+

WO2006003847A1 - 減速機付き駆動装置 - Google Patents

減速機付き駆動装置 Download PDF

Info

Publication number
WO2006003847A1
WO2006003847A1 PCT/JP2005/011621 JP2005011621W WO2006003847A1 WO 2006003847 A1 WO2006003847 A1 WO 2006003847A1 JP 2005011621 W JP2005011621 W JP 2005011621W WO 2006003847 A1 WO2006003847 A1 WO 2006003847A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
rotor
spline
flexible
teeth
Prior art date
Application number
PCT/JP2005/011621
Other languages
English (en)
French (fr)
Inventor
Yoshinari Takemura
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to EP05765101A priority Critical patent/EP1764530B1/en
Priority to US10/576,872 priority patent/US7409891B2/en
Priority to JP2006528620A priority patent/JP4787753B2/ja
Publication of WO2006003847A1 publication Critical patent/WO2006003847A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/06Rolling motors, i.e. motors having the rotor axis parallel to the stator axis and following a circular path as the rotor rolls around the inside or outside of the stator ; Nutating motors, i.e. having the rotor axis parallel to the stator axis inclined with respect to the stator axis and performing a nutational movement as the rotor rolls on the stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • F16H2049/003Features of the flexsplines therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing

Definitions

  • the present invention relates to a drive unit with a reduction gear.
  • a wave gear device as a speed reducer used in a conventional drive device has a configuration as shown in FIG. 12 (see Patent Document 1). That is, the freta spline 30 is arranged via the flexible bearing 50 so as to surround the wave generator 40 whose outer peripheral surface is formed in an elliptical shape, and the circular spline 20 whose inner peripheral surface is circular outside the freta spline 30. Is arranged.
  • Inner teeth are formed on the inner peripheral surface of the circular spline 20
  • outer teeth that can be mated with the inner teeth of the circular spline 20 are formed on the outer peripheral surface of the flare spline 30, and the frets line 30 sag in the radial direction. It becomes possible.
  • the number of teeth of the freta spline 30 is set slightly smaller than the number of teeth of the circular spline 20.
  • the wave generator 40 bends the freta spline 30 through the flexible bearing 50 at the long diameter portion, and the outer teeth of the freta spline 30 are meshed with the inner teeth of the circular spline 20.
  • the external teeth of the frets line 30 and the circular spline 20 according to the change in the position of the long diameter portion of the wave generator 40.
  • the meshing point where the inner teeth of the teeth mesh is moved in the circumferential direction.
  • the number of teeth of the flare spline 30 is slightly smaller than that of the circular spline 20
  • the number of teeth of the flare spline 30 and the circular spline 20 is circumferential. The difference will be rotated.
  • a wave gear device having such a high reduction ratio is, for example, a foot in a legged mobile robot. It is used to generate bending and stretching movements.
  • FIG. 13 is a diagram showing a joint portion of a foot in a legged mobile robot.
  • the first link 70 and the second link 90 are connected by a rotation support mechanism 91 so as to be rotatable relative to each other.
  • the wave gear device 60 is mounted so that the rotation axis is at the rotation center between the first link 70 and the second link 90. That is, the circular spline 20 is fixed to the second link 90.
  • the freta spline 30 is fixed to the first link 70 by a plurality of bolts 80 on the first rotating shaft 30a (output shaft).
  • the wave generator 40 is provided with a second rotating shaft 40a.
  • the second rotating shaft 40a is supported so as to be rotatable with respect to the first rotating shaft 30a.
  • the first rotating shaft 30a is provided to drive the second rotating shaft 40a.
  • Pulley 61 for transmitting force is fixed.
  • the wave generator 40 is driven, and the flex spline 30 is decelerated and rotated according to the rotation of the wave generator 40, and the first link 70 Is rotated.
  • the wave gear device 60 since the mounting position of the fleta spline 30 on the first rotating shaft 30a is limited to the end of the first rotating shaft 30a, The arrangement position of the wave gear device 60 is also limited to the end of the first rotating shaft 30a. For this reason, in the configuration in which the first rotary shaft 30a is supported by, for example, two rows of bearings, there is a problem that the degree of freedom in layout is low, such as the fact that a wave gear device cannot be arranged between the two rows of bearings.
  • the pulley 61 that transmits the driving force to the wave generator 40 is arranged on the second rotation shaft 40a along with the wave generator 40, so that the size in the direction of the rotation shaft is inevitably increased. There are problems that are difficult to use.
  • Patent Document 1 JP-A-5-141485 (Claims, Claim 1, Fig. 1)
  • Patent Document 2 JP-A-59-9336 (Fig. 2)
  • the present invention reduces the size of the wave gear device in the axial direction, improves the degree of freedom of the layout of the drive unit with a reduction gear, and has a good responsiveness.
  • An object is to provide an apparatus.
  • the first invention provides a circular rigid gear having outer teeth formed on the outer peripheral surface, and an inner peripheral length that is disposed outside the rigid gear and is larger than the outer peripheral length of the rigid gear.
  • An annular flexible gear having inner teeth that can be meshed with outer teeth of the rigid gear on the inner peripheral surface, and the inner side of the flexible gear by curling the flexible gear in the radial direction.
  • Wave generating means for engaging teeth with the external teeth of the rigid gear and moving the engagement position for engaging the flexible gear in the circumferential direction is provided, and the wave generating means is a rotor of a motor.
  • the second invention is a circular rigid gear having outer teeth formed on the outer peripheral surface, and is disposed outside the rigid gear, and has an inner peripheral length larger than the outer peripheral length of the rigid gear.
  • An annular flexible gear having inner teeth capable of mating with the external teeth of the rigid gear on the peripheral surface, and the flexible gear internal teeth of the rigid gear being squeezed in a radial direction
  • a wave generation means for moving the engagement position for encircling the flexible gear in a circumferential direction, and the wave generation means is disposed outside the flexible gear with respect to the flexible gear.
  • the rotating member is provided with a pressing portion that is arranged to be rotatable and presses the flexible gear in a radial direction, and the rotating member is a rotor of a motor.
  • a third invention is the first or second invention, wherein a stator of a motor for rotating the rotor is disposed on an outer peripheral side of the rotor, and the rigid gear is coupled to the first member. At the same time, it is assumed that both ends are rotatably supported by the second member.
  • a fourth invention is the first or second invention, wherein the flexible gear has two flexible gears having a cylindrical portion of the same diameter, and one end side of each flexible gear is arranged facing each other. Each flexible gear is meshed with the rigid gear, and each flexible gear is supported on the other end side.
  • the rotor has at least an inner circumference having an elliptical shape and a plurality of magnets, and the plurality of magnets has an elliptical length. It was assumed that the axis or short axis was arranged as an axis of line symmetry.
  • the outer peripheral portion of the rotor is further provided with a deformation restraining member for preventing deformation of the rotor.
  • a seventh invention is the first or second invention, wherein the rotor is configured to generate a magnetic flux along a rotation axis of the motor, and the stator that rotates the rotor is the rotor described above.
  • the magnetic flux is arranged so as to face the portion where the magnetic flux is generated, and the magnetic flux along the rotation axis is generated.
  • the rigid gear is disposed inside, the flexible gear is disposed outside the rigid gear, and the wave generating means is disposed outside the flexible gear so as to be rotatable with respect to the flexible gear. It is composed of the rotor of the motor.
  • the flexible gear is bent by the rotor of the motor, and the external teeth of the rigid gear can be engaged with the internal teeth of the flexible gear at the bent portion. Then, the meshing point can be moved in the circumferential direction by the rotation of the rotor of the motor.
  • the wave generating means is a rotor of the motor
  • the output of the motor can be directly used as an input to the wave gear device, and the wave gear device becomes compact and the rigidity of the input part of the wave gear device increases and response. Property can be improved.
  • the rotation shaft of the rigid gear is made to have a hollow structure, and the electrical harness and the rotation shaft slide at a low speed even when passing through the electric harness. The risk of damaging the harness is reduced.
  • the size in the axial direction can be reduced as compared with the prior art.
  • the rotor of the motor is located on the outer peripheral side of the flexible gear, the degree of freedom in layout near both ends of the rotating shaft is improved without the need to use one or both ends of the rotating shaft for inputting driving force.
  • the wave generating means is a rotor of the motor and the flexible gear is mechanically wound by the pressing portion, the external teeth of the rigid gear and the internal teeth of the flexible gear can be reliably engaged.
  • the flexible gear can be configured to be wide, and torque transmission with a high torque becomes possible.
  • the width (ripple) of torque fluctuation is reduced.
  • the magnetic path is formed symmetrically and becomes a proper magnetic path, so the magnetic resistance is lowered and the maximum torque of the motor is improved.
  • deformation of the rotor is suppressed by the deformation restraining member.
  • the rigidity of the wave generator can be increased.
  • the magnetic flux is not disturbed by a bearing, a fleta spline, a circular spline, or the like.
  • the heat generated by the magnetic flux disturbance can be suppressed.
  • the outer diameter of the rotor can be increased without worrying about the arrangement of the stator, the rigidity of the wave generator can be kept high.
  • FIG. 1 is a diagram showing a configuration of a wave gear device as a basic form of a drive unit with a reduction gear.
  • FIG. 2 is an exploded perspective view of the wave gear device.
  • FIG. 3 is a diagram conceptually showing an AA cross section in FIG.
  • FIG. 4 is a diagram showing an operation when a circular spline is driven by applying a driving force to a pulley with the freta spline fixed.
  • FIG. 5 is a sectional view showing a configuration of a drive unit with a reduction gear.
  • FIG. 6 is a diagram conceptually showing a BB cross section of FIG.
  • FIG. 7 is a diagram illustrating an arrangement layout of a drive unit with a reduction gear.
  • FIG. 8 is a diagram for explaining a modification of the rotor.
  • FIG. 9 is a cross-sectional view showing another modification of the drive unit with a reduction gear.
  • FIG. 10 is a cross-sectional view of a drive unit with a reduction gear when a flat motor is used.
  • FIG. 11 is a cross-sectional view showing a joint portion of a foot in a legged mobile robot.
  • FIG. 12 is a view showing a conventional wave gear device.
  • FIG. 13 is a cross-sectional view showing a joint portion of a leg in a legged mobile robot using a conventional wave gear device.
  • FIG. 1 is a diagram showing a configuration of a wave gear device as a basic form of a drive unit with a reduction gear
  • FIG. 2 is an exploded perspective view thereof.
  • FIG. 3 is a diagram conceptually showing an AA cross section in FIG.
  • the wave gear device 10 is mainly used as a circular spline 1 as a rigid gear, a fleta spline 2 as a flexible gear arranged outside the circular spline 1, and a wave generating means arranged outside the frettus line 2. It consists of 3 pulleys.
  • the circular spline 1 has external teeth la formed on the outer peripheral surface on the end side of the small diameter portion, and a through hole provided in the center thereof.
  • the freta spline 2 is a cylindrical member having flexibility that can be deformed in the radial direction.
  • Inner teeth 2a that can be engaged with the outer teeth la are formed on the inner peripheral surface thereof, and the inner teeth 2a are not provided.
  • a rigid flange 2b is formed at the end of this.
  • the outer tooth la of the circular spline 1 is set to have fewer teeth than the inner tooth 2a of the flexible spline 2.
  • the pulley 3 is formed with a groove for mounting the belt 9 on a circular outer peripheral surface, and the inner peripheral surface is formed in an elliptical shape at the same center as the outer peripheral surface as shown in FIG.
  • the flexor spline 2 is bent through 4 and the inner teeth 2a of the freta spline 2 and the outer teeth la of the circular spline 1 are combined at the short diameter portion. That is, the short-diameter portion functions as a pressing portion that presses the freighter spline 2 in the radial direction, thereby constricting the freighter spline 2.
  • the pulley 3 also functions as a wave generator in the wave gear device that not only functions as a pulley for transmitting driving force.
  • pulley support ring 6 and link 8 are arranged on both sides of flange 2b of freta spline 2, and pulley support ring 6 and link 8 have a plurality of circumferentially arranged flanges. Connected by bolt 8a.
  • the freta spline 2 can be bent in the radial direction on the side where the inner teeth 2a are provided with the flange 2b as a fixed end.
  • the pulley support ring 6 supports the pulley 3 via the first bearing 5
  • the link 8 supports the circular spline 1 via the second bearing 7.
  • the circular spline 1 can rotate relative to the freta spline 2.
  • the pulley 3 can be rotated through the flexible bearing 4 while flexing the freta spline 2 on the outer peripheral surface of the freta spline 2.
  • the pulley 3, the fleta spline 2, and the circular spline 1 can rotate relative to each other independently while maintaining a predetermined relationship.
  • One of these three rotating elements can be used as a speed reducer or speed increaser with one at the input end and one at the output end. Also, if one rotating element is on the output end side and the other two rotating elements are on the input end side, it can be used as a differential mechanism.
  • FIG. 4 is a diagram showing an operation in the case where the circular spline is driven by applying a driving force to the pulley while the freta spline is fixed.
  • the pulley 3 is further rotated by 90 degrees, that is, if the position force of (a) is also rotated 180 degrees counterclockwise, the meshing point a will also be rotated by 180 degrees.
  • the tooth n force of the fleta spline 2 is the force that will re-engage with the tooth of the circular spline 1. Since the number of teeth of the circular spline 1 is less than that of the freta spline 2, the tooth of the circular spline 1 m Will deviate from tooth n.
  • the wave gear device 10 is configured as described above, and the pulley 3 is arranged on the outermost periphery, and the circular spline 1 whose rotational speed is reduced with respect to the pulley 3 is arranged in the center.
  • the rotating shaft of spline 1 can be made into a hollow structure and used through an electrical harness. In this case, since the rotation of the circular spline 1 is low, the harness is less likely to be damaged when the sliding speed of the rotating shaft and the harness is low. Wave tooth Even when a fluid is passed through the rotating shaft to lubricate the car device 10, the fluid may not reach the target site due to centrifugal force! /.
  • a driving force can be applied to the pulley 3 at the outermost periphery, and the driving force can be output from the circular spline 1 at the center.
  • the circular spline 1 is at the innermost position as shown in Fig. 1 and there is no pulley for transmitting the driving force in the axial direction as in the conventional case.
  • the position can be set freely and driving force can be output from both sides of the output shaft.
  • the position of the wave gear device 10 relative to the output shaft can be set not only at the end of the output shaft but also inside, and when set inside, the output extending from both sides of the wave gear device can be set.
  • Axial force Driving force can also be output.
  • FIG. 5 is a cross-sectional view showing a configuration of a drive unit with a reduction gear
  • FIG. 6 is a diagram conceptually showing a cross section taken along line BB in FIG.
  • the pulley 3 is formed as a rotor of a motor, and the driving force of the motor is decelerated to directly output the circular spline 1 force.
  • a compact device can be configured while integrating the drive source and the speed reducer.
  • the flare spline 2 ′ formed with the inner teeth 2 is arranged outside the circular spline! / Formed with the outer teeth 1.
  • a rotor 16 as an example of a rotating shaft of the motor is disposed outside the freta spline 2 ′ via a flexible bearing 4.
  • the term “rotor” as used herein refers to a rotor that is rotated by a magnetic force such as a sucking bow I force or a repulsive force acting between the stators arranged on the same axis.
  • Permanent magnets or electromagnets are arranged on the rotor, and these permanent magnets or electromagnets exert a mutual force between the opposed stator and the electromagnets or permanent magnets.
  • the rotor 16 has an inner peripheral surface formed in an elliptical shape.
  • the fleta spline ⁇ is bent at the short diameter portion of the rotor 16, and the inner tooth 2a 'of the freta spline 2' is replaced with the outer tooth la 'of the circular spline! /. Combined. That is, the rotor 16 exhibits a function as a wave generator in the same manner as the pulley 3 in the wave gear device 10.
  • the rotor 16 is rotatably supported by the casing 15 by two first bearings 5. Outside the rotor 16, a stator 17 fixed to the casing 15 and having a plurality of salient poles formed in the circumferential direction around which coils 17a are wound is disposed. By sequentially energizing the coil 17a, a rotating magnetic field sandwiching the rotor 16 can be formed.
  • the rotor 16 has a plurality of permanent magnets 16a arranged at equal intervals in the circumferential direction. Therefore, the rotor 16 can rotate by obtaining a driving force by magnetic attraction or repulsion with the stator 17. it can.
  • Circular spline The encoder 18 for detecting the rotational speed of the rotor 16 is provided on the end side of the ⁇ , and the rotating disk 18a is rotatably supported by the casing 15 via the third bearing 19 and Concatenated with 16.
  • the drive unit 1 with a speed reducer is configured as described above, and the rotor 16 is driven by sequentially energizing each coil 17a of the stator 17, and the circular spline 1 'and the fleta spline ⁇ Is moved in the circumferential direction, and the circular spline 1 'is decelerated.
  • the motor forms a motor with the stator 17 and functions as an output shaft that outputs the driving force in the motor, so that the driving force can be directly decelerated and output.
  • the motor is arranged on the outer peripheral side without being provided at the end of the shaft and is flattened, the length in the axial direction can be shortened. It is composed of a conventional flexible gear with external teeth.
  • the motor is too small compared to the output of the wave gear device, so it is not a practical device.
  • the rotor and the wave generator are The rotor itself, which is not coupled by the shaft, becomes a wave generator, so that it can be considered that there is no elastic element to the rotating body, and the speed loop gain can be increased to improve the response. it can.
  • the rotor since the rotor has a hollow shape and a large diameter, the torsional rigidity of the rotor itself is also high.
  • the drive unit 10 ′ with a reduction gear is expected to have excellent cooling performance and high torque because the motor has a hollow structure and a large surface area.
  • FIG. 7 is a diagram for explaining the layout of the wave gear device. Since the conventional wave gear device 60 has a belt for transmitting driving force on the side, as shown in FIG. The position is limited to the end of the output shaft 24 (first rotating shaft 30a). That is, the output shaft is provided only on one side.
  • the drive unit with a reduction gear 1 according to the present embodiment (1) can be provided at both ends of the output shaft as shown in FIG. In addition, it can be arranged between the bearings 21 22 23 that support the output shaft 24 (rotating shaft of the circular spline 1), which improves the flexibility of layout.
  • the inner peripheral surface of the rotor 16 has an elliptical shape, and the flex spline 2 is curved at the short diameter portion.
  • the inner peripheral surface does not necessarily have to be an elliptical shape.
  • protrusions 16b 'and 16b' can be formed as pressing parts at the opposite locations facing the circular inner peripheral surface, and the freta spline 2 can be bent by the protrusions 161 / and 16b '.
  • the engagement point between the projection 161 /, 16b' and the circular spline 1 is moved, and the rotational speed of the circular spline 1 is moved.
  • the tip surfaces of the protrusions 161 /, 16b ′ may be a part of a circle or an ellipse.
  • only one protrusion 161 / may be formed.
  • FIG. 9 is a cross-sectional view of a modified example of the drive unit with a reduction gear.
  • the drive unit 10 ⁇ with a reduction gear shown in Fig. 9 has a circular spline ⁇ of the drive device 10 'with a reduction gear shown in Fig. 5 changed from a cantilever support to a double-end support, and a freta spline ⁇ is arranged from both sides. Is. Such both-end support is made possible by arranging the wave generating means on the outer peripheral side of the frets plane 2 '.
  • a freta spline 2 with inner teeth 2a jointlyis arranged on the outer peripheral side of a circular spline 1" with wide outer teeth la ⁇ .
  • rotors 16 are arranged via wide flexible bearings 4.
  • the rotor 16 has an inner peripheral surface formed in an elliptical shape, and the fleta spline 2 "is bent at the short diameter portion thereof, and the inner tooth 2a" of the freta spline 2 is meshed with the outer tooth la of the circular spline! / . That is, the rotor 16 is similar to the rotor 16 in FIG. It has a function as a data.
  • the circular spline 1 is connected to a cylindrical portion 101 that enters the inner peripheral side of a later-described freta spline 2 and a cylindrical link connection that is continuous to the right side of the cylindrical portion 101 in FIG. 9 and is slightly thicker than the cylindrical portion 101.
  • Part 102 A screw hole 109 is provided at the right end portion of the link coupling portion 102, and the first link 107 as the first member is coupled to the screw hole 109 by a bolt 8a.
  • a screw hole 109 is formed at the left end of the cylindrical portion 101a, and a first link 107, which is a first member, is coupled to the screw hole 109 from the left side by a bolt 8a.
  • the outer teeth la are formed on the outer periphery of the cylindrical portion 101a.
  • the cylindrical portion 10la is inserted into the freta spline 2 because the left end is smaller than the inner diameter of the freta spline 2. Easy to assemble.
  • the circular spline 1 is rotatably supported by the second link 106 that is a part of the second member via the second bearing on the right side in FIG. In this case, the left side is also rotatably supported by the second link 106 via the second bearing.
  • the circular spline 1 "is rotatably supported on both sides, so that the drive unit 10 with a reduction gear can be used as a joint requiring high torque such as a robot joint.
  • the circular spline 1 may be rotatably supported by a member integrated with the second link, for example, the casing 15! /.
  • the fleta spline 2 includes a thin cylindrical portion 2b "that is flexible in the radial direction and a flange portion 2c that extends in the radial direction from the ends of the cylindrical portion 2b".
  • the inner teeth 2a are formed on the inner surface of the cylindrical portion 2b 2.
  • the same two flare splines 2 are arranged with the end portions (one end side) of the cylindrical portion 21 facing each other.
  • the flange part 2 located at both ends (the other end side) is sandwiched between the right second link 106 and the casing 15 on the right side and fixed with bolts 8a. It is sandwiched between the link 106 and the casing 15, and is fixed with bolts 8a.
  • the two fleta splines 2 have their cylindrical portions 2b facing each other at one end, and the width of the internal teeth 2a "is widened. Is possible.
  • the functions and structures of the rotor 16 and the stator 17 are the same as those of the rotor 16 and the stator 17 in FIG. 5, and the rotor 16 is rotated by energizing the coil 17a of the stator 17.
  • a rotating disk 18a is fixed to the outer periphery on the other end side of the rotor 16, and the rotation speed and the rotation angle of the rotor 16 are detected by detecting the rotation of the rotating disk 18a by the encoder 18.
  • the drive unit 10 with a reduction gear is configured as described above, and by sequentially energizing the coils 17a of the stator 17, the rotor 16 ⁇ ⁇ ⁇ ⁇ is driven, and the rotation results in the circular spine 1 and the fleta spline 2 being driven. Is moved in the circumferential direction, and the circular line 1 "is driven at a reduced speed.
  • FIG. 10 is a cross-sectional view of the drive unit with a reduction gear when a flat motor is used.
  • a drive device 10 with a reduction gear shown in FIG. 10 has a stator 171 arranged slightly closer to the inner diameter side than the stator 17 in the drive device 1 (with a reduction gear in FIG. 5).
  • 171 has a coil 171a, and generates a magnetic flux in the direction of the rotating shaft of the motor, that is, the rotating shaft of the first link 107 and the second link 106, by energizing the coil 171a.
  • a stator 161 is disposed so as to surround the stator 171 from both sides, and the rotor 161 has permanent magnets 162, 1 63 on both sides of the stator 171.
  • Permanent magnets 162, 163 Also, a magnetic flux is generated along the rotation axis, and the stator 171 and the rotor 161 constitute a loose flat motor so that the rotor 161 rotates by energizing the stator 171! /, The
  • the permanent magnets 162 and 163 of the rotor 161 are connected to the inner teeth 2a "of the freta spline 2 and the circular It is arranged on the outer periphery of the part where the external teeth 1 of the rasp line 1 meet.
  • the stator 171 and the permanent magnet 162 are generated due to the positional relationship between the direction in which the magnetic flux extends and the bearing, the fret spline, the hollow circular spline, or the like.
  • the magnetic flux force is not disturbed by these members. Therefore, generation of eddy current due to magnetic flux disturbance can be suppressed, and generation of unnecessary heat due to eddy current can be suppressed.
  • the rotor 161 is formed with a thick portion at the outer periphery of the portion where the inner tooth 2a "of the freta spline 2 and the outer tooth la ⁇ of the circular spline 1 meet, so that the permanent magnets 162, 163 Oka IJ makes it possible to combine the external tooth la and the internal tooth 2a "with the tension.
  • the first bearings 5 and 5 are fitted to the outer periphery near both ends of the rotor 161, even if the rotor 161 is spread outward in the radial direction as a reaction force pressing the fleta spline 2 ", the first bearing Since the bearings 5 and 5 function as a deformation restraining member that restrains deformation, it is possible to realize a reliable combination of the outer teeth 1 and the inner teeth 2a "with the apparent rigidity of the rotor 161 being increased.
  • the apparent rigidity of the rotor 161 is further improved and the outer teeth la "and the inner teeth are increased.
  • a reliable combination of the teeth 2a ⁇ can be realized, especially when the permanent magnets 162, 163 are arranged on the outer peripheral portions of the outer teeth la ⁇ and the inner teeth 2a ⁇ as in this embodiment.
  • the deformation restraining member may be fitted with a ring-shaped member on the outer periphery of the permanent magnets 162 and 163 which are not necessarily bearings.
  • stator 171 and the rotor 161 are configured as a flat motor, the outer diameter of the stator 171 can be reduced, and the drive unit with a reduction gear 10 ⁇ can be reduced in size.
  • FIG. 11 is a cross-sectional view showing a joint portion of a foot in a legged mobile robot.
  • the drive unit 10 ′ with a speed reducer is coupled to the second link 12 by force bolts 8a at both ends of the circular spline: ⁇ .
  • the second link 12 is a circular spline! / Integrated with.
  • the first link 13 is rotatably supported on the circular spline: ⁇ by the second bearing ⁇ on the right side in FIG.
  • the second bearing 12 is rotatably supported by the second bearing.
  • the left and right second links 12 and 12 are united at the upper side, and the left and right first links 13 and 13 are united at the lower side.
  • the driving force can be evenly output on both sides of the circular spline: ⁇ , so that the first link 13 and the second link 12 are well balanced. Can be made. Further, since the rotor 16 itself has a function as a wave generator, the rotor 16 can be rotated at a high speed and the first link 13 and the second link 12 can be rotated with good responsiveness.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Retarders (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

 レイアウトの自由度の高い波動歯車装置を提供する。波動歯車装置10は、外周面に外歯が形成された円形状のサーキュラスプライン1′と、その外側に配置され、内周面にサーキュラスプライン1′の外歯と噛合可能な内歯が形成され、半径方向で変形可能なフレクスプライン2と、フレクスプライン2の外側に配置される波動発生手段としてのロータ16で構成される。ロータ16は、内周面の短径部分でフレクスプライン2を撓ませ、フレクスプライン2の内歯をサーキュラスプライン1′の外歯に噛合させ、その噛合点を円周方向に移動させることが可能になっている。

Description

明 細 書
減速機付き駆動装置
技術分野
[0001] 本発明は減速機付き駆動装置に関する。
背景技術
[0002] 従来の駆動装置に用いられる減速機としての波動歯車装置は、図 12に示すような 構成を有している (特許文献 1参照)。すなわち、外周面が楕円形状に形成されたゥ エーブジェネレータ 40を囲むように可撓ベアリング 50を介してフレタスプライン 30を 配置し、フレタスプライン 30の外側に内周面が円形状のサーキユラスプライン 20を配 置するように構成されている。
サーキユラスプライン 20の内周面に内歯が形成され、フレタスプライン 30の外周面 にはサーキユラスプライン 20の内歯と嚙合可能な外歯が形成され、かつフレタスプラ イン 30が半径方向に橈むことが可能になって 、る。フレタスプライン 30の歯数はサー キユラスプライン 20の歯数より僅かに少なく設定されている。
ウェーブジェネレータ 40は、長径部分で可撓ベアリング 50を介してフレタスプライン 30を撓ませ、フレタスプライン 30の外歯をサーキユラスプライン 20の内歯と嚙合させ ている。
[0003] このように構成された波動歯車装置では、例えばウェーブジェネレータ 40を回転さ せた場合、ウェーブジェネレータ 40の長径部分位置の変化に応じて、フレタスプライ ン 30の外歯とサーキユラスプライン 20の内歯が嚙み合う嚙合点が円周方向に移動 する。このとき、フレタスプライン 30の歯数はサーキユラスプライン 20のそれより僅か に少ないので、例えばウェーブジェネレータ 40を 360度回転させた場合、フレタスプ ライン 30は円周方向にサーキユラスプライン 20との歯数差分回転することになる。す なわち、ウェーブジェネレータ 40を入力端に、フレタスプライン 30を出力端にして前 記従来の波動歯車装置を減速機として使用した場合、ウェーブジェネレータ 40の回 転速度に対してフレタスプライン 30の回転速度が大きく減速されることになる。
[0004] このような高減速比を有する波動歯車装置は、例えば脚式移動ロボットにおける足 の屈伸動作の発生に利用されている。図 13は脚式移動ロボットにおける足の関節部 分を示す図である。
第 1リンク 70と第 2リンク 90とは回動支持機構 91で連結され、互いに回動可能にな つている。第 1リンク 70と第 2リンク 90との回転中心に回転軸がくるように波動歯車装 置 60が装着されている。すなわち、サーキユラスプライン 20が第 2リンク 90に固定さ れる。そして、フレタスプライン 30が第 1回転軸 30a (出力軸)において複数のボルト 8 0によって第 1リンク 70に固定される。ウェーブジェネレータ 40には第 2回転軸 40aが 設けられ、第 2回転軸 40aは、第 1回転軸 30aに対して回転可能に支持され、第 1回 転軸 30aを設けて ヽな 、側に駆動力を伝達するためのプーリ 61が固定されて 、る。 ここで、ベルト 62によって図示しないモータからの駆動力をプーリ 61に伝えると、ゥ エーブジェネレータ 40が駆動され、ウェーブジェネレータ 40の回転にしたがってフレ クスプライン 30が減速して回転し、第 1リンク 70が回動される。
[0005] し力しながら、前記波動歯車装置 60では、第 1回転軸 30aにおけるフレタスプライン 30の取付位置は、第 1回転軸 30aの端部に制限されるため、第 1回転軸 30aに対す る波動歯車装置 60の配置位置も第 1回転軸 30aの端部に限られる。このため、第 1 回転軸 30aを例えば二列のベアリングで支持する構成では、二列のベアリングの間 で波動歯車装置を配置することができないなど、レイアウト上の自由度が低いという 問題がある。
また、ウェーブジェネレータ 40に駆動力を伝えるプーリ 61は、ウェーブジェネレータ 40と並んで第 2回転軸 40aに配置されることにより、回転軸方向の大きさが大きくなる ことが避けられず、用途によっては使用しにくい問題がある。
[0006] これに対し、ウェーブジェネレータをフレタスプラインの外周側に配置したものも知ら れている (特許文献 2参照)。
特許文献 1 :特開平 5— 141485号公報 (特許請求の範囲、請求項 1、図 1) 特許文献 2:特開昭 59— 9336号公報 (第 2図)
発明の開示
[0007] し力しながら、特許文献 2の技術においても、駆動力の付与は、一方の端部から行 われており、軸方向の大きさが大きかった。また、駆動力がウェーブジェネレータに伝 わるまでの経路を構成する部材は、剛性が低いので、応答性が悪いという問題があ る。
本発明は、前記従来の問題点に鑑み、波動歯車装置の軸方向の大きさを小さくし 、減速機付き駆動装置のレイアウトの自由度を向上させるとともに、良好な応答性を 有する減速機付き駆動装置を提供することを目的とする。
[0008] このため、第 1の発明は、外周面に外歯が形成された円形状の剛体歯車と、前記剛 体歯車の外側に配置され、前記剛体歯車の外周長より大きな内周長を有するととも に、内周面に前記剛体歯車の外歯と嚙合可能な内歯が形成された環状の可撓歯車 と、前記可撓歯車を半径方向に橈ませることにより前記可撓歯車の内歯を前記剛体 歯車の外歯に嚙合させるとともに、前記可撓歯車を橈ませる嚙合位置を円周方向に 移動させる波動発生手段とを備え、前記波動発生手段がモータのロータであるものと した。
[0009] 第 2の発明は、外周面に外歯が形成された円形状の剛体歯車と、前記剛体歯車の 外側に配置され、前記剛体歯車の外周長より大きな内周長を有するとともに、内周面 に前記剛体歯車の外歯と嚙合可能な内歯が形成された環状の可撓歯車と、前記可 橈歯車を半径方向に橈ませることにより前記可撓歯車の内歯を前記剛体歯車の外 歯に嚙合させるとともに、前記可撓歯車を橈ませる嚙合位置を円周方向に移動させ る波動発生手段とを備え、前記波動発生手段は、前記可撓歯車の外側に前記可撓 歯車に対して回転自在に配置され、前記可撓歯車を半径方向に橈ませるべく押圧 する押圧部を備えた回転部材であり、前記回転部材は、モータのロータであるものと した。
[0010] 第 3の発明は、第 1または第 2の発明において、前記ロータの外周側に、ロータを回 転させるモータのステータが配置され、前記剛体歯車は、第 1の部材に結合されると ともに、両端部において第 2の部材により回転自在に支持されたものとした。
[0011] 第 4の発明は、第 1または第 2の発明において、同じ径の筒状部を有する前記可撓 歯車を 2つ有し、各可撓歯車の一端側を互いに向かい合わせて配置した上、各可撓 歯車を前記剛体歯車に嚙合させるとともに、各可撓歯車を他端側で支持したものとし [0012] 第 5の発明は、第 1または第 2の発明において、前記ロータが、少なくとも内周が楕 円形状をなすとともに複数の磁石が配置され、前記複数の磁石は、前記楕円形状の 長軸または短軸を線対称軸として配置されたものとした。
[0013] 第 6の発明は、第 1または第 2の発明において、前記ロータの外周部に、前記ロータ の変形を防ぐ変形拘束部材をさらに備えたものとした。
[0014] 第 7の発明は、第 1または第 2の発明において、前記ロータが、前記モータの回転 軸に沿った磁束を発生するように構成され、前記ロータを回転させるステータが、前 記ロータの磁束の発生部分に対面して配置されるとともに、前記回転軸に沿った磁 束を発生するように構成されたものとした。
[0015] 第 1の発明によれば、剛体歯車を内側に、剛体歯車の外側に可撓歯車を配置して 、波動発生手段が可撓歯車の外側に可撓歯車に対して回転自在に配置されたモー タのロータで構成される。このとき、モータのロータで可撓歯車を撓ませ、撓ませた部 分で剛体歯車の外歯を可撓歯車の内歯と嚙合させることができる。そして、モータの ロータの回転によってその嚙合点を円周方向に移動させることができる。
そして、波動発生手段は、モータのロータであるため、モータの出力を直接波動歯 車装置の入力として利用でき、波動歯車装置がコンパクトになるとともに、波動歯車 装置の入力部分の剛性が高くなり応答性を良好にすることができる。
さらに、ロータの回転速度に対して剛体歯車の回転速度が大きく減速されるため、 例えば剛体歯車の回転軸を中空構造にし、そこに電気ハーネスなどを通しても電気 ハーネスと回転軸の摺動速度が小さぐハーネスが損傷される恐れも少なくなる。
[0016] 第 2の発明によれば、モータのロータが最も外側にあるため、従来に比べて、軸方 向の大きさを小さくできる。
また、モータのロータは、可撓歯車より外周側にあるため、駆動力の入力のために、 回転軸の一端または両端を用いる必要が無ぐ回転軸両端付近のレイアウトの自由 度が向上する。
さらに、波動発生手段はモータのロータであり押圧部で可撓歯車を機械的に橈ま せるため、剛体歯車の外歯と可撓歯車の内歯とを確実に嚙合させることができる。
[0017] 第 3の発明によれば、高トルクのトルク伝達を可能にしつつ、リンクの関節の小型化 を図ることができる。
[0018] 第 4の発明によれば、可撓歯車を幅広に構成でき、さらに高トルクのトルク伝達が可 會 になる。
[0019] 第 5の発明によれば、トルク変動の幅 (リップル)が低減する。また、磁路が対称に形 成され、適正な磁路となるので磁気抵抗が低くなり、モータの最大トルクが向上する。
[0020] 第 6の発明によれば、変形拘束部材により、ロータの変形が抑制される。また、ゥェ ーブジェネレータの剛'性を高くすることができる。
[0021] 第 7の発明によれば、ベアリング、フレタスプラインまたはサーキユラスプラインなど により磁束が乱れることがない。その結果、磁束の乱れにより発生する熱を抑えること ができる。また、ステータの配置を気にすることなくロータの外径を大きくしうるため、ゥ エーブジェネレータの剛性を高く保つことができる。
図面の簡単な説明
[0022] [図 1]減速機付き駆動装置の基礎的形態としての波動歯車装置の構成を示す図であ る。
[図 2]波動歯車装置の分解斜視図である。
[図 3]図 1における A— A断面を概念的に示す図である。
[図 4]フレタスプラインを固定した状態で、プーリに駆動力を与えることにより、サーキ ユラスプラインを駆動する場合の動作を示す図である。
[図 5]減速機付き駆動装置の構成を示す断面図である。
[図 6]図 5の B— B断面を概念的に示した図である。
[図 7]減速機付き駆動装置の配置レイアウトを説明する図である。
[図 8]ロータの変形例を説明する図である。
[図 9]減速機付き駆動装置の他の変形例を示す断面図である。
[図 10]フラットモータを利用した場合の減速機付き駆動装置の断面図である。
[図 11]脚式移動ロボットにおける足の関節部分を示す断面図である。
[図 12]従来の波動歯車装置を示す図である。
[図 13]従来の波動歯車装置を用いた脚式移動ロボットにおける足の関節部分を示す 断面図である。 発明を実施するための最良の形態
[0023] 以下、本発明の実施形態について説明する。まず最初に、本発明の減速機付き駆 動装置の基礎的形態として、剛体歯車の外側に可撓歯車が位置し、可撓歯車の外 側にあるプーリを入力とする形態を説明する。図 1は、減速機付き駆動装置の基礎的 形態としての波動歯車装置の構成を示す図で、図 2は、その分解斜視図である。図 3 は、図 1における A— A断面を概念的に示す図である。
波動歯車装置 10は主として、剛体歯車としてのサーキユラスプライン 1と、サーキュ ラスプライン 1の外側に配置される可撓歯車としてのフレタスプライン 2と、フレタスプラ イン 2の外側に配置された波動発生手段としてのプーリ 3で構成されている。
サーキユラスプライン 1は、図 2に示すように小径部の端部側の外周面に外歯 laが 形成され、その中心部に貫通孔が設けられている。
フレタスプライン 2は、半径方向に変形可能な可撓性を有する円筒状の部材で、そ の内周面に外歯 laと嚙合可能な内歯 2aが形成され、内歯 2aを設けていない側の端 部には剛性のフランジ 2bが形成されている。サーキユラスプライン 1の外歯 laはフレ クスプライン 2の内歯 2aより歯数が少なく設定されている。
[0024] プーリ 3は、円形状の外周面にベルト 9を装着するための溝が形成され、内周面が 図 3に示すように外周面と同じ中心で楕円形状に形成され、可撓ベアリング 4を介し てフレタスプライン 2を撓ませ、短径部分でフレタスプライン 2の内歯 2aとサーキュラス プライン 1の外歯 laとを嚙合させている。すなわち、短径部分はフレタスプライン 2を 半径方向に押圧する押圧部として機能することによってフレタスプライン 2を橈ませて いる。このように、プーリ 3は駆動力を伝えるためのプーリとしての機能だけでなぐ波 動歯車装置におけるウェーブジェネレータとしての機能をも果たす。
フレタスプライン 2のフランジ 2bの両側には図 1に示すように、プーリ支持リング 6とリ ンク 8が配置され、プーリ支持リング 6とリンク 8は、フランジを挟んで円周方向に並ん だ複数のボルト 8aによって連結されている。フレタスプライン 2は、フランジ 2bを固定 端として内歯 2aが設けられた側を半径方向へ橈ませることができる。プーリ支持リン グ 6は、図 1に示すように第 1ベアリング 5を介してプーリ 3を支持し、リンク 8は第 2ベア リング 7を介してサーキユラスプライン 1を支持して 、る。 [0025] これによつて、フレタスプライン 2に対してサーキユラスプライン 1は相対的に回転す ることができる。一方、プーリ 3は可撓ベアリング 4を介してフレタスプライン 2の外周面 でフレタスプライン 2を撓ませながら回転することができる。すなわち、プーリ 3、フレタ スプライン 2、サーキユラスプライン 1がそれぞれ所定の関係を保ちながら独立に相対 回転することができる。この三つの回転要素のうち、いずれかの一つを入力端側に、 一つを出力端側にして減速機または増速機として使用することができる。また、一つ の回転要素を出力端側にし、他の二つの回転要素を入力端側にすれば、差動機構 として機會させることちできる。
[0026] 次に、波動歯車装置 10の動作について説明する。図 4は、フレタスプラインを固定 した状態で、プーリに駆動力を与えて、サーキユラスプラインを駆動する場合の動作 を示す図である。
図 4 (a)では、プーリ 3の内周面における短径部分で、サーキユラスプライン 1の歯 m とフレタスプライン 2の歯 nが嚙み合っている。この嚙み合い位置を嚙合点 aとして、プ ーリ 3を反時計方向に 90度回転させた場合、(b)に示すように、嚙合点 aがプーリ 3の 内周面における短径部分と同様に 90度回転することになる。このとき、嚙合点がずれ ることによって、歯 mと歯 nが嚙み合わなくなる。そして、プーリ 3をさらに 90度、すなわ ち(a)の位置力も反時計方向に 180度回転させると、嚙合点 aも同様に 180度回転す ることになる。このとき、フレタスプライン 2の歯 n力 サーキユラスプライン 1の歯と再び 嚙み合うことになる力 サーキユラスプライン 1の歯数がフレタスプライン 2のそれより少 ないため、サーキユラスプライン 1の歯 mが歯 nからずれることになる。したがって、フレ クスプライン 2を固定した場合、プーリ 3の回転速度に対して、サーキユラスプライン 1 の回転速度が大きく減速されることになり、波動歯車装置 10を減速機として使用する 場合、大きな減速比が得られる。
[0027] 波動歯車装置 10は以上のように構成され、プーリ 3を最外周に配置し、プーリ 3に 対して回転速度が減速されるサーキユラスプライン 1を中心部に配置したため、例え ばサーキユラスプライン 1の回転軸を中空構造にし、そこに電気ハーネスを通して使 用することができる。この場合、サーキユラスプライン 1の回転が低速であるため回転 軸とハーネスの摺動速度が小さぐハーネスが損傷される恐れが少ない。また波動歯 車装置 10を潤滑するため回転軸を介して流体を流した場合でも、遠心力で流体が 目的の部位に届かな 、ようなこともな!/、。
[0028] また、減速機として使用する場合、最外周にあるプーリ 3に駆動力を与え、中央部 にあるサーキユラスプライン 1から駆動力を出力することができる。このとき、サーキュ ラスプライン 1は図 1に示すように最も内側にあり、かつ軸方向には従来のように駆動 力を伝達するためのプーリが存在しないため、出力軸におけるサーキユラスプライン 1 の配置位置が自由に設定することができるとともに、出力軸の両側から駆動力を出力 することができる。
すなわち、出力軸に対する波動歯車装置 10の配置位置は出力軸の端部だけでな く内側にも設定することもでき、そして内側に設定した場合には、波動歯車装置の両 側から伸びた出力軸力 駆動力を出力することもできる。
[0029] 次に、駆動用のモータのロータを波動発生手段として用いた本発明の減速機付き 駆動装置について説明する。図 5は、減速機付き駆動装置の構成を示す断面図であ り、図 6は、図 5の B— B断面を概念的に示した図である。
前記した基礎的形態としての波動歯車装置 10を減速機として使用する場合、ブー リ 3をモータのロータとして形成し、モータの駆動力を減速してサーキユラスプライン 1 力も直接に出力することで、駆動源と減速機を一体にしつつコンパクトにした装置を 構成することができる。
本実施形態の減速機付き駆動装置 10' は、図 5に示すように外歯 1 が形成さ れたサーキユラスプライン!/ の外側に、内歯 2 が形成されたフレタスプライン 2' が配置され、フレタスプライン 2' の外側には可撓ベアリング 4を介してモータの回転 軸の一例としてのロータ 16が配置されている。ここでのロータとは、同軸上に固定し て配置されたステータとの間で互 、に吸弓 I力または反発力などの磁力が作用されて 回転されるものである。ロータには、永久磁石または電磁石が配置され、これらの永 久磁石または電磁石は、対向するステータと電磁石または永久磁石との間で相互に 力を及ぼし合う。
ロータ 16は、内周面が楕円形状に形成され、その短径部分でフレタスプライン ^ を撓ませ、フレタスプライン 2' の内歯 2a' をサーキユラスプライン!/ の外歯 la' に 嚙合させている。すなわち、このロータ 16は前記波動歯車装置 10におけるプーリ 3と 同様にウェーブジェネレータとしての機能を発揮するものである。
[0030] サーキユラスプライン!/ は、第 2ベアリング を介してリンク^ に回転可能に支 持され、フレタスプライン ^ は、そのフランジがリンク^ とケーシング 15の壁面に挟 まれた状態でボルト 8aによって固定される。
ロータ 16は、 2つの第 1ベアリング 5によってケーシング 15に回転可能に支持され ている。ロータ 16の外側に、ケーシング 15に固定され、円周方向に形成された複数 の突極にコイル 17aが巻かれたステータ 17が配置されている。このコイル 17aに順次 に通電することによって、ロータ 16を挟んだ回転磁場を形成することができる。
図 7に示すように、ロータ 16には円周方向に等間隔に複数の永久磁石 16aが配置 され、したがって、ステータ 17との磁気吸引または反発でロータ 16が駆動力を得て 回転することができる。
サーキユラスプライン:^ の端部側にロータ 16の回転速度を検出するエンコーダ 18 が設けられ、その回転円盤 18aは、第 3ベアリング 19を介してケーシング 15に回転可 能に支持されるとともに、ロータ 16と連結されている。
[0031] 減速機付き駆動装置 1( は以上のように構成され、ステータ 17の各コイル 17aに 順次に通電することによってロータ 16が駆動され、その回転でサーキユラスプライン 1 ' とフレタスプライン ^ との嚙合点が円周方向に移動され、サーキユラスプライン 1 ' が減速駆動される。
そして、ロータ 16が回転するとき、エンコーダ 18で回転円盤 18aの回転角を示す情 報が作成されるので、その情報を用いてロータ 16の回転速度を検出することができる このように、ロータ 16はウェーブジェネレータとしての機能をもっと同時に、ステータ 17とでモータを構成し、モータにおける駆動力を出力する出力軸の機能も果たすの で、駆動力を直接に減速して出力することができる。
[0032] 以上のような減速機付き駆動装置 10' によれば、次のような効果を奏する。
まず、モータを軸の端部に設けることなぐ外周側に配置して扁平型にしたので、軸 方向の長さを短くすることができる。なお、従来の外歯を備えた可撓歯車で構成され る波動歯車装置において、ウェーブジェネレータとロータ(アウターロータ)とを一体化 した場合には、波動歯車装置の出力に比較してモータが小さすぎるため、実用的な 装置とはならない。
そして、モータの回転を制御する場合に、モータから回転体までの間の剛性が低い と、制御を安定させるため速度ループゲインを大きくするのが難しいが、本実施形態 では、ロータとウェーブジェネレータを軸で結合するのではなぐロータ自体がゥエー ブジェネレータとなって 、ることから回転体までの弾性要素が無 、とみなすことができ 、速度ループゲインを高くして応答性を良好にすることができる。し力も、ロータが中 空形状で径が大きいことから、ロータ自体の捩り剛性も高ぐこれによつても応答性が 良好になる。
また、減速機付き駆動装置 10' は、モータが中空構造となり、表面積が大きくなる ため、冷却性能に優れ、高トルクを持続することが期待できる。
さらに、モータ、ウェーブジェネレータおよびフレタスプラインの 3つが一体となって いるので、サーキユラスプラインを備えたリンクにこの一体ィ匕された装置を挿入し、締 結するだけで組立が可能であるので、部品点数'組立工数が削減され、低コスト化が 可能となる。
また、従来は、モータとウェーブジェネレータのシャフト同士の締結で回り止めのキ 一を使用していたが、減速機付き駆動装置 1(/ では、キーを使用する必要がないの で、キー溝の疲労によるガタが発生することがない。したがって、ロータからウェーブ ジェネレータまでの運動の伝達経路においてガタを 0にでき、前記したとおりウェーブ ジェネレータの応答性が良好になる上、騒音の低下や耐久性の向上も期待できる。 また、従来は、モータとウェーブジェネレータのシャフト同士の結合において、精度 を要するテーパシャフトとテーパハウジングによる結合を行って 、たが、減速機付き 駆動装置 ic では、そのようなテーパ加工は不要となり、加工工数の削減と低コスト 化を実現することができる。
さらに、本実施形態によれば、減速機付き駆動装置のレイアウトの自由度が向上す る。図 7は、波動歯車装置の配置レイアウトを説明する図である。従来の波動歯車装 置 60は、横側に駆動力を伝達するベルトがあるため、図 7に示すように、その配置位 置が出力軸 24 (第 1回転軸 30a)の端部に限られる。すなわち、片側にしか出力軸が 設けられない構成である。これに対して、本実施形態の減速機付き駆動装置 1( は 、両側に出力軸を設けることができるため、従来のように出力軸の端部に配置できる ことはもちろん、図 7に示すように、出力軸 24 (サーキユラスプライン 1の回転軸)を支 持するベアリング 21 22 23の間でも配置することができ、レイアウトの自由度が向 上する。
[0034] なお、本実施形態ではロータ 16の内周面を楕円形状にして、その短径部分でフレ クスプライン 2を橈ませたが、内周面は必ずしも楕円形状である必要はなぐ例えば図 8に示すように円形状の内周面に対向するニケ所に押圧部として突起 16b' , 16b ' を形成し、突起 161/ , 16b' によってフレタスプライン 2を橈ませることもできる。こ の場合、本実施形態と同様にロータ 16' を回転させると、突起 161/ , 16b' カ^レ クスプライン 2とサーキユラスプライン 1との嚙合点を移動させ、サーキユラスプライン 1 の回転速度を減速させることができる。なお、この場合、突起 161/ , 16b' の先端 面は、円形の一部でもよぐ楕円形の一部でもよい。もちろん、突起 161/ を一つの み形成しても構わない。
[0035] 次に、図 5の減速機付き駆動装置の変形例を説明する。図 9は、減速機付き駆動装 置の変形例の断面図である。
図 9に示す減速機付き駆動装置 10〃 は、図 5の減速機付き駆動装置 10' のサー キユラスプライン:^ を、片持ち支持から両持ち支持に変更し、フレタスプライン ^ を 両側から配置したものである。このような両持ち支持は、波動発生手段をフレタスプラ イン 2' の外周側に配置したことにより可能になつて 、る。
減速機付き駆動装置 10 は、幅広の外歯 la〃 が形成されたサーキユラスプライン 1" の外周側に、内歯 2a„ が形成されたフレタスプライン 2,, が配置され、フレタスプ ライン 2,, の外周側には幅広の可撓ベアリング 4を介してロータ 16,, が配置されてい る。
ロータ 16 は、内周面が楕円形状に形成され、その短径部分でフレタスプライン 2 " を撓ませ、フレタスプライン 2 の内歯 2a" がサーキユラスプライン!/ の外歯 la に嚙合されている。つまり、ロータ 16 は図 5のロータ 16と同様にウェーブジエネレー タとしての機能を有する。
[0036] サーキユラスプライン 1 は、後述するフレタスプライン 2 の内周側に入り込む筒 部 101と、筒部 101の図 9における右側に連続し、筒部 101より一回り太い筒状のリ ンク結合部 102とから構成されている。リンク結合部 102の右端部には、ネジ穴 109 が設けられており、このネジ穴 109に、第 1の部材である第 1リンク 107がボルト 8aに より結合されている。同様に、筒部 101aの左端にもネジ穴 109が形成され、このネジ 穴 109に、左側から第 1の部材である第 1リンク 107がボルト 8aにより結合されている 。筒部 101aの外周には、前記した外歯 la" が形成されている。このように、筒部 10 laは、左側の一端がフレタスプライン 2 の内径より小さいため、フレタスプライン 2 へ挿入して組み付けるのが容易である。
サーキユラスプライン 1 は、一端側、図 9においては右側が第 2ベアリング を介 して第 2の部材の一部である第 2リンク 106に回転可能に支持され、他端側、図 9に おいては左側も第 2ベアリング を介して第 2リンク 106に回転可能に支持されてい る。このようにサーキユラスプライン 1" が両側で回転支持されることにより、減速機付 き駆動装置 10 をロボットの関節などの高トルクを要する関節として利用することが できる。
なお、サーキユラスプライン 1 は、第 2リンクと一体になつている部材、例えばケー シング 15により回転自在に支持されて 、てもよ!/、。
[0037] フレタスプライン 2 は、半径方向に可撓性を有する薄い筒状部 2b" と筒状部 2b " の端部から半径方向に延びるフランジ部 2c〃 力 なっている。筒状部 2b〃 の内面 には、前記した内歯 2a が形成されている。フレタスプライン 2 は、筒状部 21 の 端部(一端側)を互いに向き合わせた状態で同じ物が 2つ配置されている。両端 (他 端側)に位置したフランジ部 2 は、右側については、右側の第 2リンク 106とケーシ ング 15の間に挟まれた上、ボルト 8aで固定され、左側については、左側の第 2リンク 106とケーシング 15の間に挟まれた上、ボルト 8aで固定されている。このように、 2つ のフレタスプライン 2 をその筒状部 2b を一端で向かい合わせて、内歯 2a" の幅 を広くとっているため、減速機付き駆動装置 10〃 は、高トルクのトルク伝達が可能と なる。 [0038] ロータ 16 およびステータ 17の機能および構造は図 5のロータ 16およびステータ 17の機能と同様であり、ステータ 17のコイル 17aへの通電によりロータ 16 が回転さ せられる。また、ロータ 16の他端側の外周には回転円盤 18aが固定され、エンコーダ 18で回転円盤 18aの回転を検出することでロータ 16 の回転速度、回転角が検出 される。
[0039] 減速機付き駆動装置 10 は以上のように構成され、ステータ 17の各コイル 17aに 順次に通電することによって、ロータ 16〃 が駆動され、その回転で、サーキュラスプラ イン 1 とフレタスプライン 2 との嚙合点が円周方向に移動され、サーキュラスプライ ン 1" が減速駆動される。
そして、ロータ 16 が回転するとき、エンコーダ 18で回転円盤 18aの回転角を示す 情報が作成されるので、その情報を用いてロータ 16 の回転速度を検出することが できる。
このように、サーキユラスプライン 1〃およびフレタスプライン 2 を両側で支持したこ とにより、図 5の減速機付き駆動装置 10' が有する利点に加え、高トルクの回転伝達 が可能となる。また、同じトルク伝達力にしょうとした場合には、減速機付き駆動装置 10"の半径方向の大きさを小さくすることができる。
[0040] 次に、図 5の減速機付き駆動装置 1( の他の変形例について説明する。図 10は、 フラットモータを利用した場合の減速機付き駆動装置の断面図である。
図 10に示す減速機付き駆動装置 10〃 は、図 5の減速機付き駆動装置 1( にお けるステータ 17に比べ、若干内径側に寄せて配置されたステータ 171を有して 、る。 ステータ 171は、コイル 171aを有し、コイル 171aへの通電により、モータの回転軸、 すなわち第 1リンク 107と第 2リンク 106の互いの回転軸の方向に磁束を発生する。 ステータ 171の図 10における左右両側には、ステータ 171を両側から囲む形で口 ータ 161が配置されている。ロータ 161は、ステータ 171の両側に、永久磁石 162, 1 63を有している。永久磁石 162, 163も、前記回転軸に沿った磁束を発生しており、 ステータ 171への通電により、ロータ 161が回転するように、ステータ 171とロータ 16 1とで 、わゆるフラットモータを構成して!/、る。
ロータ 161の永久磁石 162, 163は、フレタスプライン 2 の内歯 2a" と、サーキュ ラスプライン 1 の外歯 1 が嚙み合う部分の外周に配置されている。
[0041] このような構成の減速機付き駆動装置 10〃 によれば、磁束が延びる方向と、ベアリ ング、フレタスプラインまたは中空サーキユラスプラインなどとの位置関係上、ステータ 171や永久磁石 162が発生する磁束力これらの部材に乱されることがない。そのた め、磁束の乱れによる渦電流の発生が抑えられ、渦電流による不要な熱の発生を抑 えることができる。
そして、ロータ 161は、フレタスプライン 2 の内歯 2a" と、サーキユラスプライン 1 の外歯 la〃 が嚙み合う部分の外周に位置する部分が厚く形成されているので、永久 磁石 162, 163の岡 IJ性により、外歯 la と内歯 2a" とを、しつ力りと嚙み合わせること ができる。また、第 1ベアリング 5, 5は、ロータ 161の両端付近の外周に嵌合されてい るので、ロータ 161がフレタスプライン 2" を押圧した反力として半径方向外側に広げ られたとしても、第 1ベアリング 5, 5が変形を拘束する変形拘束部材として機能するの で、ロータ 161の見かけ上の剛性が高ぐ外歯 1 と内歯 2a" の確実な嚙合を実現 できる。さらに、第 1ベアリング、 5, 5を、ロータ 161の外周の中でも各永久磁石 162, 163の外周に嵌合させれば、ロータ 161の見かけ上の剛性をさらに向上し、外歯 la " と内歯 2a〃 の確実な嚙合を実現できる。特に、本実施形態のように永久磁石 162 , 163が外歯 la〃 と内歯 2a〃 の外周部分に配置されているときは、効果的である。 なお、変形拘束部材は、必ずしもベアリングである必要はなぐ永久磁石 162, 163 の外周に、リング状の部材を嵌合させてもよい。
また、ステータ 171とロータ 161とを、フラットモータの構成としたことで、ステータ 17 1の外径が小さくなり、減速機付き駆動装置 10〃 を小型にすることができる。
[0042] 次に、応用例として前記した減速機付き駆動装置 10' を脚式移動ロボットに使用 した場合を説明する。
図 11は、脚式移動ロボットにおける足の関節部分を示す断面図である。 図 11に示すように、減速機付き駆動装置 10' は、サーキユラスプライン:^ の両端 力 ボルト 8aにより第 2リンク 12に結合されている。すなわち、第 2リンク 12はサーキュ ラスプライン!/ と一体になつている。そして、第 1リンク 13は、図 11における右側に おいて、第 2ベアリング^ によりサーキユラスプライン:^ に回動可能に支持され、左 側において、第 2ベアリング により第 2リンク 12に回動可能に支持されている。な お、左右の第 2リンク 12, 12は、上方で一体になつており、左右の第 1リンク 13, 13 は、下方で一体になつている。
ここで、減速機付き駆動装置 10' を動作させて、ロータ 16を回転させれば、前記し たように、フレタスプライン 2' の内歯 2a' とサーキユラスプライン!/ の外歯 la' 力 S 嚙合してサーキユラスプライン:^ が減速回転する。その結果、第 1リンク 13に対して 第 2リンク 12がゆっくりと回動されることになる。
このように、減速機付き駆動装置 10' が動作する場合、サーキユラスプライン:^ の 両側で均等に駆動力を出力することができるので、第 1リンク 13と第 2リンク 12バラン スよく回動させることができる。また、ロータ 16自体がウェーブジェネレータとしての機 能を有するため、ロータ 16を高速で回転させ、応答性良く第 1リンク 13と第 2リンク 12 とを互いに回動させることができる。
また、サーキユラスプライン:^ の回転速度が低速であるため、その中央の貫通孔 にハーネスを通しても、サーキユラスプライン!/ との摺動で、ハーネスが損傷される 恐れは少なぐロボットの信頼性を向上させることができる。また、例えば減速機付き 駆動装置 10' を潤滑するための流体を流した場合でも、大きな遠心力で流体が貫 通孔の壁面に付着して目的の部分に届かないという不具合もない。

Claims

請求の範囲
[1] 外周面に外歯が形成された円形状の剛体歯車と、
前記剛体歯車の外側に配置され、前記剛体歯車の外周長より大きな内周長を有す るとともに、内周面に前記剛体歯車の外歯と嚙合可能な内歯が形成された環状の可 橈歯車と、
前記可撓歯車を半径方向に橈ませることにより前記可撓歯車の内歯を前記剛体歯 車の外歯に嚙合させるとともに、前記可撓歯車を橈ませる嚙合位置を円周方向に移 動させる波動発生手段とを備え、
前記波動発生手段がモータのロータであることを特徴とする減速機付き駆動装置。
[2] 外周面に外歯が形成された円形状の剛体歯車と、
前記剛体歯車の外側に配置され、前記剛体歯車の外周長より大きな内周長を有す るとともに、内周面に前記剛体歯車の外歯と嚙合可能な内歯が形成された環状の可 橈歯車と、
前記可撓歯車を半径方向に橈ませることにより前記可撓歯車の内歯を前記剛体歯 車の外歯に嚙合させるとともに、前記可撓歯車を橈ませる嚙合位置を円周方向に移 動させる波動発生手段とを備え、
前記波動発生手段は、前記可撓歯車の外側に前記可撓歯車に対して回転自在に 配置され、前記可撓歯車を半径方向に橈ませるべく押圧する押圧部を備えた回転部 材であり、前記回転部材がモータのロータであることを特徴とする減速機付き駆動装 置。
[3] 前記ロータの外周側に、ロータを回転させるモータのステータが配置され、
前記剛体歯車は、第 1の部材に結合されるとともに、両端部において第 2の部材に より回転自在に支持されることを特徴とする請求の範囲第 1項または第 2項に記載の 減速機付き駆動装置。
[4] 同じ径の筒状部を有する前記可撓歯車を 2つ有し、各可撓歯車の一端側を互いに 向かい合わせて配置した上、各可撓歯車を前記剛体歯車に嚙合させるとともに、各 可撓歯車を他端側で支持したことを特徴とする請求の範囲第 1項または第 2項に記 載の減速機付き駆動装置。
[5] 前記ロータは、少なくとも内周が楕円形状をなすとともに複数の磁石が配置され、 前記複数の磁石は、前記楕円形状の長軸または短軸を線対称軸として配置されたこ とを特徴とする請求の範囲第 1項または第 2項に記載の減速機付き駆動装置。
[6] 前記ロータの外周部に、前記ロータの変形を防ぐ変形拘束部材をさらに備えたこと を特徴とする請求の範囲第 1項または第 2項に記載の減速機付き駆動装置。
[7] 前記ロータは、前記モータの回転軸に沿った磁束を発生するように構成され、 前記ロータを回転させるステータは、前記ロータの磁束の発生部分に対面して配置 されるとともに、前記回転軸に沿った磁束を発生するように構成されたことを特徴とす る請求の範囲第 1項または第 2項に記載の減速機付き駆動装置。
PCT/JP2005/011621 2004-07-02 2005-06-24 減速機付き駆動装置 WO2006003847A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05765101A EP1764530B1 (en) 2004-07-02 2005-06-24 Drive unit with speed reducer
US10/576,872 US7409891B2 (en) 2004-07-02 2005-06-24 Drive unit with reducer
JP2006528620A JP4787753B2 (ja) 2004-07-02 2005-06-24 減速機付き駆動装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004196311 2004-07-02
JP2004-196311 2004-07-02

Publications (1)

Publication Number Publication Date
WO2006003847A1 true WO2006003847A1 (ja) 2006-01-12

Family

ID=35782658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011621 WO2006003847A1 (ja) 2004-07-02 2005-06-24 減速機付き駆動装置

Country Status (4)

Country Link
US (1) US7409891B2 (ja)
EP (1) EP1764530B1 (ja)
JP (1) JP4787753B2 (ja)
WO (1) WO2006003847A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155936A1 (ja) * 2007-06-20 2008-12-24 Honda Motor Co., Ltd. 関節駆動型脚リンク機構及び歩行補助装置
WO2013179353A1 (ja) * 2012-05-31 2013-12-05 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置および可撓性外歯歯車
JP2015169302A (ja) * 2014-03-10 2015-09-28 上銀科技股▲分▼有限公司 中空型減速器
JP2019041567A (ja) * 2017-08-25 2019-03-14 ハミルトン・サンドストランド・コーポレイションHamilton Sundstrand Corporation 反転ハーモニックギヤアクチュエータ及び反転ハーモニックギヤアクチュエータの組立方法
CN111981106A (zh) * 2019-05-23 2020-11-24 纳博特斯克有限公司 输入轴和减速器

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988581B2 (en) * 2006-04-25 2011-08-02 Nabtesco Corporation Rotation output device
JP2008208867A (ja) * 2007-02-23 2008-09-11 Jtekt Corp 波動歯車減速機及び伝達比可変操舵装置
DE102007058605B4 (de) * 2007-12-04 2014-06-18 Wittenstein Ag Antriebseinheit für die Antriebstechnik mit hoher Leistungsdichte mit zumindest einer Übersetzungsstufe
DE102008061672A1 (de) * 2007-12-15 2009-06-18 Hirschmann Automotive Gmbh Gleitkeilgetriebe, angewendet in einer Sensoranordnung
KR100988215B1 (ko) * 2008-06-24 2010-10-18 한국과학기술연구원 전위기어를 이용하는 하모닉 감속기
JP4948479B2 (ja) * 2008-06-26 2012-06-06 株式会社ハーモニック・ドライブ・システムズ 複合型波動歯車減速機
DE202008016005U1 (de) * 2008-12-01 2009-08-06 Ortloff, Helene Kunststoff-Getriebe-Motor
EP2194241A1 (en) * 2008-12-05 2010-06-09 Delphi Technologies, Inc. Variable cam phaser
US9017198B2 (en) * 2009-03-30 2015-04-28 Tq-Systems Gmbh Gear, motor-gear unit, vehicle and generator with a gear and force transmitting element
US11280394B2 (en) * 2009-03-30 2022-03-22 Tq-Systems Gmbh Gear, motor-gear unit, vehicle, generator with a gear, and force transmitting element
ES2373493B1 (es) * 2009-04-03 2012-11-06 Universidad Carlos Iii De Madrid Alojamiento para transmisión armónica de engranajes, sistema reductor-amplificador de velocidad, sistema moto-reductor y método para reducir la velocidad de un motor.
JP2010260501A (ja) * 2009-05-11 2010-11-18 Honda Motor Co Ltd 摩擦式駆動装置及び全方向移動車
JP5697356B2 (ja) * 2010-04-06 2015-04-08 キヤノン株式会社 波動歯車装置及びロボットアーム
CN101888157B (zh) * 2010-07-13 2011-11-30 北京邮电大学 双转子径向驱动式啮合电机
US9605742B2 (en) * 2010-11-04 2017-03-28 Panchien LIN Large-ratio strain wave gearing speed changing apparatus
US8726865B2 (en) * 2011-06-08 2014-05-20 Delphi Technologies, Inc. Harmonic drive camshaft phaser using oil for lubrication
US9293962B2 (en) * 2012-03-30 2016-03-22 Korea Institute Of Machinery & Materials Hollow driving module
TW201346155A (zh) * 2012-05-04 2013-11-16 Pan-Chien Lin 航空引擎之單級大比例減速變速箱
TWM440257U (en) * 2012-06-06 2012-11-01 Jun-Shen Ye Flexspline fixed harmonic speed reducer
TWM441058U (en) * 2012-06-13 2012-11-11 Harmonic Innovation Technology Co Ltd Flexspline structure of harmonic drive reducer
KR102110263B1 (ko) 2012-08-21 2020-05-13 넥센 그룹 인코포레이티드 변형 파동 기어 시스템
US11174929B2 (en) 2012-08-21 2021-11-16 Nexen Group, Inc. Strain wave gear system
TWM451311U (zh) * 2012-09-26 2013-04-21 Harmonic Innovation Technology Co Ltd 具有離合功能的諧波減速器
WO2014108932A1 (ja) * 2013-01-09 2014-07-17 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置
EP2976551B1 (de) * 2013-03-20 2021-09-22 TQ-Systems GmbH Harmonisches pinring-getriebe
DE102013216449A1 (de) * 2013-08-20 2015-02-26 Kuka Roboter Gmbh Industrieroboter mit wenigstens einem Antrieb
US9157517B2 (en) 2013-09-16 2015-10-13 Hamilton Sundstrand Corporation Compound harmonic drive
US9644728B2 (en) * 2013-09-24 2017-05-09 Harmonic Drive Systems Inc. Strain wave device
CN103532298B (zh) * 2013-10-18 2015-10-28 许昌学院 四转子驱动式啮合电动机
US9493230B2 (en) 2013-11-21 2016-11-15 Hamilton Sundstrand Corporation Drive assembly with selective disconnect
DE102014104345B4 (de) * 2014-03-27 2017-10-12 Hiwin Technologies Corp. Hohlgetriebe
US9322464B2 (en) * 2014-04-02 2016-04-26 Hiwin Technologies Corp. Hollow drive gear reduction mechanism
US10759515B2 (en) 2014-09-10 2020-09-01 Hamilton Sunstrand Corporation Electromechanical hinge-line rotary actuator
US20160229525A1 (en) * 2014-09-10 2016-08-11 Hamilton Sundstrand Corporation Electromechanical rotary actuator
RU2597055C1 (ru) * 2015-03-10 2016-09-10 Валентин Алексеевич Абрамов Волновая передача с двумя деформируемыми зубчатыми или фрикционными колесами абрамова в.а.
WO2017006442A1 (ja) * 2015-07-07 2017-01-12 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置および波動発生器
US10581298B2 (en) * 2015-08-07 2020-03-03 Kabushiki Kaisha Yaskawa Denki Robot arm apparatus and actuator
WO2017041802A1 (de) * 2015-09-10 2017-03-16 Schaeffler Technologies AG & Co. KG Getriebe mit elastischem zahnrad
US9915334B2 (en) * 2015-10-16 2018-03-13 Hamilton Sundstrand Corporation Flex spline for use with a compound harmonic generator
KR101755943B1 (ko) * 2015-12-15 2017-07-07 현대자동차주식회사 역구동성이 향상된 하모닉 감속기, 그를 포함하는 구동 모듈 및 구동 모듈을 제어하는 방법
CN108474463A (zh) * 2015-12-18 2018-08-31 舍弗勒技术股份两合公司 谐波传动机构的弹性齿轮
DE102016100181A1 (de) 2016-01-05 2017-07-06 Harmonic Drive Ag Spannungswellengetriebe
JP6699213B2 (ja) * 2016-02-12 2020-05-27 日本電産株式会社 電動機付き減速機
CN106224488B (zh) * 2016-08-31 2018-08-28 四川福德机器人股份有限公司 一种内置电动机的一体化谐波减速机装置
DE102016220919A1 (de) * 2016-10-25 2018-04-26 Schaeffler Technologies AG & Co. KG Verstellgetriebeanordnung für ein Fahrzeug, Fahrzeug mit der Verstellgetriebeanordnung sowie Verfahren zur Montage der Verstellgetriebeanordnung
DE102016122845A1 (de) 2016-11-28 2018-05-30 Tq-Systems Gmbh Harmonisches Pinring-Getriebe, Drehmomentmessvorrichtung und Freilaufanordnung
CN110383648A (zh) * 2017-02-28 2019-10-25 索尼公司 致动器
JP6633605B2 (ja) * 2017-12-22 2020-01-22 ファナック株式会社 ロボット
US12117065B2 (en) 2018-05-31 2024-10-15 Tq-Systems Gmbh Traction mechanism with internal toothing and external toothing and transmission with traction mechanism
RU185563U1 (ru) * 2018-08-07 2018-12-11 Общество с ограниченной ответственностью "Научно-инженерная компания "Объектные системы автоматики" (ООО "НИК "ОСА") Электромеханический привод
RU187959U1 (ru) * 2018-08-07 2019-03-26 Общество с ограниченной ответственностью "Научно-инженерная компания "Объектные системы автоматики" (ООО "НИК "ОСА") Электромеханический привод
US11218054B2 (en) 2019-03-28 2022-01-04 Nidec Motor Corporation Motor with rotation sensor
WO2020197566A1 (en) * 2019-03-28 2020-10-01 Nidec Motor Corporation High torque, low speed gearmotor
JP7303702B2 (ja) * 2019-08-21 2023-07-05 住友重機械工業株式会社 ロボット
CN111113477B (zh) * 2019-12-31 2021-12-31 深圳市优必选科技股份有限公司 机器人关节结构及机器人
DE102020107674B3 (de) 2020-03-19 2021-08-05 Harmonic Drive Se Spannungswellengetriebeeinrichtung mit integriertem Sensor
CN111342606B (zh) * 2020-04-01 2024-11-05 天紫虹阳(唐山)电机有限公司 一种紧凑型电动执行装置
CN111478510A (zh) * 2020-04-09 2020-07-31 深圳市奇齿龙科技有限公司 一种内置驱动的少齿差减速一体机
CN111390964B (zh) * 2020-04-23 2024-06-21 广州市精谷智能装备有限公司 一种协作机器人一体化关节的轴系结构
CN111520403A (zh) * 2020-04-23 2020-08-11 苏州悍猛谐波机电有限公司 内齿谐波传动装置用柔性轴承
IL308978A (en) * 2021-06-01 2024-01-01 Locudrive Ltd Gearbox with a low profile waveguide
US20240209922A1 (en) * 2021-06-28 2024-06-27 Sri International Transmission with radially inverted pulleys
NO20230767A1 (en) * 2023-07-07 2025-01-08 Eltorque As Hollow actuator with strain wave gear and self-lock for emergency operation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4821048U (ja) * 1971-07-20 1973-03-09
JPS599336A (ja) 1982-07-06 1984-01-18 Star Seiki:Kk 動力伝達装置
JPS6174936A (ja) 1984-09-20 1986-04-17 Shimadzu Corp 原動装置
JPS6362934A (ja) * 1986-09-04 1988-03-19 Fujitsu Ltd 動力伝達装置
JPH01133546U (ja) * 1988-03-03 1989-09-12
JPH05141484A (ja) 1991-11-20 1993-06-08 Jatco Corp 遊星歯車のキヤリア装置
JP2001112215A (ja) * 1999-10-05 2001-04-20 Yaskawa Electric Corp 減速機一体型アクチュエータ
JP2001218422A (ja) * 2000-02-04 2001-08-10 Harmonic Drive Syst Ind Co Ltd 中空アクチュエータ
JP2001254789A (ja) * 2000-03-10 2001-09-21 Yaskawa Electric Corp 回転ステージ
WO2004025815A1 (en) 2002-09-11 2004-03-25 E.D.M. Resources Inc. Harmonic drive motor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379976A (en) * 1981-07-20 1983-04-12 Rain Bird Sprinkler Mfg. Corp. Planocentric gear drive
JPH0628501B2 (ja) * 1985-04-02 1994-04-13 株式会社ハ−モニツク・ドライブ・システムズ ステツプモ−タ
FI873139A7 (fi) * 1987-07-15 1989-01-16 Antti Mikael Poro Vaexelsammansaettning.
JPH0777504B2 (ja) 1987-11-17 1995-08-16 ファナック株式会社 高速インダクション型モータのロータ構造
US6257186B1 (en) * 1999-03-23 2001-07-10 Tcg Unitech Aktiengesellschaft Device for adjusting the phase angle of a camshaft of an internal combustion engine
US6258007B1 (en) * 1999-05-27 2001-07-10 Teijin Seiki Boston, Inc Multi-sensor harmonic drive actuator arrangement assembly
JP4150992B2 (ja) * 2000-04-07 2008-09-17 日本サーボ株式会社 ステップリング付同軸出力中空軸減速体を有する回転電機
JP2003083340A (ja) * 2001-04-24 2003-03-19 Nsk Ltd モータ内蔵ころがり軸受
JP4022731B2 (ja) * 2002-04-23 2007-12-19 日本精工株式会社 リニアアクチュエータ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4821048U (ja) * 1971-07-20 1973-03-09
JPS599336A (ja) 1982-07-06 1984-01-18 Star Seiki:Kk 動力伝達装置
JPS6174936A (ja) 1984-09-20 1986-04-17 Shimadzu Corp 原動装置
JPS6362934A (ja) * 1986-09-04 1988-03-19 Fujitsu Ltd 動力伝達装置
JPH01133546U (ja) * 1988-03-03 1989-09-12
JPH05141484A (ja) 1991-11-20 1993-06-08 Jatco Corp 遊星歯車のキヤリア装置
JP2001112215A (ja) * 1999-10-05 2001-04-20 Yaskawa Electric Corp 減速機一体型アクチュエータ
JP2001218422A (ja) * 2000-02-04 2001-08-10 Harmonic Drive Syst Ind Co Ltd 中空アクチュエータ
JP2001254789A (ja) * 2000-03-10 2001-09-21 Yaskawa Electric Corp 回転ステージ
WO2004025815A1 (en) 2002-09-11 2004-03-25 E.D.M. Resources Inc. Harmonic drive motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1764530A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155936A1 (ja) * 2007-06-20 2008-12-24 Honda Motor Co., Ltd. 関節駆動型脚リンク機構及び歩行補助装置
JP2009000196A (ja) * 2007-06-20 2009-01-08 Honda Motor Co Ltd 関節駆動型脚リンク機構及び歩行補助装置
US8679041B2 (en) 2007-06-20 2014-03-25 Honda Motor Co., Ltd Joint drive leg link mechanism and walking auxiliary equipment
WO2013179353A1 (ja) * 2012-05-31 2013-12-05 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置および可撓性外歯歯車
CN103562593A (zh) * 2012-05-31 2014-02-05 谐波传动系统有限公司 波动齿轮装置及可挠性外齿齿轮
KR101458016B1 (ko) * 2012-05-31 2014-11-04 가부시키가이샤 하모닉 드라이브 시스템즈 파동 기어 장치 및 가요성 외치 기어
US9163710B2 (en) 2012-05-31 2015-10-20 Harmonic Drive Systems Inc. Wave gear device and flexible externally toothed gear
JP2015169302A (ja) * 2014-03-10 2015-09-28 上銀科技股▲分▼有限公司 中空型減速器
JP2019041567A (ja) * 2017-08-25 2019-03-14 ハミルトン・サンドストランド・コーポレイションHamilton Sundstrand Corporation 反転ハーモニックギヤアクチュエータ及び反転ハーモニックギヤアクチュエータの組立方法
JP7065702B2 (ja) 2017-08-25 2022-05-12 ハミルトン・サンドストランド・コーポレイション 反転ハーモニックギヤアクチュエータ及び反転ハーモニックギヤアクチュエータの組立方法
CN111981106A (zh) * 2019-05-23 2020-11-24 纳博特斯克有限公司 输入轴和减速器

Also Published As

Publication number Publication date
JPWO2006003847A1 (ja) 2008-04-24
JP4787753B2 (ja) 2011-10-05
US7409891B2 (en) 2008-08-12
EP1764530A1 (en) 2007-03-21
EP1764530B1 (en) 2012-03-28
EP1764530A4 (en) 2009-04-15
US20070039414A1 (en) 2007-02-22

Similar Documents

Publication Publication Date Title
WO2006003847A1 (ja) 減速機付き駆動装置
US8757029B2 (en) Strain wave gearing and robotic arm
JP2007303592A (ja) 波動歯車装置
JP2006300068A (ja) 内燃機関用カムシャフト調整装置
JP2009061836A (ja) 舵角可変式ステアリング装置
KR101488192B1 (ko) 박형 구동 모듈 및 이를 사용한 착용형 로봇
US7549357B2 (en) Ratio changing method and apparatus
JP6699955B2 (ja) 回転アクチュエータおよび直動アクチュエータ
JP5267871B2 (ja) ハイブリッド車両用駆動装置
WO2017222012A1 (ja) 波動歯車減速機ユニット
KR100798087B1 (ko) 감속기 장착 구동 장치
US10955039B2 (en) Transmission and actuator
US11111997B2 (en) Magnetically driven harmonic drive
CN117425787B (zh) 谐波齿轮装置
US11703109B2 (en) Planetary gear actuator
CN118401769A (zh) 由塑料材料制成的结构紧凑的谐波驱动器
JP2003232411A (ja) ギヤ付モータ
JP2004117303A (ja) 相対回転状態検知装置
JP7037619B2 (ja) 波動歯車減速機ユニット
JP6531685B2 (ja) ダンパ装置
JP5310424B2 (ja) 撓み噛み合い式歯車装置
JP2010057362A (ja) 振動波駆動装置
CN116408828A (zh) 机器人关节及机器人
JP2020076415A (ja) カップリング装置および波動歯車式減速機
JP2012241871A (ja) トルク伝達装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007039414

Country of ref document: US

Ref document number: 10576872

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005765101

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067009843

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10576872

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067009843

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005765101

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006528620

Country of ref document: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载