+

WO2006003959A1 - 高周波回路、高周波部品及びマルチバンド通信装置 - Google Patents

高周波回路、高周波部品及びマルチバンド通信装置 Download PDF

Info

Publication number
WO2006003959A1
WO2006003959A1 PCT/JP2005/012003 JP2005012003W WO2006003959A1 WO 2006003959 A1 WO2006003959 A1 WO 2006003959A1 JP 2005012003 W JP2005012003 W JP 2005012003W WO 2006003959 A1 WO2006003959 A1 WO 2006003959A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
high frequency
terminal
transmission
power amplifier
Prior art date
Application number
PCT/JP2005/012003
Other languages
English (en)
French (fr)
Inventor
Keisuke Fukamachi
Shigeru Kemmochi
Kazuhiro Hagiwara
Takahiro Yamashita
Masayuki Uchida
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to CN2005800214461A priority Critical patent/CN1977467B/zh
Priority to JP2006528771A priority patent/JP4178420B2/ja
Priority to EP05765179.6A priority patent/EP1768269B1/en
Priority to US11/571,416 priority patent/US7773956B2/en
Publication of WO2006003959A1 publication Critical patent/WO2006003959A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band

Definitions

  • the present invention relates to a high frequency circuit that can be shared by at least two communication systems for performing wireless communication between electronic devices, a high frequency component having such a high frequency circuit, and a multiband communication apparatus using the same.
  • WLAN wireless LAN
  • PCs personal computers
  • printers storage devices
  • PC peripherals such as broadband routers, fax machines, refrigerators, standard televisions (SDTVs), high definition televisions (HDTVs), digital cameras, digital videos, mobile phones, etc.
  • Wireless data transmission is performed among wireless signal transmission devices in moving objects such as electronic devices and automobiles and aircrafts.
  • IEEE802.11a supports high-speed data communication of up to 54 Mbps by using Orthogonal Frequency Division Multiples (OFDM) modulation method using the 5 GHz frequency band.
  • IEEE 802.11b utilizes the 2.4 GHz ISM (Industrial, Scientific and Medical, Industrial, Scientific and Medical) band, available without radio license, and DSSS (Direct Sequence Spread Spectrum Direct 'Sequence' Spread Spectrum) Supports high speed communication of 5.5 Mbps and 11 Mbps by Similar to IEEE 802.11b, IEEE 802.11g uses the 2.4 GHz band, and supports high-speed data communication of up to 54 Mbps by OFDM modulation.
  • the following description will be given taking the case where the first communication system is IEEE802.1 lb or IEEE802.1 lg, and the second communication system is IEEE802.1la.
  • This multi-band communication device includes two dual-band antennas that can transmit and receive in two communication systems (IEEE802.1 la and IEEE802.1 lb) having different communication frequency bands, and Modulate transmit data in the communication system and demodulate receive data
  • a diversity reception is possible, including a transmitting / receiving unit, a plurality of switching means for connecting the antenna to each transmitting / receiving unit, and a means for controlling the switching means.
  • the antenna ANT1 is connected to the reception terminal Rx of the 802.11a transmission / reception unit by six SPDT (single pole double throw) switch means (SW1 to SW6), and the antenna ANT2 is connected to the 802. lib transmission / reception unit. Connect to the receiving terminal Rx.
  • the 802.11a transceiver scans in the 5 GHz band
  • the 802.11 b transceiver scans in the 2.4 GHz band to detect all receivable channels.
  • the signal received by the antenna ANT1 is compared with the signal received by the antenna ANT2 to activate whichever of the two communication systems is desired.
  • the activated transmitting / receiving apparatus is connected to the other antenna, and the reception channel is received without being changed.
  • the two received signals obtained in this way are compared, and the antenna that can perform better reception is activated to perform diversity reception.
  • a switch for switching between a transmitter circuit and a receiver circuit a filter circuit such as a band pass filter for removing unnecessary frequency components contained in transmit and receive signals, unbalance A balance-unbalance conversion circuit that converts a signal to a balance signal, and an impedance conversion circuit are required.
  • a first object of the present invention is to use a high frequency circuit that can be shared by at least two communication systems, and to activate a communication system that receives the most desirable signal among a plurality of communication systems. It is an object of the present invention to provide a high frequency circuit capable of diversity reception.
  • a second object of the present invention is to provide a high frequency circuit capable of switching the connection between a plurality of multiband antennas and a transmitting side circuit and a receiving side circuit by a small number of switching means.
  • a third object of the present invention is to provide a high frequency circuit provided with a filter circuit, a balanced-unbalanced conversion circuit, and an impedance conversion circuit.
  • a fourth object of the present invention is to provide a high frequency component in which a high frequency circuit is formed in a small three-dimensional laminated structure.
  • a fifth object of the present invention is to provide a multi-band communication apparatus comprising a transmission / reception unit that modulates transmission data in each communication system and demodulates reception data, and a control unit of a high frequency switch circuit. It is.
  • the high frequency circuit of the present invention is used in a dual band radio apparatus which performs radio communication by selectively using the first and second frequency bands,
  • An antenna terminal connected to an antenna capable of transmitting and receiving in the first and second frequency bands
  • a first transmission terminal to which a transmission signal of the first frequency band is input;
  • a second transmission terminal to which a transmission signal of the second frequency band is input;
  • a second receiving terminal for outputting a received signal of the second frequency band
  • a switch circuit for switching connection between the antenna terminal and the first and second transmission terminals or the first and second reception terminals
  • a first power amplifier provided between the switch circuit and the first transmission terminal Circuit
  • a second power amplifier circuit provided between the switch circuit and the second transmission terminal
  • a band pass filter circuit provided between the antenna terminal and at least one of the first and second transmission terminals and the reception terminal;
  • a detection circuit having a detection voltage terminal for monitoring the output power of the first and second power amplifier circuits
  • DPDT dual pole dual throw
  • SPDT Dual Pole Dual Throw
  • the band pass filter reduces noise by passing a high frequency signal in a first pass band or a second pass band and attenuating out of the band.
  • the switch circuit includes a first diplexer circuit provided on the transmission terminal side (a high frequency signal from one of the first and second transmission terminals is passed to the antenna terminal side but to the other transmission terminal. And a second demultiplexing circuit provided on the receiving terminal side (dividing the received high frequency signal input from the antenna terminal into the first or second receiving terminal). It is preferable to do. Since the branching circuit performs branching synthesis of the signals in the first frequency band and the second frequency band, the operation of the high frequency switch in the switching circuit is only switching of transmission and reception, and control of the switching circuit is simplified. I can do it. Also, the insertion loss in the 5 GHz band used for wireless LAN etc., the amount of harmonics generation at high power input, and the parts cost etc. have the advantage that using a diplexer circuit can be smaller than using a high frequency switch circuit. .
  • the first or second branching circuit has a low frequency side filter circuit and a high frequency side filter circuit, and the low frequency side filter circuit is a phase line connected to a common terminal of the branching circuit. And a band pass filter circuit connected to the phase line.
  • a low pass filter circuit is used as the low frequency side filter circuit, and Although it is common to connect an end-pass filter circuit, the low-pass filter can be omitted if the out-of-band impedance of the band-pass filter circuit is adjusted by the phase line to have the same function as a low-pass filter. The insertion loss can be reduced, the circuit can be miniaturized, and the cost can be reduced.
  • the detection circuit includes a coupling circuit connected to an output path of the first and second power amplifier circuits and a detection diode connected to a coupling terminal of the coupling circuit, and the coupling is performed.
  • a high frequency signal is derived by a circuit
  • high frequency power is detected by the detection diode
  • a detection voltage is output to the detection voltage terminal.
  • the output voltage from the power amplifier circuit can be monitored by the detection voltage that appears at the detection voltage terminal.
  • the coupling circuit and the detection diode may be built in the power amplifier MMIC (Monolithic Microwave Integrated Circuit), but there is a concern that the detection voltage may vary if the power amplifier output matching conditions change, so It is desirable to place coupling circuits nearby.
  • a directional coupling circuit is more desirable than a capacitive coupling circuit.
  • the influence of the reflected wave at the antenna can be reduced, and output power can be monitored with high accuracy even if the antenna impedance changes.
  • the coupling circuit may be connected to a common terminal or an antenna terminal of the first branching circuit. As a result, it is not necessary to provide a coupling circuit, a detection diode and a detection voltage terminal in each of the first and second power amplifier circuits, so that miniaturization and cost reduction of the high frequency circuit can be achieved.
  • a harmonic reduction circuit may be provided between the coupling terminal of the coupling circuit and the detection diode.
  • the harmonic reduction circuit is for reducing harmonic distortion generated by the detection diode, and preferably has a configuration such as a low pass filter circuit, a notch filter circuit or an attenuator circuit.
  • the harmonic reduction circuit is generally disposed in the main path through which the transmission and reception signals pass, but in the high frequency circuit of the present invention, it is disposed between the coupling circuit and the detection diode. As a result, the transmission loss of the main path through which the transmission and reception signals pass is eliminated, and high quality of communication and low power consumption can be achieved.
  • a low pass filter circuit or a notch fill between the power amplifier circuit and the antenna terminal It is preferable to provide a power circuit. As a result, harmonic distortion of the high frequency signal output from the power amplifier circuit can be reduced, and the harmonics radiated from the antenna terminal force can be reduced in practical use.
  • a balance-unbalance conversion circuit may be connected to at least one of the first and second transmission terminals. It is also possible to connect a balanced-unbalanced conversion circuit to at least one of the first and second receiving terminals.
  • the transmit and receive terminals of the high frequency circuit of the present invention are connected to RFIC, the RFIC has balanced input and balanced output since balanced input / output is better in noise resistance than unbalanced input / output. Often there is.
  • the power amplifier circuit and switch circuit used in the high frequency circuit of the present invention are unbalanced devices, it is often necessary to provide a balanced-unbalanced conversion circuit as an interface with the RFIC. Therefore, by providing a balanced-unbalanced conversion circuit in the high frequency circuit of the present invention, it is possible to miniaturize the communication apparatus and reduce the cost.
  • the matching circuit is necessary to match the balanced-unbalanced conversion circuit with the branching circuit, band pass filter circuit, power amplifier circuit, etc. connected thereto, and to reduce the insertion loss in the pass band.
  • the balanced-unbalanced conversion circuit may be provided with a DC feed terminal.
  • the DC feed terminal applies a DC voltage to the balanced input terminal or balanced output terminal of the RFIC to which the high frequency circuit of the present invention is connected, so the need for a separate choke coil can be eliminated by installing the DC feed terminal. It is possible to reduce the size and cost of the
  • a low noise amplifier circuit may be provided in at least one of the first and second reception terminals.
  • the low noise amplifier has the function of amplifying the weak reception signal detected by the antenna and improving the reception sensitivity. It is natural to use a low noise amplifier with a low noise figure to improve the receiving sensitivity. It is also effective to improve the receiving sensitivity by reducing the loss on the input side of the low noise amplifier.
  • a low pass filter circuit or a notch between the low noise amplifier circuit and the antenna terminal Preferably, a filter circuit is provided.
  • the low pass filter circuit has a function to reduce harmonic distortion which also generates low noise amplifier circuit power. Specifically, part of the high power signal output from the first or second power amplifier circuit at the time of transmission is input to the low noise amplifier through the switching circuit, and the harmonics are generated by the low noise amplifier in the off operation. Occur. This harmonic is reflected and antenna power is emitted. In order to prevent the emission of the harmonics, it is effective to provide a low noise filter circuit or a notch filter circuit between the low noise amplifier circuit and the antenna terminal.
  • the first or second power amplifier circuit is an amplifier having two or more stages of amplification transistors, and the first and second power amplifier circuits are connected between the input side of the final stage transistor of the amplifier and the output side of the previous stage transistor.
  • a band pass filter circuit is preferably connected between them. This configuration can reduce out-of-band noise of the power amplifier output. Further, since the band pass filter circuit is not connected to the output stage of the power amplifier circuit, it is possible to reduce the increase in current consumption and the efficiency deterioration of the power amplifier due to the insertion loss of the band pass filter.
  • the band pass filter mainly includes two or more transmission line resonators whose one end is grounded.
  • the band pass filter is integrated in the laminated substrate and the power amplifier circuit is mounted on the laminated substrate.
  • an advantage is obtained that the temperature shift of the resonance frequency is less likely to require a seal.
  • the high frequency component of the present invention having the above-mentioned high frequency circuit comprises: a laminated body formed by forming an electrode pattern made of a conductive paste in each layer which also has ceramic dielectric strength and laminating integrally; and mounted on the surface of the laminated body. And at least one semiconductor constituting the switch circuit, the power amplifier circuit and the low noise amplifier circuit, wherein at least a part of the inductance element and the capacitance element in the high frequency circuit is constituted by the electrode pattern.
  • the device is characterized in that it is mounted on the surface of the laminated substrate.
  • an inductance element, a capacitance element, a resistance element or the like may be mounted on the laminate if necessary. According to the present invention, it is possible to obtain a small high-frequency component in which the front end portion between the antenna strength and the RFIC is integrated with the laminate.
  • a multiband communication apparatus using the above-described high frequency circuit or high frequency component is provided
  • the communication system is characterized by comprising a transmission / reception unit that demodulates transmission data and reception data, and a circuit control unit that controls the switch circuit, the power amplifier circuit, and the low noise amplifier circuit.
  • the multiband communication device of the present invention can be miniaturized, consume less power, and cost less.
  • the high frequency circuit of the present invention having the above configuration can activate a communication system in which the most desirable signal is received, while suppressing power consumption with less switching means in data communication by WLAN or the like.
  • a three-dimensional laminated structure of the high frequency circuit to be obtained provides a small high frequency component, and further, a transmitting / receiving unit that modulates transmission data in each communication system and demodulates received data, and a high frequency switch.
  • a multiband communication apparatus can be obtained by providing a circuit control unit that controls a power amplifier, a low noise amplifier, and the like.
  • the multi-band communication device of the present invention is a personal computer (PC), a printer, a storage device, a PC peripheral device such as a broadband router, a fax machine, a refrigerator, a standard television (SDTV), a high definition television (HDTV), a digital camera, It is useful as digital video, electronic devices such as mobile phones, and wireless signal transmission devices in mobile objects such as automobiles and aircraft.
  • PC personal computer
  • printer printer
  • storage device such as a PC peripheral device such as a broadband router, a fax machine, a refrigerator, a standard television (SDTV), a high definition television (HDTV), a digital camera
  • SDTV standard television
  • HDTV high definition television
  • digital camera digital camera
  • FIG. 1 is a block diagram showing a high frequency circuit according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of an equivalent circuit of a switch circuit in the high frequency circuit of the present invention.
  • FIG. 3 is a block diagram showing another example of the equivalent circuit of the switch circuit in the high frequency circuit of the present invention.
  • FIG. 4 is a block diagram showing still another example of the equivalent circuit of the switch circuit in the high frequency circuit of the present invention.
  • FIG. 5 is a view showing still another example of the equivalent circuit of the band pass filter circuit in the high frequency circuit of the present invention.
  • FIG. 6 is a view showing an example of an equivalent circuit of a branching circuit in the high frequency circuit of the present invention.
  • FIG. 7 is a view showing another example of the equivalent circuit of the branching circuit in the high frequency circuit of the present invention.
  • FIG. 8 This is a figure showing still another example of the equivalent circuit of the detection circuit in the high frequency circuit of the present invention.
  • Fig. 9 is a block diagram showing a high frequency circuit according to another embodiment of the present invention.
  • FIG. 11 A diagram showing an equivalent circuit of a notch filter circuit in the high frequency circuit of the present invention.
  • Fig. 13 is a block diagram showing a high frequency circuit according to still another embodiment of the present invention.
  • Fig. 14 is a block diagram showing a high frequency circuit according to still another embodiment of the present invention.
  • FIG. 15 is a view showing an example of an equivalent circuit of a balanced-unbalanced circuit used for the high frequency circuit of the present invention.
  • Fig. 16 is a view showing another example of the equivalent circuit of the balanced-unbalanced circuit used for the high frequency circuit of the present invention.
  • FIG. 17 is a view showing an example of an equivalent circuit of a power amplifier circuit used for the high frequency circuit of the present invention.
  • FIG. 18 A diagram showing an example of an equivalent circuit of a power amplifier circuit used for the high frequency circuit of the present invention.
  • FIG. 19 is a view showing an example of an equivalent circuit of a power amplifier circuit used for the high frequency circuit of the present invention.
  • FIG. 20 is a block diagram showing a high frequency circuit according to still another embodiment of the present invention.
  • FIG. 21 is a view showing an example of an equivalent circuit of a DPDT switch used in the high frequency circuit of the present invention.
  • FIG. 22 This is a figure showing another example of the equivalent circuit of the DPDT switch used for the high frequency circuit of the present invention.
  • FIG. 23 is a diagram showing still another example of the equivalent circuit of the DPDT switch used in the high frequency circuit of the present invention.
  • FIG. 24 shows still another example of the equivalent circuit of the DPDT switch used in the high frequency circuit of the present invention. It is a figure.
  • FIG. 25 is a view showing an equivalent circuit of a high frequency circuit according to still another embodiment of the present invention.
  • FIG. 26 is a view showing an equivalent circuit of a high frequency circuit according to still another embodiment of the present invention.
  • FIG. 27 is a perspective view showing the appearance of a high frequency component according to an embodiment of the present invention.
  • FIG. 28 is a bottom view of the laminated substrate constituting the high frequency component according to one embodiment of the present invention.
  • FIG. 29 is a view showing a lamination pattern inside a laminated substrate constituting a high frequency component according to an embodiment of the present invention.
  • FIG. 30 is a schematic view showing the pattern arrangement of the laminated substrate constituting the high frequency component according to one embodiment of the present invention.
  • FIG. 31 is a block diagram showing a multiband communication apparatus according to an embodiment of the present invention.
  • FIG. 32 is a block diagram showing a multiband communication apparatus of Japanese Patent Laid-Open No. 2003-169008.
  • FIG. 1 A circuit of a multiband communication apparatus according to an embodiment of the present invention is shown in FIG.
  • the circuit of this embodiment will be specifically described by taking IEEE 802.11b as the first communication system and IEEE 802.11a as the second communication system as an example.
  • IEEE802.11g uses the same frequency band as IEEE802.1 lb
  • the circuit part that handles the high frequency signal of IEEE802.11b can also be used for IEEE802.11g.
  • a transmitter / receiver unit corresponding to each is required.
  • two multiband antennas ANT1 and ANT2 capable of transmitting and receiving in the 2.4 GHz band and 5 GHz band, and two multiband antennas ANT1 and ANT2 are connected, and a transmitting circuit and a receiving circuit are provided. It is connected to the switch circuit 1 for switching connection with the circuit, the 2.4 GHz band power amplifier circuit 2 connected to the first transmission input P1 of the switch circuit 1, and the second transmission input P2 of the switch circuit 1
  • the 5 GHz band power amplifier circuit 3 the detection circuit 8 connected to the output side of the power amplifier circuits 2 and 3, and between the two multiband antenna terminals ANT1 and ANT2 and the RFIC circuit 9 Band-pass filter circuits 4 to 7 are provided. Each input / output terminal is connected to a desired IEEE 802.11a transceiver and an IEEE 802.11 b transceiver (RFIC) 9.
  • the band pass filter circuit is not limited to the position shown in FIG.
  • a band pass filter circuit may be connected between the power amplifier circuit 2 and the switch circuit 1 or between the switch circuit 1 and the antenna terminal.
  • Figure 5 shows an example of the band pass filters 4 to 7 equivalent circuits.
  • This band pass filter circuit is composed of two inductance elements Lpgl and Lpg2, and capacitors Cpgl, Cpg2, Cpg3, Cpg4, Cpg5, Cpg6 and Cpg7.
  • FIG. 2 shows an equivalent circuit of an example of the switch circuit 1.
  • This switch circuit is composed of a DPDT (dipole double throw) high frequency switch 10 and two branching circuits 13 and 14, and the high frequency switch 10 comprises first and second multiband antennas ANT1 and ANT2 and And switch the connection with the second demultiplexing circuits 13 and 14.
  • DPDT dipole double throw
  • the first diplexer circuit 13 is a filter circuit that passes high frequency signals in the 2.4 GHz band (IEEE 802.11b) but attenuates high frequency signals in the 5 GHz band (IEEE 802.11a); It consists of a combination of a filter circuit that passes the high-frequency signal of IEEE802.11a) but attenuates the transmit signal of 2.4 GHz band (IEEE802.1 lb). Therefore, a 2.4 GHz band high frequency signal input from the transmitting circuit of IEEE 802.11b to port P1 of the first demultiplexing circuit 13 appears at port P5 of the first demultiplexing circuit 13 but does not appear at port P2. The transmission power of IEEE 802.11a is also input to the port P2 of the first demultiplexing circuit 13.
  • a high frequency signal of 5 GHz band appears at the port P5 of the first demultiplexing circuit 13 but does not appear at the port P1.
  • the high frequency signal appearing at the port P5 is input to the high frequency switch 10 and output from the antenna terminal ANT1 or ANT2.
  • the second demultiplexing circuit 14 is a filter circuit that passes high frequency signals in the 2.4 GHz band (IEEE802.11b) but attenuates high frequency signals in the 5 GHz band (IEEE802.11a); This is a combination of filter circuits that pass the high-frequency signal of IEEE802.11a) but attenuate the transmission signal of 2.4 GHz band (IEEE802.1 lb). Therefore, among the high frequency signals incident from the antenna ANT1 or ANT2 and appearing at the port P6 of the high frequency switch 10, the high frequency signal of 2.4 GHz band appears at the port P3 of the second branching circuit 14, but appears at the port P4. Also, a high frequency signal of 5 GHz band appears at the fourth port P4 of the second demultiplexer 14 but does not appear at the port P3.
  • the high frequency switch is not limited to the DPDT switch 10. Also, in the case of a small communication device (for example, a mobile phone) whose mounting area is limited, such as two or more antennas can not be arranged sufficiently apart, etc., connect one antenna to the switch circuit 1 It is also good. In this case, as shown in Fig. 3, a single antenna, double throw (SPDT) high frequency switch circuit 11 is used in one antenna. Connect or connect the SP3T high frequency switch 12 to a single antenna as shown in Fig. 4 and for example the Bluetooth (2.4 GHz band) transmission / reception terminal B LT-TR other than IEEE802.lib and IEEE802.11a. It is also possible to correspond to switching. As described above, the type of high frequency switch can be changed as appropriate depending on the corresponding communication system and the number of antennas.
  • SPDT single antenna, double throw
  • the branching circuits 13 and 14 can be configured by appropriately combining a low pass filter circuit including an inductance element and a capacitance element, a high pass filter circuit, and a notch filter circuit.
  • FIG. 6 shows an example of the branching circuit 14.
  • the diplexer circuit 14 includes a low pass filter circuit connected between P6 and P3 and a high pass filter circuit connected between P6 and P4.
  • the inductance element L12 and the capacitance element C12 have a frequency of 5 GHz.
  • the inductance element Lf3 and the capacitance element Cf4 are set to resonate in the 2.4 GHz band.
  • signals in the 2.4 GHz band and 5 GHz band can be demultiplexed into P3 and P4, respectively.
  • the same circuit as this is also applicable to the branching circuit 13.
  • FIG. 7 shows another example of the branching circuit.
  • the low-pass filter in the branching circuit 14 is constituted only by the transmission line Lfl.
  • the configuration of the power branching circuit 14 depends on the relationship with the circuit configuration of the band bus filter 6 connected thereto. You can decide. For example, by adjusting the length of the transmission line Lfl so that the impedance seen from the common terminal P6 to the P3 side of the branching circuit 14 becomes substantially open in the 5 GHz band, the branching circuit 14 is similar to a low pass filter. Can demonstrate their functions. As a result, the insertion loss of the branching circuit 14 can be reduced, and the size and cost can be reduced.
  • the branching circuit 13 can also have the same circuit configuration.
  • FIG. 8 shows an example of a detection circuit.
  • the detection circuit 8 includes a coupling circuit 15 connected to the output end of the power amplifier circuit, a detection diode 17, and a smoothing circuit 18 including a capacitor C and a resistor R.
  • the output power of the first and second power amplifier circuits is monitored and output to the detection voltage terminal Vdet.
  • the coupling circuit 15 and the detection diode 17 are integrated in the power amplifier MMIC, but it is preferable to provide the coupling circuit 15 near the antenna terminal.
  • the coupling circuit 15 may be capacitive coupling, but a directional coupling circuit is desirable. By this, when the output matching condition of the power amplifier (mainly the impedance of the antenna) changes, the fluctuation of the detection voltage can be reduced, and the influence of the reflected wave at the antenna is also reduced. Power can be monitored. Between the coupling circuit 15 and the detection diode 17, it is preferable to provide a circuit 16 for reducing harmonic distortion generated by the detection diode 17.
  • a preferred circuit configuration of the harmonic reduction circuit 16 is a low pass filter shown in (a) to (c) of FIG. 10, a notch filter shown in (a) and (b) of FIG. 11, or (a) and (c) of FIG.
  • the attenuator shown in b) is preferred. Since the harmonic reduction circuit 16 is connected between the coupling circuit 15 and the detection diode 17, it is possible to achieve high quality and low power consumption of communication with almost no deterioration of the transmission loss of the main path through which the transmission and reception signals pass. It becomes possible.
  • the detection circuit 8 is, for example, between the common terminal P7 of the diplexer circuit 13 and the output end P5 of the high frequency switch 11, or as shown by a dotted line. It is preferable to arrange between them. With the arrangement of the detection circuit 8 shown in FIG. 9, there is no need to provide a coupling circuit, a detection diode, a detection voltage terminal and the like for each of the first and second power amplifier circuits 2 and 3. Acupuncture becomes possible.
  • a low pass filter circuit between the power amplifier circuits 2 and 3 and the antenna. As shown in FIG. 13, for example, either between the power amplifier circuit 3 and the diplexer circuit 13, between the high frequency switch circuit 10 and the detector circuit 8, or between the antenna terminals ANT1 and ANT2 and the high frequency switch circuit 10. If the low pass filter circuit 19 is disposed, the harmonic distortion generated in the power amplifier circuit 2 or 3 or the detection circuit 8 is reduced, and the harmonics radiated by the antenna terminal force are reduced to a practicable level. In FIG. 13, the low pass filter circuit 19 is emphasized in a dot pattern, and for the sake of simplicity, the low pass filter circuit 19 needs to be in at least one position. Just do it.
  • the branching circuit 13 has the function of a low pass filter circuit, it is not necessary to arrange a low pass filter circuit between the power amplifier circuit 2 and the branching circuit 13.
  • An example of the equivalent circuit of the low noise filter circuit 19 is shown in FIG.
  • the notch filter circuit shown in FIG. 11 may be used instead of the low pass filter circuit for the purpose of reducing harmonic distortion at a specific frequency.
  • a first transmission input terminal llbg-T, a second transmission input terminal lla-T, a first reception output terminal llbg-R or a second reception output terminal lla-R , Balanced-unbalanced circuits 20, 21, 22 or 23 can be connected.
  • Each balanced-unbalanced conversion circuit 20, 21, 22 or 23 is composed of an inductance element and a capacitance element, and is capable of changing impedance. You can have The bandpass filter circuit and balanced-unbalanced converter circuit can be configured with an unbalanced input balanced output type SAW filter.
  • FIG. 15 shows an example of the equivalent circuit of the balanced-unbalanced circuit 20, 21, 22 or 23.
  • the balanced-unbalanced circuit consists of inductance elements L1 a, L1b, L2 and L3.
  • L1 a, L1b, L2 and L3 In FIG. 14, it is only necessary to have at least one balanced-unbalanced circuit in which the balanced-unbalanced circuit 20-23 is shown at all positions for convenience.
  • the low pass filter circuit 19 may have at least one of the forces shown at all positions as in FIG.
  • FIG. 16 An equivalent circuit of a preferred example of the balanced-unbalanced circuit 20, 21, 22 or 23 shown in FIG. 15 is shown in FIG.
  • the circuit of FIG. 16 has a DC feed terminal Vdd between the inductance element L2 and the inductance element L3 in addition to the circuit element shown in FIG.
  • a capacitor C3 is connected between the DC feed terminal Vdd and the source.
  • the capacitor C3 can adjust the phase difference between the high frequency signals input to the balanced terminals Outl and Out2.
  • the unbalanced end In is connected to the input side of the band-pass filter circuit 6, 7 or the power amplifier circuit, and the balanced end Outl, Out2 is connected to the transmission side output of the RFIC !.
  • the power amplifier circuit 2 includes a semiconductor MMIC chip 82 integrally including an input matching circuit 81, an output matching circuit 85, a collector power supply circuit 83, a base power supply circuit 84, transistor circuits 86 and 87, and a matching circuit and a bias control circuit. It is composed of The input end 8 a is connected to the band pass filter 4, and the output end 8 b is connected to the port P 1 of the branching circuit 13. The voltage applied from the Vcl terminal is applied to the collector of the transistor through the choke coils bvll, bvl2, bvl4, bv and noise cut capacitors C10, C30, C6, C9.
  • the voltage applied from the Vbl terminal is controlled via the transmission line bvl3, bvl3a, bvl3b and noise cut capacitors C4, C5. Applied to the circuit.
  • the voltage converted by the bias control circuit is applied to the base of the transistor, and the high frequency signal input from the input terminal 8a is amplified and output from the output terminal 8b.
  • the power amplifier circuit 3 includes an input matching circuit 91, an output matching circuit 95, a collector power supply circuit 93, a base power supply circuit 94, and a semiconductor MMIC chip 92 integrally including a transistor circuit, a matching circuit and a bias control circuit. ing.
  • the input end 9 a is connected to the band pass filter 5, and the output end 8 b is connected to the port P 2 of the branching circuit 13.
  • the voltage applied from the Vc2 terminal is through the choke coil L4, avll, avl3, avl4, av, avl7, avl8, and noise cut capacitors C24, C40, C19, C19, C17, avc1, avc2, avc3 to the collector of the transistor Applied.
  • the voltage applied from the Vb2 terminal is applied to the bias control circuit via the transmission lines avp7, avll9, avllO and the noise cut capacitors C15, C20.
  • the voltage converted by the bias control circuit is applied to the base of the transistor, and the high frequency signal input to the input terminal 9a is amplified and output from the output terminal 9b.
  • FIG. 14 Another example of the equivalent circuit of the first power amplifier circuit 2 of FIG. 14 is shown in FIG.
  • a band pass filter 4 ′ is provided between the collector of the transistor 86 and the base of the transistor 87.
  • the band pass filter 4 ' significantly reduces the noise caused by the thermal noise as follows.
  • noise to which RFIC power is also input and noise due to thermal noise of the power amplifier circuit itself are included in the output signal of the power amplifier circuit 2.
  • the former noise can be reduced by connecting the bandpass filter 4 to the input side of the power amplifier circuit 2.
  • the latter noise can not be removed by the bandpass filter on the input side.
  • By connecting a band pass filter at the output side noise due to thermal noise can be removed, but the insertion loss of the output stage increases.
  • the band pass filter 4 'shown in FIG. 19 mainly includes two or more transmission line resonators whose one end is grounded, but may have a surface acoustic wave filter, an FBAR filter, or the like.
  • low noise amplifier circuits 24 and 25 are provided in the first reception terminal l lbg-R or the second reception terminal l la-R. .
  • Low noise amplifier 24 and 25 have the function of amplifying the weak reception signal detected by the antenna and improving the reception sensitivity. In order to improve the reception sensitivity, it is also effective to reduce the loss on the input side of a low-noise amplifier, which generally uses a low-noise amplifier with a low noise figure.
  • the low noise amplifier circuit is integrated in a high frequency circuit, the lead-out on the input side of the low noise amplifier can be minimized, so that the reception sensitivity can be improved more than when the low noise amplifier is provided outside.
  • the low pass filter circuit 19 which can be added is emphasized by a dot pattern in FIG. 20 and the force is shown at all positions. Of course, it is good if at least one low pass filter circuit is attached.
  • the low pass filter circuit 26 has a function of reducing harmonic distortion generated from the low noise amplifier circuits 24 and 25. Specifically, during the transmission operation, part of the high power signal output from the first or second power amplifier circuit 2 or 3 is input to the low noise amplifier 24 or 25 through the high frequency switch circuit 10 and turned off. There is a problem that harmonics generated from the low noise amplifiers 24 and 25 become reflected waves and antenna power is radiated. In order to solve this problem, it is effective to provide a low pass filter circuit 26 between the low noise amplifier circuits 24 and 25 and the antenna terminals ANT1 and ANT2.
  • the low-pass filter circuit 26 which can be added may be a force shown in all the positions with emphasis in a dot pattern in FIG. 20. Of course, at least one low-noise filter circuit may be added. Also, in order to reduce harmonic distortion of a specific frequency, a notch filter circuit, a band pass filter circuit, etc. shown in FIG. 11 can be used instead of the low pass filter circuit.
  • These high frequency switch circuits are mainly composed of switching elements such as a field effect transistor FET or a diode, and appropriately include an inductance element and a capacitance element.
  • the diversity reception operation when the switch circuit of FIG. 21 is used for the DPDT switch circuit 10 of FIG. 2 is as follows.
  • this switch circuit 10 voltages controlled by the switch circuit controller are applied to the control terminals VI and V2, and as shown in Table 1, connection and disconnection between each port are performed.
  • the high-frequency switch circuit 10 is controlled by the switch circuit control unit so that the connection mode 2 is established.
  • the second multiband antenna ANT2 and the branching circuit 14 on the receiving circuit side are connected.
  • the amplitudes of the reception signals received by the first and second dual band antennas ANT1 and ANT2 are compared, and a communication system to be activated is selected, and a transmission / reception circuit of the communication system Select the antenna to connect with. According to the present invention, even when disturbances such as fading occur, diversity communication can be performed by selecting the most preferable communication system.
  • the second multiband antenna ANT2 is connected to the splitter circuit 14 on the receiving circuit side, and scanning is performed in the 5 GHz band and the 2.4 GHz band to detect all receivable channels. And select one communication system from the comparison of the amplitudes of the obtained signals, activate the transmission / reception circuit unit, and then connect the multiband antenna connected to the activated transmission / reception circuit unit to the first multiband. Change to antenna ANT1 to receive without changing the receive channel, compare received signals at two antennas, and receive better Naturally, it is also possible to select one of the antennas as the one to be activated and perform diversity reception.
  • FIG. 25 shows a high frequency circuit according to an embodiment of the present invention. This circuit is connected to the input side and the output side of the high frequency switch 10, the band pass filter circuit 4 connected to the output side of the 2.4 GHz band power amplifier circuit 2, and the 5 GHz band power amplifier circuit 3, respectively.
  • the detection circuit 8 includes a directional coupling circuit including transmission lines lcl and lc2, a transmission line lc3 for matching adjustment provided between the transmission line lc2 and the detection diode Ds, and a resistor Rc2 having a function as an attenuator. And.
  • the transmission lines Lpbl, Lpb2, Lpal and Lpa2 connected to the unbalanced input side of the balanced-unbalanced conversion circuit 20-23 are matched with the band pass filter circuits 5, 6, the power amplifier circuit 2 and the low pass filter circuit 26. To reduce the insertion loss in the passband.
  • FIG. 26 shows a high frequency circuit according to another embodiment of the present invention.
  • the difference with the high frequency circuit in Fig. 25 is that (1) 5 GHz band low noise amplifier circuit 27 is connected between 5 GHz band reception output terminal 1 la-R and low pass filter circuit 26, (2) antenna A notch circuit 28 consisting of an inductance element lsl and a capacitance element csl and a notch circuit 29 consisting of an inductance element ls2 and a capacitance element cs2 are connected between the terminals ANT1 and ANT2 and the high frequency switch circuit 10, and (3) bandpass The filter circuit 4 is connected to the input side of the power amplifier circuit 2 in the 2.4 GHz band, and (4) the balanced-unbalanced conversion circuits 20, 21, 22, 23 are omitted.
  • the reception sensitivity can be enhanced by amplifying the weak reception signal detected by the antenna by the low noise amplifier circuit 27.
  • Power amplifier times Notch filter circuits 28 and 29 are disposed for the purpose of reducing harmonic distortion generated in the path, detection circuit, low noise amplifier and the like.
  • FIG. 27 shows the appearance of the multiband high frequency component of the present invention configured on the laminate substrate 100
  • FIG. 28 shows the bottom of the laminate substrate 100
  • FIG. 29 shows the laminate substrate 100 (the equivalent circuit of FIG.
  • the electrode configuration of each layer of The high frequency components are the high frequency switching circuit 10, the branching circuit 13 on the transmission side, the branching circuit 14 on the reception side, the low pass filter circuits 19 and 26, the power amplifier circuits 2 and 3, the band pass filter circuits 4 and 5, 6, a low noise amplifier circuit 27, and a detection circuit 8.
  • Laminated substrate 100 is, for example, a ceramic dielectric LTCC that can be sintered at a low temperature of 1000 ° C. or less.
  • a conductive sheet of Ag or Cu with low resistivity is printed on a 10 to 200 ⁇ m thick green sheet made of (Low-Temperature-Cofired Ceramics) to form an electrode pattern, and a plurality of electrode patterns are included.
  • the ceramic dielectric for example, a material containing Al, Si and Sr as main components and Ti, Bi, Cu, Mn, Na and K as accessory components, Al, Si and Sr as main components, Ca
  • a material containing Pb, Na and K as a compound, a material containing Al, Mg, Si and Gd, and a material containing Al, Si, Zr and Mg are preferable.
  • the dielectric constant of the ceramic dielectric is about 5 to 15.
  • ceramic with 0 as main subject
  • a transmission line or the like capable of sintering at a high temperature may be formed on a green sheet that also has a bulk dielectric strength by using HTCC (high temperature co-fired ceramic) technology.
  • HTCC high temperature co-fired ceramic
  • the laminate substrate 100 consists of a sheet of 16 layers. On the top surface of the uppermost sheet 1, a plurality of land electrodes for mounting chip components not built into the laminated substrate 100 are formed.
  • the MMIC circuit 82 in which the power amplifier circuit and bias control circuit of the first power amplifier circuit 2 and the high-frequency switch circuit 10, the low noise amplifier 27 and the first power amplifier circuit 2 are built in land electrodes MMIC circuit 92 with built-in power amplification circuit and bias control circuit, Schottky diode Ds forming a part of detection circuit 8, chip resistance Rs, Rcl, Rc2, chip capacitor Cs, first high frequency power amplification Chip capacitors Cl, C3, C4, C5, C6, C9, C30 that make up the circuit of the amplifier 8, and chip capacitors C14, C15, C17, C19, C20, C40 that make up the circuit of the second high frequency power amplifier 9
  • the electrode pattern structure in the laminate substrate 100 is shown in FIG.
  • Line electrodes, capacitor electrodes, and ground electrodes connected by via holes are formed on the green sheets 2-16.
  • a ground electrode GND is formed on the lowermost green sheet 16
  • terminal electrodes for mounting on a circuit board are formed on the back of the green sheet 16 as shown in FIG.
  • Power Amplifier Circuit In the area where the MMIC chips 82 and 92 are mounted, thermal vias are provided to increase the heat dissipation from the top to the back.
  • wide ground electrodes GND are formed on sheets 2, 4, 14 and 16 to suppress unnecessary noise radiation.
  • the electrode patterns constituting each circuit three-dimensionally formed on the laminated substrate 100 may be separated by the ground electrode GND and the via hole connected thereto, or may be stacked in the stacking direction. Place it like.
  • FIG. 30 schematically shows a planar arrangement of each functional block.
  • the band pass filter circuits 4, 5, 6 are disposed at the end of the laminate substrate 100 with the least interference with other circuit blocks. If the isolation between the input matching circuits 81 and 91 of the single amplifier circuit, the collector power supply circuits 83 and 93, and the output matching circuits 85 and 95 is insufficient, the high frequency power amplifier may malfunction or oscillate.
  • shields 30 (indicated by a notch), such as ground electrodes and through-hole electrodes, are three-dimensionally arranged.
  • the planar ground electrodes GND on the sheets 2, 4, 6, 8, 14, and 16 and via holes connected to the ground electrodes GND are also arranged appropriately.
  • a large ground electrode GND and a small ground electrode GND surrounding the large ground electrode GND are formed on the back surface of the laminate substrate 100.
  • antenna ports ANT1 and ANT2 transmit port llbg-T and receive port llbg-R of wireless LAN of 2.4 GHz band, and transmit port lla of wireless LAN of 5 GHz band.
  • -T and receive port lla-R, ground port GND control ports VI and V2 of the first and second high frequency switch circuits, power ports Vcl, Vbl, Vc2, Vb2 and low noise amplifier for power amplifier circuit
  • a detection circuit output voltage port Vdet The display of each terminal electrode in FIG. 28 is the same as the display in FIG. In the illustrated example, the terminal electrodes are LGA (Land Grid Array), but may be BGA (Ball Grid Array).
  • the switch circuit 10, the power amplifier circuits 82 and 92, and the low noise amplifier 27 mounted on the land electrodes may be mounted on the laminated substrate in a bare state and sealed with a flexible tube.
  • the band pass filter circuit, the diplexer circuit, the low pass filter, the detection circuit, the input / output matching circuit of the power amplifier, the power supply circuit, etc. on the laminated substrate in this way, the high frequency circuit module can be miniaturized It is.
  • FIG. 31 is a block diagram showing a multiband communication apparatus according to the present invention.
  • the transmission / reception terminals llbg-T, lla-T, llbg-R and lla-R of the high frequency component 1 are connected to the RFIC 9 respectively.
  • the RFIC 9 is connected to the baseband IC 32 and the baseband IC 32 communicates with the communication device main body 33 through an interface.
  • the data sent from the communication device main body 33 is converted to an IQ signal by the baseband IC 32, is modulated to a high frequency signal by the RF IC 9, and is further transmitted to the high frequency component 1. It is input to lla-T.
  • the high frequency signal amplified by the power amplifier is radiated from the antenna ANT1 or ANT2.
  • a high frequency signal input from the antenna ANT1 or ANT2 is input to the RFIC 9 through the reception terminal llbg-R or lla-R of the high frequency component 1, and is demodulated into an IQ signal.
  • the IQ signal is converted to data by the baseband IC 32 and then transmitted to the communication device body 33.
  • the high frequency component circuit 1 is controlled by the baseband IC 32 via the control terminals VI, V2, Vbl and Vb2. Adjust the output power of RFIC 9 with baseband IC 32 based on the value of detection voltage terminal V det. It is controllable by.
  • the reception sensitivity, communication channel availability, etc. are judged by the baseband IC 32, and communication is performed under optimum conditions. It is preferable to set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)
  • Radio Transmission System (AREA)

Abstract

 アンテナ端子と、4つの入出力とを適宜切り替え接続するスイッチ回路を有し、第一の受信用出力はフィルタ回路を介して第一の通信システムの受信回路に接続し、第二の受信用出力はフィルタ回路を介して第二の通信システムの受信回路に接続し、第一の送信用入力は、パワーアンプ回路を介して第一の通信システムの送信回路に接続し、第二の送信用入力は、パワーアンプ回路を介して第二の通信システムの送信回路に接続し、アンテナと送信用入力又は受信出力との間のいずれか1つ以上の経路にバンドパスフィルタ回路を有し、パワーアンプ回路の出力電力をモニターする検波電圧端子を有する検波回路を具備する高周波回路。

Description

明 細 書
高周波回路、高周波部品及びマルチバンド通信装置
技術分野
[0001] 本発明は電子機器間の無線通信を行う少なくとも 2つの通信システムに共用可能な 高周波回路、及びかかる高周波回路を有する高周波部品、並びにこれを用いたマ ルチバンド通信装置に関する。
背景技術
[0002] 現在、 IEEE802.il規格に代表される無線 LAN (WLAN)によるデータ通信が広く普及 している。例えばパーソナルコンピュータ(PC)、プリンタ、記憶装置、ブロードバンド ルーター等の PCの周辺機器、 FAX,冷蔵庫、標準テレビ (SDTV)、高品位テレビ (H DTV)、デジタルカメラ、デジタルビデオ、携帯電話等の電気電子機器、自動車ゃ航 空機等の移動体内の無線信号伝達装置等の間で、無線データ伝送が行われている
[0003] WLANには種々の規格がある。なかでも IEEE802.11aは、 5 GHzの周波数帯域を利 用し、 OFDM (Orthogonal Frequency Division Multiples:直交周波数多重分割)変調 方式により最大 54 Mbpsの高速データ通信をサポートしている。 IEEE802.11bは、無 線免許なしに利用可能な 2.4 GHzの ISM (Industrial, Scientific and Medical,産業、科 学及び医療)帯域を利用し、 DSSS (Direct Sequence Spread Spectrumダイレクト'シー ケンス 'スペクトル拡散)方式で 5.5 Mbps及び 11 Mbpsの高速通信をサポートしている 。 IEEE802.11gは、 IEEE802.11bと同様に 2.4 GHz帯域を利用し、 OFDM変調方式に より最大 54 Mbpsの高速データ通信をサポートしている。第一の通信システムを IEEE8 02.1 lb又は IEEE802.1 lgとし、第二の通信システムを IEEE802.1 laとした場合を例にと つて、以下説明する。
[0004] WLANを用いたマルチバンド通信装置の一例は特開 2003-169008号に記載されて いる。このマルチバンド通信装置は、図 32に示すように、通信周波数帯が異なる 2つ の通信システム(IEEE802.1 la、 IEEE802.1 lb)で送受信が可能な 2個のデュアルバン ドアンテナと、各通信システムで送信データを変調し、受信データを復調する 2個の 送受信部と、前記アンテナを各送受信部に接続する複数のスィッチ手段と、前記スィ ツチ手段を制御する手段とを備え、ダイバーシティ受信可能である。
[0005] このマルチバンド通信装置では、通信を開始する前に周波数スキャンを行ない、受 信可能な周波数チャンネルを探索する。スキャン動作を行なう場合、 6つの SPDT (単 極双投)のスィッチ手段(SW1〜SW6)によりアンテナ ANT1を 802.11a送受信部の受 信端子 Rxに接続するとともに、アンテナ ANT2を 802. lib送受信部の受信端子 Rxに 接続する。 802.11a送受信部では 5 GHz帯でスキャンするとともに、 802.11b送受信部 では 2.4 GHz帯でスキャンし、受信可能な全てのチャンネルを検出する。次に、アン テナ ANT1で受信した信号とアンテナ ANT2で受信した信号とを比較し、 2つの通信シ ステムのうち望ましい方の信号が受信される方をアクティブにする。
[0006] このスキャン動作後に、アクティブにされた送受信装置を他方のアンテナに接続し、 受信チャンネルを変更せずに受信する。このようにして得られた 2つの受信信号を比 較し、より良好な受信ができる方のアンテナをアクティブにして、ダイバーシティ受信 を行う。
[0007] し力しながら、このようなマルチバンド通信装置には以下の問題があることが分った
[0008] (1)スキャン動作では、フ ージング等の外乱が考慮されな 、ので、受信信号が最大 となる通信システムが必ず選択されるとは限らない。
[0009] (2)高周波信号の経路を切り替えるのに多くのスィッチ手段を必要とするので、(a)制 御が複雑であり、 (b)スィッチ手段の伝送損失が累積し、特にアンテナから入射する 高周波信号の品質が劣化し、 (c)スィッチ手段の切り替えに消費される電力が、ノート PCや携帯電話等のようにバッテリーを電源とする機器では無視できな!/、。
[0010] (3) WLANの高周波回路では、ダイバーシティスィッチや送信回路、受信回路を切り 替えるスィッチの他に、送受信信号に含まれる不要な周波数成分を除去するバンド パスフィルタ等のフィルタ回路、不平衡信号を平衡信号に変換する平衡ー不平衡変 換回路、及びインピーダンス変換回路が必要である。
[0011] (4)携帯電話、ノート PC、 PCMCIA (Personal Computer Memory Card International A ssociation)のネットワークカード等に内蔵するために、小型化が望まれている。 発明の開示
発明が解決しょうとする課題
[0012] 従って、本発明の第一の目的は、少なくとも 2つの通信システムに共用可能な高周 波回路であって、複数の通信システムの中から最も望ましい信号を受信する通信シ ステムをアクティブィ匕し、ダイバーシティ受信を行うことができる高周波回路を提供す ることである。
[0013] 本発明の第二の目的は、少な 、スィッチ手段で複数のマルチバンドアンテナと送 信側回路及び受信側回路との接続を切り替えることが可能な高周波回路を提供する ことである。
[0014] 本発明の第三の目的は、フィルタ回路、平衡ー不平衡変換回路及びインピーダン ス変換回路を備えた高周波回路を提供することである。
[0015] 本発明の第四の目的は、高周波回路を小型の三次元積層構造に構成した高周波 部品を提供することである。
[0016] 本発明の第五の目的は、各通信システムでの送信データを変調し、受信データを 復調する送受信部と、高周波スィッチのスィッチ回路の制御部を備えたマルチバンド 通信装置を提供することである。
課題を解決するための手段
[0017] 本発明の高周波回路は、第一及び第二の周波数帯域を選択的に用いて無線通信 を行うデュアルバンド無線装置に用いられ、
前記第一及び第二の周波数帯域において送受信が可能なアンテナと接続するァ ンテナ端子と、
前記第一の周波数帯域の送信信号が入力される第一の送信端子と、
前記第二の周波数帯域の送信信号が入力される第二の送信端子と、
前記第一の周波数帯域の受信信号が出力される第一の受信端子と、
前記第二の周波数帯域の受信信号が出力される第二の受信端子と、
前記アンテナ端子と、前記第一及び第二の送信端子又は前記第一及び第二の受 信端子との接続を切り替えるスィッチ回路と、
前記スィッチ回路と前記第一の送信端子との間に設けられた第一のパワーアンプ 回路と、
前記スィッチ回路と前記第二の送信端子との間に設けられた第二のパワーアンプ 回路と、
前記アンテナ端子と、前記第一及び第二の送信端子及び受信端子の少なくとも 1 つとの間に設けられたバンドパスフィルタ回路と、
前記第一及び第二のパワーアンプ回路の出力電力をモニターする検波電圧端子 を有する検波回路と
を具備することを特徴とする。
[0018] ダイバーシティ動作が可能なように、スィッチ回路として、 2つのアンテナ端子と送受 信経路を切り替える DPDT (Dual Pole Dual Throw)スィッチ回路を使用するのが好ま しいが、 1つのアンテナ端子と送受信経路を切り替える SPDT (Dual Pole Dual Throw) スィッチ回路等を使用することも可能である。 DPDTスィッチ回路及び SPDTスィッチ 回路は、通信システム、アンテナの本数等により適宜変更可能である。
[0019] 前記バンドパスフィルタは、第一の通過帯域又は第二の通過帯域では高周波信号 を通過させ、帯域外では減衰させることにより、ノイズを低減する。
[0020] 前記スィッチ回路は、送信端子側に設けられた第一の分波回路 (前記第一及び第 二の送信端子の一方からの高周波信号をアンテナ端子側へ通すが他方の送信端子 へ通さない)と、受信端子側に設けられた第二の分波回路 (前記アンテナ端子から入 力される受信した高周波信号を、前記第一又は第二の受信端子に分波する)とを具 備するのが好ましい。前記分波回路は第一の周波数帯域及び第二の周波数帯域に おける信号の分波合成を行うので、スィッチ回路中の高周波スィッチの動作は送受 信の切替のみとなり、スィッチ回路の制御が簡略ィ匕できる。また無線 LAN等で使用さ れる 5 GHz帯での挿入損失、ハイパワー入力時の高調波発生量、部品コスト等は、 高周波スィッチ回路より分波回路を使用した方が少なくて済むという利点がある。
[0021] 前記第一又は第二の分波回路は低周波側フィルタ回路及び高周波側フィルタ回 路を有し、前記低周波側フィルタ回路は、分波回路の共通端子に接続された位相線 路、及び前記位相線路に接続されたバンドパスフィルタ回路により構成されているの が好ましい。低周波側フィルタ回路としてローパスフィルタ回路を用い、その後段にバ ンドパスフィルタ回路を接続するのが一般的であるが、ローパスフィルタと同様の機能 を有するようにバンドパスフィルタ回路の帯域外のインピーダンスを前記位相線路に より調整すれば、ローパスフィルタを省略でき、挿入損失の低減及び回路の小型化 及び低コストィ匕が可能となる。
[0022] 前記検波回路は、前記第一及び前記第二のパワーアンプ回路の出力経路に接続 された結合回路と、前記結合回路の結合端子に接続された検波用ダイオードとを有 し、前記結合回路により高周波信号を導出し、前記検波用ダイオードで高周波電力 を検波し、前記検波電圧端子に検波電圧を出力するのが好ましい。検波電圧端子に 現れる検波電圧により、パワーアンプ回路からの出力電力をモニターすることができ る。結合回路及び検波ダイオードはパワーアンプ MMIC (Monolithic Microwave Integ rated Circuit)に内蔵されていても良いが、パワーアンプ出力整合条件が変動した場 合に検波電圧にばらつきが生じる懸念があるため、アンテナ端子の近くに結合回路 を設けるのが望ましい。結合回路としては、容量結合回路より方向性結合回路の方 が望ましい。方向性結合回路を用いることにより、アンテナでの反射波の影響が小さ くなり、アンテナのインピーダンスが変動しても高精度で出力電力をモニター可能とな る。
[0023] 前記結合回路は前記第一の分波回路の共通端子又はアンテナ端子に接続されて いても良い。これにより、各第一及び第二のパワーアンプ回路に結合回路、検波ダイ オード及び検波電圧端子を設ける必要がなくなるため、高周波回路の小型化及び低 コストィ匕が可能となる。
[0024] 前記結合回路の結合端子と検波用ダイオードとの間に高調波低減回路を設けても 良い。高調波低減回路は、検波用ダイオードで発生する高調波歪を低減するもので 、ローパスフィルタ回路、ノッチフィルタ回路又はアツテネータ回路等の構成を有する のが好ましい。高調波低減回路は送受信信号が通過する主経路に配置するのがー 般的であるが、本発明の高周波回路では結合回路と検波用ダイオードとの間に配置 されている。これにより送受信信号が通過する主経路の伝送損失劣化がなくなり、通 信の高品質ィ匕及び低消費電力化が可能となる。
[0025] パワーアンプ回路とアンテナ端子との間に、ローパスフィルタ回路又はノッチフィル タ回路を設けるのが好ましい。これによりパワーアンプ回路から出力された高周波信 号の高調波歪を低減することができ、アンテナ端子力も放射される高調波を実用レべ ノレ〖こ低減することができる。
[0026] 前記第一及び第二の送信端子の少なくとも一方に平衡ー不平衡変換回路を接続 しても良い。前記第一及び第二の受信端子の少なくとも一方に平衡ー不平衡変換回 路を接続することも可能である。本発明の高周波回路の送信端子及び受信端子は R FICに接続されるが、平衡入出力の方が不平衡入出力より耐ノイズ性に優れているた めに、 RFICは平衡入力、平衡出力であることが多い。一方、本発明の高周波回路に 使用するパワーアンプ回路、スィッチ回路等は不平衡デバイスであるため、 RFICとの インターフェースとして平衡ー不平衡変換回路を設ける必要があることが多い。従つ て、本発明の高周波回路に平衡ー不平衡変換回路を設けることにより、通信装置の 小型化及び低コストィ匕が可能となる。
[0027] 前記平衡ー不平衡変換回路の不平衡入力側に整合回路を設けるのが好ましい。
整合回路は、平衡—不平衡変換回路とこれに接続される分波回路又はバンドパスフ ィルタ回路、パワーアンプ回路等との整合をとり、通過帯域の挿入損失を低減させる のに必要である。
[0028] 前記平衡ー不平衡変換回路に DCフィード端子を設けても良い。 DCフィード端子は 、本発明の高周波回路が接続される RFICの平衡入力端子又は平衡出力端子に直 流電圧を印加するので、 DCフィード端子の設置によりチョークコイルを別途設ける必 要がなくなり、通信装置の小型化及び低コストィ匕が可能となる。
[0029] 前記第一及び第二の受信端子の少なくとも一方にローノイズアンプ回路を設けても 良い。ローノイズアンプはアンテナで検知した微弱な受信信号を増幅し、受信感度を 向上させる機能を有する。受信感度を向上させるのに雑音指数の小さいローノイズァ ンプを使用するのは当然である力 ローノイズアンプの入力側の損失を小さくすること も受信感度の向上に効果的である。ローノイズアンプ回路を高周波回路内に設ける ことにより、ローノイズアンプの入力側の接続を短くすることができるため、外部にロー ノイズアンプを設ける場合より受信感度を高くすることができる。
[0030] 前記ローノイズアンプ回路とアンテナ端子との間にローパスフィルタ回路又はノッチ フィルタ回路が設けられているのが好ましい。ローパスフィルタ回路は、ローノイズァ ンプ回路力も発生する高調波歪を低減する機能を有する。具体的には、送信時に前 記第一又は第二のパワーアンプ回路から出力された大電力信号の一部は前記スィ ツチ回路を経てローノイズアンプに入力され、オフ動作のローノイズアンプで高調波 が発生する。この高調波は反射波となってアンテナ力 放射される。この高調波の放 射を防止するために、ローノイズアンプ回路とアンテナ端子との間にローノ スフィルタ 回路又はノッチフィルタ回路を設けるのが有効である。
[0031] 前記第一又は第二のパワーアンプ回路は、 2段以上の増幅トランジスタを有する増 幅器であり、前記増幅器における最終段のトランジスタの入力側とその前段のトラン ジスタの出力側との間にバンドパスフィルタ回路が接続されているのが好ましい。この 構成により、パワーアンプ出力の帯域外雑音を低減できる。またバンドパスフィルタ回 路はパワーアンプ回路の出力段に接続されないので、バンドパスフィルタの挿入損 失によるパワーアンプの消費電流増加及び効率劣化も低減することできる。
[0032] 前記バンドパスフィルタは一端が接地された 2本以上の伝送線路共振器を主構成と するのが好ましい。これにより、バンドパスフィルタを積層基板内に集積し、パワーァ ンプ回路を積層基板上に搭載した小型の積層体モジュールを得ることができる。また バンドパスフィルタとして弾性表面波フィルタを使用する場合と比較して、共振周波 数の温度シフトが少なぐ密封の必要もないという利点が得られる。
[0033] 上記高周波回路を有する本発明の高周波部品は、セラミック誘電体力もなる各層 に導電ペーストからなる電極パターンを形成し積層一体化してなる積層体と、前記積 層体の表面に搭載された素子とを具備し、前記高周波回路中のインダクタンス素子 及びキャパシタンス素子の少なくとも一部は前記電極パターンにより構成され、前記 スィッチ回路、前記パワーアンプ回路及び前記ローノイズアンプ回路を構成する少な くとも 1つの半導体素子は前記積層基板の表面に搭載されていることを特徴とする。 半導体素子以外に、インダクタンス素子、容量素子、抵抗素子等を必要に応じて前 記積層体に搭載しても良い。本発明により、アンテナ力も RFICまでの間のフロントェ ンド部を積層体に一体ィ匕した小型の高周波部品が得られる。
[0034] 上記高周波回路又は高周波部品を用いた本発明のマルチバンド通信装置は、各 通信システムでの送信データ及び受信データを復調する送受信部と、前記スィッチ 回路、パワーアンプ回路及び前記ローノイズアンプ回路の制御を行う回路制御部と を具備することを特徴とする。本発明のマルチバンド通信装置は、小型化、低消費電 カイ匕、及び低コストィ匕が可能である。
発明の効果
[0035] 上記構成を有する本発明の高周波回路は、 WLAN等によるデータ通信において、 少ないスィッチ手段で電力消費を抑えながら、最も望ましい信号が受信される通信シ ステムをアクティブにすることができる。
[0036] 力かる高周波回路を三次元的な積層構造とすることにより、小型の高周波部品が 得られ、さらに各通信システムでの送信データを変調し受信データを復調する送受 信部と、高周波スィッチ、パワーアンプ、ローノイズアンプ等を制御する回路制御部を 備えることにより、マルチバンド通信装置が得られる。本発明のマルチバンド通信装 置は、パーソナルコンピュータ(PC)、プリンタ、記憶装置、ブロードバンドルーター等 の PCの周辺機器、 FAX,冷蔵庫、標準テレビ (SDTV)、高品位テレビ(HDTV)、デジ タルカメラ、デジタルビデオ、携帯電話等の電子機器、自動車や航空機等の移動体 内の無線信号伝達装置として有用である。
図面の簡単な説明
[0037] [図 1]本発明の一実施例による高周波回路を示すブロック図である。
[図 2]本発明の高周波回路におけるスィッチ回路の等価回路の一例を示すブロック 図である。
[図 3]本発明の高周波回路におけるスィッチ回路の等価回路の別の例を示すブロッ ク図である。
[図 4]本発明の高周波回路におけるスィッチ回路の等価回路のさらに別の例を示す ブロック図である。
[図 5]本発明の高周波回路におけるバンドパスフィルタ回路の等価回路のさらに別の 例を示す図である。
[図 6]本発明の高周波回路における分波回路の等価回路の一例を示す図である。
[図 7]本発明の高周波回路における分波回路の等価回路の別の例を示す図である。 圆 8]本発明の高周波回路における検波回路の等価回路のさらに別の例を示す図で ある。
圆 9]本発明の別の実施例による高周波回路を示すブロック図である。
圆 10]本発明の高周波回路におけるローパスフィルタ回路の等価回路を示す図であ る。
圆 11]本発明の高周波回路におけるノッチフィルタ回路の等価回路を示す図である 圆 12]本発明の高周波回路におけるアツテネータ回路の等価回路を示す図である。 圆 13]本発明のさらに別の実施例による高周波回路を示すブロック図である。
圆 14]本発明のさらに別の実施例による高周波回路を示すブロック図である。
圆 15]本発明の高周波回路に用いる平衡-不平衡回路の等価回路の一例を示す図 である。
圆 16]本発明の高周波回路に用いる平衡-不平衡回路の等価回路の別の例を示す 図である。
圆 17]本発明の高周波回路に用いるパワーアンプ回路の等価回路の一例を示す図 である。
圆 18]本発明の高周波回路に用いるパワーアンプ回路の等価回路の一例を示す図 である。
圆 19]本発明の高周波回路に用いるパワーアンプ回路の等価回路の一例を示す図 である。
圆 20]本発明のさらに別の実施例による高周波回路を示すブロック図である。
[図 21]本発明の高周波回路に用いる DPDTスィッチの等価回路の一例を示す図であ る。
圆 22]本発明の高周波回路に用いる DPDTスィッチの等価回路の別の例を示す図で ある。
[図 23]本発明の高周波回路に用いる DPDTスィッチの等価回路のさらに別の例を示 す図である。
[図 24]本発明の高周波回路に用いる DPDTスィッチの等価回路のさらに別の例を示 す図である。
[図 25]本発明のさらに別の実施例による高周波回路の等価回路を示す図である。
[図 26]本発明のさらに別の実施例による高周波回路の等価回路を示す図である。
[図 27]本発明の一実施例による高周波部品の外観を示す斜視図である。
[図 28]本発明の一実施例による高周波部品を構成する積層基板の底面図である。
[図 29]本発明の一実施例による高周波部品を構成する積層基板内部の積層パター ンを示す図である。
[図 30]本発明の一実施例による高周波部品を構成する積層基板のパターン配置を 示す概略図である。
[図 31]本発明の一実施例によるマルチバンド通信装置を示すブロック図である
[図 32]特開 2003-169008号のマルチバンド通信装置を示すブロック図である。
発明を実施するための最良の形態
[0038] 本発明の一実施例によるマルチバンド通信装置の回路を図 1に示す。 IEEE802.11b を第一の通信システムとし、 IEEE802.11aを第二の通信システムとした場合を例に取 つて、本実施例の回路を具体的に説明する。上記のように IEEE802.11gは IEEE802.1 lbと同じ周波数帯を利用するので、 IEEE802.11bの高周波信号を扱う回路部は IEEE 802. llgにも使用できる。 IEEE802.11b及び IEEE802.11gをともに扱う場合、変調方式 が異なるため、それぞれに対応した送受信部が必要となる。
[0039] このマルチバンド通信装置は、 2.4 GHz帯及び 5 GHz帯で送受信が可能な 2つのマ ルチバンドアンテナ ANT1, ANT2と、 2つのマルチバンドアンテナ ANT1、 ANT2が接 続され、送信回路及び受信回路との接続を切り替えるスィッチ回路 1と、スィッチ回路 1の第一の送信用入力 P1に接続された 2.4 GHz帯のパワーアンプ回路 2と、スィッチ 回路 1の第二の送信用入力 P2に接続された 5 GHz帯のパワーアンプ回路 3と、パワー アンプ回路 2, 3の出力側に接続された検波回路 8と、 2つのマルチバンドアンテナ端 子 ANT1、 ANT2と RFIC回路 9との間に接続されたバンドパスフィルタ回路 4〜7とを備 えている。各入出力端は、所望の IEEE802.11aの送受信部及び IEEE802.11bの送受 信部(RFIC) 9と接続している。
[0040] バンドパスフィルタ回路は図 1に示す位置に接続が限定されるわけではなぐ例え ば、パワーアンプ回路 2とスィッチ回路 1との間、又はスィッチ回路 1とアンテナ端子と の間にバンドパスフィルタ回路を接続しても良い。図 5はバンドパスフィルタ 4〜7の等 価回路の一例を示す。このバンドパスフィルタ回路は、 2つのインダクタンス素子 Lpgl 、 Lpg2と、コンデンサ Cpgl、 Cpg2、 Cpg3、 Cpg4、 Cpg5、 Cpg6、 Cpg7とからなる。
[0041] 図 2はスィッチ回路 1の一例の等価回路を示す。このスィッチ回路は、 DPDT (双極 双投)の高周波スィッチ 10と、 2つの分波回路 13, 14とからなり、高周波スィッチ 10は、 第一及び第二のマルチバンドアンテナ ANT1, ANT2と、第一及び第二の分波回路 13 , 14との接続を切り替える。
[0042] 第一の分波回路 13は、 2.4 GHz帯(IEEE802.11b)の高周波信号を通過させるが 5 G Hz帯(IEEE802.11a)の高周波信号を減衰させるフィルタ回路と、 5 GHz帯(IEEE802. 11a)の高周波信号を通過させるが 2.4 GHz帯 (IEEE802.1 lb)の送信信号を減衰させ るフィルタ回路との組合せにより構成されている。従って、 IEEE802.11bの送信回路か ら第一の分波回路 13のポート P1に入力する 2.4 GHz帯の高周波信号は、第一の分 波回路 13のポート P5に現れるがポート P2には現れず、また IEEE802.11aの送信回路 力も第一の分波回路 13のポート P2に入力する 5 GHz帯の高周波信号は、第一の分 波回路 13のポート P5に現れるがポート P1には現れない。ポート P5に現れた高周波信 号は高周波スィッチ 10に入力し、アンテナ端子 ANT1又は ANT2より出力される。
[0043] 第二の分波回路 14は、 2.4 GHz帯(IEEE802.11b)の高周波信号を通過させるが 5 G Hz帯(IEEE802.11a)の高周波信号を減衰させるフィルタ回路と、 5 GHz帯(IEEE802. 11a)の高周波信号を通過させるが 2.4 GHz帯 (IEEE802.1 lb)の送信信号を減衰させ るフィルタ回路の組合せカゝらなる。従って、アンテナ ANT1又は ANT2より入射し高周 波スィッチ 10のポート P6に現れる高周波信号のうち、 2.4 GHz帯の高周波信号は、第 二の分波回路 14のポート P3に現れるがポート P4には現れず、また 5 GHz帯の高周波 信号は、第二の分波回路 14の第ポート P4に現れるがポート P3には現れない。
[0044] 高周波スィッチは DPDTスィッチ 10に限定されるものではない。また 2本以上のアン テナを十分離隔させて配置できな 、等の実装面積に制約がある小型の通信機器 (例 えば、携帯電話)の場合、スィッチ回路 1に一本のアンテナを接続してもよい。この場 合、図 3に示すように一本のアンテナに SPDT (単極双投)の高周波スィッチ回路 11を 接続するか、図 4に示すように一本のアンテナに SP3Tの高周波スィッチ 12を接続し、 I EEE802. lib及び IEEE802.11a以外の例えば Bluetooth (2.4 GHz帯)の送受信端子 B LT-TRとの切替に対応させることもできる。このように、対応する通信システム、アンテ ナ本数等により、高周波スィッチの種類は適宜変更可能である。
[0045] 分波回路 13、 14は、インダクタンス素子及びキャパシタンス素子で構成されたロー パスフィルタ回路、ハイパスフィルタ回路及びノッチフィルタ回路を適宜組合せて構 成することができる。図 6は分波回路 14の一例を示す。例えば分波回路 14は、 P6と P3 との間に接続されたローパスフィルタ回路と、 P6と P4との間に接続されたハイパスフィ ルタ回路より構成され、インダクタンス素子 L12及びキャパシタンス素子 C12は 5 GHz帯 で直列共振し、インダクタンス素子 Lf3及びキャパシタンス素子 Cf4は 2.4 GHz帯で共 振するよう設定されている。これにより、 2.4 GHz帯及び 5 GHz帯の信号をそれぞれ P3 、 P4へ分波することができる。これと同様の回路は分波回路 13にも適用可能である。
[0046] 図 7は分波回路の別の例を示す。図 7の例では分波回路 14中のローパスフィルタは 伝送線路 Lflのみで構成されている力 分波回路 14の構成は、これに接続されるバン ドバスフィルタ 6の回路構成との関係に応じて決めることができる。例えば、分波回路 1 4の共通端子 P6から P3側を見たインピーダンスが 5 GHz帯でほぼオープンになるよう に伝送線路 Lflの長さを調整することにより、分波回路 14はローパスフィルタと同様の 機能を発揮することができる。これにより、分波回路 14の挿入損失の低減及び小型化 及び低コストィ匕が可能となる。分波回路 13も同様の回路構成をとることができる。
[0047] 図 8は検波回路の一例を示す。検波回路 8は、パワーアンプ回路の出力端に接続さ れた結合回路 15と、検波用ダイオード 17と、容量 C及び抵抗 Rからなる平滑回路 18と
2 2
を主構成とし、第一及び第二のパワーアンプ回路の出力電力をモニターし、検波電 圧端子 Vdetに出力する。結合回路 15及び検波ダイオード 17はパワーアンプ MMICに 内蔵されて 、ても良 、が、アンテナ端子の近くに結合回路 15を設けるのが好ま 、。 結合回路 15は容量結合でも良いが、方向性結合回路が望ましい。これにより、パワー アンプの出力整合条件(主にアンテナのインピーダンス)が変化した場合に検波電圧 の変動を少なくすることができ、またアンテナでの反射波の影響も小さくなるため、より 高精度に出力電力をモニターすることができる。 [0048] 結合回路 15と検波ダイオード 17との間に、検波用ダイオード 17で発生する高調波 歪を低減する回路 16を設けるのが好ましい。高調波低減回路 16の好ましい回路構成 は、図 10の (a)〜(c)に示すローパスフィルタ、図 11の (a)及び (b)に示すノッチフィルタ、 又は図 12の (a)及び (b)に示すアツテネータ等が好ましい。高調波低減回路 16は結合 回路 15と検波ダイオード 17との間に接続しているため、送受信信号が通過する主経 路の伝送損失の劣化がほとんどなぐ通信の高品質化及び低消費電力化が可能と なる。
[0049] 検波回路 8は、図 9に示すように、例えば分波回路 13の共通端子 P7と高周波スイツ チ 11の出力端 P5との間、又は点線で示すようにアンテナ端子 ANT1と高周波スィッチ 11との間に配置するのが好ましい。図 9に示す検波回路 8の配置により、第一及び第 二のパワーアンプ回路 2, 3の各々に対して、結合回路、検波ダイオード、検波電圧 端子等を設ける必要がなくなり、小型化及び低コストィ匕が可能になる。
[0050] パワーアンプ回路 2、 3とアンテナとの間にローパスフィルタ回路を設けるのが好まし い。図 13に示すように、例えばパワーアンプ回路 3と分波回路 13との間、高周波スイツ チ回路 10と検波回路 8との間、又はアンテナ端子 ANT1、 ANT2と高周波スィッチ回路 10との間のいずれかに、ローパスフィルタ回路 19を配置すると、パワーアンプ回路 2、 3又は検波回路 8で発生する高調波歪が低減し、もってアンテナ端子力 放射される 高調波は実用可能なレベルに低減する。図 13中、ローパスフィルタ回路 19はドット模 様で強調されており、かつ便宜上全ての位置で示されている力 勿論ローパスフィル タ回路 19は全ての位置にある必要はなぐ少なくとも 1つの位置にあれば良い。
[0051] 分波回路 13がローパスフィルタ回路の機能を有する場合、パワーアンプ回路 2と分 波回路 13との間にローパスフィルタ回路を配置する必要はない。ローノ スフィルタ回 路 19の等価回路の一例を図 10に示す。特定の周波数の高調波歪を低減する目的で 、図 11に示すノッチフィルタ回路をローパスフィルタ回路の代わりに使用しても良 、。
[0052] 図 14に示すように、第一の送信入力端子 llbg-T、第二の送信入力端子 lla-T、第 一の受信出力端子 llbg-R又は第二の受信出力端子 lla-Rに、平衡ー不平衡回路 2 0、 21、 22又は 23を接続することができる。各平衡—不平衡変換回路 20、 21、 22又は 2 3はインダクタンス素子及びキャパシタンス素子で構成され、インピーダンス変 能 を有することができる。バンドパスフィルタ回路及び平衡—不平衡変換回路を不平衡 入力 平衡出力型の SAWフィルタで構成しても良 ヽ。図 15は平衡ー不平衡回路 20、 21、 22又は 23の等価回路の一例を示す。平衡ー不平衡回路はインダクタンス素子 L1 a、 Llb、 L2、 L3からなる。なお図 14では、便宜上全ての位置に平衡ー不平衡回路 20 -23が示されている力 少なくとも 1つの平衡ー不平衡回路があれば良い。またローバ スフィルタ回路 19も図 13と同様に全ての位置に示されている力 少なくとも一つあれ ば良い。
[0053] 図 15に示す平衡ー不平衡回路 20、 21、 22又は 23の好ましい一例の等価回路を図 1 6に示す。図 16の回路は、図 15に示す回路素子にカ卩えて、インダクタンス素子 L2とィ ンダクタンス素子 L3との間に DCフィード端子 Vddを有する。 DCフィード端子 Vddとァ ースとの間にはコンデンサ C3が接続されている。コンデンサ C3により、平衡端 Outl, Out2に入力される高周波信号の位相差を調整することができる。不平衡端 Inはバン ドバスフィルタ回路 6、 7又はパワーアンプ回路の入力側に接続されており、また平衡 端 Outl、 Out2は RFICの送信側出力部に接続されて!、る。
[0054] DCフィード端子 Vddから直流電圧を印加すると、インダクタンス素子 L2及び L3には ほぼ同じ大きさの電流が逆方向に流れ、各平衡端 Outl、 Out2からほぼ同じ大きさの 電流が出力される。 DCフィード端子 Vddから直流電圧を印加すると RFICの送信出力 部の 2本の平衡端子にほぼ等しい直流電圧が印加されるので、別途チョークコイルを 設ける必要はない。この平衡ー不平衡回路により、電圧供給のために従来必要であ つた複数のディスクリート部品が不要になり、高周波回路を小型軽量ィ匕できる。
[0055] 図 14の第一のパワーアンプ回路 2の等価回路の一例を図 17に示す。パワーアンプ 回路 2は、入力整合回路 81、出力整合回路 85、コレクタ電源回路 83、ベース電源回 路 84、及びトランジスタ回路 86、 87、整合回路及びバイアス制御回路を一体的に有 する半導体 MMICチップ 82により構成されている。入力端 8aはバンドパスフィルタ 4に 接続され、出力端 8bは分波回路 13のポート P1に接続される。 Vcl端子より印加された 電圧は、チョークコイル bvll、 bvl2、 bvl4、 bv 及びノイズカットコンデンサ C10、 C30、 C 6、 C9を介してトランジスタのコレクタに印加される。 Vbl端子より印加された電圧は、 伝送線路 bvl3、 bvl3a、 bvl3b及びノイズカットコンデンサ C4、 C5を介してバイアス制御 回路に印加される。ノ ィァス制御回路で変換された電圧はトランジスタのベースに印 加され、入力端 8aから入力した高周波信号は増幅されて出力端 8bから出力する。
[0056] 図 14の第二のパワーアンプ回路 3の等価回路の一例を図 18に示す。パワーアンプ 回路 3は、入力整合回路 91、出力整合回路 95、コレクタ電源回路 93、ベース電源回 路 94、及びトランジスタ回路、整合回路及びバイアス制御回路を一体的に有する半 導体 MMICチップ 92により構成されている。入力端 9aはバンドパスフィルタ 5に接続さ れ、出力端 8bは分波回路 13のポート P2に接続される。 Vc2端子より印加された電圧は 、チョークコイル L4、 avll、 avl3、 avl4、 av 、 avl7、 avl8、及びノイズカットコンデンサ C2 4、 C40、 C19、 C17、 avcl、 avc2、 avc3を介してトランジスタのコレクタに印加される。 Vb 2端子より印加された電圧は、伝送線路 avp7、 avl9、 avllO及びノイズカットコンデンサ C15、 C20を介してバイアス制御回路に印加される。バイアス制御回路で変換された 電圧はトランジスタのベースに印加され、入力端 9a力 入力した高周波信号は増幅さ れて出力端 9bから出力する。
[0057] 図 14の第一のパワーアンプ回路 2の等価回路の別の例を図 19に示す。この等価回 路では、図 17と異なり、トランジスタ 86のコレクタとトランジスタ 87のベースとの間にバン ドパスフィルタ 4'が設けられている。バンドパスフィルタ 4'は以下の通り熱雑音に起因 するノイズを大幅に低減する。一般に RFIC力も入力されるノイズ、及びパワーアンプ 回路自体の熱雑音に起因するノイズが、パワーアンプ回路 2の出力信号に含まれる。 前者のノイズはパワーアンプ回路 2の入力側にバンドパスフィルタ 4を接続することに より低減可能である力 後者のノイズは入力側のバンドパスフィルタでは除去すること はできな 、。出力側にバンドパスフィルタを接続すれば熱雑音に起因するノイズを除 去できるが、出力段の挿入損失が増大する。そこで図 19に示すように、最終段のトラ ンジスタのベースとその前段のトランジスタのェミッタとの間にバンドパスフィルタ 4,を 設けると、ほとんど出力段での損失なしに、熱雑音に起因するノイズを大幅に低減で きる。図 19に示すバンドパスフィルタ 4'は、一端が接地された 2本以上の伝送線路共 振器を主構成とするが、表面弾性波フィルタや FBARフィルタ等を有しても良 、。
[0058] 本発明の別の実施例では、図 20に示すように、第一の受信端子 l lbg-R又は第二 の受信端子 l la-Rにローノイズアンプ回路 24、 25が設けられている。ローノイズアンプ 24、 25はアンテナで検知した微弱な受信信号を増幅し、受信感度を向上させる機能 を有する。受信感度を向上させるには雑音指数の小さいローノイズアンプを使用する のが一般的である力 ローノイズアンプの入力側の損失を小さくすることも効果的で ある。ローノイズアンプ回路を高周波回路に集積すると、ローノイズアンプの入力側の 引き回しを最短にすることができるため、ローノイズアンプを外部に設けた場合より受 信感度を向上することが可能となる。なお図 13と同様に、付加し得るローパスフィルタ 回路 19は図 20中にドット模様で強調して全ての位置に示している力 勿論少なくとも 1 つのローパスフィルタ回路を付カ卩すれば良 、。
[0059] ローノイズアンプ回路 24、 25とアンテナ端子 ANT1、 ANT2との間にローパスフィルタ 回路 26を配置するのが好ましい。ローパスフィルタ回路 26は、ローノイズアンプ回路 2 4、 25から発生する高調波歪を低減する機能を有する。具体的には、送信動作時に、 第一又は第二のパワーアンプ回路 2, 3から出力された大電力信号の一部が高周波 スィッチ回路 10を経てローノイズアンプ 24、 25に入力し、オフ動作のローノイズアンプ 24、 25から発生した高調波が反射波となってアンテナ力 放射されるという問題があ る。この問題を解決するために、ローノイズアンプ回路 24、 25とアンテナ端子 ANT1、 A NT2との間にローパスフィルタ回路 26を設けることが有効である。付カ卩し得るローパス フィルタ回路 26は図 20中にドット模様で強調して全ての位置に示している力 勿論少 なくとも 1つのローノ スフィルタ回路を付加すれば良い。また特定周波数の高調波歪 を低減する目的で、ローパスフィルタ回路の代わりに、図 11に示すノッチフィルタ回路 、バンドパスフィルタ回路等も使用することができる。
[0060] 高周波スィッチ回路 (DPDT1) 10の等価回路の例を図 21〜24に示す。これらの高周 波スィッチ回路は、電界効果トランジスタ FETやダイオード等のスイッチング素子を主 構成とし、適宜インダクタンス素子及びキャパシタンス素子を具備する。
[0061] 図 2の DPDTスィッチ回路 10に図 21のスィッチ回路を用いた場合のダイバーシティ 受信動作は以下の通りである。このスィッチ回路 10では、スィッチ回路制御部により 制御された電圧がコントロール端子 VI, V2に与えられ、表 1に示すように各ポート間 の接続及び切断が行われる。
[0062] [表 1] 接続 ANT1-P6 ANT1 P5 ANT2-P6 ANT2-P5
VC1 VC2
モード 間 間 間 間
1 High Low 接続 切断 切断 接続
2 Low High 切断 接続 接続 切断
[0063] ダイバーシティ受信を行う場合、通信を開始する前に周波数スキャンを行な ヽ、受 信可能な周波数チャンネルを探索する。スキャン動作を行なう場合、例えば表 1の接 続モード 1となるように、スィッチ回路制御部により高周波スィッチ回路 10を制御する。 このとき、第一のマルチバンドアンテナ ANT1と受信回路側の分波回路 14とが接続さ れ、一つのマルチバンドアンテナに 2つの通信システムの受信回路が接続することと なる。次いで IEEE802.11a受信回路部を 5 GHz帯でスキャンするとともに、 802.11b送 受信部を 2.4 GHz帯でスキャンし、受信可能な全てのチャンネルを検出する。
[0064] 次に接続モード 2となるように、スィッチ回路制御部により高周波スィッチ回路 10を 制御する。このとき、第二のマルチバンドアンテナ ANT2と受信回路側の分波回路 14 とが接続される。次いで IEEE802.11a受信回路部を 5 GHz帯でスキャンするとともに、 802. lib送受信部を 2.4 GHz帯でスキャンし、受信可能な全てのチャンネルを検出す る。
[0065] 周波数スキャンの結果に基づいて、第一及び第二のデュアルバンドアンテナ ANT1 、 ANT2で受信した受信信号の振幅を比較し、アクティブにする通信システムを選択 するとともに、その通信システムの送受信回路と接続するアンテナを選択する。本発 明によれば、フェージング等の外乱が生じても、最も好ましい通信システムを選択し てダイバーシティ受信を行うことができる。
[0066] 上記方法とは別に、第二のマルチバンドアンテナ ANT2と受信回路側の分波回路 1 4とを接続し、 5 GHz帯及び 2.4 GHz帯でスキャンして受信可能な全てのチャンネルを 検出し、得られた信号の振幅の比較から一方の通信システムを選択して、その送受 信回路部をアクティブにし、次 、でアクティブにした送受信回路部に接続するマルチ バンドアンテナを第一のマルチバンドアンテナ ANT1に変更して、受信チャンネルを 変更せずに受信し、 2つのアンテナでの受信信号を比較し、より良好な受信ができる 方のアンテナを、アクティブにするアンテナとして選択して、ダイバーシティ受信を行う ことも当然可能である。
[0067] 図 25は本発明の一実施例に係る高周波回路を示す。この回路は、高周波スィッチ 10と、 2.4 GHz帯のパワーアンプ回路 2の出力側に接続されたバンドパスフィルタ回路 4と、 5 GHz帯のパワーアンプ回路 3の入力側及び及び出力側にそれぞれ接続された バンドパスフィルタ回路 5及びローパスフィルタ回路 19と、 2.4 GHz帯の受信経路に接 続されたバンドパスフィルタ回路 6と受信側の分波回路 14と、 5 GHz帯の受信経路に 接続されたローパスフィルタ回路 26と、送信側の分波回路 13と高周波スィッチ 10との 間に接続された検波回路 8と、 2.4 GHz帯の送信入力端子 llbg- T、 5 GHz帯の送信 入力端子 lla-T、 2.4 GHz帯の受信出力端子 llbg-R及び 5 GHz帯の受信出力端子 1 la-Rにそれぞれ接続された平衡ー不平衡変換回路 20、 21、 22、 23とを有する。検波 回路 8は、伝送線路 lcl及び lc2からなる方向性結合回路と、伝送線路 lc2と検波ダイ オード Dsとの間に設けられた整合調整用の伝送線路 lc3及びアツテネータとしての機 能を有する抵抗 Rc2とを有する。平衡—不平衡変換回路 20-23の不平衡入力側に接 続された伝送線路 Lpbl、 Lpb2、 Lpal、 Lpa2は、バンドパスフィルタ回路 5、 6、パワー アンプ回路 2及びローパスフィルタ回路 26との整合をとり、通過帯域の挿入損失を低 減する。送信入力側の平衡ー不平衡変換回路 20、 21に設けられた DCフィード端子 D Ca、 DCb力ら、 llbg-T +端子及び llbg-T—端子、又は lla-T +端子及び lla-T— 端子に同時に直流電圧を印加できる。
[0068] 図 26は本発明の別の実施例に係る高周波回路を示す。図 25の高周波回路との相 違は、(1) 5 GHz帯の受信出力端子 1 la-Rとローパスフィルタ回路 26との間に 5 GHz 帯のローノイズアンプ回路 27が接続され、(2)アンテナ端子 ANT1及び ANT2と高周波 スィッチ回路 10との間にインダクタンス素子 lsl及びキャパシタンス素子 cslからなるノ ツチ回路 28、及びインダクタンス素子 ls2及びキャパシタンス素子 cs2からなるノッチ回 路 29が接続され、(3)バンドパスフィルタ回路 4が 2.4 GHz帯のパワーアンプ回路 2の 入力側に接続され、 (4)平衡ー不平衡変換回路 20、 21、 22、 23が省略されている点 である。この回路構成によれば、ローノイズアンプ回路 27によりアンテナで検知した微 弱な受信信号を増幅することにより、受信感度を高めることができる。パワーアンプ回 路、検波回路、ローノイズアンプ等で発生する高調波歪を低減する目的で、ノッチフ ィルタ回路 28、 29が配置されている。
[0069] 図 27は積層体基板 100に構成した本発明のマルチバンド高周波部品の外観を示し 、図 28は積層体基板 100の底面を示し、図 29は積層体基板 100 (図 26の等価回路を 有する)の各層の電極構成を示す。この高周波部品は、高周波スィッチ回路 10、送 信側の分波回路 13、受信側の分波回路 14、ローパスフィルタ回路 19、 26、パワーアン プ回路 2、 3、バンドパスフィルタ回路 4、 5、 6、ローノイズアンプ回路 27、及び検波回路 8から構成されている。
[0070] 積層体基板 100は、例えば 1000°C以下の低温で焼結可能なセラミック誘電体 LTCC
(Low- Temperature- Cofired Ceramics)からなる厚さ 10〜200 μ mのグリーンシートに、 低抵抗率の Agや Cu等の導伝ペーストを印刷して電極パターンを形成し、電極パター ンを有する複数のグリーンシートを一体的に積層し、焼結することにより製造すること ができる。
[0071] セラミック誘電体としては、例えば Al、 Si及び Srを主成分とし、 Ti、 Bi、 Cu、 Mn、 Na及 び Kを副成分とする材料、 Al、 Si及び Srを主成分とし、 Ca、 Pb、 Na及び Kを複成分とす る材料、 Al、 Mg、 Si及び Gdを含む材料、 Al、 Si、 Zr及び Mgを含む材料が好ましい。セ ラミック誘電体の誘電率は 5〜15程度である。セラミック誘電体の他に、榭脂や、榭脂 とセラミック誘電体粉末との混合物を用いることもできる。また 0を主体とするセラミ
2 3
ック誘電体力もなるグリーンシート上に、タングステンやモリブデン等の高温で焼結可 能な金属力 なる伝送線路等を HTCC (高温同時焼成セラミック)技術を用いて形成 しても良い。
[0072] 図 29に示すように、積層体基板 100は 16層のシートからなる。最上層のシート 1の上 面には積層基板 100に内蔵されな ヽチップ部品を搭載するための複数のランド電極 が形成されている。図 27に示すように、ランド電極に、高周波スィッチ回路 10、ローノ ィズアンプ 27、第一のパワーアンプ回路 2の電力増幅回路及びバイアス制御回路が 内蔵された MMIC回路 82、第二のパワーアンプ回路 3の電力増幅回路及びバイアス 制御回路が内蔵された MMIC回路 92、検波回路 8の一部を構成するショットキーダイ オード Ds、チップ抵抗 Rs、 Rcl、 Rc2、チップコンデンサ Cs、第一の高周波電力増幅 器 8の回路を構成するチップコンデンサ Cl、 C3、 C4、 C5、 C6、 C9、 C30、第二の高周 波電力増幅器 9の回路を構成するチップコンデンサ C14、 C15、 C17、 C19、 C20、 C40 、チップインダクタ L4及びチップ抵抗 R2、スィッチ回路の DCカットコンデンサ Ca、 Cb、 ローノイズアンプの電源に接続されるチップ抵抗 RL、及びコンデンサ CLが実装され ている。シート 1上の伝送線路 avp7は、第二の高周波電力増幅器 9の電力増幅回路 9 2とグランドとの間にある。ランド電極はビアホールを介して積層基板 100内に形成さ れた接続線路や回路素子と接続されて ヽる。
[0073] 積層体基板 100内の電極パターン構造を図 29に示す。グリーンシート 2〜16に、ビア ホール(図中、黒丸で表示)で接続されたライン電極、コンデンサ用電極及びグランド 電極が形成されている。最下層のグリーンシート 16にはグランド電極 GNDが形成され ており、その裏面には、図 28に示すように、回路基板に実装するための端子電極が 形成されている。パワーアンプ回路 MMICのチップ 82、 92が搭載される領域には、上 面力も裏面にかけて放熱性を高めるためにサーマルビアが設けられて 、る。また不 要なノイズ輻射を抑制するために、シート 2、 4、 14及び 16には広いグランド電極 GND が形成されている。
[0074] 各シート上に形成した伝送線路やキャパシタ用の電極パターンには図 17、 18及び 2 6に用いたのと同じ符号を付し、詳細な説明を省略する。積層基板 100に三次元的に 構成された各回路を構成する電極パターンは相互の電磁気的干渉を防ぐために、 各回路をグランド電極 GND及びそれに連結したビアホールにより分離したり、積層方 向に重ならな 、ように配置する。
[0075] 図 30は各機能ブロックの平面配置を模式的に示す。バンドパスフィルタ回路 4、 5、 6 は他の回路ブロックとの干渉が一番少ない積層体基板 100の端部に配置する。パヮ 一アンプ回路の入力整合回路 81、 91、コレクタ電源回路 83、 93、及び出力整合回路 8 5、 95の間のアイソレーションが不足すると、高周波電力増幅器の誤動作及び発振が 起きるおそれがあるため、これらの回路ブロック間のアイソレーションを十分に確保す るために、グランド電極やスルーホール電極等によるシールド 30 (ノ、ツチングで示す) を三次元的に配置している。また図 29に示すシート 2、 4、 6、 8、 14、 16上の平面的な グランド電極 GNDや、グランド電極 GNDに連結するビアホールも適宜配置して!/、る。 [0076] 図 28に示すように、積層体基板 100の裏面に、大きなグランド電極 GND、これを囲う 小さなグランド電極 GNDが形成されている。また積層体基板 100の裏面の四辺には、 アンテナポート ANT1、 ANT2と、 2.4 GHz帯の無線 LANの送信ポート llbg-T及び受 信ポート llbg-Rと、 5 GHz帯の無線 LANの送信ポート lla-T及び受信ポート lla-Rと 、グランドポート GNDと、第一及び第二の高周波スィッチ回路のコントロールポート VI 、 V2と、パワーアンプ回路用の電源ポート Vcl、 Vbl、 Vc2、 Vb2と、ローノイズアンプ用 の電源ポート Vdと、検波回路の出力電圧ポート Vdetとが配置されている。図 28にお ける各端子電極の表示は図 26における表示と同じである。図示の例では端子電極は LGA(Land Grid Array)であるが、 BGA (Ball Grid Array)としても良い。
[0077] ランド電極に実装されるスィッチ回路 10、パワーアンプ回路 82、 92、及びローノイズ アンプ 27はベア状態で積層基板に実装し、榭脂ゃ管で封止しても良い。このようにバ ンドパスフィルタ回路や分波回路、ローパスフィルタ、検波回路、及びパワーアンプの 入出力整合回路及び電源回路等を積層基板に集積して構成すれば、高周波回路 モジュールの小型化が可能である。送受信回路部を構成する RF-ICやベースバンド I Cを積層基板に複合ィ匕することも当然可能である。
[0078] 図 31は本発明に係るマルチバンド通信装置を示すブロック図である。高周波部品 1 の送受信端子 llbg-T、 lla-T, llbg-R, lla-Rはそれぞれ RFIC 9に接続されている 。また RFIC 9はベースバンド IC 32に接続され、さらにベースバンド IC 32は通信機器 本体 33とインターフェースを介して通信を行っている。データを送信する場合、通信 機器本体 33から送られてきたデータは、ベースバンド IC 32で IQ信号に変換され、 RF IC 9で高周波信号に変調され、さらに高周波部品 1の送信端子 llbg-T又は lla-Tに 入力される。パワーアンプで増幅された高周波信号はアンテナ ANT1又は ANT2から 放射される。一方データを受信する場合、アンテナ ANT1又は ANT2から入力した高 周波信号は、高周波部品 1の受信端子 llbg-R又は lla-Rを介して RFIC 9に入力され 、 IQ信号に復調される。 IQ信号はベースバンド IC 32でデータに変換された後、通信 装置本体 33へ送信される。高周波部品回路 1は制御端子 VI、 V2、 Vbl、 Vb2を介して ベースバンド IC 32により制御される。パワーアンプの出力レベルは、検波電圧端子 V detの値を基準にして、ベースバンド IC 32により RFIC 9の出力パワーを調整すること により制御可能である。アンテナの選択、及び IEEE802.11a、 IEEE802.11b及び IEEE8 02. llgの変調方式の選択は、受信感度、通信チャネルの空き具合等をベースバンド I C 32で判定し、最適な条件で通信するように設定するのが好ましい。

Claims

請求の範囲
[1] 第一及び第二の周波数帯域を選択的に用いて無線通信を行うデュアルバンド無線 装置に用いられる高周波回路であって、
前記第一及び第二の周波数帯域において送受信が可能なアンテナと接続するァ ンテナ端子と、
前記第一の周波数帯域の送信信号が入力される第一の送信端子と、 前記第二の周波数帯域の送信信号が入力される第二の送信端子と、 前記第一の周波数帯域の受信信号が出力される第一の受信端子と、 前記第二の周波数帯域の受信信号が出力される第二の受信端子と、 前記アンテナ端子と、前記第一及び第二の送信端子又は前記第一及び第二の受 信端子との接続を切り替えるスィッチ回路と、
前記スィッチ回路と前記第一の送信端子との間に設けられた第一のパワーアンプ 回路と、
前記スィッチ回路と前記第二の送信端子との間に設けられた第二のパワーアンプ 回路と、
前記アンテナ端子と、前記第一及び第二の送信端子及び受信端子の少なくとも 1 つとの間に設けられたバンドパスフィルタ回路と、
前記第一及び第二のパワーアンプ回路の出力電力をモニターする検波電圧端子 を有する検波回路と
を具備することを特徴とする高周波回路。
[2] 請求項 1に記載の高周波回路において、前記スィッチ回路は、送信端子側に設けら れた第一の分波回路 (前記第一及び第二の送信端子の一方力 の高周波信号をァ ンテナ端子側へ通すが他方の送信端子へ通さない)と、受信端子側に設けられた第 二の分波回路 (前記アンテナ端子力も入力される受信した高周波信号を、前記第一 又は第二の受信端子に分波する)とを具備することを特徴とする高周波回路。
[3] 請求項 2に記載の高周波回路において、前記第一又は第二の分波回路は低周波側 フィルタ回路及び高周波側フィルタ回路を有し、前記低周波側フィルタ回路は、分波 回路の共通端子に接続された位相線路、及び前記位相線路に接続されたバンドパ スフィルタ回路により構成されていることを特徴とする高周波回路。
[4] 請求項 1〜3のいずれかに記載の高周波回路において、前記検波回路は、前記第一 及び前記第二のパワーアンプ回路の出力経路に接続された結合回路と、前記結合 回路の結合端子に接続された検波用ダイオードとを有し、前記結合回路により高周 波信号を導出し、前記検波用ダイオードで高周波電力を検波し、前記検波電圧端子 に検波電圧を出力することを特徴とする高周波回路。
[5] 請求項 4に記載の高周波回路において、前記結合回路が前記第一の分波回路の共 通端子又はアンテナ端子に接続されていることを特徴とする高周波回路。
[6] 請求項 4又は 5に記載の高周波回路において、前記結合回路の結合端子と検波用ダ ィオードとの間に高調波低減回路が設けられていることを特徴とする高周波回路。
[7] 請求項 6に記載の高周波回路において、前記高調波低減回路はローパスフィルタ回 路、ノッチフィルタ回路又はアツテネータ回路であることを特徴とする高周波回路。
[8] 請求項 1〜7のいずれかに記載の高周波回路において、前記パワーアンプ回路と前 記アンテナ端子間にローノ スフィルタ回路又はノッチフィルタ回路が設けられている ことを特徴とする高周波回路。
[9] 請求項 1〜8のいずれかに記載の高周波回路において、前記第一及び第二の送信 端子の少なくとも一方に平衡ー不平衡変換回路が接続されていることを特徴とする 高周波回路。
[10] 請求項 1〜9のいずれかに記載の高周波回路において、前記第一及び第二の受信 端子の少なくとも一方に平衡ー不平衡変換回路が接続されていることを特徴とする 高周波回路。
[11] 請求項 9又は 10に記載の高周波回路において、前記平衡ー不平衡変換回路の不平 衡入力側に整合回路が設けられていることを特徴とする高周波回路。
[12] 請求項 9〜11のいずれかに記載の高周波回路において、前記平衡—不平衡変換回 路に DCフィード端子が設けられていることを特徴とする高周波回路。
[13] 請求項 1〜12のいずれかに記載のマルチバンド高周波回路において、前記第一及 び第二の受信端子の少なくとも一方にローノイズアンプ回路が設けられていることを 特徴とする高周波回路。
[14] 請求項 13に記載の高周波回路において、前記ローノイズアンプ回路と前記アンテナ 端子との間にローパスフィルタ回路又はノッチフィルタ回路が設けられていることを特 徴とする高周波回路。
[15] 請求項 1〜14のいずれかに記載の高周波回路において、前記第一又は第二のパヮ 一アンプ回路は、 2段以上の増幅トランジスタを有する増幅器であって、前記増幅器 における最終段のトランジスタの入力側とその前段のトランジスタの出力側との間に バンドパスフィルタ回路が設けられていることを特徴とする高周波回路。
[16] 請求項 15に記載の高周波回路において、前記バンドパスフィルタは一端が接地され た 2本以上の伝送線路共振器を主構成とすることを特徴とする高周波回路。
[17] 請求項 1〜16のいずれかに記載の高周波回路を有する高周波部品であって、セラミ ック誘電体からなる複数の層に導電ペーストからなる電極パターンを形成し積層一体 化してなる積層体と、前記積層体の表面に搭載された素子とを具備し、前記高周波 回路中のインダクタンス素子及びキャパシタンス素子の少なくとも一部は前記電極パ ターンにより構成され、前記スィッチ回路、前記パワーアンプ回路及び前記ローノィ ズアンプ回路を構成する少なくとも 1つの半導体素子は前記積層基板の表面に搭載 されていることを特徴とする高周波部品。
[18] 請求項 1〜16のいずれかに記載の高周波回路を用いたマルチバンド通信装置であ つて、各通信システムでの送信データ及び受信データを復調する送受信部と、前記 スィッチ回路、パワーアンプ回路及び前記ローノイズアンプ回路の制御を行う回路制 御部とを具備することを特徴とするマルチバンド通信装置。
[19] 請求項 17に記載の高周波部品を用いたマルチバンド通信装置であって、各通信シ ステムでの送信データ及び受信データを復調する送受信部と、前記スィッチ回路、 ノ ヮ一アンプ回路及び前記ローノイズアンプ回路の制御を行う回路制御部とを具備 することを特徴とするマルチバンド通信装置。
PCT/JP2005/012003 2004-06-30 2005-06-29 高周波回路、高周波部品及びマルチバンド通信装置 WO2006003959A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800214461A CN1977467B (zh) 2004-06-30 2005-06-29 高频部件和多波段通信装置
JP2006528771A JP4178420B2 (ja) 2004-06-30 2005-06-29 高周波回路、高周波部品及びマルチバンド通信装置
EP05765179.6A EP1768269B1 (en) 2004-06-30 2005-06-29 High frequency circuit, high frequency component, and multi-band communication apparatus
US11/571,416 US7773956B2 (en) 2004-06-30 2005-06-29 Multi-band high frequency circuit, multi-band high-frequency component and multi-band communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-193533 2004-06-30
JP2004193533 2004-06-30

Publications (1)

Publication Number Publication Date
WO2006003959A1 true WO2006003959A1 (ja) 2006-01-12

Family

ID=35782767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012003 WO2006003959A1 (ja) 2004-06-30 2005-06-29 高周波回路、高周波部品及びマルチバンド通信装置

Country Status (5)

Country Link
US (1) US7773956B2 (ja)
EP (1) EP1768269B1 (ja)
JP (2) JP4178420B2 (ja)
CN (1) CN1977467B (ja)
WO (1) WO2006003959A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083668A1 (ja) * 2006-01-17 2007-07-26 Hitachi Metals, Ltd. 高周波回路部品及びこれを用いた通信装置
JP2007266840A (ja) * 2006-03-28 2007-10-11 Hitachi Metals Ltd スイッチモジュール
EP1850491A2 (en) * 2006-04-26 2007-10-31 Hitachi Metals, Ltd. High-frequency circuit, high-frequency device and communications apparatus
JP2007295327A (ja) * 2006-04-26 2007-11-08 Hitachi Metals Ltd 高周波回路、高周波部品及び通信装置
WO2007129716A1 (ja) 2006-05-08 2007-11-15 Hitachi Metals, Ltd. 高周波回路、高周波部品及び通信装置
WO2008075691A1 (ja) * 2006-12-19 2008-06-26 Hitachi Metals, Ltd. 高周波回路、高周波部品、及び通信装置
WO2008084723A1 (ja) 2006-12-28 2008-07-17 Hitachi Metals, Ltd. 高周波部品及び通信装置
JP2008219699A (ja) * 2007-03-07 2008-09-18 Hitachi Metals Ltd 低雑音増幅器回路、高周波回路、高周波部品及び通信装置
JP2009159412A (ja) * 2007-12-27 2009-07-16 Hitachi Metals Ltd 高周波部品及び通信装置
WO2009157357A1 (ja) 2008-06-25 2009-12-30 日立金属株式会社 高周波回路、高周波部品及び通信装置
JP2010523020A (ja) * 2007-03-23 2010-07-08 シグマテル インコーポレイテッド 無線送受信機とその使用方法
JP2013059033A (ja) * 2007-09-25 2013-03-28 Hitachi Metals Ltd 高周波部品及び通信装置
CN106100648A (zh) * 2016-07-29 2016-11-09 北京慧清科技有限公司 双频段双天线收发前端电路系统
CN106953604A (zh) * 2017-02-23 2017-07-14 维沃移动通信有限公司 一种低噪声放大器和移动终端
CN110346765A (zh) * 2018-04-02 2019-10-18 航天金鹏科技装备(北京)有限公司 一种高集成四通道tr组件

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716047B2 (ja) * 2005-04-15 2011-07-06 日立金属株式会社 マルチバンド高周波回路、マルチバンド高周波回路部品及びこれを用いたマルチバンド通信装置
JP2007158660A (ja) * 2005-12-05 2007-06-21 Alps Electric Co Ltd 高周波回路
US8260360B2 (en) * 2007-06-22 2012-09-04 Broadcom Corporation Transceiver with selective beamforming antenna array
TWI364195B (en) * 2007-10-12 2012-05-11 Filtering apparatus and method for dual-band sensing circuit
US8150339B2 (en) 2007-11-05 2012-04-03 Qualcomm, Incorporated Switchable-level voltage supplies for multimode communications
US7991364B2 (en) * 2008-05-19 2011-08-02 Nokia Corporation Apparatus method and computer program for configurable radio-frequency front end filtering
US8320842B2 (en) * 2008-05-19 2012-11-27 Nokia Corporation Apparatus method and computer program for radio-frequency path selection and tuning
US20090286569A1 (en) * 2008-05-19 2009-11-19 Nokia Corporation Apparatus method and computer program for interference reduction
CN101604993B (zh) * 2008-06-11 2013-02-13 联想(北京)有限公司 一种多天线系统及辐射射频信号的方法
JP4735773B2 (ja) * 2008-06-25 2011-07-27 株式会社村田製作所 高周波モジュール
US8213878B1 (en) * 2008-09-25 2012-07-03 Rf Micro Devices, Inc. RF switch power splitter for WLAN and bluetooth coexistence
US20100080204A1 (en) * 2008-09-29 2010-04-01 Kuang-Yu Yen Wlan transceiving system
CN101729086B (zh) * 2008-10-10 2013-05-08 鸿富锦精密工业(深圳)有限公司 无线通信装置
TW201019620A (en) * 2008-11-04 2010-05-16 Ra Link Technology Corp Front-end architecture of RF transceiver and transceiver chip thereof
US9231680B2 (en) * 2009-03-03 2016-01-05 Rfaxis, Inc. Multi-channel radio frequency front end circuit
US8219157B2 (en) * 2009-03-26 2012-07-10 Apple Inc. Electronic device with shared multiband antenna and antenna diversity circuitry
US8208867B2 (en) * 2009-04-09 2012-06-26 Apple Inc. Shared multiband antennas and antenna diversity circuitry for electronic devices
US20100309901A1 (en) * 2009-06-03 2010-12-09 Harris Corporation Systems and methods for maintaining a controlled power output at an antenna port over a range of frequencies defined by two or more frequency bands
KR101565995B1 (ko) * 2009-07-16 2015-11-05 삼성전자주식회사 듀얼-입력 듀얼-출력의 필터를 이용한 멀티-대역의 라디오 주파수 신호 송수신 시스템
JP5075188B2 (ja) * 2009-12-03 2012-11-14 株式会社エヌ・ティ・ティ・ドコモ 無線通信端末
CN103026622B (zh) * 2010-07-27 2015-06-17 株式会社村田制作所 高频模块
EP2421171B1 (en) 2010-08-17 2015-10-14 Broadcom Corporation WiMAX/WiFi coexistence
DE102010040512B4 (de) * 2010-09-09 2016-03-10 Infineon Technologies Ag Chip mit einer Hochfrequenzschalteranordnung und Schaltungsanordnung, Verfahren zur Herstellung einer Hochfrequenzschaltungsanordnung
JP2012074930A (ja) * 2010-09-29 2012-04-12 Panasonic Corp 高周波電力増幅器
US8369808B2 (en) * 2010-10-26 2013-02-05 Dell Products, Lp System and method for controlling antenna tuning using an auxiliary channel of an embedded display port interface
CN102480804A (zh) * 2010-11-26 2012-05-30 深圳富泰宏精密工业有限公司 双模移动终端系统
CN102104392B (zh) * 2010-12-15 2013-10-09 华为技术有限公司 多频段多路收发设备及方法、基站系统
JP5477512B2 (ja) * 2011-02-23 2014-04-23 株式会社村田製作所 インピーダンス変換回路および通信端末装置
US8933764B2 (en) * 2011-04-05 2015-01-13 Rf Micro Devices, Inc. Tunable duplexer method using hybrid transformer with dual antenna
KR101758086B1 (ko) * 2011-04-12 2017-07-17 숭실대학교산학협력단 개선된 선형적 특징을 가지는 전력 증폭기
CN102355221A (zh) * 2011-06-17 2012-02-15 雷良军 多频带功率放大器及输出匹配电路
KR101294434B1 (ko) * 2011-07-28 2013-08-07 엘지이노텍 주식회사 임피던스 정합장치 및 임피던스 정합방법
US9413415B2 (en) * 2011-12-20 2016-08-09 Murata Manufacturing Co., Ltd. High frequency module
CN104025530B (zh) * 2011-12-29 2017-04-12 联发科技股份有限公司 避免信号干扰的通信装置与方法
DE102013004177A1 (de) * 2012-03-16 2013-09-19 Marquardt Gmbh Schließsystem, insbesondere für ein Kraftfahrzeug
CN103327726A (zh) * 2012-03-19 2013-09-25 鸿富锦精密工业(深圳)有限公司 电子装置及其印刷电路板的布局结构
WO2013150969A1 (ja) 2012-04-05 2013-10-10 株式会社村田製作所 複合モジュール
US9397721B2 (en) 2012-04-12 2016-07-19 Skyworks Solutions, Inc. Systems and methods for reducing filter insertion loss while maintaining out-of band attenuation
KR101763997B1 (ko) 2012-04-12 2017-08-01 스카이워크스 솔루션즈, 인코포레이티드 전송 무선 주파수 신호와 수신 무선 주파수 신호 간의 개선된 격리에 관한 시스템 및 방법
JP5143972B1 (ja) 2012-08-16 2013-02-13 太陽誘電株式会社 高周波回路モジュール
US9319005B2 (en) 2012-07-13 2016-04-19 Rf Micro Devices, Inc. Multi-band/multi-mode power amplifier with signal path hardware sharing
JP5668029B2 (ja) * 2012-07-17 2015-02-12 株式会社Nttドコモ 無線回路、周波数ペア決定方法
JP5285806B1 (ja) 2012-08-21 2013-09-11 太陽誘電株式会社 高周波回路モジュール
JP5117632B1 (ja) 2012-08-21 2013-01-16 太陽誘電株式会社 高周波回路モジュール
US9124355B2 (en) * 2012-08-22 2015-09-01 Google Technology Holdings LLC Tunable notch filtering in multi-transmit applications
CN104737452B (zh) * 2012-10-17 2017-05-24 株式会社村田制作所 高频模块
TWI518993B (zh) 2012-11-20 2016-01-21 財團法人工業技術研究院 具可調式相移陣列的多路徑切換系統
WO2014125980A1 (ja) 2013-02-12 2014-08-21 株式会社村田製作所 高周波モジュールおよび通信装置
US10312960B2 (en) * 2014-08-12 2019-06-04 Qorvo Us, Inc. Switchable RF transmit/receive multiplexer
US10050694B2 (en) * 2014-10-31 2018-08-14 Skyworks Solution, Inc. Diversity receiver front end system with post-amplifier filters
US9571037B2 (en) 2014-10-31 2017-02-14 Skyworks Solutions, Inc. Diversity receiver front end system with impedance matching components
US9893752B2 (en) 2014-10-31 2018-02-13 Skyworks Solutions, Inc. Diversity receiver front end system with variable-gain amplifiers
JP6428184B2 (ja) * 2014-11-17 2018-11-28 株式会社村田製作所 高周波フロントエンド回路、高周波モジュール
JP6442766B2 (ja) 2014-12-11 2018-12-26 富士通コネクテッドテクノロジーズ株式会社 無線通信装置、無線通信方法、及び無線通信プログラム
CN105846848A (zh) * 2015-01-15 2016-08-10 启碁科技股份有限公司 信号收发电路及信号收发方法
US9838056B2 (en) 2015-05-28 2017-12-05 Skyworks Solutions, Inc. Integrous signal combiner
US9525443B1 (en) 2015-10-07 2016-12-20 Harris Corporation RF communications device with conductive trace and related switching circuits and methods
JP2017118338A (ja) * 2015-12-24 2017-06-29 株式会社村田製作所 電力増幅モジュール
US10291269B2 (en) 2015-12-24 2019-05-14 Murata Manufacturing Co., Ltd. Power amplification module
WO2017138539A1 (ja) * 2016-02-08 2017-08-17 株式会社村田製作所 高周波フロントエンド回路および通信装置
EP3208620B8 (en) * 2016-02-19 2023-03-01 Rohde & Schwarz GmbH & Co. KG Measuring system for over-the-air power measurements
WO2017169645A1 (ja) * 2016-03-30 2017-10-05 株式会社村田製作所 高周波信号増幅回路、電力増幅モジュール、フロントエンド回路および通信装置
CN107743044A (zh) * 2016-08-10 2018-02-27 株式会社村田制作所 分集开关电路、高频模块以及通信装置
US10547288B2 (en) * 2016-11-25 2020-01-28 Murata Manufacturing Co., Ltd. Radio frequency front-end circuit and communication device
CN108111176B (zh) * 2017-12-08 2021-02-19 Tcl移动通信科技(宁波)有限公司 一种双天线射频功率检测电路、装置及移动终端
WO2019131077A1 (ja) * 2017-12-25 2019-07-04 株式会社村田製作所 スイッチモジュールおよび通信装置
WO2019151528A1 (ja) * 2018-02-05 2019-08-08 株式会社村田製作所 高周波フロントエンドモジュールおよび通信装置
CN108429554B (zh) * 2018-03-28 2024-06-04 深圳市共进电子股份有限公司 路由器的5g信号收发电路、方法、装置、路由器及介质
JP2020005185A (ja) * 2018-06-29 2020-01-09 ルネサスエレクトロニクス株式会社 通信装置
CN117674940A (zh) 2018-07-23 2024-03-08 Oppo广东移动通信有限公司 发射模组、射频系统及电子设备
CN109560833B (zh) * 2019-01-28 2022-01-11 惠州Tcl移动通信有限公司 一种下行载波聚合射频电路、天线装置和电子设备
KR102419331B1 (ko) * 2019-03-13 2022-07-11 가부시키가이샤 무라타 세이사쿠쇼 고주파 모듈 및 통신 장치
CA3077060C (en) 2019-03-29 2024-02-27 Neptune Technology Group Inc. Antenna assembly detection based on oscillator and variable reactance tank circuit
CN211670850U (zh) * 2019-04-24 2020-10-13 株式会社村田制作所 高频信号收发电路以及高频信号收发装置
CN113785498A (zh) * 2019-05-09 2021-12-10 索尼半导体解决方案公司 半导体芯片和接收设备
US10911074B2 (en) 2019-05-17 2021-02-02 Tyco Safety Products Canada Ltd. Systems and methods for transceiver coexistence filtering
JP2021175031A (ja) * 2020-04-21 2021-11-01 株式会社村田製作所 高周波信号送受信回路
CN113726361B (zh) * 2020-05-26 2025-05-02 Oppo广东移动通信有限公司 射频l-drx器件、射频收发系统和通信设备
JP2022032617A (ja) * 2020-08-13 2022-02-25 株式会社村田製作所 高周波モジュール及び通信装置
CN114640358B (zh) * 2020-12-16 2023-10-03 Oppo广东移动通信有限公司 射频PA Mid器件、射频收发系统和通信设备
CN116783828A (zh) * 2020-12-25 2023-09-19 株式会社村田制作所 高频模块以及通信装置
CN113300734A (zh) * 2021-05-10 2021-08-24 Tcl通讯(宁波)有限公司 射频天线装置、射频天线装置信号收发方法及移动终端

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003087150A (ja) * 2001-09-14 2003-03-20 Matsushita Electric Ind Co Ltd 高周波複合スイッチモジュール
JP2003169008A (ja) * 2001-11-28 2003-06-13 Internatl Business Mach Corp <Ibm> 複数バンド通信装置及びその通信方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816788A (en) * 1986-07-01 1989-03-28 Murata Manufacturing Co., Ltd. High frequency band-pass filter
KR960000775B1 (ko) * 1990-10-19 1996-01-12 닛본덴기 가부시끼가이샤 고주파 전력 증폭기의 출력레벨 제어회로
JP3136058B2 (ja) * 1994-10-26 2001-02-19 アルプス電気株式会社 平衡不平衡変換回路
JPH0929042A (ja) 1995-07-24 1997-02-04 Toshiba Chem Corp 真空吸気ガスの濾過装置
EP0793289A1 (en) 1996-02-27 1997-09-03 Hitachi Metals, Ltd. Multilayered frequency separator
JPH09294042A (ja) * 1996-02-27 1997-11-11 Hitachi Metals Ltd 積層型分波器
JPH1131905A (ja) * 1997-07-14 1999-02-02 Matsushita Electric Ind Co Ltd 分波器およびそれを用いた共用器および2周波帯域用移動体通信機器
EP1909390A2 (en) 1996-09-26 2008-04-09 Matsushita Electric Industrial Co., Ltd. Diplexer, duplexer, and two-channel mobile communications equipment
US6078794A (en) * 1997-02-19 2000-06-20 Motorola, Inc. Impedance matching for a dual band power amplifier
US5815804A (en) * 1997-04-17 1998-09-29 Motorola Dual-band filter network
JP3304931B2 (ja) * 1998-10-27 2002-07-22 株式会社村田製作所 複合高周波部品及びそれを用いた移動体通信装置
EP0998035B1 (en) 1998-10-27 2006-03-22 Murata Manufacturing Co., Ltd. Composite high frequency component and mobile communication device including the same
JP3359002B2 (ja) * 1999-03-17 2002-12-24 シャープ株式会社 送信電力制御方式無線機端末
JP2002064301A (ja) * 1999-03-18 2002-02-28 Hitachi Metals Ltd トリプルバンド用高周波スイッチモジュール
JP2001102957A (ja) * 1999-09-28 2001-04-13 Murata Mfg Co Ltd 複合高周波部品及びそれを用いた移動体通信装置
EP1152543B1 (en) * 1999-12-14 2006-06-21 Matsushita Electric Industrial Co., Ltd. High-frequency composite switch component
ATE488052T1 (de) * 1999-12-28 2010-11-15 Hitachi Metals Ltd Hochfrequenzschalter, hochfrequenz-schaltermodul und drahtloses nachrichtengerat
CN1237725C (zh) * 2000-03-15 2006-01-18 日立金属株式会社 高频复合部件和使用该部件的无线通信装置
JP3371887B2 (ja) 2000-03-23 2003-01-27 株式会社村田製作所 移動体通信装置及びそれに用いる高周波複合部品
EP1333588B1 (en) * 2000-11-01 2012-02-01 Hitachi Metals, Ltd. High-frequency switch module
EP1223634A3 (en) * 2000-12-26 2003-08-13 Matsushita Electric Industrial Co., Ltd. High-frequency switch, laminated high-frequency switch, high-frequency radio unit, and high-frequency switching method
CN1233100C (zh) * 2000-12-27 2005-12-21 松下电器产业株式会社 高频开关、双频带高频开关、三频带高频开关和无线电通信设备
JP3758157B2 (ja) 2001-04-04 2006-03-22 日立金属株式会社 Rf段モジュール
US6624700B2 (en) * 2001-06-29 2003-09-23 Koninklijke Philips Electronics N.V. Radio frequency power amplifier for cellular telephones
WO2003015301A1 (en) 2001-08-10 2003-02-20 Hitachi Metals, Ltd. Bypass filter, multi-band antenna switch circuit, and layered module composite part and communication device using them
JP4006680B2 (ja) 2001-08-31 2007-11-14 日立金属株式会社 マルチバンドアンテナスイッチ回路およびマルチバンドアンテナスイッチ積層モジュール複合部品並びにそれを用いた通信装置
JP4007323B2 (ja) 2001-10-24 2007-11-14 松下電器産業株式会社 高周波複合スイッチモジュールおよびそれを用いた通信端末
JP2003152590A (ja) * 2001-11-14 2003-05-23 Ngk Spark Plug Co Ltd アンテナスイッチモジュール
JP3752232B2 (ja) 2002-03-27 2006-03-08 Tdk株式会社 フロントエンドモジュール
US6728517B2 (en) * 2002-04-22 2004-04-27 Cognio, Inc. Multiple-input multiple-output radio transceiver
US7251459B2 (en) 2002-05-03 2007-07-31 Atheros Communications, Inc. Dual frequency band wireless LAN
US20040240420A1 (en) 2003-02-14 2004-12-02 Tdk Corporation Front end module and high-frequency functional module
WO2005057803A1 (ja) * 2003-12-11 2005-06-23 Hitachi Metals, Ltd. マルチバンド高周波回路、マルチバンド高周波回路部品及びこれを用いたマルチバンド通信装置
JP4868433B2 (ja) * 2004-02-09 2012-02-01 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 歪み補償装置および歪み補償機能付き電力増幅装置
US7135943B2 (en) * 2004-07-11 2006-11-14 Chi Mei Communication Sytems, Inc. Diplexer formed in multi-layered substrate
JP4134129B2 (ja) * 2004-10-28 2008-08-13 Tdk株式会社 高周波モジュール
JP2006295375A (ja) * 2005-04-07 2006-10-26 Hitachi Metals Ltd 高周波回路及びこれを用いた通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003087150A (ja) * 2001-09-14 2003-03-20 Matsushita Electric Ind Co Ltd 高周波複合スイッチモジュール
JP2003169008A (ja) * 2001-11-28 2003-06-13 Internatl Business Mach Corp <Ibm> 複数バンド通信装置及びその通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1768269A4 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290896A (ja) * 2006-01-17 2009-12-10 Hitachi Metals Ltd 高周波回路部品及びこれを用いた通信装置
TWI452851B (zh) * 2006-01-17 2014-09-11 Hitachi Metals Ltd 高頻電路元件及利用此種元件之通信裝置
CN101401317B (zh) * 2006-01-17 2012-09-26 日立金属株式会社 高频电路部件及利用了该高频电路部件的通信装置
WO2007083668A1 (ja) * 2006-01-17 2007-07-26 Hitachi Metals, Ltd. 高周波回路部品及びこれを用いた通信装置
US8130787B2 (en) 2006-01-17 2012-03-06 Hitachi Metals, Ltd. High-frequency circuit device, and communications apparatus comprising same
JP2007266840A (ja) * 2006-03-28 2007-10-11 Hitachi Metals Ltd スイッチモジュール
EP1850491A2 (en) * 2006-04-26 2007-10-31 Hitachi Metals, Ltd. High-frequency circuit, high-frequency device and communications apparatus
JP2007295327A (ja) * 2006-04-26 2007-11-08 Hitachi Metals Ltd 高周波回路、高周波部品及び通信装置
TWI472170B (zh) * 2006-04-26 2015-02-01 Hitachi Metals Ltd 高頻電路、高頻零件及通信裝置
US8682258B2 (en) 2006-04-26 2014-03-25 Hitachi Metals, Ltd. High-frequency circuit, high-frequency device, and communication apparatus
EP1850491A3 (en) * 2006-04-26 2012-02-22 Hitachi Metals, Ltd. High-frequency circuit, high-frequency device and communications apparatus
EP2017966A1 (en) * 2006-05-08 2009-01-21 Hitachi Metals, Ltd. High frequency circuit, high frequency part, and communication device
CN101438505B (zh) * 2006-05-08 2013-04-03 日立金属株式会社 高频电路、高频部件及通信装置
WO2007129716A1 (ja) 2006-05-08 2007-11-15 Hitachi Metals, Ltd. 高周波回路、高周波部品及び通信装置
JP4618461B2 (ja) * 2006-05-08 2011-01-26 日立金属株式会社 高周波回路、高周波部品及び通信装置
US8036148B2 (en) 2006-05-08 2011-10-11 Hitachi Metals, Ltd. High-frequency circuit, high-frequency device and communications apparatus
JPWO2007129716A1 (ja) * 2006-05-08 2009-09-17 日立金属株式会社 高周波回路、高周波部品及び通信装置
EP2017966A4 (en) * 2006-05-08 2015-01-14 Hitachi Metals Ltd HIGH FREQUENCY SWITCHING, HIGH FREQUENCY RANGE AND COMMUNICATION DEVICE
US8582547B2 (en) 2006-12-19 2013-11-12 Hitachi Metals, Ltd. High frequency circuit, high frequency component and communication device
WO2008075691A1 (ja) * 2006-12-19 2008-06-26 Hitachi Metals, Ltd. 高周波回路、高周波部品、及び通信装置
US8326344B2 (en) 2006-12-28 2012-12-04 Hitachi Metals, Ltd. High-frequency device and communications apparatus
WO2008084723A1 (ja) 2006-12-28 2008-07-17 Hitachi Metals, Ltd. 高周波部品及び通信装置
JP2008219699A (ja) * 2007-03-07 2008-09-18 Hitachi Metals Ltd 低雑音増幅器回路、高周波回路、高周波部品及び通信装置
JP2010523020A (ja) * 2007-03-23 2010-07-08 シグマテル インコーポレイテッド 無線送受信機とその使用方法
JP2013059033A (ja) * 2007-09-25 2013-03-28 Hitachi Metals Ltd 高周波部品及び通信装置
JP2009159412A (ja) * 2007-12-27 2009-07-16 Hitachi Metals Ltd 高周波部品及び通信装置
WO2009157357A1 (ja) 2008-06-25 2009-12-30 日立金属株式会社 高周波回路、高周波部品及び通信装置
US8767859B2 (en) 2008-06-25 2014-07-01 Hitachi Metals, Ltd. High-frequency circuit, high-frequency device, and communications apparatus
CN106100648A (zh) * 2016-07-29 2016-11-09 北京慧清科技有限公司 双频段双天线收发前端电路系统
CN106100648B (zh) * 2016-07-29 2019-02-26 北京慧清科技有限公司 双频段双天线收发前端电路系统
CN106953604A (zh) * 2017-02-23 2017-07-14 维沃移动通信有限公司 一种低噪声放大器和移动终端
CN110346765A (zh) * 2018-04-02 2019-10-18 航天金鹏科技装备(北京)有限公司 一种高集成四通道tr组件

Also Published As

Publication number Publication date
US20080212552A1 (en) 2008-09-04
US7773956B2 (en) 2010-08-10
JP4386205B2 (ja) 2009-12-16
EP1768269A1 (en) 2007-03-28
JP4178420B2 (ja) 2008-11-12
EP1768269B1 (en) 2016-06-22
CN1977467A (zh) 2007-06-06
CN1977467B (zh) 2010-05-05
EP1768269A4 (en) 2015-04-22
JP2009124746A (ja) 2009-06-04
JPWO2006003959A1 (ja) 2008-07-31

Similar Documents

Publication Publication Date Title
JP4178420B2 (ja) 高周波回路、高周波部品及びマルチバンド通信装置
JP4548610B2 (ja) マルチバンド高周波回路、マルチバンド高周波回路部品及びこれを用いたマルチバンド通信装置
TWI387220B (zh) 多頻段高頻電路、多頻段高頻電路零件及使用該零件的多頻段通信裝置
JP5245413B2 (ja) 高周波回路部品及びこれを用いた通信装置
JP4618461B2 (ja) 高周波回路、高周波部品及び通信装置
US8682258B2 (en) High-frequency circuit, high-frequency device, and communication apparatus
JP4288529B2 (ja) 高周波部品及びマルチバンド通信装置
US8131226B1 (en) Multi-band-high-frequency circuit, multi-band high-frequency circuit component and multi-band communication apparatus using same
JP2005354407A (ja) 高周波回路、高周波部品、及びこれを用いたマルチバンド通信装置
JP2006304081A (ja) 高周波回路、高周波回路部品及びこれを用いた通信装置
JP4487274B2 (ja) 高周波回路部品およびマルチバンド通信装置
JP2005333485A (ja) 分波・フィルタ複合回路、高周波回路、高周波回路部品、およびこれらを用いたマルチバンド通信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528771

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580021446.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11571416

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005765179

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005765179

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载