+

WO2006009160A1 - Cmp研磨剤及び基板の研磨方法 - Google Patents

Cmp研磨剤及び基板の研磨方法 Download PDF

Info

Publication number
WO2006009160A1
WO2006009160A1 PCT/JP2005/013283 JP2005013283W WO2006009160A1 WO 2006009160 A1 WO2006009160 A1 WO 2006009160A1 JP 2005013283 W JP2005013283 W JP 2005013283W WO 2006009160 A1 WO2006009160 A1 WO 2006009160A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
water
cmp
weight
abrasive
Prior art date
Application number
PCT/JP2005/013283
Other languages
English (en)
French (fr)
Inventor
Masato Fukasawa
Naoyuki Koyama
Yasushi Kurata
Kouji Haga
Toshiaki Akutsu
Yuuto Ootsuki
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to JP2006529234A priority Critical patent/JPWO2006009160A1/ja
Priority to EP05766424.5A priority patent/EP1796152B1/en
Priority to US11/572,523 priority patent/US9293344B2/en
Publication of WO2006009160A1 publication Critical patent/WO2006009160A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to a planarization process of a substrate surface, which is a technique for manufacturing a semiconductor device, in particular, an interlayer insulation film, a flattening process of a BPSG (boron, phosphorus-doped silicon dioxide-silicon film) film, a shallow trench
  • the present invention relates to a CMP abrasive used in a step of forming a hose separation and a method for polishing a substrate using the CMP abrasive.
  • an inorganic insulating film layer such as an oxide silicon insulating film is formed by a method such as plasma CVD or low pressure CVD.
  • a fumed silica-based abrasive is generally studied. Fumed silica-based abrasives are produced by adjusting the pH by growing grains by methods such as thermal decomposition of tetrachlorosilicic acid.
  • such abrasives have a technical problem that the polishing rate is low.
  • shallow trench isolation is used for element isolation in an integrated circuit.
  • CMP is used to remove the excess silicon oxide film formed on the substrate, and a low-polishing stock film is formed under the silicon oxide film to stop polishing. Is done.
  • Silicon nitride or the like is used for the stubber film, and it is desirable that the polishing rate ratio between the silicon oxide film and the staggered film is large.
  • Conventional colloidal silica-based abrasives have the strength to withstand practical use for shallow trench isolation where the polishing rate ratio between the silicon oxide film and the staggered film is as small as about 3.
  • cerium oxide abrasives are used as glass surface abrasives for photomasks and lenses. It is said.
  • the cerium oxide particles are useful for finishing mirror polishing because they are less hard than silica particles and alumina particles and are less likely to scratch the polished surface.
  • CMP abrasives for semiconductors using high-purity cerium oxide particles have been used. For example, this technique is disclosed in Japanese Patent Laid-Open No. 10-106994.
  • the polishing agent using cerium oxide as described above has a problem that it is not easy to achieve both management of the polishing process and high-speed polishing.
  • polishing of a silicon oxide film or the like can be easily performed at a high speed without polishing scratches.
  • An abrasive and a polishing method are provided.
  • the present invention includes (1) cerium oxide particles, a dispersant, a water-soluble polymer and water, and using at least one of the water-soluble polymer force cationic azohi compound and a salt thereof as a polymerization initiator,
  • the present invention relates to a CMP abrasive which is a polymer obtained by polymerizing a monomer containing at least one of a carboxylic acid having an unsaturated double bond and a salt thereof.
  • the present invention provides: (2) the CMP abrasive according to (1), wherein the amount of the water-soluble polymer is 0.01 to 5 parts by weight with respect to 100 parts by weight of the CMP abrasive. About.
  • the present invention relates to (3) the CMP polishing slurry according to (1) or (2), wherein the water-soluble polymer has a weight average molecular weight of 200 or more and 50,000 or less.
  • the present invention relates to (4) the CMP polishing slurry according to any one of (1) to (3), wherein an average particle diameter of the cerium oxide particles is from 1 nm to 400 nm.
  • the blending amount of the cerium oxide particles is 0.1 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the CMP abrasive, It relates to the CMP abrasives described in the above.
  • the present invention provides (6) the C according to any one of (1) to (5), wherein the pH is 4.5 or more and 6.0 or less. It relates to MP abrasives.
  • the substrate on which the film to be polished is formed is pressed against a polishing cloth of a polishing platen and pressed, and the CMP abrasive according to any one of (1) to (6) is polished.
  • the present invention relates to a substrate polishing method in which a substrate and a polishing surface plate are relatively powered while being supplied between a film and a polishing cloth to polish a film to be polished.
  • polishing of a silicon oxide film or the like can be performed uniformly and at high speed without polishing scratches. Further, it is possible to provide an abrasive and a polishing method that can be easily performed.
  • cerium oxide is obtained by oxidizing a cerium compound of carbonate, nitrate, sulfate, or oxalate.
  • TEOS Cerium oxide abrasives used for polishing silicon oxide films formed by CVD, etc., perform high-speed polishing as the crystallite size of the particles increases and the crystal distortion decreases, that is, the better the crystallinity. Although possible, there is a tendency for abrasive scratches to occur. Therefore, although the production method of the cerium oxide particles used in the present invention is not limited, the crystallite diameter of the cerium oxide is preferably 5 nm or more and 300 nm or less. In addition, since it is used for polishing in the manufacture of semiconductor elements, the content of alkali metals and halogens is preferably suppressed to 10 ppm or less in the cerium oxide particles.
  • the firing temperature is preferably 350 ° C or higher and 900 ° C or lower.
  • the cerium oxide particles produced by the above method are agglomerated, it is preferably mechanically pulverized.
  • a dry pulverization method such as a jet mill or a wet pulverization method such as a planetary bead mill is preferable.
  • the jet mill is, for example, described in Chemical Engineering Journal, Vol. 6 No. 5 (1980) pp. 527-532.
  • a sedimentation classification method is used in which the cerium oxide dispersion is allowed to stand for a long time to settle large particles, and the supernatant is pumped out by a pump. It is done.
  • a method using a high-pressure homogenizer that collides the oxycerium particles in the dispersion medium with each other at a high pressure is also used.
  • the average particle diameter of the cerium oxide particles in the CMP abrasive thus prepared is preferably 1 to 400 nm. More preferably, it is l-300 nm, More preferably, it is l-200 nm. If the average particle size of the cerium oxide particles is less than 1 nm, the polishing force tends to be low. If the inclination force exceeds 400 nm, the polished film tends to be damaged.
  • the average particle diameter of cerium oxide particles means the value of D50 (median diameter of volume distribution, cumulative median value) measured with a laser diffraction particle size distribution meter.
  • the CMP abrasive according to the present invention is obtained, for example, by blending cerium oxide particles having the above characteristics, a dispersant and water, dispersing the particles, and further adding a water-soluble polymer.
  • the concentration of cerium oxide particles is preferably in the range of 0.1 to 5 parts by weight per 100 parts by weight of the CMP abrasive. More preferably, it is 0.2 parts by weight or more and 2 parts by weight or less, and further preferably 0.5 parts by weight or more and 1.5 parts by weight or less. This is because if the concentration is too low, the polishing rate tends to be low, whereas if the concentration is too high, it tends to aggregate.
  • Examples of the dispersant include a water-soluble anionic dispersant, a water-soluble nonionic dispersant, a water-soluble cationic dispersant, and a water-soluble amphoteric dispersant.
  • a polymer dispersant containing an acrylic acid ammonium salt as a copolymerization component is preferred. Examples thereof include polyacrylic acid ammonium and copolymers of acrylic acid amide and acrylic acid ammonium.
  • At least one polymer dispersant containing an acrylic acid ammonium salt as a copolymerization component, a water-soluble anionic dispersant, a water-soluble nonionic dispersant, a water-soluble cation may be used in combination.
  • dispersing agents including at least one kind selected from an organic dispersing agent and a water-soluble amphoteric dispersing agent may be used in combination. Because it is used for polishing in the manufacture of semiconductor devices, it is preferable to keep the content of alkali metals such as sodium ions and potassium ions, norogens, and ions in the dispersant to 10 ppm or less! /.
  • water-soluble anionic dispersant examples include lauryl sulfate triethanolamine and lauryl.
  • examples include ammonium sulfate, polyoxyethylene alkyl ether triethanolamine sulfate, and special polycarboxylic acid type polymer dispersants.
  • water-soluble nonionic dispersant examples include polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, polyoxyethylene octyl ether.
  • Ninole ether polyoxyethylene nonyl phenol ether, polyoxyalkylene alkyl ether, polyoxyethylene derivative, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan Tristearate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan trioleate, tetraoleate
  • Polyoxyethylene sorbite polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, polyethylene glycol monooleate, polyoxyethylene alkylamine, polyoxyethylene hydrogenated castor oil, 2-hydroxy Examples thereof include tilmetatalylate and alkyl alcohol amides.
  • water-soluble cationic dispersant examples include polyvinylpyrrolidone, coconut amine acetate, stearylamine acetate and the like.
  • water-soluble amphoteric dispersant examples include lauryl betaine, stearyl betaine, lauryl dimethylamine oxide, 2 alkyl N carboxymethyl N hydroxyethyl imidazolium umbetaine, and the like.
  • the amount of these dispersants added is such that the dispersibility of the particles in the slurry-like abrasive and prevention of settling, and the relationship between the polishing scratches and the amount of the dispersant added are also 100 parts by weight of the cerium oxide particles. A range of 0.01 parts by weight or more and 10 parts by weight or less is preferable.
  • the molecular weight of the dispersant is 100-50,000 force, more preferably 1,000-10,000 force.
  • the molecular weight of the dispersant is less than 100, when polishing the silicon oxide film or silicon nitride film, if the molecular weight of the dispersant exceeds 50,000, which is difficult to obtain a sufficient polishing rate, This is because the viscosity may increase and the storage stability of the CMP abrasive may decrease.
  • the water-soluble polymer in the present invention includes a small amount of cationic azo compounds and salts thereof.
  • Examples of the carboxylic acid having an unsaturated double bond include acrylic acid, methacrylic acid, crotonic acid, bulacetic acid, tiglic acid, 2-trifluoromethylacrylic acid, itaconic acid, fumaric acid, and maleic acid.
  • Citraconic acid, mesaconic acid, darconic acid and the like, and two or more of them can be used in combination.
  • Examples of these carboxylic acid salts include ammonium salts, potassium salts, and alkylamine salts.
  • the polymer may be an acrylic resin having the carboxylic acid and Z or a salt strength C to C thereof.
  • It may be a copolymer with a monomer capable of radical polymerization, such as lilo-tolyl, bull pyrrolidone, or bull pyridine.
  • Examples of the cationic azo compounds and salts thereof according to the present invention include 2, 2'-azobis [2-
  • organic acid salts such as acetic acid, oxalic acid, malonic acid, succinic acid, malic acid, tartaric acid, and succinic acid, phosphoric acid, hydrobromic acid, Inorganic acid salts such as hydroiodic acid and hydrofluoric acid can also be used.
  • solvent during polymerization water, methanol, isopropanol, propanol, butanol, etc., C alcohol, etc., which are preferred, may be used in combination.
  • the weight average molecular weight of the water-soluble polymer thus obtained is preferably in the range of 200 or more and 50,000 or less, more preferably in the range of 300 or more and 20,000 or less, and more preferably 500 or more and 10,000 or less. The lower range is most preferred. When the molecular weight is less than 200, sufficient flattening properties cannot be obtained, and when the molecular weight exceeds 50,000, the agglomeration of cerium oxide particles may occur. Further, a mercapto compound-based molecular weight regulator such as mercaptoethanol may be used.
  • the blending amount of the water-soluble polymer in the present invention is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the CMP abrasive, and 0.05 to 3 parts by weight. More preferred range 0.1. 1 part by weight or more and 1 part by weight or less is most preferred. If the addition amount is too small, high flatness characteristics cannot be obtained, and if the addition amount is too high, aggregation of the cerium oxide particles tends to occur.
  • the abrasive of the present invention may be used in combination with other water-soluble polymers.
  • Other water-soluble polymers are not particularly limited, for example, polysaccharides such as alginic acid, pectinic acid, carboxymethyl cellulose, agar, curdlan and pullulan; polyaspartic acid, polyglutamic acid, polylysine, polymalic acid And polycarboxylic acids such as polyamic acid, polyamic acid ammonium salt, polyamic acid sodium salt and polydarioxylic acid, and salts thereof; and bull-based polymers such as polybular alcohol, polybulurpyrrolidone and polyacrolein.
  • These water-soluble polymers preferably have a weight average molecular weight of 500 or more. The amount of these compounds is preferably in the range of 0.01 to 5 parts by weight per 100 parts by weight of the CMP abrasive.
  • the abrasive according to the present invention is a two-component CMP abrasive in which an acid cerium slurry comprising acid cerium particles, a dispersant, and water is separated from an additive liquid containing a water-soluble polymer and water. Stable characteristics can be obtained even when stored as an abrasive or pre-stored as an abrasive containing a water-soluble polymer. In the case of storing as a two-component abrasive that separates the cerium oxide slurry and the additive solution, the flattening characteristics and polishing rate can be adjusted by arbitrarily changing the composition of these two solutions.
  • the additive solution is sent through a separate pipe from the cerium oxide slurry, and these pipes are merged, mixed immediately before the supply pipe outlet, and supplied onto the polishing platen. Or a method of mixing with an acid-cerium slurry immediately before polishing.
  • the CMP abrasive in the present invention is adjusted to a desired pH and used for polishing.
  • a pH adjuster Ammonia water and an acid component are used suitably rather than alkali metals when using for semiconductor polishing.
  • the pH adjustment is partially neutralized beforehand with ammonia.
  • an ammonia salt of the water-soluble polymer can be used.
  • the pH of the CMP abrasive is preferably 4.5 or more and pH 6.0 or less, more preferably pH 4.8 or more and pH 5.6 or less. If the pH is too low, the polishing rate tends to decrease, and if it is too high, the flatness tends to decrease.
  • the pH of the CMP abrasive is a pH meter (for example, manufactured by Yokogawa Electric Corporation).
  • the substrate on which the film to be polished is formed is pressed against the polishing cloth of the polishing surface plate and pressurized, and the CMP abrasive of the present invention is supplied between the film to be polished and the polishing cloth.
  • the film to be polished is polished by relatively powering the base plate and the polishing surface plate.
  • an inorganic insulating layer is formed on a semiconductor substrate such as a substrate related to semiconductor element manufacture, for example, a semiconductor substrate at a stage where a circuit element and a wiring pattern are formed, a semiconductor substrate at a stage where a circuit element is formed, or the like.
  • the substrate which was made is mentioned.
  • the film to be polished include the inorganic insulating layer, for example, an oxide silicon film layer or a silicon nitride film layer and an oxide silicon film layer.
  • the ratio of the silicon oxide film polishing rate to the silicon nitride film polishing rate, the silicon oxide film polishing rate Z and the silicon nitride film polishing rate are preferably 10 or more. If this ratio is less than 10, the difference between the silicon oxide film polishing rate and the silicon nitride film polishing rate is small, and it becomes difficult to stop polishing at a predetermined position when performing shallow trench isolation. When this ratio is 10 or more, the polishing rate of the silicon nitride film is further reduced and the polishing can be easily stopped, which is preferable for shallow trench isolation. In addition, it is preferable that scratches are less likely to occur during polishing for use in shallow trench isolation.
  • polishing method will be described by taking as an example the case of a semiconductor substrate on which an inorganic insulating layer is formed.
  • a polishing apparatus such as a semiconductor substrate is used as a polishing apparatus.
  • a general polishing apparatus having a holder for holding the substrate and a polishing platen to which a polishing cloth (pad) can be attached and a motor capable of changing the number of rotations can be used.
  • a polishing apparatus manufactured by Ebara Corporation: model number EPO-111 can be used.
  • the polishing cloth a general nonwoven fabric, foamed polyurethane, porous fluorocarbon resin and the like can be used, and there is no particular limitation.
  • the rotation speed of the platen is preferably 200 rpm or less so that the semiconductor substrate does not pop out.
  • the pressure (working load) applied to the semiconductor substrate is lOOkPa so that scratches do not occur after polishing.
  • the following is preferred.
  • CMP polishing agent is continuously supplied to the polishing cloth with a pump. Although there is no limit to this supply, it is preferred that the surface of the polishing cloth is always covered with CMP abrasive.
  • the semiconductor substrate after polishing is thoroughly washed in running water, and then water droplets adhering to the semiconductor substrate are removed using a spin dryer or the like to drop and dry.
  • the inorganic insulating layer which is a polishing film
  • a polishing film with the above-described abrasive
  • surface irregularities can be eliminated and a smooth surface can be obtained over the entire surface of the semiconductor substrate.
  • an aluminum wiring is formed on the silicon oxide insulating film layer, and an oxysilicon insulating film is again formed between and on the wiring by the above method.
  • the surface is polished in the same manner using the above CMP abrasive to make a smooth surface. By repeating this process a predetermined number of times, a semiconductor substrate having a desired number of layers can be manufactured.
  • a cationic azo compound which is a polymerization initiator, is introduced at the terminal, so that the water-soluble polymer is electrostatically charged against an acid-silicon film negatively charged in a weakly acidic to neutral region. Adsorb to.
  • a protective film can be formed on the surface of the film to be polished uniformly and efficiently, and the wafer surface can be uniformly polished.
  • Examples of a method for producing an inorganic insulating film in which the CMP abrasive of the present invention is used include a low pressure CVD method, a plasma CVD method and the like. Silicon oxide film formation by the low pressure CVD method uses monosilane: SiH as the Si source and oxygen: O as the oxygen source. This SiH—O oxidation reaction
  • the reaction gas includes SiH—N 2 O-based gas and SiH using SiH as the Si source and N 2 O as the oxygen source.
  • a TEOS-O-based gas (TEOS-plasma CV D method) using traethoxysilane (TEOS) as the Si source can be mentioned.
  • the substrate temperature is preferably 250 ° C to 400 ° C, and the reaction pressure is preferably 67 to 400 Pa.
  • the silicon oxide film in the present invention may be doped with elements such as phosphorus and boron.
  • silicon nitride film formation by low-pressure CVD uses dichlorosilane: SiH C1 as a Si source and ammonia: NH as a nitrogen source. This SiH C1-NH system
  • the reaction gas includes SiH—NH gas using SiH as the Si source and NH as the nitrogen source.
  • the substrate temperature is preferably 300 ° C to 400 ° C.
  • the CMP polishing slurry and polishing method of the present invention can also be applied to manufacturing processes of various semiconductor devices other than just a silicon oxide film formed on a semiconductor substrate.
  • it mainly contains silicon oxide film formed on a wiring board having a predetermined wiring, glass, inorganic insulating film such as silicon nitride, polysilicon, Al, Cu, Ti, TiN, W, Ta, TaN, etc. Film, photomask Optical lenses such as 'lens' prisms, inorganic conductive films such as ITO, optical integrated circuits composed of glass and crystalline materials, optical switching elements, optical waveguides, end faces of optical fibers, scintillators, etc. It can polish optical single crystals, solid state laser single crystals, blue laser LED sapphire substrates, semiconductor single crystals such as SiC, GaP, and GaAs, glass substrates for magnetic disks, magnetic heads, and the like.
  • the resulting supernatant cerium oxide dispersion was then diluted with deionized water to a solid content concentration of 5% by weight to obtain an acidic cerium slurry. Diluted to an appropriate concentration to measure the average particle size in cerium oxide slurry, using a laser diffraction particle size analyzer Master Sizer Microplus (trade name, manufactured by Malvern), with a refractive index of 1.93 and absorption of 0 When measured, the value of D50 was 170 nm. Impurity ions (Na, K, Fe, Al, Zr, etc.) measured using an atomic absorption photometer AA-670G (model number manufactured by Shimadzu Corporation) Cu, Si, Ti) was less than lppm.
  • polyacrylic acid aqueous solution 25 wt%) 36 g of deionized water 2364g obtained in Synthesis mixed and adjusted to pH 4. 8 with ammonia water (25 weight 0/0). Further, 600 g of the above-mentioned acid-cerium slurry (solid content: 5% by weight) was added to prepare an acid-cerium-based CMP abrasive (solid content: 1.0% by weight). The abrasive pH was 5.0. In addition, in order to measure the average particle size of the particles in the abrasive with a laser diffraction particle size distribution meter, the D50 value was 170 nm as a result of measurement after dilution to an appropriate concentration.
  • the surface plate and the wafer were operated at 98 rpm and 78 rpm, respectively, to polish the test wafer for STI insulating film CMP evaluation. .
  • the end point of polishing was detected by monitoring the torque current value of the polishing surface plate.
  • the polished wafer was thoroughly washed with pure water and then dried. Then, using the optical interference type film thickness device Nometritas product name, Nanospec AFT-5100), the remaining film thickness of the recessed insulating film, the remaining film thickness of the protruding insulating film, or the remaining film thickness of the SiN film was measured.
  • the remaining step of the convex part and the concave part after polishing was measured using a step meter Dektak model number V200-Si manufactured by Veeco. Table 1 shows the measurement results obtained.
  • test wafer for shallow element isolation (STI) insulating film CMP evaluation was polished in the same manner as in Example 1 except that the abrasive prepared above was used, and the results shown in Table 1 were obtained.
  • STI shallow element isolation
  • Polyacrylic acid over methacrylic acid copolymer solution (25 wt%) 36 g of deionized water 2364g obtained above were mixed and adjusted to pH 4. 9 with ammonia water (25 weight 0/0). Further above Sani ⁇ cerium slurry (solid content: 5 wt 0/0) was added 600 g, Sani ⁇ cerium CMP Research A polishing agent (solid content: 1.0% by weight) was prepared. The abrasive pH was 5.1, and in order to measure the particles in the abrasive with a laser diffraction particle size distribution meter, the average particle size was 170 nm as a result of diluting to an appropriate concentration.
  • a test wafer for shallow element isolation (STI) insulating film CMP evaluation was polished in the same manner as in Example 1 except that the abrasive prepared above was used, and the results shown in Table 1 were obtained.
  • STI shallow element isolation
  • a test wafer for shallow element isolation (STI) insulating film CMP evaluation was polished in the same manner as in Example 1 except that the abrasive prepared above was used, and the results shown in Table 1 were obtained.
  • STI shallow element isolation
  • the narrow element isolation (STI) insulating film CMP evaluation test wafer was polished in the same manner as in Example 1 except that the abrasive prepared above was used. As a result, it took 300 seconds for the high-density part (convex part 100%) SiN film to be exposed, and the polishing rate was low. On the other hand, the SiN film was also sharply shaved at the low density part (convex part 10%), and polishing progressed unevenly depending on the pattern density.
  • STI narrow element isolation
  • an interlayer insulating film a BPSG film, a shallow trench isolation insulating film, etc.
  • CMP technology it is possible to provide a polishing agent and a polishing method capable of performing uniform and easy process management at high speed without polishing scratches on a silicon oxide film or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 本発明は、酸化セリウム粒子、分散剤、水溶性高分子及び水を含有し、前記水溶性高分子が、カチオン性アゾ化合物及びその塩の少なくとも一方を重合開始剤として用い、不飽和二重結合を有するカルボン酸及びその塩の少なくとも一方を含む単量体が重合してなる重合体であるCMP研磨剤に関する。これにより、層間絶縁膜、BPSG膜、シャロートレンチ分離用絶縁膜を平坦化するCMP技術において、研磨を研磨傷なく、効率的、高速、均一にかつ研磨プロセス管理も容易に、行うことができる研磨剤及び研磨方法を提供する。

Description

CMP研磨剤及び基板の研磨方法
技術分野
[0001] 本発明は、半導体素子製造技術である、基板表面の平坦化工程、特に、層間絶縁 膜、 BPSG (ボロン、リンをドープした二酸ィ匕珪素膜)膜の平坦ィ匕工程、シヤロートレン チ分離の形成工程等において使用される CMP研磨剤及びこの CMP研磨剤を使用 した基板の研磨方法に関する。
背景技術
[0002] 現在の ULSI半導体素子製造工程では、高密度.微細化のための加工技術が研 究開発されている。その一つである CMP (ケミカルメカ-カルボリツシング:化学機械 研磨)技術は、半導体素子の製造工程において、層間絶縁膜の平坦化、シャロート レンチ素子分離形成、プラグ及び埋め込み金属配線形成等を行う際に必須の技術と なってきている。
[0003] 従来、半導体素子の製造工程において、プラズマ CVD、低圧 CVD等の方法 で酸ィ匕珪素絶縁膜等の無機絶縁膜層が形成される。この無機絶縁膜層を平坦ィ匕す るための化学機械研磨剤としてフュームドシリカ系の研磨剤が一般的に検討されて いる。フュームドシリカ系の研磨剤は、四塩化珪酸を熱分解する等の方法で粒成長さ せ、 pH調整を行って製造している。しかしながら、この様な研磨剤は、研磨速度が低 いという技術課題がある。
[0004] また、デザインルール 0.25 μ m以降の世代では、集積回路内の素子分離にシャロ 一トレンチ分離が用いられている。シヤロートレンチ分離では、基板上に成膜した余 分の酸ィ匕珪素膜を除くために CMPが使用され、研磨を停止させるために、酸化珪素 膜の下に研磨速度の遅いストツバ膜が形成される。ストツバ膜には窒化珪素などが使 用され、酸ィ匕珪素膜とストツバ膜との研磨速度比が大きいことが望ましい。従来のコロ ィダルシリカ系の研磨剤は、上記の酸ィ匕珪素膜とストツバ膜の研磨速度比が 3程度と 小さぐシヤロートレンチ分離用としては実用に耐える特性を有していな力つた。
[0005] 一方、フォトマスクやレンズ等のガラス表面研磨剤として、酸化セリウム研磨剤が用 いられている。酸ィ匕セリウム粒子はシリカ粒子やアルミナ粒子に比べ硬度が低ぐした がって、研磨表面に傷が入りにくいことから、仕上げ鏡面研磨に有用である。また、シ リカ研磨剤に比べ、研磨速度が速い利点がある。近年、高純度酸ィ匕セリウム砲粒を 用いた半導体用 CMP研磨剤が使用されている。例えば、その技術は日本国特開平 10— 106994号公報に開示されている。
[0006] また、酸ィ匕セリウム研磨液の研磨速度を制御し、グローバルな平坦性を向上させる ために添加剤をカ卩えることが知られている。例えば、この技術は日本国特開平 8— 22 970号公報に開示されて 、る。
発明の開示
[0007] し力しながら、上記のような酸ィ匕セリウムを用いた研磨剤は、研磨プロセスの管理と 高速研磨との両立が容易でないという問題がある。本発明は、層間絶縁膜、 BPSG 膜、シヤロートレンチ分離用絶縁膜を平坦ィ匕する CMP技術において、酸化珪素膜等 の研磨を研磨傷なぐ高速に、かつプロセス管理も容易に行うことができる研磨剤お よび研磨方法を提供するものである。
[0008] 本発明は、(1)酸化セリウム粒子、分散剤、水溶性高分子および水を含有し、前記 水溶性高分子力 カチオン性ァゾィヒ合物およびその塩の少なくとも一方を重合開始 剤として、不飽和二重結合を有するカルボン酸およびその塩の少なくとも一方を含む 単量体が重合してなる重合体である CMP研磨剤に関する。
[0009] 本発明は、(2)前記水溶性高分子の配合量が、 CMP研磨剤 100重量部に対して 0. 01重量部以上 5重量部以下である前記(1)記載の CMP研磨剤に関する。
[0010] 本発明は、(3)前記水溶性高分子の重量平均分子量が 200以上 50, 000以下で ある前記(1)又は(2)記載の CMP研磨剤に関する。
[0011] 本発明は、(4)前記酸ィ匕セリウム粒子の平均粒径が lnm以上 400nm以下である 前記(1)〜(3)のいずれか記載の CMP研磨剤に関する。
[0012] 本発明は、(5)前記酸化セリウム粒子の配合量が、 CMP研磨剤 100重量部に対し て 0. 1重量部以上 5重量部以下である前記(1)〜 (4)の 、ずれか記載の CMP研磨 剤に関する。
[0013] 本発明は、(6) pHが 4. 5以上 6. 0以下である前記(1)〜(5)のいずれか記載の C MP研磨剤に関する。
[0014] 本発明は、(7)被研磨膜を形成した基板を研磨定盤の研磨布に押しあて加圧し、 前記(1)〜(6)の 、ずれか記載の CMP研磨剤を被研磨膜と研磨布との間に供給し ながら、基板と研磨定盤とを相対的に動力ゝして被研磨膜を研磨する基板の研磨方法 に関するものである。
[0015] 本発明により、層間絶縁膜、 BPSG膜、シヤロートレンチ分離用絶縁膜等を平坦ィ匕 する CMP技術において、酸化珪素膜等の研磨を研磨傷なぐ高速に、均一に、かつ プロセス管理も容易に行うことができる研磨剤および研磨方法を提供することができ る。
[0016] 本願の開示は、 2004年 7月 23日に出願された特願 2004— 216039号に記載の 主題と関連しており、それらの開示内容は引用によりここに援用される。
発明を実施するための最良の形態
[0017] 一般に酸化セリウムは、炭酸塩、硝酸塩、硫酸塩、しゅう酸塩のセリウム化合物を酸 化することによって得られる。 TEOS— CVD法等で形成される酸ィ匕珪素膜の研磨に 使用する酸化セリウム研磨剤は、粒子の結晶子径が大きぐかつ結晶ひずみが少な いほど、すなわち結晶性が良いほど高速研磨が可能であるが、研磨傷が入りやすい 傾向がある。そこで、本発明で用いる酸ィ匕セリウム粒子は、その製造方法を限定する ものではないが、酸ィ匕セリウム結晶子径は 5nm以上 300nm以下であることが好まし い。また、半導体素子の製造に係る研磨に使用することから、アルカリ金属及びハロ ゲン類の含有率は酸ィ匕セリウム粒子中 lOppm以下に抑えることが好ましい。
[0018] 本発明にお 、て、酸化セリウム粉末を作製する方法として焼成または過酸化水素 等による酸ィ匕法が使用できる。焼成温度は 350°C以上 900°C以下が好ましい。
[0019] 上記の方法により製造された酸ィ匕セリウム粒子は凝集しているため、機械的に粉砕 することが好ましい。粉砕方法として、ジェットミル等による乾式粉砕や遊星ビーズミル 等による湿式粉砕方法が好ましい。ジェットミルは、例えば化学工学論文集第 6卷第 5号(1980) 527〜532頁【こ説明されて!ヽる。
[0020] このような酸ィ匕セリウム粒子を主な分散媒である水中に分散させる方法としては、通 常の攪拌機による分散処理の他にホモジナイザ、超音波分散機、湿式ボールミル等 を用いることができる。
[0021] 上記の方法により分散された酸化セリウムをさらに微粒子化する方法として、酸化セ リウム分散液を長時間静置させて大粒子を沈降させ、上澄みをポンプで汲み取ること による沈降分級法が用いられる。他に、分散媒中の酸ィ匕セリウム粒子同士を高圧力 で衝突させる高圧ホモジナイザを使用する方法も使用される。
[0022] こうして作製された、 CMP研磨剤中の酸化セリウム粒子の平均粒径は、 l〜400n mであることが好ましい。より好ましくは l〜300nmであり、さらに好ましくは l〜200n mである。酸ィ匕セリウム粒子の平均粒径が lnm未満であると研磨速度が低くなる傾 向力 400nmを超えると研磨する膜に傷がつきやすくなる傾向がある。本発明で、酸 化セリウム粒子の平均粒径とは、レーザ回折式粒度分布計で測定した D50の値 (体 積分布のメジアン径、累積中央値)をいう。
[0023] 本発明における CMP研磨剤は、例えば、上記の特徴を有する酸ィ匕セリウム粒子と 分散剤と水を配合して粒子を分散させ、さらに水溶性高分子を添加することによって 得られる。酸ィ匕セリウム粒子の濃度は CMP研磨剤 100重量部当たり 0. 1重量部以 上 5重量部以下の範囲が好ましい。より好ましくは 0. 2重量部以上 2重量部以下であ り、さらに好ましくは 0. 5重量部以上 1. 5重量部以下である。濃度が低すぎると研磨 速度が低くなる傾向が、高すぎると凝集する傾向があるためである。
[0024] 分散剤として、例えば、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶 性陽イオン性分散剤、水溶性両性分散剤等が挙げられる。また、共重合成分として アクリル酸アンモ-ゥム塩を含む高分子分散剤が好ましい。例えば、ポリアクリル酸ァ ンモ-ゥム、アクリル酸アミドとアクリル酸アンモ-ゥムの共重合体等が挙げられる。
[0025] さらに、共重合成分としてアクリル酸アンモ-ゥム塩を含む高分子分散剤の少なくと も 1種類と、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性 分散剤、水溶性両性分散剤カゝら選ばれた少なくとも 1種類とを含む 2種類以上の分 散剤を併用してもよい。半導体素子の製造に係る研磨に使用することから、分散剤中 のナトリウムイオン、カリウムイオン等のアルカリ金属及びノヽロゲン、ィォゥの含有率は lOppm以下に抑えることが好まし!/、。
[0026] 水溶性陰イオン性分散剤としては、例えば、ラウリル硫酸トリエタノールァミン、ラウリ ル硫酸アンモ-ゥム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールァミン、 特殊ポリカルボン酸型高分子分散剤等が挙げられる。
[0027] 水溶性非イオン性分散剤としては例えばポリオキシエチレンラウリルエーテル、ポリ ォキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシ エチレンォレイルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリオキシ エチレンォクチルフエ二ノレエーテル、ポリオキシエチレンノニルフエ二ノレエーテル、ポ リオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ポリオキシェチレ ンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキ シエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート 、ポリオキシエチレンソルビタンモノォレエート、ポリオキシエチレンソルビタントリオレ エート、テトラオレイン酸ポリオキシエチレンソルビット、ポリエチレングリコールモノラウ レート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレー ト、ポリエチレングリコールモノォレエート、ポリオキシエチレンアルキルァミン、ポリオ キシエチレン硬化ヒマシ油、 2-ヒドロキシェチルメタタリレート、アルキルアル力ノール アミド等が挙げられる。
[0028] 水溶性陽イオン性分散剤としては、例えば、ポリビニルピロリドン、ココナットアミンァ セテート、ステアリルアミンアセテート等が挙げられる。
[0029] 水溶性両性分散剤としては、例えば、ラウリルべタイン、ステアリルべタイン、ラウリル ジメチルァミンオキサイド、 2 アルキル N カルボキシメチル N ヒドロキシェチ ルイミダゾリ-ゥムベタイン等が挙げられる。
[0030] これらの分散剤添加量は、スラリ状の研磨剤中の粒子の分散性及び沈降防止、さ らに研磨傷と分散剤添加量との関係力も酸ィ匕セリウム粒子 100重量部に対して、 0. 01重量部以上 10重量部以下の範囲が好ましい。分散剤の分子量は、 100-50, 0 00力 子ましく、 1, 000-10, 000力より好ましい。分散剤の分子量が 100未満の場 合は、酸ィ匕珪素膜あるいは窒化珪素膜を研磨するときに、十分な研磨速度が得られ にくぐ分散剤の分子量が 50, 000を超えた場合は、粘度が高くなり、 CMP研磨剤 の保存安定性が低下する場合があるからである。
[0031] また、本発明における水溶性高分子は、カチオン性ァゾィ匕合物及びその塩の少な くとも一方を重合性開始剤として用い、不飽和二重結合を有するカルボン酸およびそ の塩の少なくとも一方を含むモノマのラジカル重合によって得られる重合体であって 、該重合体は共重合体であっても良い。
[0032] 不飽和二重結合を有するカルボン酸としては、例えばアクリル酸、メタクリル酸、クロ トン酸、ビュル酢酸、チグリック酸、 2—トリフルォロメチルアクリル酸、ィタコン酸、フマ ル酸、マレイン酸、シトラコン酸、メサコン酸、ダルコン酸等が挙げられ、これらは二種 類以上を併用することもできる。またこれらカルボン酸の塩としてはアンモニゥム塩、 カリウム塩、アルキルアミン塩等が挙げられる。
[0033] また、前記重合体は、前記カルボン酸および Zまたはその塩力 C〜C のアクリル
1 18 酸エステル、 C〜c のメタクリル酸エステル、アクリルアミド、ビュルアルコール、ァク
1 18
リロ-トリル、ビュルピロリドン、ビュルピリジン等のラジカル重合可能なモノマと共重 合したものでもよ ヽ。
[0034] 本発明におけるカチオン性ァゾィ匕合物及びその塩としては、 2, 2'—ァゾビス〔2—
(5—メチルー 2 イミダゾリン 2 ィル)プロパン〕塩酸塩、 2, 2'—ァゾビス〔2—(2 —イミダゾリン一 2—ィル)プロパン〕、 2, 2'—ァゾビス〔2— (2—イミダゾリン一 2—ィ ル)プロパン〕塩酸塩、 2, 2'—ァゾビス〔2— (2—イミダゾリン— 2—ィル)プロパン〕硫 酸塩水和物、 2, 2^—ァゾビス〔2—(3, 4, 5, 6—テトラヒドロピリミジン一 2 ィル)プ 口パン塩酸塩、 2, 2'—ァゾビス {2—〔1— (2—ヒドロキシェチル) 2—イミダゾリン一 2—ィル〕プロパン }塩酸塩、 2, 2'—ァゾビス〔2—アミジノプロパン〕塩酸塩、 2, 2' - ァゾビス(2—メチルプロピオンアミドォキシム)、等が挙げられる。これらは二種類以 上を併用することも可能であり、また酢酸、シユウ酸、マロン酸、コハク酸、リンゴ酸、酒 石酸、クェン酸等の有機酸塩やりん酸、臭化水素酸、ヨウ化水素酸、ふつ化水素酸 等の無機酸塩も使用できる。
[0035] 重合時の溶媒としては特に制限は無いが、水、メタノール、イソプロパノール、プロ パノール、ブタノール等の C力 Cのアルコール等が好ましぐこれらを併用してもよ
1 4
い。
[0036] こうして得られた前記水溶性高分子の重量平均分子量は、 200以上 50,000以下 の範囲が好ましぐ 300以上 20,000以下の範囲がより好ましぐ 500以上 10,000以 下の範囲が最も好ましい。分子量が 200未満の場合は、十分な平坦化特性が得られ にくぐ分子量が 50, 000を超えた場合は、酸ィ匕セリウム粒子の凝集が起こる場合が ある力もである。またメルカプトエタノール等のメルカプトィ匕合物系分子量調節剤を使 用してもよい。本発明における水溶性高分子の配合量は、 CMP研磨剤 100重量部 に対して、 0. 01重量部以上 5重量部以下の範囲が好ましぐ 0. 05重量部以上 3重 量部以下の範囲がさらに好ましぐ 0. 1重量部以上 1重量部以下の範囲が最も好ま しい。添加量が少なすぎると高平坦ィ匕特性が得られにくぐ多すぎると酸ィ匕セリウム粒 子の凝集が起こる傾向がある。
[0037] また、本発明の研磨剤は他の水溶性高分子を併用してもよい。他の水溶性高分子 としては、特に制限はなぐ例えばアルギン酸、ぺクチン酸、カルボキシメチルセル口 ース、寒天、カードラン及びプルラン等の多糖類;ポリアスパラギン酸、ポリグルタミン 酸、ポリリシン、ポリリンゴ酸、ポリアミド酸、ポリアミド酸アンモニゥム塩、ポリアミド酸ナ トリウム塩及びポリダリオキシル酸等のポリカルボン酸及びその塩;ポリビュルアルコ ール、ポリビュルピロリドン及びポリアクロレイン等のビュル系ポリマー等が挙げられる 。これら水溶性高分子の重量平均分子量は 500以上が好ましい。また、これらの配合 量は CMP研磨剤 100重量部に対して、 0. 01重量部以上 5重量部以下の範囲が好 ましい。
[0038] 本発明の研磨剤は、酸ィ匕セリウム粒子、分散剤、及び水からなる酸ィ匕セリウムスラリ と、水溶性高分子及び水を含む添加液とを分けた二液式 CMP研磨剤として保存し ても、また予め水溶性高分子が含まれた研磨剤として保存しても、安定した特性が得 られる。酸ィ匕セリウムスラリと添加液とを分けた二液式研磨剤として保存する場合、こ れらニ液の配合を任意に変えられることにより平坦化特性と研磨速度の調整が可能 となる。二液式研磨剤で研磨する場合、添加液は、酸ィ匕セリウムスラリと別々の配管 で送液し、これらの配管を合流させて供給配管出口の直前で混合して研磨定盤上に 供給する方法か、研磨直前に酸ィ匕セリウムスラリと混合する方法がとられる。
[0039] 本発明における CMP研磨剤は所望の pHに調整して研磨に供される。 pH調整剤 に制限はないが、半導体研磨に使用される場合にはアルカリ金属類よりも、アンモ- ァ水、酸成分が好適に使用される。 pH調整は予めアンモニアで部分的に中和され た前記水溶性高分子のアンモ-ゥム塩を使用することができる。 CMP研磨剤の pH は 4. 5以上、 pH6. 0以下が好ましぐ pH4. 8以上、 pH5. 6以下がより好ましい。 p Hが低すぎると研磨速度が低下する傾向が、高すぎると平坦性が低下する傾向があ る。
[0040] 本発明にお 、て CMP研磨剤の pHは、 pHメータ (例えば、横河電機株式会社製の
Model PH81)で測定した。標準緩衝液 (フタル酸塩 pH緩衝液 pH:4. 21(25°C)、 中性りん酸塩 pH緩衝液 pH6. 86 (25°C) )を用いて、 2点校正した後、電極を CMP 研磨剤に入れて、 2分以上経過して安定した後の値を測定した。
[0041] 本発明の研磨方法は、被研磨膜を形成した基板を研磨定盤の研磨布に押し当て 加圧し、上記本発明の CMP研磨剤を被研磨膜と研磨布との間に供給しながら、基 板と研磨定盤とを相対的に動力ゝして被研磨膜を研磨することを特徴とする。
[0042] 基板として、半導体素子製造に係る基板、例えば回路素子と配線パターンが形成 された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基 板上に無機絶縁層が形成された基板が挙げられる。そして、被研磨膜は、前記無機 絶縁層、例えば酸ィ匕珪素膜層あるいは窒化珪素膜層及び酸ィ匕珪素膜層等が挙げら れる。このような半導体基板上に形成された酸ィ匕珪素膜層あるいは窒化珪素膜層を 上記 CMP研磨剤で研磨することによって、酸ィ匕珪素膜層表面の凹凸を解消し、半 導体基板全面にわたって平滑な面とすることができる。また、シヤロートレンチ分離に も使用できる。シヤロートレンチ分離に使用するためには、酸化珪素膜研磨速度と窒 化珪素膜研磨速度の比、酸化珪素膜研磨速度 Z窒化珪素膜研磨速度が 10以上で あることが好ましい。この比が 10未満では、酸ィ匕珪素膜研磨速度と窒化珪素膜研磨 速度の差が小さぐシヤロートレンチ分離をする際、所定の位置で研磨を停止しにくく なるためである。この比が 10以上の場合は窒化珪素膜の研磨速度がさらに小さくな つて研磨の停止が容易になり、シヤロートレンチ分離により好適である。また、シャロ 一トレンチ分離に使用するためには、研磨時に傷の発生が少な 、ことが好ま 、。
[0043] 以下、無機絶縁層が形成された半導体基板の場合を例に挙げて研磨方法を説明 する。
[0044] 本発明の研磨方法にお!ヽて、研磨する装置としては、半導体基板等の被研磨膜を 有する基板を保持するホルダーと、研磨布 (パッド)を貼り付け可能で、回転数が変更 可能なモータ等を取り付けてある研磨定盤と、を有する一般的な研磨装置が使用で きる。例えば、株式会社荏原製作所製研磨装置:型番 EPO-111等が使用できる。 研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素榭脂などが使用 でき、特に制限がない。また、研磨布には CMP研磨剤がたまるような溝加工を施すこ とが好ましい。研磨条件に制限はないが、定盤の回転速度は半導体基板が飛び出さ ないように 200rpm以下の低回転が好ましぐ半導体基板にかける圧力(加工荷重) は研磨後に傷が発生しないように lOOkPa以下が好ましい。研磨している間、研磨 布には CMP研磨剤をポンプ等で連続的に供給する。この供給量に制限はな 、が、 研磨布の表面が常に CMP研磨剤で覆われて 、ることが好まし 、。
[0045] 研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライャ等を用いて半導 体基板上に付着した水滴を払 、落として乾燥させることが好ま U、。このように被研 磨膜である無機絶縁層を上記研磨剤で研磨することによって、表面の凹凸を解消し 、半導体基板全面にわたって平滑な面が得られる。このようにして平坦ィ匕されたシャ ロートレンチを形成したあと、酸化珪素絶縁膜層の上に、アルミニウム配線を形成し、 その配線間及び配線上に再度上記方法により酸ィヒ珪素絶縁膜を形成後、上記 CM P研磨剤を用いて同様に研磨して平滑な面とする。この工程を所定数繰り返すことに より、所望の層数を有する半導体基板を製造することができる。
[0046] 凹凸が存在する被研磨膜 (酸化珪素膜)のグロ一ノ レ平坦ィ匕を達成するには、凸 部が選択的に研磨されることが必要である。本発明の水溶性高分子を含有する研磨 剤を用いると、酸ィ匕セリウム粒子および被研磨膜の表面に保護膜を形成する。すな わち、実効研磨荷重の小さい凹部の被研磨膜は保護されるが、実効研磨荷重の大 きい凸部の被研磨膜は水溶性高分子による保護膜が排除されることで選択的に研 磨される。これにより、パターン依存性の少ないグローバル平坦ィ匕が達成可能である 。本発明における水溶性高分子は重合開始剤であるカチオン性ァゾィ匕合物が末端 に導入されることで、弱酸性〜中性域において負に帯電した酸ィ匕珪素膜に対し、静 電的に吸着する。その結果、均一かつ効率よく被研磨膜の表面に保護膜を形成し、 ウェハ面内を均一に研磨可能である。 [0047] 本発明の CMP研磨剤が使用される無機絶縁膜の作製方法として、低圧 CVD法、 プラズマ CVD法等が挙げられる。低圧 CVD法による酸化珪素膜形成は、 Si源として モノシラン: SiH、酸素源として酸素: Oを用いる。この SiH— O系酸化反応を 400
4 2 4 2
°C以下の低温で行わせることにより得られる。場合によっては、 CVD後 1000°Cまた はそれ以下の温度で熱処理される。高温リフローによる表面平坦ィ匕を図るためにリン : Pをドープするときには、 SiH— O -PH系反応ガスを用いることが好ましい。プラ
4 2 3
ズマ CVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利 点を有する。プラズマ発生法には、容量結合型と誘導結合型の 2つが挙げられる。反 応ガスとしては、 Si源として SiH、酸素源として N Oを用いた SiH— N O系ガスとテ
4 2 4 2
トラエトキシシラン (TEOS)を Si源に用いた TEOS— O系ガス(TEOS—プラズマ CV D法)が挙げられる。基板温度は 250°C〜400°C、反応圧力は 67〜400Paの範囲 が好ましい。このように、本発明における酸ィ匕珪素膜にはリン、ホウ素等の元素がドー プされていても良い。同様に、低圧 CVD法による窒化珪素膜形成は、 Si源としてジク ロルシラン: SiH C1、窒素源としてアンモニア: NHを用いる。この SiH C1— NH系
2 2 3 2 2 3 酸ィ匕反応を 900°Cの高温で行わせることにより得られる。プラズマ CVD法は、反応ガ スとしては、 Si源として SiH 、窒素源として NHを用いた SiH -NH系ガスが挙げら
4 3 4 3
れる。基板温度は 300°C〜400°Cが好ましい。
[0048] 本発明の CMP研磨剤及び研磨方法は、半導体基板に形成された酸化珪素膜だ けでなぐ各種半導体装置の製造プロセス等にも適用することができる。例えば、所 定の配線を有する配線板に形成された酸化珪素膜、ガラス、窒化珪素等の無機絶 縁膜、ポリシリコン、 Al、 Cu、 Ti、 TiN、 W、 Ta、 TaN等を主として含有する膜、フォト マスク 'レンズ'プリズム等の光学ガラス、 ITO等の無機導電膜、ガラス及び結晶質材 料で構成される光集積回路 ·光スイッチング素子 ·光導波路、光ファイバ一の端面、 シンチレータ等の光学用単結晶、固体レーザ単結晶、青色レーザ LED用サフアイャ 基板、 SiC、 GaP、 GaAs等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド 等を研磨することができる。
実施例
[0049] 実施例 1 (水溶性高分子の合成)
脱イオン水 960gを 3リットルの合成用フラスコに投入し、窒素ガス雰囲気下で撹拌 しながら 90°Cに昇温後、アクリル酸 497gと 2, 2'—ァゾビス〔2— (2—イミダゾリン一 2 —ィル)プロパン〕 53gとをメタノール 500gに溶解させたものを 2時間かけてフラスコ 中に注入した。その後 90°Cで 3時間保温後、冷却して取り出し水溶性高分子溶液を 得た。その不揮発分を測定したところ、 25重量%であった。さらに、示差屈折計 (株 式会社日立製作所製型番 L 3300)を備えた HPLCポンプ (株式会社日立製作所 製 型番 L— 7100)に GPCカラム(日立化成工業株式会社製型番 W550)を接続し 、 0. 3M NaClを移動相として用い、上記で得られたポリアクリル酸の分子量測定を 行ったところ、その重量平均分子量は 5, 000(ポリエチレングリコール換算値)であつ た。
[0050] (酸化セリウム粒子の作製及び CMP研磨剤の作製)
炭酸セリウム水和物 40kgをアルミナ製容器に入れ、 830°Cで 2時間空気中で焼成 することにより黄白色の粉末を約 20kg得た。この粉末を X線回折法で相同定を行な つたところ酸ィ匕セリウムであること確認した。焼成粉末粒子径は 30〜: LOO /z mであつ た。酸ィ匕セリウム粒子粉末 15kgをジェットミルを用いて乾式粉砕を行なった。乾式粉 砕後の多結晶体の比表面積を BET法により測定した結果、 9m2/gであった。
[0051] この酸化セリウム粉末 10kgと脱イオン水 39. 875kgを混合し、市販のポリアクリル 酸アンモニゥム水溶液 (重量平均分子量 8000) (40重量%) 125gを添加し、攪拌し ながら超音波分散を行なった。超音波周波数は、 400kHzで、分散時間 20分で行な つた。その後、 10リットル容器に 5kgの酸ィ匕セリウム分散液を入れて静置し、沈降分 級を行なった。分級時間 200時間後、容器底からの高さ 110mm以上の上澄みをポ ンプでくみ上げた。得られた上澄みの酸化セリウム分散液を、次いで固形分濃度が 5 重量%になるように、脱イオン水で希釈して酸ィ匕セリウムスラリを得た。酸ィ匕セリウムス ラリ中の平均粒径を測定するため適当な濃度に希釈し、レーザ回折式粒度分布計 M aster Sizer Microplus (Malvern社製商品名)を用い、屈折率 1. 93、吸収 0として 、測定したところ、 D50の値は 170nmであった。また、原子吸光光度計 AA—670G( 株式会社島津製作所製型番)を用いて測定した不純物イオン (Na、 K、 Fe、 Al、 Zr、 Cu、 Si、 Ti)は lppm以下であった。
[0052] 上記合成で得たポリアクリル酸水溶液(25重量%) 36gと脱イオン水 2364gを混合 し、アンモニア水 (25重量0 /0)にて pH4. 8に調整した。さらに上記の酸ィ匕セリウムスラ リ(固形分: 5重量%) 600gを添加して酸ィ匕セリウム系 CMP研磨剤(固形分: 1. 0重 量%)を作製した。この研磨剤 pHは 5.0であった。また、研磨剤中の粒子の平均粒径 をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結 果、 D50の値は 170nmであった。
[0053] (絶縁膜層の研磨)
浅素子分離 (STI)絶縁膜 CMP評価用試験ウェハとして、 SEMATECH製 864ゥ エノ、(φ 200πιπι)を用いた(SiN膜厚 150nm、 SiO膜厚凸部 610nm、凹部 610η
2
m)。研磨装置 (Applied Materials社製商品名 Mirra)の、保持する基板取り付け 用の吸着パッドを貼り付けたホルダーに上記試験ウェハをセットし、一方、 φ 480mm の研磨定盤に口デール社製多孔質ウレタン榭脂製の研磨パッド型番 IC—1000(K 溝)を貼り付けた。該パッド上に絶縁膜面を下にして前記ホルダーを載せ、さらに加工 荷重としてメンブレン、リテーナリング、インナチューブ圧力をそれぞれ 3. Opsi、 3. 5 psiゝ 3. 0psi (20. 6Pa、 24. 0Pa、 20. 6Pa)に設定した。定盤上に上記で調製した CMP研磨剤を 200ミリリットル/分の速度で滴下しながら、定盤とウェハとをそれぞ れ 98rpm、 78rpmで作動させて STI絶縁膜 CMP評価用試験ウェハを研磨した。研 磨定盤トルク電流値をモニタすることで、研磨の終点検出を行った。研磨後のウェハ を純水で良く洗浄後、乾燥した。その後、光干渉式膜厚装置けノメトリタス社製商品 名、 Nanospec AFT— 5100)を用いて、凹部の絶縁膜の残膜厚、凸部の絶縁膜 の残膜厚、あるいは SiN膜の残膜厚を測定した。さらに Veeco社製段差計 Dektak 型番 V200— Siを用いて、研磨後の凸部と凹部の残段差を測定した。表 1に得られ た各測定結果を示す。
[0054] 実施例 2
(水溶性高分子の合成)
脱イオン水 960gを 3リットルの合成用フラスコに投入し、窒素ガス雰囲気下で撹拌 しながら 90°Cに昇温後、アクリル酸 497gと 2, 2'—ァゾビス〔2— (2—イミダゾリン一 2 —ィル)プロパン〕二硫酸塩二水和物 103gとを脱イオン水 500gに溶解させたものを 2時間かけてフラスコ中に注入した。その後 90°Cで 3時間保温後、冷却して取り出し 水溶性高分子溶液を得た。不揮発分を測定したところ、 25重量%であった。実施例 1と同様に、得られた水溶性高分子の分子量測定を行ったところ、その重量平均分 子量は 3, 200(ポリエチレングリコール換算値)であった。
[0055] (研磨剤の作製)
上記で得られたポリアクリル酸水溶液(25重量%) 48gと脱イオン水 2352gを混合 し、アンモニア水 (25重量%)にて pH5. 3に調整した。さらに上記の酸ィ匕セリウムスラ リ(固形分: 5重量%) 600gを添加し、酸ィ匕セリウム系 CMP研磨剤(固形分: 1. 0重 量%)を作製した。研磨剤 pHは 5.5、また、研磨剤中の粒子をレーザ回折式粒度分 布計で測定するために、適当な濃度に希釈して測定した結果、粒径の平均値が 170 nmであつ 7こ。
[0056] (絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例 1と同様に浅素子分離 (STI)絶縁 膜 CMP評価用試験ウェハの研磨を行 、、表 1に示す結果を得た。
[0057] 実施例 3
(水溶性高分子の合成)
脱イオン水 960gを 3リットルの合成用フラスコに投入し、窒素ガス雰囲気下で撹拌 しながら 90°Cに昇温後、メタクリル酸 256g、アクリル酸 255g及び 2, 2'—ァゾビス〔2 - (2—イミダゾリン一 2—ィル)プロパン〕 46gを、メタノール 500gに溶解させたものを 2時間かけてフラスコ中に注入した。その後 90°Cで 3時間保温後、冷却して取り出し 水溶性高分子溶液を得た。その不揮発分を測定したところ、 25重量%であった。実 施例 1と同様に、得られた水溶性高分子の分子量測定を行ったところ、その重量平 均分子量は 4, 200(ポリエチレングリコール換算値)であった。
[0058] (研磨剤の作製)
上記で得られたポリアクリル酸ーメタクリル酸共重合体水溶液(25重量%) 36gと脱 イオン水 2364gを混合し、アンモニア水 (25重量0 /0)にて pH4. 9に調整した。さらに 上記の酸ィ匕セリウムスラリ(固形分: 5重量0 /0) 600gを添加し、酸ィ匕セリウム系 CMP研 磨剤(固形分: 1. 0重量%)を作製した。研磨剤 pHは 5.1、また、研磨剤中の粒子を レーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、 粒径の平均値が 170nmであつた。
[0059] (絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例 1と同様に浅素子分離 (STI)絶縁膜 CMP評価用試験ウェハの研磨を行 、、表 1に示す結果を得た。
[0060] 実施例 4
(水溶性高分子の合成)
脱イオン水 960gを 3リットルの合成用フラスコに投入し、窒素ガス雰囲気下で撹拌 しながら 90°Cに昇温後、メタクリル酸 256g、アクリル酸 255g及び 2, 2'—ァゾビス〔2 - (2—イミダゾリン— 2—ィル)プロパン〕二硫酸塩二水和物 89gを、脱イオン水 500 gに溶解させたものを 2時間かけてフラスコ中に注入した。その後 90°Cで 3時間保温 後、冷却して取り出し水溶性高分子溶液を得た。その不揮発分を測定したところ、 25 重量%であった。実施例 1と同様に、得られた水溶性高分子の分子量測定を行った ところ、その重量平均分子量は 7, 500(ポリエチレングリコール換算値)であった。
[0061] (研磨剤の作製)
上記で得られたポリアクリル酸ーメタクリル酸共重合体水溶液(25重量%) 30gと脱 イオン水 2370gを混合し、アンモニア水 (25重量0 /0)にて pH4. 6に調整した。さらに 上記の酸ィ匕セリウムスラリ(固形分: 5重量0 /0) 600gを添加し、酸ィ匕セリウム系 CMP研 磨剤(固形分: 1. 0重量%)を作製した。研磨剤 pHは 4. 8、また、研磨剤中の粒子を レーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、 粒径の平均値が 170nmであつた。
[0062] (絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例 1と同様に浅素子分離 (STI)絶縁膜 CMP評価用試験ウェハの研磨を行 、、表 1に示す結果を得た。
[0063] 以上のように実施例 1〜4で調製した各 CMP研磨剤を用いて評価用ウェハを研磨 した結果、凸部は表 1に示すように研磨時間 200秒以内で絶縁膜を削りきり、 SiN膜 が露出した。また、高密度部(凸部 100%)と低密度部(凸部 10%)の残膜厚の差は 14nm以内であり、均一に研磨が行われていた。さらに、研磨後の段差は 2〜: LOnm であり高平坦ィ匕が達成されていた。
[0064] また、光学顕微鏡を用いて研磨後の絶縁膜表面を観察したところ、 Vヽずれの実施 例においても明確な研磨傷は観察されなカゝつた。
[0065] 比較例
(水溶性高分子の合成)
イソプロパノール 480g、脱イオン水 480gを 3リットルの合成用フラスコに投入し、窒 素ガス雰囲気下で撹拌しながら 75°Cに昇温後、アクリル酸 560gと、 2, 2'—ァゾビス イソブチ口-トリル 40gとをイソプロパノール 500gに溶解させたものを 2時間かけてフ ラスコ中に注入した。その後 75°Cで 3時間保温後、冷却して取り出し水溶性高分子 溶液を得た。その不揮発分を測定したところ、 25重量%であった。実施例 1と同様に 、得られた水溶性高分子の分子量測定を行ったところ、その重量平均分子量は 25, 000(ポリエチレングリコール換算値)であった。
[0066] (研磨剤の作製)
上記ポリアクリル酸水溶液(25重量%) 30gと脱イオン水 2370gを混合し、アンモ- ァ水 (25重量%)にて pH6. 9に調整した。さらに上記の酸ィ匕セリウムスラリ(固形分: 5 重量%) 600gを添加し、酸化セリウム研磨剤(固形分: 1. 0重量%)を作製した。研 磨剤 pHは 7. 0、また、研磨剤中の粒子をレーザ回折式粒度分布計で測定するため に、適当な濃度に希釈して測定した結果、粒径の平均値が 170nmであった。
[0067] (絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例 1と同様に狭素子分離 (STI)絶縁 膜 CMP評価用試験ウェハの研磨を行った。その結果、高密度部(凸部 100%) SiN 膜が露出するのに 300秒を要し、研磨速度が低速であった。一方、低密度部(凸部 1 0%)は SiN膜も削りきつてしまい、パターン密度によって研磨が不均一に進行してい た。
[表 1] 較施施施施例実例実例実例実例比 3421 酸ウ重量化ム)セリ (% 〇 〇 〇
ト 〇 寸
ポポ酸酸ククリリリリアルアル-- ポポポ酸酸酸酸酸タタクククククリリメリメリリリリリアルルルアルアル
高体体水溶性分重合重合 025%共共 04% 03%子...
M25000 M 3200 M5000025% 03%www= ==,,,..
〇 M7500 M4200ww==,, 〇 〇 〇
寸 寸 ゾビゾビ ''ァァス 22 22一—,,
ビゾビゾ ' ' 22ァ 22ァ一—,,
'ダ〔〔((ァイイ 22ミミス2222ー————,
〔〔((イイミミス22ス22————
ゾビブダゾゾ剤重合始イ開ィィ)リリスンンルソ 22一—一—
ダゾダゾィリリンン 22一—一—
ププ酸卜リパ〕パ〕硫チル)ロルンンニロ二ロ二
ププパ〕パ〕)ィ)ルルンンロロ
酸塩物塩物硫水水和和二二
o 剤磨研H p 〇
寸 ◦ 卜
寸 磨時間秒研 () 部凸
残膜厚 SiN
〇 ()nm 〇
寸 寸 部凹 S0i2
残膜厚 差段 ()nm o 〇
寸 寸 寸
3 °
Figure imgf000017_0001
産業上の利用の可能性
本発明により、層間絶縁膜、 BPSG膜、シヤロートレンチ分離用絶縁膜等を平坦ィ匕 する CMP技術において、酸化珪素膜等の研磨を研磨傷なぐ高速に、均一に、かつ プロセス管理も容易に行うことができる研磨剤および研磨方法を提供することができ る。

Claims

請求の範囲
[1] 酸化セリウム粒子、分散剤、水溶性高分子および水を含有し、前記水溶性高分子
1S カチオン性ァゾィ匕合物およびその塩の少なくとも一方を重合開始剤として、不飽 和二重結合を有するカルボン酸およびその塩の少なくとも一方を含む単量体が重合 してなる重合体である CMP研磨剤。
[2] 前記水溶性高分子の配合量が、 CMP研磨剤 100重量部に対して 0. 01重量部以 上 5重量部以下である請求の範囲第 1項記載の CMP研磨剤。
[3] 前記水溶性高分子の重量平均分子量が 200以上 50, 000以下である請求の範囲 第 1項又は第 2項記載の CMP研磨剤。
[4] 前記酸ィ匕セリウム粒子の平均粒径が lnm以上 400nm以下である請求の範囲第 1 項〜第 3項の 、ずれか記載の CMP研磨剤。
[5] 前記酸化セリウム粒子の配合量が、 CMP研磨剤 100重量部に対して 0. 1重量部 以上 5重量部以下である請求の範囲第 1項〜第 4項のいずれか記載の CMP研磨剤
[6] pHが 4. 5以上 6. 0以下である請求の範囲第 1項〜第 5項のいずれか記載の CMP 研磨剤。
[7] 被研磨膜を形成した基板を研磨定盤の研磨布に押しあて加圧し、請求の範囲第 1 項〜第 6項のいずれか記載の CMP研磨剤を被研磨膜と研磨布との間に供給しなが ら、基板と研磨定盤とを相対的に動力ゝして被研磨膜を研磨する基板の研磨方法。
PCT/JP2005/013283 2004-07-23 2005-07-20 Cmp研磨剤及び基板の研磨方法 WO2006009160A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006529234A JPWO2006009160A1 (ja) 2004-07-23 2005-07-20 Cmp研磨剤及び基板の研磨方法
EP05766424.5A EP1796152B1 (en) 2004-07-23 2005-07-20 Cmp polishing agent and method for polishing substrate
US11/572,523 US9293344B2 (en) 2004-07-23 2005-07-20 Cmp polishing slurry and method of polishing substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004216039 2004-07-23
JP2004-216039 2004-07-23

Publications (1)

Publication Number Publication Date
WO2006009160A1 true WO2006009160A1 (ja) 2006-01-26

Family

ID=35785268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013283 WO2006009160A1 (ja) 2004-07-23 2005-07-20 Cmp研磨剤及び基板の研磨方法

Country Status (7)

Country Link
US (1) US9293344B2 (ja)
EP (1) EP1796152B1 (ja)
JP (3) JPWO2006009160A1 (ja)
KR (1) KR100856171B1 (ja)
CN (3) CN102585765B (ja)
TW (1) TWI287040B (ja)
WO (1) WO2006009160A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4985409B2 (ja) * 2006-01-31 2012-07-25 日立化成工業株式会社 絶縁膜研磨用cmp研磨剤、研磨方法、該研磨方法で研磨された半導体電子部品

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101126124B1 (ko) * 2005-05-30 2012-03-30 주식회사 동진쎄미켐 연마 평탄도를 향상시킨 산화 세륨 슬러리 조성물
MD3809C2 (ro) * 2008-06-26 2009-08-31 Акционерное Общество "Azurit" Procedeu de prelucrare de finisare a plăcilor pentru acoperire din calcar hemogen
US8366959B2 (en) * 2008-09-26 2013-02-05 Rhodia Operations Abrasive compositions for chemical mechanical polishing and methods for using same
SG11201401309PA (en) * 2011-10-24 2014-06-27 Fujimi Inc Composition for polishing purposes, polishing method using same, and method for producing substrate
US8703004B2 (en) * 2011-11-14 2014-04-22 Kabushiki Kaisha Toshiba Method for chemical planarization and chemical planarization apparatus
CN104170065B (zh) * 2012-03-14 2016-09-07 日立化成株式会社 研磨方法
EP2826827B1 (en) * 2013-07-18 2019-06-12 Basf Se CMP composition comprising abrasive particles containing ceria
JP2016175948A (ja) * 2013-08-09 2016-10-06 コニカミノルタ株式会社 Cmp用研磨液
JP5920840B2 (ja) * 2013-09-30 2016-05-18 株式会社フジミインコーポレーテッド 研磨用組成物およびその製造方法
KR102239131B1 (ko) * 2013-09-30 2021-04-12 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물 및 그 제조 방법
CN104356950B (zh) * 2014-10-21 2017-01-18 李金平 一种蓝宝石晶片抛光液
JP6206388B2 (ja) * 2014-12-15 2017-10-04 信越半導体株式会社 シリコンウェーハの研磨方法
CN104987839A (zh) * 2015-06-30 2015-10-21 安徽德诺化工有限公司 Led用蓝宝石衬底研磨液
KR20220066438A (ko) * 2017-08-14 2022-05-24 쇼와덴코머티리얼즈가부시끼가이샤 연마액, 연마액 세트 및 연마 방법
WO2019064524A1 (ja) 2017-09-29 2019-04-04 日立化成株式会社 研磨液、研磨液セット及び研磨方法
JP6837958B2 (ja) * 2017-12-28 2021-03-03 花王株式会社 酸化珪素膜用研磨液組成物
US11549034B2 (en) 2018-08-09 2023-01-10 Versum Materials Us, Llc Oxide chemical mechanical planarization (CMP) polishing compositions
US12098300B2 (en) 2019-02-19 2024-09-24 Resonac Corporation Polishing liquid and polishing method
CN111014695A (zh) * 2019-11-21 2020-04-17 苏州新锐合金工具股份有限公司 硬质合金混合料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315667A (ja) * 1999-04-28 2000-11-14 Kao Corp 研磨液組成物
JP2000323444A (ja) * 1999-05-10 2000-11-24 Kao Corp 研磨液組成物
JP2003303792A (ja) * 2002-04-10 2003-10-24 Nippon Shokubai Co Ltd 化学機械研磨用水系分散体と研磨方法
JP2003303791A (ja) * 2002-04-10 2003-10-24 Nippon Shokubai Co Ltd 化学機械研磨用水系分散体

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661302B1 (en) 1993-12-23 1999-09-01 Nitto Denko Corporation Process for producing aqueous Dispersion-Type Acrylic Polymer, the acrylic polymer obtained thereby, and pressure-sensitive adhesive comprising the acrylic polymer
JP3278532B2 (ja) 1994-07-08 2002-04-30 株式会社東芝 半導体装置の製造方法
JPH10106994A (ja) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
JP3915042B2 (ja) 1997-02-18 2007-05-16 三井化学株式会社 研磨材及び研磨方法
KR100822116B1 (ko) 1998-12-25 2008-04-15 히다치 가세고교 가부시끼가이샤 Cmp 연마제, cmp 연마제용 첨가액 및 기판의 연마방법
KR100472882B1 (ko) 1999-01-18 2005-03-07 가부시끼가이샤 도시바 수계 분산체, 이를 이용한 화학 기계 연마용 수계 분산체조성물, 웨이퍼 표면의 연마 방법 및 반도체 장치의 제조방법
KR100447551B1 (ko) 1999-01-18 2004-09-08 가부시끼가이샤 도시바 복합 입자 및 그의 제조 방법, 수계 분산체, 화학 기계연마용 수계 분산체 조성물 및 반도체 장치의 제조 방법
JP2001007061A (ja) 1999-06-18 2001-01-12 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
JP2001007059A (ja) * 1999-06-18 2001-01-12 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
JP4171858B2 (ja) 1999-06-23 2008-10-29 Jsr株式会社 研磨用組成物および研磨方法
JP4224659B2 (ja) 1999-06-23 2009-02-18 Jsr株式会社 半導体部品用洗浄剤
JP4134458B2 (ja) 1999-06-23 2008-08-20 Jsr株式会社 半導体部品用洗浄剤、半導体部品の洗浄方法
JP4247587B2 (ja) 1999-06-23 2009-04-02 Jsr株式会社 半導体部品用洗浄剤、半導体部品の洗浄方法、研磨用組成物、および研磨方法
TW593674B (en) 1999-09-14 2004-06-21 Jsr Corp Cleaning agent for semiconductor parts and method for cleaning semiconductor parts
JP4273475B2 (ja) * 1999-09-21 2009-06-03 株式会社フジミインコーポレーテッド 研磨用組成物
JP2001107089A (ja) 1999-10-07 2001-04-17 Jsr Corp 半導体部品用洗浄剤、半導体部品の洗浄方法、研磨用組成物、および研磨方法
US6348076B1 (en) 1999-10-08 2002-02-19 International Business Machines Corporation Slurry for mechanical polishing (CMP) of metals and use thereof
US6638143B2 (en) 1999-12-22 2003-10-28 Applied Materials, Inc. Ion exchange materials for chemical mechanical polishing
JP2001226666A (ja) 2000-02-15 2001-08-21 Hitachi Ltd 研磨砥粒と研磨液及びその研磨方法並びに半導体装置の製造方法
JP2001300285A (ja) 2000-04-18 2001-10-30 Sanyo Chem Ind Ltd 研磨用砥粒分散剤及び研磨用スラリー
TWI281493B (en) 2000-10-06 2007-05-21 Mitsui Mining & Smelting Co Polishing material
WO2002067309A1 (fr) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Pate a polir et procede de polissage d'un substrat
US6632259B2 (en) 2001-05-18 2003-10-14 Rodel Holdings, Inc. Chemical mechanical polishing compositions and methods relating thereto
JP5017574B2 (ja) 2001-05-25 2012-09-05 エア プロダクツ アンド ケミカルズ インコーポレイテッド 酸化セリウム研磨剤及び基板の製造方法
JP4972829B2 (ja) 2001-06-28 2012-07-11 日立化成工業株式会社 Cmp研磨剤及び基板の研磨方法
JP2003313542A (ja) 2002-04-22 2003-11-06 Jsr Corp 化学機械研磨用水系分散体
JP2003347247A (ja) * 2002-05-28 2003-12-05 Hitachi Chem Co Ltd 半導体絶縁膜用cmp研磨剤及び基板の研磨方法
JP4554363B2 (ja) * 2002-07-22 2010-09-29 Agcセイミケミカル株式会社 半導体用研磨剤、その製造方法及び研磨方法
JP2004349426A (ja) * 2003-05-21 2004-12-09 Jsr Corp Sti用化学機械研磨方法
US20070218811A1 (en) * 2004-09-27 2007-09-20 Hitachi Chemical Co., Ltd. Cmp polishing slurry and method of polishing substrate
CN101333418B (zh) * 2004-09-28 2011-05-25 日立化成工业株式会社 Cmp抛光剂以及衬底的抛光方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315667A (ja) * 1999-04-28 2000-11-14 Kao Corp 研磨液組成物
JP2000323444A (ja) * 1999-05-10 2000-11-24 Kao Corp 研磨液組成物
JP2003303792A (ja) * 2002-04-10 2003-10-24 Nippon Shokubai Co Ltd 化学機械研磨用水系分散体と研磨方法
JP2003303791A (ja) * 2002-04-10 2003-10-24 Nippon Shokubai Co Ltd 化学機械研磨用水系分散体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4985409B2 (ja) * 2006-01-31 2012-07-25 日立化成工業株式会社 絶縁膜研磨用cmp研磨剤、研磨方法、該研磨方法で研磨された半導体電子部品
US8524111B2 (en) 2006-01-31 2013-09-03 Hitachi Chemical Company, Ltd. CMP abrasive slurry for polishing insulation film, polishing method, and semiconductor electronic part polished by the polishing method

Also Published As

Publication number Publication date
CN1985361A (zh) 2007-06-20
JP2013149992A (ja) 2013-08-01
KR100856171B1 (ko) 2008-09-03
CN101311205A (zh) 2008-11-26
KR20070026843A (ko) 2007-03-08
JP2011103498A (ja) 2011-05-26
US20080003925A1 (en) 2008-01-03
JP5655879B2 (ja) 2015-01-21
JPWO2006009160A1 (ja) 2008-05-01
EP1796152A4 (en) 2008-12-03
CN102585765B (zh) 2015-01-21
EP1796152A1 (en) 2007-06-13
TWI287040B (en) 2007-09-21
US9293344B2 (en) 2016-03-22
JP5509114B2 (ja) 2014-06-04
CN102585765A (zh) 2012-07-18
TW200609337A (en) 2006-03-16
EP1796152B1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JP5655879B2 (ja) Cmp研磨剤及び基板の研磨方法
JP5176154B2 (ja) Cmp研磨剤及び基板の研磨方法
KR100849551B1 (ko) Сmp연마제 및 기판의 연마방법
WO2007055278A1 (ja) 酸化ケイ素用研磨剤、添加液および研磨方法
JPWO2004068570A1 (ja) Cmp研磨剤及び研磨方法
JP2010095650A (ja) 研磨剤組成物及びこの研磨剤組成物を用いた基板の研磨方法
JP2003347248A (ja) 半導体絶縁膜用cmp研磨剤及び基板の研磨方法
JP5186707B2 (ja) Cmp研磨剤、cmp研磨剤用添加液及びこれらを用いた基板の研磨方法
JP2003007660A (ja) Cmp研磨材および基板の研磨方法
JP2010272733A (ja) 研磨剤及びこの研磨剤を用いた基板の研磨方法
JP2001308043A (ja) Cmp研磨剤及び基板の研磨方法
JP2006041034A (ja) Cmp研磨剤及び基板の研磨方法
JP2006041033A (ja) Cmp研磨剤及び基板の研磨方法
JP2003347245A (ja) 半導体絶縁膜用cmp研磨剤及び基板の研磨方法
JP2003347246A (ja) 半導体絶縁膜用cmp研磨剤及び基板の研磨方法
JP2006036963A (ja) Cmp研磨剤及び基板の研磨方法
JP2011233748A (ja) 基板の研磨方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580023556.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006529234

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11572523

Country of ref document: US

Ref document number: 1020077001589

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005766424

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020077001589

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005766424

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11572523

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载