悪いた め、マトリクス液を添加した場合のプローブ先端への析出物を自動で洗浄するように することが望ましい。そこで、プローブの最外側の管に空気及び洗浄液を切り換えて 流せるようにする。
図 6において、移動相を送るポンプ 48、試料を注入するインジェクションポート 46の 流路に沿ってキヤビラリカラム 2が接続されている。
[0051] 分析流路としては図 1で説明した実施例と同じようにキヤビラリカラム 2を用いており 、キヤビラリカラム 2の移動相入り口側には、インジェクションポート 46が設けられてい る。キヤビラリカラム 2はプローブ 1まで延在し、プローブ 1と一体的に構成されている。
[0052] プローブ 1は T型 3方ジョイント J1、J2を備え、上流側のジョイント J1は移動相を送液 するキヤビラリカラム 2とマトリクス液を送液する管 16とを接続させ、下流側のジョイント J2は空気及び洗浄液としてのアセトンを供給する管 18を接続させ、プローブ 1の出口 側の先端部は 3重管構造を形成して 、る。
試料はインジェクションポート 46に注入されるとキヤビラリカラム 2で分離され、プロ ーブ 1の先端力 溶出してサンプルプレート 36上に滴下される。
[0053] 移動相に添加するマトリクス化合物としては第 1実施例で説明したものを使用するこ とができる。このようなマトリクス化合物を溶解する洗浄液は、アセトン、ァセトニトリル などの有機溶剤である。
[0054] マトリクス液は、ポンプ 49によって T型 3方ジョイント J1でキヤビラリカラム 2と接続され ている管 16中を送液され、キヤビラリカラム 2の外側を流れてプローブ 1の先端部から 試料成分を含む移動相と同時に滴下される。
[0055] 空気供給管 19及び洗浄液供給管 18は T型 3方ジョイント J3によって合流し、その 共通の流路となっている配管 17は 3方 T型ジョイント J2によって移動相が流れるキヤ ビラリカラム 2及びマトリクス液が流れる管と接続され、空気及び洗浄液はマトリクス液 が流れる管のさらに外側を流れるようになつている。
[0056] ここではマトリクス液として、例えば、 CHCA( a—シァノ一 4—ヒドロキシケィ皮酸) を水とァセトニトリルの混合溶液で溶解した飽和溶液(lOmgZmL)を使用し、洗浄 液としては、例えばアセトンを使用する。
[0057] 空気供給管 19にはバルブ 28が取り付けられており、バルブ 28の開閉によって空 気の供給が制御される。洗浄液供給管 18にはポンプ 50が設けられており、ポンプ 5
0が動作することで洗浄液のアセトンが洗浄液供給管 18を流れてプローブ 1に供給さ れる。
[0058] 液体クロマトグラフ力もの移動相を滴下する際は、サンプルプレート 36に移動相と 同時にマトリクス液がプローブ 1の先端より滴下される。液体の滴下後はマトリクス化 合物がプローブ 1の先端部に析出することがあるため、洗浄液供給管 18より洗浄液 のアセトンをプローブ 1の先端部に供給し、プローブ 1の先端部を洗浄する。プローブ 1先端部の洗浄後、洗浄液がプローブ 1の先端部に残留しないように、バルブ 28を 開いて空気をプローブ 1先端部に供給し、プローブ 1の先端部に残留した洗浄液を 蒸発させる。
[0059] 図 7はこの実施例のプローブを詳細に示す断面図である。 上流側の第 1の T型 3方ジョイント Jlの直交しないジョイント a,bの 2つを高速液体クロ マトグラフからの移動相が送液される一番細 、キヤビラリカラム 2が横断して 、る。上 流側のジョイント aはスリーブ 12を介し、メイルナットなどの配管部品 10aを用いて密 封されている。
[0060] T型 3方ジョイント J1の直交するジョイント cにはマトリクス液が送液される配管 16が 接続され、メイルナットなどの配管部品 10cで密封されている。一番細いキヤビラリ力 ラム 2が出ているジョイント bでは、キヤビラリカラム 2にキヤビラリ 4が被せられ、スリーブ 22を介してメイルナットなどの配管部品 10bを用いて密封されている。
[0061] 下流側の T型 3方ジョイント J2には、上流側のジョイント aからキヤビラリカラム 2,4が 挿入され、スリーブ 32を介してメイルナットなどの配管部品 20aを用いて密封されて V、る。キヤビラリカラム 2,4と直交するジョイント cには空気及び洗浄液のアセトンを供 給する管 18が接続され、メイルナットなどの配管部品 20cで密封されている。最も下 流側のジョイント bでは、キヤビラリカラム 2,4に配管 8が被せられ、メイルナットなどの 配管部品 20bを用いて密封されている。
[0062] T型 3方ジョイント J2の側方に位置する T型 3方ジョイント J3には、ジョイント aから空 気供給管 19が挿入され、ジョイント bから T型 3方ジョイント J2と接続する配管 17が挿 入され、ジョイント cから洗浄液供給管 18が挿入されて、それぞれの管 24, 18, 26が メイルナットなどの配管部品 30a, 30b, 30cを用いて密封されている。
[0063] 空気供給管 19にはノ レブ 28が設けられており、バルブ 28が開閉することにより空 気のプローブ 1先端部への供給のオン Zオフが切り換えられる。洗浄液供給管 18に はポンプ 29が設けられており、ポンプ 29の動作のオン Zオフによってアセトンが配管 17を通ってプローブ 1先端部に供給されるオン Zオフが切り換えられる。
[0064] マトリクス液は脂溶性物質であるマトリクス化合物を溶媒で高濃度に溶解した溶液 であるため、液体クロマトグラフで試料を分離して溶出させマトリクス液を同時に添カロ して滴下させながら分画を続けていると、プローブ先端部においてマトリクス液が大気 と接して溶媒が蒸発し、プローブ先端でマトリクス化合物が析出する。
[0065] そこで、分析終了後又は次の分析前にポンプ 29を作動させてアセトンを例えば 20 O /z L送液し、プローブ 1の先端部をアセトンで洗浄する。ポンプ 29より送り出された アセトンは乾燥蒸発用ガスラインと接続させるための T型ジョイント J3を経由してプロ ーブ 1の 2重管と 3重管の間を流れてプローブ 1先端部に固着したマトリクス化合物を 洗い流す。その後、乾燥蒸発用ガスバルブ 28を開き、残留したアセトンを蒸発させる
[0066] この実施例のように、空気供給管 19と洗浄液供給管 18とを T型ジョイントを用い手 接続した場合には、アセトンなどの洗浄液がガスバルブ 28側に逆流しな ヽよう流路 抵抗を調節するのが好ましい。例えば、空気供給管 19として内径 0. 1mmで長さが 1 OOmm程度の配管を使用する。
T型ジョイント J3の代わりに 3方電磁弁を用いてもよぐその場合には洗浄液がガス バルブ 28側に逆流を考慮しなくてもすむ。
[0067] この実施例では、洗浄液流路を備えてプローブ先端部に洗浄液を送るようにしたの で、プローブ先端部に析出したマトリクス化合物を自動で除去することができるように なる。
実施例では 3重管構造のプローブを持つ高速液体クロマトグラフを示した力 2重 管又は 3重管以外の多重管構造のプローブであっても、本発明を適用することができ る。
産業上の利用可能性
[0068] 高速液体クロマトグラフなどの送液機構力ゝら溶出される試料液を液滴として先端部 力 マイクロプレートなどのプレート上に滴下させて MALDI—TOF— MS用の試料 などの試料を調整する前処理に応用することができる。
図面の簡単な説明
[0069] [図 1]試料前処理装置の一実施例を概略的に示す流路図である。
[図 2]同実施例のプローブの構造を詳細に示す断面図である。
[図 3]支持機構及び距離測定手段に関する一実施例を示す概略図である。
[図 4]第 1移動相と第 2移動相の組成の時間的変化を示し、 (A)は第 1移動相の組成 の時間的変化を示す図であり、 (B)は第 2移動相の組成の時間的変化を示す図であ る。
[図 5]試料前処理装置の他の実施例を概略的に示す流路図である。 [図 6]試料前処理装置のさらに他の実施例を概略的に示す流路図である。
[図 7]同実施例のプローブの構造を詳細に示す断面図である。
符号の説明
1 プローブ
2 キヤビラリカラム
4 キヤビラリ
8 配管
10a, 10b, 10c,20a,20b,20c,30a,30b,30c 配管部品
12,22,32 スリーブ
16 マトリクス供給管
18 第 2移動相供給管
36 サンプルプレート
46 インジェクションポート
48, 49, 50 ポンプ
51, 54 流路切換えバルブ
52, 56 ミキサ
J1J2 T型 3方ジョイント

Claims

請求の範囲
[1] 複数の管が同軸上に配置された多重管構造をもち、
最内側の管はミクロスケール又はナノスケールの高速液体クロマトグラフの分離用 キヤビラリカラムの先端部であり、
外側の管の 1つがそのキヤビラリカラム力も溶出される溶出液に添加剤溶液を合流 させる添加剤供給管であり、
それにより前記溶出液と前記添加剤を含む液滴を形成してこのプローブの先端か ら滴下させるプローブ。
[2] 前記添加剤溶液はマトリクス支援レーザ脱離イオン化法による質量分析法で分析 を行なうための試料作成用のマトリクス化合物用溶液である請求項 1に記載のプロ一 ブ。
[3] 前記多重管構造は 3重管構造であり、
内側力 2番目の管は前記添加剤供給管であり、
最外側の管は前記溶出液中の移動相とは異なる第 2移動相が流れる第 2移動相供 給管であり、
前記液滴は前記溶出液、添加剤及び第 2移動相を含む請求項 1又は 2に記載のプ ローブ 0
[4] 前記多重管構造は 3重管構造であり、
内側から 2番目の管は前記溶出液中の移動相とは異なる第 2移動相が流れる第 2 移動相供給管であり、
最外側の管は前記添加剤供給管であり、
前記液滴は前記溶出液、添加剤及び第 2移動相を含む請求項 1又は 2に記載のプ ローブ 0
[5] 前記第 2移動相は前記溶出液中の移動相と混合することによって前記液滴中の移 動相の組成を一定にするものである請求項 3又は 4に記載のプローブ。
[6] 前記多重管のうち前記液滴と接触する最も外側の管が疎水性材料で構成されてい る請求項 1から 5の!、ずれかに記載のプローブ。
[7] 前記疎水性材料はフッ素榭脂である請求項 6に記載のプローブ。
[8] 前記多重管はその最外側に前記添加剤溶液からの析出物を溶解する洗浄液をこ のプローブの先端部に送ることのできる洗浄液供給管を備えている請求項 1から 8の いずれかに記載のプローブ。
[9] キヤビラリカラムを備えたミクロスケール又はナノスケールの高速液体クロマトグラフ と、
前記キヤビラリカラムの先端に一体的に構成されたプローブであって、複数の管が 同軸上に配置された多重管構造をもち、最内側の管は前記キヤビラリカラムの先端 部であり、外側の管の 1つがそのキヤビラリカラム力 溶出される溶出液に添加剤溶 液を合流させる添加剤供給管となっており、前記溶出液と前記添加剤を含む液滴を 形成してこのプローブの先端から滴下させるプローブと、
前記添加剤供給管に添加剤を供給する添加剤供給流路と、を備えた試料前処理 装置。
[10] 前記添加剤溶液はマトリクス支援レーザ脱離イオン化法による質量分析法で分析 を行なうための試料作成用のマトリクス化合物用溶液である請求項 9に記載の試料前 処理装置。
[11] 前記多重管構造は 3重管構造であり、
内側力 2番目の管は前記添加剤供給管であり、
最外側の管は前記溶出液中の移動相とは異なる第 2移動相が流れる第 2移動相供 給管であり、
前記第 2移動相供給管に第 2移動相を供給する第 2移動相供給流路をさらに備え 前記液滴は前記溶出液、添加剤及び第 2移動相を含む請求項 9又は 10に記載の 試料前処理装置。
[12] 前記多重管構造は 3重管構造であり、
内側から 2番目の管は前記溶出液中の移動相とは異なる第 2移動相が流れる第 2 移動相供給管であり、
最外側の管は前記添加剤供給管であり、
前記第 2移動相供給管に第 2移動相を供給する第 2移動相供給流路をさらに備え 前記液滴は前記溶出液、添加剤及び第 2移動相を含む請求項 9又は 10に記載の 試料前処理装置。
[13] 前記第 2移動相は前記溶出液中の移動相と混合することによって前記液滴中の移 動相の組成を一定にするものである請求項 11又は 12に記載の試料前処理装置。
[14] 前記多重管のうち前記液滴と接触する最も外側の管が疎水性材料で構成されてい る請求項 9から 13の 、ずれかに記載の試料前処理装置。
[15] 前記疎水性材料はフッ素榭脂である請求項 14に記載の試料前処理装置。
[16] 前記多重管はその最外側に前記添加剤溶液からの析出物を溶解する洗浄液をこ のプローブの先端部に送ることのできる洗浄液供給管を備え、
前記洗浄液供給管に洗浄液を供給する洗浄液供給流路をさらに備えた請求項 9か ら 15の 、ずれかに記載の試料前処理装置。
[17] 前記洗浄液供給流路は洗浄液と切り替えて乾燥用の気体を供給する気体供給流 路をさらに備えて 、る請求項 16に記載の試料前処理装置。
[18] 前記プローブにより滴下された液滴を捕集するプレートと、
前記プレート又は前記プローブを少なくとも上下方向に移動する支持機構と、 前記プローブの先端部と前記プレートとの距離を測定する距離測定手段と、 前記プローブからの液滴滴下時に前記距離測定手段の測定結果に基づいて前記 プローブ先端と前記プレートとの距離が予め設定された距離となるように前記支持機 構の移動を制御する制御部と、
をさらに備えた請求項 9から 17のいずれかに記載の試料前処理装置。
PCT/JP2005/015734 2004-08-30 2005-08-30 試料前処理装置とそれに用いるプローブ WO2006025367A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006532707A JP4306729B2 (ja) 2004-08-30 2005-08-30 試料前処理装置とそれに用いるプローブ
US11/661,083 US7752896B2 (en) 2004-08-30 2005-08-30 Specimen pretreating device and probe used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-250729 2004-08-20
JP2004250729 2004-08-30

Publications (1)

Publication Number Publication Date
WO2006025367A1 true WO2006025367A1 (ja) 2006-03-09

Family

ID=36000019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015734 WO2006025367A1 (ja) 2004-08-30 2005-08-30 試料前処理装置とそれに用いるプローブ

Country Status (4)

Country Link
US (1) US7752896B2 (ja)
JP (1) JP4306729B2 (ja)
CN (1) CN100489522C (ja)
WO (1) WO2006025367A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304369A (ja) * 2007-06-08 2008-12-18 Biologica:Kk 質量分析用の試料の調製装置及びその調製方法
JP2010066057A (ja) * 2008-09-09 2010-03-25 Shimadzu Corp キャピラリカラム用コネクタ
JP2013238470A (ja) * 2012-05-15 2013-11-28 Shimadzu Corp 分取精製装置
US11094517B2 (en) 2019-03-20 2021-08-17 Ricoh Company, Ltd. Method and device for preparing measurement sample for MALDI mass spectrometry, measurement sample for MALDI mass spectrometry, MALDI mass spectrometry method, and non-transitory recording medium for preparing measurement sample for MALDI mass spectrometry

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849896B2 (ja) * 2012-08-22 2016-02-03 株式会社島津製作所 ガス吹付式蒸発・乾固装置
EP2848306B1 (en) * 2013-09-13 2016-04-06 Bruker Daltonik GmbH Dispenser system for mass spectrometric sample preparations
JP6686933B2 (ja) * 2017-02-23 2020-04-22 株式会社島津製作所 クロマトグラフ
US20190227040A1 (en) * 2018-01-22 2019-07-25 Thermo Finnigan Llc Method and Apparatus for Chromatograph Nano-Flow Fractionator
CN113797986B (zh) * 2021-10-11 2023-05-26 苏州美翎生物医学科技有限公司 一种可微调毛细管同轴排列的微流控芯片
CN114392583A (zh) * 2022-01-28 2022-04-26 上海铨桓科技有限公司 一种层析纯化系统及纯化方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928064Y1 (ja) * 1970-12-31 1974-07-30
JPS5924250A (ja) * 1982-08-02 1984-02-07 Jeol Ltd 液体試料導入装置
JPH01212350A (ja) * 1988-02-19 1989-08-25 Jeol Ltd 質量分析装置用イオン源
JPH08211019A (ja) * 1993-03-19 1996-08-20 Eisai Co Ltd 溶媒混合装置
JP2004184149A (ja) * 2002-12-02 2004-07-02 Shimadzu Corp Maldi−tofms用試料調製装置
JP2005030969A (ja) * 2003-07-08 2005-02-03 Shimadzu Corp 高速液体クロマトグラフの分画装置
JP2005195411A (ja) * 2004-01-06 2005-07-21 Shimadzu Corp 液体クトマトグラフ等の分画装置
JP2005201828A (ja) * 2004-01-19 2005-07-28 Shimadzu Corp 液体クロマトグラフ等の分画装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928064A (ja) 1972-07-20 1974-03-13
JPS645163U (ja) 1987-06-25 1989-01-12
US4977785A (en) * 1988-02-19 1990-12-18 Extrel Corporation Method and apparatus for introduction of fluid streams into mass spectrometers and other gas phase detectors
JPH0399866U (ja) * 1990-01-30 1991-10-18
JP3179175B2 (ja) * 1992-03-12 2001-06-25 株式会社ピュアレックス 分析前処理方法
JPH08304373A (ja) 1995-04-27 1996-11-22 Shimadzu Corp キャピラリーlc用ポストカラムミキサー
US6918309B2 (en) 2001-01-17 2005-07-19 Irm Llc Sample deposition method and system
US6672344B1 (en) * 2001-10-26 2004-01-06 Perseptive Biosystems, Inc. Robotic system having positionally adjustable multiple probes
US7138050B2 (en) * 2003-05-29 2006-11-21 Shimadzu Corporation Fractionating/collecting device of liquid chromatograph

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928064Y1 (ja) * 1970-12-31 1974-07-30
JPS5924250A (ja) * 1982-08-02 1984-02-07 Jeol Ltd 液体試料導入装置
JPH01212350A (ja) * 1988-02-19 1989-08-25 Jeol Ltd 質量分析装置用イオン源
JPH08211019A (ja) * 1993-03-19 1996-08-20 Eisai Co Ltd 溶媒混合装置
JP2004184149A (ja) * 2002-12-02 2004-07-02 Shimadzu Corp Maldi−tofms用試料調製装置
JP2005030969A (ja) * 2003-07-08 2005-02-03 Shimadzu Corp 高速液体クロマトグラフの分画装置
JP2005195411A (ja) * 2004-01-06 2005-07-21 Shimadzu Corp 液体クトマトグラフ等の分画装置
JP2005201828A (ja) * 2004-01-19 2005-07-28 Shimadzu Corp 液体クロマトグラフ等の分画装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304369A (ja) * 2007-06-08 2008-12-18 Biologica:Kk 質量分析用の試料の調製装置及びその調製方法
JP2010066057A (ja) * 2008-09-09 2010-03-25 Shimadzu Corp キャピラリカラム用コネクタ
JP2013238470A (ja) * 2012-05-15 2013-11-28 Shimadzu Corp 分取精製装置
US11094517B2 (en) 2019-03-20 2021-08-17 Ricoh Company, Ltd. Method and device for preparing measurement sample for MALDI mass spectrometry, measurement sample for MALDI mass spectrometry, MALDI mass spectrometry method, and non-transitory recording medium for preparing measurement sample for MALDI mass spectrometry

Also Published As

Publication number Publication date
US7752896B2 (en) 2010-07-13
JPWO2006025367A1 (ja) 2008-05-08
CN100489522C (zh) 2009-05-20
US20080048664A1 (en) 2008-02-28
JP4306729B2 (ja) 2009-08-05
CN101014853A (zh) 2007-08-08

Similar Documents

Publication Publication Date Title
JP5433580B2 (ja) 試料注入システム
JP3476417B2 (ja) 液体クロマトグラフによる分析方法
JP6615764B2 (ja) 液体をイオン源に送達するためのシステムおよび方法
JP4207782B2 (ja) 液体クロマトグラフの分画装置
US20110016955A1 (en) Sample Dilution for Chromatography of Multiple Process Streams
WO2006025367A1 (ja) 試料前処理装置とそれに用いるプローブ
WO2010138678A1 (en) Temperature control of enrichment and separation columns in chromatography
JP4148143B2 (ja) 液体クロマトグラフ等の分画装置
US20050092685A1 (en) Set comprising a pipette and a cartridge, as well as a method for applying a sample to the cartridge and an analytical method
JP4645408B2 (ja) ガスクロマトグラフ用試料注入装置
US7169299B2 (en) Fractionating apparatus for liquid chromatography
CN116583732A (zh) 自动取样器的流路清洗方法和自动取样器的流路清洗装置
Nazdrajic Development and Study of the Microfluidic Open Interface Coupled with Solid-phase Microextraction for Rapid Analysis
US20030133843A1 (en) Set comprising a pipette and a cartridge, as well as a method for applying a sample to the cartridge and an analytical method
JP4211651B2 (ja) 液体分画装置
WO2014038275A1 (ja) 分析装置及びその試料導入装置
JP6501518B2 (ja) 内部標準液の移送方法およびその移送装置
JPH0712790A (ja) プロセスガスクロマトグラフ
US20200333302A1 (en) Dead volume-free fraction collection apparatus
JPH04307367A (ja) フローインジェクション分析方法およびその分析制御装置
JPH10104212A (ja) クロマトグラフ用希釈インジェクター
JPS61213743A (ja) 自動試料導入装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532707

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11661083

Country of ref document: US

Ref document number: 200580028779.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11661083

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载