+

WO2006006588A1 - 芳香族カーボネート類を工業的に製造する方法 - Google Patents

芳香族カーボネート類を工業的に製造する方法 Download PDF

Info

Publication number
WO2006006588A1
WO2006006588A1 PCT/JP2005/012818 JP2005012818W WO2006006588A1 WO 2006006588 A1 WO2006006588 A1 WO 2006006588A1 JP 2005012818 W JP2005012818 W JP 2005012818W WO 2006006588 A1 WO2006006588 A1 WO 2006006588A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
inner diameter
distillation column
column
equation
Prior art date
Application number
PCT/JP2005/012818
Other languages
English (en)
French (fr)
Inventor
Shinsuke Fukuoka
Hiroshi Hachiya
Kazuhiko Matsuzaki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to EP05765686A priority Critical patent/EP1767518A4/en
Priority to BRPI0513225-8A priority patent/BRPI0513225A/pt
Priority to EA200700257A priority patent/EA010033B1/ru
Priority to US11/632,170 priority patent/US7531616B2/en
Priority to JP2006529056A priority patent/JP4224104B2/ja
Publication of WO2006006588A1 publication Critical patent/WO2006006588A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/146Multiple effect distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to an industrial process for producing aromatic carbonates. More specifically, dialyl carbonate and an aromatic monohydroxy compound are subjected to a transesterification reaction in two continuous multistage distillation towers in the presence of a catalyst, and are useful as raw materials for transesterification polycarbonate.
  • the present invention relates to a method for industrially producing a large amount of aromatic carbonates mainly composed of carbonate.
  • Aromatic carbonate is important as a raw material for producing aromatic polycarbonate, which is the most demanding engineering plastic, without using toxic phosgene.
  • a method for producing an aromatic carbonate a method of reacting an aromatic monohydroxy compound with phosgene has been known for a long time, and various studies have been made recently.
  • chlorinated impurities that are difficult to separate in the aromatic carbonate produced by this method, and as such, it cannot be used as a raw material for aromatic polycarbonate. Can not. This is because this chlorine-based impurity significantly inhibits the polymerization reaction of the transesterification polycarbonate carried out in the presence of a very small amount of a basic catalyst.
  • Lewis acids such as transition metal halides or compounds that generate Lewis acids
  • Patent Document 1 JP-A-51-105032, JP-A-56-123948, JP-A-56-123949 (West Germany) Patent Publication No. 2528412, British Patent No. 149 9530, U.S. Pat.No. 4,182,726), Japanese Patent Laid-Open No. 51-75044 (West German Patent Publication No. 2552907, U.S. Pat. No. 4045464)
  • Tin compounds such as organotin alkoxides and organotinoxides
  • Patent Document 2 JP 54-48733 A (West German Patent Publication No.
  • Patent Document 4 Japanese Unexamined Patent Publication No. 57-176932, Japanese Unexamined Patent Publication No. 1-93560, metals such as copper, iron, zirconium, etc.
  • Patent Document 5 JP-A-57-183745
  • titanate esters Patent Document 6
  • Patent Document 6 JP-A-58-185536 (US Pat. No. 4410464)
  • JP-A-1 ⁇ See 265062 Lewis acid and protonic acid mixture
  • Patent Document 7 Japanese Unexamined Patent Publication No. 60173016 (US Pat. No. 4,609,501)
  • Sc, Mo, Mn, Bi, Te, etc. Patent Document 8: see JP-A-1-265064
  • ferric acetate Patent Document 9: see JP-A-61-172852
  • catalyst development alone cannot solve the problem of unfavorable equilibrium, there are a large number of issues to consider in order to achieve an industrial production method for mass production, including examination of reaction methods.
  • Patent Document 10 Japanese Patent Laid-Open No. 54-48732 (West German Patent Publication No. 736063). No., U.S. Pat. No. 4,252,737)), by-product methanol Has been proposed (see Patent Document 11: Japanese Patent Laid-Open No. 58-185536 (US Pat. No. 410464)).
  • Patent Document 12 JP-A-56-123948 (US Pat. No. 4,182,726)), JP-A-56-25138, JP-A-60-169444 ( Example of US Pat. No. 4,554,110), Example of JP-A-60-169445 (US Pat. No. 4,552,704), JP-A-60-173016 (US Pat. No. 4,609,501) ), Examples of JP-A 61-172852, Examples of JP-A 61-291545, Examples of JP-A 62-277345).
  • reaction systems are basically batch system force switching systems.
  • the inventors of the present invention continuously supply dialkyl carbonate and aromatic hydroxy compound to a multistage distillation column, and continuously react in the column in the presence of a catalyst to produce by-produced alcohol.
  • a low-boiling component containing nitrogen is continuously extracted by distillation, and a component containing the generated alkylaryl carbonate is extracted from the bottom of the column (see Patent Document 13: Japanese Patent Publication No. Hei 3-291257).
  • Low-boiling components including dialkyl force-bonate as a by-product are continuously extracted by distillation, and the produced diaryl carbonate is removed.
  • Reactive distillation method see Patent Document 14: Japanese Patent Laid-Open No. 4-9358 in which the components contained are extracted from the bottom of the column. These reactions are performed using two continuous multistage distillation columns. There, Vice Reactive distillation method for continuously producing diaryl carbonate while efficiently recycling the dialkyl carbonate produced (see Patent Document 15: JP-A-4-211038), dialkyl carbonate and aromatic hydroxy group Compound or the like is continuously supplied to the multistage distillation column, and the liquid flowing down the column is extracted from the middle outlet of the distillation column and from the side outlets provided at the Z or bottom stage, and provided outside the distillation column.
  • both the inside of the reactor and the distillation column are introduced by introduction into a circulation inlet provided at a stage higher than the stage with the extraction port.
  • Patent Document 16 JP-A-4-224547, JP-A-4-230242, JP-A-4235951
  • Simultaneous reaction and distillation separation in Reactive distillation method developed was the first in the world to disclose that the reaction distillation method for these transesterification reactions are useful.
  • Patent Documents 17 to 32 Patent Document 17: International Publication No. 00Z18720 (U.S. Pat. No. 5,362,901); Patent Document 18: Italian Patent 01255746) Patent Document 19: JP-A-6-9506 (European Patent 0560159, US Pat. No. 5,282,965); Patent Document 20: JP-A-6-41022 (European Patent 0572870, US Patent No. 5 362901); Patent Document 21: JP-A-6-157424 (European Patent 0582931, US Pat. No.
  • Patent Document 22 Japanese Patent Laid-Open No. 7-304713
  • Patent Document 23 Japanese Patent Laid-Open No. 9-40616
  • Patent Document 24 Japanese Patent Laid-Open No. 9-59225
  • Patent Document 25 Japanese Patent Laid-Open No. 9-110805
  • Patent Document 27 JP-A-9-173819
  • Patent Document 28 JP-A-9-176094, JP-A 2000-191596, JP-A 2000-191597
  • Patent Document 29 Special Kaihei 9-194436 (European Patent 0785184, US Pat. No. 5,705,673)
  • Patent Document 30 International Publication No.
  • Patent Document 31 Column 2001 — No. 64234, column 2001— 6423 No. 5; Patent Document 32: International Publication No. 02Z40439 (US Pat. No. 6,596,894, US Pat. No. 6596895, US Pat. No. 6600061)).
  • the applicant of the present invention is a high-boiling point containing a catalyst component as a method for stably producing a high-purity aromatic carbonate for a long time without requiring a large amount of catalyst.
  • a method of separating the substance after reacting with the active substance and recycling the catalyst component see Patent Document 31: JP 2001-64234 A, JP 2001-64235 A), and polyvalent aroma in the reaction system In which the group hydroxy compound is maintained at a mass ratio of 2.0 or less with respect to the catalyst metal (Patent Document 32: International Publication No. 02Z40439 (US Pat. No. 6,596,894, US Pat. No. 6596895, US Pat. No. 6600061) Proposal)) was proposed.
  • the present inventors use a method in which 70 to 99% by mass of phenol produced as a by-product in the polymerization process is used as a raw material to produce diphenol carbonate by a reactive distillation method, and this is used as a polymerization raw material for aromatic polycarbonate.
  • Patent Document 33 International Publication No. 97Z11049 (European Patent No. 0855384, US Patent No. 5872275)).
  • Patent Document 34 Japanese Patent Application Laid-Open No. 11-92429 (see European Patent No. 1016648, US Patent No. 6262210)
  • Patent Document 35 Japanese Patent Laid-Open No. 9-255772 (see European Patent 0892001, US Patent No. 5747609)
  • the problem to be solved by the present invention is to prepare aromatic carbonates mainly comprising diaryl carbonate from a dialkyl carbonate and an aromatic monohydroxy compound using two continuous multistage distillation columns.
  • the purpose is to provide a specific method that can be manufactured stably for a long period of time with high selectivity and high productivity on an industrial scale of 1 ton or more per hour.
  • the first column high boiling point reaction mixture is continuously fed into a second continuous multistage reactive distillation column connected with the first continuous multistage distillation column where a catalyst is present, and dialkyl strength boronates. And reacting in the second column so as to produce diaryl carbonates;
  • the dialkyl carbonate continuously fed into the first continuous multistage distillation column is 0.1 to 10 in molar ratio to the aromatic monohydroxy compound
  • the first continuous multi-stage distillation column has a structure having an end plate portion above and below a cylindrical body portion having a length L (cm) and an inner diameter D (cm), and an internal having a number n of stages inside.
  • a liquid outlet with an inner diameter d (cm), below the gas outlet and above the tower.
  • the second continuous multi-stage distillation column is placed above and below a cylindrical body having a length L (cm) and an inner diameter D (cm).
  • a liquid outlet with an inner diameter d (cm), below the gas outlet and above the tower.
  • a method characterized by 2 The method according to item 1 above, wherein distillation is simultaneously performed in the steps (ii) and (iv),
  • diaryl carbonate is 1 ton or more per hour, the method according to 1 or 2 above,
  • a dialkyl carbonate and an aromatic monohydroxy compound are used as raw materials, and the raw materials are continuously fed into a first continuous multistage distillation column in which a catalyst exists, and the reaction and distillation are simultaneously performed in the first column,
  • the first column low-boiling point reaction mixture containing the generated alcohols is continuously withdrawn in the gaseous state from the upper part of the first column, and the first column high-boiling point reaction mixture containing the generated alkylaryl carbonates is removed from the lower part of the first column.
  • the liquid is continuously extracted in a liquid state, and the high-boiling reaction mixture in the first column is continuously fed into the second continuous multi-stage distillation column in which the catalyst is present, and the reaction and distillation are simultaneously performed in the second column.
  • the second column low-boiling point reaction mixture containing dialkyl carbonates is continuously withdrawn in the form of gas from the upper part of the second column, and the second tower high-boiling point reaction mixture containing diaryl force-bonates is formed at the lower part of the second column. More liquid and continuous removal
  • aromatic carbonates mainly comprising diaryl carbonates are obtained.
  • the dialkyl carbonate continuously fed into the first continuous multistage distillation column is 0.1 to 10 in molar ratio to the aromatic monohydroxy compound
  • the first continuous multi-stage distillation column has a structure having an end plate portion above and below a cylindrical body portion having a length L (cm) and an inner diameter D (cm), and an internal having a number n of stages inside.
  • a liquid outlet with an inner diameter d (cm), below the gas outlet and above the tower.
  • the second continuous multi-stage distillation column is placed above and below a cylindrical body having a length L (cm) and an inner diameter D (cm).
  • a liquid outlet with an inner diameter d (cm), below the gas outlet and above the tower.
  • the first continuous multistage distillation column and the second continuous multistage distillation column are distillation columns each having a tray and Z or a packing as the internal, respectively.
  • the first continuous multistage distillation column is a tray type distillation column having a tray as the internal
  • the second continuous multistage distillation column is a distillation column having both a packing and a tray as the internal.
  • each of the trays of the first continuous multi-stage distillation column and the second continuous multi-stage distillation column is a perforated plate tray having a multi-hole plate portion and a downcomer portion.
  • the regular packing of the second continuous multi-stage distillation column is at least one selected from a melapack, a drum pack, a techno pack, a flexi pack, a sulza packing, a good roll packing, and a glitch grid.
  • a reactive distillation apparatus comprising: a first continuous multi-stage distillation column for performing reaction and distillation; and a second continuous multi-stage distillation column for performing reaction and distillation connected to the first continuous multi-stage distillation column.
  • the first continuous multi-stage distillation column has an end plate portion above and below a cylindrical body having a length L (cm) and an inner diameter D (cm), and has an internal number n.
  • the second continuous multi-stage distillation column is located above and below a cylindrical body having a length L (cm) and an inner diameter D (cm).
  • a liquid outlet with an inner diameter d (cm), below the gas outlet and above the tower.
  • a reactive distillation device characterized by
  • L, D, L ZD, n, D Zd and D Zd of the first continuous multistage distillation column are
  • the first continuous multistage distillation column is a tray type distillation column having a tray as the internal
  • the second continuous multistage distillation column is a distillation column having both a packing and a tray as the internal. 25.
  • each of the trays of the first continuous multi-stage distillation column and the second continuous multi-stage distillation column is a perforated plate tray having a multi-hole plate portion and a downcomer portion.
  • the regular packing of the second continuous multi-stage distillation column is at least one selected from a mela pack, a drum pack, a techno pack, a flexi pack, a sulza packing, a good roll packing, and a glitch grid.
  • the diaryl carbonate and the aromatic monohydroxy compound are mixed with a high selectivity of 95% or higher, preferably 97% or higher, more preferably 98% or higher.
  • Aromatic carbonates with carbonate as the main product 1 ton or more per hour, preferably 2 ton or more per hour, more preferably 3 ton or more per hour on an industrial scale, 2000 hours or more It has been found that it can be stably produced for a long period of time, preferably 3000 hours or more, more preferably 5 000 hours or more.
  • the diaryl carbonate obtained by separating and purifying aromatic carbonates mainly composed of diaryl carbonate obtained by the present invention by distillation or the like has high purity, such as transesterification polycarbonate and polyester carbonate.
  • the halogen content of the obtained diaryl carbonate is 0.1 ppm or less, preferably 10 ppm or less, more preferably 1 ppb or less.
  • the dialkyl carbonate used in the present invention is represented by the general formula (15).
  • R 1 represents an alkyl group having 1 to 10 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, or an aralkyl group having 6 to 10 carbon atoms.
  • R 1 include methyl, ethyl, propyl (each isomer), allyl, butyl (each isomer), butenyl (each isomer), pentyl (each isomer), hexyl (each isomer).
  • Heptyl (each isomer), octyl (each isomer), nonyl (each isomer), decyl (each isomer), alkyl group such as cyclohexylmethyl; cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclo Alicyclic groups such as heptyl; And aralkyl groups such as benzyl, phenethyl (each isomer), phenylpropyl (each isomer), phenylbutyl (each isomer), and methylbenzyl (each isomer).
  • alkyl groups, alicyclic groups, and aralkyl groups may be substituted with other substituents such as a lower alkyl group, a lower alkoxy group, a cyano group, a halogen, or the like, or an unsaturated bond. You may have.
  • dialkyl carbonate having R 1 examples include dimethyl carbonate, jetyl carbonate, dipropyl carbonate (each isomer), diallyl carbonate, dibutenyl carbonate (each isomer), and dibutyl.
  • R 1 is preferably a dialkyl carbonate composed of an alkyl group having 4 or less carbon atoms not containing halogen, particularly preferably! / Is dimethyl carbonate, which is preferably used in the present invention.
  • dialkyl carbonates are preferred among the preferred dialkyl carbonates, more preferred are dialkyl carbonates produced in a state that is substantially free of halogens, for example, alkylene carbonates substantially free of halogens. Alcohol power substantially free of halogen is also produced.
  • the aromatic monohydroxy compound used in the present invention is represented by the following general formula (16), and if the hydroxyl group is directly bonded to the aromatic group, It can be anything.
  • Ar 1 represents an aromatic group having 5 to 30 carbon atoms.
  • Aromatic monohi having Ar 1 like this Examples of droxy compounds include phenol; talesol (each isomer), xylenol (each isomer), trimethylphenol (each isomer), tetramethylphenol (each isomer), ethylphenol (each isomer), propylphenol.
  • aromatic monohydroxy compounds those that are preferably used in the present invention are aromatic monohydroxy compounds in which Ar 1 has an aromatic group having 6 to 10 carbon atoms. Particularly preferred is phenol. Of these aromatic monohydroxy compounds, those that are preferably used in the present invention are those that do not substantially contain halogen.
  • the dialkyl carbonate used as a raw material in the present invention is required to have a molar ratio of 0.1 to 10 with respect to the aromatic monohydroxy compound. Outside this range, the remaining unreacted raw material increases with respect to the desired production amount of the aromatic carbonate, which is not efficient and requires a lot of energy to recover them. In this sense, this molar ratio is 0.5-5, more preferably 0.8-3, and even more preferably 1-2.
  • the ability to continuously produce 1 ton or more diaryl carbonate per hour. Therefore, the minimum amount of aromatic monohydroxy compound to be continuously supplied is The amount of aromatic carbonate to be produced (P ton Zhr) is usually 15 P ton Zhr, preferably 13 P ton Zhr, more preferably 10 P ton Zhr. If more preferable, it can be less than 8P ton Zhr.
  • dialkyl carbonate and aromatic monohydroxy used as raw materials in the present invention.
  • Each compound may be of high purity, or may contain other compounds, for example, a compound produced in the first continuous multistage distillation column or Z and the second continuous multistage distillation column. Or a reaction by-product.
  • the first continuous multistage distillation column or the Z and second continuous multistage distillation columns are used as these raw materials. It is also preferable to use dialkyl carbonates and aromatic monohydroxy compounds recovered from the above.
  • the top component which is a low boiling point reaction mixture in the second continuous multistage distillation column
  • the second column low boiling point reaction mixture may be supplied as it is to the first continuous multistage distillation column, or may be supplied after a part of the components is separated. Therefore, in the present invention to be carried out industrially, it is preferable that the raw materials supplied to the first continuous multistage distillation column contain alcohols, alkylaryl carbonate, diaryl carbonate, alkylaryl ether and the like.
  • the reaction product is contained in the raw material. It is preferable to contain methyl alcohol, methyl phenol carbonate and diphenol carbonate, and furthermore, the reaction by-products such as anisole, salicylic acid phenyl, methyl salicylate and these high-boiling by-products derived from them. Contain a small amount.
  • the aromatic carbonates produced in the present invention are alkyl aryl carbonates, diaryl carbonates, and mixtures thereof obtained by transesterification of dialkyl carbonates with aromatic monohydroxy compounds. It is.
  • this ester exchange reaction one or two alkoxy groups of the dialkyl carbonate are exchanged with aryloxy groups of the aromatic monohydroxy compound to leave the alcohols, and two molecules of the alkyl aryl carbonate produced.
  • Is converted to diaryl carbonate and dialkyl carbonate by a disproportionation reaction which is a transesterification reaction between Reaction is included.
  • the alkyl continuous carbonate is mainly obtained in the first continuous multi-stage distillation column, and in the second continuous multi-stage distillation column, the dial carbonate is mainly produced by the disproportionation reaction of the alkyl reel carbonate.
  • Aromatic carbonates are obtained as a product.
  • the produced diaryl carbonate does not contain any halogen, the polycarbonate is industrially produced by transesterification. It is important as a raw material when doing.
  • the catalyst used in the first continuous multistage distillation column or Z and the second continuous multistage distillation column of the present invention for example, the following compound power is selected.
  • Lead compounds > Lead oxides such as PbO, PbO and PbO; Lead sulfides such as PbS and Pb S; Pb (0
  • Lead hydroxides such as Pb 2 O (OH); Na PbO, K PbO, NaHPbO, KHPbO, etc.
  • Lead salts such as PbO and CaPbO; Lead carbonates such as PbCO and 2PbCO 2 -Pb (OH)
  • Ph represents a full group.
  • lead alloys such as howenite, senyanite, and hydrates of these lead compounds;
  • ⁇ Copper group metal compounds > CuCl, CuCl, CuBr, CuBr, Cul, Cul, Cu (OAc), C
  • acac represents a cetylacetone chelate ligand
  • Alkali metal complexes such as Li (acac) and LiN (C H);
  • Zinc complex such as Zn (acac); ⁇ Cadmium complexes> Cd (acac) and other cadmium complexes;
  • Zirconium complexes such as Zr (acac) and zirconocene;
  • Lewis acids > A1X, TiX, TiX, VOX, VX, ZnX, FeX, SnX (where
  • X is halogen, acetoxy group, an alkoxy group, or an aryloxy group.
  • Lewis acids such as) and transition metal compounds that generate Lewis acids;
  • a metal-containing compound such as is used as a catalyst may be solid catalysts fixed in a multistage distillation column, or may be soluble catalysts that dissolve in the reaction system.
  • organic compounds in which these catalyst components are present in the reaction system for example, aliphatic alcohols, aromatic monohydroxy compounds, alkylaryl carbonates, diaryl carbonates, dialkyl carbonates, etc. It may be one that has reacted, or it may have been heat-treated with raw materials or products prior to the reaction.
  • catalysts When the present invention is carried out with a soluble catalyst that dissolves in the reaction system, these catalysts preferably have high solubility in the reaction solution under the reaction conditions.
  • Preferred catalysts in this sense include, for example, PbO, Pb (OH) ⁇ Pb (OPh); TiCl, Ti (OMe), (MeO
  • the catalyst used in the first continuous multistage distillation column and the catalyst used in the second continuous multistage distillation column may be the same type or different types.
  • FIG. 1 is a schematic view of a first continuous multistage distillation column for carrying out the production method according to the present invention.
  • Book The first continuous multi-stage distillation column 101 used in the invention is an internal 6 having end plates 5 above and below a cylindrical body 7 having a length () and an inner diameter D ⁇ cm) and having a number n of stages inside.
  • One or more inlets 3 are provided below the outlet and in the upper part of the tower and in the Z or middle part, and one or more inlets 4 are provided above the liquid outlet and below the tower.
  • the first continuous multi-stage distillation column 101 is:
  • FIG. 2 is a schematic view of a second continuous multistage distillation column for carrying out the production method according to the present invention.
  • the second continuous multistage distillation column 201 used in the present invention has a length L (cm) and an inner diameter D (cm).
  • liquid outlet 2 below the gas outlet, at the top of the tower and Z or middle
  • inlets 3 are provided in the section, and one or more inlets 4 are provided above the liquid outlet and in the lower part of the tower.
  • the second continuous multistage distillation column 201 is:
  • top of the tower or the top of the tower close to it used in the present invention means a portion of about 0.25 L or 0.25 L downward from the top of the tower.
  • dialkyl carbonate and aromatic monohydroxyl compound can be used to form diaryl carbonate.
  • the formulas (1) to (12) It is presumed to be due to the combined effect that results when conditions are combined.
  • the preferable range of each factor is shown below.
  • L and L In order to reduce equipment costs while securing a reaction rate that can achieve the target production volume, L and L must each be 8000 or less.
  • More preferred L (cm) and L (cm) ranges are 2000 ⁇ L ⁇ 6000, respectively.
  • D (cm) and D (cm) are each less than 100, the target production can be achieved.
  • 200 ⁇ D ⁇ 800 and 200 ⁇ D ⁇ 800 respectively
  • the inner diameter may be the same from the upper part to the lower part of the tower, or the inner diameters may be partially different.
  • the inner diameter of the upper part of the column may be smaller or larger than the inner diameter of the lower part of the tower. Further, it may be a tower having a partially different inner diameter.
  • L / ⁇ and L / ⁇ ranges are 3 ⁇ L / D ⁇ 30 and 3 ⁇ L / D ⁇ , respectively.
  • n must be 120 or less. Furthermore, if the pressure is larger than n force, the pressure difference between the top and bottom of the column becomes too large, so that the long-term stable operation of the first continuous multistage distillation column becomes difficult, and the temperature at the bottom of the column must be increased. The reaction tends to occur and the selectivity is lowered.
  • a more preferable range of n is 30 ⁇ n ⁇ 100, and further preferably 40 ⁇ n ⁇ 90. N force less than 0
  • n force is greater than 3 ⁇ 40, the pressure above and below the tower
  • n 15 ⁇ n ⁇ 60
  • the more preferred D range is 5 ⁇ D / d ⁇ 18.
  • a more preferable range of D Zd is 7 ⁇ ⁇ / d ⁇ 25, and more preferably 9
  • the d and the d satisfy the formula (13), and the d and the d satisfy the formula (14).
  • the long-term stable operation as used in the present invention means that the operation can be continued in a steady state based on the operation conditions where there is no piping clogging or erosion for 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more.
  • aromatic carbonates having a predetermined amount of diaryl carbonate as a main product are produced while maintaining high selectivity.
  • the present invention is characterized in that aromatic carbonate is stably produced for a long period of time with high selectivity at a high productivity of 1 ton or more per hour, preferably 2 tons or more per hour, Preferably, 3 tons or more of aromatic carbonates are produced per hour.
  • the present invention relates to L, D, L ZD, n, D Zd, D Zd of the first continuous multistage distillation column.
  • 1 1 1 1 1 1 1 1 11 1 12 is 2000 ⁇ L ⁇ 6000, 150 ⁇ D ⁇ 1000, 3 ⁇ L / D ⁇ 30, 30 ⁇ n ⁇ 100, 8 ⁇ D / d ⁇ 25, 5 ⁇ D / d ⁇
  • L, D, L ZD, n, D Zd, D / ⁇ of the first continuous multistage distillation column are 2500 ⁇ L ⁇ 5000, 200 ⁇ D ⁇ 800, 5 ⁇
  • 12 2 2 2 2 2 2 2 21 2 are 2500 ⁇ L ⁇ 5000, 200 ⁇ D ⁇ 800, 5 ⁇ L /
  • the selectivity of aromatic carbonates refers to the reacted aromatic monohydroxy compound, and in the present invention, the selectivity is usually 95% or more, preferably 97. A high selectivity of at least%, more preferably at least 98% can be achieved.
  • the first continuous multistage distillation column and the second continuous multistage distillation column used in the present invention are preferably distillation columns having a tray and Z or a packing as an internal.
  • the term “internal” as used in the present invention means a portion where the gas-liquid contact is actually performed in the distillation column.
  • a tray for example, a foam tray, a perforated plate tray, a valve tray, a counterflow tray, a super flack tray, a max flack tray, etc.
  • Random packings such as interlock saddles, Dixon packing, McMahon packing, and helipacks, and regular packings such as melapacks, gem packs, techno bags, flexi packs, snow leather packings, good roll packings, and glitch grids are preferred.
  • a multistage distillation column having both a tray part and a packed part can also be used.
  • the term “internal plate number n” in the present invention means the number of trays in the case of trays, and the theoretical plate number in the case of packing. Therefore, in the case of a multistage distillation column having both a tray part and a packed part, n is the sum of the number of trays and the number of theoretical plates.
  • the first continuous multi-stage distillation column of the present invention a reaction for mainly producing an alkylaryl carbonate from a dialkyl carbonate and an aromatic monohydroxyl compound is performed.
  • This reaction has an extremely small equilibrium constant.
  • the reaction rate was slow, it was found that the first continuous multi-stage distillation column used for the reactive distillation is more preferably a plate-type distillation column whose tray is an internal.
  • the main Force that causes the reaction to disproportionate the alkyl carbonate is more preferably a plate-type distillation column whose tray is an internal.
  • the main Force that causes the reaction to disproportionate the alkyl carbonate This reaction also has an equilibrium constant force and a squeezing force, and the reaction speed is slow. It has been found that distillation columns having both are more preferred.
  • the second continuous multistage distillation column is preferably one with a packing at the top and a tray at the bottom. It has also been found that the packing of the second continuous multi-stage distillation column is particularly preferred among the regular packings that are preferred to the regular packing.
  • the tray installed in each of the first continuous multistage distillation column and the second continuous multistage distillation column is particularly excellent in that the perforated plate tray having the perforated plate portion and the downcomer portion is related to the function and the equipment cost. It was found that It has also been found that it is preferred that the perforated plate tray has 100-: LOOO holes per area lm 2 of the perforated plate portion. More preferred! /, The number of pores is 120 to 900 per lm 2 , more preferably 150 to 800. It has also been found that the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm 2 .
  • the cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and further preferably 0.9 to 3 cm 2 . Furthermore, when the perforated plate tray has 100 to 100000 holes per area lm 2 of the perforated plate portion and the cross-sectional area per hole is 0.5 to 5 cm 2. It has been found to be particularly preferred. It has been found that by adding the above-mentioned conditions to a continuous multistage distillation column, it can be more easily achieved than the problem of the present invention.
  • a dialkyl carbonate as a raw material and an aromatic monohydroxy compound are continuously fed into a first continuous multistage distillation column in which a catalyst is present, and the reaction and distillation are performed in the first column.
  • the first column low-boiling point reaction mixture containing the resulting alcohols is continuously withdrawn from the upper portion of the first column in the form of gas, and the resulting first column high-boiling point reaction mixture containing the alkylaryl carbonates is removed.
  • the liquid is continuously withdrawn from the lower portion of the first column, and the high-boiling point reaction mixture of the first column is continuously fed into the second continuous multistage distillation column in which the catalyst exists, and the reaction and distillation are simultaneously performed in the second column.
  • the second tower low boiling point reaction mixture containing dialkyl carbonates produced is continuously withdrawn in the form of a gas from the upper part of the second tower, and the second tower high boiling point reaction mixture containing diaryl carbonates to be produced is removed from the second tower. Liquid from bottom of 2 towers
  • the second column low-boiling point reaction mixture containing dialkyl carbonates is continuously fed into the first continuous multi-stage distillation column, thereby producing diaryl carbonate.
  • Aromatic carbonates with a main product are produced continuously.
  • this raw material may contain reaction by-products such as alcohols, alkylaryl carbonates, diaryl carbonates, alkylaryl ethers, and high-boiling compounds as reaction products. Considering the equipment and cost which are effective for separation and purification in other steps, in the case of the present invention which is actually carried out industrially, it is preferable to contain a small amount of these compounds.
  • the gas outlet at the top of the first distillation column is used. It may be supplied in liquid and z or gaseous form from one or several inlets installed in the upper part or middle part of the tower, but it is a raw material rich in aromatic monohydroxy compounds. Is introduced in liquid form from the inlet at the top of the first distillation column, and the feed containing a large amount of dialkyl carbonate is installed above the liquid outlet at the bottom of the first distillation column and at the bottom of the column. It is also preferable to supply the mouth force in the form of gas.
  • the first-boiling high boiling point reaction mixture containing alkylaryl carbonates continuously extracted from the lower part of the first continuous multistage distillation column is continuously supplied to the second continuous multistage distillation column.
  • the supply position is lower than the gas outlet at the upper part of the second distillation column, but from one or several inlets installed at the upper part or middle part of the tower, it is liquid and Z or gaseous. It is preferable to supply by.
  • at least one of the inlets may be installed between the packed portion and the tray portion.
  • the packing material has a plurality of regular packing forces of two or more, it is also a preferable method to install introduction ports at intervals forming the plurality of regular packing materials.
  • the reflux ratio of the first continuous multistage distillation column is from 0 to 10
  • the reflux ratio of the second continuous multistage distillation column is from 0.01 to: LO, preferably from 0.08 to 5, more preferably , 0.1 to 2.0.
  • no reflux operation is performed, and a reflux ratio of 0 is also preferred.
  • any method may be used for allowing the catalyst to be present in the first continuous multistage distillation column.
  • the first continuous It is preferable to fix in the column by a method of installing in a stage in a multistage distillation column or a method of installing in a packed form. Further, in the case of a catalyst that dissolves in the raw material or the reaction solution, it is preferable to supply the catalyst in the position force distillation column above the middle part of the first distillation column.
  • the raw material or the catalyst solution dissolved in the reaction solution may be introduced together with the raw material, or the catalyst solution may be introduced with an inlet force different from that of the raw material.
  • the amount of catalyst used in the first continuous multistage distillation column of the present invention varies depending on the type of catalyst used, the type of raw material and its ratio, reaction temperature, reaction pressure, and other reaction conditions. expressed as a percentage of, usually, 0.0001 to 30 mass 0/0, preferably ⁇ is 0.005 to 10 weight 0/0, more preferably ⁇ are used in 0.00 1 to 1 mass%.
  • any method may be used for allowing the catalyst to be present in the second continuous multistage distillation column.
  • the catalyst when the catalyst is in a solid state insoluble in the reaction solution, It is preferable to fix in the column by a method of installing in a stage in a two-continuous multi-stage distillation column or a method of installing in a packed form.
  • a catalyst solution dissolved in the raw material or the reaction solution may be introduced together with the raw material, or this catalyst solution may be introduced from an inlet different from the raw material.
  • the amount of catalyst used in the second continuous multi-stage distillation column of the present invention varies depending on the type of catalyst used, the type of raw material and its ratio, reaction temperature, reaction pressure, and other reaction conditions. expressed as a percentage of the total mass, usually from 0.0001 to 30 mass 0/0, preferably from 0.005 to 10 mass 0/0, more preferably in a 001-1 mass% 0.1.
  • the catalyst used in the first continuous multistage distillation column and the catalyst used in the second continuous multistage distillation column may be the same type or different types. However, it is preferable to use the same type of catalyst. Further preferred are catalysts of the same type that can be dissolved in both reaction solutions. In this case, the catalyst is usually dissolved in the high boiling point reaction mixture of the first continuous multistage distillation column, and the lower force of the first distillation column is extracted together with the alkylaryl carbonate, etc. Since it is fed to the column, it is a preferred embodiment. If necessary, a new catalyst can be added to the second continuous multi-stage distillation column.
  • the reaction time of the transesterification reaction performed in the present invention is considered to correspond to the average residence time of each reaction solution in the first continuous multistage distillation column and the second continuous multistage distillation column.
  • LO time preferably 0.05 to 5 hours, more preferably 0.1 to 3 hours.
  • the reaction temperature of the first continuous multistage distillation column varies depending on the type of raw material compound and the type and amount of the catalyst used, but is usually in the range of 100 to 350 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions are liable to occur. For example, by-products such as alkylaryl ethers are increased, which is preferable. In this sense, the preferred reaction temperature in the first continuous multistage distillation column is 130 to 280 ° C, more preferably 150 to 260. C, more preferably 180-250. C range.
  • the reaction temperature of the second continuous multistage distillation column varies depending on the type of raw material compound and the type and amount of the catalyst used, but is usually in the range of 100 to 350 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions are likely to occur. For example, alkyl aryl ethers and alkyl aryl carbonates that are raw materials and products are used. This is not preferable because by-products such as the product of fries rearrangement of diols and carbonates and their derivatives increase. In this sense, the preferred reaction temperature in the second continuous multistage distillation column is 130 to 280. C, more preferably 150-260. C, more preferably in the range of 180-250 ° C.
  • the reaction pressure of the first continuous multistage distillation column varies depending on the type and composition of the raw material mixture used, the reaction temperature, and the like.
  • the top pressure is 0.1 to 2 ⁇ 10 7 Pa, preferably 10 5 to 10 7 Pa, more preferably 2 ⁇ 10 5 to 5 ⁇ 10 6 Pa.
  • the reaction pressure of the second continuous multi-stage distillation column varies depending on the type and composition of the raw material compound used, the reaction temperature, and the like. 1 ⁇ 2 X 10 7 Pa, preferably 10 3 to 10 6 Pa, more preferably 5 X 10 3 to 10 5 Pa
  • Two or more distillation columns can be used as the first continuous multi-stage distillation column in the present invention.
  • two or more distillation columns can be connected in series, connected in parallel, or connected in combination of series and parallel.
  • two or more distillation columns can be used as the second continuous multi-stage distillation column in the present invention.
  • two or more distillation columns can be connected in series, connected in parallel, or connected in combination of series and parallel.
  • the materials constituting the first continuous multistage distillation column and the second continuous multistage distillation column used in the present invention are mainly metallic materials such as carbon steel and stainless steel. Is preferably stainless steel.
  • the halogen content was measured by ion chromatography.
  • Diphenyl carbonate was produced by performing reactive distillation using an apparatus in which the first continuous multistage distillation column 101 and the second continuous multistage distillation column 201 were connected as shown in FIG.
  • the catalyst is Pb (OPh)
  • the reaction solution was about lOOppm.
  • the temperature at the bottom of the column was 225 ° C, and the reactive distillation was performed continuously under the conditions of the pressure at the top of the column S7 X 10 5 Pa.
  • the first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn in the form of gas from the top 13 of the first tower, passed through the heat exchanger 14 and 34 tons from the outlet 16 to 34 tons Zhr. It was extracted at a flow rate of.
  • the first tower high boiling point reaction mixture containing methyl phenol carbonate, dimethyl carbonate, phenol, diphenyl carbonate, catalyst and the like was continuously extracted in liquid form from the lower part 17 of the first tower.
  • the second tower low boiling point reaction mixture containing 35% by mass of dimethyl carbonate and 56% by mass of phenol was continuously withdrawn from the top 23 of the second column, and the flow rate at the outlet 26 was 55.6 tons Zhr. Met. Second column
  • the low boiling point reaction mixture was continuously supplied to the first continuous multistage distillation column 101 from the inlet 11 and Z or the inlet 12. At this time, newly supplied dimethyl carbonate and phenol
  • the amount of 1 liter was adjusted so as to maintain the composition and amount of the raw material 1 and the raw material 2 in consideration of the composition and amount of the second tower low boiling point reaction mixture.
  • the production amount of diphenyl carbonate (excluding diphenyl carbonate contained in the raw material) is 5.74 tons per hour. 5.75 tons, 5.74 tons, 5.74 tons, 5.75 tons, the selectivity is 98%, 98%, 98%, 98%, 98%, and was very stable .
  • the produced aromatic carbonate contained substantially no halogen (lppb or less).
  • Raw material 1 composed of phenol Z dimethyl carbonate ⁇ . ⁇ (mass ratio) was continuously introduced in liquid form from the upper inlet 11 of the first continuous multistage distillation column 101 at a flow rate of 40 tons Zhr.
  • a raw material 2 consisting of dimethyl carbonate Z phenol 3.9 (mass ratio) was continuously introduced in a gaseous state from the lower inlet 12 of the first continuous multi-stage distillation column 101 at a flow rate of 43 tons Zhr.
  • the catalyst is Pb (OPh)
  • the reaction solution was about 250 ppm.
  • the temperature at the bottom of the column was 235 ° C, and the reactive distillation was continuously performed under the condition of the pressure at the top of the column ⁇ X 10 5 Pa.
  • the first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn in the form of gas from the top 13 of the first tower, passed through the heat exchanger 14 and 43 tons from the outlet 16 to 43 tons Zhr. It was extracted at a flow rate of.
  • the 1st column high boiling point reaction mixture containing methylphenol carbonate, dimethyl carbonate, phenol, diphenyl carbonate, catalyst, etc. 7 was continuously extracted in liquid form.
  • the second column low boiling point reaction mixture was continuously supplied to the first continuous multi-stage distillation column 101 from the inlet 11 and Z or the inlet 12. At this time, the amount of dimethyl carbonate and phenol to be newly supplied should maintain the composition and amount of raw material 1 and raw material 2 in consideration of the composition and amount of the second tower low boiling point reaction mixture. Adjusted.
  • a long-term continuous operation was performed under these conditions. After 500 hours, 1000 hours, and 2000 hours, the production per hour of diphenol carbonate is 4.1 tons, 4.1 tons, and 4.1 tons, and the selectivity is relative to the reacted phenol. Were 97%, 97%, and 97%, and were very stable. In addition, the produced aromatic carbonate was substantially free of halogen (lppb or less).
  • Reactive distillation was performed under the following conditions using the same apparatus as in Example 1 except that the cross-sectional area per hole of the perforated plate tray in the second continuous multistage distillation column 201 was about 1.8 cm 2 .
  • Raw material 1 composed of phenol Z dimethyl carbonate 1.7 (mass ratio) was continuously introduced in liquid form from the upper inlet 11 of the first continuous multistage distillation column 101 at a flow rate of 86 tons Zhr.
  • a raw material 2 composed of dimethyl carbonate Z phenol 3.5 (mass ratio) was continuously introduced in a gaseous state from the lower inlet 12 of the first continuous multi-stage distillation column 101 at a flow rate of 90 tons Zhr.
  • the catalyst is Pb (OPh)
  • the reaction solution was about 150 ppm.
  • the temperature at the bottom of the column was 220 ° C., and the reactive distillation was continuously carried out under the conditions of the pressure at the top of the column S8 ⁇ 10 5 Pa.
  • the first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn in the form of gas from the top 13 of the first tower, and after heat exchange 14, 82 tons from the outlet 16 tons Zhr It was extracted at a flow rate of.
  • the first tower high boiling point reaction mixture containing methyl phenol carbonate, dimethyl carbonate, phenol, diphenyl carbonate, catalyst and the like was continuously extracted in liquid form from the lower part 17 of the first tower.
  • the reaction distillation is continuously performed under the conditions that the temperature at the bottom of the column is 215 ° C, the pressure at the top of the column is 2.5 X 10 4 Pa, and the reflux ratio is 0.4. It was broken. After 24 hours, stable steady operation was achieved.
  • the second tower low boiling point reaction mixture was continuously withdrawn from the top 23 of the second tower, and the flow rate at the outlet 26 was 81.7 tons Zhr.
  • the second column low boiling point reaction mixture was continuously supplied from the inlet 11 to the first continuous multistage distillation column 101. At this time, the amounts of dimethyl carbonate and phenol to be newly supplied maintain the composition and amount of the above raw material 1 and raw material 2 in consideration of the composition and amount of the second tower low boiling point reaction mixture. Adjusted as follows.
  • an aromatic carbonate having a main product of diaryl carbonate is converted to 1 per hour by using two continuous multistage distillation columns from a dialkyl carbonate and an aromatic monohydroxy compound. It is suitable for a specific method capable of stably producing for a long time with high selectivity and high productivity on an industrial scale of tons or more.
  • FIG. 1 is a schematic view of a first continuous multi-stage distillation column for carrying out the present invention. Internal 6 is installed inside the torso!
  • FIG. 2 is a schematic view of a second continuous multi-stage distillation column preferable for carrying out the present invention.
  • an internal packing (6-1 and 62) consisting of a regular packing at the top and a perforated plate tray at the bottom is installed.
  • FIG. 3 is a schematic view of a preferred apparatus for carrying out the present invention.
  • the symbols used in each figure are explained as follows: 1: Gas outlet, 2: Liquid outlet, 3, 4, 15, 19, 25, 29: Inlet, 5: End plate 6: Internal, 6-1: Internal (filler), 6-2: Internal (tray), 7: Body part, L, L: Body length (cm), D, D: Body inner diameter ( cm), d, d: Gas discharge port inner diameter (cm), d, d: Liquid discharge port inner diameter (cm), 101: First station
  • Continuous multistage distillation column 201: Second continuous multistage distillation column, 11, 12, 21: Inlet, 13, 23: Top gas outlet, 14, 24, 18, 28: Heat exchanger, 15, 25: Reflux Liquid inlet, 16, 26: Top component outlet, 17, 27: Bottom liquid outlet, 31: Bottom bottom outlet of the second continuous multistage distillation column

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明が解決しようとする課題は、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とから2基の連続多段蒸留塔を用いて芳香族カーボネートを、1時間あたり1トン以上の工業的規模で、高選択率・高生産性で長期間安定的に製造できる具体的な方法を提供することにある。反応蒸留法による芳香族カーボネート類の製造方法に関する多くの提案があるが、これらは全て小規模、短期間の実験室的レベルのものであり、工業的規模の大量生産を可能とする具体的な方法や装置の開示は全くなかった。本発明では2基の特定の連続多段蒸留塔が提供され、これらを接続した装置を用いてジアルキルカーボネートと芳香族モノヒドロキシ化合物とから、1時間あたり1トン以上の工業的規模で、高選択率・高生産性で芳香族カーボネートを長期間安定的に製造できる具体的な方法が提供される。  

Description

明 細 書
芳香族カーボネート類を工業的に製造する方法
技術分野
[0001] 本発明は、芳香族カーボネート類の工業的製造法に関する。さらに詳しくは、ジァ ルキルカーボネートと芳香族モノヒドロキシ化合物とを、触媒を存在させた 2基の連続 多段蒸留塔内でエステル交換反応に付し、エステル交換法ポリカーボネートの原料 として有用なジァリールカーボネートを主生成物とする芳香族カーボネート類を工業 的に大量に製造する方法に関する。
背景技術
[0002] 芳香族カーボネートは、最も需要の多いエンジニアリングプラスチックである芳香族 ポリカーボネートを、有毒なホスゲンを用いな 、で製造するための原料として重要で ある。芳香族カーボネートの製法として、芳香族モノヒドロキシィ匕合物とホスゲンとの 反応による方法が古くから知られており、最近も種々検討されている。しかしながら、 この方法はホスゲン使用の問題に加え、この方法によって製造された芳香族カーボ ネートには分離が困難な塩素系不純物が存在しており、そのままでは芳香族ポリ力 ーボネートの原料として用いることはできない。なぜならば、この塩素系不純物は極 微量の塩基性触媒の存在下で行うエステル交換法ポリカーボネートの重合反応を著 しく阻害し、たとえば、 lppmでもこのような塩素系不純物が存在すると殆ど重合を進 行させることができない。そのため、エステル交換法ポリカーボネートの原料とするに は、希アルカリ水溶液と温水による十分な洗浄と油水分離、蒸留などの多段階の面 倒な分離 ·精製工程が必要であり、さら〖こ、このような分離 ·精製工程での加水分解口 スゃ蒸留ロスのため収率が低下するなど、この方法を経済的に見合った工業的規模 で実施するには多くの課題がある。
[0003] 一方、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換反応 による芳香族カーボネートの製造方法も知られている。し力しながら、これらのエステ ル交換反応は全て平衡反応であって、しカゝもその平衡が原系に極端に偏って ヽるこ とに加えて反応速度が遅いことから、この方法によって芳香族カーボネート類を工業 的に大量に製造するのは多大な困難を伴っていた。これを改良するために、いくつ かの提案がなされているが、その大部分は、反応速度を高めるための触媒開発に関 するものである。このタイプのエステル交換反応用触媒として数多くの金属化合物が 提案されている。例えば、遷移金属ハライド等のルイス酸又はルイス酸を生成させる 化合物類 (特許文献 1 :特開昭 51— 105032号公報、特開昭 56— 123948号公報、 特開昭 56— 123949号公報(西独特許公開公報第 2528412号、英国特許第 149 9530号明細書、米国特許第 4182726号明細書)、特開昭 51— 75044号公報 (西 独特許公開公報第 2552907号、米国特許第 4045464号明細書)参照)、有機スズ アルコキシドゃ有機スズォキシド類等のスズィ匕合物(特許文献 2:特開昭 54— 48733 号公報 (西独特許公開公報第 2736062号)、特開昭 54— 63023号公報、特開昭 6 0— 169444号公報(米国特許第 4554110号明細書;)、特開昭 60— 169445号公 報 (米国特許第 4552704号明細書)、特開昭 62— 277345号公報、特開平 1 26 5063号公報参照)、アルカリ金属又はアルカリ土類金属の塩類及びアルコキシド類 ( 特許文献 3 :特開昭 57— 176932号公報参照)、鉛化合物類 (特許文献 4 :特開昭 5 7— 176932号公報、特開平 1— 93560号公報参照)、銅、鉄、ジルコニウム等の金 属の錯体類 (特許文献 5:特開昭 57— 183745号公報参照)、チタン酸エステル類 ( 特許文献 6:特開昭 58— 185536号公報 (米国特許第 4410464号明細書)、特開 平 1― 265062号公報参照)、ルイス酸とプロトン酸の混合物(特許文献 7:特開昭 60 173016号公報(米国特許第 4609501号明細書)参照)、 Sc、 Mo、 Mn、 Bi、 Te 等の化合物 (特許文献 8:特開平 1― 265064号公報参照)、酢酸第 2鉄 (特許文献 9 :特開昭 61— 172852号公報参照)等が提案されている。しかしながら、触媒開発だ けでは、不利な平衡の問題を解決できないので、大量生産を目的とする工業的製造 法にするためには、反応方式の検討を含め、非常に多くの検討課題がある。
また、反応方式を工夫することによって平衡をできるだけ生成系側にずらし、芳香 族カーボネート類の収率を向上させる試みもなされている。例えば、ジメチルカーボ ネートとフエノールの反応において、副生してくるメタノールを共沸形成剤とともに共 沸によって留去する方法 (特許文献 10 :特開昭 54— 48732号公報 (西独特許公開 公報第 736063号、米国特許第 4252737号明細書)参照)、副生してくるメタノール をモレキュラーシーブで吸着させて除去する方法 (特許文献 11:特開昭 58— 18553 6号公報 (米国特許第 410464号明細書)参照)が提案されている。また、反応器の 上部に蒸留塔を設けた装置によって、反応で副生してくるアルコール類を反応混合 物から分離させながら同時に蒸発してくる未反応原料との蒸留分離を行う方法も提 案されている(特許文献 12 :特開昭 56— 123948号公報 (米国特許第 4182726号 明細書)の実施例、特開昭 56— 25138号公報の実施例、特開昭 60— 169444号 公報 (米国特許第 4554110号明細書)の実施例、特開昭 60— 169445号公報 (米 国特許第 4552704号明細書)の実施例、特開昭 60— 173016号公報 (米国特許第 4609501号明細書)の実施例、特開昭 61— 172852号公報の実施例、特開昭 61 - 291545号公報の実施例、特開昭 62— 277345号公報の実施例参照)。
[0005] し力しながら、これらの反応方式は基本的にはバッチ方式力 切り替え方式である。
触媒開発による反応速度の改良もこれらのエステル交換反応に対しては限度があり 、反応速度が遅いことから、連続方式よりもバッチ方式の方が好ましいと考えられてい たからである。これらのなかには、連続方式として蒸留塔を反応器の上部に備えた連 続攪拌槽型反応器 (CSTR)方式も提案されて!ヽるが、反応速度が遅!ヽことや反応 器の気液界面が液容量に対して小さいことから反応率を高くできないなどの問題が ある。従って、これらの方法で芳香族カーボネートを連続的に大量に、長期間安定的 に製造するという目的を達成することは困難であり、経済的に見合う工業的実施にい たるには、なお多くの解決すべき課題が残されている。
[0006] 本発明者等は、ジアルキルカーボネートと芳香族ヒドロキシィ匕合物を連続的に多段 蒸留塔に供給し、触媒を存在させた該塔内で連続的に反応させ、副生するアルコー ルを含む低沸点成分を蒸留によって連続的に抜き出すと共に、生成したアルキルァ リールカーボネートを含む成分を塔下部より抜き出す反応蒸留法 (特許文献 13 :特 開平 3— 291257号公報参照)、アルキルァリールカーボネートを連続的に多段蒸留 塔に供給し、触媒を存在させた該塔内で連続的に反応させ、副生するジアルキル力 ーボネートを含む低沸成分を蒸留によって連続的に抜き出すと共に、生成したジァリ ールカーボネートを含む成分を塔下部より抜き出す反応蒸留法 (特許文献 14:特開 平 4— 9358号公報参照)、これらの反応を 2基の連続多段蒸留塔を用いて行い、副 生するジアルキルカーボネートを効率的にリサイクルさせながらジァリールカーボネ ートを連続的に製造する反応蒸留法 (特許文献 15 :特開平 4— 211038号公報参照 )、ジアルキルカーボネートと芳香族ヒドロキシィ匕合物等を連続的に多段蒸留塔に供 給し、塔内を流下する液を蒸留塔の途中段及び Z又は最下段に設けられたサイド抜 き出し口より抜き出し、蒸留塔の外部に設けられた反応器へ導入して反応させた後 に、該抜き出し口のある段よりも上部の段に設けられた循環用導入口へ導入すること によって、該反応器内と該蒸留塔内の両方で反応を行う反応蒸留法 (特許文献 16 : 特開平 4— 224547号公報、特開平 4— 230242号公報、特開平 4 235951号公 報参照) )等、これらのエステル交換反応を連続多段蒸留塔内で反応と蒸留分離とを 同時に行う反応蒸留法を開発し、これらのエステル交換反応に対して反応蒸留方式 が有用であることを世界で初めて開示した。
本発明者等が提案したこれらの反応蒸留法は、芳香族カーボネート類を効率よぐ かつ、連続的に製造することを可能とする初めてのものであり、その後これらの開示 をベースとする同様な反応蒸留方式が数多く提案されるようになった (特許文献 17〜 32参照;特許文献 17 :国際公開第 00Z18720号公報 (米国特許第 5362901号 明細書);特許文献 18 :イタリア特許第 01255746号公報;特許文献 19 :特開平 6— 9506号公報(欧州特許 0560159号明細書、米国特許第 5282965号明細書);特 許文献 20 :特開平 6— 41022号公報 (欧州特許 0572870号明細書、米国特許第 5 362901号明細書);特許文献 21 :特開平 6— 157424号公報(欧州特許 0582931 号明細書、米国特許第 5334742号明細書)、特開平 6— 184058号公報 (欧州特 許 0582930号明細書、米国特許第 5344954号明細書);特許文献 22 :特開平 7— 304713号公報;特許文献 23:特開平 9—40616号公報;特許文献 24:特開平 9 - 59225号公報;特許文献 25:特開平 9 - 110805号公報;特許文献 26:特開平 9 - 165357号公報;特許文献 27:特開平 9— 173819号公報;特許文献 28:特開平 9 — 176094号公報、特開 2000— 191596号公報、特開 2000— 191597号公報; 特許文献 29 :特開平 9— 194436号公報 (欧州特許 0785184号明細書、米国特許 第 5705673号明細書);特許文献 30 :国際公開第 00Z18720公報 (米国特許第 6 093842号明細書;);特許文献 31 :欄 2001— 64234号公報、欄 2001— 6423 5号公報;特許文献 32:国際公開第 02Z40439公報 (米国特許第 6596894号、米 国特許第 6596895号、米国特許第 6600061号明細書))。
[0008] また、本出願人は、反応蒸留方式にお!、て、多量の触媒を必要とせずに高純度芳 香族カーボネートを長時間、安定に製造できる方法として、触媒成分を含む高沸点 物質を作用物質と反応させた上で分離し、触媒成分をリサイクルする方法 (特許文献 31 :特開 2001— 64234号公報、特開 2001— 64235号公報参照)や、反応系内の 多価芳香族ヒドロキシ化合物を触媒金属に対して質量比で 2. 0以下に保ちながら行 う方法 (特許文献 32:国際公開第 02Z40439公報 (米国特許第 6596894号、米国 特許第 6596895号、米国特許第 6600061号明細書)参照)を提案した。さらに、本 発明者等は、重合工程で副生するフエノールの 70〜99質量%を原料として用いて、 反応蒸留法でジフエ-ルカーボネートを製造しこれを芳香族ポリカーボネートの重合 原料とする方法をも提案した (特許文献 33:国際公開第 97Z11049公報 (欧州特許 0855384号明細書、米国特許第 5872275号明細書)参照)。
[0009] し力しながら、これら反応蒸留法による芳香族カーボネート類の製造を提案する全 ての先行文献には、工業的規模の大量生産 (例えば、 1時間あたり 1トン以上)を可能 とする具体的な方法や装置の開示は全くなぐまたそれらを示唆する記述もない。例 えば、ジメチルカーボネートとフエノールから主としてジフエ-ルカーボネート(DPC) を製造するために開示された 2基の反応蒸留塔の高さ(Hおよび H: cm)、直径 (D
1 2 1 および D: cm)、段数 (nおよび n )と反応原料液導入量 (Qおよび Q: kgZhr)に
2 1 2 1 2
関する記述は、次表のとおりである。
[0010] [表 1]
Di Π1 Qi H2 D2 π2 Q2 特許
文献
600 25 20 66 600 25 20 23 15
350 2. 8 一 0. 2 305 5- 10 1 5+ 0. 6 21
充填物
500 5 50 0. 6 400 8 50 0. 6 23
100 4 1 . 4 200 4 0. 8 24
300 5 40 1 . 5 - 5 25 0. 7 28
1200 20 40 86 600 25 20 31 33
34
600 ― 20 66 600 - 20 22 35 〔特許文献 34〕:特開平 11— 92429号公報 (欧州特許 1016648号明細書、米国特 許第 6262210号明細書)参照)
〔特許文献 35〕:特開平 9— 255772号公報 (欧州特許 0892001号明細書、米国特 許第 5747609号明細書参照)
[0011] すなわち、この反応を反応蒸留方式で実施するにあたり用いられた 2基の連続多段 蒸留塔の最大のものは、本出願人が特許文献 33、 34において開示したものである。 このように、この反応用に開示されて 、る連続多段蒸留塔における各条件の最大値 は、 H = 1200cm, H = 600cm, D = 20cm、 D = 25cm、 n =n = 50 (特許文
1 2 1 2 1 2 献 23)、 Q = 86kgZhr、 Q =31kgZhrであり、ジフエ-ルカーボネートの生産量
1 2
は約 6. 7kgZhrに過ぎず、工業的規模の生産量ではなかった。
発明の開示
発明が解決しょうとする課題
[0012] 本発明が解決しょうとする課題は、ジアルキルカーボネートと芳香族モノヒドロキシ 化合物とから 2基の連続多段蒸留塔を用いてジァリールカーボネートを主生成物とす る芳香族カーボネート類を、 1時間あたり 1トン以上の工業的規模で、高選択率'高生 産性で長期間安定的に製造できる具体的な方法を提供することにある。
課題を解決するための手段
[0013] 本発明者らが連続多段蒸留塔を用いる芳香族カーボネート類の製造方法を開示し て以来、反応蒸留法による芳香族カーボネート類の製造方法に関する多くの提案が あるが、これらは全て小規模、短期間の実験室的レベルのものであり、工業的規模の 大量生産を可能とする具体的な方法や装置の開示は全くな力つた。そこで、本発明 者等は、 1時間あたり 1トン以上の工業的規模で、高選択率'高生産性でジァリール カーボネートを主生成物とする芳香族カーボネート類を長期間安定的に製造できる 具体的な方法を見出すべき検討を重ねた結果、本発明に到達した。
[0014] すなわち、本発明の第一の態様では、
1.ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とを原料として、ジァリール カーボネート類を主生成物とする芳香族カーボネート類を製造する方法であって、
(i)該原料を、触媒が存在する第 1連続多段蒸留塔内に連続的に供給する工程と、 (ii)アルコール類およびアルキルァリールカーボネート類が生成するように、該原料 を該第 1塔内で反応させる工程と、
(iii)生成するアルコール類を含む第 1低沸点反応混合物を該第 1塔上部より連続 的に抜出すとともに、生成するアルキルァリールカーボネート類を含む第 1塔高沸点 反応混合物を該第 1塔下部より液状で連続的抜出す工程と、
(iv)該第 1塔高沸点反応混合物を、該第 1連続多段蒸留塔と連結した、触媒が存 在する第 2連続多段反応蒸留塔内に連続的に供給するするとともに、ジアルキル力 ーボネート類およびジァリールカーボネート類が生成するように、該第 2塔内で反応 させる工程と、
(V)生成したジアルキルカーボネート類を含む第 2塔低沸点反応混合物を該第 2塔 上部よりガス状で連続的に抜出すとともに、生成したジァリールカーボネート類を含 む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的に抜出す工程と、を含 み、
(a)該第 1連続多段蒸留塔内に連続的に供給されるジアルキルカーボネートが、芳 香族モノヒドロキシ化合物に対して、モル比で 0. 1〜10であって、
(b)該第 1連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下 に鏡板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部 またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近
11
い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上
12
部および Zまたは中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の 下部に 1つ以上の導入口を有するものであって、
(1)長さ L (cm)が式(1)を満足するものであり、
1500 ≤ L ≤ 8000 式(1)
(2)塔の内径 D (cm)が式(2)を満足するものであり、
100 ≤ D ≤ 2000 式(2)
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(3)を満足するものであり、
2 ≤ L /Ό ≤ 40 式(3)
(4)段数 nが式 (4)を満足するものであり、 20 ≤ n ≤ 120 式(4)
(5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(5)を満足するも
1 11
のであり、
5 ≤ D /d ≤ 30 式(5)
1 11
(6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(6)を満足するもの
1 12
であり、
3 ≤ D /d ≤ 20 式(6)
1 12
(c)該第 2連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下
2 2
に鏡板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部
2
またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近
21
い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上
22
部および Zまたは中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の 下部に 1つ以上の導入口を有するものであって、
(1)長さ L (cm)が式 (7)を満足するものであり、
2
1500 ≤ L ≤ 8000 式(7)
2
(2)塔の内径 D (cm)が式 (8)を満足するものであり、
2
100 ≤ D ≤ 2000 式(8)
2
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(9)を満足するものであり、
2 2
2 ≤ L /D ≤ 40 式(9)
2 2
(4)段数 nが式(10)を満足するものであり、
2
10 ≤ n ≤ 80 式(10)
2
(5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(11)を満足するも
2 21
のであり、
2 ≤ D /d ≤ 15 式(11)
2 21
(6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(12)を満足するも
2 22
のである、
5 ≤ D /d ≤ 30 式(12)
2 22
ことを特徴とする方法、 2.前記工程 (ii)および (iv)にて、蒸留も同時に行われることを特徴とする前項 1記載 の方法、
3.ジァリールカーボネートの生産量力 1時間あたり 1トン以上である、前項 1または 2 に記載の方法、
を提供する。
また、本発明に係る製造方法の別の態様では、
4.ジアルキルカーボネートと芳香族モノヒドロキシ化合物とを原料とし、この原料を触 媒が存在する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内で反応と蒸留を 同時に行い、生成するアルコール類を含む第 1塔低沸点反応混合物を該第 1塔上部 よりガス状で連続的に抜出し、生成するアルキルァリールカーボネート類を含む第 1 塔高沸点反応混合物を該第 1塔下部より液状で連続的に抜出し、該第 1塔高沸点反 応混合物を触媒が存在する第 2連続多段蒸留塔内に連続的に供給し、該第 2塔内 で反応と蒸留を同時に行い、生成するジアルキルカーボネート類を含む第 2塔低沸 点反応混合物を該第 2塔上部よりガス状で連続的に抜出し、生成するジァリール力 ーボネート類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的に抜 出し、一方、ジアルキルカーボネート類を含む第 2塔低沸点反応混合物を第 1連続 多段蒸留塔内に連続的に供給することによって、ジァリールカーボネート類を主生成 物とする、芳香族カーボネート類を連続的に製造するにあたり
(a)該第 1連続多段蒸留塔内に連続的に供給されるジアルキルカーボネートが、芳 香族モノヒドロキシ化合物に対して、モル比で 0. 1〜10であって、
(b)該第 1連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下 に鏡板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部 またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近
11
い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上
12
部および Zまたは中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の 下部に 1つ以上の導入口を有するものであって、
(1)長さ L (cm)が式(1)を満足するものであり、
1500 ≤ L ≤ 8000 式(1) (2)塔の内径 (cm)が式(2)を満足するものであり、
100 ≤ D ≤ 2000 式(2)
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(3)を満足するものであり、
2 ≤ L /Ό ≤ 40 式(3)
(4)段数 nが式 (4)を満足するものであり、
20 ≤ n ≤ 120 式(4)
(5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(5)を満足するも
1 11
のであり、
5 ≤ D /d ≤ 30 式(5)
1 11
(6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(6)を満足するもの
1 12
であり、
3 ≤ D /d ≤ 20 式(6)
1 12
(c)該第 2連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下
2 2
に鏡板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部
2
またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近
21
い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上
22
部および Zまたは中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の 下部に 1つ以上の導入口を有するものであって、
(1)長さ L (cm)が式 (7)を満足するものであり、
2
1500 ≤ L ≤ 8000 式(7)
2
(2)塔の内径 D (cm)が式 (8)を満足するものであり、
2
100 ≤ D ≤ 2000 式(8)
2
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(9)を満足するものであり、
2 2
2 ≤ L /D ≤ 40 式(9)
2 2
(4)段数 nが式(10)を満足するものであり、
2
10 ≤ n ≤ 80 式(10)
2
(5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(11)を満足するも
2 21
のであり、 2 ≤ D /d ≤ 15 式(11)
2 21
(6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(12)を満足するも
2 22
のである、
5 ≤ D /d ≤ 30 式(12)
2 22
ことを特徴とするジァリールカーボネートを主生成物とする芳香族カーボネート類の 工業的製造方法、
5.ジァリールカーボネートの生産量力 1時間あたり 1トン以上であることを特徴とす る前項 4記載の方法、
6.該 d と該 d が式(13)を満足し、且つ該 d と該 d が式(14)を満足する、
11 12 21 22
1 ≤ d /d ≤ 5 式(13)
12 11
1 ≤ d /d ≤ 6 式(14)
21 22
ことを特徴とする前項 1ないし 5のうち何れか一項に記載の方法。
7.該第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd 力 Sそれぞれ、
1 1 1 1 1 1 11 1 12
2000 ≤L ≤ 6000、 150 ≤ D ≤ 1000、 3 ≤ L /D ≤ 30、 3 0 ≤ n ≤ 100、 8 ≤ D /d ≤ 25, 5 ≤ D /d ≤ 18であり、且
1 1 11 1 12
っ該第 2連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd
2 2 2 2 2 2 21 2 22 がそれぞれ、
2000 ≤ L ≤ 6000、 150 ≤ D ≤ 1000、 3≤ L /Ό ≤ 30、 1
2 2 2 2
5 ≤ n ≤ 60, 2. 5 ≤ D /d ≤ 12, 7 ≤ D /d ≤ 25であるこ
2 2 21 2 22
とを特徴とする前項 1ないし 6のうち何れか一項に記載の方法、
8.該第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd 力 Sそれぞれ、
1 1 1 1 1 1 11 1 12
2500 ≤ L ≤ 5000、 200 ≤ D ≤ 800、 5 ≤ L /D ≤ 15、 4 0 ≤ n ≤ 90, 10 ≤ D /d ≤ 25, 7 ≤ D /d ≤ 15であり、且
1 1 11 1 12
っ該第 2連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd がそれぞれ、
2 2 2 2 2 2 21 2 22
2500 ≤ L ≤ 5000、 200 ≤ D ≤ 800、 5 ≤ L /D ≤ 15、 2
2 2 2 2
0 ≤ n ≤ 50, 3 ≤ D /d ≤ 10, 9 ≤ D /d ≤ 20であること
2 2 21 2 22
を特徴とする前項 1ないし 7のうち何れか一項に記載の方法、
9.該第 1連続多段蒸留塔および該第 2連続多段蒸留塔が、それぞれ該インターナ ルとしてトレイおよび Zまたは充填物を有する蒸留塔であることを特徴とする前項 1な いし 8のうち何れか一項に記載の方法、
10.該第 1連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔で あり、該第 2連続多段蒸留塔が、該インターナルとして充填物およびトレイの両方を 有する蒸留塔であることを特徴とする前項 9記載の方法、
11.該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該トレイそれぞれが、多 孔板部とダウンカマー部を有する多孔板トレイであることを特徴とする前項 9または 10 記載の方法、
12.該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: LOOO個の孔を有するもの であることを特徴とする前項 11記載の方法、
13.該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする前 項 11または 12記載の方法、
14.該第 2連続多段蒸留塔が、該インターナルとして充填物を上部に、トレィを下部 に有する蒸留塔であることを特徴とする前項 9または 10に記載の方法、
15.該第 2連続多段蒸留塔の該インターナルの該充填物が 1基または 2基以上の規 則充填物であることを特徴とする前項 9ないし 14のうち何れか一項に記載の方法、
16.該第 2連続多段蒸留塔の該規則充填物が、メラパック、ジヱムパック、テクノパッ ク、フレキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッドから 選ばれた少なくとも一種であることを特徴とする前項 15に記載の方法、
17.該第 1連続多段蒸留塔として、 2基以上の蒸留塔を用いることを特徴とする前項 1ないし 16のうち何れか一項に記載の方法、
18.該第 2連続多段蒸留塔として、 2基以上の蒸留塔を用いることを特徴とする前項 1ないし 17のうち何れか一項に記載の方法、
を提供する。
[0016] さらに、本発明の第二の態様では、
19.前項 1ないし 18のうち何れか一項に記載の方法で製造され、ハロゲン含有量が 0. lppm以下である芳香族カーボネート類、
を提供する。
[0017] さらにまた、本発明の第三の態様では、 20.反応および蒸留を行うための第 1連続多段蒸留塔と、該第 1連続多段蒸留塔と 連結した、反応および蒸留を行うための第 2連続多段蒸留塔と、を備える反応蒸留装 置であって、(a)該第 1連続多段蒸留塔が、長さ L (cm) ,内径 D (cm)の円筒形の 胴部の上下に鏡板部を有し、内部に段数 nをもつインターナルを有する構造をして おり、塔頂部またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部ま
11
たはそれに近い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部で
12
あって塔の上部および Zまたは中間部に 1つ以上の導入口、該液抜出し口より上部 であって塔の下部に 1つ以上の導入口を有するものであって、
(1)長さ L (cm)が式(1)を満足するものであり、
1500 ≤ L ≤ 8000 式(1)
(2)塔の内径 D (cm)が式(2)を満足するものであり、
100 ≤ D ≤ 2000 式(2)
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(3)を満足するものであり、
2 ≤ L /Ό ≤ 40 式(3)
(4)段数 nが式 (4)を満足するものであり、
20 ≤ n ≤ 120 式(4)
(5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(5)を満足するも
1 11
のであり、
5 ≤ D /d ≤ 30 式(5)
1 11
(6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(6)を満足するもの
1 12
であり、
3 ≤ D /d ≤ 20 式(6)
1 12
(b)該第 2連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下
2 2
に鏡板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部
2
またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近
21
い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上
22
部および Zまたは中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の 下部に 1つ以上の導入口を有するものであって、 (1)長さ L (cm)が式 (7)を満足するものであり、
2
1500 ≤ L ≤ 8000 式(7)
2
(2)塔の内径 D (cm)が式 (8)を満足するものであり、
2
100 ≤ D ≤ 2000 式(8)
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(9)を満足するものであり、
2 2
2 ≤ L /D ≤ 40 式(9)
2 2
(4)段数 nが式(10)を満足するものであり、
2
10 ≤ n ≤ 80 式(10)
2
(5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(11)を満足するも のであり、
2 ≤ D /d ≤ 15 式(11)
(6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(12)を満足するも
22
のである、
5 ≤ D /d ≤ 30 式(12)
ことを特徴とする反応蒸留装置、
21.該 d と該 d が式(13)を満足し、且つ該 d と該 d が式(14)を満足する、
11 12 21 22
1 ≤ d /d ≤ 5 式(13)
12 11
1 ≤ d /d ≤ 6 式(14)
21 22
ことを特徴とする前項 20記載の反応蒸留装置、
22.該第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd がそれぞれ
1 1 1 1 1 1 11 1 12
、 2000 ≤ L ≤ 6000、 150 ≤ D ≤ 1000、 3 ≤ L /D ≤ 30、 30 ≤ n ≤ 100、 8 ≤ D /d ≤ 25, 5≤ D /d ≤ 18であり、
1 1 11 1 12
且つ該第 2連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd がそれぞれ
2 2 2 2 2 2 21 2 22
、 2000 ≤ L ≤ 6000、 150 ≤ D ≤ 1000、 3 ≤ L /D ≤ 30、
2 2 2 2
15 ≤ n ≤ 60, 2. 5 ≤ D /d ≤ 12, 7 ≤ D /d ≤ 25であ
2 2 21 2 22 ることを特徴とする前項 20または 21に記載の反応蒸留装置、
23.該第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd がそれぞれ
1 1 1 1 1 1 11 1 12
、 2500 ≤ L ≤ 5000、 200 ≤ D ≤ 800、 5 ≤ L /D ≤ 15、 40 ≤ n ≤ 90、 10 ≤ D Zd ≤ 25, 7 ≤ Ό /d ≤ 15であり、
1 1 11 1 12
且つ、該第 2連続多段蒸留塔の L 2、 D 2、 L 2 ZD 2、 n 2、 D 2 Zd 21、 D 2 Zd がそれぞ
22
れ、 2500 ≤ L ≤ 5000、 200 ≤ D ≤ 800、 5 ≤ L /D ≤ 15、
2 2 2 2
20 ≤ n ≤ 50, 3 ≤ D /d ≤ 10, 9 ≤ D /d ≤ 20であるこ
2 2 21 2 22
とを特徴とする前項 20ないし 22のうち何れか一項に記載の反応蒸留装置、
24.該第 1連続多段蒸留塔および該第 2連続多段蒸留塔が、それぞれ該インターナ ルとしてトレイおよび Zまたは充填物を有する蒸留塔であることを特徴とする前項 20 ないし 23のうち何れか一項に記載の反応蒸留装置、
25.該第 1連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔で あり、該第 2連続多段蒸留塔が、該インターナルとして充填物およびトレイの両方を 有する蒸留塔であることを特徴とする前項 24記載の反応蒸留装置、
26.該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該トレイそれぞれが、多 孔板部とダウンカマー部を有する多孔板トレイであることを特徴とする前項 24または 2 5記載の反応蒸留装置、
27.該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: L000個の孔を有するもの であることを特徴とする前項 26記載の反応蒸留装置、
28.該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする前 項 26または 27記載の反応蒸留装置、
29.該第 2連続多段蒸留塔が、該インターナルとして充填物を上部に、トレィを下部 に有する蒸留塔であることを特徴とする前項 24または 25記載の反応蒸留装置、
30.該第 2連続多段蒸留塔の該インターナルの該充填物が 1基または 2基以上の規 則充填物であることを特徴とする前項 24ないし 29のうち何れか一項に記載の反応蒸 留装置、
31.該第 2連続多段蒸留塔の該規則充填物が、メラパック、ジヱムパック、テクノパッ ク、フレキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッドから 選ばれた少なくとも一種であることを特徴とする前項 30に記載の反応蒸留装置、
32.該第 1連続多段蒸留塔として、 2基以上の蒸留塔を用いることを特徴とする前項 20ないし 31のうち何れか一項に記載の反応蒸留装置、 33.該第 2連続多段蒸留塔として、 2基以上の蒸留塔を用いることを特徴とする前項 20ないし 32のうち何れか一項に記載の反応蒸留装置、
を提供する。
発明の効果
[0018] 本発明を実施することによって、ジアルキルカーボネートと芳香族モノヒドロキシィ匕 合物とから、 95%以上、好ましくは 97%以上、さらに好ましくは 98%以上の高選択 率で、ジァリールカーボネートを主生成物とする芳香族カーボネート類を、 1時間あた り 1トン以上、好ましくは 1時間あたり 2トン以上、さらに好ましくは 1時間あたり 3トン以 上の工業的規模で、 2000時間以上、好ましくは 3000時間以上、さらに好ましくは 5 000時間以上の長期間、安定的に製造できることが見出された。本発明で得られる ジァリールカーボネートを主成分とする芳香族カーボネート類を蒸留等によって分離 '精製することによって得られたジァリールカーボネートは、高純度であり、エステル 交換法ポリカーボネートやポリエステルカーボネートなどの原料として、また非ホスゲ ン法イソシアナートゃウレタンなどの原料として有用である。また、本発明では通常ハ ロゲンを含まな 、原料と触媒を使用するので、得られるジァリールカーボネートのハロ ゲン含有量は 0. lppm以下であり、好ましくは lOppb以下であり、さらに好ましくは 1 ppb以下である。
発明を実施するための最良の形態
[0019] 以下、本発明について具体的に説明する。
本発明で用 、られるジアルキルカーボネートとは、一般式(15)で表されるものである
R'OCOOR1 (15)
ここで、 R1は炭素数 1〜10のアルキル基、炭素数 3〜10の脂環族基、炭素数 6〜1 0のアラールキル基を表す。このような R1としては、例えば、メチル、ェチル、プロピル (各異性体)、ァリル、ブチル (各異性体)、ブテニル (各異性体)、ペンチル (各異性 体)、へキシル (各異性体)、ヘプチル (各異性体)、ォクチル (各異性体)、ノニル (各 異性体)、デシル(各異性体)、シクロへキシルメチル等のアルキル基;シクロプロピル 、シクロブチル、シクロペンチル、シクロへキシル、シクロへプチル等の脂環族基;ベ ンジル、フ ネチル(各異性体)、フ ニルプロピル(各異性体)、フ ニルブチル(各 異性体)、メチルベンジル (各異性体)等のアラールキル基が挙げられる。なお、これ らのアルキル基、脂環族基、アラールキル基において、他の置換基、例えば低級ァ ルキル基、低級アルコキシ基、シァノ基、ハロゲン等で置換されていてもよいし、不飽 和結合を有していてもよい。
[0020] このような R1を有するジアルキルカーボネートとしては、例えば、ジメチルカーボネ ート、ジェチルカーボネート、ジプロピルカーボネート(各異性体)、ジァリルカーボネ ート、ジブテニルカーボネート(各異性体)、ジブチルカーボネート (各異性体)、ジぺ ンチルカーボネート(各異性体)、ジへキシルカーボネート(各異性体)、ジヘプチル カーボネート (各異性体)、ジォクチルカーボネート(各異性体)、ジノニルカーボネー ト(各異性体)、ジデシルカーボネート (各異性体)、ジシクロペンチルカーボネート、 ジシクロへキシノレカーボネート、ジシクロへプチノレカーボネート、ジベンジノレカーボネ ート、ジフエネチルカーボネート(各異性体)、ジ(フエ-ルプロピル)カーボネート(各 異性体)、ジ(フエ-ルブチル)カーボネート(各異性体)ジ(クロ口ベンジル)カーボネ ート(各異性体)、ジ (メトキシベンジル)カーボネート(各異性体)、ジ (メトキシメチル) カーボネート、ジ (メトキシェチル)カーボネート(各異性体)、ジ (クロロェチル)カーボ ネート (各異性体)、ジ (シァノエチル)カーボネート (各異性体)等が挙げられる。
[0021] これらの中で、本発明において好ましく用いられるのは、 R1がハロゲンを含まない炭 素数 4以下のアルキル基からなるジアルキルカーボネートであり、特に好まし!/、のは ジメチルカーボネートである。また、好ましいジアルキルカーボネートのなかで、さらに 好ま 、のは、ハロゲンを実質的に含まな!/、状態で製造されたジアルキルカーボネ ートであって、例えばハロゲンを実質的に含まないアルキレンカーボネートとハロゲン を実質的に含まないアルコール力も製造されたものである。
[0022] 本発明で用いられる芳香族モノヒドロキシィ匕合物とは、下記一般式(16)で表される ものであり、芳香族基に直接ヒドロキシル基が結合しているものであれば、どの様なも のであってもよい。
Ar'OH (16)
ここで Ar1は炭素数 5〜30の芳香族基を表す。このような Ar1を有する芳香族モノヒ ドロキシ化合物としては、例えば、フエノール;タレゾール(各異性体)、キシレノール( 各異性体)、トリメチルフ ノール (各異性体)、テトラメチルフ ノール (各異性体)、ェ チルフ ノール(各異性体)、プロピルフ ノール(各異性体)、ブチルフ ノール(各 異性体)、ジェチルフヱノール (各異性体)、メチルェチルフエノール (各異性体)、メ チルプロピルフエノール(各異性体)、ジプロピルフエノール(各異性体)、メチルブチ ルフ ノール(各異性体)、ペンチルフ ノール(各異性体)、へキシルフ ノール(各 異性体)、シクロへキシルフェノール (各異性体)等の各種アルキルフエノール類;メト キシフヱノール (各異性体)、エトキシフヱノール (各異性体)等の各種アルコキシフエ ノール類;フエ-ルプロピルフエノール(各異性体)等のァリールアルキルフエノール 類;ナフトール (各異性体)及び各種置換ナフトール類;ヒドロキシピリジン (各異性体) 、ヒドロキシクマリン (各異性体)、ヒドロキシキノリン (各異性体)等のへテロ芳香族モノ ヒドロキシィ匕合物類等が用いられる。
[0023] これらの芳香族モノヒドロキシィ匕合物の中で、本発明において好ましく用いられるの は、 Ar1が炭素数 6から 10の芳香族基力もなる芳香族モノヒドロキシィ匕合物であり、特 に好ましいのはフエノールである。また、これらの芳香族モノヒドロキシィ匕合物の中で 、本発明において好ましく用いられるのは、ハロゲンを実質的に含まないものである。
[0024] 本発明で原料として用いられるジアルキルカーボネートは、芳香族モノヒドロキシィ匕 合物に対して、モル比で、 0. 1〜10であることが必要である。この範囲外では、 目的 とする芳香族カーボネートの所定生産量に対して、残存する未反応の原料が多くなり 、効率的でないし、またそれらを回収するために多くのエネルギーを要する。この意 味で、このモル比は、 0. 5〜5力 子ましく、より好ましくは 0. 8〜3であり、さらに好まし くは、 1〜2である。
[0025] 本発明においては、 1時間あたり 1トン以上のジァリールカーボネートを連続的に製 造するのである力 そのために連続的に供給される芳香族モノヒドロキシィ匕合物の最 低量は、製造すべき芳香族カーボネートの量 (Pトン Zhr)に対して、通常 15Pトン Z hr、好ましくは、 13Pトン Zhr、より好ましくは 10Pトン Zhrである。さらに好ましい場 合は、 8Pトン Zhrよりも少なくできる。
[0026] なお、本発明で原料として用いられるジアルキルカーボネートと芳香族モノヒドロキ シ化合物はそれぞれ純度の高 、ものであっても 、 、が、他の化合物を含むものであ つてもよぐ例えば、第 1連続多段蒸留塔または Zおよび第 2連続多段蒸留塔で生成 する化合物や反応副生物を含むものであってもよい。工業的に実施する場合、これ らの原料として、新規に反応系に導入されるジアルキルカーボネートと芳香族モノヒド 口キシィ匕合物に加え、第 1連続多段蒸留塔または Zおよび第 2連続多段蒸留塔から 回収されたジアルキルカーボネートや芳香族モノヒドロシキ化合物をも使用すること が好ましい。本発明の方法では、第 2連続多段蒸留塔での低沸点反応混合物である 塔頂成分が第 1連続多段蒸留塔に供給される。この場合、第 2塔低沸点反応混合物 はそのままで第 1連続多段蒸留塔に供給してもよいし、成分の一部を分離した後に 供給してもよい。従って工業的に実施する本発明においては、第 1連続多段蒸留塔 に供給される原料中には、アルコール類、アルキルァリールカーボネート、ジァリール カーボネート、アルキルァリールエーテルなどが含まれているものが好ましぐさらに は生成物であるアルキルァリールカーボネートゃジァリールカーボネートのフリース 転移生成物やその誘導体などの高沸点副生物を少量含むものであっても好ましく用 いられる。本発明において例えば、ジアルキルカーボネートとしてジメチルカーボネ ートを、芳香族モノヒドロキシ化合物としてフエノールを原料にして、メチルフエ-ルカ ーボネートおよびジフエ二ルカーボネートを製造する場合、その原料中に反応生成 物であるメチルアルコールや、メチルフエ-ルカーボネートおよびジフエ-ルカーボネ ートを含んでいることが好ましぐさらには反応副生物であるァニソールゃサリチル酸 フエニル、サリチル酸メチルやこれらカゝら誘導される高沸点副生物を少量含んで 、て ちょい。
本発明にお ヽて製造される芳香族カーボネート類とは、ジアルキルカーボネートと 芳香族モノヒドロキシィ匕合物とのエステル交換反応によって得られるアルキルァリー ルカーボネート、ジァリールカーボネート、およびこれらの混合物のことである。このェ ステル交換反応においては、ジアルキルカーボネートの 1つまたは 2つのアルコキシ 基が芳香族モノヒドロキシィ匕合物のァリーロキシ基と交換されアルコール類を離脱す る反応と、生成したアルキルァリールカーボネート 2分子間のエステル交換反応であ る不均化反応によってジァリールカーボネートとジアルキルカーボネートに変換され る反応が含まれている。本発明では、第 1連続多段蒸留塔においては主としてアル キルァリールカーボネートが得られ、第 2連続多段蒸留塔においては主としてこのァ ルキルァリールカーボネートの不均化反応によって、ジァリールカーボネートを主生 成物とする芳香族カーボネート類が得られる。本発明では、ハロゲンを含まない原料 と触媒を使用することが特に好ましぐこの場合、製造されるジァリールカーボネート は、ハロゲンを全く含まないため、エステル交換法でポリカーボネートを工業的に製 造するときの原料として重要である。なぜならば、重合原料中にハロゲンがたとえば 1 ppmよりも少ない量であっても存在しておれば、重合反応を阻害したり、生成したポリ カーボネートの物性を低下させたり着色の原因となるからである。
本発明の第 1連続多段蒸留塔または Zおよび第 2連続多段蒸留塔で使用される触 媒としては、例えば下記の化合物力 選択される。
く鉛化合物 >PbO、 PbO、 Pb O等の酸化鉛類; PbS、 Pb S等の硫化鉛類; Pb (0
2 3 4 2
H) 、 Pb O (OH)等の水酸化鉛類; Na PbO、 K PbO、 NaHPbO、 KHPbO等
2 2 2 2 2 2 2 2 2 2 の亜ナマリ酸塩類; Na PbO、 Na H PbO、 K PbO、 K [Pb (OH) ]、 K PbO、 C
2 3 2 2 4 2 3 2 6 4 4 a PbO、 CaPbO等の鉛酸塩類; PbCO、 2PbCO -Pb (OH)等の鉛の炭酸塩及
2 4 3 3 3 2
びその塩基性塩類; Pb (OCOCH ) 、Pb (OCOCH )、Pb (OCOCH ) -PbO - 3H
3 2 3 4 3 2
O等の有機酸の鉛塩及びその炭酸塩や塩基性塩類; Bu Pb、 Ph Pb、 Bu PbCl、 P
2 4 4 3 h PbBr、 Ph Pb (又は Ph Pb )、 Bu PbOH、 Ph PbO等の有機鉛化合物類(Buは
3 3 6 2 3 3
ブチル基、 Phはフ -ル基を示す。); Pb (OCH )、 (CH 0) Pb (OPh)、 Pb (OPh
3 2 3
)等のアルコキシ鉛類、ァリールォキシ鉛類; Pb—Na、 Pb— Ca、 Pb— Ba、 Pb— Sn
2
、 Pb— Sb等の鉛の合金類;ホウェン鉱、センァェン鉱等の鉛鉱物類、及びこれらの 鉛化合物の水和物;
く銅族金属の化合物〉 CuCl、 CuCl、 CuBr、 CuBr、 Cul、 Cul、 Cu (OAc) 、 C
2 2 2 2 u (acac) 、ォレイン酸銅、 Bu Cu、 (CH O) Cu、 AgNO、 AgBr、ピクリン酸銀、 Ag
2 2 3 2 3
C H CIO、 [AuC≡C— C (CH ) ]n、 [Cu (C H ) C1]等の銅族金属の塩及び錯体
6 6 4 3 3 7 8 4
(acacはァセチルアセトンキレート配位子を表す。);
くアルカリ金属の錯体〉 Li(acac)、 LiN (C H )等のアルカリ金属の錯体;
4 9 2
く亜鉛の錯体〉 Zn(acac)等の亜鉛の錯体; くカドミウムの錯体〉 Cd (acac)等のカドミウムの錯体;
2
く鉄族金属の化合物〉 Fe (C H ) (CO)、 Fe (CO)、 Fe (C H ) (CO)、 Co (メシ
10 8 5 5 4 6 3 チレン) (PEt Ph) 、 CoC F (CO)、 Ni- π— C H NO、フエ口セン等の鉄族金属
2 2 2 5 5 7 5 5
の錯体;
くジルコニウム錯体〉 Zr(acac) ,ジルコノセン等のジルコニウムの錯体;
4
くルイス酸類化合物〉 A1X、 TiX , TiX、 VOX、 VX、 ZnX、 FeX、 SnX (ここで
3 3 4 3 5 2 3 4
Xはハロゲン、ァセトキシ基、アルコキシ基、ァリールォキシ基である。)等のルイス酸 及びルイス酸を発生する遷移金属化合物;
く有機スズ化合物〉(CH ) SnOCOCH、(C H ) SnOCOC H、 Bu SnOCOC
3 3 3 2 5 3 6 5 3
H、 Ph SnOCOCH、 Bu Sn(OCOCH ) 、 Bu Sn (OCOC H ) 、 Ph SnOCH
3 3 3 2 3 2 2 11 23 2 3 3
、(C H ) SnOPh、 Bu Sn (OCH )、 Bu Sn (OC H ) , Bu Sn (OPh) 、 Ph Sn(
2 5 3 2 3 2 2 2 5 2 2 2 2
OCH )、(C H ) SnOH、 Ph SnOH、 Bu SnO、 (C H ) SnO、 Bu SnCl、 BuS
3 2 2 5 3 3 2 8 17 2 2 2 nO (OH)等の有機スズィ匕合物;
等の金属含有化合物が触媒として用いられる。これらの触媒は多段蒸留塔内に固定 された固体触媒であっても ヽし、反応系に溶解する可溶性触媒であってもよ 、。
[0029] もちろん、これらの触媒成分が反応系中に存在する有機化合物、例えば、脂肪族 アルコール類、芳香族モノヒドロキシ化合物類、アルキルァリールカーボネート類、ジ ァリールカーボネート類、ジアルキルカーボネート類等と反応したものであってもよ!/ヽ し、反応に先立って原料や生成物で加熱処理されたものであってもよい。
[0030] 本発明を反応系に溶解する可溶性触媒で実施する場合は、これらの触媒は、反応 条件にお 、て反応液への溶解度の高!、ものであることが好ま 、。この意味で好まし い触媒としては、例えば、 PbO、 Pb (OH)ゝ Pb (OPh) ; TiCl、 Ti(OMe) 、 (MeO
2 2 4 4
)Ti (OPh) 、 (MeO) Ti (OPh) 、 (MeO) Ti (OPh)、 Ti (OPh) ; SnCl、 Sn (OP
3 2 2 3 4 4 h) 、 Bu SnO、 Bu Sn (OPh) ; FeCl、 Fe (OH) 、 Fe (OPh)等、又はこれらをフエ
4 2 2 2 3 3 3
ノール又は反応液等で処理したもの等が挙げられる。第 1連続多段蒸留塔で用いら れる触媒と第 2連続多段蒸留塔で用いられる触媒は同じ種類であっても、異なる種 類のものであってもよい。
[0031] 図 1は、本発明に係る製造法を実施する第 1連続多段蒸留塔の概略図である。本 発明において用いられる第 1連続多段蒸留塔 101とは、長さ ( )、内径 D^cm) の円筒形の胴部 7の上下に鏡板部 5を有し、内部に段数 nをもつインターナル 6を有 する構造をしており、塔頂部またはそれに近い塔の上部に内径 d (cm)のガス抜出
11
し口 1、塔底部またはそれに近い塔の下部に内径 d (cm)の液抜出し口 2、該ガス抜
12
出し口より下部であって塔の上部および Zまたは中間部に 1つ以上の導入口 3、該 液抜出し口より上部であって塔の下部に 1つ以上の導入口 4を有する。
具体的には、本発明に係る第 1連続多段蒸留塔 101は、
(1)長さ L (cm)が式(1)を満足するものであり、
1500 ≤ L ≤ 8000 式(1)
(2)塔の内径 D (cm)が式(2)を満足するものであり、
100 ≤ D ≤ 2000 式(2)
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(3)を満足するものであり、
2 ≤ L /Ό ≤ 40 式(3)
(4)段数 nが式 (4)を満足するものであり、
20 ≤ n ≤ 120 式(4)
(5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(5)を満足するも
1 11
のであり、
5 ≤ D /d ≤ 30 式(5)
1 11
(6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(6)を満足するもの
1 12
であり、
3 ≤ D /d ≤ 20 式(6)
1 12
であることが必要である。
図 2は、本発明に係る製造法を実施する第 2連続多段蒸留塔の概略図である。ここ で、本発明で用いられる第 2連続多段蒸留塔 201とは、長さ L (cm)、内径 D (cm)
2 2 の円筒形の胴部 7の上下に鏡板部 5を有し、内部に段数 nをもつインターナル (6—
2
1 :充填物、 6— 2 :トレイ)を有する構造をしており、塔頂部またはそれに近い塔の上 部に内径 d (cm)のガス抜出し口 1、塔底部またはそれに近い塔の下部に内径 d (
21 22 cm)の液抜出し口 2、該ガス抜出し口より下部であって塔の上部および Zまたは中間 部に 1つ以上の導入口 3、該液抜出し口より上部であって塔の下部に 1つ以上の導 入口 4を有する。
具体的には、本発明に係る第 2連続多段蒸留塔 201は、
(1)長さ L (cm)が式 (7)を満足するものであり、
2
1500 ≤ L ≤ 8000 式(7)
2
(2)塔の内径 D (cm)が式 (8)を満足するものであり、
2
100 ≤ D ≤ 2000 式(8)
2
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(9)を満足するものであり、
2 2
2 ≤ L /D ≤ 40 式(9)
2 2
(4)段数 nが式(10)を満足するものであり、
2
10 ≤ n ≤ 80 式(10)
2
(5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(11)を満足するも
2 21
のであり、
2 ≤ D /d ≤ 15 式(11)
2 21
(6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(12)を満足するも
2 22
のであり、
5 ≤ D /d ≤ 30 式(12)
2 22
であることが必要である。
なお、図 1および図 2は、本発明に係る製造法を実施する連続多段蒸留塔の実施 態様であるため、インターナル 6の配置は、図 1および図 2に示す構成に限定されるも のではない。また、本発明で用いる用語「塔頂部またはそれに近い塔の上部」とは、 塔頂部から下方に約 0. 25Lまたは 0. 25Lまでの部分を意味し、用語「塔底部また
1 2
はそれに近い塔の下部」とは、塔底部力も上方に約 0. 25Lまたは 0. 25Lまでの部
1 2 分を意味する。また、「Lおよび L」は、前述の定義とおりである。
1 2
式(1)〜(12)の全てを同時に満足する第 1連続多段蒸留塔および第 2連続多段 蒸留塔を用いることによって、ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物 とから、ジァリールカーボネートを主生成物とする芳香族カーボネート類を 1時間あた り 1トン以上の工業的規模で、高選択率'高生産性で、例えば 2000時間以上、好ま しくは 3000時間以上、さらに好ましくは 5000時間以上の長期間、安定的に製造で きることが見出されたのである。本発明の方法を実施することによって、このような優 れた効果を有する工業的規模での芳香族カーボネートの製造が可能になった理由 は明らかではないが、式(1)〜(12)の条件が組み合わさった時にもたらされる複合 効果のためであると推定される。なお、各々の要因の好ましい範囲は下記に示される
[0034] L (cm)および L (cm)がそれぞれ 1500より小さいと、反応率が低下するため目的
1 2
とする生産量を達成できないし、目的の生産量を達成できる反応率を確保しつつ設 備費を低下させるには、 Lおよび Lをそれぞれ 8000以下にすることが必要である。
1 2
より好ましい L (cm)および L (cm)の範囲は、それぞれ、 2000 ≤ L ≤ 6000
1 2 1
および 2000 ≤ L ≤ 6000 であり、さらに好ましくは、 2500 ≤ L ≤ 50
2 1
00 および 2500 ≤ L ≤ 5000 である。
2
[0035] D (cm)および D (cm)がそれぞれ 100よりも小さいと、目的とする生産量を達成で
1 2
きないし、目的の生産量を達成しつつ設備費を低下させるには、 D
1および D
2をそれ ぞれ 2000以下にすることが必要である。より好ましい D (cm)および D (cm)の範囲
1 2
は、それぞれ 150 ≤ D ≤ 1000 および 150 ≤ D ≤ 1000 であり、さら
1 2
に好ましくは、それぞれ 200 ≤ D ≤ 800 および 200 ≤ D ≤ 800である
1 2
。なお、第 1連続多段蒸留塔および第 2連続多段蒸留塔において、 Dおよび D 力 S
1 2 上記の範囲にある限り、塔の上部から下部までそれぞれ同じ内径であってもよいし、 部分的に内径が異なっていてもよい。例えば、これらの連続多段蒸留塔において、 塔上部の内径が塔下部の内径よりも小さくてもよいし、大きくてもよい。また、部分的 に内径が異なる塔であってもよい。
[0036] L /Ό および L /Ό がそれぞれ 2より小さい時や 40より大きい時は安定運転
1 1 2 2
が困難となり、特に 40より大きいと塔の上下における圧力差が大きくなりすぎるため、 長期安定運転が困難となるだけでなぐ塔下部での温度を高くしなければならないた め、副反応が起こりやすくなり選択率の低下をもたらす。より好ましい L /Ό および L /Ό の範囲はそれぞれ、 3 ≤ L /D ≤ 30 および 3 ≤ L /D ≤
2 2 1 1 2 2
30 であり、さらに好ましくは、 5 ≤ L /D ≤ 15 および 5 ≤ L /D ≤ 1 5である。
[0037] が 20より小さいと反応率が低下するため第 1連続多段蒸留塔での目的とする生 産量を達成できないし、目的の生産量を達成できる反応率を確保しつつ設備費を低 下させるには、 nを 120以下にすることが必要である。さらに n力 よりも大きいと 塔の上下における圧力差が大きくなりすぎるため、第 1連続多段蒸留塔の長期安定 運転が困難となるだけでなぐ塔下部での温度を高くしなければならないため、副反 応が起こりやすくなり選択率の低下をもたらす。より好ましい nの範囲は、 30 ≤ n ≤ 100 であり、さらに好ましくは、 40 ≤ n ≤90 である。また、 n力 0より小
1 2
さいと反応率が低下するため第 2連続多段蒸留塔での目的とする生産量を達成でき ないし、目的の生産量を達成できる反応率を確保しつつ設備費を低下させるには、 n を 80以下にすることが必要である。さらに n力 ¾0よりも大きいと塔の上下における圧
2 2
力差が大きくなりすぎるため、第 2連続多段蒸留塔の長期安定運転が困難となるだけ でなぐ塔下部での温度を高くしなければならないため、副反応が起こりやすくなり選 択率の低下をもたらす。より好ましい nの範囲は、 15 ≤ n ≤ 60 であり、さらに
2 2
好ましくは、 20 ≤ n ≤ 50 である。
2
[0038] D /ά 力 より小さいと第 1連続多段蒸留塔の設備費が高くなるだけでなく大量の
I 11
ガス成分が系外に出やすくなるため、第 1連続多段蒸留塔の安定運転が困難になり 、 30よりも大きいとガス成分の抜出し量が相対的に小さくなり、安定運転が困難にな るだけでなぐ反応率の低下をもたらす。より好ましい D Zd の範囲は、 8 ≤ D
1 11 1
/ά ≤ 25 であり、さらに好ましくは、 10 ≤ D Zd ≤ 20 である。また、 D
II 1 11
/d カ^より小さいと第 2連続多段蒸留塔の設備費が高くなるだけでなく大量のガ
2 21
ス成分が系外に出やすくなるため、第 2連続多段蒸留塔の安定運転が困難になり、 1 5よりも大きいとガス成分の抜出し量が相対的に小さくなり、安定運転が困難になるだ けでなぐ反応率の低下をもたらす。より好ましい D 2Zd 21の範囲は、 5 ≤ D 2Zd 2
≤ 12 であり、さらに好ましくは、 3 ≤ D /d ≤ 10 である。
1 2 21
[0039] D Zd 力^より小さいと第 1連続多段蒸留塔の設備費が高くなるだけでなく液抜出
1 12
し量が相対的に多くなり、第 1連続多段蒸留塔の安定運転が困難になり、 20よりも大 きいと液抜出し口や配管での流速が急激に速くなりエロージョンを起こしやすくなり装 置の腐食をもたらす。より好ましい D 囲は、 5 ≤ D /d ≤ 18 であ
1 Zd の範
12 1 12
り、さらに好ましくは、 7 ≤ D り小さいと
1/d ≤ 15 である。また、 D
12 2 Zd 力 よ
22
第 2連続多段蒸留塔の設備費が高くなるだけでなく液抜出し量が相対的に多くなり、 第 2連続多段蒸留塔の安定運転が困難になり、 30よりも大きいと液抜出し口や配管 での流速が急激に速くなりエロージョンを起こしやすくなり装置の腐食をもたらす。より 好ましい D Zd の範囲は、 7 ≤ Ό /d ≤ 25 であり、さらに好ましくは、 9
2 22 2 22
≤ D /d ≤ 20 である。
2 22
[0040] さらに本発明では、該 d と該 d が式(13)を満足し、且つ該 d と該 d が式(14)を
11 12 21 22
満足する場合、さらに好ましいことがわ力つた。
1 ≤ d /d ≤ 5 式(13)
12 11
1 ≤ d /d ≤ 6 式(14)
21 22
[0041] 本発明でいう長期安定運転とは、 1000時間以上、好ましくは 3000時間以上、さら に好ましくは 5000時間以上、配管のつまりやエロージョンがなぐ運転条件に基づい た定常状態で運転が継続でき、高選択率を維持しながら、所定量のジァリールカー ボネートを主生成物とする芳香族カーボネート類が製造されていることを意味する。
[0042] 本発明は、 1時間あたり 1トン以上の高生産性で芳香族カーボネートを高選択率で 長期間安定的に生産することを特徴としているが、好ましくは 1時間あたり 2トン以上、 さらに好ましくは 1時間あたり 3トン以上の芳香族カーボネート類を生産することにある 。また、本発明は、第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd
1 1 1 1 1 1 11 1 12 がそれぞれ、 2000 ≤ L ≤ 6000、 150 ≤ D ≤ 1000、 3 ≤ L /D ≤ 30, 30 ≤ n ≤ 100、 8 ≤ D /d ≤ 25, 5 ≤ D /d ≤
1 1 1 11 1 12
18であって、第 2連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd がそ
2 2 2 2 2 2 21 2 22 れぞれ、 2000 ≤ L ≤ 6000、 150 ≤ D ≤ 1000、 3 ≤ L /D ≤
2 2 2 2
30、 15 ≤ n ≤ 60, 2. 5 ≤ D /d ≤ 12, 7 ≤ D /d ≤ 2
2 2 21 2 22
5の場合は、 1時間あたり 2トン以上、好ましくは 1時間あたり 2. 5トン以上、さらに好ま しくは 1時間あたり 3トン以上の芳香族カーボネート類を製造することを特徴とするもの である。さらに、本発明は、第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D /ά がそれぞれ、 2500 ≤ L ≤ 5000、 200 ≤ D ≤ 800、 5 ≤
1 12 1 1 L /Ό ≤ 15、 40 ≤ n ≤ 90、 10 ≤ D /d ≤ 25、 7 ≤ D Z d ≤ 15であって、第 2連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd
12 2 2 2 2 2 2 21 2 がそれぞれ、 2500 ≤ L ≤ 5000、 200 ≤ D ≤ 800、 5 ≤ L /
22 2 2 2
D ≤ 10, 20 ≤ n ≤ 50, 3 ≤ D /d ≤ 10, 9 ≤ D /d ≤
2 2 2 21 2 22
20の場合は、 1時間あたり 3トン以上、好ましくは 1時間あたり 3. 5トン以上、さらに 好ましくは 1時間あたり 4トン以上の芳香族カーボネート類を製造することを特徴とす るものである。
[0043] 本発明で 、う芳香族カーボネート類の選択率とは、反応した芳香族モノヒドロキシ 化合物に対するものであって、本発明では通常 95%以上の高選択率であり、好まし くは 97%以上、さらに好ましくは 98%以上の高選択率を達成することができる。
[0044] 本発明で用いられる第 1連続多段蒸留塔および第 2連続多段蒸留塔は、インター ナルとしてトレイおよび Zまたは充填物を有する蒸留塔であることが好まし 、。本発明 でいうインターナルとは、蒸留塔において実際に気液の接触を行わせる部分のことを 意味する。このようなトレイとしては、例えば泡鍾トレイ、多孔板トレイ、バルブトレイ、 向流トレイ、スーパーフラックトレイ、マックスフラックトレイ等が好ましぐ充填物として は、ラシヒリング、レッシングリング、ポールリング、ベルルサドル、インタロックスサドル 、ディクソンパッキング、マクマホンパッキング、ヘリパック等の不規則充填物やメラパ ック、ジェムパック、テクノバック、フレキシパック、スノレザーパッキング、グッドロールパ ッキング、グリッチグリッド等の規則充填物が好ましい。トレイ部と充填物の充填された 部分とを合わせ持つ多段蒸留塔も用いることができる。なお、本発明でいう用語「イン ターナルの段数 n」とは、トレイの場合は、トレイの数を意味し、充填物の場合は、理論 段数を意味する。したがって、トレイ部と充填物の充填された部分とを合わせて持つ 多段蒸留塔の場合、 nはトレイの数と理論段数の合計である。
[0045] 本発明の第 1連続多段蒸留塔においては、主としてジアルキルカーボネートと芳香 族モノヒドロキシィ匕合物からアルキルァリールカーボネートを生成させる反応が行わ れるが、この反応は平衡定数が極端に小さぐしかも反応速度が遅いので、反応蒸留 に用いる第 1連続多段蒸留塔としては、インターナルがトレイである棚段式蒸留塔が より好ましいことが見出された。また、第 2連続多段蒸留塔においては主として、該ァ ルキルァリールカーボネートを不均化させる反応が行われる力 この反応も平衡定数 力 、さぐし力も反応速度が遅いが、反応蒸留に用いる第 2連続多段蒸留塔としては 、インターナルが充填物およびトレイの両方を有する蒸留塔がより好ま 、ことが見出 された。さらに第 2連続多段蒸留塔としては、上部に充填物、下部にトレィを設置した ものが好ましいことも見出された。第 2連続多段蒸留塔の該充填物は規則充填物が 好ましぐ規則充填物のなかでもメラパックが特に好ましいことも見出された。
[0046] さらに第 1連続多段蒸留塔および第 2連続多段蒸留塔にそれぞれ設置される該トレ ィは多孔板部とダウンカマー部を有する多孔板トレイが機能と設備費との関係で特に 優れていることが見出された。そして、該多孔板トレイが該多孔板部の面積 lm2あた り 100〜: LOOO個の孔を有して 、ることが好ま 、ことも見出された。より好まし!/、孔数 は該面積 lm2あたり 120〜900個であり、さらに好ましくは、 150〜800個である。ま た、該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることが好ましいことも 見出された。より好ましい孔 1個あたりの断面積は、 0. 7〜4cm2であり、さらに好まし くは 0. 9〜3cm2である。さらには、該多孔板トレイが該多孔板部の面積 lm2あたり 10 0〜1000個の孔を有しており、且つ、孔 1個あたりの断面積が 0. 5〜5cm2である場 合、特に好ましいことが見出された。連続多段蒸留塔に上記の条件を付加することに よって、本発明の課題力 より容易に達成されることが判明したのである。
[0047] 本発明を実施する場合、原料であるジアルキルカーボネートと芳香族モノヒドロキシ 化合物とを触媒が存在する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内で 反応と蒸留を同時に行い、生成するアルコール類を含む第 1塔低沸点反応混合物を 該第 1塔上部よりガス状で連続的に抜出し、生成するアルキルァリールカーボネート 類を含む第 1塔高沸点反応混合物を該第 1塔下部より液状で連続的に抜出し、該第 1塔高沸点反応混合物を触媒が存在する第 2連続多段蒸留塔内に連続的に供給し 、該第 2塔内で反応と蒸留を同時に行い、生成するジアルキルカーボネート類を含む 第 2塔低沸点反応混合物を該第 2塔上部よりガス状で連続的に抜出し、生成するジ ァリールカーボネート類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状で 連続的に抜出し、一方、ジアルキルカーボネート類を含む第 2塔低沸点反応混合物 を第 1連続多段蒸留塔内に連続的に供給することによって、ジァリールカーボネート 類を主生成物とする芳香族カーボネート類を連続的に製造される。この原料中には、 反応生成物であるアルコール類、アルキルァリールカーボネート、ジァリールカーボ ネートやアルキルァリールエーテルや高沸点化合物などの反応副生物が含まれてい てもいいことは前述のとおりである。他の工程での分離'精製に力かる設備、費用のこ とを考慮すれば、実際に工業的に実施する本発明の場合は、これらの化合物を少量 含んでいることが好ましい。
[0048] 本発明にお 、て、原料であるジアルキルカーボネートと芳香族モノヒドロキシ化合 物を第 1連続多段蒸留塔内に連続的に供給するには、該第 1蒸留塔の上部のガス 抜出し口よりも下部であるが塔の上部または中間部に設置された 1箇所または数箇 所の導入口から、液状および zまたはガス状で供給してもよいし、芳香族モノヒドロキ シ化合物を多く含む原料を該第 1蒸留塔の上部の導入口から液状で供給し、ジアル キルカーボネートを多く含む原料を該第 1蒸留塔の下部の液抜出し口よりも上部であ つて塔の下部に設置された導入口力もガス状で供給することも好まし 、方法である。
[0049] また本発明においては、第 1連続多段蒸留塔下部より連続的に抜き出されるアルキ ルァリールカーボネート類を含む第 1塔高沸点反応混合物が第 2連続多段蒸留塔に 連続的に供給されるが、その供給位置は第 2蒸留塔の上部のガス抜出し口よりも下 部であるが塔の上部または中間部に設置された 1箇所または数箇所の導入口から、 液状および Zまたはガス状で供給することが好ましい。また、本発明の好ましい実施 態様である上部に充填物部、下部にトレィ部を有する蒸留塔を用いる場合、導入口 の少なくとも 1箇所は充填物部とトレィ部との間に設置されることが好ましい。また、充 填物が 2基以上の複数の規則充填物力 なっている場合は、これらの複数の規則充 填物を構成する間隔に導入口を設置することも好ま ヽ方法である。
[0050] また、本発明において第 1連続多段蒸留塔および第 2連続多段蒸留塔の塔頂ガス 抜き出し成分をそれぞれ凝縮した後、その一部をそれぞれの蒸留塔上部にもどす還 流操作を実施することも好ましい方法である。この場合、第 1連続多段蒸留塔の還流 比は 0〜10、であり、第 2連続多段蒸留塔の還流比は 0. 01〜: LOの範囲、好ましくは 0. 08〜5、さらに好ましくは、 0. 1〜2. 0の範囲である。第 1連続多段蒸留塔では還 流操作をしな 、還流比 0も好まし ヽ実施態様である。 [0051] 本発明において、第 1連続多段蒸留塔内に触媒を存在させる方法はどのようなもの であってもよいが、触媒が反応液に不溶解性の固体状の場合は、第 1連続多段蒸留 塔内の段に設置する方法や、充填物状にして設置する方法などによって塔内に固定 させることが好ましい。また、原料や反応液に溶解する触媒の場合は、該第 1蒸留塔 の中間部より上部の位置力 蒸留塔内に供給することが好ましい。この場合、原料ま たは反応液に溶解させた触媒液を原料と一緒に導入してもよ 、し、原料とは別の導 入口力もこの触媒液を導入してもよい。本発明の第 1連続多段蒸留塔で用いる触媒 の量は、使用する触媒の種類、原料の種類やその量比、反応温度並びに反応圧力 などの反応条件の違いによっても異なるが、原料の合計質量に対する割合で表して 、通常、 0. 0001〜30質量0 /0、好まし <は 0. 005〜10質量0 /0、より好まし <は 0. 00 1〜1質量%で使用される。
[0052] また、本発明において、第 2連続多段蒸留塔内に触媒を存在させる方法はどのよう なものであってもよいが、触媒が反応液に不溶解性の固体状の場合は、第 2連続多 段蒸留塔内の段に設置する方法や、充填物状にして設置する方法などによって塔 内に固定させることが好ましい。また、原料や反応液に溶解する触媒の場合は、該第 2蒸留塔の中間部より上部の位置力 蒸留塔内に供給することが好ましい。この場合 、原料または反応液に溶解させた触媒液を原料と一緒に導入してもよいし、原料とは 別の導入口カゝらこの触媒液を導入してもよ ヽ。本発明の第 2連続多段蒸留塔で用い る触媒の量は、使用する触媒の種類、原料の種類やその量比、反応温度並びに反 応圧力などの反応条件の違いによっても異なるが、原料の合計質量に対する割合で 表して、通常、 0. 0001〜30質量0 /0、好ましくは 0. 005〜10質量0 /0、より好ましくは 0. 001〜1質量%で使用される。
[0053] 本発明においては、第 1連続多段蒸留塔で用いる触媒と第 2連続多段蒸留塔で用 いる触媒は、同じ種類のものであってもよいし、異なる種類のものであってもよいが、 好ましくは、同じ種類の触媒を用いることである。さらに好ましいのは、同じ種類であ つて、両方の反応液に溶解することのできる触媒である。この場合、触媒は通常第 1 連続多段蒸留塔の高沸点反応混合物中に溶解した状態で、アルキルァリールカー ボネート等とともに該第 1蒸留塔の下部力 抜き出され、そのまま第 2連続多段蒸留 塔に供給されるので、好ましい実施態様である。なお、必要に応じて第 2連続多段蒸 留塔に新たに触媒を追加することも可能である。
[0054] 本発明で行われるエステル交換反応の反応時間は第 1連続多段蒸留塔内および 第 2連続多段蒸留塔内でのそれぞれの反応液の平均滞留時間に相当すると考えら れるが、これはそれぞれの該蒸留塔のインターナルの形状や段数、原料供給量、触 媒の種類や量、反応条件などによって異なるが、第 1連続多段蒸留塔内および第 2 連続多段蒸留塔内のそれぞれにおいて、通常 0. 01〜: LO時間、好ましくは 0. 05〜 5時間、より好ましくは 0. 1〜3時間である。
[0055] 第 1連続多段蒸留塔の反応温度は、用いる原料化合物の種類や触媒の種類や量 によって異なるが、通常 100〜350°Cの範囲である。反応速度を高めるためには反 応温度を高くすることが好ましいが、反応温度が高いと副反応も起こりやすくなり、例 えばアルキルァリールエーテルなどの副生が増えるので好ましくな 、。このような意味 で、第 1連続多段蒸留塔での好ましい反応温度は 130〜280°C、より好ましくは 150 〜260。C、さらに好ましくは、 180〜250。Cの範囲である。
[0056] 第 2連続多段蒸留塔の反応温度は、用いる原料化合物の種類や触媒の種類や量 によって異なるが、通常 100〜350°Cの範囲である。反応速度を高めるためには反 応温度を高くすることが好ましいが、反応温度が高いと副反応も起こりやすくなり、例 えばアルキルァリールエーテルや、原料や生成物であるアルキルァリールカーボネ ートゃジァリールカーボネートのフリース転移反応生成物やその誘導体などの副生 が増えるので好ましくない。このような意味で、第 2連続多段蒸留塔での好ましい反 応温度は 130〜280。C、より好ましくは 150〜260。C、さらに好ましくは、 180〜250 °Cの範囲である。
[0057] また、第 1連続多段蒸留塔の反応圧力は、用いる原料ィ匕合物の種類や組成、反応 温度などにより異なるが、第 1連続多段蒸留塔では減圧、常圧、加圧のいずれであつ てあよく、通常塔頂圧力が 0. 1〜2 X 107Pa、好ましくは、 105〜107Pa、より好ましく は 2 X 105〜5 X 106Paの範囲で行われる。
[0058] 第 2連続多段蒸留塔の反応圧力は、用いる原料化合物の種類や組成、反応温度 などにより異なる力 減圧、常圧、加圧のいずれであってもよぐ通常塔頂圧力が 0. 1 〜2 X 107Pa、好ましくは、 103〜106Pa、より好ましくは 5 X 103〜105Paの範囲で行 われる
[0059] なお、本発明における第 1連続多段蒸留塔として、 2基以上の蒸留塔を用いることも できる。この場合、 2基以上の蒸留塔を直列に連結することも、並列に連結することも 、さらに直列と並列を組み合わせて連結することも可能である。
また、本発明における第 2連続多段蒸留塔として、 2基以上の蒸留塔を用いることも できる。この場合、 2基以上の蒸留塔を直列に連結することも、並列に連結することも 、さらに直列と並列を組み合わせて連結することも可能である。
本発明で用いられる第 1連続多段蒸留塔および第 2連続多段蒸留塔を構成する材 料は、主に炭素鋼、ステンレススチールなどの金属材料である力 製造する芳香族力 ーボネートの品質の面からは、ステンレススチールが好ましい。
実施例
[0060] 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例 に限定されるものではない。
[0061] ハロゲン含有量は、イオンクロマトグラフィー法で測定した。
[0062] [実施例 1]
<第 1連続多段蒸留塔 101 >
図 1に示されるような L = 3300cm, D = 500cm, L /Ό = 6. 6、 η = 80、 D Ζ d = 17, D /d = 9 である連続多段蒸留塔を用いた。なお、この実施例では、ィ
11 1 12
ンターナルとして、孔 1個あたりの断面積 =約 1. 5cm2,孔数 =約 250個 Zm2 を有 する多孔板トレイを用いた。
<第 2連続多段蒸留塔 201 >
図 2に示されるような L = 3100cm, D = 500cm, L /Ό = 6. 2、 η = 30、 D /
2 2 2 2 2 2 d = 3. 85、D Zd = 11. 1 である連続多段蒸留塔を用いた。なお、この実施例
21 2 22
では、インターナルとして、上部にメラパック 2基 (合計理論段数 11段)を設置し、下 部に孔 1個あたりの断面積 =約 1. 3cm2,孔数 =約 250個 Zm2 を有する多孔板ト レイを用いた。
<反応蒸留 > 図 3に示されるような第 1連続多段蒸留塔 101と第 2連続多段蒸留塔 201が接続さ れた装置を用いて反応蒸留を行 、、ジフエニルカーボネートを製造した。
[0063] フエノール Zジメチルカーボネート = 1. 9 (質量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 50トン Zhrの流量で連続的に導入した。一 方、ジメチルカーボネート Zフエノール = 3. 6 (質量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 50トン Zhrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート Zフ ェノール = 1. 35であった。この原料にはハロゲンは実質的に含まれていなかった (ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反
2 応液中に約 lOOppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 225°Cで、塔頂部の圧力 力 S7 X 105Paの条件下で連続的に反応蒸留が行われた。メチルアルコール、ジメチ ルカーボネート、フ ノール等を含む第 1塔低沸点反応混合物を第 1塔の塔頂部 13 よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 34トン Zhrの 流量で抜出した。一方、メチルフエ-ルカーボネート、ジメチルカーボネート、フエノー ル、ジフ ニルカーボネート、触媒等を含む第 1塔高沸点反応混合物を第 1塔下部 1 7より液状で連続的に抜き出した。
[0064] 24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 66トン Zhrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエ-ルカーボネートが 18. 2質量0 /0、ジフエ-ルカーボ ネートが 0. 8質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 10°Cで、塔頂部の圧力が 3 X 104Pa、還流比が 0. 3の条件下で連続的に反応蒸留 が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔の塔頂部 23か らジメチルカーボネート 35質量%、フエノール 56質量%を含む第 2塔低沸点反応混 合物が連続的に抜き出され、抜出し口 26での流量は 55. 6トン Zhrであった。第 2塔 低沸点反応混合物は、導入口 11および Zまたは導入口 12から第 1連続多段蒸留塔 101に連続的に供給された。この際、新規に供給されるジメチルカーボネートとフエノ 一ルの量は、第 2塔低沸点反応混合物の組成、量を勘案した上で、上記原料 1およ び原料 2の組成、量を維持するように調整した。
[0065] 第 2塔の塔底部 27からはメチルフエ-ルカーボネート 38. 4質量0 /0、ジフエ-ルカ ーボネート 55. 6質量%を含む第 2塔高沸点反応混合物が連続的に抜出された。ジ フエ-ルカーボネートの生産量は 1時間あたり 5. 74トンであることがわかった。反応し たフエノールに対して、ジフエ-ルカーボネートの選択率は 98%であった。
この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後のジフエ-ルカーボネートの生産量 (原料中に含まれ るジフエ-ルカーボネートを除く)は、 1時間あたり 5. 74トン、 5. 75トン、 5. 74トン、 5 . 74トン、 5. 75トンであり、選択率は 98%、 98%、 98%、 98%、 98%、であり、非常 に安定していた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含 まれて 、なかった(lppb以下)。
[0066] [実施例 2]
実施例 1と同じ装置を用いて、下記の条件で反応蒸留を行った。
フエノール Zジメチルカーボネート =ι. ι (質量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 40トン Zhrの流量で連続的に導入した。一 方、ジメチルカーボネート Zフエノール = 3. 9 (質量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 43トン Zhrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート Zフ ェノール = 1. 87であった。この原料にはハロゲンは実質的に含まれていなかった (ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反
2 応液中に約 250ppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 235°Cで、塔頂部の圧力 力^ X 105Paの条件下で連続的に反応蒸留が行われた。メチルアルコール、ジメチ ルカーボネート、フ ノール等を含む第 1塔低沸点反応混合物を第 1塔の塔頂部 13 よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 43トン Zhrの 流量で抜出した。一方、メチルフエ-ルカーボネート、ジメチルカーボネート、フエノー ル、ジフ ニルカーボネート、触媒等を含む第 1塔高沸点反応混合物を第 1塔下部 1 7より液状で連続的に抜き出した。
[0067] 24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 40トン Zhrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエ-ルカーボネートが 20. 7質量0 /0、ジフエ-ルカーボ ネートが 1. 0質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 05°Cで、塔頂部の圧力が 2 X 104Pa、還流比が 0. 5の条件下で連続的に反応蒸留 が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔の塔頂部 23か ら第 2塔低沸点反応混合物が連続的に抜き出され、抜出し口 26での流量は 33. 3ト ン Zhrであった。
[0068] 第 2塔低沸点反応混合物は、導入口 11および Zまたは導入口 12から第 1連続多 段蒸留塔 101に連続的に供給された。この際、新規に供給されるジメチルカーボネ ートとフエノールの量は、第 2塔低沸点反応混合物の組成、量を勘案した上で、上記 原料 1および原料 2の組成、量を維持するように調整した。
[0069] 第 2塔の塔底部 27からはメチルフエ-ルカーボネート 35. 5質量0 /0、ジフエ-ルカ ーボネート 61. 2質量%を含む第 2塔高沸点反応混合物が連続的に抜出された。ジ フエ-ルカーボネートの生産量は 1時間あたり 4. 1トンであることがわかった。反応し たフエノールに対して、ジフエ-ルカーボネートの選択率は 97%であった。
[0070] この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 のジフエ-ルカーボネートの 1時間あたりの生産量は 4. 1トン、 4. 1トン、 4. 1トンであ り、反応したフエノールに対して選択率は 97%、 97%、 97%であり、非常に安定して いた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含まれていな 力つた(lppb以下)。
[0071] [実施例 3]
第 2連続多段蒸留塔 201における多孔板トレイの孔 1個あたりの断面積 =約 1. 8c m2とする以外は実施例 1と同じ装置を用いて、下記の条件で反応蒸留を行った。
[0072] フエノール Zジメチルカーボネート = 1. 7 (質量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 86トン Zhrの流量で連続的に導入した。一 方、ジメチルカーボネート Zフエノール = 3. 5 (質量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 90トン Zhrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート Zフ ェノール = 1. 44であった。この原料にはハロゲンは実質的に含まれていなかった (ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反
2 応液中に約 150ppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 220°Cで、塔頂部の圧力 力 S8 X 105Paの条件下で連続的に反応蒸留が行われた。メチルアルコール、ジメチ ルカーボネート、フ ノール等を含む第 1塔低沸点反応混合物を第 1塔の塔頂部 13 よりガス状で連続的に抜き出し、熱交翻14を経て、抜出し口 16から 82トン Zhrの 流量で抜出した。一方、メチルフエ-ルカーボネート、ジメチルカーボネート、フエノー ル、ジフ ニルカーボネート、触媒等を含む第 1塔高沸点反応混合物を第 1塔下部 1 7より液状で連続的に抜き出した。
[0073] 24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 94トン Zhrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエ-ルカーボネートが 16. 0質量0 /0、ジフエ-ルカーボ ネートが 0. 5質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 15°Cで、塔頂部の圧力が 2. 5 X 104Pa、還流比が 0. 4の条件下で連続的に反応蒸 留が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔の塔頂部 23 から第 2塔低沸点反応混合物が連続的に抜き出され、抜出し口 26での流量は 81. 7 トン Zhrであった。第 2塔低沸点反応混合物は、導入口 11から第 1連続多段蒸留塔 101に連続的に供給された。この際、新規に供給されるジメチルカーボネートとフエノ 一ルの量は、第 2塔低沸点反応混合物の組成、量を勘案した上で、上記原料 1およ び原料 2の組成、量を維持するように調整した。
[0074] 第 2塔の塔底部 27からはメチルフエ-ルカーボネート 35. 5質量0 /0、ジフエ-ルカ ーボネート 59. 5質量%を含む第 2塔高沸点反応混合物が連続的に抜出された。ジ フエ-ルカーボネートの生産量は 1時間あたり 7. 32トンであることがわかった。反応し たフエノールに対して、ジフエ-ルカーボネートの選択率は 98%であった。
[0075] この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 のジフエ-ルカーボネー卜の 1時間あたりの生産量は 7. 32卜ン、 7. 33卜ン、 7. 33卜ン であり、反応したフエノールに対して選択率は 98%、 98%、 98%であり、非常に安定 していた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含まれて いなかった(lppb以下)。
産業上の利用可能性
[0076] 本発明は、ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とから 2基の連続 多段蒸留塔を用いて、ジァリールカーボネートを主生成物とする芳香族カーボネート を、 1時間あたり 1トン以上の工業的規模で、高選択率'高生産性で長期間安定的に 製造できる具体的な方法に好適である。
図面の簡単な説明
[0077] [図 1]本発明を実施する第 1連続多段蒸留塔の概略図である。胴部内部にはインタ ーナル 6が設置されて!、る。
[図 2]本発明を実施するのに好ましい第 2連続多段蒸留塔の概略図である。胴部内 部には上部に規則充填物、下部に多孔板トレイカ なるインターナル (6— 1および 6 2)が設置されている。
[図 3]本発明を実施する好ましい装置の概略図である。なお、各図において使用した 符号の説明は、以下のとおりである: 1 :ガス抜出し口、 2 :液抜出し口、 3, 4, 15, 19 , 25, 29 :導入口、 5 :鏡板部、 6 :インターナル、 6— 1 :インターナル(充填物)、 6— 2 :インターナル(トレイ)、 7 :胴体部分、 L ,L:胴部長さ(cm)、 D , D:胴部内径 (cm )、 d , d :ガス抜出し口内径 (cm)、d , d :液抜出し口内径 (cm)、 101 :第 1連
11 21 12 22
続多段蒸留塔、 201 :第 2連続多段蒸留塔、 11, 12, 21 :導入口、 13, 23 :塔頂ガス 抜出し口、 14, 24, 18, 28 :熱交換器、 15, 25 :還流液導入口、 16, 26 :塔頂成分 抜出し口、 17, 27 :塔底液抜出し口、 31 :第 2連続多段蒸留塔の塔底成分抜出し口

Claims

請求の範囲 ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とを原料として、ジァリール力 ーボネート類を主生成物とする芳香族カーボネート類を製造する方法であって、(i)該原料を、触媒が存在する第 1連続多段蒸留塔内に連続的に供給する工程と、(ii)アルコール類およびアルキルァリールカーボネート類が生成するように、該原料 を該第 1塔内で反応させる工程と、 (iii)生成するアルコール類を含む第 1低沸点反応混合物を該第 1塔上部より連続 的に抜出すとともに、生成するアルキルァリールカーボネート類を含む第 1塔高沸点 反応混合物を該第 1塔下部より液状で連続的抜出す工程と、 (iv)該第 1塔高沸点反応混合物を、該第 1連続多段蒸留塔と連結した、触媒が存 在する第 2連続多段反応蒸留塔内に連続的に供給するするとともに、ジアルキル力 ーボネート類およびジァリールカーボネート類が生成するように、該第 2塔内で反応 させる工程と、 (V)生成したジアルキルカーボネート類を含む第 2塔低沸点反応混合物を該第 2塔 上部よりガス状で連続的に抜出すとともに、生成したジァリールカーボネート類を含 む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的に抜出す工程と、を含 み、 (a)該第 1連続多段蒸留塔内に連続的に供給されるジアルキルカーボネートが、芳 香族モノヒドロキシ化合物に対して、モル比で 0. 1〜10であって、 (b)該第 1連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下 に鏡板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部 またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近 11 い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上 12 部および Zまたは中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の 下部に 1つ以上の導入口を有するものであって、 (1)長さ L (cm)が式(1)を満足するものであり、 1500 ≤ L ≤ 8000 式(1) (2)塔の内径 D (cm)が式(2)を満足するものであり、 100 ≤ D ≤ 2000 式(2) (3)長さ (cm)と塔の内径 (cm)の比が、式(3)を満足するものであり、 2 ≤ L /Ό ≤ 40 式(3) (4)段数 nが式 (4)を満足するものであり、 20 ≤ n ≤ 120 式(4) (5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(5)を満足するも 1 11 のであり、 5 ≤ D /d ≤ 30 式(5) 1 11 (6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(6)を満足するもの 1 12 であり、 3 ≤ D /d ≤ 20 式(6) 1 12 (c)該第 2連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下 2 2 に鏡板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部 2 またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近 21 い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上 22 部および Zまたは中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の 下部に 1つ以上の導入口を有するものであって、 (1)長さ L (cm)が式 (7)を満足するものであり、 2 1500 ≤ L ≤ 8000 式(7) 2 (2)塔の内径 D (cm)が式 (8)を満足するものであり、 2 100 ≤ D ≤ 2000 式(8) 2 (3)長さ L (cm)と塔の内径 D (cm)の比が、式(9)を満足するものであり、 2 2 2 ≤ L /D ≤ 40 式(9) 2 2 (4)段数 nが式(10)を満足するものであり、 2 10 ≤ n ≤ 80 式(10) 2 (5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(11)を満足するも 2 21 のであり、 2 ≤ Ό /d ≤ 15 式(11) (6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(12)を満足するも 2 22 のである、 5 ≤ D /d ≤ 30 式(12) 2 22 ことを特徴とする方法。 [2] 前記工程 (ii)および (iv)にて、蒸留も同時に行われることを特徴とする請求項 1記 載の方法。 [3] ジァリールカーボネートの生産量力 1時間あたり 1トン以上である、請求項 1または 2に記載の方法。 [4] ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とを原料とし、この原料を触 媒が存在する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内で反応と蒸留を 同時に行い、生成するアルコール類を含む第 1塔低沸点反応混合物を該第 1塔上部 よりガス状で連続的に抜出し、生成するアルキルァリールカーボネート類を含む第 1 塔高沸点反応混合物を該第 1塔下部より液状で連続的に抜出し、該第 1塔高沸点反 応混合物を触媒が存在する第 2連続多段蒸留塔内に連続的に供給し、該第 2塔内 で反応と蒸留を同時に行い、生成するジアルキルカーボネート類を含む第 2塔低沸 点反応混合物を該第 2塔上部よりガス状で連続的に抜出し、生成するジァリール力 ーボネート類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的に抜 出し、一方、ジアルキルカーボネート類を含む第 2塔低沸点反応混合物を第 1連続 多段蒸留塔内に連続的に供給することによって、ジァリールカーボネート類を主生成 物とする、芳香族カーボネート類を連続的に製造するにあたり (a)該第 1連続多段蒸留塔内に連続的に供給されるジアルキルカーボネートが、芳 香族モノヒドロキシ化合物に対して、モル比で 0. 1〜10であって、 (b)該第 1連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下 に鏡板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部 またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近 11 い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上 12 部および Zまたは中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の 下部に 1つ以上の導入口を有するものであって、 (1)長さ (cm)が式(1)を満足するものであり、 1500 ≤ L ≤ 8000 式(1) (2)塔の内径 D (cm)が式(2)を満足するものであり、 100 ≤ D ≤ 2000 式(2) (3)長さ L (cm)と塔の内径 D (cm)の比が、式(3)を満足するものであり、 2 ≤ L /Ό ≤ 40 式(3) (4)段数 nが式 (4)を満足するものであり、 20 ≤ n ≤ 120 式(4) (5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(5)を満足するも 1 11 のであり、 5 ≤ D /d ≤ 30 式(5) 1 11 (6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(6)を満足するもの 1 12 であり、 3 ≤ D /d ≤ 20 式(6) 1 12 (c)該第 2連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下 2 2 に鏡板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部 2 またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近 21 い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上 22 部および Zまたは中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の 下部に 1つ以上の導入口を有するものであって、
(1)長さ L (cm)が式 (7)を満足するものであり、
2
1500 ≤ L ≤ 8000 式(7)
2
(2)塔の内径 D (cm)が式 (8)を満足するものであり、
2
100 ≤ D ≤ 2000 式(8)
2
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(9)を満足するものであり、
2 2
2 ≤ L /D ≤ 40 式(9)
2 2
(4)段数 nが式(10)を満足するものであり、
2
10 ≤ n ≤ 80 式(10) (5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(11)を満足するも
2 21
のであり、
2 ≤ D /d ≤ 15 式(11)
2 21
(6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(12)を満足するも
2 22
のである、
5 ≤ D /d ≤ 30 式(12)
2 22
ことを特徴とするジァリールカーボネートを主生成物とする芳香族カーボネート類の 工業的製造方法。
[5] ジァリールカーボネートの生産量力 1時間あたり 1トン以上であることを特徴とする 請求項 4記載の方法。
[6] 該 d と該 d が式(13)を満足し、且つ該 d と該 d が式(14)を満足する、
11 12 21 22
1 ≤ d /d ≤ 5 式(13)
12 11
1 ≤ d /d ≤ 6 式(14)
21 22
ことを特徴とする請求項 1ないし 5のうち何れか一項に記載の方法。
[7] 該第 1連続多段蒸留塔の L 、 D 、 L ZD 、 n、 D Zd 、 D Zd
1 1 1 1 1 1 11 1 12 がそれぞれ、 2
OOO ≤ L ≤ 6000、 150 ≤ D ≤ 1000、 3 ≤ L /D ≤ 30、 3 0 ≤ n ≤ 100、 8 ≤ Ό /d ≤ 25、 5 ≤ D
11 1 Zd ≤ 18であり、且
1 1 12 つ、
該第 2連続多段蒸留塔の L 、 D 、 L ZD、 n、 D Zd 、 D Zd
2 2 2 2 2 2 21 2 22 がそれぞれ、 20
00 ≤ L ≤ 6000、 150 ≤ D ≤ 1000、 3 ≤ L /D ≤ 30、 15
2 2 2 2
≤ n ≤ 60, 2. 5 ≤ D /d ≤ 12, 7 ≤ D /d ≤ 25であること
2 2 21 2 22 を特徴とする請求項 1ないし 6のうち何れか一項に記載の方法。
[8] 該第 1連続多段蒸留塔の L 、 D 、 L ZD 、 n、 D Zd 、 D Zd がそれぞれ、 2
1 1 1 1 1 1 11 1 12
500 ≤ L ≤ 5000、 200 ≤ D ≤ 800、 5 ≤ L /D ≤ 15、 40 ≤ n ≤ 90、 10 ≤ D Zd ≤ 25, 7 ≤ Ό /d ≤ 15であり、且
1 1 11 1 12
つ、
該第 2連続多段蒸留塔の L 、 D 、 L ZD、 n、 D Zd 、 D Zd がそれぞれ、 25
2 2 2 2 2 2 21 2 22
00 ≤ L ≤ 5000、 200 ≤ D ≤ 800、 5 ≤ L /D ≤ 15、 20
2 2 2 2 ≤ n ≤ 50、 3 ≤ D Zd ≤ 10、 9 ≤ D Zd ≤ 20であることを特
2 2 21 2 22
徴とする請求項 1ないし 7のうち何れか一項に記載の方法。
[9] 該第 1連続多段蒸留塔および該第 2連続多段蒸留塔が、それぞれ該インターナル としてトレイおよび Zまたは充填物を有する蒸留塔であることを特徴とする請求項 1な いし 8のうち何れか一項に記載の方法。
[10] 該第 1連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔であ り、該第 2連続多段蒸留塔が、該インターナルとして充填物およびトレイの両方を有 する蒸留塔であることを特徴とする請求項 9記載の方法。
[11] 該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該トレイそれぞれが、多孔 板部とダウンカマー部を有する多孔板トレイであることを特徴とする請求項 9または 10 記載の方法。
[12] 該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: L000個の孔を有するもので あることを特徴とする請求項 11記載の方法。
[13] 該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする請求 項 11または 12記載の方法。
[14] 該第 2連続多段蒸留塔が、該インターナルとして充填物を上部に、トレィを下部に 有する蒸留塔であることを特徴とする請求項 9または 10に記載の方法。
[15] 該第 2連続多段蒸留塔の該インターナルの該充填物が 1基または 2基以上の規則 充填物であることを特徴とする請求項 9ないし 14のうち何れか一項に記載の方法。
[16] 該第 2連続多段蒸留塔の該規則充填物が、メラパック、ジェムパック、テクノバック、 フレキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッドから選 ばれた少なくとも一種であることを特徴とする請求項 15に記載の方法。
[17] 該第 1連続多段蒸留塔として、 2基以上の蒸留塔を用いることを特徴とする請求項 1 ないし 16のうち何れか一項に記載の方法。
[18] 該第 2連続多段蒸留塔として、 2基以上の蒸留塔を用いることを特徴とする請求項 1 ないし 17のうち何れか一項に記載の方法。
[19] 請求項 1ないし 18のうち何れか一項に記載の方法で製造され、ハロゲン含有量が 0
. lppm以下である芳香族カーボネート類。 反応および蒸留を行うための第 1連続多段蒸留塔と、該第 1連続多段蒸留塔と連 結した、反応および蒸留を行うための第 2連続多段蒸留塔と、を備える反応蒸留装置 であって、(a)該第 1連続多段蒸留塔が、長さ L (cm) ,内径 D (cm)の円筒形の胴 部の上下に鏡板部を有し、内部に段数 nをもつインターナルを有する構造をしており 、塔頂部またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部または
11
それに近い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であつ
12
て塔の上部および Zまたは中間部に 1つ以上の導入口、該液抜出し口より上部であ つて塔の下部に 1つ以上の導入口を有するものであって、
(1)長さ L (cm)が式(1)を満足するものであり、
1500 ≤ L ≤ 8000 式(1)
(2)塔の内径 D (cm)が式(2)を満足するものであり、
100 ≤ D ≤ 2000 式(2)
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(3)を満足するものであり、
2 ≤ L /Ό ≤ 40 式(3)
(4)段数 nが式 (4)を満足するものであり、
20 ≤ n ≤ 120 式(4)
(5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(5)を満足するも
1 11
のであり、
5 ≤ D /d ≤ 30 式(5)
1 11
(6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(6)を満足するもの
1 12
であり、
3 ≤ D /d ≤ 20 式(6)
1 12
(b)該第 2連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下
2 2
に鏡板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部
2
またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近
21
い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上
22
部および Zまたは中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の 下部に 1つ以上の導入口を有するものであって、 (1)長さ L (cm)が式 (7)を満足するものであり、
2
1500 ≤ L ≤ 8000 式(7)
2
(2)塔の内径 D (cm)が式 (8)を満足するものであり、
2
100 ≤ D ≤ 2000 式(8)
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(9)を満足するものであり、
2 2
2 ≤ L /D ≤ 40 式(9)
2 2
(4)段数 nが式(10)を満足するものであり、
2
10 ≤ n ≤ 80 式(10)
2
(5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(11)を満足するも
2 21
のであり、
2 ≤ D /d ≤ 15 式(11)
2 21
(6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(12)を満足するも
2 22
のである、
5 ≤ D /d ≤ 30 式(12)
2 22
ことを特徴とする反応蒸留装置。
[21] 該 d と該 d が式(13)を満足し、且つ該 d と該 d が式(14)を満足する、
1 ≤ d /d ≤ 5 式(13)
12 11
1 ≤ d /d ≤ 6 式(14)
21 22
ことを特徴とする請求項 20記載の反応蒸留装置。
[22] 該第 1連続多段蒸留塔の L 、 D 、 L ZD 、 n、 D Zd 、 D Zd がそれぞれ、 2
1 1 1 1 1 1 11 1 12
000 ≤ L ≤ 6000、 150 ≤ D ≤ 1000、 3 ≤ L /D ≤ 30、 3 0 ≤ n ≤ 100、 8 ≤ Ό /d ≤ 25、 5 ≤ D Zd ≤ 18であり、且
1 1 11 1 12 つ、
該第 2連続多段蒸留塔の L 、 D 、 L ZD、 n、 D Zd 、 D Zd がそれぞれ、 20
2 2 2 2 2 2 21 2 22
00 ≤ L ≤ 6000、 150 ≤ D ≤ 1000、 3 ≤ L /D ≤ 30、 15
2 2 2 2
≤ n ≤ 60, 2. 5 ≤ D /d ≤ 12, 7 ≤ D /d ≤ 25であること
2 2 21 2 22 を特徴とする請求項 20または 21に記載の反応蒸留装置。
[23] 該第 1連続多段蒸留塔の L 、 D 、 L ZD 、 n、 D Zd 、 D Zd がそれぞれ、 2 500 ≤ L ≤ 5000、 200 ≤ D ≤ 800、 5 ≤ L /D ≤ 15、 40 ≤ n ≤ 90、 10 ≤ D Zd ≤ 25, 7 ≤ Ό /d ≤ 15であり、且
1 1 11 1 12
つ、
該第 2連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd がそれぞれ、 25
2 2 2 2 2 2 21 2 22
00 ≤ L ≤ 5000、 200 ≤ D ≤ 800、 5 ≤ L /D ≤ 15、 20
2 2 2 2
≤ n ≤ 50, 3 ≤ D /d ≤ 10, 9 ≤ D /d ≤ 20であることを特
2 2 21 2 22
徴とする請求項 20ないし 22のうち何れか一項に記載の反応蒸留装置。
[24] 該第 1連続多段蒸留塔および該第 2連続多段蒸留塔が、それぞれ該インターナル としてトレイおよび Zまたは充填物を有する蒸留塔であることを特徴とする請求項 20 ないし 23のうち何れか一項に記載の反応蒸留装置。
[25] 該第 1連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔であ り、該第 2連続多段蒸留塔が、該インターナルとして充填物およびトレイの両方を有 する蒸留塔であることを特徴とする請求項 24記載の反応蒸留装置。
[26] 該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該トレイそれぞれが、多孔 板部とダウンカマー部を有する多孔板トレイであることを特徴とする請求項 24または 2
5記載の反応蒸留装置。
[27] 該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: L000個の孔を有するもので あることを特徴とする請求項 26記載の反応蒸留装置。
[28] 該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする請求 項 26または 27記載の反応蒸留装置。
[29] 該第 2連続多段蒸留塔が、該インターナルとして充填物を上部に、トレィを下部に 有する蒸留塔であることを特徴とする請求項 24または 25記載の反応蒸留装置。
[30] 該第 2連続多段蒸留塔の該インターナルの該充填物が 1基または 2基以上の規則 充填物であることを特徴とする請求項 24ないし 29のうち何れか一項に記載の反応蒸 留装置。
[31] 該第 2連続多段蒸留塔の該規則充填物が、メラパック、ジェムパック、テクノバック、 フレキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッドから選 ばれた少なくとも一種であることを特徴とする請求項 30に記載の反応蒸留装置。 該第 1連続多段蒸留塔として、 2基以上の蒸留塔を用いることを特徴とする請求項 2 ないし 31のうち何れか一項に記載の反応蒸留装置。
該第 2連続多段蒸留塔として、 2基以上の蒸留塔を用いることを特徴とする請求項 2 ないし 32のうち何れか一項に記載の反応蒸留装置。
PCT/JP2005/012818 2004-07-14 2005-07-12 芳香族カーボネート類を工業的に製造する方法 WO2006006588A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05765686A EP1767518A4 (en) 2004-07-14 2005-07-12 Process for producing aromatic carbonate on industrial scale
BRPI0513225-8A BRPI0513225A (pt) 2004-07-14 2005-07-12 processo para a produção de um carbonato aromático, e, carbonato potássio, aparelho de destilação reativa
EA200700257A EA010033B1 (ru) 2004-07-14 2005-07-12 Способ промышленного производства ароматического карбоната
US11/632,170 US7531616B2 (en) 2004-07-14 2005-07-12 Process for industrial production of an aromatic carbonate
JP2006529056A JP4224104B2 (ja) 2004-07-14 2005-07-12 芳香族カーボネート類を工業的に製造する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-207662 2004-07-14
JP2004207662 2004-07-14

Publications (1)

Publication Number Publication Date
WO2006006588A1 true WO2006006588A1 (ja) 2006-01-19

Family

ID=35783928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012818 WO2006006588A1 (ja) 2004-07-14 2005-07-12 芳香族カーボネート類を工業的に製造する方法

Country Status (8)

Country Link
US (1) US7531616B2 (ja)
EP (1) EP1767518A4 (ja)
JP (1) JP4224104B2 (ja)
CN (1) CN100532348C (ja)
BR (1) BRPI0513225A (ja)
EA (1) EA010033B1 (ja)
SA (2) SA05260229B1 (ja)
WO (1) WO2006006588A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936556B2 (ja) * 2005-12-16 2012-05-23 旭化成ケミカルズ株式会社 芳香族カーボネートの工業的製造法
JP4936555B2 (ja) * 2005-12-16 2012-05-23 旭化成ケミカルズ株式会社 高純度ジアリールカーボネートの工業的製造法
JP2013043116A (ja) * 2011-08-24 2013-03-04 Toagosei Co Ltd 無堰多孔板塔およびこれを用いた易重合性化合物の蒸留方法
JP2015038160A (ja) * 2014-11-28 2015-02-26 旭化成ケミカルズ株式会社 ジアリールカーボネートの製造方法
CN115501631A (zh) * 2022-09-19 2022-12-23 山东华仙浩森生物科技有限公司 用于甜叶菊成分提取的蒸馏釜
WO2023058681A1 (ja) 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001257A1 (ja) * 2004-06-25 2006-01-05 Asahi Kasei Chemicals Corporation 芳香族カーボネートの工業的製造方法
IN242739B (ja) 2004-07-13 2010-09-10 Asahi Kasei Chemicals Corp
EA010066B1 (ru) 2004-08-25 2008-06-30 Асахи Касеи Кемикалз Корпорейшн Способ производства высокочистого дифенилкарбоната в промышленном масштабе
EA010425B1 (ru) 2004-10-14 2008-08-29 Асахи Касеи Кемикалз Корпорейшн Способ получения диарилкарбоната высокой чистоты
IN2014DN07584A (ja) * 2007-02-16 2015-07-10 Sabic Innovative Plastics Ip
EP2121563B1 (en) * 2007-02-16 2016-05-04 SABIC Global Technologies B.V. Process for manufacturing dimethyl carbonate
DE102008029514A1 (de) 2008-06-21 2009-12-24 Bayer Materialscience Ag Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
DE102009016853A1 (de) 2009-04-08 2010-10-14 Bayer Materialscience Ag Verfahren zur Herstellung von Diaryl- oder Alkylarylcarbonaten aus Dialkylcarbonaten
DE102010042937A1 (de) 2010-10-08 2012-04-12 Bayer Materialscience Aktiengesellschaft Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
EP2650278A1 (de) 2012-04-11 2013-10-16 Bayer MaterialScience AG Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
CN103349846B (zh) * 2013-07-09 2015-04-01 浙江合盛硅业有限公司 有机硅高沸点环体混合物精馏提纯十甲基环五硅氧烷的装置及提纯工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2528412A1 (de) 1974-06-25 1976-01-08 Snam Progetti Verfahren zur herstellung von aromatischen carbonaten
DE2552907A1 (de) 1974-11-25 1976-05-26 Anic Spa Verfahren zur herstellung von aromatischen carbonaten
DE2736062A1 (de) 1977-08-10 1979-02-22 Bayer Ag Verfahren zur herstellung aromatischer kohlensaeureester
JPS5463023A (en) 1977-10-26 1979-05-21 Mitsubishi Chem Ind Ltd Ester exchange of carbonate
US4182726A (en) 1974-06-25 1980-01-08 Snamprogetti, S.P.A. Process for the preparation of aromatic carbonates
JPS56123948A (en) 1974-06-25 1981-09-29 Anic Spa Manufacture of diphenylcarbonic ester
WO1991009832A1 (fr) * 1989-12-28 1991-07-11 Asahi Kasei Kogyo Kabushiki Kaisha Procede de production en continu de carbonate aromatique
JPH04100824A (ja) * 1990-08-21 1992-04-02 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートの製法
JP2003516376A (ja) * 1999-12-08 2003-05-13 ゼネラル・エレクトリック・カンパニイ ジアリールカーボネートの連続生産法及び装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA010603B1 (ru) * 2004-06-25 2008-10-30 Асахи Касеи Кемикалз Корпорейшн Способ промышленного производства ароматического карбоната
WO2006001257A1 (ja) 2004-06-25 2006-01-05 Asahi Kasei Chemicals Corporation 芳香族カーボネートの工業的製造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182726A (en) 1974-06-25 1980-01-08 Snamprogetti, S.P.A. Process for the preparation of aromatic carbonates
JPS56123948A (en) 1974-06-25 1981-09-29 Anic Spa Manufacture of diphenylcarbonic ester
JPS56123949A (en) 1974-06-25 1981-09-29 Anic Spa Manufacture of bisphenol a polyalkylcarbonic ester
JPS51105032A (en) 1974-06-25 1976-09-17 Snam Progetti Hokozokutansanenno seiho
DE2528412A1 (de) 1974-06-25 1976-01-08 Snam Progetti Verfahren zur herstellung von aromatischen carbonaten
GB1499530A (en) 1974-06-25 1978-02-01 Anic Spa Process for producing aromatic carbonates
US4045464A (en) 1974-11-25 1977-08-30 Anic, S.P.A. Process for the preparation of aromatic carbonates
DE2552907A1 (de) 1974-11-25 1976-05-26 Anic Spa Verfahren zur herstellung von aromatischen carbonaten
JPS5175044A (ja) 1974-11-25 1976-06-29 Anic Spa
DE2736062A1 (de) 1977-08-10 1979-02-22 Bayer Ag Verfahren zur herstellung aromatischer kohlensaeureester
JPS5448733A (en) 1977-08-10 1979-04-17 Bayer Ag Manufacture of aromatic carbonic ester
JPS5463023A (en) 1977-10-26 1979-05-21 Mitsubishi Chem Ind Ltd Ester exchange of carbonate
WO1991009832A1 (fr) * 1989-12-28 1991-07-11 Asahi Kasei Kogyo Kabushiki Kaisha Procede de production en continu de carbonate aromatique
JPH04100824A (ja) * 1990-08-21 1992-04-02 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートの製法
JP2003516376A (ja) * 1999-12-08 2003-05-13 ゼネラル・エレクトリック・カンパニイ ジアリールカーボネートの連続生産法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1767518A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936556B2 (ja) * 2005-12-16 2012-05-23 旭化成ケミカルズ株式会社 芳香族カーボネートの工業的製造法
JP4936555B2 (ja) * 2005-12-16 2012-05-23 旭化成ケミカルズ株式会社 高純度ジアリールカーボネートの工業的製造法
JP2013043116A (ja) * 2011-08-24 2013-03-04 Toagosei Co Ltd 無堰多孔板塔およびこれを用いた易重合性化合物の蒸留方法
JP2015038160A (ja) * 2014-11-28 2015-02-26 旭化成ケミカルズ株式会社 ジアリールカーボネートの製造方法
WO2023058681A1 (ja) 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法
CN115501631A (zh) * 2022-09-19 2022-12-23 山东华仙浩森生物科技有限公司 用于甜叶菊成分提取的蒸馏釜
CN115501631B (zh) * 2022-09-19 2023-06-20 山东华仙浩森生物科技有限公司 用于甜叶菊成分提取的蒸馏釜

Also Published As

Publication number Publication date
SA05260229B1 (ar) 2009-06-07
EA010033B1 (ru) 2008-06-30
US20070191623A1 (en) 2007-08-16
EP1767518A1 (en) 2007-03-28
JPWO2006006588A1 (ja) 2008-04-24
EA200700257A1 (ru) 2007-06-29
BRPI0513225A (pt) 2008-04-29
CN1984869A (zh) 2007-06-20
EP1767518A4 (en) 2008-08-20
CN100532348C (zh) 2009-08-26
US7531616B2 (en) 2009-05-12
SA05260228B1 (ar) 2009-02-01
JP4224104B2 (ja) 2009-02-12

Similar Documents

Publication Publication Date Title
JP4166258B2 (ja) 芳香族カーボネートの工業的製造法
JP4224103B2 (ja) 芳香族カーボネート類を工業的に製造する方法
WO2006006588A1 (ja) 芳香族カーボネート類を工業的に製造する方法
JP4174540B2 (ja) 副生アルコール類の工業的分離方法
JP4224511B2 (ja) 芳香族カーボネート類を工業的に製造する方法
JP4224510B2 (ja) 芳香族カーボネート類の工業的製造法
JP4936555B2 (ja) 高純度ジアリールカーボネートの工業的製造法
JP4192195B2 (ja) 芳香族カーボネートの工業的製造方法
JP4174541B2 (ja) 副生アルコール類を工業的に分離する方法
JP4229395B2 (ja) 芳香族カーボネートの工業的製造方法
JPWO2006025478A1 (ja) 高純度ジアリールカーボネートの工業的製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005765686

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006529056

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 25/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11632170

Country of ref document: US

Ref document number: 2007191623

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580023628.2

Country of ref document: CN

Ref document number: 1020077000852

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 200700257

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 1020077000852

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005765686

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11632170

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0513225

Country of ref document: BR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载