+

WO2006019147A1 - エチレン系重合体及びその用途 - Google Patents

エチレン系重合体及びその用途 Download PDF

Info

Publication number
WO2006019147A1
WO2006019147A1 PCT/JP2005/015106 JP2005015106W WO2006019147A1 WO 2006019147 A1 WO2006019147 A1 WO 2006019147A1 JP 2005015106 W JP2005015106 W JP 2005015106W WO 2006019147 A1 WO2006019147 A1 WO 2006019147A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
ethylene
measured
polymer
polymerization tank
Prior art date
Application number
PCT/JP2005/015106
Other languages
English (en)
French (fr)
Inventor
Masahiko Okamoto
Tetsuji Kasai
Yasushi Tohi
Koji Endo
Shiro Otsuzuki
Takahiro Akashi
Kenji Iwamasa
Yoshiyuki Hirase
Keiko Fukushi
Shinichi Nagano
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to US11/660,364 priority Critical patent/US8129489B2/en
Priority to EP05780409.8A priority patent/EP1788006B1/en
Publication of WO2006019147A1 publication Critical patent/WO2006019147A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged

Definitions

  • the present invention relates to an ethylene polymer that provides a molded article that is excellent in fluidity and moldability and excellent in many characteristics such as mechanical strength, and a molded article that has such strength.
  • High-density polyethylene used in various applications such as films, pipes and bottle containers has long been produced using Ziegler-Natta catalysts and chromium-based catalysts.
  • these catalysts have limitations in controlling the molecular weight distribution and composition distribution of the polymer.
  • JP-A-11-106432 discloses a low molecular weight polyethylene and a high molecular weight ethylene ′ ⁇ -olefin copolymer obtained by polymerization using a supported geometrically constrained single site catalyst (CGC / Borate catalyst).
  • CGC / Borate catalyst a supported geometrically constrained single site catalyst
  • WO01 / 25328 discloses an ethylene polymer obtained by solution polymerization using a catalyst system comprising CpTiNP (tBu) 3 Cl 2 and borate or alumoxane. This ethylenic polymer is expected to have poor mechanical strength due to its weak crystal structure due to the branching of low molecular weight components. ,
  • EP1201711A1 discloses ethylene bis (4,5,6,7-tetrahydro-1-yne supported on silica.
  • An ethylene polymer obtained by slurry polymerization in the presence of a catalyst system consisting of (denyl) zirconium dichloride and methylalumoxane is disclosed.
  • a catalyst system consisting of (denyl) zirconium dichloride and methylalumoxane
  • single-stage polymer products have a wide molecular weight distribution (Mw / Mn), so impact strength is expected to be inferior to that of single-stage products having a narrow molecular weight distribution.
  • the broad molecular weight distribution is presumed that the active species are non-uniform. As a result, there is a concern that the composition distribution may be widened and the long-term physical properties such as environmental stress resistance (ESCR) may be reduced.
  • ESCR environmental stress resistance
  • JP 2002-53615 discloses an ethylene polymer obtained by slurry polymerization using a catalyst system comprising a zirconium compound having a specific salicylaldimine ligand supported on silica and methylalumoxane. ing.
  • the ethylene (co) polymer using a Ziegler catalyst described in Japanese Patent No. 821037 and the like has methyl branches in the molecular chain because methyl branches are by-produced during the polymerization. Methyl branching is known to be incorporated into crystals and weaken the crystals, and causes the mechanical strength of ethylene (co) polymers to decrease.
  • Ethylene-based polymers obtained using chromium-based catalysts have long-chain branching and therefore have a small molecular spread, which results in poor long-term physical properties such as mechanical strength and environmental stress fracture resistance (ESCR). It was. In addition, methyl branching was by-produced during the polymerization, which caused the mechanical strength to decrease.
  • ESCR environmental stress fracture resistance
  • Ethylene obtained by using geometrically constrained catalyst (CGC) described in WO93 / 08221 In the polymer, methyl branching was by-produced during the polymerization, and therefore methyl branching was present in the molecular chain. The methyl branch is incorporated into the crystal and weakens the crystal structure. This caused a decrease in mechanical strength. In addition, since it contains long-chain branches, the molecular spread is small, so that the long-term physical properties such as mechanical strength and environmental stress fracture resistance (ESCR) are insufficient.
  • the ethylene polymer obtained by the high-pressure radical polymerization method has methyl branches and long chain branches in the molecular chain because methyl branches and long chain branches are by-produced during the polymerization.
  • the methyl branch is incorporated into the crystal and weakens the crystal strength. This was the cause of the decrease in mechanical strength.
  • the molecular spread is small and the molecular weight distribution is wide. Therefore, it has inferior long-term physical properties such as environmental stress fracture resistance (ESCR). Disclosure of the invention
  • the present inventors have earnestly studied an ethylene polymer that can provide a molded article having excellent moldability and excellent mechanical strength.
  • An ethylene polymer (E) that simultaneously satisfies the following requirements [1] and [2] is excellent in moldability, particularly in mechanical strength, and excellent in appearance, particularly in blow molded articles and extruded molded articles.
  • the inventors have found that an injection-molded article is provided, and have completed the present invention.
  • Elution components at 80 ° C or less with respect to the total elution amount of CFC are 5% or less.
  • the ethylene-based polymer (E) according to the present invention is used for blow molding, it is preferable to satisfy all of the following [lb] to [4b] in addition to the above requirements.
  • [lb] Contains 0.02 to 0.50 mol% of structural units derived from ⁇ -olefin having 6 to 10 carbon atoms.
  • ethylene polymer that is, an ethylene polymer that satisfies the requirements [1], [2], [lb]; [2b], [3b] and [4b] at the same time and is suitably used for blow molding applications May be referred to as an ethylene polymer (Eb) in the following description.
  • the ethylene polymer (E) according to the present invention is used for extrusion molding or injection molding, it is preferable to satisfy all of the following requirements [le] to [5e] in addition to the above requirements.
  • Intrinsic viscosity ([]) measured in decalin at 135 ° C. is in the range of 2.0 to 3.0 ( ⁇ / ⁇ ).
  • the actual stress at 100,000 times is 17 to 21 MPa.
  • ethylene-based polymer that is, the requirements [1], [2], [le], [2e], [3e], [4e], and [5e] are satisfied at the same time for extrusion molding or injection molding.
  • the ethylene polymer suitably used may be referred to as an ethylene polymer (Ee).
  • the present invention relates to a blow molded article, an extruded molded article, a compression molded article or a vacuum molded article comprising the ethylene polymer (E), ethylene polymer (Eb) or ethylene polymer (Ee).
  • a preferred embodiment of the pro-formed body is a gasoline tank, an industrial chemical can or a bottle container.
  • a preferable embodiment of the extruded product is a pipe, a wire coating material, or a steel pipe's steel wire coating material.
  • a preferred embodiment of the injection-molded body is a joint for a rubber joint, an automobile part or an automobile part.
  • FIG. 1 is a CFC contour diagram of the ethylene-based polymer described in Example 2b.
  • FIG. 2 is a CFC contour diagram of the ethylene polymer described in Comparative Example lb.
  • Fig. 3 shows the flexural modulus M (MPa) measured at 23 ° C and the environmental stress fracture resistance at 50 ° C for the typical ethylene polymers described in the examples and comparative examples of the present invention. It is the figure which plotted the relationship with ESCR (T, hr).
  • FIG. 4 shows a 23 ° C tensile fatigue test piece.
  • FIG. 5 shows the results of the 80 ° C. tensile test described in Examples and Comparative Examples of the present invention.
  • FIG. 6 shows the results of a 23 ° C. tensile test described in Examples and Comparative Examples of the present invention.
  • the ethylene polymer (E) of the present invention among them, the ethylene polymer (Eb) preferably used for blow molding applications and the ethylene polymer suitably used for extrusion molding or injection molding applications. (Ee) will be described, and then blow molded products, extrusion molded products, compression molded products or vacuum molded products made of these ethylene polymers will be described.
  • the ethylene-based polymer (E) is an ethylene-based polymer containing 0.02 to 1.50 mol% of structural units derived from olefins having 6 to 10 carbon atoms. It is a copolymer of ethylene / ethylene / carbon atoms of 6 to 10 and a-olefin.
  • examples of hyolephine having 6 to 10 carbon atoms include 1-hexene, 4-methyl-1-pentene, and 3-methyl. Examples include -1-pentene, 1-octene, and 1-decene. In the present invention, among these c-olefins, it is preferable to use at least one selected from 1-hexene, 4-methyl-1-pentene, and 1-octene. If the olefin has less than 5 carbon atoms, the probability that -olefin will be incorporated into the crystal will be high (Polymer, Vol.31, 1999, p. 1990), and as a result the strength will be unfavorable.
  • the repeating unit derived from chloroolefin is usually contained in an amount of 0.02 to 1.50 mol%, preferably 0.02 to 1.30 mol%. Furthermore, the preferred concentration varies depending on the intended use of the polyethylene polymer. (Details will be described later)
  • the ethylene-based polymer (E) according to the present invention is characterized in that the following requirements [1] and [2] are simultaneously satisfied in the cross fraction additional IJ (CFC).
  • the ethylene polymer (E) of the present invention is characterized in that all components having a molecular weight of 100,000 or more are eluted at a temperature of 85 ° C or more in cross fractionation (CFC).
  • CFC cross fractionation
  • the requirement [1] will be described specifically by taking the results described in the examples as examples.
  • the temperature at which a component having a molecular weight (M) of 100,000 or more ie, Log M ⁇ 5.0) starts to elute is 94 ° C, and the requirement [1 ] Is satisfied.
  • the ethylene comprising a polymer Bed row compacts exhibit good resistance to environmental stress cracking resistance (ESCR) as shown in Table 3 b.
  • the ethylene polymer used in Comparative Example l b has a temperature of 83 ° C at which the component having a molecular weight (M) of 100,000 or more (that is, Log M ⁇ 5.0) starts elution in CFC analysis.
  • M molecular weight
  • Example 2 b ethylene polymer balance of Example 2 b of ⁇ broken environmental stress and rigidity (flexural modulus)
  • ESCR ethylene polymer balance of Example 2 b of ⁇ broken environmental stress and rigidity (flexural modulus)
  • Table 3b ESCR
  • the ethylene polymer (E) of the present invention is characterized in that an elution component at 80 ° C. or less is 5% or less with respect to the total elution amount of CFC. (Note that “%” is the percentage of the total peak area attributed to the elution component of 80 ° C or less in the total peak area of all the elution components.) Requirement using the results described in the examples as an example [ 2] In the CFC analysis of the ethylene-based polymer used in Example 3 to be described later, the proportion of elution components below 80 ° C is 1.9%, which satisfies the requirement [2].
  • the ethylene-based polymer that simultaneously satisfies the requirements [1] and [2] has a low ⁇ -olefin content of the high molecular weight component copolymerized with olefin and (a uniform composition of 3 ⁇ 4-olefin, or relatively This means that no component having a low molecular weight and short chain branching is contained, and as a result, the strength and long-term life characteristics of the molded product are improved.
  • the ethylene / ⁇ -olefin copolymer described in JP-A-11-106432 does not satisfy this range because of its wide composition distribution, and the ethylene-based polymer described in WO01 / 25328 also has an olefin having a relatively low molecular weight. This range is not satisfied because of the presence of short chain branching due to the copolymerization of. Conventional ethylene polymers such as Ziegler catalysts and chromium catalysts do not satisfy this range because of their wide composition distribution.
  • ethylene polymer ( ⁇ ) The preferred form of the above-mentioned ethylene polymer ( ⁇ ) is roughly divided into two types, one is an ethylene polymer (Eb) that is suitably used for blow molding applications, and the other is extrusion molding. It is an ethylene polymer (Ee) suitable for use in applications and injection molding.
  • Eb ethylene polymer
  • Ee ethylene polymer
  • the expression “preferred in a specific field” means that the performance related to the present invention is fully exhibited in the specific field, and is intended to limit the use in fields other than the specific field. There is no.
  • the ethylene-based polymer (Eb) has the following requirements [lb] to
  • the structural unit derived from ethylene is In general, it is present in a ratio of 99.50 to 99.98 mol%, preferably 99.80 to 99.98 mol%, and the repeating unit derived from fluorein is usually present in a ratio of 0.02 to 0.50 mol%, preferably 0.02 to 0.20 mol%. .
  • the ethylene-based polymer (Eb) may contain an ethylene homopolymer, and in that case, the structural unit derived from ethylene in the ethylene' ⁇ -olefin copolymer portion is usually 97.50 to 99.96 mol. %, Preferably 99 to 99.96 mol%, and the repeating unit derived from chloroolefin is present in a ratio of 0.04 to 2.50 mol%, preferably 0.04 to 1.00 mol%. Even when the ethylene homopolymer is included, the repeating unit derived from the polyolefin in the total polymer is usually 0.02 to 0.50 mol%, preferably 0.02 to 0.40 mol%.
  • the intrinsic viscosity ([77]) of the ethylene-based polymer (Eb) of the present invention measured in 135 ° C decalin is in the range of 1.6 to 2.8 dl / g, preferably 1.8 to 2.8 dl / g.
  • Ethylene polymers having an intrinsic viscosity in these ranges are excellent in mechanical strength, moldability, and environmental stress fracture resistance (ESCR).
  • ESCR environmental stress fracture resistance
  • Example 2 b Specifically in the slurry polymerization of Example 2 b in which the hexane f the solvent, when the polymer while stirring to form a uniform in the system, density is 962 kg / m 3, [] is 2.15 dl / g If the ethylene supplied to the second polymerization tank is 4.3 kg / hr, hydrogen is 3.0 N-liter / hr, and 1-hexene is 26 g / hr, the density is 967 kg / m 3 and the [ ⁇ ] is 2.10 dl.
  • the ethylene polymer (Eb) according to the present invention has a flexural modulus measured at 23 ° C according to ASTM-D-790, M, and 50 ° C measured according to ASTM-D-1693.
  • Environmental stress rupture resistance in ESCR (hr) is T, 600 ⁇ M ⁇ l, 800 (MPa) is satisfied, and M and T satisfy the following relational expression (Eq-1).
  • the molded product can be used thinner than before.
  • the ratio of the supply amount of hydrogen, ethylene, ⁇ -olefin to the polymerization vessel is changed, and the molecular weight and the polymerization amount ratio of each component are changed. By controlling, an ethylene polymer in this range can be produced.
  • Example 4 b polymerization and flexural modulus under the conditions described in the l, 490 MPa, ESCR becomes 50% destruction at 177 hours, or to the first polymerization vessel in the conditions of Example 4 b Supply hydrogen to the second polymerization tank from 75 N-liter / hr to 70 N-liter / hr, and supply hydrogen to the second polymerization tank to 3.0 N-liter / hr force 4.0 N-liter / hr 1-hexene Is changed from 52g / hr to 65g / hr, the flexural modulus is l, 410MPa and the ESCR is 50% broken in 188 hours.
  • the ethylene polymer (Eb) according to the present invention has a tan ⁇ (loss elastic modulus G ⁇ / storage elastic modulus) measured at 190 ° C and angular frequency 100 (rad / sec) using a dynamic viscoelasticity device.
  • G ') is preferably in the range of 0.6 to 0.9.
  • tan ⁇ is in this range, the pinch fusion property when blow molding is excellent.
  • the tan ⁇ tends to increase with decreasing force of the molecular weight of the high molecular weight ethylene ′ ⁇ -olefin copolymer that increases the molecular weight of the low molecular weight ethylene polymer or the overall molecular weight.
  • the pinch fusion property indicates that the resin melts and sticks to the fused part when the resin is fused with a cylindrical molten resin extruded from an extruder.
  • a larger tan ⁇ means stronger viscosity. In that case, the resin is likely to rise.
  • the ethylene polymer (Ee) is an ethylene polymer that satisfies the following requirements [l e ] to [5e] in addition to the requirements [1] and [2] described above, and is used for extrusion molding and injection molding. Even if you like it, you can use it.
  • the repeating unit derived from a-olefin usually contains 0.02 to 1.20 mol%.
  • the structural unit derived from ethylene is 98.80
  • the repeating unit is usually present in a ratio of 0.02 to 1.2 mol%, preferably 0.02 to: l.00 mol%.
  • the ethylene polymer (Ee) may contain an ethylene homopolymer.
  • the structural unit derived from ethylene in the ethylene-olefin copolymer portion is usually 95 to 99.96 mol%, preferably
  • the repeating unit derived from ⁇ -olefin is present in a proportion of 97.5 to 99.% mol%, and is present in a proportion of 0.04 to 5.00 mol%, preferably 0.04 to 2.50 mol%.
  • the repeating unit derived from ⁇ - olefin in the total polymer is usually 0.02 to 1.20 mol%, preferably 0.02 to 1; 00 mol%.
  • Example 3 e In the slurry polymerization of Example 3 e using hexane as a solvent, the polymerization was conducted while stirring the system uniformly so that the density was 954 kg / m 3 and the [r?] was 2.49 dl / g.
  • the ethylene-based polymer (Ee) according to the present invention has an apparent shear stress of 7 MPa or less at 210 ° C. measured at a shear rate of 194.57 sec-i measured with a capillary rheometer.
  • the sample conforms to JIS K7199 and has an apparent shear rate of 194.57 sec-i.
  • An ethylene polymer having a shear stress in this range is excellent in extrusion characteristics at a low extrusion pressure, that is, a low resin pressure at a constant extrusion amount.
  • the ethylene polymer (Ee) of the present invention has a sample with a notch80.
  • the actual stress when the number of times to fracture is 10,000 llMPa to 17 MPa and the number of times to fracture S when the number of times to fracture is 10,000 times is in the range of 9 MPa to 16 MPa.
  • An ethylene polymer having a tensile fatigue strength measured at 80 ° C with a notch in the sample within this range has excellent long-term life characteristics in which the rupture mode is brittle.
  • the ethylene-based polymer (Ee) of the present invention has tensile fatigue characteristics measured at 23 ° C without notching the sample.
  • the actual stress when the number of times to break is 10,000 times is 18 to 22 MPa, leading to breakage.
  • the actual stress when the number of times is 100,000 is 17 to 21'MPa.
  • An ethylene polymer (Ee) with a tensile fatigue strength measured at 23 ° C without notching the sample in this range has excellent long-term life characteristics with a ductile fracture mode.
  • the ability to describe a preferred production method of the ethylene polymer of the present invention is not limited to this preferred production method as long as the above-described requirements for the ethylene polymer of the present invention are satisfied. It can be used arbitrarily.
  • the ethylene polymer according to the present invention is preferably _
  • (B-2) an organoaluminum compound
  • the transition metal compound (A) is a compound represented by the following general formula (1) or (2).
  • Ris, Ri9, and R 2 Q are selected from a hydrogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, and a silicon-containing hydrocarbon group, and may be the same or different, and are adjacent to R 7 to Ris.
  • the substituents may be bonded to each other to form a ring.
  • A is partially unsaturated and / or aromatic. Can be copolymerized.
  • the transition metal compound (A) is a compound represented by the following general formula (1) or (2).
  • Ris, R1 9 and R 2 G is a hydrogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, selected from Kei-containing coal hydrocarbon group, up to Yogu R 7 to Ri 8 be different even 'respectively identical Adjacent substituents may be bonded to each other to form a ring.
  • A is partially unsaturated bond and / or aromatic.
  • It is a divalent hydrocarbon group having 2 to 20 carbon atoms, including a ring, and forms a ring structure with Y, and A includes two or more rings including the ring formed with Y. It may contain a ring structure, Y is carbon or silicon, M is a metal selected from group 4 of the periodic table, and Q is a halogen, a hydrocarbon group, an anion ligand or a lone electron.
  • the neutral ligands that can be coordinated in pairs may be selected in the same or different combinations.
  • J is an integer of 1 to 4.
  • transition metal compounds (A) represented by the general formula (1) or (2) compounds preferably used are R 7 to Ri. Is hydrogen, Y is carbon, M is Zr, and j is 2.
  • compounds in which R 12 , R 13 , R 16 and Ri 7 are all hydrocarbon groups are preferably used.
  • transition metal compounds (A) represented by the above general formula (1) a compound having an aryl group which may be the same or different from each other, ie, a bridging atom Y force in a covalent bond bridging portion (that is, A compound in which R 20 is an aryl group which may be the same or different from each other is preferably used.
  • the Ariru group, phenyl group, naphthyl group, anthracenyl group and can be one or more of these aromatic hydrogen (sp 2 type hydrogen) illustrate been substituted with a substituent.
  • the substituent examples include a hydrocarbon group (fl) having a total carbon number of 1/20, a carbon-containing group (f2) having a total carbon number of 1/20, and a halogen atom.
  • the hydrocarbon group (fl) having 1 to 20 carbon atoms is part of the hydrogen atoms directly connected to these carbon atoms, halogen atoms, oxygen It includes a heteroatom-containing hydrocarbon group substituted with a containing group, a nitrogen-containing group, a silicon-containing group, and those in which any two hydrogen atoms in contact form an alicyclic group.
  • Such groups (fl) include methyl, ethyl, n-propyl, allyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n- Linear hydrocarbon group such as octyl group, n-nonyl group, n-decanyl group; isopropyl group, t-butyl group, amyl group, 3-methylpentyl group, 1,1-jetylpropyl group, 1, 1-dimethylbutyl group, 1-methyl-1, 1-propylbutyl group, 1,1-propylbutyl group, 1,1-dimethyleno-2-methylpropyl group, 1-methyl-1-isopropyl-2-methylpropyl group, etc.
  • heteroatom-containing hydrocarbon groups such as the group N-methylamino group, trifluoromethyl group, tribromomethyl group, pentafluoroethyl group, pentafluorophenyl group.
  • the silicon-containing group (f2) is, for example, a group in which the ring carbon of the cyclopentagenyl group is directly covalently bonded to the silicon atom, specifically an alkylsilyl group or a arylsilyl group.
  • Examples of the C 1 to C 20 -containing group (f2) include a trimethylsilyl group and a triphenylsilyl group.
  • aryl groups that may be the same or different from each other and bonded to the bridging atom Y of the covalent bridging moiety in the general formula (1) include phenyl, tolyl, t-butylphenyl, di- Exemplify methylphenyl, biphenyl, cyclohexylphenyl, (trifluoromethyl) phenyl, bis (trifluoromethyl) phenyl, chlorophenyl, and dichlorophenyl It is out.
  • the transition metal compound (A) used in the examples of the present application described later is specifically a compound represented by the following formulas (3) and (4).
  • the transition metal compound is not limited to this transition metal compound. It is not something.
  • the structure was determined using electron GSH-270) and FD-mass spectrometry (JEOL SX-102A),
  • (B-l) organometallic compound used as necessary in the present invention include organometallic compounds of Groups 1, 2 and 12, 13 of the periodic table as shown below.
  • Ra and Rb each represent a hydrocarbon group having 1 to 15 carbon atoms, which may be the same or different from each other, preferably 1 to 4;
  • It is an organic aluminum compound represented.
  • the aluminum compound used in Examples described later is triisoptyl aluminum or triethyl aluminum.
  • the organoaluminum compound (B-2) used as necessary in the present invention may be a conventionally known aluminoxane, or it is insoluble in benzene as exemplified in JP-A-2-78687. It may be an organoaluminum compound.
  • the compound (B-3) (hereinafter referred to as “ionic diionic compound”) which forms an ion pair by reacting with the bridged meta-orthocene compound (A) of the present invention is disclosed in JP-A-1-501950. No. 1, JP-A-1-502036, JP-A-3-179005, JP-A-3-179006, JP-A-3-207703, JP-A-3-207704, US5321106, etc. And Lewis acids, ionic compounds, borane compounds, and calporane compounds. Heteropoly compounds and isopoly compounds can also be mentioned. Such ionized ionic compounds (B-3) can be used singly or in combination of two or more.
  • the (C) particulate carrier used as necessary in the present invention is an inorganic or organic compound, and is a granular or particulate solid.
  • inorganic compounds porous acids
  • halides, inorganic halides, clays, clay minerals or ion-exchangeable layered compounds have different properties depending on the type and production method, but the carrier preferably used in the present invention has a particle size of:! To 300 m, preferably 3 to 200 im. It is desirable that the surface area be in the range of 50 to 1000 (m 2 / g), preferably 100 to 800 (m 2 / g), and the pore volume to be in the range of 0.3 to 3.0 (cm 3 / g). ,.
  • Such a carrier is used after being baked at 80 to 1000 ° (preferably, 100 to 800 ° C. as necessary.
  • the carrier used in the examples of the present invention described later is not particularly specified. average particle diameter of 12 zm, the ratio 3 ⁇ 4 area is 800 (m 2 / g), pore volume using Si_ ⁇ 2 of Asahi Glass Co., Ltd. is a lO (cmVg).
  • the catalyst for olefin polymerization according to the present invention comprises the bridged metacene compound of the present invention (A), (B-1) an organic metal compound, (B-2) an organoaluminum compound, and (B-3) ionization. It contains at least one compound (B) selected from ionic compounds, a fine carrier (C), if necessary, and a specific organic compound component (D) as described later, if necessary. You can also
  • the organic compound component (D) is used for the purpose of improving the polymerization performance and the physical properties of the produced polymer, if necessary.
  • organic compounds include alcohols, phenolic compounds, carboxylic acids, phosphorus compounds and sulfonates.
  • the ethylene-based polymer of the present invention is obtained by homopolymerizing ethylene as described below using the above-mentioned catalyst for olefin polymerization, or copolymerizing ethylene and olefin having 6 to 10 carbon atoms. Is obtained.
  • component (P3) A method in which component (A) and component (B) are contacted in advance, and component (B) is added to the polymerization vessel in any order.
  • each component (B) may be the same or different.
  • component (P6) A method in which component (A) and component (B) are supported on a particulate carrier (C), and component (B) is added to the polymerization vessel in any order.
  • each component (B) may be the same or different.
  • each component (B) may be the same or different.
  • each component (B) may be the same or different.
  • At least two or more of the catalyst components may be contacted in advance.
  • the solid catalyst component in which the component (A) and the component (B) are supported on the particulate carrier (C) may be prepolymerized with olefin.
  • This prepolymerized solid catalyst component is usually prepolymerized at a ratio of 0.1 to 1000 g, preferably 0.3 to 500 g, particularly preferably 1 to 200 g of polyolefin per solid catalyst component.
  • an antistatic agent or an anti-fouling agent may be used in combination or supported on a carrier.
  • the polymerization can be carried out by any of liquid phase polymerization methods such as solution polymerization and suspension polymerization, or gas phase polymerization methods, but suspension polymerization and gas phase polymerization methods are preferably employed from the viewpoint of productivity.
  • liquid phase polymerization methods such as solution polymerization and suspension polymerization, or gas phase polymerization methods
  • suspension polymerization and gas phase polymerization methods are preferably employed from the viewpoint of productivity.
  • inert hydrocarbon medium used in the liquid phase polymerization method include aliphatic carbonization such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene.
  • cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane, or these Mixtures can be used, and olefins themselves can be used as a solvent.
  • component (A) per liter of the reaction volume typically 10-i 2 ⁇ 10- 2 moles, preferably lO-w to: used in such an amount that the 10 3 mol.
  • the component (B-1) used as necessary has a molar ratio [(Bl) / M] of the component (B-1) to the transition metal atom (M) in the component (A) of usually 0.01 to : 100,000, preferably 0.05 to 50,000.
  • Component (B-2) used as necessary is the molar ratio of the aluminum atom in component (B-2) to the transition metal atom (M) in component (A) [(B-2) / M ] Used in such an amount that the force S is usually 10 to 500,000, preferably 20 to 100,000.
  • Component (B-3) used as needed is the molar ratio of component (B-3) to transition metal atom (M) in component (A) [(B-3) / M] force Normally 1 ⁇ : Used in an amount such that 100, preferably 2-80.
  • the molar ratio [(D) / (B-1)] is usually 0.01 to: 10, preferably
  • component (B) is component (B-2) in an amount of 0.1 to 5
  • the molar ratio [(DV (B-2)] is usually 0.001 to 2, preferably 0.005 to 1.
  • the component (B) is the component (B-3)
  • the molar ratio [(D) I (B-3)] is usually 0.01 to 10 and preferably 0.1 to 5. Used in such amounts.
  • the polymerization temperature is usually in the range of ⁇ 50 to 10250 ° C., preferably 0 to 200 ° C., particularly preferably 60 to 170 ° C.
  • the polymerization pressure is usually from normal pressure to 100 (kg / cm 2 ), preferably from normal pressure to 50 (kg / cm 2 ), and the polymerization reaction can be carried out batchwise (batch type), semi-continuous type, It can be carried out by any continuous method. Polymerization is usually carried out in the gas phase or in a slurry phase in which polymer particles are precipitated in the solvent. Further, the polymerization is carried out in two or more stages with different reaction conditions. Of these, batch-type is preferred.
  • the polymerization temperature is preferably 60 to 90 ° (more preferably 65 to 85 ° C. By polymerization in this temperature range, the composition distribution becomes narrower. Ethylene-based polymer can be obtained. The obtained polymer is in the form of particles of about several tens to several thousand ⁇ ⁇ ⁇ . Later poor solvent
  • an ethylene homopolymer having an intrinsic viscosity S of 0.3 to 1.8 (dl / g) is produced in the previous stage, and the intrinsic viscosity is 3.0 to 10.0 in the latter stage.
  • a (co) polymer of (dl / g ) is produced. This order may be reversed.
  • Such an olefin polymerization catalyst has an extremely high polymerization performance for ⁇ -olefin (for example, 1-hexene) to be copolymerized with ethylene, so that it is too high after a predetermined polymerization is completed. It is necessary to devise such that a copolymer having an olefin content is not generated. For example, as soon as the contents of the polymerization tank are withdrawn from the polymerization tank or as soon as possible, (1) a method of separating the polymer from the solvent and unreacted olefin with a solvent separator, and (2) an inert gas such as nitrogen in the contents.
  • ⁇ -olefin for example, 1-hexene
  • the molecular weight of the obtained ethylene polymer can be adjusted by allowing hydrogen to be present in the polymerization system or changing the polymerization temperature. Furthermore, it can be adjusted according to the difference in the ingredients ( ⁇ ) used.
  • the polymer particles obtained by the polymerization reaction may be pelletized by the following method.
  • a suitable good solvent for example, hydrocarbon solvents such as hexane, heptane, decane, cyclohexane, benzene, toluene and xylene
  • a suitable good solvent for example, hydrocarbon solvents such as hexane, heptane, decane, cyclohexane, benzene, toluene and xylene
  • the ethylene polymer according to the present invention includes a weather resistance stabilizer, a heat resistance stabilizer, an antistatic agent, an anti-slip agent, an antiblocking agent, an antifogging agent, a lubricant and a dye as long as the object of the present invention is not impaired. , Nucleating agents, plasticizers, anti-aging agents, hydrochloric acid absorbents, antioxidants and other additives and carbon
  • pigments such as carbon black, titanium oxide, titanium yellow, phthalocyanine, isoindolinone, quinacridone compound, condensed azo compound, ultramarine blue and cobalt blue may be blended.
  • the ethylene-based polymer of the present invention is molded into blow molded products, inflation molded products, cast molded products, extruded laminated molded products, extruded molded products such as pipes and irregular shapes, foam molded products, injection molded products, vacuum molded products, and the like. be able to. Furthermore, it can be used for fibers, monofilaments, non-woven fabrics, etc. These molded products include molded products (laminates and the like) including a part made of an ethylene polymer and a part made of another resin.
  • the ethylene polymer may be one that has been crosslinked in the molding process.
  • blow molded products, extrusion molded products, and injection molded products are preferable because they give excellent characteristics.
  • Preferred embodiments of the blow molded article of the present invention are bottle containers, industrial chemical cans and bottle containers.
  • the hollow molded body prepared as described above is suitable for use in bleach containers, detergent containers, softener containers, etc., for example, cosmetics, clothing detergents, residential detergents, softeners, shambles, rinses. Used for containers such as conditioners.
  • kerosene cans generators, lawn mowers, motorcycles, gasoline tanks for automobiles, agricultural chemicals, drug canisters for storing medicines, drums, etc. It can also be used for mayonnaise, food applications that store edible oil, and hollow molded articles that store medical products.
  • a preferred embodiment of the extruded product of the present invention is a pipe, a wire coating material or a steel pipe.
  • Extrudates prepared as described above include gas pipes, water and sewage pipes, pipes used for transportation of agricultural water, industrial water, etc., and applications that preserve information and communication equipment such as optical fibers. It is also used for pipes to protect miscellaneous contents.
  • steel pipe coverings that corrode the inner part of pig iron pipes are also suitably used as steel wire coverings used to protect wires that support buildings. It is demanded that these extruded products and the short-term and long-term destruction do not occur.
  • Using the resin of the present invention is effective for extending the product life.
  • a preferred embodiment of the injection molded article of the present invention is a pipe joint or an automotive part. Pipe joints and automotive parts are also preferred for use in hollow molded products and fused molded products.
  • particulate ethylene polymer 100 parts by weight of particulate ethylene polymer, 0.20 parts by weight of tri (2,4-di-t-butylphenyl) phosphate as secondary antioxidant, n-octadecyl-3 as heat stabilizer -0.24 parts by weight of (4'-hydroxy-3 ', 5'-di-t-butylphenyl) propionate and 0.15 parts by weight of calcium stearate as a hydrochloric acid absorbent were blended.
  • Ethylene content in the molecular chain of the ethylene polymer by 1 3 C-NMR, ⁇ - the Orefin content was determined.
  • the measurement was performed using a Lambda 500 type nuclear magnetic resonance apparatus (1 ⁇ : 500 ⁇ ) manufactured by JEOL Ltd. Measurement was performed at 10,000 to 30,000 integrations.
  • a commercially available quartz glass tube with a diameter of 10 mm put 250 to 400 mg of sample and 2 ml of special grade hexaclonal butadiene from Wako Pure Chemical Industries, Ltd., and heat and uniformly disperse the solution at 120 ° C. Measurements were made. Assignment of each absorption in the NMR spectrum was performed according to Chemistry Special Issue No.
  • the eluent is 0-dichlorobenzene
  • the sample concentration is 0.1-0.3wt / vol%
  • the injection volume is 0.5ml
  • the flow rate is l.Oml / min.
  • the sample was heated at 145 ° C for 2 hours, then cooled to 0 ° C at 10 ° C / hr, and further held at 0 ° C for 6Qmin to coat the sample.
  • the temperature ramping power output ram capacity is 0.86ml and the piping capacity is 0.06ml.
  • the detector was an infrared spectrometer MIRAN 1 A CVF type (CaF 2 cell) manufactured by FOXBORO, and infrared light of 3.42 zm (2924 cm- 1 ) was detected by setting the absorbance mode with a response time of 10 seconds.
  • the elution temperature was divided into 35-55 fractions from 0 ° C to 145 ° C, especially in the vicinity of the elution peak. All temperature indications are integers. For example, the elution fraction at 90 ° C indicates a component dissolved at 89 ° C to 90 ° C.
  • Measurement was performed as follows using GPC-150C manufactured by Waters.
  • the separation columns are TSKgel GMH6-HT and TSKgel GMH6-HTL, the column size is 7.5 mm in inner diameter and 600 mm in length, the column temperature is 140 ° C, and the mobile phase is o-dichlorobenzene (Wako Pure Chemicals).
  • Industrial and BHT (Takeda Pharmaceutical) 0.025 wt% as an antioxidant, moved at l.Oml / min, sample concentration 0.1 wt%, sample injection volume 500 ⁇ 500, differential refractometer as detector Was used.
  • the standard polystyrene used was manufactured by Tosohichi Co., Ltd.
  • the molecular weight calculation is a value obtained by universal calibration and conversion into polyethylene.
  • a 0.5mm thick sheet was formed at a pressure of lOOkg / cm 2 (spacer shape; 240 x 240 x 0.5mm thick plate) 45 x 45 x 0.5mm, 9 pcs), using a separate hot water press manufactured by Shinfuji Metal Industry Co., Ltd., set to 20 ° C, and compressed by compression at a pressure of 100kg / cm2 to create a measurement sample did.
  • the hot plate was a 5 mm thick SUS plate.
  • the press sheet was heat-treated at 120 ° C. for 1 hour, linearly cooled to room temperature over 1 hour, and then measured with a density gradient tube.
  • Test temperature 50 ° C constant temperature water bath Controllable to 50.0 ⁇ 0.5 ° C
  • Sample holding Set in a special holder with an internal dimension of 11.75mm and a length of 165mm using a special folding jig
  • Nonyl fuel polyoxyethylene ethanol (commercially available under the trade name AntaroxCO-630) is diluted with water and used at a concentration of 10%.
  • JIS 6922-2 (Table 3) Evaluation was conducted according to the test method for bending properties described in JIS K7171 according to the description in the section of flexural modulus of elasticity in “General Properties and Test Conditions”. That is, a test piece of length 80mm, width 10mm, thickness 4mm was punched out from a 4mm thick press sheet taken out at a molding temperature of 180 ° C, an average cooling rate of 15 ° C / min, and 40 ° C. The flexural modulus was measured at a distance between supports of 64 mm and a test speed of 2.0 mm / min.
  • ⁇ ⁇ The details of ⁇ ⁇ are described in, for example, Polymer Publishing Association, “Lecture 'Rheology 1”, pages 20-23 of the Japanese Society of Rheology.
  • the rheometer RDS-II manufactured by Rheometrics was used to measure the angular frequency [ ⁇ (dZsec)] dispersion of the storage elastic modulus G '(Pa) and loss elastic modulus G "(Pa).
  • a 25mm ⁇ parallel plate was used, and the sample thickness was about 2mm.
  • the measurement temperature was 190 ° C, and G 'and G "were measured in the range of 0.0 ⁇ ⁇ 400.
  • the measurement points were 5 points per ⁇ -digit.
  • the amount of strain was appropriately selected in the range of 2 to 25% so that the torque in the measurement range could be detected and the torque was not exceeded.
  • blow molding was carried out to obtain a cylindrical bottle with an internal volume of 1,000 cc and a basis weight of 50 g.
  • the pinch thickness ratio is expressed as (a / b). The larger the value, the better the pinch shape (see Fig. 5).
  • the bottle obtained by blow molding as described above is upright, and the maximum load generated when it is compressed by applying a load from the top of the bottle to the bottom at a test speed of 20 mm / min at 23 ° C. Recorded as buckling strength.
  • a capillary rheometer manufactured by Toyo Seiki Co., Ltd., set a capillary die with an inner diameter of 0.5 mm and a length of 3.0 mm, and observe the sample at a temperature of 190 ° C in accordance with JIS 7199. Measure the apparent shear stress at a rate that results in a shear rate of 194.57 sec-i.
  • a capillary rheometer with a barrel diameter of 9.55 mm was used here.
  • a 6mm thick sheet was formed at a pressure of 100 (kg / cm 2 ) using a hydraulic heat press manufactured by Shindo Metal Industry Co., Ltd. set at 190 ° C (spacer shape: 200 X 200 X 6mm thickness) 30 x 60 x 6 mm, 4 pieces), and cooled by compressing at a pressure of 100 (kg / cm 2 ) using another Kamito Metal Industries hydraulic heat press set at 20 ° C.
  • a sample for measuring 80 ° C tensile fatigue strength was prepared.
  • a 30 x 60 x 6 mm thick press sheet was cut into a vertical 5 to 6 min x horizontal 6 mm x 60 mm long prism and used as an evaluation sample for actual measurement.
  • Bow I tension fatigue strength (specimen shape) conforms to JIS-6774 using Shimadzu servo pulsar EHF-ER1KN X 4-40L.
  • the outline of the evaluation conditions is as follows: Test piece shape (with 5-6 X 6 X 60mm prismatic notch), test waveform and test frequency (rectangular wave 0.5Hz), test Temperature (80 ° C), actual stress was 10 ⁇ : Several points were measured in the range of L8MPa, and the number of vibrations when the sample broke was regarded as fatigue strength.
  • measure at least 3 points with different actual stresses measure the number of fractures in 3 digits or more, or measure in the range of 3 MPa or more in actual stress, create an approximate expression using the logarithmic least squares method, and determine the number of fractures Calculate the actual stress corresponding to 10,000 times and 100,000 times.
  • a 3 mm thick dumbbell (ASTM D-1822 Type-S) shown in Fig. 4 was formed at a pressure of 100 (kg / cm 2 ) ( Spacer shape: Creates ASTM D-1822 Type-S shape on a 240 x 240 x 3mm thick plate), using another Kamito Metal Industries hydraulic heat press machine set to 20 ° C, Compress at a pressure of 100 ( kg / cm 2 )
  • Test shape ASTM D-1822 Type-S Dumbbell shown in Fig. 3, no notch
  • the minimum load of the load cell is 4.9 N (0.5 kgf)-constant, and the maximum load is corrected by the cross-sectional area of the central part of the specimen before the test.
  • Test temperature, test waveform, test frequency were measured at several points. When the sample stretched 50%, it was regarded as fracture, and the number of vibrations at this time was defined as the fatigue strength at the actual stress of the maximum load. Measure in the range of one digit or more for the number of fractures or IMPa or more for the actual stress, create an approximate expression using the logarithm approximate least square method, and obtain the actual stress corresponding to the number of times of the fracture 10,000 or 100,000 .
  • ethylene is 7.0 (kg / hr)
  • hydrogen is continuously supplied at 40 (N-liter / hr)
  • the viscosity measured at 25 ° C using a B-type viscometer is 500 (mPa's) (Polyethylene glycol) (polypropylene glycol) block copolymer (trade name EPAN720, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) is continuously supplied at 0.5 g / hr, and the liquid level in the polymerization tank is constant. Polymerization was carried out under the conditions of a polymerization temperature of 80 ° C., a reaction pressure of 7.6 ( kg / cm 2 G), and an average residence time of 2.6 hours while continuously extracting the contents of the polymerization tank.
  • First polymerization tank force The contents continuously extracted were substantially free of unreacted ethylene and hydrogen by a flash drum maintained at an internal pressure of 0.30 (kg / cm 2 G) and 60 ° C.
  • the content was added to the second polymerization tank together with hexane 43 (liter / hr), ethylene 3.0 (kg / hr), hydrogen 5.5 (N-liter / hr), 1-hexene 110 (g / hr).
  • the polymerization was continued under the conditions of a polymerization temperature of 75 ° C, a reaction pressure of 3.3 (kgZcm 2 G), and an average residence time of 1.4 hours.
  • the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant.
  • methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / hr) to deactivate the polymerization catalyst. I let you. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.
  • the contents continuously extracted from the first polymerization tank were substantially free of unreacted ethylene and hydrogen by a flash drum maintained at an internal pressure of 0.30 (kg / cm 2 G) and 60 ° C.
  • the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant.
  • methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / hr) to deactivate the polymerization catalyst. I let you. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.
  • Example 28 Granulation was carried out at the same set temperature and resin extrusion rate as used in Example 1 to obtain a measurement sample.
  • a press sheet was prepared using the sample, and the physical properties were measured.
  • the results are shown in Tables l b to 3b. Compared to the comparative example, the balance between rigidity and ESCR is excellent.
  • Table 4b shows the results of measuring the physical properties of bottles formed using the samples. The molded bottle has superior rigidity and ESCR compared to the comparative example. [Example 3 b]
  • the solid catalyst component ( ⁇ ) obtained in Synthesis Example 2 was converted to Zr atom, 0.2 (mmol / hr), and triethylaluminum 20 (mmol / hr), ethylene at 11.0 (kg / hr) and hydrogen at 80 (N-liter / hr) continuously, and the viscosity measured at 25 ° C using a B-type viscometer is 370 (mPa's) (Polyethylene darrigol) (polypropylene glycol) block copolymer (manufactured by Asahi Denka Co., Ltd., trade name Adekapulu Knick L-71) is continuously supplied at 0.8 (g / hr).
  • Polymerization was carried out under the conditions of a polymerization temperature of 85 ° C, a reaction pressure of 7.6 (kg / cm 2 G), and an average residence time of 2.4 hours while continuously extracting the contents of the polymerization tank so that the liquid level in the inside was constant. .
  • First polymerization tank force The contents continuously extracted were substantially free of unreacted ethylene and hydrogen by a flash drum maintained at 60 ° C with an internal pressure of 030 (kg / cm 2 G).
  • the contents were mixed with hexane 43 (liter / hr), ethylene 5.5 (kg / hr), hydrogen 3.4 (N-liter / hr), 1-hexene 66 (g / hr) in the second polymerization tank.
  • the polymerization was continued under the conditions of a polymerization temperature of 75 ° C., a reaction pressure of 3.0 (kg / cm 2 G), and an average residence time of 1.3 hours.
  • the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant.
  • methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / hr) to deactivate the polymerization catalyst. I let you. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.
  • Example lb 100 parts by weight of the polymer particles, the same amount of the secondary antioxidant as used in Example lb, the same heat-resistant stabilizer and the hydrochloric acid absorbent as those used in Example lb were blended. After that, using a single screw extruder manufactured by Placo Co., Ltd., granulated at the same set temperature and resin extrusion amount as used in Example lb, and used as a measurement sample. A press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Tables l b to 3b. Compared to the comparative example, the balance between rigidity and ESCR is excellent. In addition, bottles are molded using the sample, and the physical properties
  • hexane is 45 (liter / hr)
  • the solid catalyst component ( ⁇ ) obtained in Synthesis Example 2 is converted to Zr atom, 0.1 (mmol / hr), and triethylaluminum is 20 (mmol / hr).
  • hr ethylene is 7.0 (kg / hr)
  • hydrogen is continuously supplied at 75 (N-liter / hr)
  • the viscosity measured at 25 ° C using a B-type viscometer is 370 (mPa's).
  • a (polyethylene darrigol) (polypropylene glycol) block copolymer (manufactured by Asahi Denka Co., Ltd., trade name Adekapulu Knick L-71) was continuously supplied at 0.8 (g / hr), and the inside of the polymerization tank While continuously extracting the contents of the polymerization tank so that the liquid level is constant, the polymerization is performed under the conditions of 85 ° C, reaction pressure 7.5 (kg / cm 2 G), average residence time 2.6 hr. It was.
  • First polymerization tank force The contents continuously extracted were substantially free of unreacted ethylene and hydrogen by a flash drum maintained at an internal pressure of 0.30 (kg / cm 2 G) and 60 ° C.
  • the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant.
  • methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / hr) to deactivate the polymerization catalyst. I let you. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.
  • Example 5b 100 parts by weight of the polymer particles were blended with the same amount of the same secondary antioxidant acid heat resistance agent, heat stabilizer and hydrochloric acid absorbent as those used in Example lb. After pressing, using a single screw extruder manufactured by Placo Co., Ltd., granulated at the same set temperature and resin extrusion amount as used in Example lb, to obtain a measurement sample. A press sheet was prepared using the sample and the physical properties were measured. The results are shown in Tables lb-3b. Comparative example and J: Excellent balance between rigidity and ESCR. In addition, Table 4b shows the results of measuring the physical properties of bottles formed using the samples. The molded bottle has superior rigidity and ESCR compared to the comparative example. [Example 5b ]
  • First polymerization tank force The contents continuously extracted were substantially free of unreacted ethylene and hydrogen by a flash drum maintained at an internal pressure of 0.30 (kg / cm 2 G) and 60 ° C.
  • the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant.
  • methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / hr) to deactivate the polymerization catalyst. I let you. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.
  • Example 6b The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as those used in Example lb were added to 100 parts by weight of the polymer particles. After squeezing, a single screw extruder manufactured by Placo Co., Ltd. was used.
  • Viscosity measured at 25 ° C is 370 (mPa's) (polyethylene darrigol) (polypropylene glycol) block copolymer (Asahi Denka Co., Ltd., trade name Adekapuru Knick L-71) 0.8 (g / hr) ), And continuously withdrawing the contents of the polymerization tank so that the liquid level in the polymerization tank becomes constant, polymerization temperature 75 ° C, reaction pressure 7.5 (kg / cm 2 G), average Polymerization was conducted under the condition of a residence time of 2.6 hours.
  • First polymerization tank force The contents continuously extracted were substantially free of unreacted ethylene and hydrogen by a flash drum maintained at an internal pressure of 0.30 (kg / cm 2 G) and 60 ° C.
  • the contents were second polymerized with hexane 43 (liter / lu :), ethylene 3.9 (kg / hr), hydrogen 1.0 (N-liter / hr), 1-hexene 100 (g / hr).
  • the polymer was continuously supplied to the tank and polymerization was continued under the conditions of a polymerization temperature of 75 ° (reaction pressure of 3.2 (kg / cm 2 G) and an average residence time of 1.3 hours.
  • the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant.
  • methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / hr) to deactivate the polymerization catalyst. I let you. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.
  • Example 7b 100 parts by weight of the polymer particles were blended with the same amount of the same secondary antioxidant acid heat resistance agent, heat stabilizer and hydrochloric acid absorbent as those used in Example lb. After pressing, using a single screw extruder manufactured by Placo Co., Ltd., granulated at the same set temperature and resin extrusion amount as used in Example lb, to obtain a measurement sample. A press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Table lb ⁇ 3 b a. Compared to the comparative example, the balance between rigidity and ESCR is excellent. Table 4b shows the results of measuring the physical properties of bottles formed using the samples. The molded bottle has superior rigidity and ESCR compared to the comparative example. '[Example 7b ]
  • hexane was 45 (liter / hr)
  • the solid catalyst component ( ⁇ ) obtained in Synthesis Example 2 was converted to Zr atom, 0.1 (mmol / hr), and triethyl aluminum was 20 (mmol / hr).
  • hr ethylene is 7.0 (kg / hr)
  • hydrogen is continuously supplied at 75 (N-liter / hr)
  • the viscosity measured at 25 ° C using a B-type viscometer is 370 (mPa's).
  • a (polyethylene darrigol) (polypropylene glycol) block copolymer (manufactured by Asahi Denka Co., Ltd., trade name Adekapulu Knick L-71) was continuously supplied at 0.8 (g / hr), and the inside of the polymerization tank Continuous polymerization tank contents so that the liquid level is constant
  • polymerization was carried out under conditions of a polymerization temperature of 85 ° C, a reaction pressure of 7.5 (kg / cm 2 G), and an average residence time of 2.6 r. 1st polymerization tank force
  • the contents continuously extracted were substantially free of unreacted ethylene and hydrogen by a flash drum maintained at 60 ° C with an internal pressure of 0.30 (kg / cm 2 G).
  • the contents were mixed with hexane 43 (liter / hr), ethylene 3.5 (kg / ktr), hydrogen 3.0 (N-liter / hr), 1-hexene 150 (g / hr) in the second polymerization tank.
  • the polymerization was continued under the conditions of a polymerization temperature of 75 ° C., a reaction pressure of 3.2 (kg / cm 2 G), and an average residence time of 1.3 hours.
  • the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant.
  • methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / hr) to deactivate the polymerization catalyst. I let you. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.
  • Example lb The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as those used in Example lb were added to 100 parts by weight of the polymer particles. Thereafter, a single screw extruder manufactured by Placo Co., Ltd. was used, granulated at the same set temperature and extruding amount as that used in Example lb, and used as a measurement sample. A press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Table lb ⁇ 3 b a. Compared to the comparative example, the balance between rigidity and ESCR is excellent. In addition, Table 4b shows the results of measuring the physical properties of bottles formed using the samples. The molded bottle has superior rigidity and ESCR compared to the comparative example.
  • the sample for measurement was Mitsui Chemicals Hi-Zex 6008B product pellets.
  • the comonomer is 1-butene.
  • a press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Table lb to 3 b. Compared to the examples, it was found that the balance between rigidity and ESCR property was inferior.
  • Table 4b shows the results of measuring the physical properties of bottles formed using the sample. The molded bottle is inferior to the examples.
  • a press sheet was prepared using Hi-Zex 6700B product pellets manufactured by Mitsui Chemicals, and the physical properties were measured. The results are shown in Table lb ⁇ 3 b a. The rigidity is inferior to that of the examples, and the ESCR property is not so good. In addition, Table 4b shows the results of measuring the physical properties of bottles formed using the sample. The molded pot is inferior to the examples.
  • a press sheet was prepared using Novatec HD HB332R product pellets manufactured by Nippon Polyethylene Co., Ltd., and the physical properties were measured. The results are shown in Table lb ⁇ 3 b a. Compared to the examples, both Oka IJ and ESCR are inferior. Table 4b shows the results of measuring the physical properties of bottles formed using the samples. The bottle molded body is inferior to the examples. '
  • hexane is 45 liters / hr
  • the solid catalyst component ( ⁇ ) obtained in Synthesis Example 2 is converted to Zr atoms, 0.08 (rranol / hr), and triethylaluminum is 20 (mmol / hr)
  • ethylene was continuously supplied at 7.0 (kg / hr) and hydrogen at 45 (N-liter / hr), and the viscosity measured at 25 ° C using a B-type viscometer was 500 (iiiPa's).
  • Polyethylene Darigol Polypropylene glycol Block copolymer (Daiichi Kogyo Seiyaku Co., Ltd., trade name EPAN720) is continuously supplied at 0.5 (g / hr), and the liquid level in the polymerization tank is constant. Polymerization was carried out under conditions such that the polymerization temperature was 85 ° C, the reaction pressure was 7.5 ( kg / cm 2 G), and the average residence time was 2.6 i. .
  • 1st polymerization tank power The contents extracted continuously were substantially free of unreacted ethylene and hydrogen by a flash drum maintained at an internal pressure of 0.30 (kg / cm2G) and 60 ° C.
  • the contents were added to the second polymerization tank together with hexane 43 (liter / hr), ethylene 5.5 (kg / hr), hydrogen 5.0 (N-liter / hr), 1-hexene 270 (g / hr).
  • the polymerization was continued under the conditions of a polymerization temperature of 75 ° C., a reaction pressure of 2.3 (kg / cm 2 G), and an average residence time of 1.4 hours.
  • the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant.
  • methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / r) to deactivate the polymerization catalyst. I let you. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.
  • hexane was 45 (liter / hr)
  • the solid catalyst component ( ⁇ ) obtained in Synthesis Example 2 was converted to Zr atom, 0.07 (mmol / hr), and triethylaluminum 20 (mmol / hr).
  • hr ethylene is continuously supplied at 7.0 (kg / hr)
  • hydrogen is continuously supplied at 40 (N-liter / hr)
  • the viscosity measured at 25 ° C using a B-type viscometer is 500 (mPa's).
  • Polyethylene darrigol polypropylene glycol block copolymer (trade name EPAN720, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) is continuously supplied at 0.5 (g / hr), and the liquid level in the force polymerization tank Polymerization was carried out under the conditions of a polymerization temperature of 80 ° C., a reaction pressure of 7.4 ( kg / cm 2 G), and an average residence time of 2.6 hours, while continuously extracting the contents of the polymerization tank so as to be constant.
  • the contents continuously extracted from the first polymerization tank were substantially free of unreacted ethylene and hydrogen by a flash drum maintained at an internal pressure of 0.30 (kg / cm 2 G) and 60 ° C.
  • the contents were mixed with hexane 43 (liter / hr), ethylene 3.8 (kg / hr), hydrogen 4.5 (N-liter / hr), 1-hexene 180 (g / hr) in the second polymerization tank.
  • the polymerization was continued under the conditions of a polymerization temperature of 75 ° C., a reaction pressure of 3.5 (kg / cm 2 G), and an average residence time of 1.4 hours.
  • the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant.
  • methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / hr) to deactivate the polymerization catalyst. I let you. Thereafter, hexane and unreacted monomer in the contents are separated from the solvent.
  • Example le The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as those used in Example le were added to 100 parts by weight of the polymer particles. Thereafter, a single screw extruder manufactured by Placo Co., Ltd. was used, and granulation was carried out at the same setting, temperature, and lumber extruding amount as used in Example le, to obtain a measurement sample. In addition, a press sheet for each evaluation was prepared and used as a measurement sample. The results are shown in Table le ⁇ 5 e a. As in Example le, this sample has a very good balance between tensile fatigue strength and formability compared to the comparative example.
  • hexane was 45 (liter / hr)
  • the solid catalyst component ( ⁇ ) obtained in Synthesis Example 2 was converted to Zr atom, 0.07 (mmol / hr), and triethylaluminum 20 (mmol / hr).
  • hr ethylene is continuously supplied at 7.0 (kg / hr)
  • hydrogen is continuously supplied at 40 (N-liter / r), and 25 using a B-type viscometer.
  • Viscosity measured at C is 370 mPa's (polyethylene darrigol) (polypropylene glycol) block copolymer (manufactured by Asahi Denka Co., Ltd., trade name Adekapuruchi Nikkure 71) continuously at 0.8 (g / hr)
  • the polymerization tank contents are continuously withdrawn so that the liquid level in the polymerization tank is constant, the polymerization temperature is 80 ° C, the reaction pressure is 7.4 (kg / cm 2 G), and the average residence time is 2.6 hours. Polymerization was carried out.
  • the contents continuously extracted from the first polymerization tank were substantially free of unreacted ethylene and hydrogen by a flash drum maintained at an internal pressure of 0.30 (kg / cm 2 G) and 60 ° C.
  • the contents were mixed with hexane 43 (liter / hr), ethylene 3.8 (kg / hr), hydrogen 4.5 (N-liter / hr), 1-hexene 220 (g / hr) in the second polymerization tank.
  • the polymerization was continued under the conditions of a polymerization temperature of 75 ° C., a reaction pressure of 3.5 (kg / cm 2 G), and an average residence time of 1.4 hours.
  • the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant.
  • methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / hr) to deactivate the polymerization catalyst. I let you. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.
  • Example le As in Example le, this sample has a very good balance between tensile fatigue strength and formability compared to the comparative example.
  • First polymerization tank force The contents continuously extracted were substantially free of unreacted ethylene and hydrogen by a flash drum maintained at an internal pressure of 0.30 (kg / cm 2 G) and 60 ° C.
  • the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant.
  • methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / hr) to deactivate the polymerization catalyst. I let you. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.
  • Example le The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as those used in Example le were added to 100 parts by weight of the polymer particles. After squeezing, using a single screw extruder manufactured by Placo Co., Ltd.
  • ethylene is continuously supplied at 8.1 (kg / hr)
  • hydrogen is supplied at 60 (N-liter / hr)
  • the viscosity measured at 25 ° C using a B-type viscometer is 370 mPa's ( Polyethyleneglycol) (polypropylene glycol) block copolymer (Asahi Denka Co., Ltd., trade name Adekapulu Knick L-71) is continuously supplied at 0.8 (g / hr), and the liquid level in the polymerization tank is While continuously extracting the contents of the polymerization tank so as to be constant, the polymerization was carried out under conditions of a polymerization temperature of 75 ° C., a reaction pressure of 7.5 (kg / cm 2 G), and an average residence time of 2.4 hours.
  • the contents continuously extracted from the first polymerization tank were substantially free of unreacted ethylene and hydrogen by a flash drum maintained at an internal pressure of 030 (kg / cm 2 G) and 60 ° C.
  • the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant.
  • methanol was supplied to the contents extracted from the second polymerization tank at 2 (Littno / hr) to deactivate the polymerization catalyst. I let you. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.
  • Example Granulation was carried out at the same set temperature and resin extrusion rate as used in le to prepare a measurement sample.
  • a press sheet for each evaluation was prepared using the sample and used as a measurement sample. The results are shown in Table le ⁇ 5 e a. As in Example le, this sample has a very good balance between tensile fatigue strength and formability compared to the comparative example.
  • Neozettas 4005M product pellet made by Mitsui Chemicals was used as a measurement sample.
  • the comonomer is 1-butene.
  • a press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Table le 5 e .
  • This sample has an apparent shear stress equivalent to that of the example. It can be seen that the 80 ° C tensile fatigue strength is significantly weaker than that of the example.
  • the ethylene-based polymer of the present invention is excellent in moldability, and a molded product comprising the same is useful in various industrial applications because it exhibits excellent mechanical strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

流動性と成形性に優れ、且つ機械的強度にすぐれた成形体を与える、炭素原子数6~10のα-オレフィンから導かれる構成単位を0.02~1.50mol%含み、密度が945~975kg/m3であるエチレン系重合体であって、下記要件[1]および[2]を同時に満たすエチレン系重合体を提供する。[1]CFCにおいて、分子量が100,000以上の全成分が85℃以上の温度で溶出される。[2]CFCの全溶出量に対する80℃以下の溶出成分量が5%以下である。

Description

明 細 書
エチレン系重合体及ぴその用途
技術分野
本発明は、流動性や成形性に優れ、機械的強度など多くの特性に優れた成形体を与 えるエチレン系重合体、およびこれ力 なる成形体に関する。
背景技術
フィルム、パイプ、ボトル容器など様々な用途で用いられている高密度ポリエチレンは 長い間チーグラー ·ナッタ触媒やクロム系触媒を用いて製造されてきた。しかし、これらの 触媒は、重合体の分子量分布や組成分布の制御の点において限界があった。
近年、組成分布を制御しやすいシングルサイト触媒を用いて、分子量が相対的に小さ いエチレン単独重合体またはエチレン. ひ-ォレフィン共重合体と、分子量が相対的に大 きいエチレン単独重合体またはエチレン' α -ォレフィン共重合体を含む、成形性および 機械的強度に優れるエチレン系重合体を連続重合法によって製造する方法がいくつか 開示されている。
特開平 11-106432号公報には担持型幾何拘束型シングルサイト触媒 (CGC/Borate系 触媒)を用いて重合することにより得られた、低分子量ポリエチレンと高分子量エチレン' α -ォレフィン共重合体とを溶融ブレンドすることによって調製した組成物が開示されてい る。しかし、該公報に開示された方法では、 α -ォレフィンの炭素数が 6未満の場合では、 機械強度が十分には発現しないことが予想される。更に、単段重合品の分子量分布 (Mw/Mn)が広いために、衝撃強度などの機械物性において、単段品の分子量分布が 狭レ、ものと比較して十分でないことも予想される
WO01/25328号公報には、 CpTiNP(tBu)3Cl2とボレートまたはアルモキサンからなる 触媒系を用いた溶液重合により得られるエチレン系重合体が開示されている。このェチレ ン系重合体は、分子量が低い成分に分岐があるために結晶構造が弱ぐ従って機械強度 に劣ることが予想される。,
EP1201711A1 号公報には、シリカに担持したエチレン 'ビス (4,5,6,7-テトラヒドロ- 1-イン デニル)ジルコニウムジクロライドとメチルアルモキサンからなる触媒系の存在下で、スラリ 一重合により得られたエチレン系重合体が開示されている。このエチレン系重合体のうち 単段重合品は、分子量分布(Mw/Mn)が広いため、単段品の分子量分布が狭いものに 比較して衝撃強度などが劣ることが予想される。また、分子量分布が広いということは活性 種が不均一であると推測され、その結果として組成分布が広がり耐環境応力破壌性 (ESCR)などの長期寿命物性が低下することが懸念される。
特開 2002-53615号公報では、シリカに担持された特定のサリチルアルジミン配位子を 有するジルコニウム化合物およびメチルアルモキサンからなる触媒系を用いて、スラリー 重合して得られるエチレン系重合体が開示されている。該公報には、エチレンと共重合す る α -ォレフィンの好ましい炭素数範囲が開示されていなレ、が、該公報の実施例で α -ォレ フィンとして用いられている 1-ブテン (炭素原子数 =4)で得られるエチレン系重合体では、 機械強度が十分には発現しないことが予想される。
特許第 821037号公報などに記載された、チーグラー触媒を用いたエチレン (共)重合 体は、重合中にメチル分岐が副生するために分子鎖中にメチル分岐が存在する。メチル 分岐は結晶中に取り込まれて結晶を弱くすることが知られておりエチレン (共)重合体の機 械的強度を低下させる原因となる。
また、エチレンと α -ォレフインとの共重合においては、ひ-ォレフィンをほとんど含まない 場合は硬くて脆い成分が生成する、一方 α -ォレフィンが過剰に共重合する場合は、柔ら 力べて弱い成分が生成することに加えて、組成分布が広いためべたつきの原因になる成 分を生成する場合があった。また、分子量分布が広レ、ために、低分子量体が成形物表面 に粉状物質として付着する現象を呈するなどの問題力あった。
特開平 9-183816号公報などに記載されたメタ口セン触媒を用いる重合により得られる エチレン系重合体は、重合中にメチル分岐が副生する結果、機械的強度を低下させるこ とが懸念される。 ·
クロム系触媒を用いて得られるエチレン系重合体は、長鎖分岐を含有するために分子 の広がりが小さく、そのために機械的強度ならびに耐環境応力破壊性 (ESCR)などの長期 寿命物性が劣っていた。また、重合中にメチル分岐が副生するために、機械的強度を低 下させる原因になっていた。
WO93/08221号公報などに記載された幾何拘束触媒 (CGC)を用いて得られるェチレ ン系重合体は、重合中にメチル分岐が副生するため、分子鎖中にメチル分岐が存在して いた。メチル分岐は結晶中に取り込まれて結晶構造を弱める。それが機械的強度低下の 原因になっていた。また、長鎖分岐を含有するために分子の拡がりが小さく、そのために 機械的強度ならびに耐環境応力破壊性 (ESCR)などの長期寿命物性が不十分であった。 高圧ラジカル重合法により得られるエチレン系重合体は、重合中にメチル分岐や長鎖 分岐が副生するため、分子鎖中にメチル分岐や長鎖分岐が存在していた。メチル分岐は 結晶中に取り込まれて結晶強度を弱くする。そのことが、機械的強度を低下させる原因と なっていた。また、長鎖分岐を含有するために分子の広がりが小さぐ分子量分布が広ぐ そのために耐環境応力破壊性 (ESCR)などの長期寿命物性に劣ってレヽた。 発明の開示
本発明者らは前記の従来技術に鑑みて、成形性に優れ、且つ機械的強度に優れた 成形体が得られるようなエチレン系重合体について鋭意研究したところ、
炭素原子数 6〜: 10の α -ォレフィンから導かれる構成単位を 0.02〜: l.50mol%含み、密 度が 945〜975 kg/m3であるエチレン系重合体であって、
下記要件 [1]および [2]を同時に満たすエチレン系重合体 (E)が、成形性に優れ、且つ 機械的強度に特に優れ、外観に優れた成形体、とりわけブロー成形体、押出成形体およ ぴ射出成形体を与えることを見出し、本発明を完成するに至った。
[1] CFCにおいて、分子量 100,000以上の全成分が 85°C以上の温度で溶出される。
[2] CFCの全溶出量に対する 80°C以下の溶出成分が 5%以下である。
本発明に係わるエチレン系重合体 (E)をブロー成形用途に用いる場合は、上記要件 に加えて、下記 [lb]〜[4b]の要件を全て満たすことが好ましい。
[lb] 炭素原子数 6〜10の α -ォレフィンから導かれる構成単位を 0.02〜0.50mol%含 む。
[2b] 135°C、デカリン中で測定した極限粘度([ η ])力 1.6〜2.8(dl/g)の範囲にある。
[3b] ASTM-D-790 に準拠して、 23°Cで測定した曲げ弾性率を M 力 600 M < 1500(MPa)を満たし、 ASTM-D-1693に準拠して測定した 50°Cにおける耐環境応 力破壌性 ESCR( r)を Tとした場合、 Tと前記 Mが下記式 (Eq-1)を満たす。
T≥- 0.8 XM + 1,210 (Eq-1) [4b] 動的粘弾性装置を用いて測定した 190°C、角周波数 100 rad/secにおける tan δ (=損失弾性率 G〃/貯蔵弾性率 G')が 0.6〜0.9の範囲にある。
なお、上記のエチレン系重合体、すなわち要件 [1]、 [2]、 [lb]; [2b], [3b]および [4b]を 同時に満たす、ブロー成形用途に好適に用いられるエチレン系重合体を、以下説明では エチレン系重合体 (Eb)と呼ぶ場合がある。
本発明に係わるエチレン系重合体 (E)を押出成形又は射出成形用途に用いる場合は、 上記要件に加えて、下記 [le]〜[5e]の要件を全て満たすことが好ましい。
[le] 炭素原子数 6〜: 10 のひ-ォレフィン力 導かれる構成単位を 0.02〜: l.20mol%含 . む。
[2e] 135°C、デカリン中で測定した極限粘度([ ])が、 · 2.0〜3.0(ώ/δ)の範囲にある。
[3e]キヤピラリーレオメータを使用し測定した、 210° (、せん断速度 194.57 sec-iにおけ る見かけのせん断応力が 7.0MPa以下である。
[4e] JIS K-6744に準拠し、 80°Cで測定した引張疲労特性で破断に至る回数が 10,000 回のときの実応力が 11〜: !7MPa、破断に至る回数が 100,000回のときの実応力が 9〜16MPaである。
[5e] JIS K-7118に準拠し、試料にノッチを付けずに 23°Cで測定した引張疲労特性で、 ' 破断に至る回数が 10,000 回のときの実応力が 18〜22MPa、破断に至る回数が
100,000回のときの実応力が 17〜21MPaである。
なお、上記のエチレン系重合体、すなわち要件 [1]、 [2]、 [le] , [2e]、 [3e]、 [4e]および [5e]を同時に満たす、押出成形用途または射出成形用途に好適に用いられるエチレン系 重合体を、以下説明ではエチレン系重合体 (Ee)と呼ぶ場合がある。
本発明は、上記のエチレン系重合体 (E)、エチレン系重合体 (Eb)またはエチレン 系重合体 (Ee)からなるブロー成形体、押出成形体、圧縮成形体または真空成形体 に関する。プロ一成形体の好ましい態様は、ガソリンタンク、工業薬品缶またはボト ル容器である。押出成形体の好ましい態様は、パイプ、電線被覆材または鋼管'鋼 線被覆材である。射出成形体の好ましい態様は、ノ、 °ィプ継ぎ手または自動車用部 品である。 図面の簡単な説明 第 1図は、実施例 2b記載のエチレン系重合体の CFC等高線図である。 第 2図は、比較例 lb記載のエチレン系重合体の CFC等高線図である。
第 3図は、本発明の実施例及び比較例に記載した代表的なエチレン系重合体につい て、 23°Cで測定した曲げ弾性率 M (MPa)と、 50°Cにおける耐環境応力破壊性 ESCR (T, hr)との関係をプロットした図である。
第 4図は、 23°C引張疲労用試験片を示した図である。
第 5図は、本発明の実施例と比較例記載の 80°C引張試験結果を示した図である。 第 6図は、本発明の実施例と比較例記載の 23°C引張試験結果を示した図である。 発明を実施するための最良の形態
以下、本発明のエチレン系重合体 (E)、この中でもブロー成形用途に好適に用いられ ' るエチレン系重合体 (Eb)及び押出成形用途または射出成形用途に好適に用いられるェ チレン系重合体 (Ee)について説明し、次いでこれらエチレン系重合体からなるブロー成 形体、押出成形体、圧縮成形体または真空成形体について説明する。 エチレン系重合体 E)
本発明に係わるエチレン系重合体 (E)は、炭素原子数 6〜: 10のひ-ォレフィンから導か れる構成単位を 0.02〜1.50mol%含むエチレン系重合体であり、通常はエチレンの単独 ' 重合体とエチレン/炭素原子数 6〜: 10の a -ォレフインとの共重合体力らなる。
ここで炭素原子数が 6〜10のひ-ォレフィン(以下単に「ひ-ォレフィン」と略称する場合 がある。)としては、例えば、 1-へキセン、 4-メチル -1-ペンテン、 3-メチル -1-ペンテン、 1-ォ クテン、 1-デセンなどが挙げられる。本発明においては、これらの c -ォレフィンの中で、 1- へキセン、 4-メチル -1-ペンテン、 1-ォクテンから選ばれる少なくても 1種を用レ、ることが好ま しレ、。 ォレフィンの炭素数が 5個以下の場合、 -ォレフィンが結晶中にとり込まれる確 率が高くなり(Polymer,Vol.31,1999頁, 1990年参照)、その結果強度が弱くなるので好ま しくない。ひ -ォレフィンの炭素数が 10個を超えると、流動の活性化エネルギーが大きくな つて、成形時の粘度変化が大きく好ましくない。また、ひ-ォレフィンの炭素数が 10個を超 えると、側鎖 (エチレンと共重合した α -ォレフインに起因する分岐)が結晶化する場合があ り、その結果としえ t非晶部が弱くなるので、好ましくない。 ひ-ォレフィンから導かれる繰り返し単位は通常 0.02〜1.50mol%、好ましくは 0.02〜 1.30mol%含まれる。更に好ましい濃度は、該ポリエチレン系重合体をどのような用途に用 レ、るかによって変動する。(詳細にっレ、ては後述)
本発明に係わるエチレン系重合体 (E)は、クロス分另 IJ (CFC)において、下記要件 [1]お よび [2]を同時に満たすことを特徴としている。
要件 ΓΠ
本発明のエチレン系重合体 (E)は、クロス分別 (CFC)において、分子量が 100,000以上 の全成分が 85°C以上の温度で溶出されるという特徴を持つ。実施例に記載した結果を例 にあげて要件 [1]を具体的に述べる。後述する実施例 2bにおいて用いたエチレン系重合 体の CFC分析において、分子量 (M)が 100,000以上(即ち、 Log M≥5.0)である成分が 溶出開始する温度は 94°Cであり、要件 [1]を充足する。このエチレン系重合体からなるブ ロー成形体は表 3bに示したように良好な耐環境応力破壊性 (ESCR)を示す。一方で比較 例 lbにおいて用いたエチレン系重合体は、 CFC分析において、分子量 (M)が 100,000以 上 (即ち、 Log M≥5.0)である成分が溶出開始する温度は 83°Cであり要件 [1]を満 さな レ、。このエチレン系重合体からなるブロー成形体は表 3bから分るように剛性(曲げ弾性 率)と耐環境応力破壌性 (ESCR)のバランスが実施例 2bのエチレン系重合体に比べて劣 る。すなわち、本発明のエチレン系重合体が、各種成形体用途において、剛性並びに流 動性を保持しつつ、長期寿命特性のバランスに優れた性能を有する成形体を与えるため には、要件 [1]を満たすことが必須であることを見出したのである。優れた剛性並びに流動 性を保持しつつ、長期寿命特性のバランスに優れる性能を有する成形体を与えるために は要件 [1]のみならず、次に述べる要件 [2]も同時に満たすことが好ましい。
要件 『21
本発明のエチレン系重合体 (E)は、 CFCの全溶出量に対する 80°C以下の溶出成分が 5%以下であるという特徴を持つ。(なお、〃% "とは、全溶出成分のピーク総面積に占める、 80°C以下の溶出成分に起因するピーク総面積の百分率である。 ) 実施例に記載した結 果を例として要件 [2]を具体的に述べる。後述する実施例 ¾において用いたエチレン系重 合体の CFC分析において、 80°C以下の溶出成分が占める割合は 1.9%であり要件 [2]を 充足する。このエチレン系重合体力 なるプロ一成形体は表 3b、 4bに示したように良好な 剛性(曲げ弾性率、座屈強度)と耐環境応力破壊性 (ESCR)のバランスを示す。一方で比 較例 lbにおいて用いたエチレン系重合体は、 CFC分析において、 80°C以下の溶出成分 が占める割合は 7.1%であり、要件 [2]を満たさなレ、。このエチレン系重合体からなるブロー 成形体は表 3b、 4b力も容易に理解されるように剛性(曲げ弾性率、座屈強度)と耐環境応 力破壊性 (ESCR)のバランス力 実施例 2bのエチレン系重合体に比べて劣る。 (なお、 CFCに関する上記要件 [1]と [2]に関して、実施例 2bと比較例 lb記載のエチレン系重合体 の違いは、添付した第 1図および第 2図の CFC等高線図力 も定性的な理解が可能で ある。)
要件 [1]および要件 [2]を同時に満たすエチレン系重合体は、 ォレフィンが共重合し た高分子量成分の α -ォレフィン含有量が少なく且つ (¾ -ォレフィンの組成が均一なこと、 または比較的分子量が低くかつ短鎖分岐を有するような成分を含有しないことを意味し、 その結果として成形体の強度や長期寿命特性が向上すると考えている。特開平
11-106432号公報記載のエチレン · α -ォレフィン共重合体は組成分布が広いために該範 囲を満たさず、 WO01/25328号公報記載のエチレン系重合体は比較的分子量が小さい 成分にも ォレフィンが共重合したことによる短鎖分岐が存在するために該範囲を満た さなレ、。従来のチーグラー触媒やクロム触媒など力 なるエチレン系重合体も組成分布が 広いので該範囲を満たさない。
後述する重合触媒を用い、後述する重合条件を設定することによって、上記要件 [1]お よび要件 [2]を同時に満たすエチレン系重合体 (Ε)を製造出来る。
上記のエチレン系重合体 (Ε)の中の好ましい形態は、大きく二種類に分かれ、一つは ブロー成形用途に好適に用いられるエチレン系重合体 (Eb)であり、他の一つは押出成形 用途や射出成形用途に好適に用いられるエチレン系重合体 (Ee)である。なお、「特定の 分野で好適」という表現は、その特定分野において本発明に関わる性能を遺憾なく発揮 することを意味する表現であり、該特定分野以外の分野での使用を何ら制限するもので はない。
エチレン系重合体 (Eb)
エチレン系重合体 (Eb)は、前記した要件 [1】および要件 [2]に加え、下記要件 [lb]〜
[4b]を同時に満たすエチレン系重合体であり、ブロー成形用途に好んで用いられる。
要件 ribl
炭素原子数 6〜: 10の ex -ォレフインから導かれる構成単位を通常 0.02〜0.50mol%含む c エチレン系重合体 (Eb)が、エチレン単独重合体を含まない場合、即ちエチレンと炭素原 子数 6〜10の α -ォレフインとの共重合体のみである場合は、エチレンから導かれる構成 単位は、通常 99.50〜99.98mol%、好ましくは 99.80〜99.98 mol%の割合で存在し、ひ-ォ レフインから導かれる繰り返し単位は通常 0.02〜0.50mol%、好ましくは 0.02〜0.20 mol% の割合で存在する。また、エチレン系重合体 (Eb)はエチレン単独重合体を含有してレ、る ことがあり、その場合エチレン' α -ォレフィン共重合体部分のエチレンから導かれる構成 単位は、通常 97.50〜99.96 mol%、好ましくは 99〜99.96 mol%の割合で存在し、ひ-ォレ フィンから導かれる繰り返し単位は 0.04〜2.50mol%、好ましくは 0.04〜: 1.00 mol%の割合 で存在する。なお、エチレン単独重合体を含む場合であっても、全重合体に占める ォ レフインから導かれる繰り返し単位は、通常 0.02〜0.50mol%、好ましくは 0.02-0.40 mol%である。
要件 『2bl
本発明のエチレン系重合体 (Eb)の 135°Cデカリン中で測定した極限粘度([ 77】)が 1.6 〜2.8dl/g、好ましくは 1.8〜2.8 dl/gの範囲にある。極限粘度がこれら範囲にあるェチレ ン系重合体は、機械的強度と成形性、耐環境応力破壊性 (ESCR)に優れる。例えば重合 器への水素、エチレン、 ひ-ォレフィンの供給量比、エチレン単独重合体とエチレン' α -ォ レフイン共重合体との重合量比などを変更することで、上記の数値範囲内で値を増減させ ることが出来る。具体的には溶媒をへキサンとした実施例 2bのスラリー重合において、系 内を均一になるように攪拌しながら重合を行うと、密度が 962 kg/m3、 [ ]が 2.15 dl/gど なり、第二重合槽に供給するエチレンを 4.3kg/hr、水素を 3.0N-リットル/ hr、 1-へキセン を 26g/hrとすると密度が 967 kg/m3、 [ η ]が 2.10 dl/gとなり、第一重合槽に供給するェ チレンを 7.0 kg/hr、水素は 40N-リットル/ hr、第二重合槽に供給するエチレンを 3.8 kg/hr、水素を 4.5N-リットル/ hr、 1-へキセンを 180g/hrとすると密度が 954 kg/m3、 [ η ] 力 S 2.43 dl/gとなる。
要件 『3bl
本発明に係わるエチレン系重合体 (Eb)は、 ASTM-D-790 に準拠して、 23°Cで測定し た曲げ弾性率を M、 ASTM-D-1693に準拠して測定した 50°Cにおける耐環境応力破壌 性 ESCR(hr)を Tとした場合、 600≤M≤l,800(MPa)を満たし、 Mと Tが下記関係式 (Eq-1)を満たす。 T≥ - 0.8 X M + 1,210 (Eq-1)
このようなエチレン系重合体は硬くて強いために、従来よりも成形品を薄くして使うこと が出来る。後述するような触媒系を用い、後述するような多段重合を実施する際に、重合 器への水素、エチレン、 α -ォレフィンの供給量比などを変更して各成分の分子量および 重合量比を制御することで、この範囲にあるエチレン系重合体を製造出来る。具体的に 述べると、実施例 4bに記載の条件で重合すると曲げ弾性率が l,490MPa、 ESCRが 177 時間で 50%破壊となり、または実施例 4bの条件において第一重合槽に供給する水素を 75N-リットル/ hrから 70N-リットル/ hrに、第二重合槽に供給する水素を 3.0N-リットル/ hr 力 4.0N-リットル/ hrに、第二重合槽に供給する 1-へキセンを 52g/hrから 65g/hrに変 更すると、曲げ弾性率が l,410MPa、 ESCRが 188時間で 50%破壊となる。
要件 「4bl
本発明に係わる、上記エチレン系重合体 (Eb)は、動的粘弾性装置を用いて測定した 190°C、角周波数 100 (rad/ sec)における tan δ (損失弾性率 G〃/貯蔵弾性率 G')が 0.6 〜0.9 の範囲にあることが好ましレ、。 tan δがこの範囲にあると、ブロー成形したときのピン チ融着性に優れる。低分子量エチレン重合体の分子量を大きぐ高分子量エチレン' α - ォレフィン共重合体の分子量を小さくする力または全体の分子量を小さくするほど、 tan δ が大きくなる傾向にある。なお、ピンチ融着性とは、押出機から押し出された筒状の溶融 樹脂,金型ではさんで融着させる際の、融着部に樹脂が盛り上がって良《つ付いている ことを示す。 tan δが大きいほど粘性が強いことを意味し、その場合に樹脂が盛り上がりや すいと考えられる。
.'' エチレン系重合体 (Ee)
エチレン系重合体 (Ee)は、前記した要件 [1]および要件 [2]に加え、下記要件 [le]〜[5e] を同時に満たすエチレン系重合体であり、押出成形用途や射出成形用途に好んでも用 レ、られる。
要件 nel
a -ォレフィンから導かれる繰り返し単位は通常 0.02〜1.20mol%を含む。エチレン系重 合体 (Ee)が、エチレン単独重合体を含まない場合、即ちエチレンと炭素原子数 6〜10の ひ-ォレフインとの共重合体のみである場合は、エチレンから導かれる構成単位は、 98.80
-99.98 mol%、好ましくは 99.0〜99.80 mol%の割合で存在し、ひ-ォレフィンから導かれ る繰り返し単位は通常 0.02〜1.2 mol%、好ましくは 0.02〜: l.00mol%の割合で存在する。 また、エチレン系重合体 (Ee)はエチレン単独重合体を含有していることがあり、その場合 エチレン · ォレフィン共重合体部分のエチレンから導かれる構成単位は、通常 95〜 99.96 mol%、好ましくは 97.5〜99.% mol%の割合で存在し、 α -ォレフィンから導かれる 繰り返し単位は 0.04〜5.00mol%、好ましくは 0.04〜2.50mol%の割合で存在する。なお、 エチレン単独重合体を含む場合であっても、全重合体に占める α -ォレフインから導かれ る繰り返し単位は、通常 0.02〜1.20mol%、好ましくは 0.02〜; l.00mol%である。
' 要件 「2el - 本発明のエチレン系重合体 (Ee)の 135°Cデカリン中で測定した極限粘度([ η ])が 2.0 〜3.0(dl/g)、好ましくは 2.0〜2.8(dl/g)の範囲にある。密度および極限粘度がこれら範囲 にあるエチレン系重合体は、流動性と機械的強度、硬さと成形性のバランスに優れる。例 えば重合器への水素、エチレン、 ひ -ォレフィンの供給量比、エチレン単独重合体とェチ レン · α -ォレフィン共重合体との重合量比などを変更することで、上記の数値範囲内で値 を増減させることが出来る。具体的には溶媒をへキサンとした実施例 3eのスラリー重合に おいて、系内を均一になるように攪拌しながら重合を行うと、密度が 954 kg/m3、 [ r? ]が 2.49 dl/gとなり、第二重合槽に供給するエチレンを 3.8kg/hr、水素を 4.0N-リットル/ hr、 1-へキセンを 180g/hrとすると密度が 954 kg/m3、 [ τ? ]が 2.85 dl/gとなり、第一重合槽に 供給するエチレンを 5.0kg/hr、水素は 65N-リットル/ hr、第二重合槽に供給するエチレン を 3.9 kg/hr、水素を 1.2N-リットル/ hr、 1-へキセンを llOg/hrとすると密度が 958kg/ m3 [ 77 ]が 3.21dl/gとなる。
要件 f3el
本発明に係るエチレン系重合体 (Ee)は、キヤビラリ一レオメータで測定した 210°C、せ ん断速度 194.57sec-iでの見かけのせん断応力が 7MPa以下である。内径が 0.5mm、キ ャピラリー長さが 3.0mmのキヤビラリ一ダイおょぴ、 9.55mmのバレルを使用し、試料を JIS K7199に準拠して、見かけのせん断速度が 194.57sec-iでの見かけのせん断応力が、該 範囲にあるエチレン系重合体は、一定押出速度、すなわち一定押出量における樹脂圧 力が低ぐ押出特性に優れる。後述するような触媒系を用い、後述するような多段重合を 実施する際に、各成分の分子量、エチレンと共重合するひ -ォレフインの量、組成分布、 重合量比を制御することで、この範囲にあるエチレン重合体を製造できる。 要件 f4gl
本発明のエチレン系重合体 (Ee)は、試料にノッチを付けて 80。Cで測定した引張疲労 特性で破断に至る回数が 10,000回のときの実応力が llMPa〜17MPa、破断に至る回数 力 S 100,000 回のときの実応力が. 9MPa〜16MPaの範囲にある。試料にノッチをつけて 80°Cで測定した引張疲労強度が該範囲にあるエチレン系重合体は破壌様式が脆性的で ある長期寿命特性に優れる。後述するような触媒系を用い、後述するような多段重合を実 施する際に、各成分の分子量、エチレンと共重合するひ -ォレフインの量、組成分布、重 ' 合量比、を制御することで、この範囲にあるエチレン系重合体を製造出来る。
要件 『5el
本発明のエチレン系重合体 (Ee)は、試料にノッチを付けずに 23°Cで測定した引張疲労 特性で、破断に至る回数が 10,000回のときの実応力が 18〜22MPa、破断に至る回数が 100,000回のときの実応力が 17〜21'MPaである。試料にノッチを付けずに 23°Cで測定し た引張疲労強度が該範囲にあるエチレン系重合体 (Ee)は破壊様式が延性的である長期 寿命特性に優れる。後述するような触媒系を用い、後述するような多段重合を実施する際 に、各成分の分子量、エチレンと共重合する a -ォレフインの量、組成分布、重合量比、を 制御することで、この範囲にあるエチレン系重合体を製造出来る。 エチレン系重合体の製造方法
以下、本発明のエチレン系重合体の好ましい製造方法について述べる力 前記した本 発明のエチレン系重合体の要件を具備する限りは、この好ましい製造方法に何ら束縛さ れるものではなくその他の製造方法を任意に用レ、ることが可能である。
本発明に係るエチレン系重合体は、好ましくは、 _
(A)シクロペンタジェニル基とフルォレ -ル基が第 14族原子を含む共有結合架橋によ つて結合されている遷移金属化合物と、
(B) (B-1) 有機金属化合物、
(B-2)有機アルミニウムォキシィ匕合物、および
(B-3)遷移金属化合物と反応してイオン対を形成する化合物
力 選ばれる少なくとも 1種の化合物と、担体(C)から形成されるォレフイン重合用触媒を 用いて、エチレンを単独重合させる力、またはエチレンと炭素原子数 6〜10の α -ォレフィン とを共重合させることによって得ることができる。以下、各成分 (A)、(B)、(C)の好ましい 態様について述べる。
(A)遷移金属化合物
遷移金属化合物 (A)は、以下に記載する一般式 (1)または (2)で表される化合物であ る。
Figure imgf000013_0001
… (1 )
Figure imgf000013_0002
(2〉 上記一般式(1)および (2)において、 R7、 R8、 R9、 R10、 RU、 R12、 R13、 R14、 R15、 R16、 R17
Ris、 Ri9および R2Qは水素原子、炭化水素基、ハロゲン含有炭化水素基、ケィ素含有炭 化水素基から選ばれ、それぞれ同一でも'異なっていてもよぐ R7〜Risまでの隣接した置 換基は互いに結合して環を形成してもよぐ A は一部不飽和結合および/または芳香族 とを共重合させることによって得ることができる。以下、各成分 (A)、(B)、(C)の好ましい 態様について述べる。
(A)遷移金属化合物
遷移金属化合物 (A)は、以下に記載する一般式 (1)または (2)で表される化合物であ る。
Figure imgf000014_0001
上記一般式(1)および (2)において、 R7、 R8、 R9、 RM、 RU、 R12、 R13、 R14、 R15、 R16、 R1
Ris、 R19および R2Gは水素原子、炭化水素基、ハロゲン含有炭化水素基、ケィ素含有炭 化水素基から選ばれ、それぞれ同一でも'異なっていてもよぐ R7〜Ri8までの隣接した置 換基は互いに結合して環を形成してもよぐ A は一部不飽和結合および/または芳香族
12 環を含んで 、てもよレ、炭素原子数 2〜20の 2価の炭化水素基であり、 Yとともに環構造を 形成しており、 Aは Yと共に形成する環を含めて 2つ以上の環構造を含んでいてもよく、 Yは炭素またはケィ素であり、 Mは周期律表第 4族から選ばれた金属であり、 Qはハロゲ ン、炭化水素基、ァニオン配位子または孤立電子対で配位可能な中性配位子から同一 または異なる組合せで選んでもよぐ jは 1〜4の整数である。
上記一般式 (1)または (2)で表される遷移金属化合物(A)の中で、好んで用いられる化 合物は、 R7〜Ri。が水素であり、 Yが炭素であり、 Mが Zrであり、 jが 2の化合物である。 上記一般式 (1)で表される遷移金属化合物(A)の中で、 R12、 R13、 R16、 Ri7が総て炭化 水素基である化合物が好んで用いられる。
また、上記一般式 (1) で表される遷移金属化合物 (A)の中で、共有結合架橋部の架橋 原子 Y力 相互に同一でも異なっていてもよいァリール基を有する化合物 (すなわち、 R19 と R20が相互に同一でも異なっていてもよいァリール基である化合物)が好んで用いられる。 ァリール基としては、フエニル基、ナフチル基、アントラセニル基および、これらの芳香族 水素(sp2型水素)の一つ以上が置換基で置換された基を例示することができる。なお置 換基としては、総炭素数 1力 20の炭化水素基 (fl)、総炭素数 1力 20のケィ素含有基 (f2) 、ハロゲン原子が挙げられる。総炭素数 1から 20の炭化水素基 (fl)は、炭素および 水素のみ力 構成されるアルキル、アルケニル、アルキニル、ァリール基以外に、これらの 炭素に直結した水素原子の一部がハロゲン原子、酸素含有基、窒素含有基、,ケィ素含有 基で置換されたへテロ原子含有炭化水素基や、 接する任意の二つの水素原子が脂環 族を形成してレ、るものも含む。このような基 (fl)としては、メチル基、ェチル基、 n-プロピル 基、ァリル (allvl)基、 n-ブチル基、 n-ペンチル基、 n-へキシル基、 n-ヘプチル基、 n-ォクチ ル基、 n-ノニル基、 n-デカニル基などの直鎖状炭化水素基;イソプロピル基、 t-ブチル基、 アミル基、 3-メチルペンチル基、 1,1-ジェチルプロピル基、 1,1-ジメチルブチル基、 1-メチル 一 1一プロピルブチル基、 1,1-プロピルブチル基、 1,1-ジメチノレ- 2-メチルプロピル基、 1-メチル -1-イソプロピル- 2-メチルプロピル基などの分岐状炭化水素基;シクロペンチル基、シクロ へキシル基、シクロへプチル基、シクロォクチル基、ノルボル二ノレ基、ァダマンチル基など の環状飽和炭化水素基;フエニル基、ナフチル基、ビフヱニル基、フエナントリル基、アント ラセニル基などの環状不飽和炭化水素基およびこれらの核アルキル置換体;ベンジル基、 タミル基などのァリール基の置換した飽和炭化水素基;メトキシ基、エトキシ基、フエノキシ
13 基 N-メチルァミノ基、トリフルォロメチル基、トリブロモメチル基、ペンタフルォロェチル基、 ペンタフルオロフェニル基などのへテロ原子含有炭化水素基を挙げることができる。
ケィ素含有基 (f2)とは、例えば、シクロペンタジェニル基の環炭素がケィ素原子と直接 共有結合している基であり、具体的にはアルキルシリル基ゃァリールシリル基である。総 炭素数 1から 20のケィ素含有基 (f2)としては、トリメチルシリル基、トリフエニルシリル基等 を例示することができる。
一般式 (1)における共有結合架橋部の架橋原子 Yに結合した、相互に同一でも異なつ ていてもよいァリール基として、具体的にはフエニル基、トリル基、 t-プチルフエ二ル基、ジ メチルフエニル基、ビフエ二ル基、シクロへキシルフェニル基、 (トリフルォロメチル)フエ二 ル基、ビス(トリフルォロメチル)フエニル基、クロ口フエ二ル基、ジクロロフエ二ル基を例示 することがでさる。
後述する本出願実施例で使用した遷移金属化合物 (A)は具体的には下記式 (3)およ び (4)で表される化合物ある力 本発明においてはこの遷移金属化合物に何ら限定され るものではない。
Figure imgf000016_0001
電子 GSH-270)および FD-質量分析(日本電子 SX- 102A)を用いて構造決定した,
14 (B-l)有機金属化合物
本発明で必要に応じて用いられる (B-l)有機金属化合物として、具体的には下記のよう な周期律表第 1、 2族および第 12、 13族の有機金属化合物が挙げられる。
一般式 RamAl(ORb)nHpXq
(式中、 Raおよび Rbは、互いに同一でも異なっていてもよぐ炭素原子数が 1〜: 15、好 ましくは 1〜4の炭化水素基を示し、 Xはハロゲン原子を示し、 mは 0く m^3、 nは 0≤n く 3、 pは 0≤p<3、 qは 0≤q<3の数であり、かつ m+n+p+q=3である。;)で表される有 機アルミニウム化合物である。
後述する本願実施例において用いたアルミニウム化合物はトリイソプチルアルミニウム、 またはトリェチルアルミニウムである。
(B-2)有機アルミニウムォキシィ匕合物
本発明で必要に応じて用いられる (B-2)有機アルミニウムォキシ化合物は、従来公知の アルミノキサンであってもよぐまた特開平 2-78687号公報に例示されているようなベンゼ ン不溶性の有機アルミニウムォキシ化合物であってもよい。
後述する本願実施例において使用した有機アルミニウムォキシ化合物は市販されてい る日本アルキルアルミ株式会社製の MAO(=メチルアルモキサン) /トルエン溶液である。
(B-3)遷移金属化合物と反応してイオン対を形成する化合物 '
本発明の架橋メタ口セン化合物 (A)と反応してイオン対を形成する化合物 (B-3) (以下、 「イオンィ匕イオン性化合物」とレ、う。 )としては、特開平 1-501950号公報、特開平 1-502036 号公報、特開平 3-179005号公報、特開平 3-179006号公報、特開平 3-207703号公報、 特開平 3-207704号公報、 US5321106号公報などに記載されたルイス酸、イオン性ィ匕合物、 ボラン化合物およびカルポラン化合物などを挙げることができる。さらに、ヘテロポリ化合 物およびイソポリ化合物も挙げることができる。このようなイオン化イオン性化合物 (B-3)は、 1種単独でまたは 2種以上組み合せて用レ、られる。
なお、後述する本願実施例において使用した(B)成分としては、今回上記に示した (B-1)および (B-2)の 2つを用いてレ、る。
(C)微粒子状担体
本発明で必要に応じて用いられる(C)微粒子状担体は、無機または有機の化合物で あって、顆粒状ないしは微粒子状の固体である。このうち無機化合物としでは、多孔質酸
15 化物、無機ハロゲン化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。こ のような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく 用いられる担体は、粒径が:!〜 300 m、好ま くは 3〜200 i mであって、比表面積が 50 〜1000(m2/g)、好ましくは 100〜800(m2/g)の範囲にあり、細孔容積が 0.3〜3.0(cm3/g) の範囲にあることが望ましレ、。このような担体は、必要に応じて 80〜: 1000° (、好ましくは 100〜800°Cで焼成して使用される。なお、後述する本願実施例において用いた担体は、 特にことわらない限り平均粒径が 12 z m、比 ¾面積が 800(m2/g)であり、細孔容積が l.O(cmVg)である旭硝子株式会社製の Si〇2を用いた。
本発明に係るォレフィン重合用触媒は、本発明の架橋メタ口セン化合物 (A)、(B-1)有 機金属化合物、 (B-2)有機アルミニウムォキシ化合物、および (B-3)イオン化イオン性化 合物から選ばれる少なくとも 1種の化合物(B)、必要に応じて微粒子状担体(C)と共に、 必要に応じて後述するような特定の有機ィ匕合物成分 (D)を含むこともできる。
(D)有機化合物成分
本発明において、(D)有機化合物成分は、必要に応じて、重合性能および生成ポリマ —の物性を向上させる目的で使用される。このような有機化合物としては、アルコール類、 フエノール性化合物、カルボン酸、リンィ匕合物およぴスルホン酸塩等が挙げられる。
本発明のエチレン系重合体は、上記のようなォレフィン重合用触媒を用いて、 ¾述のよ うにエチレンを単独重合させるかまたはエチレンと炭素原子数 6〜: 10のひ-ォレフィンとを 共重合させることにより得られる。
重合の際には、各成分の使用法、添加順序は任意に選ばれる力 以下のような方法、 (P1)〜(P10)が例示される。
(P1) 成分 (A)と、(B-1)有機金属化合物、(B-2)有機アルミニウムォキシ化合物および (B-3)イオン化イオン性化合物から選ばれる少なくとも 1種の成分 (B) (以下単に 「成分 (B) jという。 )とを任意の順序で重合器に添加する方法。
(P2)成分 (A)と成分 (B)を予め接触させた触媒を重合器に添加する方法。
(P3) 成分 (A)と成分 (B)を予め接触させた触媒成分、および成分(B)を任意の順序 で重合器に添加する方法。この場合各々の成分 (B)は、同一でも異なっていても よい。
(P4) 成分 (A)を微粒子状担体 (C)に担持した触媒成分、および成分 (B)を任意の順
16 W 序で重合器に添加する方法。
(P5)成分 (A)と成分 (B)とを微粒子状担体 (C)に担持した触媒を、重合器に添加する 方法。
(P6)成分 (A)と成分 (B)とを微粒子状担体 (C)に担持した触媒成分、および成分 (B) を任意の順序で重合器に添加する方法。この場合各々の成分 (B)は、同一でも異 なっていてもよい。
(P7) 成分 (B)を微粒子状担体 (C)に担持した触媒成分、および成分 (A)を任意の順 序で重合器に添加する方法。
(P8)成分 (B)を微粒子状担体 (C)に担持した触媒成分、成分 (A)、および成分 (B)を ' 任意の順序で重合器に添加する方法。この場合各々の成分(B)は、同一でも異 なっていてもよい。
(P9) 成分 (A)と成分 (B)とを微粒子状担体 (C)に担持した触媒を、成分 (B)と予め接 触させた触媒成分を、重合器に添加する方法。この場合各々の成分 (B)は、同一 でも異なっていてもよい。
(P10)成分 (A)と成分 (B)とを微粒子状担体 (C)に担持した触媒を、成分 (B)と予め接 触させた触艇成分、および成分(B)を任意の順序で重合器に添加する方法。この 場合各々の成分 (B)は、同一でも異なっていてもよい。
上記の (P1)〜 (P10)の各方法においては、各触媒成分の少なくとも 2つ以上は予め接 触されていてもよい。
上記の微粒子状担体 (C)に、成分 (A)および成分 (B)が担持された固体触媒成分は ォレフィンが予備重合されていてもよい。この予備重合された固体触媒成分は、通常固体 触媒成分 当たり、ポリオレフインが 0.1〜1000g、好ましくは 0.3〜500g、特に好ましくは 1 〜200gの割合で予備重合されて構成されている。
また、重合を円滑に進行させる目的で、帯電防止剤やアンチファゥリング剤などを併用 したり、担体上に担持しても良い。
重合は溶解重合、懸濁重合などの液相重合法または気相重合法のいずれにおいても 実施できるが、生産性の視点から懸濁重合および気相重合法が好んで採用される。
液相重合法 おいて用いられる不活性炭化水素媒体として具体的には、プロパン、ブ タン、ペンタン、へキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化
17 水素;シクロペンタン、シクロへキサン、メチルシクロペンタンなどの脂環族炭化水素;ベン ゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロ ロメタンなどのハロゲンィ匕炭化水素またはこれらの混合物などを挙げることができ、又ォレ フィン自身を溶媒として用レ、ることもできる。
上記のようなォレフィン重合用触媒を用いて、 (共)重合を行うに際して、成分 (A)は、 反応容積 1リットル当り、通常 10-i2〜10-2モル、好ましくは lO-w〜: 10-3モルになるような量 で用いられる。
必要に応じて用いられる成分 (B-1)は、成分 (B-1)と、成分 (A)中の遷移金属原子 (M)と のモル比 [(B-l)/M]が、通常 0.01〜: 100,000、好ましくは 0.05〜50,000となるような量で用 レヽられる。
必要に応じて用いられる成分 (B-2)は、成分 (B-2)中のアルミニウム原子と、成分 (A)中 の遷移金属原子(M)とのモル比 [(B-2)/M]力 S、通常 10〜500,000、好ましくは 20〜 100,000となるような量で用いられる。
必要に応じて用いられる成分 (B-3)は、成分 (B-3)と、成分 (A)中の遷移金属原子 (M)と のモル比 [(B-3)/M]力 通常 1〜: 100、好ましくは 2〜80となるような量で用いられる。 必要に応じて用いられる成分 (D)は、成分(B)が成分 (B-1)の場合には、モル比 [ (D) / (B-1) ]が通常 0.01〜: 10、好ましくは 0.1〜5となるような量で、成分 (B)が成分 (B-2)の場 合には、モル比 [(DV (B-2) ]が通常 0.001〜2、好ましくは 0.005〜1となるような量で、成 分 (B)が成分 (B-3)の場合には、モル比 [ (D) I (B-3) ]が通常 0.01〜: 10、好ましくは 0.1〜5 となるような量で用いられる。
重合温度は、通常- 50〜十 250°C、好ましくは 0〜200°C、特に好ましくは 60〜: 170°Cの 範囲である。重合圧力は、通常常圧〜 100(kg/cm2) 、好ましくは常圧〜 50(kg/cm2)の条 件下であり、重合反応は、回分式 (バッチ式)、半連続式、連続式のいずれの方法におい ても行うことができる。重合は、通常気相または重合粒子が溶媒中に析出しているスラリ^" 相で行う。さらに重合を反応条件の異なる 2段以上に分けて行う。このうち、バッチ式で行 うことが好ましい。また、スラリー重合または気相重合の場合、重合温度は好ましくは 60〜 90° (、より好ましくは 65〜85°Cである。この温度範囲で重合することで、より組成分布が狭 レ、エチレン系重合体が得られる。得られた重合体は数十〜数千 μ τη φ程度の粒子状で ある。重合器が二つ以上力 なる連続式で重合した場合には、良溶媒に溶解後に貧溶媒
18 に析出させる、特定の混練機で十分に溶融混練するなどの操作が必要となる。
本発明に係るエチレン系重合体を例えば二段階で製造する場合、前段階で極限粘度 力 S 0.3〜1.8(dl/g)のエチレン単独重合体を製造し、後段階で極限粘度が 3.0〜 10.0(dl/g)の(共)重合体を製造する。この順番は逆でもよい。
このようなォレフィン重合用触媒はエチレンと共重合させる α -ォレフィン (例えば 1-へキ セン)に対しても極めて高い重合性能を有するため、所定の重合が終了した後で、高すぎ る α -ォレフィン含量の共重合体が生成しないような工夫が必要である。例えば、重合槽 内容物を重合槽から抜き出すと同時あるいは可及的速やかに、①溶媒分離装置で重合 体と溶媒、未反応 ォレフィンとを分離する方法、②該内容物に窒素などの不活性ガス を加えて溶媒、未反応 a -ォレフィンを強制的に系外へ排出する方法、③該内容物にか かる圧力を制御して溶媒、未反応 α -ォレフィンを強制的に系外へ排出する方法、④該内 容物に多量の溶媒を添加して実質的に重合が起こらないと考えられる濃度まで未反応 α -ォレフインを希釈する方法、⑤メタノールなどの重合用触媒を失活させる物質を添加する 方法、⑥実質的に重合が起こらないと考えられる温度まで該内容物を冷却する方法など を挙げること力 Sできる。 これらの方法は単独で実施してもよいし、いくつかを組み合わせ て実施してもよい。
得られるエチレン系重合体の分子量は、重合系に水素を存在させるか、または重合温 度を変化させることによって調節することができる。さらに、使用する成分 (Β)の違いにより 調節することもできる。
重合反応により得られた重合体粒子は、以下の方法によりペレツトイ匕してもよい。
(1)エチレン系重合体粒子おょぴ所望により添加される他の成分を、押出機、ニーダー 等を用いて機械的にブレンドして、所定の大きさにカットする方法。
(2)エチレン系重合体および所望により添加される他の成分を適当な良溶媒 (例えば、 へキサン、ヘプタン、デカン、シクロへキサン、ベンゼン、トルエンおよびキシレン等の炭化 水素溶媒)に溶解し、次いで溶媒を除去、しかる後に押出機、ニーダ一等を用いて機械 的にブレンドして、所定の大きさにカットする方法。
本発明に係わるエチレン系重合体には、本発明の目的を損なわない範囲で、耐候性 安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、アンチブロッキング剤、防曇剤、滑 剤、染料、核剤、可塑剤、老化防止剤、塩酸吸収剤、酸化防止剤などの添加剤やカーボ
19 ンブラック、酸化チタン、チタンイェロー、フタロシアニン、イソインドリノン、キナクリドン化 合物、縮合ァゾ化合物、群青、コバルトブルー等の顔料が必要に応じて配合されていても よい。
エチレン系重合体からなる成形体
本発明のエチレン系重合体は、ブロー成形体、インフレーション成形体、キャスト成形 体、押出ラミ成形体、パイプや異形などの押出成形体、発泡成形体、射出成形体、真空 成形体などに成形することができる。さらに繊維、モノフィラメント、不織布などに使用する こと力 Sできる。これらの成形体には、エチレン系重合体からなる部分と、他の樹脂からなる 部分とを含む成形体 (積層体等)が含まれる。なお、該エチレン系重合体は成形過程で 架橋されたものを用いてもよい。上記の成形体の中でも、ブロー成形体、押出成形体およ ぴ射出成形体は優れた特性を与えるので好ましい。
本発明のブロー成形体の好ましい態様は、ボトル容器、工業薬品缶およびボトル容器 である。上記のようにして調製される中空成形体は、漂白剤容器、洗剤容器、柔軟剤容器 などの用途に適しており、たとえば化粧品、衣料用洗剤、住居用洗剤、柔軟仕上げ剤、シ ヤンブー、リンス、コンディショナー等の容器に用いられる。
また、灯油缶、発電機や、芝刈り機、二輪車、自動車等のガソリンタンクや、農薬や、薬 品保存用のェ薬缶、ドラム缶等にも用いることができる。また、マヨネーズや、食用油を保 管する食品用途や、医療品を保管する中空成形体としても用レ、られる。
また、これらの用途では食品を酸化力 保護する目的や、ガソリンなどの内容物の透過 を抑制することを目的とした多層成形体としても好適に用いられる。
本発明の押出成形体の好ましい態様は、パイプ、電線被覆材または鋼管.鋼線被覆材 である。上記のようにして調製される押出成形体は、ガス用のパイプ、上下水道管、農業 用水'工業用水等の輸送に用いられるパイプ、光ファイバ一等の情報通信設備を保存す る用途を含めた雑多な内容物を保護する為のパイプにも用いられる。また、錶鉄管の内 部を腐食する鋼管被覆材ゃ、建築物を支えるワイヤー等の保護に用いられる鋼線被覆材 としても好適に用いられる。これらの押出成形体や短期 ·長期破壊しないことが求められて おり、本発明の樹脂を用レ、る事は製品寿命を長くするためにも有効である。
本発明の射出成形体の好ましい態様は、パイプ継手または自動車用部品である。パイ プ継手や自動車用部品は中空成形体や、押出成形体に融着して用いるためにも好んで
20 用いられる。パイプ継手にはエレクトロンフュージョン継手、ヒートフュージョン継手等の由 着方法、また、 目的に応じた配管の連結 ·分岐法により様々な形態が存在するが、いずれ の形態にも成形性と物性特に、製品が長期破壌しないことから好適に用いることができる。 特にウエルド部の破壌および押出成形により作成されたパイプ本体との融着部の信頼性 を長期間高める点において、本発明の製品を用レ、ることは有効である。
自動車用部品の多くは中空成形体であるガソリンタンクの機能性を高める為の融着部 品として用いられることが多い。本発明の製品を用いることで、ウエルド部および融着部の 長期信頼性を高めることが可能である。
以下、本発明の実施例を述べるが、本発明はこれら実施例に何ら限定されるものでは ない。なお、本発明に記載された各種物性の測定方法、測定用試料の調製方法は次の 通りである。 - ★測定用試料の調製
粒子状のエチレン系重合体 100重量部に対して、二次抗酸化剤としてのトリ(2,4 -ジ -t- ブチルフエニル)フォスフェートを 0.20重量部、耐熱安定剤としての n-ォクタデシル -3- (4'- ヒドロキシ -3',5'-ジ -t-ブチルフエニル)プロピネートを 0.20重量部、塩酸吸収剤としてのステ アリン酸カルシウムを 0.15重量部配合した。し力る後にプラコ一社製単軸押出機 (スクリュ 一径 65讓、 L/D=28,スクリーンメッシュ #40/ # 60/ #300X4/ #60/ #40)を用い、設 定温度 200°C、樹脂押出量 25kg/hrで造粒して測定用試料とした。
★エチレン含量、ひ-ォレフィン含量の測定
13C-NMRによりエチレン重合体の分子鎖中におけるエチレン含量、 α -ォレフィン含量 を測定した。測定は日本電子 (株)社製 Lambda 500型核磁気共鳴装置 (1Η:500ΜΗζ) を用いた。積算回数 1万〜 3万回にて測定した。直径 10mm市販の NMR測定石英ガラ ス管中に、サンプル 250〜400mgと和光純薬工業 (株)社製特級へキサクロ口ブタジエン 2mlを入れ、 120°Cにて加熱、均一分散させた溶液について NMR測定を行った。 NMR スペクトルにおける各吸収の帰属は、化学の領域増刊 141号 NMR-総説と実験ガイド [1]、 132頁〜 133頁に準じて行った。なお、測定温度 120°C、測定周波数 125.7MHz、スぺタト ル幅 250,000Hz 、パルス繰返し時間 4.5秒、 45° パルスの測定条件下で測定を行った。 ★クロス分別 (CFC)
三菱油化社製 CFC T-150A型を用い以下のようにして測定した。分離カラムは Shodex
21 AT-806MS 3 本であり、溶離液は 0-ジクロロベンゼンであり、試料濃度は 0.1〜 0.3wt/vol%であり、注入量は 0.5mlであり、流速は l.Oml/minである。試料は 145°C、 2 時間加熱後、 0°Cまで 10°C/hrで降温、更に 0°Cで 6Qmin保持して試料をコーティング させた。昇温溶出力ラム容量は 0.86ml、配管容量は 0.06ml である。検出器は FOXBORO社製赤外分光器 MIRAN 1 A CVF型 (CaF2セル)を用い、応答時間 10秒の 吸光度モードの設定で、 3.42 z m (2924cm-1)の赤外光を検知した。溶出温度は 0°C〜 145°Cまでを 35〜55フラクションに分け、特に溶出ピーク付近では 1°Cきざみのフラクショ ンに分けた。温度表示は全て整数であり、例えば 90°Cの溶出画分とは、 89°C〜90°Cで溶 出した成分のことを示す。 0°Cでもコーティングされな力つた成分および各温度で溶出した ' フラクションの分子量を測定し、汎用較正曲線を使用して、 PE換算分子量を求めた。 SEC , 温度は 145°Cであり、内標注入量は 0.5mlであり、注入位置は 3.0mlであり、データサン プリング時間は 0.50秒である。なお、狭い温度範囲で溶出する成分が多すぎて、圧力異 常が生じる場合には、試料濃度を 0.1wt/vol%未満とする場合もある。データ処理は、装 置付属の解析プログラム「(: FCデータ処理 (バージョン 1.50)」.で実施した。なお、クロス分 別(CFC)それ自身は、測定条件を厳密に同一にすれば高い分析精度でもって結果を再 現する分析法であると言われてレ、るが、本発明の実施例にぉレ、ては測定を複数回行レ、そ の平均をとつた。
★重量平均分子量 (Mw)、数平均分子量 (Mn)および分子量曲線
ウォーターズ社製 GPC-150Cを用い以下のようにして測定した。分離カラムは、 TSKgel GMH6-HT及び TSKgel GMH6-HTLであり、カラムサイズはそれぞれ内径 7.5mm、長さ 600mmであり、カラム温度は 140°Cとし、移動相には o-ジクロロベンゼン (和光純薬工業) および酸化防止剤として BHT (武田薬品) 0.025重量%を用い、 l.Oml/minで移動させ、 試料濃度は 0.1重量%とし、試料注入量は 500 μ ΐとし、検出器として示差屈折計を用いた。 標準ポリスチレンは、分子量が Mwく 1,000および Mw>4X106については東ソ一社製 を用レ、、 l/000≤Mw≤4 X 106についてはプレッシャーケミカル社製を用いた。分子量計 算は、ユニバーサル校正して、ポリエチレンに換算して求めた値である。
★極限粘度([ η ])
デカリン溶媒を用いて、 135°Cで測定した値である。すなわち造粒ペレット約 20mgをデ カリン 15mlに溶解し、 135°Cのオイルパス中で比粘度 η spを測定する。このデカリン溶液
22 にデカリン溶媒を 5ml追加して希釈後、同様にして比粘度 spを測定する。この希釈操 作をさらに 2回繰り返し、濃度 (C)を 0に外揷した時の η SpZCの値を極限粘度として求め る(下式参照)。
Figure imgf000025_0001
★密度 (d)
190°Cに設定した神藤金属工業社製油圧式熱プレス機を用い、 lOOkg/cm2の圧力で 0.5mm厚のシートを成形し(スぺーサ一形状; 240 X 240 X 0.5mm厚の板に 45 X 45 X 0.5mm, 9個取り)、 20°Cに設定した別の神藤金属工業社製油圧式熱プレス機を用い、 100kg/cm2の圧力で圧縮することで冷却して測定用試料を作成した。熱板は 5mm厚 の SUS板を用いた。このプレスシートを 120°Cで 1時間熱処理し、 1時間かけて直線的に 室温まで徐冷したのち、密度勾配管で測定した。
★メルトフローレート (MFR)の測定
MFRは ASTM D1238-89に準拠して、温度 190°Cで、荷重 5kg及び 21.6kgで測定。 ★プレスシートの耐環境応力亀裂試験: ESCR(hr)
190°Cに設定した神藤金属工業社製油圧式熱プレス機を用い、 100(kg/cm2)の圧力で 2mm厚のシートを成形し (スぺーサ一形状; 240 X 240 X 2mm厚の板に 80 X 80 X2mm、 4 個取り)、 20°Cに設定した別の神藤金属工業社製油圧式熱プレス機を用い、 100kg/cm2の圧力で圧縮することで冷却して測定用試料を作成した。熱板は 5mm厚の SUS板を用レ、た。上記の 80 X 80 X 2mm厚プレスシートより、 13mm X 38mmの試験片ォ 一ダーンベルにより打ち抜き、評価試料に供した。また、耐環境応力破壌 (ESCR)性は、 ASTM D1693に準じて実施した。評価条件 (ベントストリップ法)の概略を以下に示した。
サンプル形状:プレス成形 C法
スぺシメン: 38x13mm 厚さ 2mm (HDPE)
ノッチ長さ: 19mm,深さ 0.35mm
試験温度: 50°C 恒温水槽 50.0±0.5°Cに制御できるもの
サンプルの保持:内寸 11.75mm長さ 165mmのスぺシメンホルダーに専用の折り 曲げ冶具を用いてセットする
界面活性剤:ノニルフエュルポリオキシエチレンエタノール (AntaroxCO-630の商 品名で市販)を水で希釈して 10%濃度で使用する。
23 評価法: F50破壌時間 (50%破壌時間)は対数確率紙を用レヽて求める。
★プレスシートの曲げ弹性率試験
JIS 6922-2 (表 3) 「一般的性質及びその試験条件」の曲げ弾性率の項の記載に従レ、、 JIS K7171 に記載の曲げ特性の試験方法に準じて評価を行った。すなわち、成形温度 180°C、平均冷却速度 15°C/min、 40°Cにて取り出した 4mm厚のプレスシートから、長さ 80mm,幅 10mm、厚さ 4mmの試験片を打ち抜き、 23°Cにて、支持間距離 64mm、試 験速度 2.0mm/minにて曲げ弾性率を測定した。
★tan δ (=損失弾性率 G〃/貯蔵弾性率 G') '
ね η δの詳細は、例えば高分子刊行会、「講座'レオロジ一」日本レオロジ一学会編 20 〜23ページに記載されてレ、る。測定は、レオメトリックス社製レオメーター RDS-II用い、貯 蔵弾性率 G' (Pa)と損失弾性率 G" (Pa)の角周波数 [ω ( dZsec)]分散を測定した。サ ンプルホルダーは 25mm φのパラレルプレートを用レ、、サンプル厚みは約 2mmとした。 測定温度は 190°Cとし、 0.0 ≤ ω≤400の範囲で G'、 G"を測定した。測定点は ω—桁当 たり 5点とした。歪み量は、測定範囲でのトルクが検出可能で、かつトルクオーバーになら なレ、よう、 2〜25%の範囲で適宜選択した。
★ボトルの座屈強度、耐環境応力破壌 (ESCR)性測定およびピンチオフ性を見るため のボトルの作成
プラコ一社製押出ブロー成形機 (機種名 :3Β 50-40-40)を用いて、設定温度 180°C、ダイ 径 23mm φ、コア径 21mm φ、押出量 12kg/hr、金型温度 25°C、型締速度 1.4秒、型締 め圧 5.5t、吹き込み空気圧 5(kg/ cm2)の条件でブロー成形を行レ、、内容量 l,000cc、目 付 50gの円筒瓶を得た。
★ボトルの耐環境応力破壊 (ESCR)性
上記のように作成したボトノレ中に花王製キッチンノヽイタ一を lOOcc充填した後、口部を 樹脂でシールし、 65°Cのオーブン中に保持して破壊時間を観察し、対数確率紙を用いて F50破壊時間を求めた。
★ボトルのピンチオフ性 (ピンチ部肉厚比の測定)
上記のようにブロー成形して得られたボトルの底部を金型の合わせ面と直角をなす方 向に切った時、ボトル中心部の厚さを a、最も肉厚の部分の厚さを bとすると、ピンチ部肉 厚比は (a/b)で表される。この値が大きレ、ほどピンチ形状は良好である(図 5参照)。
24 ★ボトルの座屈強度測定
上記のようにブロー成形して得られたボトルを正立させ、 23°Cにて試験速度 20 mm/minにてボトル天面部から底方向に荷重を加え、圧縮した際に生じた最大荷重を座 屈強度として記録した。
★見かけのせん断応力の測定
測定は東洋精機社製キヤピラリーレオメータを用いて、キヤビラリ一ダイの内径が 0.5mm,長さが 3.0mmのものをセットし、試料を JIS 7199に準拠して、温度が 190°Cで の見かけのせん断速度が 194.57sec-iとなる速度で、見かけのせん断応力を測定する。こ こでキヤピラリーレオメータのバレル径は 9.55mmのものを使用した。
*80°Cの引張疲労強度
190°Cに設定した神藤金属工業社製油圧式熱プレス機を用レ、、 100(kg/cm2)の圧力で 6mm厚のシートを成形し(スぺーサ一形状: 200 X 200 X 6mm厚の板に 30 X 60 X 6mm、 4 個取り)、 20°Cに設定した別の神藤金属工業社製油圧式熱プレス機を用い、 100(kg/cm2)の圧力で圧縮することで冷却して、 80°C引張疲労強度測定用の試料を作成 した。 30 X 60 X 6mm厚プレスシートより、タテ 5〜6minXョコ 6mm X長さ 60mmの角柱 に切削し、実測定用の評価試料とした。
弓 I張疲労強度 (試験片形状)は、島津製作所製サーボパルサー EHF-ER1KN X 4-40L 型を用いて、 JIS -6774に準拠。(全周ノッチ式、ノッチ深さ 1mm) 評価条件の概略は 以下の通り;試験片形状 (5〜6 X 6 X 60mm角柱ノッチ入り)、試験波形および試験周波 数 (矩形波 0.5Hz)、試験温度 (80°C)、実応力が 10〜: L8MPaの範囲で数点測定し、試料 が破壊したときの振動回数を疲労強度とした。なお、少なくとも実応力が異なる 3点以上 で測定し、破断回数で 3桁以上または実応力で 3MPa以上の範囲で測定し、対数近似の 最小二乗法で近似式を'作成して、破断回数が 10,000回および 100,000回のときに相当す る実応力を求める。 - 女23での引張疲労強度
190°Cに設定した神藤金属工業社製油圧式熱プレス機を用い、 100(kg/cm2)の圧力で 第 4図に示す 3mm厚のダンベル (ASTM D-1822 Type-S)を成形し (スぺーサ一形 状: 240 X 240 X 3mm厚の板に ASTM D-1822 Type-Sの形状を作成)、 20°Cに設定 した別の神藤金属工業社製油圧式熱プレス機を用レ、、 100(kg/cm2)の圧力で圧縮するこ
25 とで冷却して、 23°C引張疲労強度測定用の試料を作成した。熱版は 5mm厚の SUS板を 用いた。引張疲労強度は、島津製作所製サーボパルサー EHF-FG10 N-4LA型を用い て、 JIS K7118に準拠して測定した。評価条件の概略を以下に示した。
試験形状: ASTM D-1822 Type-S 図 3記載のダンベル、ノッチ無し
Figure imgf000028_0001
試験温度: 23°C
引張疲労試験は、ロードセルの最低荷重を 4.9N(0.5kgf)—定とし、最高荷重を試験前 試験片の中央部断面積で補正した実応力が 14〜27Mpaの範囲で上述の評価条件で (試験温度、試験波形、試験周波数)で数点測定した。試料が、 50%伸びた時を破壊とみ なし、この時の振動回数を最高荷重の実応力での疲労強度とした。破断回数で一桁以上 または実応力で IMPa以上の範囲で測定し、対数近似の最小二乗法で近似式を作成し ,て、破断回数が 10,000回、および 100,000回の時に相当する実応力を求める。
[合成例 1]
[固体触媒成分(c の調製]
200°Cで 3時間乾燥したシリカ 8.5kgを 33リットルのトルエンで懸濁状にした後、メチル アルミノキサン溶液(A1-1.42モル/リットル) 82.7リットルを 30分かけて滴下した。次いで 1.5時間かけて 115°Cまで昇温し、その温度で 4時間反応させた。その後 60°Cまで降温し、 上澄み液をデカンテーシヨン法によって除去した。得られた固体触媒成分をトルエンで 3 回洗浄した後、トルエンで再懸濁化して固体触媒成分(ひ )を得た (全容積 150リットル)。
[合成例 2]
[担持触媒の調製]
充分に窒素置換した反応器中に、トルエンに懸濁させた合成例 1にて合成した固体触 媒成分(ひ)をアルミニウム換算で 19.60molを入れ、その懸濁液を攪拌しながら、室温下 (20〜25°C)でジ(P-トリル)メチレン(シクロペンタジェニル)(ォクタメチルォクタヒドロジべ ンゾフルォレニル)ジルコニウムジクロライド 31.06(mmol/リットル)溶液を 2 リットル (61.12mmol)加えた後、 60分攪拌した。攪拌を停止後、上澄み液をデカンテーシヨンで 取り除き、 n-へキサン 40リットルを用いて洗浄を 2回行い、得られた担持触媒を n-へキサ ンにリスラリーし 25リットルの触媒懸濁液として、固体触媒成分 ( γ )を得た。 [固体触媒成分 ( y )の予備重合による固体触媒成分( δ )の調製]
攪拌機つき反応器に窒素雰囲気下、精製 η_へキサン 15.8リットル、および上記固体触 媒成分(γ )を投入した後、トリイソブチルアルミニウム 5molをカ卩え、攪拌しながら、固体成 分 lg当たり 4時間で 3gのポリエチレンを生成相当量めエチレンで予備重合を行った。 重合温度は 20〜25°Cに保った。重合終了後、攪拌を停止後、上澄み液をデカンテーショ ンで取り除き、 n-へキサン 35リットルを用いて洗浄を 4回行い、得られた担持触媒を n-へ キサン 20リットルにて触媒懸濁液として、固体触媒成分( δ )を得た。
【実施例 】
[重合]
第 1重合槽に、へキサンを 45(リットル/ hr)、合成例 2で得た固体触媒成分( δ )を Zr 原子に換算して 0.07(mmol/hr)、トリェチルアルミニウムを 20(mmol/hr)、エチレンを 7.0(kg/hr)、水素を 40(N-リットル/ hr)で連続的に供給し、更に、 B型粘度計を用いて 25°Cで測定した粘度が 500(mPa's)である(ポリエチレングリゴール)(ポリプロピレングリコ ール)ブロックコポリマー(第一工業製薬 (株)製、商品名 EPAN720)を 0.5g/hrで連続的 に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出し ながら、重合温度 80°C、反応圧 7.6(kg/cm2G)、平均滞留時間 2.6hrという条件で重合 を行った。
第 1重合槽力 連続的に抜出された内容物は、内圧 0.30(kg/cm2G)、 60°Cに保たれた フラッシュドラムで未反応エチレンおよび水素が実質的に除去された。
その後、該内容物は、へキサン 43(リットル/ hr)、エチレン 3.0(kg/hr)、水素 5.5(N-リット ル /hr)、 1-へキセン 110(g/hr)とともに第 2重合槽へ連続的に供給され、重合温度 75°C、 反応圧 3.3(kgZcm2G)、平均滞留時間 1.4hrという条件で弓 iき続き重合を行った。
第 2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続 的に抜出した。 1-へキセンを多量に含む重合体の生成など、意図しない重合を防止する ために、第 2重合槽力 抜き出した内容物へメタノールを 2(リットル/ hr)で供給し重合用 触媒を失活させた。その後、該内容物中のへキサン及び未反応モノマーを溶媒分離装置 で除去、乾燥し重合体を得た。
該重合粒子 100重量部に対して、二次抗酸化剤としてのトリ(2,4-ジ小ブチルフヱニル) フォスフェートを 0.20重量部、耐熱安定剤としての n-ォクタデシノレ- 3- (4'-ヒドロキシ -3',5'-
27 ジ -t-プチルフヱニル)プロピネートを 0.20重量部、塩酸吸収剤としてのステアリン酸カルシ ゥムを 0.15重量部配合した。し力る後にプラコ一社製単軸押出機 (スクリュー径 65mm、 L/D=28、スクリーンメッシュ 40/60/300 X4/60/40)を用い、設定温度 200°C、樹脂押出 量 25kg/hrで造粒して測定用試料とした。該試料を用いてプレスシートを作成して、物性 を測定した。結果を表 lb〜 に示す。比較例と比べて剛性と ESCRとのバランスに優れる。 また、該試料を用レ、てボトル成形をして、物性を測定した結果を表 4bに示す。ボトル成形 体は比較例と比べて剛性と ESCRに優れる。
【実施例 2b
[重合]
第 1重合槽に、へキサンを 45(リットル/ hr)、合成例 2で得た固体触媒成分( δ )を Zr 原子に換算して 0.2(mmol/hr)、トリェチルアルミニウムを 20(mmol/hr)、エチレンを 11.0(kg/hr)、水素を 75(N-リットル/ hr)で連続的に供給し、更に、 B 型粘度計を用いて 25°Cで測定した粘度が 370(mPa's)である(ポリエチレンダリゴール)(ポリプロピレングリコ ール)ブロックコポリマー(旭電化(株)製、商品名アデカプル口-ックレ 71)を 0.8(g/hr)で 連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に 抜出しながら、重合温度 85°C、反応圧 7.5(kg/cm2G)、平均滞留時間 2.4hrという条件で 重合を行った。
第 1重合槽から連続的に抜出された内容物は、内圧 0.30(kg/cm2G)、 60°Cに保たれ たフラッシュドラムで未反応エチレンおよび水素が実質的に除去された。
その後、該内容物は、へキサン 43(リットル/ hr)、エチレン 5.5(kg/hr)、水素 4.0(N-リット ル /hr)、 1-へキセン 98(g/hr)とともに第 2重合槽へ連続的に供給され、重合温度 75°C、 反応圧 2.9(kgZcm2G)、平均滞留時間 1.3hrという条件で弓 ίき続き重合を行った。
第 2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続 的に抜出した。 1-へキセンを多量に含む重合体の生成など、意図しない重合を防止する ために、第 2重合槽力 抜き出した内容物へメタノールを 2(リットル/ hr)で供給し重合用 触媒を失活させた。その後、該内容物中のへキサン及び未反応モノマーを溶媒分離装置 で除去、乾燥し重合体を得た。
該重合粒子 100重量部に対して、実施例 lbで用いたのと同様の二次抗酸ィヒ剤、耐熱 安定剤および塩酸吸収剤を同量部配合した。し力、る後にプラコ一社製単軸押出機を用レ、、
28 実施例 1で用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。該試 料を用いてプレスシートを作成して、物性を測定した。結果を表 lb〜3bに示す。比較例と 比べて剛性と ESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性 を測定した結果を表 4bに示す。ボトル成形体は比較例と比べて剛性と ESCRに優れる。 【実施例 3b
[重合]
第 1重合槽に、へキサンを 45(リットル /1 )、合成例 2で得た固体触媒成分( δ )を Zr 原子に換算して 0.2(mmol/hr)、トリェチルアルミニウムを 20(mmol/hr)、エチレンを 11.0(kg/hr)、水素を 80(N-リットル/ hr)で連続的に供給し、更に、 B型粘度計を用いて 25°Cで測定した粘度が 370(mPa's)である(ポリエチレンダリゴール)(ポリプロピレングリコ ール)ブロックコポリマー(旭電化 (株)製、商品名アデカプル口ニック L-71)を 0.8(g/hr)で 連続的に供給し、.かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に 抜出しながら、重合温度 85°C、反応圧 7.6(kg/cm2G)、平均滞留時間 2.4hrという条件で 重合を行った。
第 1重合槽力 連続的に抜出された内容物は、内圧 030(kg/cm2G)、60°Cに保たれた フラッシュドラムで未反応エチレンおよび水素が実質的に除去された。
その後、該内容物は、へキサン 43(リットル/ hr)、エチレン 5.5(kg/hr)、水素 3.4(N-リット ル /hr)、 1-へキセン 66(g/hr)とともに第 2重合槽へ連続的に供給され、重合温度 75°C、 反応圧 3.0(kg/cm2G)、平均滞留時間 1.3hrという条件で引き続き重合を行った。
第 2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続 的に抜出した。 1-へキセンを多量に含む重合体の生成など、意図しない重合を防止する ために、第 2重合槽力 抜き出した内容物へメタノールを 2(リットル/ hr)で供給し重合用 触媒を失活させた。その後、該內容物中のへキサン及び未反応モノマーを溶媒分離装置 で除去、乾燥し重合体を得た。
該重合粒子 100重量部に対して、実施例 lbで用レ、たのと同様の二次抗酸化剤、耐熱 安定剤おょぴ塩酸吸収剤を同量部配合した。しカ^)後にプラコ一社製単軸押出機を用い、 実施例 lbで用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。該試 料を用いてプレスシートを作成して、物性を測定した。結果を表 lb〜3bに示す。比較例と 比べて剛性と ESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性
29 を測定した結果を表 4bに示す。ボトル成形体は比較例と比べて剛性と ESCRに優れる。 【実施例 4b
[重合]
第 1重合槽に、へキサンを 45(リットル /hr)、合成例 2で得た固体触媒成分( δ )を Zr 原子に換算して 0.1(mmol/hr)、トリェチルアルミニウムを 20(mmol/hr)、エチレンを 7.0(kg/hr) 水素を 75(N-リットル/ hr)で連続的に供給し、更に、 B型粘度計を用いて 25°Cで測定した粘度が 370(mPa's)である(ポリエチレンダリゴール)(ポリプロピレングリコ ール)ブロックコポリマー(旭電化 (株)製、商品名アデカプル口ニック L-71)を 0.8(g/hr)で 連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に 抜出しながら、重合温度 85°C、反応圧 7.5(kg/cm2G)、平均滞留時間 2.6hrとレ、う条件で 重合を行った。
第 1重合槽力 連続的に抜出された内容物は、内圧 0.30(kg/cm2G)、 60°Cに保たれた フラッシュドラムで未反応エチレンおよび水素が実質的に除去された。
その後、該内容物は、へキサン 43(リットル /hr)、エチレン 3.5(kg/hr)、水素 3.0(N-リット ル /hr)、 1-へキセン 52(g/hr)とともに第 2重合槽へ連続的に供給され、重合温度 75。C、 反応圧 3.2(kg/cm2G)、平均滞留時間 1.3hrという条件で引き続き重合を行った。
第 2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続 的に抜出した。 1-へキセンを多量に含む重合体の生成など、意図しない重合を防止する ために、第 2重合槽力 抜き出した内容物へメタノールを 2(リットル/ hr)で供給し重合用 触媒を失活させた。その後、該内容物中のへキサン及び未反応モノマーを溶媒分離装置 で除去、乾燥し重合体を得た。
該重合粒子 100重量部に対して、実施例 lbで用いたのと同様の二次抗酸ィヒ剤、耐熱 安定剤および塩酸吸収剤を同量部配合した。し力る後にプラコ一社製単軸押出機を用い、 実施例 lbで用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。該試 料を用レ、てプレスシートを作成して、物性を測定した。結果を表 lb〜3bに示す。比較例と J:匕べて剛性と ESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性 を測定した結果を表 4bに示す。ボトル成形体は比較例と比べて剛性と ESCRに優れる。 【実施例 5b
[重合]
30 第 1重合槽に、へキサンを 45(リットル/ hr)、合成例 2で得た固体触媒成分( δ )を Zr 原子に換算して 0.13(mmol/hr)、トリェチルアルミニウムを 20immol/hr)、エチレンを 11.0(kg/hr)、水素を 50(N-リットル/ hr)で連続的に供給し、更に、 B型粘度計を用いて 25°Cで測定した粘度が 370(mPa's)である(ポリエチレンダリゴール)(ポリプロピレングリコ ール)ブロックコポリマー(旭電化 (株)製、商品名アデカプル口ニックレ71)を 0.8(g/hr)で 連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に 抜出しながら、重合温度 75°C、反応圧 7.5(kg/cm2G)、平均滞留時間 2.6hrという条件で ' 重合を行った。
第 1重合槽力 連続的に抜出された内容物は、内圧 0.30(kg/cm2G)、 60°Cに保たれた フラッシュドラムで未反応エチレンおよび水素が実質的に除去された。
その後、該内容物は、へキサン 43(リットル/ hr)、エチレン 4.7(kg/hr)、水素 3.0(N-リット ル /hr)、 1-へキセン 97(g/hr)とともに第 2重合槽へ連続的に供給され、重合温度ク 5°C、 反応圧 3.2(kg/cm2G)、平均滞留時間 1.3hrという条件で引き続き重合を行った。 .
第 2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続 的に抜出した。 1-へキセンを多量に含む重合体の生成など、意図しない重合を防止する ために、第 2重合槽力 抜き出した内容物へメタノールを 2(リットル/ hr)で供給し重合用 触媒を失活させた。その後、該内容物中のへキサン及び未反応モノマーを溶媒分離装置 で除去、乾燥し重合体を得た。
該重合粒子 100重量部に対して、実施例 lbで用いたのと同様の二次抗酸化剤、耐熱 安定剤および塩酸吸収剤を同量部配合した。し力る後にプラコ一社製単軸押出機を用い、 実施例: Uで用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。該試 料を用レ、てプレスシートを作成して、物性を測定した。結果を表 lb〜3bに示す。比較例と 比べて剛性と ESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性 を測定した結果を表 4bに示す。ボトル成形体は比較例と比べて剛性と ESCRに優れる。 【実施例 6b
[重合]
第 1重合槽に、へキサンを 45(リットル/ hr)、合成例 2で得た固体触媒成分( δ )を Zr 原子に換算して 0.1(mmol/hr)、トリェチルアルミニウムを 20(mmol/hr)、エチレンを 9.1(kg/hr)、水素を 50(N-リットル/ hr)で連続的に供給し、更に、 B型粘度計を用いて
31 25°Cで測定した粘度が 370(mPa's)である(ポリエチレンダリゴール)(ポリプロピレングリコ ール)ブロックコポリマー(旭電化 (株)製、商品名アデカプル口ニック L-71)を 0.8(g/hr)で 連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に 抜出しながら、重合温度 75°C、反応圧 7.5(kg/cm2G)、平均滞留時間 2.6hrという条件で 重合を行った。
第 1重合槽力 連続的に抜出された内容物は、内圧 0.30(kg/cm2G)、 60°Cに保たれた フラッシュドラムで未反応エチレンおよび水素が実質的に除去された。
その後、該内容物は、へキサン 43(リットル/ lu:)、エチレン 3.9(kg/hr)、水素 1.0(N-リット ル /hr)、 1-へキセン 100(g/hr)とともに第 2重合槽へ連続的に供給され、重合温度 75° (、 反応圧 3.2(kg/cm2G)、平均滞留時間 1.3hrという条件で引き続き重合を行った。
第 2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続 的に抜出した。 1-へキセンを多量に含む重合体の生成など、意図しない重合を防止する ために、第 2重合槽から抜き出した内容物へメタノールを 2(リットル/ hr)で供給し重合用 触媒を失活させた。その後、該内容物中のへキサン及び未反応モノマーを溶媒分離装置 で除去、乾燥し重合体を得た。
該重合粒子 100重量部に対して、実施例 lbで用いたのと同様の二次抗酸ィヒ剤、耐熱 安定剤および塩酸吸収剤を同量部配合した。し力る後にプラコ一社製単軸押出機を用い、 実施例 lbで用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。該試 料を用いてプレスシートを作成して、物性を測定した。結果を表 lb〜3bに示す。比較例と 比べて剛性と ESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性 を測定した結果を表 4bに示す。ボトル成形体は比較例と比べて剛性と ESCRに優れる。 '【実施例 7b
[重合]
第 1重合槽に、へキサンを 45(リットル/ hr)、合成例 2で得た固体触媒成分( δ )を Zr 原子に換算して 0.1(mmol/hr)、トリェチルアルミニウムを 20(mmol/hr)、エチレンを 7.0(kg/hr) 水素を 75(N-リットル/ hr)で連続的に供給し、更に、 B型粘度計を用いて 25°Cで測定した粘度が 370(mPa's)である(ポリエチレンダリゴール)(ポリプロピレングリコ ール)ブロックコポリマー(旭電化 (株)製、商品名アデカプル口ニック L-71)を 0.8(g/hr)で 連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に
32 抜出しながら、重合温度 85°C、反応圧 7.5(kg/cm2G)、平均滞留時間 2.6 rという条件で 重合を行った。 . 第 1重合槽力 連続的に抜出された内容物は、内圧 0.30(kg/cm2G)、 60°Cに保たれた フラッシュドラムで未反応エチレンおよび水素が実質的に除去された。
その後、該內容物は、へキサン 43(リットル/ hr)、エチレン 3.5(kg/ktr)、水素 3.0(N-リット ル /hr)、 1-へキセン 150(g/hr)とともに第 2重合槽へ連続的に供給され、重合温度 75°C、 反応圧 3.2(kg/cm2G)、平均滞留時間 1.3hrという条件で弓 Iき続き重合を行った。
第 2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続 的に抜出した。 1-へキセンを多量に含む重合体の生成など、意図しない重合を防止する ために、第 2重合槽力 抜き出した内容物へメタノールを 2(リットル/ hr)で供給し重合用 触媒を失活させた。その後、該内容物中のへキサン及び未反応モノマーを溶媒分離装置 で除去、乾燥し重合体を得た。
該重合粒子 100重量部に対して、実施例 lbで用いたのと同様の二次抗酸化剤、耐熱 安定剤および塩酸吸収剤を同量部配合した。しかる後にプラコ一社製単軸押出機を用レ、、 実施例 lbで用レ、たのと同様の設定温度、樹月旨押出量で造粒して測定用試料とした。該試 料を用いてプレスシートを作成して、物性を測定した。結果を表 lb〜3bに示す。比較例と 比べて剛性と ESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性 を測定した結果を表 4bに示す。ボトル成形体は比較例と比べて剛性と ESCRに優れる。
[比較例 lb]
三井化学社製ハイゼックス 6008B製品ペレットを測定用試料とした。コモノマーは 1-ブ テンである。また、該試料を用いてプレスシートを作成して、物性を測定した。結果を表 lb 〜3bに示す。実施例と比較すると、剛性と ESCR性とのバランスに劣ることが分った。ま た、該試料を用いてボトル成形をして、物性を測定した結果を表 4bに示す。ボトル成形体 は実施例と比べて劣る。
[比較例 2b]
三井化学社製ハイゼックス 6700B製品ペレットを用いてプレスシートを作成して、物性 を測定した。結果を表 lb〜3bに示す。実施例に比べて剛性に劣り、 ESCR性もさほど良く ない。また、該試料を用いてボトル成形をして、物性を測定した結果を表 4bに示す。ポト ル成形体は実施例と比べて劣る。
33 [比較例 3b]
日本ポリエチレン社製ノバテック HD HB332R製品ペレットを用いてプレスシートを作成 して、物性を測定した。結果を表 lb〜3bに示す。実施例に比べて、岡 IJ性と ESCR性ともに 劣る。また、該試料を用いてボトル成形をして、物性を測定した結果を表 4bに示す。ボトル 成形体は実施例と比べて劣る。 '
【実施例 le
[重合]
第 1重合槽に、へキサンを 45リットル/ hr、合成例 2で得た固体触媒成分( δ )を Zr 原子に換算して 0.08(rranol/hr)、トリェチルアルミニウムを 20(mmol/hr)、エチレンを 7.0(kg/hr)、水素を 45(N-リットル/ hr)で連続的に供給し、更に、 B 型粘度計を用いて 25°Cで測定した粘度が 500(iiiPa's)である(ポリエチレンダリゴール)(ポリプロピレングリコ ール)ブロックコポリマー(第一工業製薬 (株)製、商品名 EPAN720)を 0.5(g/hr)で連続 的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出 しながら、重合温度 85°C,反応圧 7.5(kg/cm2G)、平均滞留時間 2.6 iとレ、う条件で重合 を行った。
第 1重合槽力 連続的に抜出された内容物は、内圧 0.30(kg/cm2G)、 60°Cに保たれ たフラッシュドラムで未反応エチレンおよび水素が実質的に除去された。
その後、該内容物は、へキサン 43(リットル/ hr)、エチレン 5.5(kg/hr)、水素 5.0(N-リット ル /hr)、 1-へキセン 270(g/hr)とともに第 2重合槽へ連続的に供給され、重合温度 75°C、 反応圧 2.3(kg/cm2G)、平均滞留時間 1.4hrという条件で弓 Iき続き重合を行った。
第 2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続 的に抜出した。 1-へキセンを多量に含む重合体の生成など、意図しない重合を防止する ために、第 2重合槽力 抜き出した内容物へメタノールを 2(リットル/ r)で供給し重合用 触媒を失活させた。その後、該内容物中のへキサン及び未反応モノマーを溶媒分離装置 で除去、乾燥し重合体を得た。
この重合粒子 100重量部に対して、二次抗酸化剤としてのトリ(2,4-ジ -t-ブチルフエ二 ル)フォスフェートを 0.1 重量部、耐熱安定剤としての n-ォクタデシルふ(4'-ヒドロキシ -S1 1-ジ -t-ブチルフエニル)プロピネートを 0.1重量部、塩酸吸収剤としてのステアリン酸力
34 ルシゥムを 0.10重量部配合する.。しかる後にプラコ一社製単軸押出機(スクリュー径 65mm, L/D=28スクリーンメッシュ 40/60/300 X4/60/40)を用い、設定温度 200°C、樹 脂押出量 25(kg/hr)で造粒した。また、該試料を用いてそれぞれの評価用のためのプレ スシートを作成して、測定用試料とした。 結果を表 le〜5eに示す。この試料は、比較例 2eや比較例 3eで用いた試料に比べて 80°Cの引張疲労強度が極めて高い。また、見かけ のせん断応力が比較例 2eや比較例 3eと同程度であることから成形性は遜色の無いこと が分かる。さらに、比較例 leで用いた試料と比較すると、 80°Cの引張疲労強度は同等以 上であり、見かけのせん断応力が比較例 leに比べて著しく低ぐ成形性が非常に良いこと がわかる。即ち、比較例と比較して引張疲労強度と成形性のバランスが非常に良いことが わ力る。
【実施例 2e
[重合]
第 1重合槽に、へキサンを 45(リットル/ hr)、合成例 2で得た固体触媒成分( δ )を Zr 原子に換算して 0.07(mmol/hr)、トリェチルアルミニウムを 20(mmol/hr)、エチレンを 7.0(kg/hr),水素を 40(N-リットル/ hr)で連続的に供給し、更に、 B 型粘度計を用いて 25°Cで測定した粘度が 500(mPa's)である(ポリエチレンダリゴール)(ポリプロピレングリコ ール)ブロックコポリマー(第一工業製薬 (株)製、商品名 EPAN720)を 0.5(g/hr)で連続 的に供給し、力 重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出 しながら、重合温度 80°C、反応圧 7.4(kg/cm2G)、平均滞留時間 2.6hrという条件で重合 を行った。
第 1重合槽から連続的に抜出された内容物は、内圧 0.30(kg/cm2G)、 60°Cに保たれた フラッシュドラムで未反応エチレンおよび水素が実質的に除去された。
その後、該内容物は、へキサン 43(リットル/ hr)、エチレン 3.8(kg/hr)、水素 4.5(N-リット ル /hr)、 1-へキセン 180(g/hr)とともに第 2重合槽へ連続的に供給され、重合温度 75°C、 反応圧 3.5(kg/cm2G)、平均滞留時間 1.4hrという条件で引き続き重合を行った。
第 2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続 的に抜出した。 1-へキセンを多量に含む重合体の生成など、意図しない重合を防止する ために、第 2重合槽力 抜き出した内容物へメタノールを 2(リットル/ hr)で供給し重合用 触媒を失活させた。その後、該内容物中のへキサン及び未反応モノマーを溶媒分離装置
35 で除去、乾燥し重合体を得た。
該重合粒子 100重量部に対して、実施例 leで用いたのと同様の二次抗酸化剤、耐熱 安定剤および塩酸吸収剤を同量部配合した。しかる後にプラコ一社製単軸押出機を用い、 実施例 leで用いたのと同様の設定.温度、樹月旨押出量で造粒して測定用試料とした。 ま た、該試科を用レ、てそれぞれの評価用のためのプレスシートを作成して、測定用試料とし た。結果を表 le〜5eに示す。この試料は実施例 leと同様に、比較例と比較して引張疲労 強度と成形性のバランスが非常に良いことがわかる。
【実施例 3e
[重合]
第 1重合槽に、へキサンを 45(リットル/ hr)、合成例 2で得た固体触媒成分( δ )を Zr 原子に換算して 0.07(mmol/hr)、トリェチルアルミニウムを 20(mmol/hr)、エチレンを 7.0(kg/hr)、水素を 40(N-リットル/ r)で連続的に供給し、更に、 B 型粘度計を用いて 25。Cで測定した粘度が 370mPa'sである(ポリエチレンダリゴール)(ポリプロピレングリコ ール)ブロックコポリマ一(旭電化 (株)製、商品名アデカプル口ニックレ 71)を 0.8(g/hr)で 連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に 抜出しながら、重合温度 80°C、反応圧 7.4(kg/cm2G)、平均滞留時間 2.6hrという条件で 重合を行った。
第 1重合槽から連続的に抜出されだ内容物は、内圧 0.30(kg/cm2G)、 60°Cに保たれた フラッシュドラムで未反応エチレンおよび水素が実質的に除去された。
その後、該内容物は、へキサン 43(リットル/ hr)、エチレン 3.8(kg/hr)、水素 4.5(N-リット ル /hr)、 1-へキセン 220(g/hr)とともに第 2重合槽へ連続的に供給され、重合温度 75°C、 反応圧 3.5(kg/cm2G)、平均滞留時間 1.4hrという条件で弓 Iき続き重合を行った。
第 2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続 的に抜出した。 1-へキセンを多量に含む重合体の生成など、意図しない重合を防止する ために、第 2重合槽力 抜き出した内容物へメタノールを 2(リットル/ hr)で供給し重合用 触媒を失活させた。その後、該内容物中のへキサン及び未反応モノマーを溶媒分離装置 で除去、乾燥し重合体を得た。
該重合粒子 100重量部に対して、実施例 leで用いたのと同様の二次抗酸化剤、耐熱 安定剤および塩酸吸収剤を同量部配合した。しかる後にプラコ一社製単軸押出機を用い、
. 36 実施例 leで用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。 ま た、該試料を用いてそれぞれの評価用のためのプレスシートを作成して、測定用試料とし た。結果を表 〜 5eに示す。この試料は実施例 leと同様に、比較例と比較して引張疲労 強度と成形性のバランスが非常に良いことがわかる。
【実施例 4e
[重合]
第 1重合槽に、へキサンを 45(リットル/ hr)、合成例 2で得た固体触媒成分( δ )を Zr 原子に換算して 0.19(rranol/hr)、トリェチルアルミニウムを 20(mmol/hr)、エチレンを 11.0(kg/hr)、水素を 50(N-リットル/ hr)で連続的に供給し、更に、 B 型粘度計を用いて 25°Cで測定した粘度が 370mPa'sである(ポリエチレンダリゴール)(ポリプロピレングリコ ール)ブロックコポリマー(旭電化 (株)製、商品名アデカプル口ニック L-71)を 0.8(g/hr)で 連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に 抜出しながら、重合温度 75°C、反応圧 7.6(kg/on2G)、平均滞留時間 2.4hrという条件で 重合を行った。
第 1重合槽力 連続的に抜出された内容物は、内圧 0.30(kg/cm2G)、 60°Cに保たれた フラッシュドラムで未反応エチレンおよび水素が実質的に除去された。
その後、該内容物は、へキサン 43(リットル/ hr)、エチレン 7.3(kg/hr)、水素 5.0(N-リット ル /hr)、 1-へキセン 270(g/hr)とともに第 2重合槽へ連続的に供給され、重合温度 75°C、 反応圧 3.2(kg/cm2G)、平均滞留時間 1.2hrという条件で引き続き重合を行った。
第 2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続 的に抜出した。 1-へキセンを多量に含む重合体の生成など、意図しない重合を防止する ために、第 2重合槽力 抜き出した内容物へメタノールを 2(リットル/ hr)で供給し重合用 触媒を失活させた。その後、該内容物中のへキサン及び未反応モノマーを溶媒分離装置 で除去、乾燥し重合体を得た。
該重合粒子 100重量部に対して、実施例 leで用いたのと同様の二次抗酸化剤、耐熱 安定剤および塩酸吸収剤を同量部配合した。し力る後にプラコ一社製単軸押出機を用い、 実施例: leで用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。 ま た、該試料を用いてそれぞれの評価用のためのプレスシートを作成して、測定用試料とし た。結果を表 le〜5eに示す。この試料は実施例 leと同様に、比較例と比較して引張疲労
37 強度と成形性のハ"ランスが非常に良いことがわかる。
【実施例 5e】 .
[重合]
第 1重合槽に、へキサンを 45(リットル/ hr)、合成例 2で得た固体触媒成分( δ )を Zr 原子に換算して 0.13(mmol/hr)、トリェチルアルミニウムを 20(mmol/hr)、エチレンを 8.1 (kg/hr),水素を 60(N-リットル/ hr)で連続的に供給し、更に、 B型粘度計を用いて 25°Cで 測定した粘度が 370mPa'sである(ポリエチレングリゴール)(ポリプロピレングリコール)ブ ロックコポリマー(旭電化 (株)製、商品名アデカプル口ニック L-71)を 0.8(g/hr)で連続的 に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出し ながら、重合温度 75°C、反応圧 7.5(kg/cm2G)、平均滞留時間 2.4hrとレ、う条件で重合を 行った。
第 1重合槽から連続的に抜出された内容物は、内圧 030(kg/cm2G)、 60°Cに保たれた フラッシュドラムで未反応エチレンおよび水素が実質的に除去された。
その後、該内容物は、へキサン 43(リットル/ hr)、エチレン 6.6(kg/hr)、水素 5.0(N-リット ル / r)、 1-へキセン 163(g/hr)とともに第 2重合槽へ連続的に供給され、重合温度 75°C、 反応圧 3.2(kg/cm2G)、平均滞留時間 1.2hrという条件で弓 Iき続き重合を行った。
第 2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続 的に抜出した。 1-へキセンを多量に含む重合体の生成など、意図しない重合を防止する ために、第 2重合槽力 抜き出した内容物へメタノールを 2(リットノ /hr)で供給し重合用 触媒を失活させた。その後、該内容物中のへキサン及び未反応モノマーを溶媒分離装置 で除去、乾燥し重合体を得た。
該重合粒子 100重量部に対して、実施例 leで用いたのと同様の二次抗酸化剤、耐熱 安定剤および塩酸吸収剤を同量部配合した。しかる後にプラコ一社製単軸押出機を用い、
.実施例 leで用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。 ま た、該試料を用いてそれぞれの評価用のためのプレスシートを作成して、測定用試料とし た。結果を表 le〜5eに示す。この試料は実施例 leと同様に、比較例と比較して引張疲労 強度と成形性のハ"ランスが非常に良いことがわかる。
[比較例 1
三井化学社製ハイゼックス 7700M製品ペレットを測定用試料とした。コモノマーは 1-ブ
38 テンである。また、該試料を用いてプレスシートを作成して、物性を測定した。結果を表 le 5eに示す。この試料は、実施例に比べて 80°C引張疲労測定による疲労強度は同等程 度であるが、見かけのせん断応力が実施例に比べて高く、成形性が著しく劣ることが分か る。
[比較例 2e]
三井化学社製ハイゼックス 6300M製品ペレットを測定用試料とした。コモノマーは 1-ブ テンである。また、該試料を用いてプレスシートを作成して、物性を測定した。結果を表 le 5eに示す。この試料は、実施例と比べると見かけのせん断応力は同等程度であるが、 実施例に比較して 80°C引張疲労強度が著しく弱レ、ことが分力る。
[比較例 3e]
三井化学社製ネオゼッタス 4005M製品ペレットを測定用試料とした。コモノマーは 1-ブ テンである。また、該試料を用いてプレスシートを作成して、物性を測定した。結果を表 le 5eに示す。この試料は、実施例と比べると見かけのせん断応力は同等程度だ力 実施 例に比較して 80°C引張疲労強度が著しく弱いことが分かる。
[表 lb]
Figure imgf000041_0001
39 [¾2b]
Figure imgf000042_0001
I表 3b]
Figure imgf000042_0002
40 [表 le]
Figure imgf000043_0001
【表 2e]
Figure imgf000043_0002
【表 3e]
Figure imgf000043_0003
41 80°C引張疲労
破断回数 9528 15328 33067 実施例 le
応力 (MPa) 13.2 12.4 11.8
破断回数 25508 61713 86005 実施例 2e
応力 (MPa) 13.2 · 11.9 11.0
破断回数 25697 49844 99125 実施例 3e
応力 (MPa) 13.1 12.4 11.6
破断回数 16531 33481 134908
実施例 4e
応力 (MPa) 13.2 12.5 11.1
破断回数 10608 15537 41856 実施例 5e
応力 (MPa) 13.2 12.5 11.5
破断回数 108 2690 14690 比較例 le
応力 (MPa) 14.6 12.3 10.5
破断回数 3467 11212 128563
比較例 2e
応力 (MPa) 10.6 7.9 5.1
破断回数 288 5911 63505 比較例 3e
応力 (MPa) 10.9 8.0 5.1
[表 5e]
Figure imgf000044_0001
産業上の利用可能性
本発明のエチレン系重合体は成形性に優れ、これからなる成形体は優れた機械的強 度を示すことから、様々な産業用途において有用である。
42

Claims

請求の範囲
1.
炭素原子数 6〜10の α -ォレフィンから導かれる構成単位を 0.02〜: l.50mol%含み、密 度が 945〜975 kg/ m3であるエチレン系重合体であって、
下記要件 [1]および [2]を同時に満たすエチレン系重合体。
[1] CFCにおいて、分子量が 100,000以上の全成分が 85°C以上の温度で溶出される。
[2] CFCの全溶出量に対する 80°C以下の溶出成分量が 5%以下である。 2.
下記要件 [lb]〜[4b]を同時に満たす請求の範囲第 1項に記載のエチレン系重合体。
[lb] 炭素原子数 6〜: 10の α-ォレフィンから導かれる構成単位を 0.02〜0.50mol%含む。
[2b] 135°C、デカリン中で測定した極限粘度([ 77 ]) 、 1.6〜2.8(dl/g)の範囲にある。
[3b] ASTM-D-790 に準拠して、 23°Cで測定した曲げ弾性率を M 力 S、 600 M < 1500(MPa)を満たし、 ASTM-D-1693に準拠して測定した 50°Cにおける耐環境応力 破壌性 ESCR(hr)を Tとした場合、 Tと前記 Mが下記式 (Eq-1)を満たす。
T≥- 0.8 X M+1210 (Eq-1)
[4b] 動的粘弾性装置を用いて測定した 190°C、角周波数 100 rad/secにおける tan δ (= 損失弾性率 G"/貯蔵弾性率 G')が 0.6〜0.9の範囲にある。
3.
下記要件 [le]〜[5e]を同時に満たす請求の範囲第 1項に記載のエチレン系重合体。
[le] 炭素原子数 6〜: 10の α-ォレフィンから導かれる構成単位を.0.02〜1.20mol%含む。
[2e] 135°C、デカリン中で測定した極限粘度([ 77 ])が、 2.0〜3.0(dl/g)の範囲にある。
[3e] キヤピラリーレオメータを使用し測定した、 210° (:、せん断速度 194.57 sec-1における 見かけのせん断応力が 7.0MPa以下である。
[4e] JIS K-674 に準拠し、 80°Cで測定した引張疲労特性で破断に至る回数が 10,000回 のときの実応力が ll〜17MPa、破断に至る回数が 100,000回のときの実応力が 9〜 16MPaである。
43 [5e] JIS K-7118に準拠し、試料にノッチを付けずに 23°Cで測定した引張疲労特性で、破 断に至る回数が 10,000 回のときの実応力が 18〜22MPa、破断に至る回数が 100,000回のときの実応力が 17〜21MPaである。
4.
請求の範囲第 1項〜第 3項のレ、ずれかに記載のエチレン系重合体力 なるブロー成形 体、押出成形体、圧縮成形体または真空成形体。
5.
..ガソリンタンク、工業薬品缶またはボトル容器であることを特徴とする請求の範囲第 4項 に記載のブロー成形体。
6.
パイプ、電線被覆材または鋼管'鋼線被覆材であることを特徴とする請求の範囲第 4項 に記載の押出成形体。
7.
ノ、 °イブ継ぎ手または自動車用部品であることを特徴とする請求の範囲第 4項に記載の射 出 形体。
44
PCT/JP2005/015106 2004-08-16 2005-08-12 エチレン系重合体及びその用途 WO2006019147A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/660,364 US8129489B2 (en) 2004-08-16 2005-08-12 Ethylene polymer and use thereof
EP05780409.8A EP1788006B1 (en) 2004-08-16 2005-08-12 Ethylene polymer and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-236806 2004-08-16
JP2004236807 2004-08-16
JP2004-236807 2004-08-16
JP2004236806 2004-08-16

Publications (1)

Publication Number Publication Date
WO2006019147A1 true WO2006019147A1 (ja) 2006-02-23

Family

ID=35907530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015106 WO2006019147A1 (ja) 2004-08-16 2005-08-12 エチレン系重合体及びその用途

Country Status (4)

Country Link
US (1) US8129489B2 (ja)
EP (1) EP1788006B1 (ja)
KR (1) KR100833561B1 (ja)
WO (1) WO2006019147A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087945A1 (ja) 2007-01-16 2008-07-24 Prime Polymer Co., Ltd. 中空成形体用エチレン系樹脂組成物及びそれからなる中空成形体
DE102016206862A1 (de) 2016-04-22 2017-10-26 Henkel Ag & Co. Kgaa In-vitro Vollhautmodell, enthaltend dreidimensionale Zellkulturmodelle der Schweißdrüse
JP7483464B2 (ja) 2020-03-31 2024-05-15 三井化学株式会社 エチレン系重合体の製造方法
JP7483465B2 (ja) 2020-03-31 2024-05-15 三井化学株式会社 エチレン系重合体の製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019147A1 (ja) 2004-08-16 2006-02-23 Mitsui Chemicals, Inc. エチレン系重合体及びその用途
WO2007094376A1 (ja) * 2006-02-15 2007-08-23 Mitsui Chemicals, Inc. エチレン系樹脂およびそれからなるブロー成形体
JP5807325B2 (ja) 2009-09-30 2015-11-10 住友化学株式会社 遷移金属錯体、該遷移金属錯体の製造方法、三量化用触媒、1−ヘキセンの製造方法、エチレン系重合体の製造方法、置換シクロペンタジエン化合物、及び、該置換シクロペンタジエン化合物の製造方法
JP2012214457A (ja) 2011-03-29 2012-11-08 Sumitomo Chemical Co Ltd 遷移金属錯体、該遷移金属錯体の製造方法、三量化用触媒、1−ヘキセンの製造方法、置換シクロペンタジエン化合物、及び、該置換シクロペンタジエン化合物の製造方法
JP5900089B2 (ja) 2011-03-29 2016-04-06 住友化学株式会社 遷移金属錯体、該遷移金属錯体の製造方法、三量化用触媒、1−ヘキセンの製造方法、置換シクロペンタジエン化合物、及び、該置換シクロペンタジエン化合物の製造方法
US9371442B2 (en) 2011-09-19 2016-06-21 Nova Chemicals (International) S.A. Polyethylene compositions and closures made from them
CA2752407C (en) 2011-09-19 2018-12-04 Nova Chemicals Corporation Polyethylene compositions and closures for bottles
CA2798854C (en) 2012-12-14 2020-02-18 Nova Chemicals Corporation Polyethylene compositions having high dimensional stability and excellent processability for caps and closures
US9783663B2 (en) 2012-12-14 2017-10-10 Nova Chemicals (International) S.A. Polyethylene compositions having high dimensional stability and excellent processability for caps and closures
US9475927B2 (en) 2012-12-14 2016-10-25 Nova Chemicals (International) S.A. Polyethylene compositions having high dimensional stability and excellent processability for caps and closures
US9758653B2 (en) 2015-08-19 2017-09-12 Nova Chemicals (International) S.A. Polyethylene compositions, process and closures
US9783664B1 (en) 2016-06-01 2017-10-10 Nova Chemicals (International) S.A. Hinged component comprising polyethylene composition
US11028192B2 (en) * 2017-03-27 2021-06-08 Exxonmobil Chemical Patents Inc. Solution process to make ethylene copolymers
CA3028148A1 (en) 2018-12-20 2020-06-20 Nova Chemicals Corporation Polyethylene copolymer compositions and articles with barrier properties
CA3032082A1 (en) 2019-01-31 2020-07-31 Nova Chemicals Corporation Polyethylene compositions and articles with good barrier properties
EP3753732B1 (en) * 2019-06-20 2023-02-01 SABIC Global Technologies B.V. Container liner for holding liquids
US11578156B2 (en) 2020-10-20 2023-02-14 Chevron Phillips Chemical Company Lp Dual metallocene polyethylene with improved processability for lightweight blow molded products

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321607A (ja) * 1989-05-20 1991-01-30 Hoechst Ag エチレンポリマーの製造方法、それに用いる触媒および該触媒の構成成分である新規のメタロセン
JPH11106574A (ja) * 1997-10-07 1999-04-20 Asahi Chem Ind Co Ltd 剛性−escr−耐衝撃性のバランスに優れた高密度エチレン系重合体組成物
JP2000017018A (ja) * 1998-07-03 2000-01-18 Sekisui Chem Co Ltd エチレン系樹脂
JP2000109521A (ja) * 1998-10-07 2000-04-18 Asahi Chem Ind Co Ltd 成形加工性に優れたポリエチレンパイプ及び継ぎ手用樹脂
JP2000191726A (ja) * 1998-09-25 2000-07-11 Fina Res Sa 多頂性ポリエチレンの製造
JP2002138110A (ja) * 2000-10-31 2002-05-14 Japan Polychem Corp ポリエチレン樹脂及びこれを用いたパイプ及び継手
WO2004029062A1 (ja) * 2002-09-27 2004-04-08 Mitsui Chemicals, Inc. オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
JP2004269864A (ja) * 2003-02-17 2004-09-30 Mitsui Chemicals Inc エチレン系重合体及び成形体への応用

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032270B2 (ja) 1972-09-14 1975-10-18
US4071674A (en) * 1972-09-14 1978-01-31 Mitsui Petrochemical Industries Ltd. Process for polymerization or copolymerization of olefin and catalyst compositions used therefor
JPS5764551A (en) * 1980-10-09 1982-04-19 Mitsui Petrochemical Ind Composite film
JPS59226012A (ja) * 1983-06-08 1984-12-19 Idemitsu Petrochem Co Ltd エチレン共重合体
US5519091A (en) * 1990-02-13 1996-05-21 Mitsui Petrochemical Industries, Ltd. Method for the preparation of ethylene polymer compositions
JP2781244B2 (ja) 1990-02-13 1998-07-30 三井化学株式会社 エチレン系重合体組成物の製造方法
TW206240B (ja) * 1990-02-13 1993-05-21 Mitsui Petroleum Chemicals Ind
JP3264333B2 (ja) 1992-05-28 2002-03-11 出光興産株式会社 エチレン系重合体組成物の製造方法
CN1122074C (zh) * 1995-07-24 2003-09-24 三井化学株式会社 乙烯类聚合物组合物
JPH09183816A (ja) * 1995-12-28 1997-07-15 Mitsui Petrochem Ind Ltd エチレン・α−オレフィン共重合体およびこの共重合体から得られるフィルム
JP3803155B2 (ja) 1997-01-08 2006-08-02 三井化学株式会社 ポリエチレン製成形体
EP0881237A1 (en) * 1997-05-26 1998-12-02 Fina Research S.A. Process to produce bimodal polyolefins with metallocene catalysts using two reaction zones
BE1011333A3 (fr) 1997-08-20 1999-07-06 Solvay Procede de fabrication d'une composition de polymeres d'ethylene.
JPH11106430A (ja) 1997-10-07 1999-04-20 Asahi Chem Ind Co Ltd 表面光沢性に優れたエチレン系樹脂
JPH11106432A (ja) 1997-10-07 1999-04-20 Asahi Chem Ind Co Ltd エチレン系重合体
EP1582533B1 (en) * 1999-06-17 2007-10-10 Mitsui Chemicals, Inc. Ethylene (co)polymer and its use
GB9919718D0 (en) 1999-08-19 1999-10-20 Borealis As Process
CA2285723C (en) 1999-10-07 2009-09-15 Nova Chemicals Corporation Multimodal polyolefin pipe
PT1146079E (pt) * 2000-04-13 2006-05-31 Borealis Tech Oy Composicao de polimero para tubos
EP1201711A1 (en) 2000-10-27 2002-05-02 ATOFINA Research Polyethylene pipe resins and production thereof
JP4610859B2 (ja) 2002-09-27 2011-01-12 三井化学株式会社 オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
US7508441B1 (en) * 2002-09-27 2009-03-24 Hoya Corporation Electronic still camera and image pick-up unit
EP1595897B1 (en) * 2003-02-17 2010-12-22 Mitsui Chemicals, Inc. Ethylene polymer and application thereof to moldings
WO2004104055A1 (ja) * 2003-05-20 2004-12-02 Mitsui Chemicals, Inc. エチレン系重合体
JP2005239750A (ja) 2004-02-24 2005-09-08 Mitsui Chemicals Inc パイプ用エチレン系重合体及び該エチレン系重合体からなるパイプ
WO2006019147A1 (ja) 2004-08-16 2006-02-23 Mitsui Chemicals, Inc. エチレン系重合体及びその用途
JP5288682B2 (ja) 2004-08-16 2013-09-11 三井化学株式会社 エチレン系重合体及びブロー成形体への応用
JP2006083371A (ja) 2004-08-16 2006-03-30 Mitsui Chemicals Inc エチレン系重合体及びパイプ成形体への応用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321607A (ja) * 1989-05-20 1991-01-30 Hoechst Ag エチレンポリマーの製造方法、それに用いる触媒および該触媒の構成成分である新規のメタロセン
JPH11106574A (ja) * 1997-10-07 1999-04-20 Asahi Chem Ind Co Ltd 剛性−escr−耐衝撃性のバランスに優れた高密度エチレン系重合体組成物
JP2000017018A (ja) * 1998-07-03 2000-01-18 Sekisui Chem Co Ltd エチレン系樹脂
JP2000191726A (ja) * 1998-09-25 2000-07-11 Fina Res Sa 多頂性ポリエチレンの製造
JP2000109521A (ja) * 1998-10-07 2000-04-18 Asahi Chem Ind Co Ltd 成形加工性に優れたポリエチレンパイプ及び継ぎ手用樹脂
JP2002138110A (ja) * 2000-10-31 2002-05-14 Japan Polychem Corp ポリエチレン樹脂及びこれを用いたパイプ及び継手
WO2004029062A1 (ja) * 2002-09-27 2004-04-08 Mitsui Chemicals, Inc. オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
JP2004269864A (ja) * 2003-02-17 2004-09-30 Mitsui Chemicals Inc エチレン系重合体及び成形体への応用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1788006A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087945A1 (ja) 2007-01-16 2008-07-24 Prime Polymer Co., Ltd. 中空成形体用エチレン系樹脂組成物及びそれからなる中空成形体
US20100028578A1 (en) * 2007-01-16 2010-02-04 Prime Polymer Co., Ltd. Blow molding ethylene resin composition and blow molded article therefrom
RU2434898C2 (ru) * 2007-01-16 2011-11-27 Прайм Полимер Ко. Лтд. Композиция этиленовой смолы для выдувного формования и изготовленные выдувным формованием изделия из нее
US20120189792A1 (en) * 2007-01-16 2012-07-26 Mitsui Chemicals, Inc. Blow molding ethylene resin composition and blow molded article therefrom
US9000116B2 (en) * 2007-01-16 2015-04-07 Prime Polymer Co., Ltd. Blow molding ethylene resin composition and blow molded article therefrom
DE102016206862A1 (de) 2016-04-22 2017-10-26 Henkel Ag & Co. Kgaa In-vitro Vollhautmodell, enthaltend dreidimensionale Zellkulturmodelle der Schweißdrüse
JP7483464B2 (ja) 2020-03-31 2024-05-15 三井化学株式会社 エチレン系重合体の製造方法
JP7483465B2 (ja) 2020-03-31 2024-05-15 三井化学株式会社 エチレン系重合体の製造方法

Also Published As

Publication number Publication date
US20070244286A1 (en) 2007-10-18
EP1788006A1 (en) 2007-05-23
EP1788006B1 (en) 2013-12-25
EP1788006A4 (en) 2008-07-30
US8129489B2 (en) 2012-03-06
KR100833561B1 (ko) 2008-05-30
KR20070055532A (ko) 2007-05-30

Similar Documents

Publication Publication Date Title
WO2006019147A1 (ja) エチレン系重合体及びその用途
US7700708B2 (en) Ethylene polymer and application thereof to moldings
EP2129721B1 (en) Polyethylene molding composition for producing hollow containers by thermoforming and fuel containers produced therewith
US9000116B2 (en) Blow molding ethylene resin composition and blow molded article therefrom
JP4705702B2 (ja) エチレン系共重合体の製造方法及びエチレン系共重合体並びに成形品
JP2011157562A (ja) エチレン系重合体及びブロー成形体への応用
EP1359191A1 (en) Polymer for fuel tanks
JP5288682B2 (ja) エチレン系重合体及びブロー成形体への応用
JP2006083371A (ja) エチレン系重合体及びパイプ成形体への応用
JP2004269864A (ja) エチレン系重合体及び成形体への応用
JP6680480B2 (ja) エチレン系重合体および中空成形体
JP6661386B2 (ja) エチレン系重合体
JPH0853509A (ja) ポリオレフィンの製造方法
JP5843918B2 (ja) エチレン系重合体及び成形体への応用
JP2005239750A (ja) パイプ用エチレン系重合体及び該エチレン系重合体からなるパイプ
JP7088717B2 (ja) エチレン系共重合体組成物
JP2016194050A (ja) パイプ用ポリエチレン及びその成形品
JP2005239749A (ja) エチレン系重合体
JPH08333419A (ja) 高密度エチレン系重合体
JPH11236413A (ja) エチレン系重合体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11660364

Country of ref document: US

Ref document number: 200580028103.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077005772

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005780409

Country of ref document: EP

Ref document number: 2008/DELNP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2005780409

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11660364

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载