+

WO2006011667A1 - ヘテロ核リボヌクレオチドタンパク質B1(hnRNP B1)mRNAの測定方法 - Google Patents

ヘテロ核リボヌクレオチドタンパク質B1(hnRNP B1)mRNAの測定方法 Download PDF

Info

Publication number
WO2006011667A1
WO2006011667A1 PCT/JP2005/014257 JP2005014257W WO2006011667A1 WO 2006011667 A1 WO2006011667 A1 WO 2006011667A1 JP 2005014257 W JP2005014257 W JP 2005014257W WO 2006011667 A1 WO2006011667 A1 WO 2006011667A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
sequence
seq
rna
nucleic acid
Prior art date
Application number
PCT/JP2005/014257
Other languages
English (en)
French (fr)
Inventor
Juichi Saito
Toshinori Hayashi
Original Assignee
Tosoh Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corporation filed Critical Tosoh Corporation
Priority to JP2006527896A priority Critical patent/JPWO2006011667A1/ja
Priority to US11/572,868 priority patent/US20080108059A1/en
Priority to EP05768811A priority patent/EP1783232A4/en
Publication of WO2006011667A1 publication Critical patent/WO2006011667A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6865Promoter-based amplification, e.g. nucleic acid sequence amplification [NASBA], self-sustained sequence replication [3SR] or transcription-based amplification system [TAS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence

Definitions

  • the present invention is simple, constant temperature, one step, and quickly h n R N P B 1
  • the present invention belongs to the field of medicine, particularly clinical diagnosis, and is useful as an index for early diagnosis of cancer, monitoring of treatment, prognosis determination, and treatment policy determination. book
  • Hetero (heterogeneous) nuclear riboprotein (he t e r o g e n o u s n u c l e r r i b o n u c l e o p r o t e i n: hereafter h n
  • a 2 ZB 1 is the main component of h n R N P. H n
  • R N P is heteronuclear
  • R NA main component is messenger — R N A
  • N P A 2 and h n R N P B 1 are splicing variants, h n R N P A 2 is hn R N P B, insect
  • h n R ⁇ P B 1 is a more useful cancer marker than h n RN P A 2 / B 1.
  • h n R N P B 1 m R N A is used as a means to measure the expression level of h n R N P B 1 with high sensitivity.
  • RT-PCR reverse transcription
  • the RNA amplification method includes a promoter sequence with a primer containing a primer sequence against the target RNA, reverse transcriptase, and optionally U Bonnuclease H (RNase H). Double strand
  • RNA containing a specific base sequence of the target RNA is synthesized by RNA polymerase, and this RNA continues to be a type of double-stranded DNA synthesis containing a promoter sequence.
  • the chain reaction is performed by RNA polymerase, and RNA polymerase, and this RNA continues to be a type of double-stranded DNA synthesis containing a promoter sequence. The chain reaction.
  • the amplified RNA is detected by electrophoresis or a hybridization method using a nucleic acid probe bound to a detectable standard.
  • the RNA amplification method is suitable for simple mRNA measurement because it amplifies only RNA at a constant temperature and in one step.
  • detection by the hybridization method requires complicated operations.
  • a simple method for amplifying and measuring mRNA is I shig uro et al. (Japanese Patent Laid-Open No. 2 00 0-1 4 4 0 0 and I shiguro, T., eta 1., (2 0 0 3) Anal. B iochem., 3 1 4, 7 7 _ 8 6 Method).
  • This method is a nucleic acid probe labeled with an inhibitory fluorescent dye, and when a complementary double strand is formed with a target nucleic acid, the inhibitory fluorescent dye part is complementary to the above-mentioned complementary fluorescent dye part.
  • RNA amplification method In the presence of a nucleic acid probe designed to change the fluorescence characteristics by performing an effective rate on the double-stranded portion, the above-mentioned RNA amplification method is carried out to measure changes in the fluorescence characteristics. Simple, constant temperature, one step and RNA amplification and measurement can be performed simultaneously in a sealed container. Disclosure of the invention
  • the measurement of hn RNPB 1 mRNA is useful for early diagnosis of lung cancer and other squamous cell carcinomas.
  • RT-PCR a two-step process is required, which is complicated and rapid.
  • problems such as the need to raise and lower the reaction temperature, which led to the risk of secondary contamination and poor reproducibility, as well as a barrier to the development of simple measurement and automation.
  • the present invention overcomes the above-mentioned problems and provides a method for measuring the h n R N P B 1 m R N A in one step simply, quickly and at a constant temperature.
  • RNA amplification method As a result of intensive studies to solve the above problems, the present inventor has applied the above-mentioned RNA amplification method, and has achieved a simple, rapid, constant temperature and one-step h ⁇ R ⁇ ⁇ 1 m R m ⁇ measurement method. It was constructed. That is, a double-stranded DNA containing a promoter sequence is generated by the first primer and the second primer having a promoter sequence at at least one 5 ′ end, and the double-stranded DNA is used as a saddle type. RNA transcripts are generated, and the RNA transcripts continue to form the DNA synthesis trap. By measuring the amount of RNA product amplified in the RNA amplification process that generates double-stranded DNA, it became possible to measure hn RNPB 1 mRNA in a single step at a constant temperature.
  • FIG. 1 shows the structure of the fluorescent fluorescent dye-labeled nucleic acid probe prepared in Example 2.
  • B 1 , B 2 , B 3 and B 4 represent bases.
  • a probe in which an intercalating fluorescent dye (oxazolye) is bound via a linker.
  • the 3 ′ end 10 H is modified with glycolic acid.
  • FIG. 2 shows the fluorescence profile obtained as a result of the measurement of Example 3.
  • the results of measuring fluorescence intensity (excitation light: 470 nm, fluorescence: 520 nm) over time simultaneously with the RNA amplification of the present invention are shown.
  • the horizontal axis represents the reaction time, and the vertical axis represents the fluorescence intensity ratio (fluorescence intensity fluorescence of the reaction solution).
  • the number of copies in the figure indicates the initial copy number (calculated from the absorbance at 2600 nm) of hn RNPB 1 RNA (including base numbers 1 57 to 1 2 4 9) used in one test.
  • FIG. 3 shows the fluorescence profile obtained as a result of the measurement of Example 4.
  • the results of measuring fluorescence intensity (excitation light: 470 nm, fluorescence: 520 nm) over time at the same time as performing the RNA amplification of the present invention are shown.
  • the horizontal axis represents the reaction time, and the vertical axis represents the fluorescence intensity ratio (reaction intensity fluorescence intensity Z background fluorescence).
  • the numbers in the legend in the figure indicate the initial copy number (calculated from the absorbance at 26 O nm) of hn RNPB 1 RNA (including base numbers 1 57 to 1 2 4 9) used for 1 test.
  • Fig. 4 shows the calibration curve obtained from the results of Fig. 3.
  • the detection time was plotted against the logarithm of the initial number of copies of standard RNA, with the time when the fluorescence intensity ratio reached 1.2 as the detection time. Calculate the initial number of copies of the unknown sample from this calibration curve and the detection time of the unknown sample obtained by this method.
  • the present invention relates to a method for measuring a heteronuclear ribonucleotide protein B l (hn RNPB 1) mRNA present in a sample, comprising at least part of the downstream of the 5 ′ end of the specific base sequence of the RNA.
  • a first primer that is homologous and a second primer that is complementary to at least a part of the upstream of the 3 ′ end of the specific nucleotide sequence (at least one of the first and second primers is at the 5 ′ end) A double-stranded DNA containing the promoter sequence and the specific base sequence downstream of the promoter sequence, and an RNA transcript using the double-stranded DNA as a cage.
  • An amplification step, and said RNA transduction The step of measuring the amount of product Including.
  • the sample in the present invention is a nucleic acid extracted by a known method from a specimen such as blood, serum, plasma, tissue, or a washing solution suspected of having cancer cells.
  • the specific base sequence in the present invention comprises at least a partial sequence of hn RNPB 1 mRNA or a complementary sequence of the sequence, and the sequence of the region defined by the first primer and the second primer. Yes.
  • an RNA transcript derived from the specific base sequence is amplified.
  • h n R N P B 1 mRNA is cleaved at the 5 ′ end of the specific nucleic acid sequence before becoming a cDNA synthesis cage.
  • Such a cleavage method is not particularly limited, but an oligonucleotide having a sequence complementary to the adjacent region overlapping with the 5 ′ end of the specific base sequence of hn RNPB 1 mRNA (a oligonucleotide for cleavage).
  • a method of cleaving the RNA portion of the RNA—DNA hybrid formed by the addition of a ribonucleic acid with an enzyme having RNase H activity, and the like. 'It is preferable to use a terminal-OH that has been appropriately modified to prevent an extension reaction, such as an amino group.
  • the target nucleic acid in the present invention refers to a region that is homologous or not complementary to the first and second primers in the specific base sequence, and is complementary to the fluorescent fluorescent dye-labeled nucleic acid probe. It has a sequence that can be linked. Therefore, the intercalating fluorescent dye-labeled nucleic acid probe has a sequence complementary to a part of the specific base sequence in the present invention. Therefore, for example, as one embodiment of the present invention, when the specific base sequence is a sequence homologous to hn RNPB 1 mRNA, the intercalated fluorescent dye-labeled nucleic acid probe is shown in SEQ ID NO: 3.
  • the inhibitor fluorescent dye-labeled nucleic acid probe is SEQ ID NO: 3. And a sequence containing at least 15 consecutive bases of the complementary sequence of the sequence shown in FIG.
  • the first and second primers in the present invention have a promoter sequence at least at one 5 ′ end, and the first primer is a second sequence against the complementary sequence of hn RNPB 1 mRNA.
  • These primers are oligonucleotides that are sufficiently complementary to hn RNPB 1 mRNA.
  • the term “sufficiently complementary” means that complementary binding is possible to the specific base sequence or a complementary sequence to the specific base sequence under the reaction conditions (reaction temperature and composition of salt, etc.) of the nucleic acid amplification step of the present invention.
  • reaction conditions include, for example, hybridization at 43 ° C in the presence of 60 mM Tris, 17 mM magnesium chloride, 10 mM calcium chloride, and I mM DTT. It may be a condition.
  • the first primer is for the complementary sequence of hn RNPB 1 mRNA
  • the second primer is for hn RNPB 1 mRNA
  • the intercalator-specific fluorescent dye-labeled nucleic acid probe are sufficiently complementary to the target nucleic acid, so the first primer preferably has at least 15 consecutive bases, more preferably at least 20 bases of the sequence shown in SEQ ID NO: 1.
  • the second primer preferably contains at least 15 contiguous bases of the sequence shown in SEQ ID NO: 2, more preferably at least 20 bases;
  • the fluorescent fluorescent dye-labeled nucleic acid probe is preferably at least 15 bases, more preferably at least 20 bases of the sequence shown in SEQ ID NO: 3 or the complementary sequence thereof. It is preferable that each is included.
  • the first primer, the second primer, and the fluorescent fluorescent dye-labeled nucleic acid probe are highly stringent with respect to the complementary strands of the sequences shown in SEQ ID NOs: 1, 2, and 3, respectively. Under such conditions, for example, it may have a base sequence that undergoes hybridization under the above reaction conditions of the nucleic acid amplification step of the present invention.
  • the first primer is designed based on the sequence deleted in hn RNPA 2 mRNA among the sequences contained in hn R ⁇ PB 1 mRNA, so that only hn RNPB 1 mRNA is specifically designed. It is possible to measure
  • the promoted sequence in the present invention is a sequence in which RNA polymerase binds and initiates transcription, and a specific sequence corresponding to the type of RNA polymerase is known.
  • RNA polymerases such as are not particularly limited, but general-purpose T7 phage RNA polymerase, T3 phage RNA polymerase, SP6 phage RNA polymerase, etc. are suitable. Thus, promoter sequences corresponding to these can be used.
  • each enzyme an enzyme having RNA-dependent DNA polymerase activity (reverse transcriptase) having a single-stranded RNA as a cocoon type
  • RNase H An enzyme having activity
  • An enzyme having a DNA-dependent DNA-dependent DNA activity, and an enzyme having an RNA polymerase activity), which is a single-stranded DNA in a cage type, is required.
  • each enzyme an enzyme having several activities may be used, or a plurality of enzymes having respective activities may be used.
  • it has both RNA-dependent DNA polymerase activity, RNase H activity, and DNA-dependent DNA polymerase activity that has single-stranded DNA as a cocoon.
  • Reverse transcriptase, RNA Not only the enzyme having the polymerase activity but also the enzyme having the RNase H activity can be added and supplemented as necessary.
  • AMV reverse transcriptase, M-MLV reverse transcriptase, and derivatives thereof are particularly preferable from the viewpoint of versatility.
  • the first primer has a specific nucleotide sequence in h n R N P B 1 m R N A. pp merge
  • RNA-dependent D ⁇ A Polymerase activity is used to cDNA synthesis
  • the resulting RNA-DNA hybrid is RNase
  • the RNA portion is degraded by an enzyme having H activity and dissociated, whereby the first primer binds to the cDNA.
  • the double-stranded DNA contains a specific base sequence downstream of the promoter sequence, and an RNA transcript derived from the specific base sequence is produced by an enzyme having an RNA polymerase activity.
  • the RNA transcript is a cage for synthesizing the double-stranded DNA by the first and first primers, and a series of reactions proceeds in a chain.
  • a transcript is amplified.
  • the known elements essential for each of the enzymes are at least buffer, magnesium salt, calcium salt, nucleoside triphosphate, ribonuclease. Needless to say, it contains leoside triphosphate.
  • DMS 0 dimethyl sulfoxide
  • dithiothiazole dithiothiazole
  • AMV reverse transcriptase and T 7 RNA polymerase When used, it is preferable to set the reaction temperature in the range of 35 to 65, and it is particularly preferable to set in the range of 40 t: to 44.
  • the RNA amplification step proceeds at a constant temperature, and the reaction temperature can be set to any temperature at which reverse transcriptase and RNA polymerase are active.
  • the amount of the amplified RNA transcript can be measured by a known nucleic acid assay.
  • a method using electrophoresis or liquid chromatography, a hybridization method using a nucleic acid probe labeled with a detectable label, and the like can be used.
  • these operations are multi-step, and the amplification products are taken out of the system and analyzed, so there is a high risk of the amplification products scattering to the environment causing secondary contamination.
  • the intercalating fluorescent dye is complementary to the nucleic acid probe labeled with an interfering fluorescent dye and forms a complementary duplex with the target nucleic acid.
  • the nucleic acid amplification step is performed to measure the change in the fluorescence characteristics.
  • the intercalating / fluorescent fluorescent dye is not particularly limited, and oxazole yellow, thiazole orange, ethidium bromide, and derivatives thereof that are widely used can be used.
  • the change in the fluorescence characteristics includes a change in fluorescence intensity.
  • 51 O nm fluorescence excitation wavelength: 4900 nm
  • the intercalating fluorescent dye-labeled nucleic acid probe is an oligonucleotide that is sufficiently complementary to the RNA transcript, via an appropriate linker at the end, phosphodiester, or base.
  • an intercalated curative fluorescent dye is bound, and the 3′-terminal mono-OH has a structure appropriately modified for the purpose of preventing extension from the 3′-terminal mono-OH. (See JP-A-8-2110500).
  • the sample includes at least a first primer having a T7 probe motor sequence at the 5 ′ end (containing at least 15 consecutive bases of the sequence shown in SEQ ID NO: 1), second (Including at least 15 contiguous bases shown in SEQ ID NO: 2), intercalated fluorescent dye-labeled nucleic acid probe (at least 15 contiguous bases of the sequence shown in SEQ ID NO: 3) , Or oligonucleotide for cleavage (including at least 15 bases of the sequence selected from SEQ ID NOs: 18 to 21) and complementary to the adjacent region overlapping with the 5 'end of the specific base sequence AMV reverse transcriptase, T7 RNA polymerase, shock absorber, magnesium salt, calcium salt, nucleoside-triphosphate, ribonucleoside triphosphate, dimethyl Sulfoxide (DM SO) Provided is a method for measuring the fluorescence intensity of a reaction solution over time while adding a measurement reagent containing the reagent and reacting at a
  • the fluorescence intensity shows an increasing curve according to the initial amount of RNA
  • the fluorescence intensity is measured over time, so the measurement can be completed at any time when a significant increase in fluorescence is observed, typically within 1 hour, and within 30 minutes for the optimal system. It is possible to obtain measurement results.
  • all samples contained in the measurement reagent can be enclosed in a single container. That is, as long as a certain amount of sample is dispensed into such a single container, hnRNPB1mRNA can be automatically amplified and detected thereafter.
  • This container only needs to be at least partially made of a transparent material so that the signal emitted by the fluorescent dye can be measured from the outside. This is particularly preferable in terms of preventing confinement.
  • RNA amplification and measurement method of the above embodiment can be performed at a constant temperature in one step, it can be said that it is a simpler method suitable for automation than RT_PCR.
  • it is not subjected to heat denaturation and annealing like RT-PCR, but it reacts at a relatively low temperature of 35 to 65, so it is a non-specific amplification product such as primer dimer and measurement target It is easily affected by the higher-order structure of RNA, and in order to construct a measurement system, an extremely detailed design is required compared to RT-PCR.
  • Simple, constant temperature and one-step hn RNPB 1 mRNA measurement has not yet been realized. High specificity of hn RNPB 1 mR NA according to the present invention, high Sensitivity, quickness, convenience, constant temperature, and one-step measurement became possible for the first time.
  • the present invention can be applied as an index for early diagnosis of lung cancer and other squamous cell carcinomas, monitoring of therapeutic effects such as chemotherapy, diagnosis of micrometastasis, prognosis prediction and determination of treatment policy.
  • hn RNPB 1 RNA contains hn RNPB 1 c DNA (base number 1 5 7-: L 2 4 9, downstream of SP 6 phage RNA polymerase promoter, base number is N ationa 1 C enter B iotechnology Informa- tion access, ion No. NM_0 3 1 2 4 3) is performed in vitro using a double-stranded DNA as a saddle, followed by DNase I treatment to complete the double-stranded DNA. After digestion, RNA was purified and prepared. The RNA was quantified by measuring the absorbance at 2600 nm.
  • this R N A is the measurement object, but it is sufficiently applicable to the measurement of h n R N P B 1 mRNA which is the measurement object of the present invention.
  • An oxazole yellow mouth nucleic acid probe was prepared in which oxazole yellow was linked to the phosphodiester moiety between the third A via a linker (FIG. 1A).
  • composition of reaction solution Concentration is final concentration after addition of enzyme solution (in 30 fx 1)
  • the first primer has a T 7 polymerase 'promoter sequence (SEQ ID NO: 2 2) added to the 5' end of the base sequence described in SEQ ID NO:
  • Oligonucleotide for cleavage (SEQ ID NO: 20): 3′-terminal mono-OH of the oligonucleotide is modified with amino group
  • composition of enzyme solution final concentration during reaction (in 300 1)
  • hn RN using various combinations of the first primer, the second primer, the intensity-ratio fluorescent dye-recognizing nucleic acid probe, and the cleavage oligonucleotide.
  • composition of reaction solution Concentration is final concentration after addition of enzyme solution (in 30 ⁇ 1)
  • First primer (SEQ ID NO: listed in Table 1 or Table 2):
  • the first primer is a T7 polymerase 'promoter sequence (SEQ ID NO: 2) at the 5' end of the base sequence described in SEQ ID NO: 2)
  • Oligonucleotide for cleavage (SEQ ID NO: listed in Table 1 or Table 2): 3 ′ end of the oligonucleotide—OH was modified with an amino group.
  • composition of enzyme solution Final concentration during reaction (in 30 z l)
  • Table 1 and Table 2 show the results when the enzyme addition time was 0 minute and the fluorescence intensity ratio of the reaction solution exceeded 1.2 (+) judgment, and the time at that time was the detection time.
  • each of SEQ ID NOs: 4 to 8 is a partial sequence of SEQ ID NO: 1
  • each of SEQ ID NOS: 9 to 15 is a partial sequence of SEQ ID NO: 2
  • each of SEQ ID NOS: 1 6 or 17 is respectively It is a partial sequence of SEQ ID NO: 3.
  • hn RNPB 1 RNA was determined by the RNA amplification / measurement method using the first primer, the second primer, the inner curry, and the fluorescent dye-labeled nucleic acid probe described in the present invention. It was shown to be rapidly detectable.
  • Table 1 shows the measurement results when various combinations of oligonucleotides were used.
  • Table 2 shows the measurement results when using various combinations of oligonucleotides.
  • RNA amplification / fluorescence measurement was performed using hn RNPB 1 RNA of 100 2 copy test as a sample. Fluorescence intensity ratio exceeded 1.2 Was determined as (+), and the time at that time was taken as the detection time.
  • Example 5 Using the method of the present invention, hn RNPB 1 RNA was quantified.
  • RNA dilution 10 mM Tris' HCl (pH 8.0), I mM ED TA, 0. 2 U / n 1 Ribonuku Rare one peptidase 'Lee inhibitor development, 5. O mM DTT) using a 1 0 2, 1 0 3
  • composition of reaction solution Concentration is final concentration after addition of enzyme solution (in 30 n 1) 60 mM Tris-HC1 (H8.6)
  • 1M first primer (SEQ ID NO: 7):
  • the first primer has a T7 polymerase promoter sequence (SEQ ID NO: 2 2) added to the 5 'end of the base sequence described in SEQ ID NO: Become
  • IM second primer (SEQ ID NO: 1 4) 25 5 ⁇ intercalated fluorescent dye-labeled nucleic acid probe (SEQ ID NO: 16): The nucleic acid probe was bonded to oxazol yellow in Example 2 via a linker.
  • Oligonucleotide for cleavage of 0.16 ⁇ (SEQ ID NO: 20): 3 ′ end of the oligonucleotide is modified with amino group
  • composition of enzyme solution final concentration at the time of reaction (300 1)
  • Figure 3 shows the changes over time in the fluorescence intensity ratio of the reaction solution (fluorescence intensity value for a predetermined time ⁇ background fluorescence intensity value) with the addition of enzyme as 0 minutes.
  • the time for the fluorescence intensity ratio to reach 1.2 was taken as the detection time
  • Fig. 4 shows the calibration curve created from the logarithm of the detection time and the initial copy number.
  • Table 3 shows the results of quantifying the number of copies of samples L, M, and H from the calibration curve.
  • Figure 4 shows that 10 2 copies / test were detected in about 12 minutes. Thus, good linearity was obtained between the detection time and the logarithm of the initial copy number.
  • Table 3 samples were obtained, and the quantification results of M and H were equivalent to the amount of hn RNPB 1 RNA added. From the above, it was shown that hn RNPB 1 RNA can be rapidly, highly sensitively and specifically quantified by the method of the present invention.
  • hn RNPB 1 mRNA can be measured easily, rapidly and with high sensitivity at a constant temperature and in one step. Therefore, the present invention can be applied to early diagnosis of lung cancer and other squamous cell carcinomas, and is useful as an index for monitoring therapeutic effects such as chemotherapy, predicting prognosis, and determining treatment policy. Since the present invention can be carried out in a single stage and in a sealed container, it is possible to minimize the risk of environmental contamination by amplification products that cause secondary contamination. In addition, because it is simple and quick in one step, it is possible to process a large number of specimens even in the case of the application method, and the number of operations that is a factor that deteriorates reproducibility Can be minimized.
  • the RNA amplification method of the present invention amplifies only RNA, it can strictly amplify and measure mRNA without the step of completely removing double-stranded DNA like RT-PCR. Is possible. That is, the method of the present invention is optimal for highly sensitive and rapid expression analysis. In addition, since it can be performed at a constant temperature and in one step, it is not necessary to provide a thermal cycling mechanism such as PCR, and automation is easy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

試料中に存在するヘテロ核リボヌクレオチドタンパク質B1(hnRNP B1) mRNAの測定方法であって、該RNAの特定塩基配列の5’末端から下流の少なくとも一部に相同な第一のプライマー、および前記特定塩基配列の3’末端から上流の少なくとも一部に相補的な第二のプライマー(前記第一および第二のプライマーの少なくとも一方は5’末端にプロモーター配列を有する)により、プロモーター配列と該プロモーター配列下流に前記特定塩基配列を含む2本鎖DNAを生成する工程、該2本鎖DNAを鋳型としてRNA転写産物を生成する工程、該RNA転写産物が引き続き前記DNA合成の鋳型となって前記2本鎖DNAを生成する工程、以上の各工程が同時に進行する条件で前記工程が繰り返される核酸増幅工程、および前記RNA転写産物量を測定する工程を含む方法。

Description

ヘテロ核リボヌクレオチドタンパク質 B 1 ( h n R N P B 1 ) m R N Aの測定方法
技術分野
本発明は、 簡便、 一定温度、 一段階で 、 迅速に h n R N P B 1 明
mR NAを測定する方法に関する。 本発明は 、 医学、 特に臨床診 断の分野に属し、 癌の早期診断、 治療のモニタ Uング、 予後判定、 治療方針決定の指標に有用である。 書
背景技術
ヘテロ (異種) 核リボタンパク質 ( h e t e r o g e n o u s n u c l e r r i b o n u c l e o p r o t e i n : 以後 h n
R N P ) A 2 ZB 1 は h n R N Pの主要な構成要素である。 該 h n
R N Pはへテロ核 R NA (主な構成要素はメッセンジャ — R N A前
駆体) と複合体を形成して核内に存在し 、 メッセノジャ -R NA ( mR NA) のプロセシングや核外輸送、 安定性に関与する。 h n R
N P A 2および h n R N P B 1 はスプライシング . バリ アン ト で、 h n R N P A 2は h n R N P B 、虫
1 の構 JB退伝子の 5 ' 末の
3 6塩基が欠失した配列を有する (B u r d, C G . , e t a
1 . , ( 1 9 8 9 ) P r o c . N a t l . A c a d . S c i . U S
A, 8 6, 9 7 8 8 — 9 7 9 2および M a e d a A . , e t a l . , ( 1 9 9 4 ) E M B O J . , l 3, 6 7 8 3 一 5 7 9 5参 照) 。
近年、 塍癌および肺癌組織において h n R N P A 2 / B 1が過 剰に発現していることが見出され、 癌の診断マ一力一として注目さ れている (特表 2 0 0 0 — 5 0 0 3 2 2号公報および Z h o u , J e t a 1 . , ( 1 9 9 6 ) J . B i o 1 . c h e m. , 2 7 丄, 1 0 7 6 0 - 1 0 7 6 6 、 F i e 1 d i n g , P . , e t a
1 . , ( 1 9 9 9 ) C I i n . C a n c e r R e s . , 5_, 4 0
4 8 一 4 0 5 2 、 Z h o u , J . , e t a 1 - , ( 2 0 0 1 ) L u n g C a n c e r R e s . , 3 4 , 3 4 1 - 3 5 0参照) h n R N P A 2 Z B 1 の高感度な発現測定方法としては、 h n R
N P A 2 / B 1 m R N Aを R T - P C Rにより増幅し、 増幅産 物量を測定する方法が報告されている (特表 2 0 0 0 - 5 0 0 3 2
2号公報および Z h o u ら ( 2 0 0 1 ) 前掲参照) 。 最近の研究で は、 h n R N P B 1カ^ ヒ ト癌細胞において初期ステージから過 剰発現していることが示された。 また、 R T— P C Rを用いた h n R N P B 1 m R N A測定によって、 正常組織に比べて癌組織に おいて、 h n R N P B 1 mR N A量が h n R N P A 2 / B 1 の場合より も特異的に上昇し、 h n R N Ρ B 1 の発現量を測定す ることが肺癌の早期診断に有用であることが報告されている。 ( S u e o k a , E • , e t a 1 • , ( 1 9 9 9 ) C a n c e r R e s . , 5 9 , 1 4 0 4 ― 1 4 0 7 、 S u e o k a , E . , e t a 1 . , ( 2 0 0 1 ) C a n c e r R e s . , 6 1 , 1 8 9 6 -
1 9 0 2 、 F 1 e i s c h h a c k e r , M. , e t a 1 . , (
2 0 0 1 ) A n n . N • Y . A c a d . S c i . , 9 4 5 , 1 7 9 一 1 8 8参照)
以上の知見から h n R Ν P B 1 は h n R N P A 2 / B 1 より 有用な癌マーカ一にな Όえると推測できる 。 h n R N P B 1 の発 現量を高感度に測定する手段として h n R N P B 1 m R N Aを
R T— P C Rで増幅し 、 増幅産物量を測定する方法があげられるが
、 この場合、 一般的には逆転写 ( R T ) ェ程および P C R工程の二 段階の工程が必要で、 のしとは操作を煩雑にして再現性を悪化さ せる要因となるだけでなぐ 、 2次汚染の危険性をも増加させること にな ま/こ、 記 R Tェ程および P C R工程を合わせると通例 2 時間以上の時間を要し 、 多数検体処理や検査コス トの低減には不向 きであつた。 また更に 、 R T一 P C Rでは D NAも増幅してしまう ため、 m R N Aのみを増幅する場合は核酸抽出工程において D N a s e処理などにより染色体 D NAを完全に除去する必要があり、 核 酸抽出操作の煩雑化をまねいた。 さ らに、 P C Rは急激に反応温度 を昇降させる必要があ 、 白動化の際の反応装置の省力化や低コス ト化のための障壁となつていた。
一方、 一定温度で R N Aのみを増幅する方法としては、 NA S B
A法 (特許第 2 6 5 0 1 5 9号および特許第 3 1 5 2 9 2 7号参照
) 、 および T A法 (特許第 3 2 4 1 7 1 7号参照) などが報告さ れている。 該 R NA増幅方法は、 標的 R NAに対してプ Πモー夕一 配列を含むプライマ一、 逆転写酵素および必要に応じて Uボヌク レ ァーゼ H ( R N a s e H) により、 プロモー夕一配列を含む 2本鎖
D N Aを合成し 、 R NAポリ メラーゼによつて標的 R N Aの特定塩 基配列を含む R N Aを合成し、 該 R NAが引き続きプロモ一夕一配 列を含む 2本鎖 D NA合成の铸型となる連鎖反応を行う ちのである
。 そして、 R N A増幅後、 電気泳動または検出可能な標 を結合さ せた核酸プロ一ブを用いたハイブリダィゼィショ ン法などにより増 幅された R N Aを検出する。
以上のように前記 R N A増幅方法は一定温度、 一段階で R N Aの みを増幅することから簡便な m R N A測定に適しているが 、 八ィブ リダイゼィシ 3 ン法などによる検出は煩雑な操作を必要とし、 再現 性良く定量でさないという課題がある。
簡便に m R N Aを増幅および測定する方法としては, I s h i g u r o ら (特開 2 0 0 0 — 1 4 4 0 0号公報および I s h i g u r o , T . , e t a 1 . , ( 2 0 0 3 ) A n a l . B i o c h e m . , 3 1 4 , 7 7 _ 8 6参照) の方法があげられる。 該方法は、 ィ ン夕ーカ レ一夕一性蛍光色素で標識された核酸プローブで、 かつ標 的核酸と相補的 2本鎖を形成するとイ ン夕一力 レーター性蛍光色素 部分が前記相補的 2本鎖部分にイ ン夕一力レー トすることによって 蛍光特性が変化するように設計された核酸プローブの存在下、 前記 R NA増幅方法を実施し、 蛍光特性の変化を測定するもので、 簡便 、 一定温度、 一段階かつ密閉容器内で R N A増幅および測定を同時 に実施することが可能である。 発明の開示
前記 h n R N P B 1 mR NAの測定は、 肺癌およびその他の 扁平上皮癌を早期に診断するために有用であるが、 R T— P C Rを 用いた場合は、 二段階工程が必要で、 操作が煩雑、 急激な反応温度 の昇降が必要などの課題があり、 これらは二次汚染の危険性および 再現性不良をまねく とともに簡便測定や自動化への展開の障壁とな つていた。 本発明は、 前記課題を克服し.、 簡便、 迅速、 一定温度か つ一段階で前記 h n R N P B 1 m R N Aを測定する方法を提供 する。
本発明者は上記課題を解決するべく鋭意研究を重ねた結果、 前記 R NA増幅方法を適用し、 簡便、 迅速、 一定温度かつ一段階の h η R Ν Ρ Β 1 m R Ν Α測定方法を構築した。 すなわち、 少なく と も一方の 5 ' 末端にプロモーター配列を有する第一のプライマ一お よび第二のプライマーにより、 プロモーター配列を含む 2本鎖 D N Aを生成し、 該 2本鎖 D NAを铸型として R NA転写産物を生成し 、 該 R NA転写産物が引き続き前記 D NA合成の踌型となって前記 2本鎖 D NAを生成する R NA増幅工程において増幅された R NA 産物量を測定することによって、 h n R N P B 1 mR NAを簡 便、 一定温度かつ一段階に測定することが可能となった。 図面の簡単な説明
図 1 は実施例 2で作製したイ ン夕一力 レーター性蛍光色素標識核 酸プローブの構造を示す。 B 1 、 B 2 、 B 3 、 B 4 は塩基を示す。 A ) I s h i g u r o ら t l s h i g u r o , T . , e t a 1 . , ( 1 9 9 6 ) N u c l e i c A c i d s R e s . , 2 4 , 4 9 9 2 - 4 9 9 7参照) の方法に従いリ ン酸ジエステル部分にリ ン カーを介してインターカレー夕一性蛍光色素 (ォキサゾールイエ口 一) を結合させたプローブ。 なお、 3 ' 末端— OHからの伸長反応 を防止するために 3 ' 末端一〇 Hはグリコール酸修飾がなされてい る。 B) 市販の L a b e l — ON R e a g e n t s (C l o n t e c h社製) を用いてアミ ノ基を導入し、 I s h i g u r o ら ( I s h i g u r o ら ( 1 9 9 6 ) 前掲参照) の方法に従ってォキサゾ 一ルイエローを結合させたプローブ。 この場合、 導入位置 (図中 B 3 部分) のヌク レオシ ド部分が欠失してァミ ノ基が導入される。 な お、 3 ' 末端—〇Hからの伸長反応を防止するために 3 ' 末端—〇 Hはピオチン修飾がなされている。
図 2は実施例 3の測定の結果得られた蛍光プロファイルを示す。 本発明の R N A増幅を行う と同時に経時的に蛍光強度 (励起光 : 4 7 0 n m、 蛍光 : 5 2 0 n m) を測定した結果を示す。 横軸は反応 時間、 縦軸は蛍光強度比 (反応液の蛍光強度ノバックグラウン ド蛍 光) を示す。 図中のコ ピー数は 1テス トに使用した h n R N P B 1 R NA (塩基番号 1 5 7〜 1 2 4 9 を含む) の初期コピー数 ( 2 6 0 n mの吸光度より算出) を示す。 図 3は実施例 4の測定の結果得られた蛍光プロファイルを示す。 本発明の R NA増幅を行う と同時に経時的に蛍光強度 (励起光 : 4 7 0 n m、 蛍光 : 5 2 0 n m) を測定した結果を示す。 横軸は反応 時間、 縦軸は蛍光強度比 (反応液の蛍光強度 Zバックグラウン ド蛍 光) を示す。 図中凡例の数字は 1テス 卜に使用 した h n R N P B 1 R NA (塩基番号 1 5 7〜 1 2 4 9 を含む) の初期コピー数 ( 2 6 O n mの吸光度より算出) を示す。
図 4は図 3の結果から得られた検量線を示す。 図 3の結果におい て、 蛍光強度比が 1. 2に達する時間を検出時間とし、 標準 R NA の初期コ ピー数の対数値に対する検出時間をプロッ ト した。 本検量 線と本方法によって得られた未知試料の検出時間より未知試料の初 期コ ピー数を算出する。 発明を実施するための最良の形態
以下に本発明を詳細に説明する。
本発明は、 試料中に存在するへテロ核リボヌク レオチドタンパク 質 B l ( h n R N P B 1 ) mR NAの測定方法であって、 該 R N Aの特定塩基配列の 5 ' 末端から下流の少なく とも一部に相同な 第一のプライマ一、 および前記特定塩基配列の 3 ' 末端から上流の 少なく とも一部に相補的な第二のプライマー (前記第一および第二 のプライマーの少なく とも一方は 5 ' 末端にプロモー夕一配列を有 する) により、 プロモーター配列と該プロモーター配列下流に前記 特定塩基配列を含む 2本鎖 D NAを生成する工程、 該 2本鎖 D NA を铸型と して R NA転写産物を生成する工程、 該 R NA転写産物が 引き続き前記 D NA合成の铸型となって前記 2本鎖 D NAを生成す る工程、 以上の各工程が同時に進行する条件で前記工程が繰り返さ れる核酸増幅工程、 および前記 R N A転写産物量を測定する工程を 含む。
本発明中の試料とは、 血液、 血清、 血漿、 組織、 癌細胞の存在が 疑われる洗浄液等の検体より既知の方法によって抽出された核酸で ある。
本発明中の特定塩基配列とは h n R N P B 1 mR NAの少な く とも一部の配列あるいは該配列の相補配列からなり、 第一のブラ イマ一および第二のプライマーによって規定される領域の配列を有 する。 本発明では、 前記特定塩基配列に由来する R NA転写産物が 増幅される。 第一のプライマーにプロモーター配列が付加される場 合、 h n R N P B 1 mR NAは c D NA合成の铸型となる前に 特定核酸配列の 5 ' 末端で切断されていることが好ましい。 このよ うな切断方法は特に限定するものではないが、 h n R N P B 1 mR NAの特定塩基配列の 5 ' 末端に重複して隣接する領域に対し て相補的な配列を有するオリゴヌク レオチ ド (切断用オリゴヌク レ ォチド) を添加することによって形成された R NA— D NAハイブ リ ッ ドの R NA部分を、 R N a s e H活性を有する酵素等により切 断する方法が好ましく、 該切断用オリゴヌク レオチ ドの 3 ' 末端- OHは伸長反応を防止するために適当な修飾を施されたもの、 例え ばァミ ノ化等されているものを使用することが好ましい。
本発明中の標的核酸とは、 前記特定塩基配列において、 第一およ び第二のプライマーに相同もしく は相補的でない領域を示し、 イン 夕一力 レーター性蛍光色素標識核酸プローブとの相補的結合が可能 である配列を有する。 よって、 イ ン夕一カレーター性蛍光色素標識 核酸プローブは、 本発明中の特定塩基配列の一部と相補的な配列と なる。 そのため、 たとえば本発明の一態様と して、 特定塩基配列が h n R N P B 1 mR NAと相同な配列である場合は、 イ ンター カ レー夕一性蛍光色素標識核酸プローブは配列番号 3に示された配 列の少なく とも連続した 1 5塩基を含む配列を有し、 特定塩基配列 が h n R N P B 1 m R N Aと相補な配列である場合は、 イ ン夕 一力 レーター性蛍光色素標識核酸プローブは配列番号 3に示された 配列の相補配列の少なく とも連続した 1 5塩基を含む配列を有する という態様があげられる。
本発明中の第一および第二のプライマーは、 少なく とも一方の 5 ' 末端にプロモータ一配列を有しており、 第一のプライマ一は h n R N P B 1 mR NAの相補配列に対して、 第二のプライマ一は h n R N P B 1 mR NAに対して、 それぞれ十分に相補的なォ リ ゴヌク レオチドである。 十分に相補的とは、 本発明の核酸増幅ェ 程の反応条件 (反応温度および塩などの組成) において前記特定塩 基配列あるいは該配列の相補配列に対して相補的結合が可能である ことをさす。 かかる反応条件は、 例えば 6 0 m Mの T r i s、 1 7 mMの塩化マグネシウム、 l O O mMの塩化カ リ ウム、 I mMの D T Tの存在下、 4 3 °Cでのハイブリダィゼイシヨ ン条件であってよ い。
なお、 前記第一のプライマーは h n R N P B 1 mR NAの相 補配列に対して、 前記第二のプライマーは h n R N P B 1 m R NAに対して、 および前記イ ンターカレー夕一性蛍光色素標識核酸 プローブは標的核酸に対して、 それぞれ十分に相補的であるために 、 前記第一のプライマーは配列番号 1 に示す配列の好ましく は少な く とも連続する 1 5塩基、 より好ましく は少なく とも 2 0塩基を含 むこと、 前記第二のプライマーは配列番号 2 に示す配列の好ましく は少なく とも連続する 1 5塩基、 より好ましく は少なく とも 2 0塩 基を含むこと、 前記イ ン夕一カ レ一夕一性蛍光色素標識核酸プロ一 ブは配列番号 3に示す配列あるいは該配列の相補配列の好ましくは 少なく とも連続した 1 5塩基、 より好ましく は少なく とも 2 0塩基 を含むことがそれぞれ好ましい。
あるいは、 前記の第一のプライマー、 第二のプライマーおよびィ ン夕一力 レーター性蛍光色素標識核酸プローブはそれぞれ、 配列番 号 1 、 2および 3に示す配列の相補鎖に対し高ス ト リ ンジェン ト条 件下で、 例えば本発明の核酸増幅工程の上記反応条件下で八イブリ ダイゼイシヨ ンする塩基配列を有してるものであってもよい。
前記第一のプライマ一は h n R Ν P B 1 mR NAに含まれる 配列のうち、 h n R N P A 2 m R N Aでは欠失した配列を基に 設計しているため、 h n R N P B 1 m R N Aのみを特異的に測 定することが可能である
本発明中のプロモー夕一配列とは R N Aポリ メラーゼが結合し転 写を開始する配列であ Ό 、 R NAポ Uメラーゼの種類に対応する特 異配列が既知である。 のような R N Aポリ メラーゼは特に限定さ れるものではないが、 汎用されている T 7 ファージ R NAポリ メラ ーゼ、 T 3 ファージ R N Aポリ メラ一ゼ、 S P 6 ファージ R NAポ リ メラーゼなどが好適であ Ό、 これらに対応するプロモーター配列 が使用可能である。
本発明中の h n R N P Β 1 m R N Aの測定方法において、 各 酵素 ( 1本鎖 R NAを铸型とする R N A依存 D NAポリ メラ一ゼ活 性を有する酵素 (逆転写酵素) 、 R N a s e H活性を有する酵素、
1本鎖 D NAを踌型とする D NA依存 D NAポリ メラ一ゼ活性を有 する酵素、 および R NAポリ メラーゼ活性を有する酵素) が必要と なる。 各酵素は、 いくつかの活性を合わせ持つ酵素を使用してもよ いし、 それぞれの活性を持つ複数の酵素を使用してもよい。 また、 たとえば、 1本鎖 R NAを铸型とする R NA依存 D NAポリ メラー ゼ活性、 R N a s e H活性、 および 1本鎖 D NAを铸型とする D N A依存 D NAポリ メラーゼ活性を合わせ持つ逆転写酵素に、 R N A ポリ メラーゼ活性を有する酵素だけでなく、 必要に応じて R N a s e H活性を有する酵素をさ らに添加して補足すること等も可能であ る。 前記逆転写酵素には、 汎用性からいって AMV逆転写酵素、 M 一 M L V逆転写酵素、 およびこれらの誘導体が特に好ましい。
前記第一のプラィマーおよび第二のプライマー、 および h n R N
P B 1 m R Ν Αの存在下で逆転写反応を実施すると、 第一のプ ライマーが h n R N P B 1 m R N A内の特定塩基配列に ? pp合し
、 R NA依存 D Ν Aポリ メラーゼ活性を持つ酵素により c D N A合 成が行われる 得られた R NA— D N Aハイブリ ッ ドは R N a s e
H活性を有する酵素によって R N A部分が分解され、 解離すること によって第一のプライマ一が前記 c D N Aに結合する。
引き続いて 、 D N A依存 D N Aポリ メラーゼ活性を持つ酵素によ り特定塩基配列由来で 5 末端にプロモーター配列を有する 2本鎖
D NAが生成される。 該 2本鎖 D N Aは、 プロモーター配列下流に 特定塩基配列を含み、 R N Aポリ メラーゼ活性を持つ酵素により特 定塩基配列に由来する R N A転写産物を生産する。 該 R NA転写産 物は、 前記第一および第一のプライマーによる前記 2本鎖 D NA合 成のための铸型となって 、 一連の反応が連鎖的に進行し、 前記 R N
A転写産物が増幅されていぐ。
このような連鎖反応を進行させるために、 前記各酵素に必須な既 知の要素と して、 少なく とち、 緩衝剤、 マグネシウム塩、 カ リ ウム 塩、 ヌク レオシ ド一三リ ン酸、 リボヌク レオシ ド—三リ ン酸を含む ことはいうまでもない。 また、 反応効率を調節するための添加剤と して、 ジメチルスルホキシ ド ( D M S 0) 、 ジチオスレィ 卜ール (
D T T ) 、 ゥシ血清アル 、
ブ ノ ( B S A) 、 糖などを添加すること も可能である。
たとえば、 AMV逆転写酵素および T 7 R NAポリ メラーゼを 用いる場合は 3 5 〜 6 5での範囲で反応温度を設定することが好 ましく、 4 0 t:〜 4 4 の範囲で設定することが特に好ましい。 前 記 R N A増幅工程は一定温度で進行し、 逆転写酵素および R N Aポ リ メラーゼが活性を示す任意の温度に反応温度を設定することが可 能である。
増幅された R N A転写産物量は、 既知の核酸測定法により測定す ることが可能である。 このような測定法としては、 電気泳動や液体 クロマ トグラフィーを用いた方法、 検出可能な標識で標識された核 酸プローブによるハイブリダィゼイシヨ ン法などが利用できる。 し かし、 これらは操作は多工程であり、 また増幅産物を系外に取り出 して分析するため二次汚染の原因となる増幅産物の環境への飛散の 危険性が大きい。 これらの課題を克服するためには標的核酸と相補 結合することによって蛍光特性が変化するように設計された核酸プ ローブを用いることが好ましい。 さ らに好適な方法として、 イ ン夕 一力レーター性蛍光色素で標識された核酸プローブで、 かつ標的核 酸と相補的 2本鎖を形成するとイ ンターカ レー夕一性蛍光色素部分 が前記相補的 2本鎖部分にイ ン夕一力 レー トすることによって蛍光 特性が変化するように設計された核酸プローブの存在下、 前記核酸 増幅工程を実施し、 蛍光特性の変化を測定する方法があげられる ( 特開 2 0 0 0— 1 4 4 0 0号公報および I s h i g u r o , T . , e t a 1 . , ( 2 0 0 3 ) A n a l . B i o c h e m. , 3 1 4 , 7 7 — 8 6参照) 。
前記イ ンタ一カレ一夕一性蛍光色素としては特に限定されないが 汎用されているォキサゾールイエロー、 チアゾールオレンジ、 ェチ ジゥムブロマイ ド、 およびこれらの誘導体などが利用できる。 前記 蛍光特性の変化としては蛍光強度の変化があげられる。 たとえばォ キサゾ一ルイエ口一の場合、 2本鎖 D NAにイ ン夕一カレー 卜する ことによって 5 1 O n mの蛍光 (励起波長 4 9 0 n m) が顕著に増 加することが既知である。 前記イ ンターカ レ一夕一性蛍光色素標識 核酸プローブは、 前記 R N A転写産物に対して十分に相補的なオリ ゴヌク レオチドで、 末端あるいはリ ン酸ジエステル部あるいは塩基 部分に適当なリ ンカ一を介してイ ンタ一カレー夕一性蛍光色素が結 合され、 さ らに、 3 ' 末端一 0 Hからの伸長を防止する目的で該 3 ' 末端一 OHが適当な修飾をなされている構造を有する (特開平 8 - 2 1 1 0 5 0号公報参照) 。
オリ ゴヌク レオチ ドへのイ ンターカレー夕一性蛍光色素の標識は
、 既知の方法でオリ ゴヌク レオチドに官能基を導入し、 イ ン夕一力 レーター性蛍光色素を結合させることが可能である (特開 2 0 0 1 — 1 3 1 4 7号公報および I s h i g u r o , T . , e t a 1 . , ( 1 9 9 6 ) N u c l e i c A c i d s R e s . , 2 4 , 4 9 9 2— 4 9 9 7参照) 。 また、 前記官能基の導入方法と しては、 汎用されている L a b e l — ON R e a g e n t s ( C 1 o n t e c h社製) 等を用いることも可能である。
本発明の一態様として、 試料に、 少なく とも、 5 ' 末端に T 7プ 口モーター配列を有する第一のプライマー (配列番号 1 に示す配列 の少なく とも連続する 1 5塩基を含む) 、 第二のプライマ一 (配列 番号 2 に示す少なく とも連続した 1 5塩基を含む) 、 イ ンタ一カ レ 一夕一性蛍光色素標識核酸プローブ (配列番号 3 に示す配列の少な く とも連続する 1 5塩基を含む) 、 切断用オリ ゴヌク レオチド (配 列番号 1 8〜 2 1より選ばれた配列の少なく とも 1 5塩基を含み、 特定塩基配列の 5 ' 末端と重複して隣接する領域に対して相補的な 配列を有する) 、 AMV逆転写酵素、 T 7 R NAポリ メラーゼ、 緩 衝剤、 マグネシウム塩、 カ リ ウム塩、 ヌク レオシド—三リ ン酸、 リ ボヌク レオシ ド一三リ ン酸、 ジメチルスルホキシ ド (DM S O) を 含む測定試薬を添加し、 反応温度 3 5〜 6 5 °C (好ましくは 4 0〜 4 4 °C) の一定温度で反応させると同時に反応液の蛍光強度を経時 的に測定する方法を提供する。 この場合、 蛍光強度は初期 R NA量 に応じた増加曲線を示すことから、 既知濃度の標準 R NAを用いて 検量線を作成することによって未知試料の初期 R NA量を定量する ことも可能である。 さ らに、 蛍光強度を経時的に測定することから 有意な蛍光増加が認められた任意の時間で測定を終了することが可 能であり、 通例 1時間以内、 最適な系では 3 0分以内に測定結果を 得ることが可能である。
また、 前記測定試薬に含まれる全ての試料を単一の容器に封入可 能な点は特筆すべきである。 即ち、 一定量の試料をかかる単一容器 に分注するという操作さえ実施すれば、 その後は自動的に h n R N P B 1 mR NAを増幅し検出することができる。 この容器は、 例えば蛍光色素が発する信号を外部から測定可能なように、 少なく ともその一部分が透明な材料で構成されてさえいれば良く、 試料を 分注した後に密閉することが可能なものはコン夕ミネーシヨ ンの防 止のうえで特に好ましい。
前記態様の R N A増幅 , 測定方法は、 一段階、 一定温度で実施可 能であるため、 R T _ P C Rに比べて簡便で自動化に適した方法で あるといえる。 しかし、 一方で R T— P C Rのような熱変性および ァニールを実施せず、 3 5〜 6 5でという比較的低温の一定温度で 反応させるため、 プライマーダイマーなどの非特異増幅産物や測定 対象である R NAの高次構造の影響を受けやすく、 測定系を構築す るには R T— P C Rの場合に比べてきわめて綿密な設計が必要であ り、 前記 R NA増幅 , 測定方法を用いた迅速、 簡便、 一定温度かつ 一段階の h n R N P B 1 m R N A測定は未だに実現されていな かった。 本発明により h n R N P B 1 mR NAの高特異性、 高 感度、 迅速、 簡便、 一定温度かつ一段階の測定が初めて可能となつ た。
本発明は、 肺癌およびその他の扁平上皮癌の早期診断、 化学療法 等の治療効果モニタリ ング、 微小転移診断、 予後予測および治療方 針決定のための指標として適用することが可能である。 実施例
以下、 本発明を実施例により詳細に説明するが、 本発明はこれら 実施例により限定されるものではない。
実施例 1
h n R N P B 1 R NAは、 S P 6ファージ R NAポリ メラー ゼ · プロモーター下流に h n R N P B 1 c D NA (塩基番号 1 5 7〜 : L 2 4 9 を含む、 塩基番号は N a t i o n a 1 C e n t e r B i o t e c h n o l o g y I n f o r m a t i o n a c c e s s, i o n N o . NM_0 3 1 2 4 3に従った) を有する 2 本鎖 D NAを铸型としてイ ンビ トロ転写を実施し、 引き続いて D N a s e I処理により前記 2本鎖 D N Aを完全消化した後 R N Aを精 製して調製した。 該 R NAは 2 6 0 n mにおける吸光度を測定して 定量した。
以下の実施例では該 R N Aを測定対象としているが、 本発明の測 定対象である h n R N P B 1 mR NAの測定に十分適用可能で ある。
実施例 2
イ ンターカ レ一夕一性蛍光色素で標識されたオリ ゴヌク レオチド プローブを作製した。 配列番号 1 6および 1 7 に記載の配列の 5 ' 末端から 1 3番目の塩基 (配列番号 1 6においては A、 配列番号 1 7においては T) の位置に L a b e 1 — ON R e a g e n t s ( C I o n t e c h社製) を用いてァミノ基を導入し、 さ らに 3 ' 末 端をピオチンで修飾した。 前記アミ ノ基に I s h i g u r O ら ( 1
9 9 6 ) 前掲に記載の方法でォキサゾールイエ口 ―を結合させた ( 図 1 B ) 。 また、 I s h i g u r o ら ( 1 9 9 6 ) 前掲に記載の方 法で、 配列番号 1 6 に記載の配列の 5 ' 末端から 1 2番目の Gと 1
3番目の Aの間のリ ン酸ジエステル部分にリ ンカ一を介してォキサ ゾールイエローを結合させたォキサゾールイエ口一 核酸プロ一 ブを調製した (図 1 A ) 。
実施例 3
本願発明の方法を用いて、 種々の初期コピー数の h n R N P B
1 R NAの検出を行った。
( 1 ) 前記 h n R N P B 1 R N A (塩基番号 1 5 7 1 2 4
9 を含む) を R N A希釈液 ( 1 0 m M T r i s 參 H C 1 ( P H
8. 0 ) 、 I mM E D TA、 0. 2 5 υ / 1 リボヌク レア一 ゼ ' イ ンヒビ夕一、 5 mM D T T ) を用いて 2 5 、 5 0 、 1 0 0
、 1 0 0 0 コピー Z 5 1 となるようそれぞれ希釈し、 R N A試料 として用いた。 陰性標準 ( 0 コピー ) は R N A希釈液を用いた。
( 2 ) 以下の組成の反応液 2 0 1 を 0. 5 m 1 容量 P C R用チ ユーブ (G e n e Am p T h i n - W a 1 1 e d R e a c t i o n T u b e s 、 パーキンエルマー製) に分注し、 れに前記
R N A試料 5 1 を添加した。
反応液の組成 : 濃度は酵素液添加後 ( 3 0 fx 1 中) の最終濃度
6 0 m T r i s · H C 1 ( p H 8. 6 )
1 7 m M 塩化マグネシウム
l O O mM 塩化カ リ ウム
I mM D T T
各 0. 2 5 mM d AT P、 d C T P、 d G T P、 d T T P 各 3 mM AT P、 C T P、 U T P
2. 2 5 mM G T P
3. 6 mM I T P
1 n M 第一のプライマー (配列番号 7 ) : 第一のプライマー は、 配列番号記載の塩基配列の 5 ' 末端に T 7ポリ メラーゼ ' プロ モーター配列 (配列番号 2 2 ) が付加されてなる
1 M 第二のプライマー (配列番号 1 4 )
2 5 n M イ ン夕一カレー夕一性蛍光色素標識核酸プローブ ( 配列番号 1 6 ) : 該核酸プローブは実施例 2において L a b e 1 - O N R e a g e n t s を用いて調製したもの
0. 1 6 M 切断用オリゴヌク レオチ ド (配列番号 2 0 ) : 該オリ ゴヌク レオチドの 3 ' 末端一 OHはァミ ノ基で修飾
6 U/ 3 0 1 リポヌク レア一ゼ ' イ ンヒビ夕一 (夕カラバ ィォ社製)
1 3 % D M S O。
( 3 ) 上記の反応液を、 4 3でで 5分間保温後、 以下の組成で、 予め 4 3 で 2分間保温した酵素液 5 ^ 1 を添加した。
酵素液の組成 : 反応時 ( 3 0 1 中) の最終濃度
2 % ソルビ トール
8 U/ 3 0 z l AMV逆転写酵素 (夕カラバイオ社製)
1 4 2 U/ 3 0 1 Τ 7 R NAポリ メラ一ゼ (G I B C
〇製)
3. 6 w g / 3 0 1 牛血清アルブミ ン。
( 4 ) 引き続き P C Rチューブを直接測定可能な温調機能付き蛍 光分光光度計を用い、 4 3 °Cで反応させると同時に反応溶液の蛍光 強度 (励起波長 4 7 0 n m、 蛍光波長 5 2 0 n m) を経時的に測定 した。 酵素添加時を 0分として、 反応液の蛍光強度比 (所定時間の蛍光 強度値 ÷バックグラン ドの蛍光強度値) の経時変化を図 2に示した 図 2の結果において 、 h n R N P B 1 R N Aの初期濃度に依 存した蛍光プロファィルを示し、 2 5コピーノテス の h n R Ν Ρ
B 1 R N Aが 2 0分以内に検出できた。 以上のしとは、 本発明 の方法によれば h n R N P B 1 R N Aを高感度かつ迅速に定量 可能であることを示している
実施例 4
本願発明の方法において、 種々の組合わせの第一のプライマー 、 第二のプライマー 、 ィ ン夕ー力レー夕一性蛍光色素 識核酸プロ一 ブ、 切断用ォリ ゴヌク レオチドを用いて、 h n R N Ρ Β 1 R Ν
Aの測定を行った
( 1 ) ij記 h n R N P B 1 R N A (塩基番号 1 5 7〜 1 2 4
9を含む) を R N A希釈液 ( 1 0 mM T r i s · Η C 1 ( ρ Η
8. 0 ) 、 1 mM E D T A、 0 2. 5 U/ M 1 リボヌク レアーゼ
' イ ンヒビ夕一、 5. O mM D T T) を用いて 1 0 3 あるいは 1 02 コ ピーノ 5 1 となるよう希釈し、 R NA試料として用いた。
( 2 ) 以下の組成の反応液 2 0 /^ 1 を 0. 5 m l 容量 P C R用チ ユ ーブ (G e n e Am p T h i n— W a l l e d R e a c t i o n T u b e s , パーキンエルマ一製) に分注し、 これに前記 R NA試料 5 ^ 1 を添加した。
反応液の組成 : 濃度は酵素液添加後 ( 3 0 ^ 1 中) の最終濃度
6 0 mM T r i s · H C 1 ( p H 8. 6 )
1 7 mM 塩化マグネシウム
1 0 0 mM 塩化カリ ウム
1 mM D T T 各 0. 2 5 mM d AT P、 d C T P、 d G T P、 d T T P 各 3 mM AT P、 C T P、 UT P
2. 2 5 mM G T P
3. 6 mM I T P
1 n M 第一のプライマ一 (配列番号は表 1 あるいは表 2に記 載) : 第一のプライマーは、 配列番号記載の塩基配列の 5 ' 末端に T 7ポリ メラーゼ ' プロモーター配列 (配列番号 2 2 ) が付加され てなる
1 IX M 第二のプライマー (配列番号は表 1 あるいは表 2に記 載)
2 5 n M イ ンターカレ一夕一性蛍光色素標識核酸プローブ ( 配列番号は表 1 あるいは表 2に記載) : 該核酸プローブは実施例 2 において L a b e 1 — ON R e a g e n t s を用いて調製したも の
0. 1 6 切断用オリ ゴヌク レオチド (配列番号は表 1 あ るいは表 2に記載) : 該オリ ゴヌク レオチドの 3 ' 末端— O Hはァ ミ ノ基で修飾。
6 \] / 3 0 ^ 1 リボヌク レア一ゼ · イ ンヒビ夕一 (夕カラバ ィォ社製)
1 3 % D M S O。
( 3 ) 上記の反応液を、 4 3 で 5分間保温後、 以下の組成で、 予め 4 3でで 2分間保温した酵素液 5 1 を添加した。
酵素液の組成 : 反応時 ( 3 0 z l 中) の最終濃度
2 % ソルビ トール
8 U/ 3 0 1 AMV逆転写酵素 (夕カラバイオ社製) 1 4 2 U/ 3 0 M 1 T 7 R NAポリ メラ一ゼ (G I B C
O製) 3. 6 g / S 0 11 1 牛血清アルブミ ン。
( 4 ) 引き続き P C Rチューブを直接測定可能な温調機能付き蛍 光分光光度計を用い、 4 3でで反応させると同時に反応溶液の蛍光 強度 (励起波長 4 7 0 n m、 蛍光波長 5 2 0 n m) を経時的に測定 した。
酵素添加時を 0分として、 反応液の蛍光強度比が 1. 2を超えた 場合を (+ ) 判定とし、 そのときの時間を検出時間とした結果を表 1および表 2 に示した。
表 1および表 2 に記載の第一のプライマー、 第二のプライマー、 イ ンターカレーター性蛍光色素標識核酸プローブ、 切断用オリ ゴヌ ク レオチドの組合わせを用いた場合、 1 02 あるいは 1 0 3 コピー テス トの h n R N P B 1 R NAが 3 0分以内に検出された。 すなわち、 第一のプライマーとして配列番号 4〜 8より選ばれた配 列、 第二のプライマ一として配列番号 9〜 1 5より選ばれた配列、 イ ンターカレー夕一性蛍光色素標識核酸プローブとして配列番号 1 6あるいは 1 7の配列、 切断用オリ ゴヌク レオチドとして配列番号 1 8〜 2 1より選ばれた配列、 からなる組合わせを用いた場合 h n R N P B 1 R N Aが迅速に検出可能であった。 ここで、 配列番 号 4〜 8のそれぞれは配列番号 1の部分配列であり、 配列番号 9〜 1 5のそれぞれは配列番号 2の部分配列であり、 配列番号 1 6ある いは 1 7はそれぞれ配列番号 3の部分配列である。 以上から、 本発 明に記載の第一のプライマー、 第二のプライマー、 イ ン夕一カレー 夕一性蛍光色素標識核酸プローブを用いた R N A増幅 · 測定法によ り、 h n R N P B 1 R NAが迅速に検出可能であることが示さ れた。
各種組合わせのオリゴヌク レオチ ドを用いた場合の測定結果を表 1 に示した。 表 1
Figure imgf000022_0001
上表の組合わせのオリゴヌク レオチドを用い、 1 03 コピー テ ス トの h n R N P B 1 R NAをサンプルとして R NA増幅 · 蛍 光測定を実施した。 蛍光強度比 1. 2 を超えたものを ( + ) と判定 し、 そのときの時間を検出時間とした。
各種組合わせのオリ ゴヌク レオチ ドを用いた場合の測定結果を表 2に示した。
表 2
Figure imgf000022_0002
上表の組合わせのオリ ゴヌク レオチドを用い、 1 02 コピー "テ ス トの h n R N P B 1 R NAをサンプルと して R NA増幅 · 蛍 光測定を実施した。 蛍光強度比 1. 2 を超えたものを (+ ) と判定 し、 そのときの時間を検出時間とした。
実施例 5 本願発明の方法を用いて、 h n R N P B 1 R NAの定量を行 つた。
( 1 ) 前記 h n R N P B 1 R NA (塩基番号 1 5 7〜 1 2 4 9 を含む) を R NA希釈液 ( 1 0 mM T r i s ' H C l ( p H 8. 0 ) 、 I mM E D TA、 0. 2 U / n 1 リボヌク レア一 ゼ ' イ ンヒビター、 5. O mM D T T) を用いて 1 02 、 1 0 3
、 1 04 , 1 05 、 1 06 コピー Z 5 w l となるよう希釈し、 検量 線用標準 R N Aと して用いた。 陰性標準 (N E G) は希釈液を用い た。 同様に、 サンプルし ( 1 03 コピー Z 5 1 ) 、 M ( 1 04 コ ピー Z 5 /i l ) 、 H ( 1 0 5 コピー Z 5 1 ) を調製した。
( 2 ) 以下の組成の反応液 2 0 z l を 0. 5 m l 容量 P C R用チ ュ一ブ (G e n e Am p T h i n— W a l l e d R e a c t i o n T u b e s , パーキンエルマ一製) に分注し、 これに前記 標準 R N Aおよびサンプル 5 a 1 をそれぞれ添加した。
反応液の組成 : 濃度は酵素液添加後 ( 3 0 n 1 中) の最終濃度 6 0 mM T r i s - H C l ( H 8. 6 )
1 7 m 塩化マグネシウム
l O O mM 塩化カ リ ウム
I mM D T T
各 0. 2 5 mM d A T P , d C T P , d G T P , d T T P 各 3 mM AT P、 C T P、 U T P
2. 2 5 mM G T P
3. 6 mM I T P
1 Mの第 1 のプライマー (配列番号 7 ) : 第 1 のプライマー は、 配列番号記載の塩基配列の 5 ' 末端に T 7ポリ メラ一ゼ · プロ モーター配列 (配列番号 2 2 ) が付加されてなる
I M第 2のプライマ一 (配列番号 1 4 ) 2 5 π Μのイ ンターカレ一夕一性蛍光色素標識核酸プローブ ( 配列番号 1 6 ) : 該核酸プローブは実施例 2においてリ ン酸ジエス テルにリ ンカ一を介してォキサゾールイエローを結合させたもの
0 . 1 6 Μの切断用オリゴヌク レオチ ド (配列番号 2 0 ) : 該オリ ゴヌク レオチ ドの 3 ' 末端一 ΟΗはァミ ノ基で修飾
6 U/ 3 0 II 1 リポヌク レア一ゼ ' イ ンヒビ夕一 (夕カラバ ィォ社製)
1 3 D M S Ο。
( 3 ) 上記の反応液を、 4 3でで 5分間保温後、 以下の組成で、 予め 4 3 で 2分間保温した酵素液 5 a 1 を添加した。
酵素液の組成 : 反応時 ( 3 0 1 ) の最終濃度
2 % ソルビ トール
8 U/ 3 0 1 AMV逆転写酵素 (夕カラバイオ社製) 1 4 2 U/ 3 0 1 T 7 R NAポリ メラーゼ (G I B C
O製)
3. 6 g / 3 0 1 牛血清アルブミ ン。
( 4 ) 引き続き P C Rチューブを直接測定可能な温調機能付き蛍 光分光光度計を用い、 4 3でで反応させると同時に反応溶液の蛍光 強度 (励起波長 4 7 0 n m、 蛍光波長 5 2 0 n m) を経時的に測定 した。
酵素添加時を 0分として、 反応液の蛍光強度比 (所定時間の蛍光 強度値 ÷バックグラン ドの蛍光強度値) の経時変化を図 3に示した 。 図 3 の結果において、 蛍光強度比が 1 . 2 に達する時間を検出時 間とし、 該検出時間と初期コピー数の対数値から作成した検量線を 図 4に示した。 さ らに、 該検量線からサンプル L、 M、 Hのコピー 数を定量した結果を表 3に示した。
図 4の結果では、 1 0 2 コピー/テス トが約 1 2分で検出されて おり、 検出時間と初期コピー数の対数値との間に良好な直線性が得 られた。 また、 表 3の結果において、 サンプルし、 M、 Hの定量結 果は h n R N P B 1 R N Aの添加量に相当する値が得られた。 以上より本発明の方法により、 h n R N P B 1 R NAを迅速、 高感度、 かつ特異的に定量可能であることが示された。
h n R N P B 1 R NAの定量の結果を表 3 に示した。
表 3
Figure imgf000025_0001
サンプルし ( 1 03 コ ピー / 5 1 ) 、 ( 1 04 コピー Z 5 1 ) 、 H ( 1 0 5 コピー Z 5 1 ) の測定結果の蛍光プロファイル から得られた検出時間と図 4の検量線よりコピー数を算出した結果
産業上の利用可能性
本発明により、 h n R N P B 1 mR NAを一定温度かつ一段 階で、 簡便、 迅速、 高感度に測定することが可能となった。 したが つて、 本発明は、 肺癌、 その他の扁平上皮癌の早期診断に適用可能 であり、 化学療法などの治療効果モニタリ ング、 予後の予測、 治療 方針の決定の指標として有用である。 本発明は、 一段階かつ密閉容 器内で実施することが可能であるため、 2次汚染の原因となる増幅 産物による環境の汚染の危険性を最小限にすることが可能である。 また、 一段階、 簡便かつ迅速であることから、 用手法の場合でも多 数の検体処理が可能であり、 再現性を悪化させる要因である操作数 を最小限にすることができる。 さ らに、 本発明の R N A増幅法は R NAのみを増幅することから、 R T— P C Rのように 2本鎖 D NA を完全に除去する工程なしに、 厳密に mR NAを増幅、 測定するこ とが可能である。 すなわち、 本発明の方法は高感度かつ迅速な発現 解析に最適である。 また、 一定温度かつ一段階で実施できることか ら、 P C Rのようなサーマルサイク リ ング機構を設ける必要がなく 、 自動化が容易である。

Claims

求 の 範 囲
1. 試料中に存在するへテロ核リボヌク レオチ ドタンパク質 B 1 ( h n R N P B 1 ) mR NAの測定方法であって、
( 1 ) 該 R NAの特定塩基配列の 5 ' 末端から下流の少なく とも一 部に相同な第一のプライマー、 および前記特定塩基配列の 3 ' 末端 から上流の少なく とも一部に相補的な第二のプライマーにより、 プ 口モーター配列と該プロモーター配列下流に前記特定塩基配列を含 む 2本鎖 D 工程 で ブラ イマ一の少なく と 5, 末端にプ る、
( 2 ) 該 2本鎖 D N Aを 型として R N 工程
( 3 ) 該 R N A転写産物が引き続き D NA合成の铸型となることで 、 連鎖的に該 R N A転写産物が増幅する工程、 および
( 4 ) 前記 R NA転写産物量を測定する工程、
を含むことを特徴とするヘテロ核リボヌク レオチドタンパク質 B 1
( h n R N P B 1 ) m R N Aの測定方法。
2. 前記 R N A転写産物量の測定が、 イ ン夕一カ レー夕一性色素 で標識された核酸プロ一ブで、 かつ標的核酸と相補的 2本鎖を形成 するとイ ン夕一力レー夕一性蛍光色素部分が前記相補的 2本鎖部分 にイ ンターカ レー 卜することによって蛍光特性が変化するように設 計された核酸プローブの蛍光特性の変化を測定することによってな されることを特徴とする請求項 1 に記載の h n R N P B 1 m R N Aの測定方法。
3. 前記第一のプライマーが配列番号 1 に示された配列の少なく とも連続した 1 5塩 を含むこと、 および Zまたは前記第二のブラ イマ一が配列番号 2で示された配列の少なく とも連続した 1 5塩基 を含むことを特徴とする請求項 1 または請求項 2 に記載の h n R N P B 1 mR NAの測定方法。
4. 前記第一のプライマーが配列番号 1 に示された配列の少なく とも連続した 1 5塩基、 前記第二のプライマーが配列番号 2で示さ れた配列の少なく とも連続した 1 5塩基をそれぞれ含み、 前記第一 および第二のプライマーの少なく とも一方は 5 ' 末端にプロモー夕 —配列を有し、 第一のプライマーがプロモーター配列を有する場合 は配列番号 3 に示された配列の少なく とも連続した 1 5塩基を含む イ ンターカレ一夕一性蛍光色素標識核酸プローブ、 第二のプライマ 一がプロモーター配列を有する場合は配列番号 3 に示された配列の 相補配列の少なく とも連続した 1 5塩基を含むイ ンターカレーター 性蛍光色素標識核酸プローブを、 それぞれ含むことを特徴とする請 求項 2に記載の h n R N P B 1 mR NAの測定方法。
5. 第一のプライマーとしての配列番号 1 に示された配列の少な く とも連続した 1 5塩基を含むオリ ゴヌク レオチ ド :
第二のプライマーとしての配列番号 2で示された配列の少なく と も連続した 1 5塩基を含むオリゴヌク レオチ ド ; ここで前記第一お よび第二のプライマーの少なく とも一方は 5 ' 末端にプロモ 夕一 配列を有する、 と ' ' 第一のプライマーがプロモーター配列を有する場合は配列番号 3 に示された配列の少なく とも連続した 1 5塩基を含むイ ンターカ レ 一夕一性蛍光色素標識核酸プローブ、 第二のプライマーがプロモー ター配列を有する場合は配列番号 3 に示された配列の相補配列の少 なく とも連続した 1 5塩基を含むイ ンターカレー夕一性蛍光色素標 識核酸プローブ ;
を構成要素とすることを特徴とする h n R N P B 1 mR NA の測定試薬。
PCT/JP2005/014257 2004-07-30 2005-07-28 ヘテロ核リボヌクレオチドタンパク質B1(hnRNP B1)mRNAの測定方法 WO2006011667A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006527896A JPWO2006011667A1 (ja) 2004-07-30 2005-07-28 ヘテロ核リボヌクレオチドタンパク質B1(hnRNPB1)mRNAの測定方法
US11/572,868 US20080108059A1 (en) 2004-07-30 2005-07-28 Method Of Measuring Heterogeneous Nuclear Ribonucleoprotein B1 (Hnrnp B1) Mrna
EP05768811A EP1783232A4 (en) 2004-07-30 2005-07-28 METHOD OF MEASURING MRNA OF HETEROGENIC NUCLEAR RIBONUCLEOPROTEIN B1 (HNRNP B1)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004224098 2004-07-30
JP2004-224098 2004-07-30

Publications (1)

Publication Number Publication Date
WO2006011667A1 true WO2006011667A1 (ja) 2006-02-02

Family

ID=35786395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014257 WO2006011667A1 (ja) 2004-07-30 2005-07-28 ヘテロ核リボヌクレオチドタンパク質B1(hnRNP B1)mRNAの測定方法

Country Status (6)

Country Link
US (1) US20080108059A1 (ja)
EP (1) EP1783232A4 (ja)
JP (1) JPWO2006011667A1 (ja)
KR (1) KR100872001B1 (ja)
CN (1) CN1993481A (ja)
WO (1) WO2006011667A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527470A2 (en) * 2007-01-23 2012-11-28 Cambridge Enterprise Limited Nucleic acid amplification and testing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481841B2 (ja) * 2008-11-28 2014-04-23 東ソー株式会社 サイトケラチン19mRNAの測定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2774121B2 (ja) * 1987-07-31 1998-07-09 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ 標的ポリヌクレオチド配列の選択的増幅
WO1997012975A1 (en) * 1995-10-02 1997-04-10 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services An epithelial protein and dna thereof for use in early cancer detection
US5994062A (en) * 1995-10-02 1999-11-30 The United States Of America As Represented By The Department Of Health And Human Services Epithelial protein and DNA thereof for use in early cancer detection
JP3968810B2 (ja) * 1997-01-24 2007-08-29 東ソー株式会社 核酸配列分析方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BURD G. ET AL: "Primary structures of the heterogeneous nuclear ribonucleoprotein A2, B1, and C2proteins: A diversity of RNA binding proteins is generated by small peptide inserts.", PROC ACAD SCI USA., vol. 86, 1989, pages 9788 - 9792, XP002024995 *
ISHIGURO T. ET AL: "Intercalation activating fluorescence DNA probe and its application to homogeneous quantification of a target sequence by isothermal sequence amplification in a closed vessel.", ANALYTICAL BIOCHEMISTRY., vol. 314, 2003, pages 77 - 86, XP001165733 *
See also references of EP1783232A4 *
SUEOKA E. ET AL: "Heterogeneous Nuclear Ribonucleoprotein B1 as Early Cancer Biomarker for Occult Cancer of Human Lungs and Bronchial Dysplasia.", CANCER RESEARCH., vol. 61, 2001, pages 1896 - 1902, XP002992958 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527470A2 (en) * 2007-01-23 2012-11-28 Cambridge Enterprise Limited Nucleic acid amplification and testing
US10563254B2 (en) 2007-01-23 2020-02-18 Cambridge Enterprise Limited Nucleic acid amplification and testing
US11447821B2 (en) 2007-01-23 2022-09-20 Cambridge Enterprise Limited Nucleic acid amplification and testing

Also Published As

Publication number Publication date
KR100872001B1 (ko) 2008-12-05
EP1783232A1 (en) 2007-05-09
JPWO2006011667A1 (ja) 2008-05-01
KR20070041593A (ko) 2007-04-18
CN1993481A (zh) 2007-07-04
US20080108059A1 (en) 2008-05-08
EP1783232A4 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP3152927B2 (ja) 自己持続性、配列複製システム
JP2846018B2 (ja) 核酸配列の増幅および検出
JP5099920B2 (ja) 核酸試験用対照
JP2001314195A (ja) 核酸の効率補正したリアルタイム定量方法
JP2008533983A (ja) 多型検出法
JP2002335981A (ja) コントロールを用いる核酸の決定方法
JPH06343497A (ja) 恒温核酸増幅反応に関する内部対照
JP2007525998A (ja) 脆弱x症候群などのstrpの検出
WO2009001737A1 (ja) 改良されたノロウイルスrna検出方法
JPH10201476A (ja) 核酸配列分析方法
JP2003210199A (ja) 高度ダイナミックレンジを有する定量的多重pcr
JP2023553860A (ja) 標的rna検出
JP7611859B2 (ja) 光によりトリガーされる核酸構築物および分子検出のための方法
CN105385684B (zh) 用于为核酸扩增作对照的寡核苷酸
US8911947B2 (en) DNA fragment used as attached to 5′ end of primer used in nucleic acid amplification reaction and use of DNA fragment
WO2000075371A1 (fr) Procede d'amplification d'acide nucleique potentialise
WO2006011667A1 (ja) ヘテロ核リボヌクレオチドタンパク質B1(hnRNP B1)mRNAの測定方法
JP5428272B2 (ja) サバイビンmRNAの測定方法
JP2009017824A (ja) 改良されたノロウイルスrnaの検出方法
US20090191562A1 (en) METHOD FOR ASSAYING REG IV mRNA
JP5481841B2 (ja) サイトケラチン19mRNAの測定方法
US7049067B2 (en) Oligonucleotide for detection of HIV-1 and detection method
WO2006019065A1 (ja) α1,4-N-アセチルグルコサミン転移酵素(α4GnT) mRNAの測定方法
JP2001037500A (ja) 核酸定量分析方法
JP2006223194A (ja) スタニオカルシン1(STC1)mRNAの測定方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006527896

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005768811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11572868

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580025835.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077004529

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005768811

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11572868

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载