WO2006015567A1 - Schichtanordnung für ein lichtemittierendes bauelement - Google Patents
Schichtanordnung für ein lichtemittierendes bauelement Download PDFInfo
- Publication number
- WO2006015567A1 WO2006015567A1 PCT/DE2005/001076 DE2005001076W WO2006015567A1 WO 2006015567 A1 WO2006015567 A1 WO 2006015567A1 DE 2005001076 W DE2005001076 W DE 2005001076W WO 2006015567 A1 WO2006015567 A1 WO 2006015567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electron
- layer
- hole
- light
- arrangement according
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 194
- 239000002019 doping agent Substances 0.000 claims abstract description 64
- 230000004888 barrier function Effects 0.000 claims abstract description 24
- 239000011159 matrix material Substances 0.000 claims description 44
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims description 31
- 230000005525 hole transport Effects 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 16
- -1 m-MTDATA Chemical class 0.000 claims description 14
- 238000002347 injection Methods 0.000 claims description 11
- 239000007924 injection Substances 0.000 claims description 11
- 239000012141 concentrate Substances 0.000 claims description 10
- 230000005428 wave function Effects 0.000 claims description 10
- 230000005284 excitation Effects 0.000 claims description 7
- 230000005281 excited state Effects 0.000 claims description 6
- 125000003003 spiro group Chemical group 0.000 claims description 5
- 230000005641 tunneling Effects 0.000 claims description 5
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 claims description 4
- 150000003967 siloles Chemical class 0.000 claims description 4
- IYZMXHQDXZKNCY-UHFFFAOYSA-N 1-n,1-n-diphenyl-4-n,4-n-bis[4-(n-phenylanilino)phenyl]benzene-1,4-diamine Chemical class C1=CC=CC=C1N(C=1C=CC(=CC=1)N(C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 IYZMXHQDXZKNCY-UHFFFAOYSA-N 0.000 claims description 3
- ZTAPSYFNLYSONY-UHFFFAOYSA-N 1h-imidazole;naphthalene-1,2-dicarboxylic acid Chemical class C1=CNC=N1.C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 ZTAPSYFNLYSONY-UHFFFAOYSA-N 0.000 claims description 3
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 claims description 3
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 3
- 150000001556 benzimidazoles Chemical class 0.000 claims description 3
- IDVDAZFXGGNIDQ-UHFFFAOYSA-N benzo[e][2]benzofuran-1,3-dione Chemical class C1=CC2=CC=CC=C2C2=C1C(=O)OC2=O IDVDAZFXGGNIDQ-UHFFFAOYSA-N 0.000 claims description 3
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 claims description 3
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims description 3
- 125000005259 triarylamine group Chemical group 0.000 claims description 3
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 claims description 2
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 claims description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 claims description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 claims description 2
- 125000005582 pentacene group Chemical group 0.000 claims description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 claims description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 claims description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical group N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 2
- 150000004032 porphyrins Chemical class 0.000 claims description 2
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 claims description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 claims 6
- KKIWHCCEDIDTBA-UHFFFAOYSA-N 1-methyl-1-[2-(1-methyl-2,3,4,5-tetraphenylsilol-1-yl)ethyl]-2,3,4,5-tetraphenylsilole Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)[Si]1(C)CC[Si]1(C)C(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 KKIWHCCEDIDTBA-UHFFFAOYSA-N 0.000 claims 2
- GEQBRULPNIVQPP-UHFFFAOYSA-N 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1 GEQBRULPNIVQPP-UHFFFAOYSA-N 0.000 claims 2
- 230000027756 respiratory electron transport chain Effects 0.000 claims 1
- 150000003413 spiro compounds Chemical class 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 230000005012 migration Effects 0.000 abstract 2
- 238000013508 migration Methods 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 99
- 102100027126 Echinoderm microtubule-associated protein-like 2 Human genes 0.000 description 39
- 101001057942 Homo sapiens Echinoderm microtubule-associated protein-like 2 Proteins 0.000 description 39
- 102100027094 Echinoderm microtubule-associated protein-like 1 Human genes 0.000 description 30
- 101001057941 Homo sapiens Echinoderm microtubule-associated protein-like 1 Proteins 0.000 description 30
- 239000002800 charge carrier Substances 0.000 description 20
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical compound [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 18
- 230000037230 mobility Effects 0.000 description 12
- 239000000370 acceptor Substances 0.000 description 11
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 10
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 10
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 10
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 10
- 101100232347 Mus musculus Il11ra1 gene Proteins 0.000 description 8
- 201000001366 familial temporal lobe epilepsy 2 Diseases 0.000 description 8
- 235000019557 luminance Nutrition 0.000 description 7
- 239000011368 organic material Substances 0.000 description 7
- WPUSEOSICYGUEW-UHFFFAOYSA-N 4-[4-(4-methoxy-n-(4-methoxyphenyl)anilino)phenyl]-n,n-bis(4-methoxyphenyl)aniline Chemical compound C1=CC(OC)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 WPUSEOSICYGUEW-UHFFFAOYSA-N 0.000 description 6
- VFUDMQLBKNMONU-UHFFFAOYSA-N 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 6
- 101100451713 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HTL1 gene Proteins 0.000 description 6
- MQRCTQVBZYBPQE-UHFFFAOYSA-N 189363-47-1 Chemical compound C1=CC=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC=CC=1)C=1C=CC=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MQRCTQVBZYBPQE-UHFFFAOYSA-N 0.000 description 5
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- MBPCKEZNJVJYTC-UHFFFAOYSA-N 4-[4-(n-phenylanilino)phenyl]aniline Chemical compound C1=CC(N)=CC=C1C1=CC=C(N(C=2C=CC=CC=2)C=2C=CC=CC=2)C=C1 MBPCKEZNJVJYTC-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical class C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- DPFGGYIWNDCEJM-UHFFFAOYSA-N 1-n,1-n,3-n,3-n,5-n,5-n-hexakis-phenylbenzene-1,3,5-triamine Chemical compound C1=CC=CC=C1N(C=1C=C(C=C(C=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DPFGGYIWNDCEJM-UHFFFAOYSA-N 0.000 description 1
- NMEQYXIMSPNTFB-UHFFFAOYSA-N 2-ethyl-1-methyl-2,3,4,5-tetraphenylsilole Chemical compound C[Si]1=C(C(=C(C1(C1=CC=CC=C1)CC)C1=CC=CC=C1)C1=CC=CC=C1)C1=CC=CC=C1 NMEQYXIMSPNTFB-UHFFFAOYSA-N 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical class C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- ZPHQFGUXWQWWAA-UHFFFAOYSA-N 9-(2-phenylphenyl)carbazole Chemical group C1=CC=CC=C1C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 ZPHQFGUXWQWWAA-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 241001663154 Electron Species 0.000 description 1
- 241001295925 Gegenes Species 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- BLFVVZKSHYCRDR-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-2-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-2-amine Chemical compound C1=CC=CC=C1N(C=1C=C2C=CC=CC2=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C=CC=CC3=CC=2)C=C1 BLFVVZKSHYCRDR-UHFFFAOYSA-N 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000005838 radical anions Chemical class 0.000 description 1
- 150000005839 radical cations Chemical class 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
- H10K50/155—Hole transporting layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
- H10K50/165—Electron transporting layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/324—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/611—Charge transfer complexes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
Definitions
- the invention relates to a layer arrangement for a light-emitting component, in particular an organic phosphorescent light-emitting diode (OLED).
- a light-emitting component in particular an organic phosphorescent light-emitting diode (OLED).
- OLED organic phosphorescent light-emitting diode
- a component with an arrangement of organic layers is described, for example, in the document WO 03/100880.
- Typical implementations of such devices are based on a simple light-emitting layer (EML) consisting of a mixture of a matrix material and a phosphorescent dopant.
- EML simple light-emitting layer
- HBL hole block layer
- the EML has predominantly an electron-conducting character, as in a realization by Adachi et al. (Appl. Phys., 90 (10), 5048-5051 (2001)), where the EML is from the elec- tron transport material TAZ (a derivative of 1,2,4-triazole, for example 3- (4-biphenylyl) -4 - phenyl-5-tert-butylphenyl-l, 2,4-triazoles) doped with an Ir complex as emitter dopant, an electron block layer (EBL) of a material with very low electron affinity is required, for which Adachi et al.
- TAZ elec- tron transport material
- TAZ a derivative of 1,2,4-triazole, for example 3- (4-biphenylyl) -4 - phenyl-5-tert-butylphenyl-l, 2,4-triazoles
- BPheniCs doped / cathode Al.
- the barrier for electron injection of EML2 into EMLl is about 0.5eV.
- An organic phosphorescent light-emitting diode is furthermore disclosed in document WO 02/071813 A1.
- a light-emitting region with two emission layers with hole transporters / electron transporters is provided which are each doped with the same triplet emitter dopant.
- the object of the invention is to provide a layer arrangement for a light-emitting component, in particular a phosphorescent organic light-emitting diode, with improved luminous properties, in particular an improved quantum yield of phosphorescence at high luminance, and increased service life.
- a light-emitting component in particular a phosphorescent organic light-emitting diode
- the invention includes the idea of providing at least two ambipolar layers in the light-emitting region of the layer arrangement, which is also referred to as emission zone, one of which preferably carries electrons and another preferably holes.
- the preferred transport of a type of charge carriers is formed in a layer of the light-emitting region, if in the layer the charge carrier mobility for this one type of charge carriers is greater than the charge carrier mobility for the other type of charge carriers, and / or if the injection barrier for these one type of charge carriers is less than the injection barrier for the other type of charge carriers.
- a heterojunction is referred to as a staggered heterojunction, which is also called a staggered type II heterojunction, between an organic material (Ml) and another organic material (M2) if the material (Ml) which preferably carries holes both has a lower ionization energy as well as a lower electron affinity than the preferably electron transporting other material (M2), which means that both the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) for the material (Ml ) are closer to the vacuum level than is the case for the other material (M2), creating an energetic barrier for hole injection from the material (M1) to the other material (M2) and an energetic barrier for electron injection from the other material (M2) in the material (Ml).
- HOMO highest occupied orbital
- LUMO lowest unoccupied orbital
- a layer based on an organic material is an ambipolar layer in the sense of the present application, if in the layer the electron mobility and the Er ⁇ mobility differ by less than about two orders of magnitude and the organic material for the ambipolar layer is reversibly reducible and oxidizable, which is based on the electrochemical stability of the radical anion and the radical cation of the organic material.
- the ambipolar property may preferably be further characterized in that a high-occupied-occupy molecular orbital (HOMO) is not more than about 0.4 eV, preferably not more than about 0.3 eV, below the hole transport level of common hole transport materials.
- a common hole transport material is, for example, N, N'-di (naphthalen-2-yl) -N, N'-diphenylbenzidine (NPD).
- NPD N, N'-di (naphthalen-2-yl) -N, N'-diphenylbenzidine
- NPD N, a HOMO energy of between approx 5.5eV and about 5.7eV below the vacuum level.
- the ambipolar property is formed by the electron transport level of the organic material for the ambipolar layer being not more than about 0.4 eV, preferably not more than about 0. 3 eV, above the electron transport level of conventional electron transport materials, for example AIq 3.
- This criterion can be tested by methods for estimating the LUMO energy (LUMO - "Lowest Unoccupied Molecular Orbital"), which are known to the person skilled in the art .
- IP ionization potential
- An organic layer having an ambipolarity property can be produced, for example, as follows: i) A unipolar organic matrix material with a complementarily transportable emitter material is used.
- the emitter material is hole-transporting when the matrix material is electron-transporting, or vice versa.
- the ratio between hole and electron mobility can be adjusted by means of the doping concentration of the emitter material.
- a matrix of a unipolar hole-transporting matrix material is called a "hole-only” matrix, whereas an "electron-only" matrix is a matrix of a unipolar electron-transporting matrix material.
- An ambipolar matrix material can be used , iii)
- a mixture of two matrix materials and an emitter material is used, wherein one of the matrix materials is hole-transporting and the other matrix material is electron-transporting.
- the ratio between see hole and electron mobility is adjustable by means of the mixing ratios.
- the molecular mixing ratios are in the range between 1:10 to 10: 1.
- the invention has the advantage over the prior art that the multilayer arrangement in the light-emitting region has a self-balancing character for the required balance of electron and hole injection.
- the Akkumulation of charge carriers at interfaces is avoided, both at the interface to the adjacent transport or block layers, which in particular gegen ⁇ over the known light-emitting device according to Adachi et al. (Appl. Phys., 90 (10), 5048-5051 (2001)) is an advantage, as well as at the inner interface between the layers in the light-emitting region, which has an advantage over the prior art in particular Document WO 02/071813 A1 gives.
- the widest possible overlapping zone of the injected electron and hole distributions in the light-emitting region of the layer arrangement and thus a broad generation zone for excitation states (excitons) are formed.
- both degradation processes due to high local charge carrier densities and efficiency-reducing extinction processes between charge carriers and excitons and between excitons are minimized.
- the light-emitting region comprises more than two light-emitting layers, as described in the document WO 03/100880, the content of which is incorporated by reference in the present application.
- the triplet emitter dopants for the light-emitting layers may be the same or different.
- the charge carrier transport layers and / or the hole or electron block layer can be omitted on the electron and / or the hole side, so that the light-emitting layers in the light-emitting region of the layer arrangement directly contact the contacts (anode, cathode). or to the (doped) charge carrier transport layers. This is made possible by the self-balancing character of the layer system in the emission zone, since otherwise excitons at the metal contact or dopants are deleted or charge carriers flow transversely through the OLED and these could recombine without radiation at the other contact or at the doped transport layer.
- FIG. 1 shows a graph for the current efficiency and the power efficiency as a function of the luminance for a light-emitting component according to a first embodiment
- FIG. 2 is a graph showing power efficiency versus luminance for a light-emitting device according to a second embodiment
- FIG. 3 shows a graph of the power efficiency as a function of the luminance for a light-emitting component according to a fourth embodiment
- 5 is a schematic representation of the energy levels for a) a simple material with a contiguous ⁇ -electron system, for b) subunits D (donor) Subunit) and A (acceptor subunit) of a DAD in which at least one of the energetic distances between HOMO levels or LUMO levels of the subunits is so small that the lowest singlet excited state is a minor exciton on one of the subunits , and for c) subunits D and A of a DAD in which at least one of the energetic distances between HOMO
- Levels or LUMO levels of the subunits is so great that the lowest singlet excited state is a charge transfer exciton from an electron on subunit A and a hole on subunit D;
- FIG. 6 shows a schematic illustration of an energy level scheme for an exemplary embodiment, in which a material (M1) for one of the layers EML1 in the emission zone comprises a bipolar, one-component material and another material (M2) for another one of the layers EML2 in FIG the emission zone contain an "electron-only matrix" and a hole-transiting emitter dopants; the dashed lines represent the energy levels of the emitter dopant.
- the material (M 1) for one of the layers EML 1 in the emission zone is a mixture of a hole-transporting material, an electron-transporting material and a triplet emitter dopant, and another material (M2) for another of the layers EML2 in the emission zone contains an "electron-only matrix";
- FIG. 8 shows a schematic representation of an energy level scheme for an exemplary embodiment in which the material (M1) for one of the layers EML1 in the emission zone is a "hole-only matrix", wherein an electron transport by means of hopping between dopant states is executable, and the other Material (M2) for another of the layers EML2 in the emission zone contains an ambipolar, one-component material;
- FIG. 9 shows a schematic representation of an energy level scheme for an exemplary embodiment in which the material (M1) for one of the layers EML1 in the emission zone contains a "hole-only matrix", wherein an electron transport can be carried out by means of hopping between dopant states, and the other material (M2) for another one of the layers EML2 in the emission zone is a mixture of a hole transport. containing material, an electron-transporting material and a triplet emitter dopant;
- FIG. 10 shows a schematic representation of an energy level scheme for an exemplary embodiment in which the material (M1) for one of the layers EML1 in the emission zone and the other material (M2) for another one of the layers EML2 in the emission zone each consist of one one-component, ambipolar material or a mixture with a hole-transporting material and an electron-transporting material are formed;
- 11 is a schematic representation of an energy level scheme for an embodiment in which the hole transport in the material (Ml) for the layer EML1 in the
- FIG. 12 shows a schematic representation of an energy level scheme for an embodiment in which the electron transport in the material (M1) for the layer EML1 in the emission zone and the other material (M2) for the layer EML2 in the emission zone by jumping between states of the Triplet emitter dopants occur (the greater electron mobility in M2 compared to M1 is given here by the lower energy distance to the electron transport level of the matrix, so that in M2 tunneling between dopant states is facilitated).
- HTL hole-transporting layer HTL hole-transporting layer
- ETL-electron-transporting layer EML layer in the light-emitting region
- EBL-electron block layer HBL hole block layer
- HTLI F4-TCNQ (tetra-fluoi-O-tera-cyano-quinodimethanes) doped in N, N, N ', N'-tetrakis (4-methoxyphenyl) -benzidines (MeO-TPD), at a mixing ratio between 0 .mu.mol. % to 10mol.% and a layer thickness between about 30nm and about 500nm, preferably between about 50nm to about 200nm /
- the electron transport in EML1 can be assisted when this layer of the three components TCTA, TPBI and Ir (ppy) 3 is mixed, for example with a mixture of 46% / 46% / 8%.
- the barrier for the electron injection of EML2 into EML1 is smaller than about 0.3eV.
- the barrier for the hole injection of EML1 into EML2 is about OeV, since the hole transport in EML1 and EML2 takes place as a "hopping" on Ir (ppy) 3 , or is even negative if a hole from one TCTA state to one Ir (ppy) 3 - state in EML2
- the admixture of the redox dopants, for example acceptors such as F4-TCNQ or donors such as Cs, and the emitter dopants, namely Ir (ppy) 3 in the embodiment can for example by means of mixed evaporation two separately controllable thermal sublimation sources in vacuo or by means of other suitable methods be carried out, for example, the sequential application of the materials, for example by evaporation in vacuo, and the subsequent diffusion into one another, where appropriate, supported by a special temporal temperature profile.
- the ambipolarity of the EML2 is achieved in the first exemplary embodiment by means of the hole-transporting property of the Ir (ppy) 3 in the electron transport materials TPBI and BPhen.
- the EML2 can be mixed with some TCTA to support the hole transport, whereby the TCTA concentration in EML2 should always be smaller than in EML1.
- a second embodiment has a structure as the above embodiment 1 on, with the difference that ETL2 is formed by Alq 3:
- This embodiment underpins the self-balancing aspect of the structure, which makes it possible to dispense entirely with hole and / or electron block layers.
- Alq 3 does not have a hole-blocking effect, but is more stable than the typical hole block materials such as BCP.
- AIq 3 helps in this example with the electron injection of Bphen: Cs in EML2.
- FIG. 3 shows experimental results for the power efficiency versus luminance for the fourth embodiment (triangles) and the fifth embodiment (circles).
- the exemplary embodiments described above represent so-called p-i-n structures, which means that acceptors are mixed in the hole transport layer and donors are mixed in the electron transport layer. If the donors in the electron transport layer ETL1, ETL2 are omitted, it is a so-called p-i-i structure. If the acceptors in the hole transport layer HTL1, HTL2 are omitted, an i-i-n structure is formed. In omitting donors and acceptors, an i-i-i structure is formed. All structures can be combined with the structures of EML1 and EML2 described above in the emission zone.
- a further exemplary embodiment provides a light-emitting component with a layer arrangement, the layer arrangement comprising a hole-injecting contact, optionally one or more hole-injecting and hole-transporting layers, a light-emitting region, optionally one or more electron-injecting and electron-transporting layers and an electron-injecting contact and wherein: at least one layer in the light-emitting region is formed from a mixture of a matrix material with a phosphorescent emitter dopant, - the matrix material is a covalently coupled dyad from a bipolar or electron-transporting structure and a bipolar or hole-transporting structure, and the dyad material has subunits with separated ⁇ -electron systems.
- This light emitting device is preferably formed so that one of the subunits of the dyad may preferentially receive additional holes so that a HOMO wave function concentrates on one of the subunits, and another of the subunits of the dyad prefers to receive additional electrons ⁇ men, so that the LUMO wave function concentrates on them (donor-acceptor dyad).
- An ambipolarity of the transport in the light-emitting region formed in this way also leads to an improvement since, in the case of ambipolarity, the generation zone is generally broadened and no longer concentrates exclusively on the immediate surroundings of an interface. This is especially true if the charge carrier mobilities are set independently of one another in the case of a material in order to achieve as balanced as possible ratios and thus a preferred generation in the middle of the EML. This is ensured by the use of donor-acceptor dyads (DADs) of two parts with complementary transport character, since the subunits for electron and hole transport can be individually optimized.
- DADs donor-acceptor dyads
- dyads for the efficiency of phosphorescent OLEDs has the following advantages.
- a low operating voltage should be sought for OLEDs.
- the energy of a charge carrier pair on the transport material (matrix) of the emission zone should, if possible, be only slightly larger than the triplet energy of the phosphorescent dopant.
- the lowest triplet level of the transport materials in the emission zone must have a higher energy than the triplet level of the emitter dopant, since otherwise the triplet exciton of the emitter is quenched by the matrix material.
- the triplet energy is generally much lower than the singlet energy (optical energy gap) or the energy of the free charge carrier pair (electrical energy gap) through exchange interaction.
- the difference between singlet and triplet energy scales with the spatial overlap of HOMO and LUMO. The difference is thus negligibly small for the dyads, in which the HOMO is limited to a subunit other than the LUMO.
- the lowest singlet excited state of the DAD is a charge transfer exciton has a lower exciton binding energy than a molecular Frenkel exciton, so that also optical and electrical energy gap closer to each other.
- the difference between the electric energy gap of the matrix and the triplet energy of the phosphorescent dopant can be significantly reduced when using DADs compared to materials with strongly overlapping HOMO and LUMO orbitals.
- DAD a spiro-linked molecule of CBP and a TAZ unit, which is shown in FIG.
- the electrical energy gap is given by the HOMO of CBP and the LUMO of TAZ, while the lowest singlet and triplet excitations correspond to the values of the two components.
- FIGS. 5 to 12 comprise the exemplary embodiments described above, at least in part, as well as further embodiments.
- the shortest singlet excited state is a Frenkel exciton on one of the subunits, as well as for c) subunits D (donor subunit) ) and A (acceptor subunit) of a DAD in which at least one of the energetic distances between HOMO levels or LUMO levels of the subunits is so large, preferably greater than about 0.4eV, that the lowest singlet excited state is a charge.
- Transfer exciton of an electron on subunit A and a hole on subunit D is.
- FIG. 5 c) describes an energetically optimal situation, which leads to minimal operating voltages.
- offset one of the energetic distances
- the levels in Fig. 5 for electrons / holes have been designated E e / E h .
- CT refers to the energy of a charge-transfer exciton from an electron on subunit A and a hole on subunit D, which is largely independent of spin multiplicity.
- the matrix has a smaller electrical energy gap (E g el ) with constant triplet energy, so that the phosphorescent luminescent diode can operate at a lower operating voltage.
- FIG. 6 shows a schematic representation of an energy level scheme for an embodiment in which the material (M1) for one of the layers EML1 in the emission zone contains an ambipolar, one-component material and the other material (M2) for another of the layers EML2 in FIG the emission zone contains an "electron-only matrix", wherein a hole transport by means of hopping between dopant states is executable.
- An upper line indicates the LUMO levels, ie the respective electron transport level.
- the bottom line indicates the HOMO levels, ie the hole transport levels.
- an anode A and a cathode K are shown, which are symbolized by means of their Fermi level.
- HTL1 is p-doped and HTL2 is n-doped.
- the energy levels in the emission layers EML1 and EML2 shown in dashed lines in FIG. 6 symbolize the levels of the emitter dopants.
- Arrows 60, 61 indicate the energy level on which charge carrier transport takes place.
- Arrows 62, 63 indicate the preferred type of transport of a material system.
- the energetic arrangement of the HOMO and LUMO energy levels in the EMLs and the fact that the HOMO distance between HTL2 and EMLl and the LUMO distance between ETL2 and EML2 is not too large.
- This distance is preferably less than about 0.5eV, preferably less than about 0.3eV.
- FIG 7 shows a schematic representation of an energy level scheme for an embodiment in which the material (M1) for one of the layers EML1 in the emission zone contains a mixture of a hole-transporting material, an electron-transporting material and a triplet emitter dopant, and FIG another material (M2) for another of the layers EML2 in the emission zone contains an "electron-only matrix", wherein a hole transport can be carried out by means of hopping between dopant states.
- the dotted lines indicate the energy levels of the emitter dopant.
- the dot-dash line denotes the energy level of an electron transport component in EML1.
- the solid line in EML1 denotes the energy level of the hole transport component.
- FIG. 8 shows a schematic representation of an energy level scheme for an embodiment in which the material (M1) for one of the layers EML1 in the emission zone contains a "hole-only matrix", wherein an electron transport can be carried out by means of hopping between dopant states and the other material (M2) for another of the layers EML2 in the emission zone contains an ambipolar, one-component material.
- FIG. 9 shows a schematic representation of an energy level scheme for an exemplary embodiment in which the material (M1) for one of the layers EML1 in the emission zone contains a "hole-only matrix", wherein an electron transport can be carried out by means of hopping between dopant states and the other material (M2) for another of the layers EML2 in the emission zone contains a mixture of a hole transporting material, an electron transporting material and a triplet emitter dopant.
- the dashed lines again denote the energy levels of the triplet emitter dopant.
- the dot-dashed lines in FIG. 9 denote the energy levels of the electron transport component in the EML2 layer.
- the solid line in layer EML2 indicates the energy levels of the hole transport component.
- FIG. 10 shows a schematic representation of an energy level scheme for an exemplary embodiment in which the material (M1) for one of the layers EML1 in the emission zone and the other material (M2) for each other of the layers EML2 in the emission zone are each made a one-component, ambipolar material or a mixture of a hole-transporting material and an electron-transporting material are formed.
- the material (M1) for one of the layers EML1 in the emission zone and the other material (M2) for each other of the layers EML2 in the emission zone are each made a one-component, ambipolar material or a mixture of a hole-transporting material and an electron-transporting material are formed.
- the transport materials in the layers EML1 and EML2 only the energy levels important for the transport are shown, but not the uninvolved energy levels in the case of mixed materials.
- FIG. 11 shows a schematic representation of an energy level scheme for an exemplary embodiment in which the hole transport in both materials (M1) and (M2) for the layers EML1, EML2 in the emission zone by hopping between states of the triplet emitter Dotand takes place, wherein in the material (Ml) a HOMO level of a matrix material is formed closer to a HOMO level of the triplet emitter dopant than in the other material (M2), so that a tunnel barrier for a hopping between the Tri ⁇ plett-emitter dopants in the material (M1) in EML1 is smaller than a tunnel barrier for hopping between the dopants in the other material (M2) in EML2 and so that the effective hole mobility in the material (M1) is higher than the effective holes ⁇ probability in the other material (M2) is.
- the energy levels important for the transport are shown, but not the uninvolved energy levels in the case of mixed materials.
- the energy levels are similar to the energy levels in the exemplary embodiment of FIG. 6, the difference being that a hole transport is now taken in the layer EML1 by means of hopping between the triplet emitter dopants. Whether the transport takes place by means of hopping between triplet emitter dopants or as transport on the matrix with the dopants as traps depends on both the dopant concentration and the trapping depth, which is the energy difference between the HOMO and the dopant. Energy level of the matrix and the HOMO energy level of the triplet emitter dopants is.
- FIG. 12 shows a schematic representation of an energy level scheme for an embodiment in which the electron transport in the material (M 1) for the layer EML 1 in FIG the emission zone and the other material (M2) for the layer EML2 takes place in the emission zone by hopping between states of the triplet emitter dopant, wherein in the other material (M2) a LUMO level of a matrix material closer to a LUMO-Ni vide of the triplet emitter dopant is formed as in the material (Ml) such that a tunneling barrier for hopping electrons between the triplet emitter dopants in the other material (M2) is smaller than a tunneling barrier for hopping between the dopants in the material (M1) and so that the effective electron mobility in the other material (M2) is higher than the effective electron mobility in the material (M1).
- the following materials may be used as preferred or exclusively hole transporting matrix materials in the emission zone:
- the following components can be used for the layers EML in the emission zone:
- N-arylbenzimidazoles such as TPBI
- silacyclopentadiene for example 2,5-bis (2 ('), 2 (') - bipyridin-6-yl) -1,1-dimethyl-3,4-diphenylsilacyclopentadiene (PyPySPyPy)
- the bipolar, one-component material belongs to one of the following material classes:
- Such structures have, for example, been realized as a spiro linkage of a donor unit and an acceptor unit (cf., for example, DE 44 46 818 A1, R.
- Push-pull-substituted molecule molecule which has subunits by suitable electron-withdrawing or electron-donating substituents, which preferably take up additional holes and to which the HOMO wave function consequently concentrates and other subunits which preferentially receive additional electrons which the LUMO wave function will concentrate on).
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/573,617 US8653537B2 (en) | 2004-08-13 | 2005-06-16 | Layer assembly for a light-emitting component |
JP2007525155A JP2008509565A (ja) | 2004-08-13 | 2005-06-16 | 発光成分用積層体 |
EP05766723A EP1789994A1 (de) | 2004-08-13 | 2005-06-16 | Schichtanordnung für ein lichtemittierendes bauelement |
DE112005002603T DE112005002603A5 (de) | 2004-08-13 | 2005-06-16 | Schichtanordnung für ein Lichtemittierendes Bauelement |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04019276.7 | 2004-08-13 | ||
DE102004039594 | 2004-08-13 | ||
EP04019276 | 2004-08-13 | ||
DE102004039594.2 | 2004-08-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006015567A1 true WO2006015567A1 (de) | 2006-02-16 |
Family
ID=35385603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2005/001076 WO2006015567A1 (de) | 2004-08-13 | 2005-06-16 | Schichtanordnung für ein lichtemittierendes bauelement |
Country Status (6)
Country | Link |
---|---|
US (1) | US8653537B2 (de) |
EP (1) | EP1789994A1 (de) |
JP (1) | JP2008509565A (de) |
KR (1) | KR101027896B1 (de) |
DE (1) | DE112005002603A5 (de) |
WO (1) | WO2006015567A1 (de) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007287676A (ja) * | 2006-03-21 | 2007-11-01 | Semiconductor Energy Lab Co Ltd | 発光素子、発光装置および電子機器 |
JP2007294261A (ja) * | 2006-04-25 | 2007-11-08 | Matsushita Electric Works Ltd | 有機エレクトロルミネッセンス素子 |
JP2009535812A (ja) * | 2006-04-27 | 2009-10-01 | イーストマン コダック カンパニー | 有機eil層を含むエレクトロルミネッセンス・デバイス |
WO2010137733A1 (en) | 2009-05-29 | 2010-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device, and method for manufacturing the same |
EP2315290A4 (de) * | 2008-08-04 | 2012-01-25 | Pioneer Corp | Organisches elektrolumineszenzelement |
JP2012119325A (ja) * | 2006-03-21 | 2012-06-21 | Semiconductor Energy Lab Co Ltd | 発光素子、発光装置、及び照明器具 |
CN102986050A (zh) * | 2010-06-10 | 2013-03-20 | 诺瓦莱德公开股份有限公司 | 包含有机半导体材料的电子器件 |
US8441004B2 (en) | 2007-09-25 | 2013-05-14 | Osram Opto Semiconductors Gmbh | Radiation emitting device and method for the production thereof |
WO2013135352A1 (de) * | 2012-03-15 | 2013-09-19 | Merck Patent Gmbh | Elektronische vorrichtungen |
CN104247070A (zh) * | 2011-11-30 | 2014-12-24 | 诺瓦尔德股份有限公司 | 显示器 |
US9192017B2 (en) | 2008-03-18 | 2015-11-17 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device and electronic device |
US10570113B2 (en) | 2010-04-09 | 2020-02-25 | Semiconductor Energy Laboratory Co., Ltd. | Aromatic amine derivative, light-emitting element, light-emitting device, electronic device, and lighting device |
US10693093B2 (en) | 2012-02-09 | 2020-06-23 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
Families Citing this family (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7540978B2 (en) | 2004-08-05 | 2009-06-02 | Novaled Ag | Use of an organic matrix material for producing an organic semiconductor material, organic semiconductor material and electronic component |
EP1705727B1 (de) * | 2005-03-15 | 2007-12-26 | Novaled AG | Lichtemittierendes Bauelement |
ATE381117T1 (de) | 2005-04-13 | 2007-12-15 | Novaled Ag | Anordnung für eine organische leuchtdiode vom pin-typ und verfahren zum herstellen |
EP1727221B1 (de) | 2005-05-27 | 2010-04-14 | Novaled AG | Transparente organische Leuchtdiode |
EP1729346A1 (de) * | 2005-06-01 | 2006-12-06 | Novaled AG | Lichtemittierendes Bauteil mit einer Elektrodenanordnung |
EP1739765A1 (de) * | 2005-07-01 | 2007-01-03 | Novaled AG | Organische Leuchtdiode und Anordnung mit mehreren organischen Leuchtdioden |
EP1806795B1 (de) * | 2005-12-21 | 2008-07-09 | Novaled AG | Organisches Bauelement |
DE602006001930D1 (de) * | 2005-12-23 | 2008-09-04 | Novaled Ag | tur von organischen Schichten |
EP1808909A1 (de) | 2006-01-11 | 2007-07-18 | Novaled AG | Elekrolumineszente Lichtemissionseinrichtung |
EP1848049B1 (de) * | 2006-04-19 | 2009-12-09 | Novaled AG | Lichtemittierendes Bauelement |
DE102007019260B4 (de) * | 2007-04-17 | 2020-01-16 | Novaled Gmbh | Nichtflüchtiges organisches Speicherelement |
JP2009032990A (ja) * | 2007-07-27 | 2009-02-12 | Fujifilm Corp | 有機電界発光素子 |
DE102007053396A1 (de) * | 2007-08-07 | 2009-02-12 | Osram Opto Semiconductors Gmbh | Strahlungsemittierende Vorrichtung |
KR100924145B1 (ko) * | 2008-06-10 | 2009-10-28 | 삼성모바일디스플레이주식회사 | 유기전계발광소자 및 이의 제조방법 |
DE102008036063B4 (de) * | 2008-08-04 | 2017-08-31 | Novaled Gmbh | Organischer Feldeffekt-Transistor |
DE102008036062B4 (de) | 2008-08-04 | 2015-11-12 | Novaled Ag | Organischer Feldeffekt-Transistor |
KR101596226B1 (ko) | 2008-09-05 | 2016-02-22 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 소자, 발광 장치 및 전자기기 |
EP2194055B1 (de) | 2008-12-03 | 2012-04-04 | Novaled AG | Verbrückte Pyridochinazolin- oder Phenathronlin-Verbindungen und organisches Halbleitermaterial mit dieser Verbindung |
US7893430B2 (en) * | 2009-02-26 | 2011-02-22 | Battelle Memorial Institute | OLED devices |
DE102009013685B4 (de) | 2009-03-20 | 2013-01-31 | Novaled Ag | Verwendung einer organischen Diode als organische Zenerdiode und Verfahren zum Betreiben |
EP2246862A1 (de) | 2009-04-27 | 2010-11-03 | Novaled AG | Organische elektronische Vorrichtung mit einem organischen Halbleitermaterial |
CN102449800A (zh) * | 2009-05-29 | 2012-05-09 | 株式会社半导体能源研究所 | 发光元件、发光装置、照明装置以及电子设备 |
CN106957410B (zh) * | 2009-06-01 | 2019-06-18 | 日立化成工业株式会社 | 有机电子材料、组合物、薄膜、有机电子元件、有机电致发光元件、照明装置及显示装置 |
EP2267818B1 (de) | 2009-06-22 | 2017-03-22 | Novaled GmbH | Organische Beleuchtungsvorrichtung |
US9133177B2 (en) * | 2009-06-24 | 2015-09-15 | Georgia Tech Research Corporation | Ambipolar small molecule hosts for phosphorescent guest emitters |
EP2474204B1 (de) * | 2009-09-04 | 2017-01-25 | Semiconductor Energy Laboratory Co, Ltd. | Lichtemittierende vorrichtung |
DE102009053645A1 (de) * | 2009-11-17 | 2011-05-19 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtung |
EP2312663B1 (de) | 2009-10-19 | 2014-10-15 | Novaled AG | Organische elektronische Vorrichtung mit einem organischen Halbleitermaterial |
WO2011063927A1 (en) | 2009-11-24 | 2011-06-03 | Novaled Ag | Organic electronic device comprising an organic semiconducting material |
JP2011139044A (ja) | 2009-12-01 | 2011-07-14 | Semiconductor Energy Lab Co Ltd | 発光素子、発光装置、電子機器、および照明装置 |
DE102010004453A1 (de) * | 2010-01-12 | 2011-07-14 | Novaled AG, 01307 | Organisches lichtemittierendes Bauelement |
EP2367215A1 (de) * | 2010-03-15 | 2011-09-21 | Novaled AG | Organische photoaktive Vorrichtung |
CN102971883B (zh) | 2010-06-14 | 2016-01-20 | 诺瓦莱德公开股份有限公司 | 有机发光器件 |
US8637858B2 (en) | 2010-09-24 | 2014-01-28 | Novaled Ag | Tandem white OLED |
EP2452946B1 (de) | 2010-11-16 | 2014-05-07 | Novaled AG | Pyridylphosphinoxide für eine organische elektronische Vorrichtung und organische elektronische Vorrichtung |
EP2463927B1 (de) | 2010-12-08 | 2013-08-21 | Novaled AG | Material für eine organische elektronische Vorrichtung und organische elektronische Vorrichtung |
CN107342369B (zh) | 2011-02-16 | 2020-10-16 | 株式会社半导体能源研究所 | 发光元件 |
TWI680600B (zh) | 2011-02-28 | 2019-12-21 | 日商半導體能源研究所股份有限公司 | 發光元件 |
JP5772085B2 (ja) * | 2011-03-09 | 2015-09-02 | セイコーエプソン株式会社 | 発光素子、発光装置、表示装置および電子機器 |
KR101981747B1 (ko) | 2011-12-06 | 2019-05-23 | 노발레드 게엠베하 | 유기 발광 장치 및 제조 방법 |
JP2015518653A (ja) | 2012-04-02 | 2015-07-02 | ノヴァレッド ゲーエムベーハー | 有機発光素子における半導体化合物の使用 |
KR101419810B1 (ko) * | 2012-04-10 | 2014-07-15 | 서울대학교산학협력단 | 엑시플렉스를 형성하는 공동 호스트를 포함하는 유기 발광 소자 |
KR20240129241A (ko) | 2012-04-20 | 2024-08-27 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 소자, 발광 장치, 전자 기기, 및 조명 장치 |
FR2992097B1 (fr) * | 2012-06-18 | 2015-03-27 | Astron Fiamm Safety | Diode electroluminescente organique de type pin |
DE102012217587A1 (de) * | 2012-09-27 | 2014-03-27 | Siemens Aktiengesellschaft | Salze des Cyclopentadiens als n-Dotierstoffe für die organische Elektronik |
EP2722908A1 (de) * | 2012-10-17 | 2014-04-23 | Novaled AG | Phosphoreszente OLED und Lochtransportmaterialien für phophoreszente OLED |
EP2790236B1 (de) | 2013-04-10 | 2017-09-20 | Novaled GmbH | Halbleitermaterial mit azasubstituierter Phosphinoxidmatrix und Metallsalz |
US10276817B2 (en) * | 2013-04-12 | 2019-04-30 | University Of Southern California | Stable organic photosensitive devices with exciton-blocking charge carrier filters utilizing high glass transition temperature materials |
WO2014169270A2 (en) | 2013-04-12 | 2014-10-16 | The Regents Of The University Of Michigan | Organic photosensitive devices with exciton-blocking charge carrier filters |
EP4152910A1 (de) * | 2013-08-14 | 2023-03-22 | Kyulux, Inc. | Organisches elektrolumineszentes element |
EP2840622B1 (de) | 2013-08-19 | 2019-02-13 | Novaled GmbH | Elektronische oder optoelektronische Vorrichtung mit einer verankerten dünnen Molekularschicht, Verfahren zu deren Herstellung und darin verwendete Verbindung |
US9905810B2 (en) * | 2013-09-27 | 2018-02-27 | Wake Forest University | Frequency dependent light emitting devices |
EP2860782B1 (de) | 2013-10-09 | 2019-04-17 | Novaled GmbH | Halbleitermaterial, umfassend eine Phosphinoxidmatrix und Metallsalz |
EP2887412B1 (de) | 2013-12-23 | 2016-07-27 | Novaled GmbH | Halbleitermaterial |
EP2887416B1 (de) | 2013-12-23 | 2018-02-21 | Novaled GmbH | N-dotiertes Halbleitermaterial mit Phosphinoxidmatrix und Metalldotiermittel |
KR20150130224A (ko) | 2014-05-13 | 2015-11-23 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 소자, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치 |
WO2015186741A1 (ja) * | 2014-06-03 | 2015-12-10 | シャープ株式会社 | 有機el素子、及び製造方法 |
EP2963697B1 (de) | 2014-06-30 | 2020-09-23 | Novaled GmbH | Elektrisch dotiertes organisches Halbleitermaterial und organische lichtemittierende Vorrichtung damit |
EP3059776B1 (de) | 2015-02-18 | 2021-03-31 | Novaled GmbH | Halbleitermaterial und Naphtofuranverbindungsmatrix |
EP3079179A1 (de) | 2015-04-08 | 2016-10-12 | Novaled GmbH | Halbleitermaterial mit einer phosphinoxidmatrix und metallsalz |
KR20240052887A (ko) * | 2015-04-27 | 2024-04-23 | 호도가야 가가쿠 고교 가부시키가이샤 | 유기 일렉트로루미네선스 소자 |
WO2016209808A1 (en) * | 2015-06-22 | 2016-12-29 | University Of Florida Research Foundation, Inc. | Dye-doped hole transport layer for organic light emitting diodes |
DE102015110091B4 (de) | 2015-06-23 | 2019-06-06 | Novaled Gmbh | Phosphepinmatrixverbindung für ein Halbleitermaterial |
EP3109915B1 (de) | 2015-06-23 | 2021-07-21 | Novaled GmbH | Organische lichtemittierende vorrichtung mit polarer matrix und metalldotiermittel |
EP3109919B1 (de) | 2015-06-23 | 2021-06-23 | Novaled GmbH | N-dotiertes halbleitermaterial mit polarer matrix und einem metalldotiermittel |
EP3109916B1 (de) | 2015-06-23 | 2021-08-25 | Novaled GmbH | Organische lichtemittierende vorrichtung mit polarer matrix, metalldotierstoff und silber-kathode |
US20180182960A1 (en) | 2015-06-23 | 2018-06-28 | Novaled Gmbh | Organic Light Emitting Device Comprising Polar Matrix and Metal Dopant |
JP6340616B2 (ja) * | 2015-07-28 | 2018-06-13 | 株式会社Joled | 有機el素子、および有機el表示パネル |
KR102427671B1 (ko) * | 2015-09-07 | 2022-08-02 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
EP3168324A1 (de) | 2015-11-10 | 2017-05-17 | Novaled GmbH | Verfahren zur herstellung einer metallhaltigen schicht |
EP3168886B8 (de) | 2015-11-10 | 2023-07-26 | Novaled GmbH | Metallschicht mit alkalimetall und zweitem metall |
EP3168894B8 (de) | 2015-11-10 | 2023-07-26 | Novaled GmbH | N-dotiertes halbleitermaterial mit zwei metallischen dotierstoffen |
EP3374538B1 (de) | 2015-11-10 | 2024-02-21 | Novaled GmbH | Verfahren zur herstellung einer metallhaltigen schicht |
US10941168B2 (en) | 2016-06-22 | 2021-03-09 | Novaled Gmbh | Phosphepine matrix compound for a semiconducting material |
US10273102B1 (en) | 2018-02-27 | 2019-04-30 | Xerox Corporation | Leading/trailing edge detection system having phosphorescent belt |
WO2020063592A1 (zh) * | 2018-09-29 | 2020-04-02 | Tcl集团股份有限公司 | 一种量子点发光二极管 |
CN112823434A (zh) * | 2018-10-16 | 2021-05-18 | 出光兴产株式会社 | 有机电致发光元件和电子设备 |
KR102693673B1 (ko) * | 2018-10-25 | 2024-08-08 | 엘지디스플레이 주식회사 | 유기발광다이오드 및 유기발광장치 |
KR102727031B1 (ko) * | 2019-02-22 | 2024-11-07 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR102680192B1 (ko) * | 2020-07-10 | 2024-06-28 | 주식회사 엘지화학 | 조성물, 증착소스, 이를 포함하는 유기 전계 발광 소자 및 이의 제조방법 |
US20240130223A1 (en) * | 2020-12-25 | 2024-04-18 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent element and electronic device |
WO2022138948A1 (ja) * | 2020-12-25 | 2022-06-30 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子、発光装置、有機エレクトロルミネッセンス表示装置及び電子機器 |
US11575087B1 (en) | 2020-12-25 | 2023-02-07 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device, light emitting device, organic electroluminescence display device and electronic device |
CN113471376B (zh) * | 2021-06-28 | 2024-03-19 | 广东聚华印刷显示技术有限公司 | 发光结构、有机发光二极管和电子设备 |
JP2024003294A (ja) | 2022-06-27 | 2024-01-15 | キヤノン株式会社 | 有機発光素子 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0992564A1 (de) * | 1998-04-09 | 2000-04-12 | Idemitsu Kosan Co., Ltd. | Organische elektrolumineszensvorrichtung |
WO2002091814A2 (en) * | 2001-05-16 | 2002-11-21 | The Trustees Of Princeton University | High efficiency multi-color electro-phosphorescent oleds |
DE10224021A1 (de) * | 2002-05-24 | 2003-12-11 | Novaled Gmbh | Phosphoreszentes lichtemittierendes Bauelement mit organischen Schichten |
US20040104394A1 (en) * | 2002-09-11 | 2004-06-03 | Ming-Der Lin | Organic electroluminescent device and method for producing the same |
Family Cites Families (137)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4446818A1 (de) | 1994-12-27 | 1996-07-04 | Hoechst Ag | Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien |
US4356429A (en) | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
US4769292A (en) | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
JP2813428B2 (ja) | 1989-08-17 | 1998-10-22 | 三菱電機株式会社 | 電界効果トランジスタ及び該電界効果トランジスタを用いた液晶表示装置 |
US7494638B1 (en) | 1990-08-30 | 2009-02-24 | Mitsubishi Corporation | Form of carbon |
US5093698A (en) | 1991-02-12 | 1992-03-03 | Kabushiki Kaisha Toshiba | Organic electroluminescent device |
EP0676461B1 (de) * | 1994-04-07 | 2002-08-14 | Covion Organic Semiconductors GmbH | Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien |
US5707745A (en) | 1994-12-13 | 1998-01-13 | The Trustees Of Princeton University | Multicolor organic light emitting devices |
US5703436A (en) | 1994-12-13 | 1997-12-30 | The Trustees Of Princeton University | Transparent contacts for organic devices |
JP3586939B2 (ja) | 1994-12-22 | 2004-11-10 | 株式会社デンソー | El素子およびその製造方法 |
JP3327558B2 (ja) | 1995-11-28 | 2002-09-24 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 有機エレクトロルミネセント・デバイスを改良するために使用される有機/無機合金 |
JPH10125469A (ja) | 1996-10-24 | 1998-05-15 | Tdk Corp | 有機el発光素子 |
US5811833A (en) * | 1996-12-23 | 1998-09-22 | University Of So. Ca | Electron transporting and light emitting layers based on organic free radicals |
US5917280A (en) | 1997-02-03 | 1999-06-29 | The Trustees Of Princeton University | Stacked organic light emitting devices |
JP3949214B2 (ja) * | 1997-03-18 | 2007-07-25 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
US6337492B1 (en) | 1997-07-11 | 2002-01-08 | Emagin Corporation | Serially-connected organic light emitting diode stack having conductors sandwiching each light emitting layer |
JP3736071B2 (ja) | 1997-09-30 | 2006-01-18 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネセンス素子 |
US6303238B1 (en) | 1997-12-01 | 2001-10-16 | The Trustees Of Princeton University | OLEDs doped with phosphorescent compounds |
GB9805476D0 (en) | 1998-03-13 | 1998-05-13 | Cambridge Display Tech Ltd | Electroluminescent devices |
JP3884564B2 (ja) | 1998-05-20 | 2007-02-21 | 出光興産株式会社 | 有機el発光素子およびそれを用いた発光装置 |
DE69927235T2 (de) | 1998-07-24 | 2006-01-19 | Seiko Epson Corp. | Anzeigevorrichtung |
JP2000075836A (ja) | 1998-09-02 | 2000-03-14 | Sharp Corp | 有機el発光装置とその駆動方法 |
US6274980B1 (en) | 1998-11-16 | 2001-08-14 | The Trustees Of Princeton University | Single-color stacked organic light emitting device |
JP2000196140A (ja) | 1998-12-28 | 2000-07-14 | Sharp Corp | 有機エレクトロルミネッセンス素子とその製造法 |
JP2000231992A (ja) | 1999-02-09 | 2000-08-22 | Stanley Electric Co Ltd | 面光源装置 |
GB2347013A (en) | 1999-02-16 | 2000-08-23 | Sharp Kk | Charge-transport structures |
US6541909B1 (en) * | 1999-03-02 | 2003-04-01 | Nec Corporation | Organic electroluminescent device with doped transport layer(s) and production method |
JP3503557B2 (ja) * | 1999-03-02 | 2004-03-08 | 日本電気株式会社 | 有機エレクトロルミネッセンス素子、その製造方法及び有機エレクトロルミネッセンスディスプレイ |
US7001536B2 (en) | 1999-03-23 | 2006-02-21 | The Trustees Of Princeton University | Organometallic complexes as phosphorescent emitters in organic LEDs |
DE19916745A1 (de) | 1999-04-13 | 2000-10-19 | Mannesmann Vdo Ag | Lichtemittierende Diode mit organischen lichtemittierenden Stoffen zur Erzeugung von Licht mit Mischfarben |
JP3885412B2 (ja) * | 1999-05-25 | 2007-02-21 | 松下電器産業株式会社 | 有機電界発光素子 |
AU4937300A (en) | 1999-06-09 | 2000-12-28 | Cambridge Display Technology Limited | Method of producing organic light-emissive devices |
WO2001005194A1 (fr) | 1999-07-07 | 2001-01-18 | Sony Corporation | Procede et appareil de fabrication d'afficheur electroluminescent organique souple |
US6310360B1 (en) | 1999-07-21 | 2001-10-30 | The Trustees Of Princeton University | Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices |
BE1012802A3 (fr) | 1999-07-28 | 2001-03-06 | Cockerill Rech & Dev | Dispositif electroluminescent et son procede de fabrication. |
JP3589960B2 (ja) * | 1999-09-16 | 2004-11-17 | 株式会社デンソー | 有機el素子 |
KR20010050711A (ko) | 1999-09-29 | 2001-06-15 | 준지 키도 | 유기전계발광소자, 유기전계발광소자그룹 및 이런소자들의 발광스펙트럼의 제어방법 |
KR100377321B1 (ko) | 1999-12-31 | 2003-03-26 | 주식회사 엘지화학 | 피-형 반도체 성질을 갖는 유기 화합물을 포함하는 전기소자 |
US7560175B2 (en) | 1999-12-31 | 2009-07-14 | Lg Chem, Ltd. | Electroluminescent devices with low work function anode |
US6660410B2 (en) | 2000-03-27 | 2003-12-09 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence element |
KR100329571B1 (ko) * | 2000-03-27 | 2002-03-23 | 김순택 | 유기 전자 발광소자 |
JP4094203B2 (ja) | 2000-03-30 | 2008-06-04 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子及び有機発光媒体 |
GB2361356B (en) | 2000-04-14 | 2005-01-05 | Seiko Epson Corp | Light emitting device |
US6645645B1 (en) | 2000-05-30 | 2003-11-11 | The Trustees Of Princeton University | Phosphorescent organic light emitting devices |
US6956324B2 (en) | 2000-08-04 | 2005-10-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method therefor |
JP2002082627A (ja) | 2000-09-07 | 2002-03-22 | Sony Corp | 表示装置 |
US6998775B2 (en) | 2000-10-25 | 2006-02-14 | Matsushita Electric Industrial Co., Ltd. | Layered, light-emitting element |
JP4092901B2 (ja) * | 2000-10-30 | 2008-05-28 | 株式会社豊田中央研究所 | 有機電界発光素子 |
EP1202608B2 (de) | 2000-10-30 | 2012-02-08 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Organische lichtemittierende Bauelemente |
DE10058578C2 (de) * | 2000-11-20 | 2002-11-28 | Univ Dresden Tech | Lichtemittierendes Bauelement mit organischen Schichten |
US6573651B2 (en) | 2000-12-18 | 2003-06-03 | The Trustees Of Princeton University | Highly efficient OLEDs using doped ambipolar conductive molecular organic thin films |
JP4220669B2 (ja) * | 2000-12-26 | 2009-02-04 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
JP4047015B2 (ja) * | 2001-01-18 | 2008-02-13 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置、電気器具 |
TW519770B (en) * | 2001-01-18 | 2003-02-01 | Semiconductor Energy Lab | Light emitting device and manufacturing method thereof |
SG107573A1 (en) | 2001-01-29 | 2004-12-29 | Semiconductor Energy Lab | Light emitting device |
WO2002066552A1 (en) | 2001-02-20 | 2002-08-29 | Isis Innovation Limited | Metal-containing dendrimers |
JP4994564B2 (ja) * | 2001-03-02 | 2012-08-08 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | 二重ドープ層燐光有機発光装置 |
JP4234998B2 (ja) | 2001-03-29 | 2009-03-04 | 富士フイルム株式会社 | エレクトロルミネッセンス素子 |
US6580027B2 (en) | 2001-06-11 | 2003-06-17 | Trustees Of Princeton University | Solar cells using fullerenes |
AU2002320158A1 (en) | 2001-06-21 | 2003-01-08 | The Trustees Of Princeton University | Organic light-emitting devices with blocking and transport layers |
JP4152665B2 (ja) | 2001-07-11 | 2008-09-17 | 株式会社半導体エネルギー研究所 | 発光装置及びその作製方法 |
DE10135513B4 (de) | 2001-07-20 | 2005-02-24 | Novaled Gmbh | Lichtemittierendes Bauelement mit organischen Schichten |
JP2003043998A (ja) | 2001-07-30 | 2003-02-14 | Pioneer Electronic Corp | ディスプレイ装置 |
KR100439648B1 (ko) | 2001-08-29 | 2004-07-12 | 엘지.필립스 엘시디 주식회사 | 유기전계발광소자 |
US6734038B2 (en) | 2001-09-04 | 2004-05-11 | The Trustees Of Princeton University | Method of manufacturing high-mobility organic thin films using organic vapor phase deposition |
WO2003023876A1 (en) | 2001-09-05 | 2003-03-20 | Sharp Kabushiki Kaisha | Polymer structure and functional element having the same, and transistor and display using the same |
DE10145492B4 (de) | 2001-09-14 | 2004-11-11 | Novaled Gmbh | Elektrolumineszente Lichtemissionseinrichtung, insbesondere als Weißlichtquelle |
US6680578B2 (en) | 2001-09-19 | 2004-01-20 | Osram Opto Semiconductors, Gmbh | Organic light emitting diode light source |
JP2003203769A (ja) | 2001-10-29 | 2003-07-18 | Sony Corp | 線状パターン及びパターン形成方法、画像表示装置及びその製造方法 |
ATE464650T1 (de) | 2001-11-22 | 2010-04-15 | Canon Kk | Lichtemissionselement, herstellungsverfahren dafür und lichtemissionsvorrichtung |
DE10157945C2 (de) | 2001-11-27 | 2003-09-18 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines organischen, elektrolumineszierenden Displays sowie ein organisches, elektrolumineszierendes Display |
JP3852916B2 (ja) | 2001-11-27 | 2006-12-06 | パイオニア株式会社 | ディスプレイ装置 |
US6734457B2 (en) * | 2001-11-27 | 2004-05-11 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US6863997B2 (en) * | 2001-12-28 | 2005-03-08 | The Trustees Of Princeton University | White light emitting OLEDs from combined monomer and aggregate emission |
US7012363B2 (en) | 2002-01-10 | 2006-03-14 | Universal Display Corporation | OLEDs having increased external electroluminescence quantum efficiencies |
US6872472B2 (en) | 2002-02-15 | 2005-03-29 | Eastman Kodak Company | Providing an organic electroluminescent device having stacked electroluminescent units |
DE10207859A1 (de) | 2002-02-20 | 2003-09-04 | Univ Dresden Tech | Dotiertes organisches Halbleitermaterial sowie Verfahren zu dessen Herstellung |
JP3933591B2 (ja) | 2002-03-26 | 2007-06-20 | 淳二 城戸 | 有機エレクトロルミネッセント素子 |
DE10215210B4 (de) | 2002-03-28 | 2006-07-13 | Novaled Gmbh | Transparentes, thermisch stabiles lichtemittierendes Bauelement mit organischen Schichten |
JP2003297561A (ja) | 2002-03-29 | 2003-10-17 | Fuji Photo Film Co Ltd | 有機薄膜素子の製造方法及び有機薄膜素子 |
GB0208506D0 (en) | 2002-04-12 | 2002-05-22 | Dupont Teijin Films Us Ltd | Film coating |
GB2388236A (en) | 2002-05-01 | 2003-11-05 | Cambridge Display Tech Ltd | Display and driver circuits |
US20030230980A1 (en) | 2002-06-18 | 2003-12-18 | Forrest Stephen R | Very low voltage, high efficiency phosphorescent oled in a p-i-n structure |
US6670772B1 (en) | 2002-06-27 | 2003-12-30 | Eastman Kodak Company | Organic light emitting diode display with surface plasmon outcoupling |
DE10229231B9 (de) | 2002-06-28 | 2006-05-11 | Osram Opto Semiconductors Gmbh | Verfahren zum Herstellen eines Strahlung emittierenden und/oder empfangenden Halbleiterchips mit einer Strahlungsein- und/oder -auskoppel-Mikrostruktur |
GB0215309D0 (en) | 2002-07-03 | 2002-08-14 | Cambridge Display Tech Ltd | Combined information display and information input device |
US6642092B1 (en) | 2002-07-11 | 2003-11-04 | Sharp Laboratories Of America, Inc. | Thin-film transistors formed on a metal foil substrate |
DE10232238A1 (de) | 2002-07-17 | 2004-02-05 | Philips Intellectual Property & Standards Gmbh | Elektrolumineszierende Vorrichtung aus zweidimensionalem Array |
US20050270279A1 (en) | 2002-07-23 | 2005-12-08 | Koninklijke Philips Electronics N.V. | Electroluminescent display and electronic device comprising such a display |
GB2392023A (en) | 2002-08-05 | 2004-02-18 | Gen Electric | Series connected oled structure and fabrication method |
US7034470B2 (en) | 2002-08-07 | 2006-04-25 | Eastman Kodak Company | Serially connecting OLED devices for area illumination |
US20040067324A1 (en) | 2002-09-13 | 2004-04-08 | Lazarev Pavel I | Organic photosensitive optoelectronic device |
JP4288918B2 (ja) | 2002-09-26 | 2009-07-01 | セイコーエプソン株式会社 | 有機elパネルおよびその製造方法、それを用いた電気光学パネル並びに電子機器 |
US6965197B2 (en) | 2002-10-01 | 2005-11-15 | Eastman Kodak Company | Organic light-emitting device having enhanced light extraction efficiency |
JP2004200141A (ja) * | 2002-10-24 | 2004-07-15 | Toyota Industries Corp | 有機el素子 |
JP2004214120A (ja) | 2003-01-08 | 2004-07-29 | Sony Corp | 有機電界発光素子の製造装置及び製造方法 |
JP2004234942A (ja) | 2003-01-29 | 2004-08-19 | Yodogawa Steel Works Ltd | 無機el素子の作製方法 |
KR100560785B1 (ko) | 2003-02-03 | 2006-03-13 | 삼성에스디아이 주식회사 | 저전압에서 구동되는 유기 전계 발광 소자 |
JP4531342B2 (ja) * | 2003-03-17 | 2010-08-25 | 株式会社半導体エネルギー研究所 | 白色有機発光素子および発光装置 |
US6870196B2 (en) | 2003-03-19 | 2005-03-22 | Eastman Kodak Company | Series/parallel OLED light source |
US7521113B2 (en) | 2003-04-28 | 2009-04-21 | Zheng-Hong Lu | Light-emitting devices with fullerene layer |
US6936961B2 (en) | 2003-05-13 | 2005-08-30 | Eastman Kodak Company | Cascaded organic electroluminescent device having connecting units with N-type and P-type organic layers |
EP1477892B1 (de) | 2003-05-16 | 2015-12-23 | Sap Se | System, Verfahren, Computerprogrammprodukt und Herstellungsartikel zur Dateneingabe in ein Computersystem |
CN100477873C (zh) | 2003-07-10 | 2009-04-08 | 理想星株式会社 | 发光元件及发光装置 |
US7745016B2 (en) * | 2003-07-11 | 2010-06-29 | Idemitsu Kosan Co., Ltd. | White organic electroluminescence device |
JP4194436B2 (ja) | 2003-07-14 | 2008-12-10 | キヤノン株式会社 | 電界効果型有機トランジスタ |
DE10333232A1 (de) * | 2003-07-21 | 2007-10-11 | Merck Patent Gmbh | Organisches Elektrolumineszenzelement |
DE10335727A1 (de) | 2003-08-05 | 2005-02-24 | H.C. Starck Gmbh | Transparente Elektrode für elektro-optische Aufbauten |
US20060232992A1 (en) | 2003-08-12 | 2006-10-19 | Koninklijke Philips Electronics N.V. | Circuit arrangement for ac driving of organic diodes |
JP2005063840A (ja) | 2003-08-13 | 2005-03-10 | Toshiba Matsushita Display Technology Co Ltd | 自発光表示装置及び有機el表示装置 |
DE10338406A1 (de) | 2003-08-18 | 2005-03-24 | Novaled Gmbh | Dotierte organische Halbleitermaterialien sowie Verfahren zu deren Herstellung |
US7180089B2 (en) | 2003-08-19 | 2007-02-20 | National Taiwan University | Reconfigurable organic light-emitting device and display apparatus employing the same |
DE10339772B4 (de) | 2003-08-27 | 2006-07-13 | Novaled Gmbh | Licht emittierendes Bauelement und Verfahren zu seiner Herstellung |
JP2005116193A (ja) | 2003-10-02 | 2005-04-28 | Toyota Industries Corp | 有機電界発光素子及び当該素子を備えた有機電界発光デバイス |
DE10347856B8 (de) | 2003-10-10 | 2006-10-19 | Colorado State University Research Foundation, Fort Collins | Halbleiterdotierung |
US7432124B2 (en) | 2003-11-04 | 2008-10-07 | 3M Innovative Properties Company | Method of making an organic light emitting device |
JP2005156925A (ja) | 2003-11-26 | 2005-06-16 | Hitachi Displays Ltd | 表示装置 |
DE10357044A1 (de) | 2003-12-04 | 2005-07-14 | Novaled Gmbh | Verfahren zur Dotierung von organischen Halbleitern mit Chinondiiminderivaten |
US7151339B2 (en) * | 2004-01-30 | 2006-12-19 | Universal Display Corporation | OLED efficiency by utilization of different doping concentrations within the device emissive layer |
US7030554B2 (en) | 2004-02-06 | 2006-04-18 | Eastman Kodak Company | Full-color organic display having improved blue emission |
JP4276109B2 (ja) | 2004-03-01 | 2009-06-10 | ローム株式会社 | 有機エレクトロルミネッセント素子 |
DE102004010954A1 (de) | 2004-03-03 | 2005-10-06 | Novaled Gmbh | Verwendung eines Metallkomplexes als n-Dotand für ein organisches halbleitendes Matrixmaterial, organisches Halbleitermaterial und elektronisches Bauteil |
US7192659B2 (en) * | 2004-04-14 | 2007-03-20 | Eastman Kodak Company | OLED device using reduced drive voltage |
CN100508238C (zh) | 2004-05-11 | 2009-07-01 | Lg化学株式会社 | 有机电子器件 |
US20050269943A1 (en) | 2004-06-04 | 2005-12-08 | Michael Hack | Protected organic electronic devices and methods for making the same |
US7288330B2 (en) * | 2004-07-01 | 2007-10-30 | Eaastman Kodak Company | High performance white light-emitting OLED device |
US20060014044A1 (en) | 2004-07-14 | 2006-01-19 | Au Optronics Corporation | Organic light-emitting display with multiple light-emitting modules |
CN1738069A (zh) | 2004-08-17 | 2006-02-22 | 国际商业机器公司 | 其电极具有增强注入特性的电子器件制造方法和电子器件 |
DE102004041371B4 (de) | 2004-08-25 | 2007-08-02 | Novaled Ag | Bauelement auf Basis einer organischen Leuchtdiodeneinrichtung und Verfahren zur Herstellung |
KR20060026776A (ko) | 2004-09-21 | 2006-03-24 | 삼성에스디아이 주식회사 | 유기 전계 발광 소자 및 그의 제조 방법 |
EP1684365A3 (de) | 2005-01-20 | 2008-08-13 | Fuji Electric Holdings Co., Ltd. | Transistor |
ATE381117T1 (de) | 2005-04-13 | 2007-12-15 | Novaled Ag | Anordnung für eine organische leuchtdiode vom pin-typ und verfahren zum herstellen |
EP1729346A1 (de) | 2005-06-01 | 2006-12-06 | Novaled AG | Lichtemittierendes Bauteil mit einer Elektrodenanordnung |
EP1739765A1 (de) | 2005-07-01 | 2007-01-03 | Novaled AG | Organische Leuchtdiode und Anordnung mit mehreren organischen Leuchtdioden |
EP1806795B1 (de) | 2005-12-21 | 2008-07-09 | Novaled AG | Organisches Bauelement |
EP1804308B1 (de) | 2005-12-23 | 2012-04-04 | Novaled AG | Organische lichtemittierende Vorrichtung mit mehreren aufeinander gestapelten organischen elektrolumineszenten Einheiten |
DE102006059509B4 (de) | 2006-12-14 | 2012-05-03 | Novaled Ag | Organisches Leuchtbauelement |
-
2005
- 2005-06-16 WO PCT/DE2005/001076 patent/WO2006015567A1/de active Application Filing
- 2005-06-16 JP JP2007525155A patent/JP2008509565A/ja active Pending
- 2005-06-16 KR KR1020077003457A patent/KR101027896B1/ko active Active
- 2005-06-16 EP EP05766723A patent/EP1789994A1/de not_active Withdrawn
- 2005-06-16 DE DE112005002603T patent/DE112005002603A5/de not_active Withdrawn
- 2005-06-16 US US11/573,617 patent/US8653537B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0992564A1 (de) * | 1998-04-09 | 2000-04-12 | Idemitsu Kosan Co., Ltd. | Organische elektrolumineszensvorrichtung |
WO2002091814A2 (en) * | 2001-05-16 | 2002-11-21 | The Trustees Of Princeton University | High efficiency multi-color electro-phosphorescent oleds |
DE10224021A1 (de) * | 2002-05-24 | 2003-12-11 | Novaled Gmbh | Phosphoreszentes lichtemittierendes Bauelement mit organischen Schichten |
US20040104394A1 (en) * | 2002-09-11 | 2004-06-03 | Ming-Der Lin | Organic electroluminescent device and method for producing the same |
Non-Patent Citations (5)
Title |
---|
GUFENG HE ET AL: "High-efficiency and low-voltage p-i-n electrophosphorescent OLEDs with double-doping emission layers", PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING SPIE-INT. SOC. OPT. ENG USA, vol. 5464, no. 1, September 2004 (2004-09-01), pages 26 - 31, XP002356312, ISSN: 0277-786X * |
HINO ET AL: "Efficient low-molecule phosphorescent organic light-emitting diodes fabricated by wet-processing", ORGANIC ELECTRONICS, ELSEVIER, 8 August 2004 (2004-08-08), XP002356311, Retrieved from the Internet <URL:http://www.sciencedirect.com/...> [retrieved on 20051128] * |
TOKITO S ET AL: "Improvement of emission efficiency in polymer light-emitting devices based on phosphorescent polymers", PREPARATION AND CHARACTERIZATION, ELSEVIER SEQUOIA, NL, vol. 445, no. 2, 15 December 2003 (2003-12-15), pages 353 - 357, XP004479619, ISSN: 0040-6090 * |
WU ET AL.: "Efficient Organic blue-light-emitting devices with double confinement on terfluorenes with ambipolar carrier transport properties", ADVANCED MATERIALS, vol. 16, no. 1, 5 January 2004 (2004-01-05), pages 61 - 65, XP002356313 * |
ZHOU X ET AL: "High-efficiency electrophosphorescent organic light-emitting diodes with double light-emitting layers", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 81, no. 21, 18 November 2002 (2002-11-18), pages 4070 - 4072, XP012032604, ISSN: 0003-6951 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014168092A (ja) * | 2006-03-21 | 2014-09-11 | Semiconductor Energy Lab Co Ltd | 発光素子 |
JP2007287676A (ja) * | 2006-03-21 | 2007-11-01 | Semiconductor Energy Lab Co Ltd | 発光素子、発光装置および電子機器 |
JP2012119325A (ja) * | 2006-03-21 | 2012-06-21 | Semiconductor Energy Lab Co Ltd | 発光素子、発光装置、及び照明器具 |
US9112170B2 (en) | 2006-03-21 | 2015-08-18 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device, and electronic device |
JP2007294261A (ja) * | 2006-04-25 | 2007-11-08 | Matsushita Electric Works Ltd | 有機エレクトロルミネッセンス素子 |
JP2009535812A (ja) * | 2006-04-27 | 2009-10-01 | イーストマン コダック カンパニー | 有機eil層を含むエレクトロルミネッセンス・デバイス |
US8441004B2 (en) | 2007-09-25 | 2013-05-14 | Osram Opto Semiconductors Gmbh | Radiation emitting device and method for the production thereof |
US9192017B2 (en) | 2008-03-18 | 2015-11-17 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device and electronic device |
EP2315290A4 (de) * | 2008-08-04 | 2012-01-25 | Pioneer Corp | Organisches elektrolumineszenzelement |
US8436345B2 (en) | 2008-08-04 | 2013-05-07 | Pioneer Corporation | Organic electroluminescence device |
US9741955B2 (en) | 2009-05-29 | 2017-08-22 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device, and method for manufacturing the same |
EP2436234A4 (de) * | 2009-05-29 | 2013-06-19 | Semiconductor Energy Lab | Lichtemittierendes element, lichtemittierende vorrichtung damit und herstellungsverfahren dafür |
WO2010137733A1 (en) | 2009-05-29 | 2010-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device, and method for manufacturing the same |
US10570113B2 (en) | 2010-04-09 | 2020-02-25 | Semiconductor Energy Laboratory Co., Ltd. | Aromatic amine derivative, light-emitting element, light-emitting device, electronic device, and lighting device |
US11046667B2 (en) | 2010-04-09 | 2021-06-29 | Semiconductor Energy Laboratory Co., Ltd. | Aromatic amine derivative, light-emitting element, light-emitting device, electronic device, and lighting device |
CN102986050A (zh) * | 2010-06-10 | 2013-03-20 | 诺瓦莱德公开股份有限公司 | 包含有机半导体材料的电子器件 |
CN104247070A (zh) * | 2011-11-30 | 2014-12-24 | 诺瓦尔德股份有限公司 | 显示器 |
US10693093B2 (en) | 2012-02-09 | 2020-06-23 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
US11495763B2 (en) | 2012-02-09 | 2022-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
US11997860B2 (en) | 2012-02-09 | 2024-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
WO2013135352A1 (de) * | 2012-03-15 | 2013-09-19 | Merck Patent Gmbh | Elektronische vorrichtungen |
US9871201B2 (en) | 2012-03-15 | 2018-01-16 | Merck Patent Gmbh | Electronic devices |
Also Published As
Publication number | Publication date |
---|---|
US8653537B2 (en) | 2014-02-18 |
EP1789994A1 (de) | 2007-05-30 |
US20080203406A1 (en) | 2008-08-28 |
KR101027896B1 (ko) | 2011-04-07 |
JP2008509565A (ja) | 2008-03-27 |
DE112005002603A5 (de) | 2007-08-09 |
KR20070056061A (ko) | 2007-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006015567A1 (de) | Schichtanordnung für ein lichtemittierendes bauelement | |
EP2335301B1 (de) | Strahlungsemittierende vorrichtung | |
DE112018000908T5 (de) | Elektronische Vorrichtung, Verfahren zum Herstellen derselben und Anzeigevorrichtung, die dieselbe umfasst | |
DE112011102874B4 (de) | Vernetzte Ladungstransportschicht, welche eine Zusatzverbindung enthält | |
KR102688407B1 (ko) | 전자 디바이스 및 이를 제조하는 방법 | |
EP2355625A2 (de) | Durch niedrigspannung angetriebene organische elektrolumineszenzvorrichtung und herstellungsverfahren dafür | |
EP1705727A1 (de) | Lichtemittierendes Bauelement | |
DE102009018647A1 (de) | Strahlungsemittierende Vorrichtung | |
EP3923364A1 (de) | Organische leuchtdiode und vorrichtung damit | |
CN113228334A (zh) | 有机发光器件,其制造方法,以及用于其中的组合物 | |
WO2012136422A1 (de) | Optoelektronisches bauelement und verwendung eines kupferkomplexes als dotierstoff zum dotieren einer schicht | |
DE102017111137A1 (de) | Organische elektrolumineszente Vorrichtung | |
DE102015110091B4 (de) | Phosphepinmatrixverbindung für ein Halbleitermaterial | |
CN111587494A (zh) | 包含反配位络合物的有机电子器件及其制备方法 | |
DE102018118278B4 (de) | Elektronische Vorrichtung, Anzeigevorrichtung, Verfahren zum Herstellen derselben und eine Verbindung | |
DE102007024153A1 (de) | Elektrisches organisches Bauelement und Verfahren zu seiner Herstellung | |
CN115362571A (zh) | 有机发光二极管以及包含其的器件 | |
WO2017178473A1 (de) | Organisches elektronisches bauteil mit ladungsträger-generationsschicht | |
KR102697505B1 (ko) | 유기 발광 소자 | |
DE102018125307A1 (de) | Organische lichtemittierende Vorrichtung | |
DE102018122708B4 (de) | Organische elektronische Vorrichtung, organisches halbleitendes Material und eine Boranverbindung | |
DE102023125489B3 (de) | Organische lichtemittierende Vorrichtung und Anzeigevorrichtung | |
DE102020108402B4 (de) | Organische elektronische Vorrichtung, organisches halbleitendes Material, eine Trioxatriborinanverbindung und deren Verwendung | |
CN112567546A (zh) | 电子器件、其制备方法以及包含其的显示装置 | |
EP4387412B1 (de) | Organische elektrolumineszenzvorrichtung und anzeigevorrichtung mit der organischen elektrolumineszenzvorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007525155 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005766723 Country of ref document: EP Ref document number: 1020077003457 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120050026035 Country of ref document: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005766723 Country of ref document: EP |
|
REF | Corresponds to |
Ref document number: 112005002603 Country of ref document: DE Date of ref document: 20070809 Kind code of ref document: P |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11573617 Country of ref document: US |