+

WO2006001487A1 - スズ修飾ルチル型酸化チタン微粒子 - Google Patents

スズ修飾ルチル型酸化チタン微粒子 Download PDF

Info

Publication number
WO2006001487A1
WO2006001487A1 PCT/JP2005/012002 JP2005012002W WO2006001487A1 WO 2006001487 A1 WO2006001487 A1 WO 2006001487A1 JP 2005012002 W JP2005012002 W JP 2005012002W WO 2006001487 A1 WO2006001487 A1 WO 2006001487A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
fine particles
refractive index
titanium oxide
type titanium
Prior art date
Application number
PCT/JP2005/012002
Other languages
English (en)
French (fr)
Inventor
Tomonori Iijima
Norio Nakayama
Toyoharu Hayashi
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to US11/630,958 priority Critical patent/US7575731B2/en
Priority to JP2006528770A priority patent/JPWO2006001487A1/ja
Priority to EP05765178A priority patent/EP1775120A4/en
Publication of WO2006001487A1 publication Critical patent/WO2006001487A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to fine particles having a high refractive index and excellent light resistance, a sol solution and a coating solution containing the same, as well as scratch resistance, surface hardness, wear resistance, transparency, heat resistance, and light resistance.
  • the present invention relates to a coating film, a resin composition, and a method for producing the same, which have good weather resistance and ultraviolet shielding performance and do not generate interference fringes when formed on a substrate.
  • the photo-curable hard coat film can be easily formed, it is also used as a hard coat film for improving the scratch resistance.
  • plastic lenses have low impact resistance! For this reason, a method of applying a primer film between the base material and the node coat film to absorb the impact is used.
  • the base material has a low refractive index while having a high refractive index, interference fringes due to a difference in refractive index from the base material are seen in the coating film, resulting in a problem of poor appearance.
  • the refractive index of the hard coat film, primer film, or photocurable hard coat film needs to be close to the refractive index equivalent level of the substrate.
  • fine particles with high refractive index, sol solution, and coating solution excellent in light resistance, weather resistance, etc. are plastic deterioration preventing additives, cosmetic additives, camera lenses, automotive window glass, plasma displays, liquid crystals. Optics such as displays, EL displays, and optical filters It is also required in the field of products such as metal materials, ceramic materials, glass materials, and plastic materials for adjusting the refractive index of materials.
  • antimony oxide has been recommended as a metal oxide fine particle and sol solution to be added to the coating liquid for high refractive index coating. As shown above, it is no longer possible with this antimony antimony if it is above 6. This is because although antimony oxide itself has a refractive index of 1.7, it is used by being filled with an organic silicon compound having a low refractive index, so that the refractive index as a coating film is lower than that of the substrate.
  • fine particles having an anatase-type acid-titanium power having a higher refractive index than antimony oxide and the like are present in a node coat film, a primer film, and a photo-curing type hard coat film.
  • the method is used.
  • the coating film using the anatase-type titanium oxide fine particles is inferior in light resistance. That is, due to the photocatalytic action of titanium oxide, organic matter decomposition is caused by electrons and holes generated by light absorption, and scratch resistance, surface hardness, wear resistance, transparency, heat resistance, light resistance, weather resistance, ultraviolet light Shielding is a problem.
  • anatase type titanium oxide and metal oxide as described in Patent Document 4 are used.
  • Composite fine particles, or fine particles obtained by coating anatase-type titanium oxide with a metal oxide, and a coating liquid and a coating film using the fine particles are applied.
  • the rutile type titanium oxide has a higher refractive index than the conventional anatase type titanium oxide titanium and, as described above, there are no usable fine particles and sol solution.
  • Patent Document 1 Japanese Patent No. 2783417
  • Patent Document 2 Japanese Patent Laid-Open No. 9-110956
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-194083
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-123115
  • the present invention does not generate interference fringes when applied to a substrate having a refractive index of 1.60 or more, particularly 1.70 or more, and scratch resistance, surface hardness, abrasion resistance, adhesion,
  • the inventors of the present invention have found that the tin compound used as a sintering agent prevents long fiber formation and aggregation, thereby preventing rutile titanium oxide. It was found that a sol solution excellent in fine particles and dispersibility can be obtained.
  • the present invention relates to an organic silicon compound, one or more of its hydrolyzate and its condensate, a resin such as polyurethane and polyester, or a photocurable monomer as a matrix component, and a crystal diameter of 2 to Hard coating solution, primer coating solution, or photo-curing hard coating solution containing fine particles of tin-modified rutile-type titanium oxide fine particles coated with metal oxides as an essential component, and refractive index 1
  • the present invention relates to a coating film or a resin composition in which interference fringes are not formed, which is formed on a base material which is a resin or inorganic substance of 6 to 1.8. More specifically,
  • an aqueous titanium compound solution with a Ti concentration of 0.07 to 5 mol / 1 has a pH in the range of -1 to 3 Tin-modified rutile-type titanium oxide fine particles obtained by reacting with each other, the SnZTi composition molar ratio of the fine particles being 0.001 to 0.5, and the minor axis and major axis of the crystal diameter being 2 to It is characterized by being 20nm Tin-modified rutile acid titanium dioxide fine particles.
  • Tin-modified rutile characterized in that the average agglomerated particle size of the fine particle aggregate crystal of the tin-modified rutile-type acid-titanium fine particle force described in any one of 1 to 3 is 10: LOONm Type acid titanic fine particles.
  • Tin-modified rutile-type titanium oxide fine particles described in any one of 1 to 4 A sol dispersed in water or an organic solvent.
  • a copolymer comprising at least one selected from an organosilicon compound, a hydrolyzate thereof, and a condensate thereof, and tin-modified rutile-type titanium oxide fine particles according to any one of 1 to 4.
  • One Ting liquid One Ting liquid.
  • a coating liquid comprising one or more types of rosin or rosin monomer and the tin-modified rutile-type acid-titanium fine particles according to any one of 1 to 4.
  • a coating liquid comprising at least one photo-curable monomer and tin-modified rutile-type oxide microparticles of any one of 1 to 4.
  • the substrate according to any one of 15 to 19, wherein the substrate is a resin having a thiourethane bond or an epithiosulfide bond.
  • the tin-modified rutile-type titanium oxide fine particles of the present invention are particles that cannot be achieved by the conventional production method, and provide high-refractive-index fine particles and sol liquid that cannot be obtained by the anatase type. Rukoto can.
  • the fine particles and sol solution applied to the coating liquid and coating film are 1.60 or more, especially 1.70 or more.
  • Providing a coating film or a resin composition with excellent light resistance and no interference fringes on a base material with a hard coat, primer, or photo-curing coat film prepared on a high refractive index base material can do.
  • the present invention provides a scratch resistance in a base material on which a hard coat, a primer, and a photocurable hard coat film formed on a high refractive index base material of 1.60 or more, particularly 1.70 or more, are formed. It has also become possible to provide materials with excellent surface hardness, abrasion resistance, transparency, heat resistance, weather resistance, UV shielding properties, and the like.
  • FIG. 1 shows the powder X-ray diffraction results of Example 1.
  • FIG. 2 shows the powder X-ray diffraction results of Example 2.
  • FIG. 3 shows the powder X-ray diffraction results of Example 3.
  • FIG. 4 shows the powder X-ray diffraction results of Example 4.
  • FIG. 5 shows a powder X-ray diffraction result of Example 5.
  • FIG. 6 shows a powder X-ray diffraction result of Comparative Example 2.
  • Tin-modified rutile-type titanium oxide fine particles obtained by making the fine particles have a SnZTi composition molar ratio of 0.001 to 0.5 and a minor axis and a major axis of 2 to 20 nm of crystal diameter, Tin-modified rutile-type titanium oxide fine particles, characterized in that the average aggregate particle size of crystals of the fine particle aggregate is 10-: LOOnm.
  • the crystal diameter referred to here is the so-called primary particle diameter, and is expressed by the lengths in the a and c axis directions as described in the Chemical Handbook Revised 3rd Edition (Maruzen Co., Ltd.). Is done. In this specification, they are called the short axis and the long axis, respectively.
  • the average aggregate particle diameter represents a particle diameter obtained by aggregating primary particles.
  • the tin compound used in the present invention is not particularly limited, and specific examples include tin salt compounds such as tin chloride, tin nitrate, tin sulfate, and stannate. Alternatively, tin compounds selected from oxides, hydroxides, metal tin, and the like are preferred.
  • the titanium compound used in the present invention is not particularly limited.
  • titanium chlorides with selected forces such as titanium chloride oxide, titanium sulfate, titanium nitrate, titanium alkoxide, hydrated titanium oxide (including hydrolyzed titanium oxide compounds under alkaline conditions).
  • a compound or the like is preferable.
  • a tin compound is added to an aqueous solution, and a titanium compound is added thereto.
  • the tin compound and the titanium compound may be added at the same time, or either one may be added first.
  • the form of a mixed compound may be sufficient.
  • the reaction medium is preferably water, but it may be an organic solvent such as alcohol or a mixed medium of water and organic solvent!
  • the amount of tin compound used in the reaction as a modifier for controlling crystal growth of rutile-type titanium oxide is 0.001 to 2, preferably 0.0. Desirable to be 01 ⁇ 1. If the amount of tin is less than the above range, the rutile-type titanium oxide fine particles are produced, but the crystal diameter and the aggregate particle diameter are increased, and therefore the dispersibility may be deteriorated. Moreover, when it is set as a coating film, the transparency of a coating film may fall. In addition, even if the amount is larger than the above range, it is possible to synthesize the titanium oxide fine particles having the rutile type, and the time required for the reaction becomes longer. There is a possibility that a large amount of suzuy compound is attached. On the other hand, if it is larger than this, the amount of residual tin compounds will increase and the particle refractive index may decrease.
  • the Ti concentration in the reaction solution is preferably from 0.07 to 5 molZl, and more preferably from 0.1 ImolZl to ImolZl.
  • anatase-type and rutile-type mixed acid-titanium fine particles can be produced even when tin compounds are added in the range of 0.01-0.03 as SnZTi (molar ratio). There is sex.
  • SnZTi molecular weight
  • SnZTi molethoxystyl
  • the pH of the reaction solution is preferably 1 to 3. Adjust with hydrochloric acid or nitric acid as necessary. If the reaction is carried out under conditions greater than the pH force, it will become anatase type acid titanium when no tin compound is added.To avoid this, a tin compound is added to obtain a rutile structure. In the case of rutile-type titanium oxide such as tin oxide, there is a possibility that different substances are generated.
  • the reaction temperature is not particularly limited as long as the Ti concentration and pH are within the above ranges, but preferably -10 to 100 ° C, more preferably 20 to 60 ° C. Force to determine reaction completion time depending on reaction temperature Usually performed in 0.5 to 10 hours.
  • reaction mechanism for obtaining the tin-modified rutile-type titanium oxide fine particles of the present invention is not sufficiently clear at present, this is characterized in that the surface is modified with a tin compound. .
  • a tin compound was added as a modifier under the conditions for producing rutile acid-titanium, preventing crystal growth in the long axis direction.
  • the reaction product obtained as described above may be used as it is as tin-modified rutile-type titanium oxide fine particles or sol liquid, or may be subjected to a desired post-treatment. That is, it can be purified by a known method such as vacuum concentration using an evaporator or ultrafiltration, and concentrated to an appropriate concentration. Centrifugation can yield a white precipitate that can be re-dispersed in water or other desired media.
  • the Zol solution in which tin-modified rutile-type acid-titanium fine particles are dispersed in water is substituted with organic solvents such as alcohols such as methanol and cellosolves such as 2-methoxyethanol, and organic solvent-dispersed tin. It can also be used as a modified rutile-type titanium oxide fine particle sol solution.
  • the surface of the tin-modified rutile-type acid / titanium fine particles obtained by the present invention is coated with a carboxylic acid such as acrylic acid or glycolic acid, a hydroxycarboxylic acid, an amine, or (3-glycidoxypropyl) trimethoxysilane. It can be used as a surface-modified tin-modified rutile-type titanium oxide fine particle or sol solution by modification with an organic key compound or the like.
  • a carboxylic acid such as acrylic acid or glycolic acid, a hydroxycarboxylic acid, an amine, or (3-glycidoxypropyl) trimethoxysilane.
  • the tin-modified rutile-type titanium oxide fine particles synthesized as described above or a sol solution thereof is used for coating. It is necessary to provide light resistance in order to prevent deterioration of surrounding organic matter due to the property.
  • tin-modified rutile type titanium oxide fine particles are coated with a metal oxide.
  • the coating means both a form in which the fine particle surface is completely covered or a form in which a gap is left.
  • Metal oxides used for the coating include Zr, Si, Al, Sb, Sn, Mo, Nb, Zn, Ta, Fe, W, Bi, Ce, Pb, Cu, Y, In, V, Oxides such as Mg and La are preferred. These can be used by coating only one kind, or by using two or more kinds. Metal acid The compounds may be individually coated, coated in a composite form, coated as a solid solution, or coated with one kind and then coated with another kind.
  • the metal oxide-coated tin-modified rutile type oxide-titanium fine particles obtained in this manner are divided into metal oxide-coated tin-modified rutile type, depending on the type of metal oxide selected for the covering layer and the amount thereof.
  • the refractive index and light resistance of the titanium oxide fine particles themselves can be adjusted. Light resistance can be imparted and the refractive index can be adjusted between 2.0 and 2.8.
  • the amount of the metal oxide to be used is 0.05 to L 5, preferably 0.1 to 1 in terms of the weight ratio with respect to the soot-modified rutile-type titanium oxide fine particles.
  • the metal oxide coating method can be performed by applying a known method to a sol solution of tin-modified rutile titanium oxide fine particles. That is, a compound as a raw material is dissolved in water, mixed with a soot-modified rutile type titanium oxide fine particle sol solution, and stirred. Heating may be performed as necessary. Moreover, you may adjust pH as needed.
  • examples of the raw material compound used include sodium silicate and potassium silicate.
  • examples of the raw material mixture used include sodium aluminate, aluminum sulfate, and salt-aluminum.
  • antimony acid for example, in the case of coating with antimony acid, antimony chloride, antimony alkoxide, antimony acetate, antimony oxide, antimony potassium tartrate, potassium hexahydroxoantimonate, Examples include potassium antimonate and sodium antimonate.
  • zirconium oxide it can be performed according to the method described in Japanese Patent Application Laid-Open No. 2004-18311 found by the present inventors.
  • the raw material compound used include zirconium oxychloride, zirconium oxysulfate, zirconium oxynitrate, zirconium oxycarbonate and the like.
  • hexaammonium heptamolybdate examples include tetrahydrate and molybdenum oxide.
  • niobium oxide niobium methoxide, sodium niobate and the like can be mentioned.
  • the dispersibility of the metal oxide coated tin-modified rutile type oxide titanium fine particles can be changed by utilizing the difference in isoelectric point of the metal oxide used for coating. It is. For example, when Si, Nb, W, Mo, Sb or the like is used, a sol solution excellent in dispersibility can be obtained particularly under basic conditions. For example, when Zr, Bi or the like is used, a sol having excellent dispersibility can be obtained particularly under acidic conditions.
  • the reaction product obtained as described above may be used as it is as a metal oxide-coated tin-modified rutile-type titanium oxide fine particle sol solution, or may be subjected to a desired post-treatment. That is, it can be purified by a known method such as vacuum concentration using an evaporator or ultrafiltration, and concentrated to an appropriate concentration. Centrifugation can yield a white precipitate that can be redispersed in water or other desired media.
  • the surface of the metal oxide-coated tin-modified rutile-type titanium oxide fine particles obtained by the present invention is coated with carboxylic acid such as acrylic acid or glycolic acid, hydroxycarboxylic acid, ammine, or (3-glycidoxypropyl) trimethoxy. It can also be used as a surface-modified metal oxide-coated tin-modified tin-modified rutile-type titanium oxide fine particle sol solution by modification with an organic silicon compound such as silane.
  • the minor axis and major axis of the tin-modified rutile-type titanium oxide fine particles or metal oxide-covered tin-modified rutile-type titanium oxide fine particles obtained by the present invention have an average aggregated particle of 2 to 20 nm.
  • the diameter is preferably 10 to: LOOnm. If the crystal diameter is smaller than 2 nm, scratch resistance and hardness may be insufficient when a coating film is prepared using a coating solution containing these, and the originally obtained refractive index may not be obtained. . If it is larger than 20 nm, light scattering may occur. If the average aggregate particle size is larger than lOOnm, the resulting coating The film may become cloudy and opaque.
  • the hard coat film is formed from a coating solution containing (A) and (B), which are matrix forming components, as essential components.
  • the component (A) is composed of an organic key compound and at least one kind of a substance containing a substance selected from the group consisting of a hydrolyzate, a partial hydrolyzate and a partial condensate thereof, and an organic key used.
  • a substance containing a substance selected from the group consisting of a hydrolyzate, a partial hydrolyzate and a partial condensate thereof and an organic key used.
  • the organic silicon compound represented by the following general formula (1) is preferable, and is mentioned as a thing.
  • R 2 represents an alkyl group, a halogenated alkyl group, a vinyl group, a aryl group, or an acyl group.
  • R 3 is an organic group such as an alkyl group having 1 to 8 carbon atoms, an alkoxyalkyl group, or an acyl group.
  • R 2 and R 3 specifically, for example, as an organic group having an alkyl group, a methyl group, an ethyl group, a propyl group, or the like, a halogenated alkyl group can be used.
  • organic groups include chloromethyl and 3-chloropropyl groups; organic groups having an acyl group include acetoxypropyl groups and organic groups having an attaoxy group.
  • An organic group having a methacryloxy group is a methacryloxypropyl group isotonic
  • An organic group having a mercapto group is a mercaptomethyl group, etc.
  • An organic group having an amino group is a 3-aminopropyl group isotonic force
  • Examples of the organic group containing an epoxy group include a 3-glycidoxypropyl group isotropic force.
  • Examples of the alkoxyalkyl group include a methoxytyl group.
  • Specific examples of the compound represented by the general formula (1) include, for example, methyltrimethoxysilane, etyltriethoxysilane, chloromethyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-chloropropyltriacetoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyldimethoxysilane, allyltriethoxysilane, acetoxypropyltrimethoxysilane, 3-ataryloxypropyldimethylmethoxysilane, (3 —Ataryloxy Propyl) methyldimethoxysilane, methacryloxymethyltriethoxysilane, methacryloxypropyldimethylethoxysilane, methacryloxypropyldimethylmethoxysilane, methacryloxypropylmethyl jetoxysilane, methacryloxypropylmethyldimethoxysilane
  • 3-Glycidoxypropyl) methyldimethoxysilane and their hydrolysates, partial hydrolysates, and partial condensates are more preferably used. These can be used alone or as a mixture.
  • a compound represented by the following general formula (2) may be used in combination as an organic key compound other than the above organic key compound.
  • R 3 is an organic group such as an alkyl group having 1 to 8 carbon atoms, an alkoxyalkyl group, or an acyl group.
  • R 3 in the general formula (2) include the same R 3 in the general formula (1)
  • Specific examples of the compound represented by the general formula (2) include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra- tert-butoxysilane, tetra-sec-butoxysilane and the like. These can be used alone or as a mixture.
  • Hydrolysis of the organosilicon compound represented by the general formula is performed by adding hydrochloric acid or the like. Is called. Thereby, a part or all of the alkoxy group is hydrolyzed.
  • Alcohols such as methanol, cellosolves such as methyl cetosolve, esters such as ethyl acetate, ethers such as tetrahydrofuran, ketones such as acetone, chloroforms such as rhodium hydrocarbons, toluene, heptane, etc. You may dilute with hydrocarbons.
  • the component (B) has a crystal diameter of 2 to 20 nm and an average aggregated particle diameter of 10 or more: tin-modified rutile-type oxide / titanium fine particles controlled to LOOnm or the fine particles are coated with a metal oxide. It is a sol liquid dispersed in water.
  • alcohols such as methanol, cellosolves such as methylcetosolve, esters such as ethyl acetate, ethers such as tetrahydrofuran, ketones such as acetone, and halogenated hydrocarbons such as chloroform.
  • Sol liquid dispersed in hydrocarbons such as toluene and heptane.
  • the ratio of the solid content (fine particles) of (B) contained in the hard coat film obtained by applying and curing the above coating solution is 1 to 80 wt%, preferably 10 to 60 wt%. % Is preferred. If it is smaller than this, the effect of adding fine particles such as improvement of the refractive index is small. If it is larger than this, there is a possibility that the coating performance such as decrease in adhesion and occurrence of cracks may be deteriorated.
  • the coating film is in the range of ⁇ 0.05, preferably in the range of ⁇ 0.02, with respect to the refractive index of the substrate. It is necessary to adjust the refractive index of. For this reason, when the refractive index of the substrate is 1.60 to 1.80, it is necessary to adjust the refractive index of the hard coat film to 1.60 to 1.80 by changing the amount of component (B) added within the above range accordingly. is there.
  • low refractive index base materials such as diethylene glycol bis (aryl carbonate) resin base materials having a refractive index of 1.50 can be dealt with by adding less (B) component.
  • the tin-modified rutile-type titanium oxide fine particles or the fine particles obtained by coating the fine particles with a metal oxide in order to correspond to the base material have a refractive index of 2.0 to 2.8, particularly a refractive index of 1.70. In order to cope with the above-mentioned base materials, it is desirable that it is 2.3 to 2.8. For substrates with a refractive index of less than 1.70, high refractive index can be achieved with a small amount of addition compared to conventional metal oxide fine particles, so metal oxides in the coating film can be obtained. Too much fine particle added There is no possibility of occurrence of cracks due to the occurrence of adhesion or deterioration of adhesion.
  • the tin-modified rutile-type titanium oxide fine particles are desirably used after being surface-treated with an organic silicon compound.
  • an organic silicon compound By reacting the hydroxyl group on the surface of the fine particles with the organic cage compound, the miscibility with the coating film (condensation product of the organosilicon compound) is further improved, and the dispersibility in the organic solvent is also improved.
  • the surface of the particles and the organic silicon compound of the matrix component react with each other during curing.
  • the scratch resistance is improved.
  • the organic cage compound used the above-mentioned compounds are used. It is also possible to improve the dispersion stability in organic solvents by surface treatment with organic substances such as carboxylic acid and amine.
  • the organic key compound used for the surface treatment the organic key compound described in the above general formulas (1) and (2) is preferable, and in particular, (3-glycidoxypropyl) trimethoxysilane, ( Dimethoxysilane, tetramethoxysilane, tetraethoxysilane and hydrolysates thereof are preferably used, and these can be used alone or as a mixture.
  • the sol solution is mixed with the solvent containing the organic compound, heated in the range of room temperature to 60 ° C for a certain period of time, and then mixed by a method such as ultrafiltration or centrifugation. It is performed by a method such as removing unreacted components in the liquid.
  • the amount of the organic silicon compound used is appropriately set in consideration of dispersibility in the organic solvent used in the hard coating solution.
  • carboxylic acid used for the surface treatment acetic acid, propionic acid, acrylic acid, methacrylic acid and the like are preferably used.
  • amine used for the surface treatment propylamine, diisopropylamine, ptyramine and the like are preferably used.
  • the organic solvent used in the hard coating solution is not particularly limited. Specifically, for example, alcohols such as methanol, cetrosolves such as methyl cetosolve, esters such as ethyl acetate, Ethers such as tetrahydrofuran, ketones such as acetone, halogen hydrocarbons such as black mouth form, hydrocarbons such as toluene and heptane, etc., may be used as a mixture.
  • the preparation method of the hard coating solution of the present invention includes the organic chain compound (A) component and its hydrolyzate, partial hydrolyzate or partial condensate solution and component (B).
  • the above-mentioned organic solvent is added as necessary.
  • the organic solvent may be added to the component (A) or the component (B) in advance and then mixed.
  • the organosilicon compound can be cured without a catalyst, but a curing catalyst can be added to accelerate the reaction.
  • the curing catalyst for accelerating the curing reaction is not particularly limited.
  • metal complexes such as aluminum acetyl cetate and iron acetyl cetate, potassium acetate, sodium acetate, etc.
  • Alkali metal organic carboxylates, perchlorates such as aluminum perchlorate, maleic acid, maleic anhydride, fumaric acid, fumaric anhydride, itaconic acid, itaconic anhydride, and other organic carboxylic acids, methylimidazole, dicyandiamide, etc.
  • Examples thereof include nitrogen-containing organic compounds, metal alkoxides such as titanium alkoxides and zirconium alkoxides, and the like.
  • the amount of catalyst used above is in the range of 0.1 to 5 wt% with respect to the solid content in the membrane.
  • the component (B) is preferably tin-modified rutile-type titanium oxide fine particles or fine particles obtained by coating the fine particles with a metal oxide.
  • the component (B) should be used in combination with other metal fine particles that are inferior in the effect of improving the refractive index. Is also possible. Examples thereof include colloidal silica and acid / antimony colloid.
  • various surfactants such as silicon or fluorine can be contained in the coating liquid.
  • various surfactants such as silicon or fluorine can be contained in the coating liquid.
  • UV absorbers, antioxidants, antistatic agents, disperse dyes, pigments, pigments, dyeings It is also possible to add improvers and the like.
  • the hard coating liquid is applied and cured on a substrate to form a cured film.
  • a force dating method and a spin method to which a usual method such as a dubbing method, a spin method, and a spray method can be applied are preferable.
  • the substrate Before applying the above hard coating solution to the substrate, the substrate is chemically treated with acids, alkalis, various organic solvents, physical treatment with plasma, ultraviolet rays, etc., detergent treatment with various detergents, Furthermore, the adhesiveness etc. of a base material and a cured film can be improved by using the primer process using various rosins.
  • the applied film is cured by hot air drying, and the curing conditions are preferably 90 to 120 ° C, particularly preferably 80 to 200 ° C.
  • the curing time is preferably 0.5 to 5 hours, particularly 1 to 2 hours.
  • the hard coat film thickness is generally from about 0.01 to 30 / ⁇ ⁇ , preferably from 0.5 to 5 / ⁇ ⁇ . If the film thickness is too thin, the scratch resistance is low, and if it is too thick, problems such as poor appearance or cracks may occur.
  • the tin-modified rutile-type oxide / titanium fine particle sol solution according to the present invention has such a high refractive index primer film. It is also suitable as a coating liquid for formation.
  • the primer coating solution As a method for preparing the primer coating solution, it is possible to use it as a primer film by using a resin instead of the organic silicon compound which is a matrix component in the hard coat film.
  • the resin used is not particularly limited as long as it is normally used for primer applications, but in the present invention, resins such as polyurethane and polyester are suitable.
  • the method for preparing the primer coating solution is not particularly limited! /,
  • the fine particles of the present invention or a sol solution thereof is dispersed in, for example, an aqueous dispersion in which the above-mentioned rosin is dispersed in a solvent.
  • the method of mixing and making it a primer coating liquid is mentioned.
  • the impact resistance and adhesion of the substrate can be improved.
  • the ratio of the solid content of fine particles contained in the primer film is 1 to 80 wt%, preferably 10 to 6
  • Owt% is desirable. If it is smaller than this, the effect of adding fine particles such as improving the refractive index is small
  • the coating performance such as adhesion and the like may be reduced.
  • the photocurable monomer is not particularly limited, but is an acrylic compound.
  • prepolymer a methacrylic compound or a partial polymer thereof (prepolymer).
  • the method for preparing the coating liquid is not particularly limited.
  • the coating liquid may be prepared by mixing the fine particles of the present invention or a sol liquid thereof, an initiator, and the like with the compound dissolved in a solvent. The method of doing is mentioned.
  • the coating film forming stage it can be polymerized by irradiating with light having a necessary wavelength to form a cured film.
  • the ratio of the solid content of the fine particles contained in the photo-curable hard coat film is 1 to 80 wt%, preferably 10 to 60 wt%. If it is smaller than this, the effect of adding fine particles such as improvement of the refractive index is small, and if it is larger than this, film performance such as adhesion may be deteriorated.
  • the antireflection film composed of the inorganic oxide vapor deposition film provided on each of the coating films prepared above is not particularly limited, and is a known TiO 2
  • a single-layer or multi-layer antireflection film made of a vapor-deposited film of an inorganic oxide such as O can be used.
  • the substrate on which the coating liquid of the present invention is applied and cured is not particularly limited as long as it is a substrate used for the application of the present invention, for example, an optical member for lenses.
  • a preferable refractive index of the substrate it is more preferable that the refractive index is 1.6 to 1.8.
  • examples thereof include a resin having a refractive index of 1.60 or more or a resin having a refractive index of 1.70 or more obtained by forming an epithiosulfide bond.
  • These fine particles, sol solution, coating solution, and coat film obtained by the present invention are made of a polyurethane-based (refractive index 1.67, 1.70) high-refractive index lens, or a polythioepoxy-based (refractive index 1.74) ultra-high refractive index lens, etc. 1.60 or more, especially 1.70 or more high refractive index plastic lens with high refractive index coating film only for camera lens, automotive window glass, plasma display, It can also be applied as a hard coat film and antireflection film for liquid crystal displays, EL displays, optical filters, etc.
  • a polyurethane-based (refractive index 1.67, 1.70) high-refractive index lens or a polythioepoxy-based (refractive index 1.74) ultra-high refractive index lens, etc. 1.60 or more, especially 1.70 or more high refractive index plastic lens with high refractive index coating film only for camera lens, automotive window glass, plasma display, It can also be applied as a hard coat film and anti
  • Powder X-ray diffraction was measured after hot air drying at 120 ° C for 2 hours.
  • Figure 1 shows the results.
  • the crystal diameter was calculated using the Debye-Sherrer equation from the half-width of the diffraction peak.
  • the average crystal diameter was 5 nm for the minor axis and 8 nm for the major axis, respectively.
  • Observation with an electron microscope was performed using a transmission electron microscope, and a thin sol solution dropped onto a mesh was observed at a magnification of 200,000 times and 2 million times.
  • it was a rutile-type oxide titanium having an average aggregate particle diameter of 45 nm.
  • the element molar ratio of SnZTi by inductively coupled plasma analysis was 0.01.
  • the average crystal diameter was 5 nm for the minor axis and 8 nm for the major axis. It was a rutile type titanium oxide having an average agglomerated particle diameter of 23 nm.
  • the element molar ratio of SnZTi was 0.02.
  • Figure 2 shows the results of powder X-ray diffraction.
  • Example 1 The same operation as in Example 1 was carried out except that 0.9 g of tin tetrachloride pentahydrate was used in Example 1.
  • Example 1 The same operation as in Example 1 was carried out except that 4.3 g of tin tetrachloride pentahydrate was used in Example 1.
  • Example 1 The same operation as in Example 1 was carried out except that 8.6 g of tin tetrachloride pentahydrate was used in Example 1.
  • the above antimonate aqueous solution and 122 g of tin-modified rutile-type titanium oxide fine particle sol solution prepared in Example 3 were prepared. After heating at 90 ° C for 3 hours, deionization was performed by ultrafiltration to obtain a sol solution having a solid content of 5.8 wt%. The solvent was converted to methanol using a rotary evaporator to obtain a 20% solids methanol-dispersed sol with a solid content. After hot air drying at 120 ° C for 2 hours, elemental analysis was performed by inductively coupled plasma analysis. As a result, the element molar ratio of Sb ZSnZTi was 0.22 / 0.07Z1.
  • a zirconium oxide-coated tin-modified rutile titanium oxide fine particle sol solution having a solid content of 1.2 wt% was prepared in the same manner as in Example 7, except that 1.2 g of acid, salt, and zirconium was used in Example 7. did. [0108] Instead of the sol solution used in Example 8, the same procedure as in Example 8 was used except that the sol solution prepared above was used. Antioxidant oxide, zirconium oxide-coated tin-modified rutile type titanium oxide fine particles, A sol solution was prepared.
  • Ammonium tungstate pentahydrate (0.5 g) was added to 15 g of ion-exchanged water, and 1.3 g of diisopropylamine was added and dissolved while stirring and suspending.
  • aqueous solution 77 g of tin-modified rutile-type titanium oxide fine particle sol solution prepared in Example 3 was added. After heating at 90 ° C for 3 hours, deionization was performed by ultrafiltration to obtain a sol solution having a solid content of 5.8 wt%.
  • the solvent was converted to methanol using a rotary evaporator to obtain a methanol-dispersed sol with a solid content of 20%.
  • a resin lens having a refractive index of 1.74 (Mitsui Chemicals Co., Ltd .: MR— 1.74) was prepared, immersed in an aqueous sodium hydroxide solution, ultrasonically cleaned, and dried. .
  • Each coating solution obtained in Example 13 was applied to this base material by spin coating, and heat-treated at 90 ° C. for 30 minutes and then at 120 ° C. for 2 hours to cure the coating film.
  • the thickness of the node coat film obtained in this way is 2 ⁇ m and 7 pieces.
  • Aqueous dispersion of polyurethane resin (total solid concentration: 30 wt%) (Daiichi Kogyo Seiyaku Co., Ltd .: Superflex 150) 5. 3 g of methanol sol solution prepared in Example 8 (solid content: 20 wt%) %) 9.3 g was added, and the coating solution with a total solid content of 8 wt.
  • a resin lens with a refractive index of 1.74 (manufactured by Mitsui Chemicals Co., Ltd .: MR— 1.74) was prepared, immersed in an aqueous sodium hydroxide solution, subjected to ultrasonic cleaning, and dried. .
  • the coating liquid obtained in Example 15 was applied to this base material by spin coating, and heat-dried at 83 ° C. for 1 hour and then at 120 ° C. for 30 minutes to prepare a coating film.
  • the thickness of the coating film thus obtained is l / zm. there were.
  • a resin lens with a refractive index of 1.74 (Mitsui Chemicals Co., Ltd .: MR— 1.74) was prepared, immersed in an aqueous sodium hydroxide solution, subjected to ultrasonic cleaning, and dried. .
  • the coating liquid obtained in Example 18 was applied to this substrate by a spin coating method, and irradiated with a high-pressure mercury lamp (160 WZcm) to cure the coating film.
  • the thickness of the coating film thus obtained was 2 / zm. In both cases, no interference fringes were seen.
  • ammonia water containing 28-30 wt% ammonia
  • Example 7 the anatase-type titanium oxide fine particle sol solution prepared in Comparative Example 4 was used.
  • Example 7 Except for V, the same procedure as in Example 7 was carried out to prepare an acid-zirconium-coated tin-modified anatase-type titanium oxide fine particle sol solution.
  • Example 8 the anatase-type acid oxide titanium fine particle sol solution prepared in Comparative Example 4 was used.
  • An acid-antimony-coated tin-modified anatase-type titanium oxide fine particle sol solution was prepared in the same manner as in Example 8 except for V.
  • Example 10 the anatase-type acid-titanium fine particle sol solution prepared in Comparative Example 4 was used.
  • An acid-molybdenum-coated tin-modified anatase-type titanium oxide fine particle sol solution was prepared in the same manner as in Example 10 except for V.
  • Example 8 A coating solution was prepared in the same manner as in Example 13 except that the sol solution prepared in Comparative Examples 4 to 7 was used in Example 13.
  • a hard coat film was prepared in the same manner as in Example 14 except that the above coating solution was used.
  • the tin-modified rutile-type titanium oxide fine particles, sol solution, and coating solution obtained by the present invention are used as a high refractive index agent, a light reflector, an ultraviolet absorber, and the like as a high refractive index plastic lens.
  • the metal oxide coating-coated tin-modified rutile-type titanium oxide fine particles, sol solution, and coating solution of the present invention are scratch resistant, surface hardness, and wear resistant when applied to a substrate. Good adhesion, transparency, transparency, heat resistance, light resistance, weather resistance, UV shielding, etc.
  • high refractive index plastic lens, coating film, plastic deterioration prevention additive, cosmetic additive, camera lens, automotive window glass, plasma display, EL display, liquid crystal display, high density recording optical medium It would be useful to provide optical members such as high refractive index films for reading and writing, optical filters such as optical filters, and metal members, ceramic materials, glass materials, plastic materials, etc. for refractive index adjustment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

【課題】  屈折率1.60以上の光学基材に塗布した際に、干渉縞が発生せず、耐擦傷性、表面硬度、耐磨耗性、密着性、透明性、耐熱性、耐光性、耐候性、紫外線遮蔽性等に優れたハードコート、プライマー、光硬化型コーティング液、及びコート膜、あるいは樹脂組成物を提供する。 【解決手段】  チタンに対するスズのモル比(Sn/Ti)が0.001~2のスズ化合物共存下、Ti濃度が0.07~5mol/lのチタン化合物水溶液をpHが-1~3の範囲で反応させて得られるスズ修飾ルチル型酸化チタン微粒子であって、該微粒子のSn/Ti組成モル比が0.001~0.5であり、且つ結晶径の短軸、長軸が2~20nmであることを特徴とするスズ修飾ルチル型酸化チタン微粒子。

Description

明 細 書
スズ修飾ルチル型酸ィ匕チタン微粒子
技術分野
[0001] 本発明は、高屈折率で耐光性に優れた微粒子、ゾル液及びそれを含んだコーティ ング液、並びに耐擦傷性、表面硬度、耐磨耗性、透明性、耐熱性、耐光性、耐候性 、紫外線遮蔽性能が良好で、基材に形成した際に干渉縞の発生しないコート膜、榭 脂組成物並びにその製造法に関する。
背景技術
[0002] 酸ィ匕チタンには代表的な結晶型としてルチル型とアナターゼ型とがある。これまで 高屈折率用の金属酸化物微粒子ゾル液として、屈折率 no = 2. 56、 ne = 2. 49を有 するアナターゼ型酸ィ匕チタン微粒子を主成分とした材料が、主に用いられている。こ れに対し、ルチル型酸化チタンはその屈折率が屈折率 no = 2. 61、 ne = 2. 9 (no : 常光線に対する屈折率、 ne:異常光線に対する屈折率)(実験科学講座 日本ィ匕学 会編)であり、アナターゼ型に比べて高屈折率、紫外線吸収といった光学特性などに 優れていることが知られており、このルチル型酸ィ匕チタン微粒子、及びゾル液を合成 する試みが積極的に行われている。しかしながら、産業的に用い得るルチル型酸ィ匕 チタン微粒子、及びゾル液は未だ得られて 、な 、のが現状である。
[0003] 例えば、元々低屈折率タイプのアナターゼ型酸化チタンを製造する方法にお!、て 、スズをドーピング剤として添加し、強制的にルチル型に変異させようとする方法が報 告されている。 H.Chengらによる、 Chem.
Mater., 7, 663, (1995)に記載された方法によれば、強酸性、高濃度条件下、水熱合 成法により合成する。し力し 220°Cという高温であるために、結晶径が 20nmを越え、し 力も酸化スズが混じるため良好なルチル型酸ィ匕チタンは得られな 、と 、う欠点を有す る。また、 X.Z.Dingらによる、 Nano
Mater., 4, 663, (1994)記載の方法によれば、 60°C条件下、チタニウムテトラブトキシ ドの水、エタノール混合溶液を原料とし、ドーピング剤として四塩化スズ五水和物、触 媒として塩酸を添加し、アナターゼ型をルチル型へ変換する。しかし、この方法でも アナターゼ型が残存ある 1ヽは酸化スズが生成すると!/ヽぅ欠点がある。特許文献 1には 通常アナターゼ型になるところをスズィ匕合物添加でルチル型にするが、同様の欠点 がある。
[0004] 一方、ルチル型酸化チタンを低温で合成する方法が、 H.D.Namらにより、 Jpn. J. Ap Pi.
Phys., 37, 4603(1998)に報告されている。しカゝし、この方法によれば、長繊維状のル チル型酸ィ匕チタンが寄せ集まった凝集粒子径 200〜400nmの凝集体が生成する。
[0005] 一方、プラスチック製メガネレンズは、低屈折率のジエチレングリコールビスァリルカ ーボネート榭脂 (屈折率 1.50)が用いられてきたが、近年、特許文献 2に記載されて V、るチオールィ匕合物とイソシァネートイ匕合物を熱重合し、チォウレタン結合を形成し て得られる榭脂レンズ (屈折率 1.60〜1.70)、さらには特許文献 3に記載されている チォエポキシィ匕合物の開環熱重合により、ェピチォスルフイド結合を形成して得られ る榭脂榭脂レンズ (屈折率 1.70以上)が開発されている。ところが、プラスチックレン ズは耐擦傷性が低く傷が付き易いという欠点を持っため、シリカゾルおよび有機ケィ 素化合物を用いたコーティング液を調製し、ハードコート膜を表面に設ける方法が行 われている。
[0006] また、光硬化型ハードコート膜は簡便に製膜出来るため、同様に耐擦傷性向上の ためのハードコート膜として用いられて 、る。
[0007] また、プラスチックレンズは耐衝撃性が低 、と!/、う欠点を持つ。そのため、基材とノヽ ードコート膜との間にプライマー膜を施し、衝撃を吸収させるといった方法が用いられ てい
る。し力しながら、基材が高屈折率であるのに対して低い屈折率であるため、塗膜に 基材との屈折率差による干渉縞が見え、外観不良となるという問題が生じる。そのた め、ハードコート膜、プライマー膜あるいは光硬化型ハードコート膜の屈折率も、基材 の屈折率同等レベルにまでに近づける必要がある。
[0008] 同様に、耐光性、耐候性などに優れた高屈折率の微粒子、ゾル液、コーティング液 がプラスチック劣化防止添加剤、化粧品添加剤、カメラ用レンズ、自動車用窓ガラス 、プラズマディスプレイ、液晶ディスプレイ、 ELディスプレイ、光学フィルタ一等の光学 部材、屈折率調製用に金属材料、セラミックス材料、ガラス材料、プラスチック材料な どと 、つた製品分野でも求められて 、る。
[0009] これまでコート膜高屈折率ィ匕用コーティング液に添加する金属酸ィ匕物微粒子、ゾル 液として、酸ィ匕アンチモンが推奨されてきた力 レンズのプラスチック基材の屈折率が 最近のように 1. 6以上の場合には、もはやこの酸ィ匕アンチモンでは対応できない。酸 化アンチモン自体は屈折率 1. 7を有しているが、屈折率の低い有機ケィ素化合物等 に充填させて用いるため、コート膜としての屈折率が基材よりも低くなるためである。
[0010] このような問題を解決する手段として、現在、酸化アンチモンなどよりも屈折率の高 いアナターゼ型酸ィ匕チタン力もなる微粒子をノヽードコート膜、プライマー膜及び光硬 化型ハードコート膜に含有させると 、う手法が用いられて 、る。 [0011] し力しながらアナターゼ型酸ィ匕チタン微粒子を用いたコート膜は耐光性に劣ること が分力 ている。すなわち、酸ィ匕チタンの光触媒作用により、光吸収で発生した電子 —ホールによる有機物分解を起こし、耐擦傷性、表面硬度、耐磨耗性、透明性、耐 熱性、耐光性、耐候性、紫外線遮蔽性などが問題となっている。
[0012] 現在ではこのような干渉縞、およびアナターゼ型酸ィ匕チタン微粒子含有コート膜の 耐光性を改善させる目的で、例えば特許文献 4記載のような、アナターゼ型酸化チタ ンと金属酸化物を複合した微粒子、ある 、はアナターゼ型酸化チタンを金属酸化物 で被覆した微粒子及びこれを用いたコーティング液、コート膜が適用されて ヽる。
[0013] これらは ヽずれも金属酸化物被覆によるアナターゼ型酸化チタン微粒子の不活性 化を目標としたものである。このように酸化チタン微粒子を金属酸化物で被覆すること で耐光性は改善される。しかし、使用されている酸ィ匕チタンはアナターゼ型であるた めに、屈折率が約 2. 5であり、耐光性向上のために金属酸ィ匕物で被覆した場合には 大幅に屈折率が低下してしまい、本来のアナターゼ型酸ィヒチタンの屈折率よりは低く なり、コート膜の屈折率を向上させる効果は低い。被覆する金属酸化物の量を減らし 屈折率を上げたとしても耐光性が不十分となり、高屈折率基材、特に 1. 70以上のメ ガネレンズ基材に用いた場合には、耐光性を持たせたままコート膜の屈折率を向上 させることは困難であり、干渉縞を完全に消失させることが出来ていないのが現状で ある。 [0014] これに対して従来のアナターゼ型酸ィ匕チタンより屈折率の高!、ルチル型酸化チタ ンは、前記した通り、用い得る微粒子、ゾル液が無いのが現状であった。
特許文献 1:特許第 2783417号公報
特許文献 2:特開平 9 - 110956号公報
特許文献 3:特開 2002— 194083号公報
特許文献 4:特開 2001— 123115号公報
発明の開示
発明が解決しょうとする課題
[0015] 本発明は、屈折率 1. 60以上、特に 1. 70以上の基材に塗布した際に、干渉縞が 発生せず、耐擦傷性、表面硬度、耐磨耗性、密着性、透明性、耐熱性、耐光性、耐 候性、紫外線遮蔽性等に優れたハードコーティング液、プライマーコーティング液、 あるいは光硬化型ハードコーティング液、及びコート膜、あるいは榭脂組成物を提供 することを目的とする。
課題を解決するための手段
[0016] 本発明者らは、上記課題を解決するために、鋭意検討を行った結果、焼結剤として 用いられるスズ化合物が長繊維化を防止すると共に凝集も防止し、ルチル型酸化チ タン微粒子、分散性に優れたゾル液が得られることを見出した。
[0017] 即ち、本発明は、有機ケィ素化合物、その加水分解物及びその縮合物の一種以上 、あるいはポリウレタン、ポリエステルなどの榭脂、あるいは光硬化型モノマーをマトリ ックス成分として、結晶径 2〜20nmを有するスズ修飾ルチル型酸ィ匕チタン微粒子を 金属酸ィ匕物で被覆した微粒子を必須成分として含有するハードコーティング液、ブラ イマ一コーティング液、あるいは光硬化型ハードコーティング液、および屈折率 1. 6 〜1. 8の榭脂あるいは無機物である基材上に形成される干渉縞の見えないコート膜 、あるいは榭脂組成物に関するものである。より具体的には、
[0018] 1.チタンに対するスズのモル比(SnZTi)が 0.001〜2のスズィ匕合物共存下、 Ti濃 度が 0. O7〜5mol/1のチタン化合物水溶液を pHがー 1〜3の範囲で反応させて得ら れるスズ修飾ルチル型酸ィ匕チタン微粒子であって、該微粒子の SnZTi組成モル比 が 0. 001-0. 5であり、且つ結晶径の短軸、長軸が 2〜20nmであることを特徴とす るスズ修飾ルチル型酸ィ匕チタン微粒子。
2. 1記載のスズ修飾ルチル型酸ィ匕チタン微粒子力 一種以上の金属酸化物で被覆 されていることを特徴とするスズ修飾ルチル型酸ィ匕チタン微粒子。
3.屈折率が 2. 0〜2. 8である 1または 2記載のスズ修飾ルチル型酸ィ匕チタン微粒子
4. 1〜3の何れか〖こ記載のスズ修飾ルチル型酸ィ匕チタン微粒子力 なる微粒子凝 集体の結晶の平均凝集粒子径が、 10〜: LOOnmであることを特徴とするスズ修飾ル チル型酸ィヒチタン微粒子。
5. 1〜4の何れか〖こ記載のスズ修飾ルチル型酸ィ匕チタン微粒子力 水あるいは有機 溶剤に分散してなるゾル。
6.有機ケィ素化合物、その加水分解物及びその縮合物の中から選択される一種以 上と、 1〜4の何れかに記載のスズ修飾ルチル型酸ィ匕チタン微粒子を含有してなるコ 一ティング液。
7. 6記載のコーティング液を用いて硬化して得られるハードコート膜。
8.榭脂または榭脂モノマ一一種以上と、 1〜4の何れかに記載のスズ修飾ルチル型 酸ィ匕チタン微粒子を含有してなるコーティング液。
9. 8記載のコ一ティング液を用 V、て硬化して得られるプライマー膜。
10.光硬化型モノマ一一種以上と 1〜4の何れか〖こ記載のスズ修飾ルチル型酸ィ匕チ タン微粒子を含有してなるコーティング液。
11. 10記載のコーティング液を用いて硬化して得られるハードコート膜。
12.屈折率が 1. 5〜1. 8である 7記載のハードコート膜。
13.屈折率が 1. 5〜1. 8である 9記載のプライマー膜。
14.屈折率が 1. 5〜1. 8である 11記載のハードコート膜。
15. 7または 12に記載のコート膜が施された基材。
16. 9または 13に記載のプライマー膜が施された基材。
17. 11または 14に記載のハードコート膜が施された基材。
18. 9または 13に記載のプライマー膜の上に 7または 12に記載のコート膜が施され てなる基材。 19.基材の屈折率が 1. 6〜1. 8である 15〜18の何れかに記載の基材。
20.基材がチォウレタン結合あるいはェピチォスルフイド結合を有する榭脂である 15 〜 19の何れかに記載の基材。
21. 15〜20の何れかに記載の基材上にさらに反射防止膜を施してなる基材。
に関するものである。
発明の効果
[0019] 本発明のスズ修飾ルチル型酸ィ匕チタン微粒子は、従来の製法では成し得なカゝつた ものであり、かつアナターゼ型では得られない高屈折率の微粒子、ゾル液を提供す ることが出来る。このスズ修飾ルチル型酸ィ匕チタン微粒子を金属酸ィ匕物で被覆して 得られた微粒子、ゾル液をコーティング液およびコート膜に適用した場合に、 1. 60 以上、特に 1. 70以上の高屈折率基材上に作成したハードコート、プライマー、光硬 化型コート膜を形成した基材において、干渉縞が見えず、かつ耐光性に優れたコー ト膜、あるいは榭脂組成物を提供することができる。
[0020] また、本発明は 1. 60以上、特に 1. 70以上の高屈折率基材上に作成したハードコ ート、プライマー、光硬化型ハードコート膜を形成した基材において、耐擦傷性、表 面硬度、耐磨耗性、透明性、耐熱性、耐候性、紫外線遮蔽性等に優れた材料を提 供することも可能になった。
図面の簡単な説明
[0021] [図 1]実施例 1の粉末 X線回折結果を示す。
[図 2]実施例 2の粉末 X線回折結果を示す。
[図 3]実施例 3の粉末 X線回折結果を示す。
[図 4]実施例 4の粉末 X線回折結果を示す。
[図 5]実施例 5の粉末 X線回折結果を示す。
[図 6]比較例 2の粉末 X線回折結果を示す。
発明を実施するための最良の形態
[0022] 以下、本発明についてさらに詳細に説明する。
[0023] 本発明は、チタンに対するスズのモル比(SnZTi)が 0.001〜2のスズィ匕合物共存 下、 Ti濃度が 0. 07〜5molZlのチタン化合物水溶液を ρΗがー 1〜3の範囲で反応 させて得られるスズ修飾ルチル型酸ィ匕チタン微粒子であって、該微粒子の SnZTi組 成モル比が 0. 001〜0. 5であり、且つ結晶径の短軸、長軸が 2〜20nm、微粒子凝 集体の結晶の平均凝集粒子径が、 10〜: LOOnmであることを特徴とするスズ修飾ル チル型酸ィ匕チタン微粒子、である。
[0024] なお、ここで言う結晶径とは、 、わゆる一次粒子径のことであって、化学便覧改訂 3 版 (基礎編 丸善株式会社)記載のように a、 c軸方向長さで表現される。本明細書で はそれぞれ短軸、長軸と呼ぶ。また、平均凝集粒子径とは、一次粒子が凝集してなる 粒子径を表す。
[0025] まず、スズ修飾ルチル型酸化チタン微粒子の製造法について説明する。
[0026] 本発明において用いられるスズィ匕合物としては、特に限定されるものではないが、 具体的には例えば塩化スズ、硝酸スズ、硫酸スズ、スズ酸塩などのスズ塩ィ匕合物ある いは酸化物、水酸化物、金属スズ等カゝら選ばれるスズィ匕合物等が好ましいものとして 挙げられる。本発明において用いられるチタン化合物としては、特に限定されるもの ではないが、具体
的には例えば、塩化酸化チタン、硫酸チタン、硝酸チタン、チタンアルコキシド、水和 酸化チタン (あら力じめチタンィ匕合物をアルカリ条件で加水分解させたものも含む)な ど力も選ばれるチタンィ匕合物等が好ましいものとして挙げられる。
[0027] まず、スズィ匕合物を水溶液に添カ卩しておき、これにチタンィ匕合物をカ卩える。スズィ匕 合物とチタンィ匕合物は同時に加えてもよいし、どちらが先であってもよい。また、混合 化合物の形態であってもよい。反応媒体は水が望ましいが、アルコール等の有機溶 剤あるいは水と有機溶剤の混合媒体でもよ!/、。
[0028] ルチル型酸ィ匕チタンの結晶成長制御のための修飾剤として反応に用いるスズィ匕合 物の量は、チタンに対するスズのモル比(SnZTi)が 0. 001〜2、好ましくは 0. 01〜 1であることが望ま 、。スズ量を上記範囲より少なくして 、くとルチル型酸ィ匕チタン微 粒子は生成するが、結晶径、凝集粒子径が大きくなり、したがって分散性が悪くなる 可能性がある。また、コート膜とした際に塗膜の透明性が低下する可能性がある。ま た、上記範囲より多くしていっても、ルチル型を有する酸ィ匕チタン微粒子の合成は可 能である力 反応に要する時間が長くなり、この場合はルチル型酸ィ匕チタン微粒子に 多量のスズィ匕合物が付着したものが得られる可能性がある。また、これより大きいと残 存スズィ匕合物量が多くなり、粒子屈折率が低下する可能性がある。
[0029] 反応液中の Ti濃度は 0. 07〜5molZl、好ましくは 0. ImolZlから ImolZlが望ま しい。上記範囲より低い Ti濃度では、 SnZTi (モル比)として 0. 01-0. 03の範囲で スズィ匕合物を添加してもアナターゼ型とルチル型の混合酸ィ匕チタン微粒子が生成す る可能性がある。同様に上記範囲より低い Ti濃度では、 SnZTi (モル比)として 0. 0 3より大き 、範囲でスズィ匕合物を添加すると、ルチル型酸化スズを有する酸化チタン 酸化スズ混合微粒子が生成する可能性がある。
[0030] 反応液の pHは 1〜3が望ましい。必要に応じて塩酸や硝酸などで調節する。 pH 力^より大きい条件で反応させると、スズィ匕合物を加えない場合ではアナターゼ型酸 ィ匕チタンになってしま ヽ、これを避けるためにスズ化合物を添加してルチル構造を得 ようとすると、酸化スズなどのルチル型酸ィ匕チタンではな 、異種物質が生成してしまう 可能性がある。
[0031] 反応温度に関しては、 Ti濃度と pHが上記の範囲であれば良ぐ特に制限は無いが 、好ましくは— 10〜100°C、さらに好ましくは 20〜60°Cが推奨される。反応温度に応 じて反応完了時間が決定される力 通常は 0. 5〜10時間で実施する。
[0032] 上記の反応により生成したスズ修飾ルチル型酸ィ匕チタン微粒子中に含まれるスズ 化合物量として、 SnZTiモル比 =0. 001-0. 5であることが好ましい。スズ量を上 記範囲より少なくしていくとルチル型酸ィ匕チタン微粒子の粒子径が大きくなり、分散 性が悪くなる可能性がある。また、上記範囲より多くしていくと、より効率よく結晶成長 及び凝集を制御し、粒子径の小さな微粒子が得られるが、ルチル型酸ィ匕チタン微粒 子に多量のスズィ匕合物が付着したものが得られ、結果として屈折率の低 ヽ微粒子が 得られる可能性がある。
[0033] 本発明のスズ修飾ルチル型酸化チタン微粒子が得られる反応機構 (反応メカニズ ム)は現在十分に明らかではないが、これは表面がスズィ匕合物で修飾されていること を特徴としている。原料に用いたスズィ匕合物、あるいは溶液中で解離したスズイオン 、あるいは加水分解等により溶液中で生成したスズィ匕合物が、酸ィ匕チタン表面に配 位、吸着、化学結合等により付着したものと推測される。また、元々アナターゼ型では なくルチル型酸ィ匕チタン生成条件でスズィ匕合物を修飾剤として添加したもので、長 軸方向への結晶成長が阻止され
た結果生じたものと推測される。このことは微粒子の結晶径が 2〜20nmであるスズ修 飾酸ィ匕チタン微粒子を得るために必要な修飾スズィ匕合物量が酸ィ匕チタンを隙間無く 被覆する量には程遠い、チタンに対するモル比が 0. 001-0. 5という少量であること 力らも窺える。
[0034] 上記により得られた反応生成物は、そのままスズ修飾ルチル型酸ィ匕チタン微粒子、 ゾル液として用いてもよいし、所望の後処理を施してもよい。すなわち、エバポレータ 一による減圧濃縮、限外ろ過などの公知の方法で精製、適当な濃度に濃縮すること も可能である。遠心分離して白色沈殿物を得、水、その他所望の媒体に対して再分 散させることも可能である。スズ修飾ルチル型酸ィ匕チタン微粒子を水に分散させたゾ ル液は、メタノールなどのアルコール類、 2—メトキシエタノールなどのセロソルブ類と Vヽつた有機溶媒に溶媒置換して、有機溶媒分散スズ修飾ルチル型酸ィ匕チタン微粒 子ゾル液として用いることも可能である。
[0035] 本発明により得られたスズ修飾ルチル型酸ィ匕チタン微粒子の表面をアクリル酸、グ リコール酸などのカルボン酸、ヒドロキシカルボン酸、ァミン、あるいは(3—グリシドキ シプロピル)トリメトキシシランなどの有機ケィ素化合物などにより修飾することにより、 表面修飾されたスズ修飾ルチル型酸ィ匕チタン微粒子、ゾル液として用いることも可能 である。
[0036] 本発明にお 、て、上記で合成したスズ修飾ルチル型酸ィ匕チタン微粒子あるいはそ のゾル液をコーティング用途ある ヽは榭脂組成物に用いる場合、酸ィ匕チタンの光触 媒性による周辺有機物の劣化を防止するため、耐光性を付与することが必要になる 。この目的のためにスズ修飾ルチル型酸化チタン微粒子を金属酸化物で被覆するこ とが行われる。なお、被覆とは微粒子表面を完全に覆った形態、あるいは隙間が空 いた形態両方を意味する。
[0037] 上記被覆に用いられる金属酸化物としては Zr、 Si、 Al、 Sb、 Sn、 Mo、 Nb、 Zn、 T a、 Fe、 W、 Bi、 Ce、 Pb、 Cu、 Y、 In、 V、 Mg、 La等の酸化物が好適である。これらを 一種のみで被覆して用いることも、 2種以上用いて被覆することも可能である。金属酸 化物同士が個々に被覆した形態、複合ィ匕して被覆した状態、固溶体となって被覆し た形態、あるいは一種で被覆した後、さらにもう一種で被覆した形態となっていてもよ い。
[0038] このようにして得られる金属酸ィ匕物被覆スズ修飾ルチル型酸ィ匕チタン微粒子は、被 覆層に選ばれる金属酸ィ匕物種とその量により、金属酸化物被覆スズ修飾ルチル型 酸化チタン微粒子自体の屈折率と耐光性を調節することが出来る。耐光性を付与出 来、かつ屈折率が 2. 0〜2. 8で調節可能である。用いられる金属酸化物の量は、ス ズ修飾ルチル型酸ィ匕チタン微粒子に対する重量比で 0. 05〜: L 5、好ましくは 0. 1 〜1が望ましい。この範囲より小さいと酸ィ匕チタンの光触媒性を抑えることが出来ず、 コート膜の耐光性が悪くなる可能性がある。また、この範囲より大きいと微粒子の屈折 率が下がり、屈折率 1. 7以上の基材に対応出来なくなる可能性がある。
[0039] 金属酸化物の被覆方法は、公知の方法をスズ修飾ルチル型酸化チタン微粒子の ゾル液に適用して行うことが出来る。すなわち、原料となる化合物を水に溶解させ、ス ズ修飾ルチル型酸化チタン微粒子ゾル液と混合し攪拌する。必要に応じて加熱して もよい。また、必要に応じて pHを調整してもよい。
[0040] 例えば酸ィ匕ケィ素被覆を行う場合には、用いられる原料化合物として、ケィ酸ナトリ ゥム、ケィ酸カリウムなどを挙げることが出来る。
[0041] また、例えば酸ィ匕アルミニウム被覆を行う場合には、用いられる原料ィ匕合物として、 アルミン酸ナトリウム、硫酸アルミニウム、塩ィ匕アルミニウムなどを挙げることが出来る。
[0042] また、例えば酸ィ匕アンチモン被覆を行う場合には、用いられる原料ィ匕合物として、 塩化アンチモン、アンチモンアルコキシド、酢酸アンチモン、酸化アンチモン、酒石酸 アンチモ-ルカリウム、へキサヒドロキソアンチモン酸カリウム、アンチモン酸カリウム、 アンチモン酸ナトリウムなどを挙げることが出来る。
[0043] また、例えば酸ィ匕ジルコニウムで被覆する場合には、本願発明者らが見出した特開 2004-18311号公報に記載の方法に従って行うことも出来る。用いられる原料化合 物として、ォキシ塩化ジルコニウム、ォキシ硫酸ジルコニウム、ォキシ硝酸ジルコ-ゥ ム、ォキシ炭酸ジルコニウムなどが挙げられる。
[0044] また、例えば酸ィ匕モリブデンで被覆する場合には、七モリブデン酸六アンモニゥム 四水和物、酸ィ匕モリブデンなどが挙げられる。
[0045] また、例えば酸ィ匕ニオブで被覆する場合には、二オビゥムェトキシド、ニオブ酸ナト リウムなどが挙げられる。
[0046] 本発明では、被覆に用いる金属酸ィ匕物の等電点の違いを利用することによって、 金属酸ィ匕物被覆スズ修飾ルチル型酸ィ匕チタン微粒子の分散性を変えることも可能で ある。例えば、 Si、 Nb、 W、 Mo、 Sb等を用いた場合には、特に塩基性条件下で分散 性に優れたゾル液を得ることが出来る。また例えば、 Zr、 Bi等を用いた場合には、特 に酸性条件下で分散性に優れたゾルを得ることが出来る。
[0047] 上記により得られた反応生成物は、そのまま金属酸化物被覆スズ修飾ルチル型酸 化チタン微粒子ゾル液として用いてもよいし、所望の後処理を施してもよい。すなわ ち、エバポレーターによる減圧濃縮、限外ろ過などの公知の方法で精製、適当な濃 度に濃縮することも可能である。遠心分離して白色沈殿物を得、水、その他所望の媒 体に対して再分散させることも可能である。金属酸化物被覆スズ修飾ルチル型酸ィ匕 チタン微粒子を分散させた水ゾル液は、メタノールなどのアルコール類、 2—メトキシ エタノールなどのセロソルブ類と 、つた有機溶媒に溶媒置換して、有機溶媒に分散し た金属酸ィ匕物被覆スズ修飾ルチル型酸ィ匕チタン微粒子ゾル液として用いることも可 能である。
[0048] 本発明により得られた金属酸化物被覆スズ修飾ルチル型酸化チタン微粒子の表面 をアクリル酸、グリコール酸などのカルボン酸、ヒドロキシカルボン酸、ァミン、あるいは (3—グリシドキシプロピル)トリメトキシシランなどの有機ケィ素化合物などにより修飾 することにより、表面修飾された金属酸ィ匕物被覆スズ修飾ルチル型酸ィ匕チタン微粒 子ゾル液として用いることも可能である。
[0049] 本発明により得られたスズ修飾ルチル型酸化チタン微粒子、または金属酸化物被 覆スズ修飾ルチル型酸ィ匕チタン微粒子の結晶径の短軸、長軸は 2〜20nm、平均凝 集粒子径は 10〜: LOOnmであることが好ましい。結晶径が 2nmより小さいと、これらを 含むコーティング液を用いてコート膜を作成した場合に耐擦傷性、硬度が不十分とな り、また、本来得られる屈折率が得られなくなる可能性がある。 20nmより大きいと、光 の散乱が生じる可能性がある。平均凝集粒子径が lOOnmより大きいと、得られるコー ト膜が白濁し、不透明となる可能性がある。
[0050] 次にコート膜の作成方法について説明する。
[0051] 本発明における、ハードコート膜はマトリックス形成成分である (A)、及び (B)を必 須成分として含有したコーティング液より形成される。
(A)成分は、有機ケィ素化合物、並びにその加水分解物、部分加水分解物、部分縮 合物からなる群より選ばれた少なくとも 1種のケィ素含有物質から成り、用いられる有 機ケィ素化合物としては特に制限はないが、以下の一般式(1)で表される有機ケィ 素化合物が好まし 、ものとして挙げられる。
[0052] (R1) (R2) Si (OR3)
a b (3-a-b)
(1)
(式中、
Figure imgf000014_0001
R2はアルキル基、ハロゲン化アルキル基、ビニル基、ァリル基、ァシル基
、アタリロキシ基、メタクリロキシ基、メルカプト基、アミノ基またはエポキシ基等を有す る有機基であり、 Si-C結合によりケィ素と結合するものである。 R3は炭素数 1〜8のァ ルキル基、アルコキシアルキル基またはァシル基等の有機基である。 )
[0053] 一般式(1)における 、 R2及び R3としては、具体的には例えば、アルキル基を有す る有機基としては、メチル基、ェチル基、プロピル基等力 ハロゲンィ匕アルキル基を有 する有機基としては、クロロメチル基、 3—クロ口プロピル基等が、ァシル基を有する有 機基としては、ァセトキシプロピル基等力 アタリ口キシ基を有する有機基としては、 3 —アタリロキシプロピル基等力 メタクリロキシ基を有する有機基としては、メタクリロキ シプロピル基等力 メルカプト基を有する有機基としては、メルカプトメチル基等が、 アミノ基を有する有機基としては、 3—ァミノプロピル基等力 エポキシ基を含有する 有機基としては、 3—グリシドキシプロピル基等力 アルコキシアルキル基としては、メ トキシェチル基等が挙げられる。
[0054] 一般式(1)で表される化合物ととしては、具体的には例えば、メチルトリメトキシシラ ン、ェチルトリエトキシシラン、クロロメチルトリメトキシシラン、 3—クロ口プロピルトリエト キシシラン、 3—クロ口プロピルトリァセトキシシラン、ビニルトリメトキシシラン、ビニルト リエトキシシラン、ァリルジメトキシシラン、ァリルトリエトキシシラン、ァセトキシプロピル トリメトキシシラン、 3—アタリロキシプロピルジメチルメトキシシラン、(3—アタリロキシ プロピル)メチルジメトキシシラン、メタクリロキシメチルトリエトキシシラン、メタクリロキシ プロピルジメチルエトキシシラン、メタクリロキシプロピルジメチルメトキシシラン、メタク リロキシプロピルメチルジェトキシシラン、メタクリロキシプロピルメチルジメトキシシラン 、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メ ルカプトメチルメチルジェトキシシラン、メルカプトメチルトリメトキシシラン、 3—メルカ プトプロピルメチルジメトキシシラン、 3—メルカプトプロピルトリエトキシシラン、 3—メ ルカプトプロピルトリメトキシシラン、 p—ァミノフエニルトリメトキシシラン、 3—アミ二プロ ピルメチルジェトキシシラン、 3—ァミノプロピルトリエトキシシラン、 3—ァミノプロビルト リメトキシシラン、(3—グリシドキシプロピノレ)ジメチノレエトキシシラン、(3—グリシドキシ プロピル)メチノレジェトキシシラン、(3—グリシドキシプロピル)メチノレジメトキシシラン、 (3—グリシドキシプロピル)トリメトキシシラン、などが挙げられる。
[0055] 本発明においては、一般式(1)で表される有機ケィ素化合物の中で、(3—グリシド
3-グリシドキシプロピル)メチルジメトキシシラン及びこれらの加水分解物、部分加水 分解物、部分縮合物がより好適に用いられる。また、これらを単独で又は混合物とし て使用する事が可能である。
[0056] また、上記有機ケィ素化合物以外の有機ケィ素化合物として以下の一般式 (2)で 表される化合物を併用することもできる。
[0057] Si (OR3) (2)
4
(式中、 R3は炭素数 1〜8のアルキル基、アルコキシアルキル基またはァシル基等の 有機基である。 )
一般式(2)における R3の具体例としては、一般式(1)の R3と同じものが挙げられる
[0058] 一般式(2)で表される化合物ととしては、具体的には例えば、テトラメトキシシラン、 テトラエトキシシラン、テトライソプロボキシシラン、テトラー n—プロボキシシラン、テトラ —n—ブトキシシラン、テトラー tert—ブトキシシラン、テトラー sec—ブトキシシラン等 が挙げられる。また、これらを単独で又は混合物として使用する事が可能である。
[0059] 一般式で表される有機ケィ素化合物の加水分解は塩酸などを添加することにより行 われる。これによりアルコキシ基の一部または全てが加水分解される。メタノールなど のアルコール類、メチルセ口ソルブなどのセロソルブ類、酢酸ェチルなどのエステル 類、テトラヒドロフランなどのエーテル類、アセトンなどのケトン類、クロ口ホルムなどの ノ、ロゲン炭化水素類、トルエン、ヘプタンなどの炭化水素類などで希釈して行っても よい。
[0060] (B)成分は、結晶径 2〜20nm、平均凝集粒子径 10〜: LOOnmに制御されたスズ修 飾ルチル型酸ィ匕チタン微粒子又は該微粒子を金属酸ィ匕物で被覆してなる微粒子で あり、水に分散したゾル液である。また、溶剤置換により、メタノールなどのアルコール 類、メチルセ口ソルブなどのセロソルブ類、酢酸ェチルなどのエステル類、テトラヒドロ フランなどのエーテル類、アセトンなどのケトン類、クロ口ホルムなどのハロゲン炭化水 素類、トルエン、ヘプタンなどの炭化水素類等に分散したゾル液である。
[0061] 本発明においては、上記コーティング液を塗布'硬化して得られたハードコート膜中 に含まれる(B)の固形分 (微粒子)の比率は l〜80wt%、好ましくは 10〜60wt%% が望ましい。これより小さいと、屈折率の向上など微粒子を加える効果が小さぐこれ より大きいと密着性の低下、クラックの発生などといった塗膜性能が低下する可能性 がある。
[0062] 上記方法により屈折率 1.50〜1.80を得ることが出来るが、干渉縞を防止するため には基材の屈折率に対して ±0. 05の範囲、好ましくは ±0.02の範囲にコート膜の 屈折率を調節する必要がある。このため、基材の屈折率が 1.60〜1.80の場合には、 それに合わせて上記範囲内で添加する(B)成分量を変えてハードコート膜屈折率を 1.60〜 1.80に調節することが必要である。屈折率が 1.50のジエチレングリコールビ ス (ァリルカーボネート)榭脂基材などの低屈折率基材に対しては、添加する(B)成 分量を少なくすることで当然対応出来る。
[0063] 上記基材に対応するために、用いられるスズ修飾ルチル型酸ィ匕チタン微粒子又は 該微粒子を金属酸化物で被覆してなる微粒子の屈折率は、 2.0〜2.8、特に屈折率 が 1.70以上の基材に対応するためには 2.3〜2.8であることが望ましい。屈折率が 1. 70未満の基材に対しては従来の金属酸ィ匕物微粒子に比べて少ない添加量で高屈 折率ィ匕することが出来るため、コート膜中の金属酸ィ匕物微粒子添加量が多すぎること に起因するクラックの発生、密着性の低下などの可能性が無 、。
[0064] 上記スズ修飾ルチル型酸ィ匕チタン微粒子は、有機ケィ素化合物で表面処理をして 用いることが望ましい。微粒子表面のヒドロキシル基と有機ケィ素化合物を反応させ ることにより、塗膜 (有機ケィ素化合物の縮合物)との混和性がさらに向上し、有機溶 剤中への分散性も向上する。また、硬化の際に粒子表面とマトリックス成分の有機ケ ィ素化合物とが反
応することにより、耐擦傷性が向上する。用いられる有機ケィ素化合物としては上述 した化合物が用いられる。また、カルボン酸、ァミンなどの有機物で表面処理し、有機 溶剤中への分散安定性を向上させることも可能である。
[0065] 表面処理に用いられる有機ケィ素化合物としては、上記一般式(1)、 (2)に記載の 有機ケィ素化合物が好ましいが、特に(3—グリシドキシプロピル)トリメトキシシラン、 ( ジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン及びこれらの加水分解物 が好適に用いられ、これらを単独で又は混合物として使用する事が可能である。
[0066] 有機ケィ素化合物表面処理は、有機ケィ素化合物を含む溶剤にゾル液を混合し、 一定時間室温から 60°Cの範囲で加熱した後に限外ろ過、遠心分離などの方法で混 合液中の未反応分を除去する等の方法で行われる。用いられる有機ケィ素化合物 の量は、ハードコーティング液に用いる有機溶剤への分散性を考慮して適宜設定さ れる。
[0067] 表面処理に用いられるカルボン酸としては、酢酸、プロピオン酸、アクリル酸、メタク リル酸などが好適に用いられる。
[0068] また、表面処理に用いられるァミンとしては、プロピルァミン、ジイソプロピルァミン、 プチルァミンなどが好適に用いられる。
[0069] 本発明において、ハードコーティング液に用いられる有機溶剤としては、特に制限 はなぐ具体的には例えばメタノールなどのアルコール類、メチルセ口ソルブなどのセ 口ソルブ類、酢酸ェチルなどのエステル類、テトラヒドロフランなどのエーテル類、ァセ トンなどのケトン類、クロ口ホルムなどのハロゲン炭化水素類、トルエン、ヘプタンなど の炭化水素類などが挙げられ、 2種以上混合して用いてもょ 、。 [0070] 本発明のハードコーティング液の調整方法としては、(A)成分である有機ケィ素化 合物、並びにその加水分解物、部分加水分解物又は部分縮合物の溶液と (B)成分 であるスズ修飾ルチル型酸ィ匕チタン微粒子又は該微粒子を金属酸ィ匕物で被覆して なる微粒子を、水あるいは有機溶剤等に分散したゾル液を混合した後に必要に応じ て上記の有機溶剤を添加してもよ 、し、あらかじめ(A)成分あるいは (B)成分に上記 有機溶剤を添加した後、混合してもよい。
[0071] また、上記有機ケィ素化合物は、触媒がなくても硬化は可能であるが、反応を促進 するために硬化触媒を加えることが可能である。
[0072] 硬化反応を促進するための硬化触媒としては、特に制限はなぐ具体的には例え ばアルミニウムァセチルァセトナート、鉄ァセチルァセトナート、等の金属錯体、酢酸 カリウム、酢酸ナトリウム等のアルカリ金属有機カルボン酸塩、過塩素酸アルミニウム などの過塩素酸塩、マレイン酸、無水マレイン酸、フマル酸、無水フマル酸、ィタコン 酸、無水ィタコン酸等の有機カルボン酸、メチルイミダゾール、ジシアンジアミド等の 窒素含有有機化合物、チタンアルコキシド、ジルコニウムアルコキシド等の金属アル コキシド、等を例示できる。
[0073] これらの中力も特にアルミニウムァセチルァセトナートを使用することが、耐擦傷性、 ポットライフ等の観点力も望まし 、。
[0074] 上記に用いる触媒量としては、膜中固形分に対して 0. l〜5wt%の範囲で用いる
_
とが望ましい。この範囲より小さいと触媒としての効果が低い可能性がある。逆にこの 範囲より大きいと硬度、耐擦傷性が不十分となる可能性がある。
[0075] (B)成分はスズ修飾ルチル型酸化チタン微粒子又は該微粒子を金属酸化物で被 覆してなる微粒子のみが望ましいが、屈折率向上などの効果が劣るものの他の金属 微粒子と併用することも可能である。例えばコロイダルシリカ、酸ィ匕アンチモンコロイド などを挙げることが出来る。
[0076] また、塗布時におけるぬれ性および硬化膜の平滑性を向上させる目的で、シリコン 系あるいはフッ素系など各種の界面活性剤をコーティング液に含有させることが出来 る。さらに、紫外線吸収剤、酸化防止剤、帯電防止剤、分散染料、顔料、色素、染色 向上剤等も添加することも可能である。
[0077] 上記のハードコーティング液は基材上に塗布硬化して硬化膜とする。硬化膜を基 材上に塗布する方法としては、デイツビング法、スピン法、スプレー法等通常行われる 方法が適用できる力 デイツビング法、スピン法が効率よく好ましい。
[0078] 上記のハードコーティング液を基材に塗布する前に、基材に対し酸、アルカリ、各 種有機溶媒による化学処理、プラズマ、紫外線等による物理的処理、各種洗剤を用 いる洗剤処理、さらには、各種榭脂を用いたプライマー処理を用いることによって基 材と硬化膜との密着性等を向上させることが出来る。
[0079] 塗布した膜の硬化は熱風乾燥によって行 、、硬化条件としては、 80〜200°Cの熱 風中で行うことがよぐ特に 90〜120°Cが好ましい。硬化時間としては 0. 5〜5時間、 特に 1〜2時間が好ましい。また、ハードコート膜厚は概ね 0. 01〜30 /ζ πι、好ましく は 0. 5〜5 /ζ πιが望ましい。膜厚が薄すぎると耐擦傷性が低くなり、また厚すぎると外 観不良となる、あるいはクラックが生じるなどの問題が発生する可能性がある。
[0080] またプライマー膜につ!、ても同様に、基材との屈折率差が大き!、と、干渉縞が生じ る。この干渉縞をなくすためにはレンズと同程度の高屈折率プライマー膜を形成する 必要があり、本発明に関わるスズ修飾ルチル型酸ィ匕チタン微粒子ゾル液は、このよう な高屈折率プライマー膜形成用のコーティング液としても好適である。
[0081] 上記のプライマーコーティング液の調製方法としては上記のハードコート膜中のマト リックス成分である有機ケィ素化合物に変えて、榭脂を用いることでプライマー膜とし て用いることも可能である。
[0082] 用いられる榭脂としては、通常プライマー用途に用いられる榭脂であれば特に制限 はないが、本発明においては、ポリウレタン、ポリエステルなどの樹脂が好適である。
[0083] 上記のプライマーコーティング液の調整方法としては、特に制限はな!/、が、例えば 、上記榭脂を溶媒に分散したもの、例えば水性分散体に、本発明の微粒子又はその ゾル液を混合してプライマーコーティング液とする方法が挙げられる。ある ヽはそれら 榭脂のモノマー又はその部分重合物(プレボリマー)および重合触媒をコーティング 液に添加しておき、塗膜形成段階において、加熱等により重合させ、プライマー膜と することも可會である。 [0084] さらに、ハードコート膜と基材との間にプライマー膜を形成することで、基材の耐衝 撃性、密着性を向上させることが出来る。
[0085] プライマー膜中に含まれる微粒子固形分の比率は l〜80wt%、好ましくは 10〜6
Owt%が望ましい。これより小さいと、屈折率の向上など微粒子を加える効果が小さく
、これより大き!/、と密着性等の塗膜性能が低下する可能性がある。
[0086] また、塗膜中のマトリックス成分である有機ケィ素化合物に変えて光硬化型モノマ 一を用いることで光硬化型ハードコート膜などとして用いることも可能である。
[0087] 上記において、光硬化型モノマーとしては、特に制限はないが、アクリル系化合物
、あるいはメタクリル系化合物又はその部分重合物(プレボリマー)が好適である。
[0088] 上記コーティング液の調整方法としては、特に制限はな 、が、例えば、上記化合物 を溶媒に溶解したものに、本発明の微粒子又はそのゾル液及び開始剤等を混合し てコーティング液とする方法が挙げられる。そして塗膜形成段階において、必要な波 長の光を照射することで重合させ、硬化膜とすることが可能である。
[0089] 上記光硬化型ハードコート膜中に含まれる微粒子固形分の比率は l〜80wt%、好 ましくは 10〜60wt%が望ましい。これより小さいと、屈折率の向上など微粒子を加え る効果が小さぐこれより大きいと密着性等の塗膜性能が低下する可能性がある。
[0090] プライマー膜、光硬化型ハードコート膜についても同様に、上記方法により屈折率 1.50〜1.80を得ることが出来る力 干渉縞を防止するため基材の屈折率に対して士 0. 05の範囲、好ましくは ±0.02の範囲にコート膜の屈折率を調節する必要がある。 このため、基材の屈折率が 1.60〜 1.80の場合には、それに合わせて上記範囲内で 添加する(B)成分量を変えてコート膜屈折率を 1.60〜1.80に調節することが必要で ある。
[0091] 本発明において、上記で作成した各コート膜の上に設けられる無機酸ィ匕物の蒸着 膜からなる反射防止膜としては、特に限定されず、公知の TiO
2、 SiO
2、 Al O
2 3、 Nb
2
Oなどの無機酸ィ匕物の蒸着膜からなる単層、多層の反射防止膜を使用できる。
5
[0092] 本発明のコーティング液を塗布'硬化される基材としては、本発明の用途に用いら れる基材、例えばレンズ用等の光学部材であれば良ぐ特に制限されない。好適な 基材の屈折率としては、 1. 6〜1. 8であることがより好ましぐ具体的にはチォウレタ ン結合を有する屈折率 1.60以上の榭脂あるいはェピチォスルフイド結合を形成して 得られる屈折率 1.70以上の榭脂等が挙げられる。
[0093] 本発明により得られるこれらの微粒子、ゾル液、コーティング液、コート膜はポリチォ ウレタン系(屈折率 1. 67、 1. 70)の高屈折率レンズ、さらにはポリチォエポキシ系( 屈折率 1. 74)の超高屈折率レンズなど 1. 60以上、特に 1. 70以上の高屈折率ブラ スチックレンズの高屈折率コート膜だけでなぐカメラ用レンズ、自動車用窓ガラス、プ ラズマディスプレイ、液晶ディスプレイ、 ELディスプレイ、光学フィルタ一等のハードコ ート膜、反射防止膜としても適用することが可能である。
[0094] 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるもの ではない。
[0095] (スズ修飾ルチル型酸化チタン微粒子、ゾル液の調製)
実施例 1
[0096] 四塩化スズ五水和物 0. 09gを 100mlナス型フラスコに仕込み、イオン交換水 5
Omlに溶解し、酸ィ匕塩ィ匕チタンの塩酸水溶液 (Ti 15wt%含有) 5mlをカ卩えた。溶液 の pHは— 0. 1であった。(仕込み Ti濃度 =0. 45、 SnZTiモル比 =0. 01)マグネ チックスターラーで攪拌し、 50°Cで 1時間加熱したところ、白色の沈殿を得た。遠心 分離を行い、白色沈殿を回収、イオン交換水に再分散させた。限外ろ過を行い、固 形分 1. 3wt%のゾル液を得た。この固形分の粉末 X線回折測定、電子顕微鏡観察 を行った。粉末 X線回折は 120°Cで 2時間熱風乾燥を行った後に測定した。図 1にそ の結果を示す。結晶径は回折ピークの半値幅カゝら Debye-Sherrerの式を用いて計算 した。その結果、結晶径が平均それぞれ短軸 5nm、長軸 8nmであった。電子顕微鏡 観察は透過型電子顕微鏡を用い、メッシュに希薄ゾル液を滴下したものを倍率 20万 倍、 200万倍で観察した。その結果、平均凝集粒子径が 45nmのルチル型酸ィ匕チタ ンであった。誘導結合プラズマ法分析による SnZTiの元素モル比は 0. 01であった 。上記固形分の 1. 3wt%ゾル液 10gをとり、ポリビュルピロリドン 130mgを加え、さら に水 10gを加えたものを石英基板にスピンコートし、 120°Cで乾燥後、すみやかにェ リプソメーターで屈折率を測定した。含有される固形分の体積分率から固形分の屈 折率を評価し、 n= 2. 75を得た。 実施例 2
[0097] 実施例 1で四塩化スズ五水和物を 0. 27g用いた以外は実施例 1と同様に実施した 。(仕込み Ti濃度 =0. 45、 Sn/Ti=0. 03)得られたゾル液の固形分を実施例 1と 同様に分析したところ、結晶径が平均それぞれ短軸 5nm、長軸 8nmで、平均凝集粒 子径が 23nmのルチル型酸化チタンであった。 SnZTiの元素モル比は 0. 02であつ た。実施例 1と同様に固形分の屈折率を評価し、 n= 2. 72を得た。図 2に粉末 X線回 折の結果を示す。
実施例 3
[0098] 実施例 1で四塩化スズ五水和物を 0. 9g用いた以外は実施例 1と同様に実施した。
(仕込み Ti濃度 =0. 45、 Sn/Ti=0. 1)得られたゾル液の固形分を実施例 1と同 様に分析したところ、結晶径が平均それぞれ短軸 5nm、長軸 8nmで、平均凝集粒子 径が 20nmのルチル型酸化チタンであった。 SnZTiの元素モル比は 0. 06であった 。実施例 1と同様に固形分の屈折率を評価し、 n= 2. 65を得た。図 3に粉末 X線回 折の結果を示す。
実施例 4
[0099] 実施例 1で四塩化スズ五水和物を 4. 3g用いた以外は実施例 1と同様に実施した。
(仕込み Ti濃度 =0. 45、 Sn/Ti=0. 5)得られたゾル液の固形分を実施例 1と同 様に分析したところ、結晶径が平均それぞれ短軸 4nm、長軸 6nmで、平均凝集粒子 径が 15nmのルチル型酸化チタンであった。 SnZTiの元素モル比は 0. 18であった 。実施例 1と同様に固形分の屈折率を評価し、 n= 2. 47を得た。図 4に粉末 X線回 折の結果を示す。
実施例 5
[0100] 実施例 1で四塩化スズ五水和物を 8. 6g用いた以外は実施例 1と同様に実施した。
(仕込み Ti濃度 =0. 45、 SnZTi= l)得られたゾル液の固形分を実施例 1と同様に 分析したところ、結晶径が平均それぞれ短軸 5nm、長軸 6nmで、平均凝集粒子径が 15nmのルチル型酸化チタンであった。 SnZTiの元素モル比は 0. 27であった。図 5に粉末 X線回折の結果を示す。 実施例 6
[0101] 実施例 3で反応温度を 100°Cに設定する以外は実施例 3と同様に実施した。(仕込 み Ti濃度 =0. 45、 Sn/Ti=0. 1)得られたゾル液の固形分を実施例 1と同様に 分析したところ、結晶径が平均それぞれ短軸 6nm、長軸 9nmであった。
[0102] (酸化ジルコニウム被覆スズ修飾ルチル型酸化チタン微粒子、ゾル液の調製)
実施例 7
[0103] 実施例 3で調製したスズ修飾ルチル型酸ィ匕チタン微粒子ゾル液 230gに濃塩酸を カロえて pHを 0. 9に調整した後、酸化塩化ジルコニウム八水和物 6gを加えて 85°Cで 5時間加熱した後、限外ろ過による脱イオン処理を行い、固形分 5. 8wt%のゾル液 とした。ロータリーエバポレーターによりメタノールへ溶媒を変換し、固形分 20wt。/c^ タノール分散ゾル液とした。
[0104] (酸ィ匕アンチモン被覆スズ修飾ルチル型酸ィ匕チタン微粒子、ゾル液の調製)
実施例 8
[0105] 五酸化二アンチモン 0. 5gを水 5gにカ卩え、攪拌し懸濁させながらジイソプロピルアミ ンを加えて溶解した。(アンチモン酸塩水溶液)
上記アンチモン酸塩水溶液と実施例 3で調製したスズ修飾ルチル型酸ィ匕チタン微 粒子ゾル液 122gをカ卩えた。 90°Cで 3時間加熱した後、限外ろ過による脱イオン処理 を行い、固形分 5. 8wt%のゾル液とした。ロータリーエバポレーターによりメタノール へ溶媒を変換し、固形分 20wt%メタノール分散ゾル液とした。 120°Cで 2時間熱風 乾燥を行った後、誘導結合プラズマ法分析により元素分析を行った。その結果、 Sb ZSnZTiの元素モル比は 0. 22/0. 07Z1であった。
[0106] (酸化アンチモン、酸化ジルコニウム被覆スズ修飾ルチル型酸化チタン微粒子、ゾル 液の調製)
実施例 9
[0107] 実施例 7で酸ィ匕塩ィ匕ジルコニウムを 1. 2g用いた以外は実施例 7と同様にして固形 分 1. 2wt%の酸化ジルコニウム被覆スズ修飾ルチル型酸化チタン微粒子ゾル液を 調製した。 [0108] 実施例 8で用いたゾル液の代わりに、上記で調製したゾル液を用いた以外は実施 例 8と同様にして酸ィ匕アンチモン、酸化ジルコニウム被覆スズ修飾ルチル型酸化チタ ン微粒子、ゾル液を調製した。
[0109] (酸ィ匕モリブデン被覆スズ修飾ルチル型酸ィ匕チタン微粒子、ゾル液の調製)
実施例 10
[0110] 酸ィ匕モリブデン 0. 5gをイオン交換水 15gにカ卩え、攪拌し懸濁させながらジイソプロ ピルアミン 0. 75gをカロえて、酸ィ匕モリブデンを溶解させた。この水溶液に実施例 3で 調製したスズ修飾ルチル型酸ィ匕チタン微粒子ゾル液 77gを加えた。 90°Cで 4時間加 熱した後、限外ろ過による脱イオン処理を行い、固形分 5. 8wt%のゾル液とした。口 一タリーエバポレーターによりメタノールへ溶媒を変換し、固形分 20wt%メタノール 分散ゾル液とした。
[0111] (酸ィ匕タングステン被覆スズ修飾ルチル型酸ィ匕チタン微粒子、ゾル液の調製)
実施例 11
[0112] タングステン酸アンモニゥム五水和物 0. 5gをイオン交換水 15gに加え、攪拌し懸 濁させながらジイソプロピルアミン 1. 3gをカ卩えて、溶解させた。この水溶液に実施例 3で調製したスズ修飾ルチル型酸ィ匕チタン微粒子ゾル液 77gを加えた。 90°Cで 3時 間加熱した後、限外ろ過による脱イオン処理を行い、固形分 5. 8wt%のゾル液とし た。ロータリーエバポレーターによりメタノールへ溶媒を変換し、固形分 20 %メタノ ール分散ゾル液とした。
[0113] (酸ィ匕ビスマス被覆スズ修飾ルチル型酸ィ匕チタン微粒子、ゾル液の調製)
実施例 12
[0114] 酸ィ匕ビスマス 0. 5gをイオン交換水 15gに加え、攪拌し懸濁させながら 1規定塩酸を pHが 0. 6になるまでカ卩えて、酸ィ匕ビスマスを溶解させた。この水溶液に実施例 3で 調製したスズ修飾ルチル型酸ィ匕チタン微粒子ゾル液 77gを加えた。 90°Cで 4時間加 熱した後、限外ろ過による脱イオン処理を行い、固形分 5. 8wt%のゾル液とした。口 一タリーエバポレーターによりメタノールへ溶媒を変換し、固形分 20wt%メタノール 分散ゾル液とした。
[0115] (コーティング液の調製) 実施例 13
[0116] (3—グリシドキシプロピル)トリメトキシシラン 15gに 0. 001規定塩酸 3. 5gを 2時間 かけて滴下し、 3時間攪拌した。ェチルセ口ソルブを 30g加え、(3—グリシドキシプロ ピル)トリメトキシシラン部分加水分解物の溶液とした。次に、実施例 7〜12で得たメタ ノールゾル液 (全固形濃度分 20wt%) 9. 3gに前述の(3—グリシドキシプロピル)トリ メトキシシラン部分加水分解物溶液 5. 3gを添加、さらに硬化剤としてアルミニウムァ セチルァセトナート 50mg、界面活性剤 (日本ュ-カー (株)製: L7604) lOmgを添 加し、攪拌しコーティング液を作成した。
[0117] (ハードコート膜の作成)
実施例 14
[0118] 屈折率 1. 74の榭脂レンズ (三井ィ匕学 (株)製: MR— 1. 74)を用意し、水酸化ナトリ ゥム水溶液に浸漬し超音波洗浄を行い、乾燥させた。この基材に実施例 13で得られ た各コーティング液をスピンコート法で塗布し、 90°Cで 30分、その後 120°Cで 2時間 加熱処理をして、塗膜を硬化させた。このようにして得られたノヽードコート膜の厚みは 2 μ mであつ 7こ。
[0119] (プライマーコーティング液の調製)
実施例 15
[0120] ポリウレタン榭脂 (全固形分濃度 30wt%)の水分散体 (第一工業製薬 (株)製:スー パーフレックス 150) 5. 3gに実施例 8で調製したメタノールゾル液(固形分 20wt%) 9. 3gを添加、さらにェチルセ口ソルブをカ卩えて全固形分 8wt%のコーティング液を 作成した。
[0121] (プライマー膜の作成)
実施例 16
[0122] 屈折率 1. 74の榭脂レンズ (三井ィ匕学 (株)製: MR— 1. 74)を用意し、水酸化ナトリ ゥム水溶液に浸漬し超音波洗浄を行い、乾燥させた。この基材に実施例 15で得られ たコーティング液をスピンコート法で塗布し、 83°Cで 1時間、その後 120°Cで 30分力口 熱乾燥をして、塗膜を作成した。このようにして得られたコート膜の厚みは l /z mで あった。
[0123] (プライマー膜付ノヽードコート膜の作成)
実施例 17
[0124] 実施例 16でプライマー膜を施したメガネレンズ基材上に、実施例 14と同様にして ハードコート膜を作成した。
[0125] (光硬化型コーティング液の調製)
実施例 18
[0126] ェチルセ口ソルブ 15gにウレタンアタリレートオリゴマー(共栄社ィ匕学 (株)製: UA30 61) 1. 6g、重合開始剤(チバスぺシャリティーケミカルズ社製:ダロキュア 1173)を 0. 05g加えた。次に、実施例 7〜12で得たメタノールゾル液(全固形分 20wt%) 9. 3g を添加しコ一ティング液を作成した。
[0127] (光硬化型コート膜の作成)
実施例 19
[0128] 屈折率 1. 74の榭脂レンズ (三井ィ匕学 (株)製: MR— 1. 74)を用意し、水酸化ナトリ ゥム水溶液に浸漬し超音波洗浄を行い、乾燥させた。この基材に実施例 18で得られ たコーティング液をスピンコート法で塗布し、高圧水銀灯(160WZcm)を用いて照 射を行い、塗膜を硬化させた。このようにして得られたコート膜の厚みは 2 /z mであつ た。いずれも干渉縞は見られなカゝつた。
[0129] [比較例 1]
実施例 1で四塩化スズ五水和物を添加しない以外は実施例 1と同様に実施した。( 仕込み Ti濃度 =0. 45、 SnZTi=0)得られたゾル液の固形分を実施例 1と同様に 分析したところ、結晶径が平均それぞれ短軸 7nm、長軸 9nmで、平均凝集粒子径 2 OOnm以上のルチル型酸化チタンであった。
[0130] [比較例 2]
実施例 5で添加するイオン交換水を 500mlにする以外は実施例 5と同様に実施し た。(仕込み Ti濃度 =0. 05、 SnZTi= l)得られたゾル液の固形分を実施例 1と同 様に分析したところ、粉末 X線回折測定結果から、ルチル型酸化スズの結晶を生成し 、ルチル型酸ィ匕チタンは得られな力つた。図 6に粉末 X線回折の結果を示す。 [0131] [比較例 3]
実施例 1で四塩化スズ五水和物と塩ィ匕酸ィ匕チタンの水溶液にアンモニア水(アンモ ユア 28〜30wt%含有)を添加し、 pH= 4に調製した溶液を反応させる以外は実施 例 1と同様に実施した。反応液は濁りを生じ、またルチル型酸ィ匕チタンの生成は見ら れなかった。
[0132] [比較例 4]
イオン交換水 2Lに酸化塩化チタンの塩酸水溶液 (Ti含有率 15wt%) 20mlを加え 、 60 °Cで 6時間加熱した。室温まで冷却した後、限外ろ過により濃縮、脱イオン処理 を行い、固形分 1.
Figure imgf000027_0001
得られたゾル液の固形分を実施例 1と同様 に分析したところ、結晶径が短軸、長軸共に平均 5nmのアナターゼ型酸ィ匕チタンで あった。実施例 1と同様に固形分の屈折率を評価し、 n= 2. 52を得た。
[0133] (酸ィ匕ジルコニウム被覆アナターゼ型酸ィ匕チタン微粒子ゾル液の調製)
[比較例 5]
実施例 7において比較例 4で調製したアナターゼ型酸ィ匕チタン微粒子ゾル液を用
V、た以外は、実施例 7と同様にして酸ィ匕ジルコニウム被覆スズ修飾アナターゼ型酸 化チタン微粒子ゾル液を調製した。
[0134] (酸化アンチモン被覆アナターゼ型酸化チタン微粒子ゾル液の調製)
[比較例 6]
実施例 8にお ヽて比較例 4で調製したアナターゼ型酸ィ匕チタン微粒子ゾル液を用
V、た以外は、実施例 8と同様にして酸ィ匕アンチモン被覆スズ修飾アナターゼ型酸ィ匕 チタン微粒子ゾル液を調製した。
[0135] (酸ィ匕モリブデン被覆アナターゼ型酸ィ匕チタン微粒子ゾル液の調製)
[比較例 7]
実施例 10において比較例 4で調整したアナターゼ型酸ィ匕チタン微粒子ゾル液を用
V、た以外は、実施例 10と同様にして酸ィ匕モリブデン被覆スズ修飾アナターゼ型酸ィ匕 チタン微粒子ゾル液を調製した。
[0136] (コーティング液の調製)
[比較例 8] 実施例 13にお ヽて比較例 4〜7で調製したゾル液を用いた以外は、実施例 13と同 様にしてコーティング液を作成した。
[0137] (ハードコート膜の作成)
[比較例 9]
上記コーティング液を用いた以外は実施例 14と同様にしてハードコート膜を作成し た。
[0138] 上記方法によりハードコート膜を施したレンズ基材について、以下に示すように干 渉縞、耐擦傷性、耐光性、およびコーティング液について、分散安定性を評価した。 その結果を表 1に示す。
[0139] (a)干渉縞:蛍光灯下でハードコート膜を有する光学部材を目視で判断した。判断基 準は以下の通りである。
。… 干渉縞がほとんど見えない。
… 少し見える
… かなり見える
[0140] (b)耐擦傷性:スチールウール(# 000)により 500g荷重で表面を摩擦し、傷ついた 程度を目視で評価した。判断基準は以下の通りである。
〇··· ほとんど傷がつかない
… 少し傷がつく
X · · · ひどく傷がつく
[0141] (c)耐光性試験:得られたノヽードコート膜付基材をソーラーシユミレーター (Type: sss — 252161— ER ゥシォ電機 (株)製)による 300時間照射後の密着性試験で剥離 が無いもの、及び黄変がないものを〇とした。基材とハードコート膜との密着性は、 JI S K— 5600に準じてクロスカットテープ試験によって行った。すなわち、ナイフを基 材表面に lmm感覚に切れ目を入れ、 1平方 mmのマス目を 25個形成させる。次に その上へセロファン粘着テープを強く押し付けた後表面から 90度方向へ急に引 つ張り剥離した後コート膜の残っているマス目をもって密着性指標とした。
〇··· 剥がれなし(25Z25)
… 剥がれあり(24Z25以下) [0142] (d)分散安定性:調製したコーティング液を室温で一ヶ月保存した際の変化を以下の 指標で評価した。
。… 変化しない
… 増粘した
X · · · ゲル化した
[0143] (e)塗膜屈折率の測定: 石英基板上にコーティング液をスピンコート法により膜厚約 700Aに塗布し、熱風乾燥した塗布膜を、自動波長走査型エリプソメーター M— 15 0 (日本分光 (株)製)を用いて測定した。
[0144] [表 1] 表 1
Figure imgf000029_0001
産業上の利用可能性
[0145] 本発明により得られたスズ修飾ルチル型酸ィ匕チタン微粒子、ゾル液、コーティング 液は高屈折率化剤、光線反射剤、紫外線吸収剤などとして、高屈折率プラスチックレ ンズの高屈折率ハードコート膜、プラスチック劣化防止添加剤、化粧品添加剤、カメ ラ用レンズ、自動車用窓ガラス、プラズマディスプレイ、液晶ディスプレイ、 ELデイス プレイ、光学フィルタ一等の光学部材、屈折率調製用に金属材料、セラミックス材料 、ガラス材料、プラスチック材料等の製品に好適に用いられる。
[0146] 本願発明の金属酸ィ匕物被覆スズ修飾ルチル型酸ィ匕チタン微粒子、ゾル液、及びコ 一ティング液は、基材に塗布された時、耐擦傷性、表面硬度、耐磨耗性、密着性、透 明性、耐熱性、耐光性、耐候性、紫外線遮蔽性等が良好であり、干渉縞の発生しな い高屈折率プラスチックレンズの高屈折率ノ、ードコート膜、プラスチック劣化防止添 加剤、化粧品添加剤、カメラ用レンズ、自動車用窓ガラス、プラズマディスプレイ、 EL ディスプレイ、液晶ディスプレイ、高密度記録光媒体の読み取り '書きこみ用高屈折 率膜、光学フィルタ一等の光学部材、屈折率調整用に金属材料、セラミックス材料、 ガラス材料、プラスチック材料等の光学部材を提供できると ヽぅ有用性がある。

Claims

請求の範囲
[I] チタンに対するスズのモル比(SnZTi)が 0.001〜2のスズィ匕合物共存下、 Ti濃度 が 0. 07〜5molZlのチタン化合物水溶液を ρΗがー 1〜3の範囲で反応させて得ら れるスズ修飾ルチル型酸ィ匕チタン微粒子であって、該微粒子の SnZTi組成モル比 が 0. 001-0. 5であり、且つ結晶径の短軸、長軸が 2〜20nmであることを特徴とす るスズ修飾ルチル型酸ィ匕チタン微粒子。
[2] 請求項 1記載のスズ修飾ルチル型酸ィ匕チタン微粒子力 一種以上の金属酸化物 で被覆されていることを特徴とするスズ修飾ルチル型酸ィ匕チタン微粒子。
[3] 屈折率が 2. 0〜2. 8である請求項 1または 2記載のスズ修飾ルチル型酸ィ匕チタン 微粒子。
[4] 請求項 1〜3の何れか〖こ記載のスズ修飾ルチル型酸ィ匕チタン微粒子力もなる微粒 子凝集体の結晶の平均凝集粒子径が、 10〜: LOOnmであることを特徴とするスズ修 飾ルチル型酸ィ匕チタン微粒子。
[5] 請求項 1〜4の何れか〖こ記載のスズ修飾ルチル型酸ィ匕チタン微粒子力 水あるい は有機溶剤に分散してなるゾル。
[6] 有機ケィ素化合物、その加水分解物及びその縮合物の中から選択される一種以上 と、請求項 1〜4の何れかに記載のスズ修飾ルチル型酸ィ匕チタン微粒子を含有して なるコーティング液。
[7] 請求項 6記載のコーティング液を用いて硬化して得られるハードコート膜。
[8] 榭脂または榭脂モノマ一一種以上と、請求項 1〜4の何れかに記載のスズ修飾ル チル型酸ィ匕チタン微粒子を含有してなるコーティング液。
[9] 請求項 8記載のコ一ティング液を用 V、て硬化して得られるプライマー膜。
[10] 光硬化型モノマ一一種以上と請求項 1〜4の何れかに記載のスズ修飾ルチル型酸 化チタン微粒子を含有してなるコーティング液。
[II] 請求項 10記載のコーティング液を用いて硬化して得られるハードコート膜。
[12] 屈折率が 1. 5〜1. 8である請求項 7記載のハードコート膜。
[13] 屈折率が 1. 5〜1. 8である請求項 9記載のプライマー膜。
[14] 屈折率が 1. 5〜1. 8である請求項 11記載のハードコート膜。 請求項 7または 12に記載のハードコート膜が施された基材。
請求項 9または 13に記載のプライマー膜が施された基材。
請求項 11または 14に記載のハードコート膜が施された基材。
請求項 9または 13に記載のプライマー膜の上に請求項 7または 12に記載のハード n
ート膜が施されてなる基材。
基材の屈折率が 1. 6〜1. 8である請求項 15〜18の何れかに記載の基材。
基材がチォウレタン結合あるいはェピチォスルフイド結合を有する榭脂である請求 項 15〜19の何れかに記載の基材。
請求項 15〜20の何れかに記載の基材上にさらに反射防止膜を施してなる基材。
PCT/JP2005/012002 2004-06-29 2005-06-29 スズ修飾ルチル型酸化チタン微粒子 WO2006001487A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/630,958 US7575731B2 (en) 2004-06-29 2005-06-29 Fine particles of tin-modified rutile-type titanium dioxide and method of making thereof
JP2006528770A JPWO2006001487A1 (ja) 2004-06-29 2005-06-29 スズ修飾ルチル型酸化チタン微粒子
EP05765178A EP1775120A4 (en) 2004-06-29 2005-06-29 FINE TITANIUM DIOXIDE PARTICLES OF MODIFIED RUTILE TYPE AT TIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004191966 2004-06-29
JP2004-191966 2004-06-29

Publications (1)

Publication Number Publication Date
WO2006001487A1 true WO2006001487A1 (ja) 2006-01-05

Family

ID=35781905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012002 WO2006001487A1 (ja) 2004-06-29 2005-06-29 スズ修飾ルチル型酸化チタン微粒子

Country Status (6)

Country Link
US (1) US7575731B2 (ja)
EP (1) EP1775120A4 (ja)
JP (1) JPWO2006001487A1 (ja)
KR (1) KR100809758B1 (ja)
CN (1) CN100572285C (ja)
WO (1) WO2006001487A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298731A (ja) * 2005-04-25 2006-11-02 Mitsui Chemicals Inc 複合酸化物超微粒子およびその製造法
JP2007197278A (ja) * 2006-01-27 2007-08-09 Mitsui Chemicals Inc 無機酸化物超微粒子およびその製造法
JP2007217241A (ja) * 2006-02-17 2007-08-30 Sumitomo Osaka Cement Co Ltd ルチル型酸化チタン微粒子及び高屈折率材料並びに高屈折率部材
JP2007246351A (ja) * 2006-03-17 2007-09-27 Tayca Corp 表面処理された酸化チタンゾルおよびその製造法
JP2007272156A (ja) * 2006-03-31 2007-10-18 Mitsui Chemicals Inc 高屈折率硬化膜
JP2007270098A (ja) * 2006-03-31 2007-10-18 Mitsui Chemicals Inc 高屈折率コーティング用組成物
WO2007082919A3 (en) * 2006-01-18 2008-04-17 Lemnis Lighting Ip Gmbh Novel monomeric and polymeric materials
JP2008239464A (ja) * 2007-03-29 2008-10-09 Fujifilm Corp 金属酸化物微粒子分散物及びその製造方法
JP2008308386A (ja) * 2007-06-18 2008-12-25 Sumitomo Osaka Cement Co Ltd 複合ルチル微粒子と複合ルチル微粒子分散液及び高屈折率材料、高屈折率部材、並びに複合ルチル微粒子の製造方法
WO2010073772A1 (ja) * 2008-12-27 2010-07-01 日揮触媒化成株式会社 高屈折率金属酸化物微粒子を含む塗料組成物および該塗料組成物を基材上に塗布して得られる硬化性塗膜
JP2010168266A (ja) * 2008-12-27 2010-08-05 Jgc Catalysts & Chemicals Ltd 高屈折率金属酸化物微粒子の水分散ゾル、その調製方法および該金属酸化物微粒子の有機溶媒分散ゾル
WO2012046493A1 (ja) * 2010-10-08 2012-04-12 信越化学工業株式会社 ルチル型酸化チタン微粒子分散液、その製造方法及び該ルチル型酸化チタン薄膜を表面に有する部材
JP2013163715A (ja) * 2012-02-09 2013-08-22 Ito Kogaku Kogyo Kk ハードコート用組成物
US8632864B2 (en) 2009-08-24 2014-01-21 Lacks Industries, Inc. Decorative surface finish and method of forming same
JPWO2013081136A1 (ja) * 2011-12-02 2015-04-27 日産化学工業株式会社 ルチル型酸化チタンゾルの製造方法
JP2016108189A (ja) * 2014-12-08 2016-06-20 多木化学株式会社 被覆酸化チタンゾル
US10723915B2 (en) 2018-11-26 2020-07-28 Itoh Optical Industrial Co., Ltd. Hard coating composition
KR20220145817A (ko) 2020-03-26 2022-10-31 데이까 가부시끼가이샤 루틸형 산화티타늄 오르가노졸 및 루틸형 산화티타늄 오르가노졸의 제조 방법 그리고 이 루틸형 산화티타늄 오르가노졸을 사용한 고굴절률 피막 형성용 조성물 및 광학 소자

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100656367B1 (ko) * 2005-11-24 2006-12-13 한국전자통신연구원 저온에서 소결 가능한 반도체 전극용 조성물 및 이를이용한 염료감응 태양 전지
WO2007102490A1 (ja) * 2006-03-07 2007-09-13 Ishihara Sangyo Kaisha, Ltd. 酸化チタン及び導電性酸化チタン並びにそれらの製造方法
WO2009016056A1 (en) * 2007-07-31 2009-02-05 Basf Se Optical variable effect pigments
JP2009078946A (ja) * 2007-09-26 2009-04-16 Fujifilm Corp コア−シェル型金属酸化物粒子及びその製造方法
RU2010132429A (ru) * 2008-01-04 2012-02-10 Спарксис Б.В. (Nl) Модификация поверхности металлоксидных наночастиц
EP2275841B1 (en) 2008-05-30 2014-12-10 Hoya Corporation Manufacturing method of hard coat liquid and plastic lens manufacturing method thereof.
US8815335B2 (en) 2008-12-16 2014-08-26 GM Global Technology Operations LLC Method of coating a substrate with nanoparticles including a metal oxide
US8871294B2 (en) 2008-12-16 2014-10-28 GM Global Technology Operations LLC Method of coating a substrate with nanoparticles including a metal oxide
TWI487668B (zh) * 2009-02-19 2015-06-11 Sakai Chemical Industry Co 金紅石型氧化鈦粒子之分散體,其製造方法,及其用途
JP4696174B2 (ja) * 2009-04-23 2011-06-08 キヤノン株式会社 電子写真感光体の製造方法
US8481455B1 (en) * 2010-02-24 2013-07-09 Nei Corporation SO3 resistant sorbents for removing mercury from flue gas
TWI520909B (zh) * 2011-02-15 2016-02-11 日產化學工業股份有限公司 金紅石型氧化鈦溶膠的製造方法
CN102205306A (zh) * 2011-04-07 2011-10-05 福州大学 一种提高有机材料表面耐候性的方法
EP2881769A4 (en) * 2012-08-06 2016-03-09 Konica Minolta Inc LIGHT REFLECTIVE FILM AND LIGHT REFLECTOR MADE THEREFROM
CN104151868B (zh) * 2014-07-10 2015-10-28 池州市英派科技有限公司 一种光催化效果增强的改性纳米二氧化钛及其制备方法
CN105271389B (zh) * 2015-10-15 2017-08-04 锦州钛业有限公司 一种导电二氧化钛粉体的制备方法
CN110305524A (zh) * 2018-03-20 2019-10-08 常州格林感光新材料有限公司 一种含有改性颜料的辐射固化组合物及其应用
JP7205437B2 (ja) * 2019-10-02 2023-01-17 信越化学工業株式会社 酸化チタン粒子、酸化チタン粒子分散液及び酸化チタン粒子分散液の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255532A (ja) * 1989-03-30 1990-10-16 Catalysts & Chem Ind Co Ltd ルチル型酸化チタンゾルの製造法
JPH09110956A (ja) 1988-12-22 1997-04-28 Mitsui Toatsu Chem Inc レンズ及びその製造方法
JPH09175821A (ja) * 1995-12-25 1997-07-08 Ishihara Sangyo Kaisha Ltd 紡錘状微粒子二酸化チタン及びその製造方法
JP2001123115A (ja) 1999-08-16 2001-05-08 Nissan Chem Ind Ltd コーティング組成物及び光学部材
JP2002194083A (ja) 1998-03-13 2002-07-10 Mitsui Chemicals Inc 重合性組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190716A (ja) * 1987-02-02 1988-08-08 Takeda Chem Ind Ltd 球状酸化物粒子の製造方法
DE4105345A1 (de) * 1991-02-21 1992-08-27 Kronos Int Inc Verfahren zur herstellung von feinteiligem titandioxid und feinteiliges titandioxid
JP2959928B2 (ja) * 1993-06-23 1999-10-06 チタン工業株式会社 白色導電性樹脂組成物
JP4069330B2 (ja) * 1997-03-03 2008-04-02 日産化学工業株式会社 酸化チタン−酸化スズ複合ゾルの製造方法
WO1998039253A1 (fr) * 1997-03-03 1998-09-11 Nissan Chemical Industries, Ltd. Procede de production de sols de composites, de composition de revetement et d'elements optiques
WO1997015526A1 (en) * 1995-10-27 1997-05-01 E.I. Du Pont De Nemours And Company Hydrothermal process for making ultrafine metal oxide powders
US5650002A (en) * 1995-11-13 1997-07-22 E. I. Du Pont De Nemours And Company TiO2 light scattering efficiency when incorporated in coatings
JP3982933B2 (ja) * 1999-01-14 2007-09-26 触媒化成工業株式会社 被膜形成用塗布液および合成樹脂製レンズ
US6703131B1 (en) * 1999-06-24 2004-03-09 Nippon Arc Co., Ltd. Coated article
JP2004018311A (ja) * 2002-06-17 2004-01-22 Mitsui Chemicals Inc アモルファス酸化ジルコニウムで被覆された酸化チタン超微粒子およびその製造方法
WO2004009659A1 (ja) * 2002-07-22 2004-01-29 Mitsui Chemicals, Inc. 無機超微粒子を含有する樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110956A (ja) 1988-12-22 1997-04-28 Mitsui Toatsu Chem Inc レンズ及びその製造方法
JPH02255532A (ja) * 1989-03-30 1990-10-16 Catalysts & Chem Ind Co Ltd ルチル型酸化チタンゾルの製造法
JP2783417B2 (ja) 1989-03-30 1998-08-06 触媒化成工業株式会社 ルチル型酸化チタンゾルの製造法
JPH09175821A (ja) * 1995-12-25 1997-07-08 Ishihara Sangyo Kaisha Ltd 紡錘状微粒子二酸化チタン及びその製造方法
JP2002194083A (ja) 1998-03-13 2002-07-10 Mitsui Chemicals Inc 重合性組成物
JP2001123115A (ja) 1999-08-16 2001-05-08 Nissan Chem Ind Ltd コーティング組成物及び光学部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1775120A4

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298731A (ja) * 2005-04-25 2006-11-02 Mitsui Chemicals Inc 複合酸化物超微粒子およびその製造法
US8323594B2 (en) 2006-01-18 2012-12-04 Sparkxis B.V. Method of making hybrid organic-inorganic monomeric materials
WO2007082919A3 (en) * 2006-01-18 2008-04-17 Lemnis Lighting Ip Gmbh Novel monomeric and polymeric materials
RU2440389C2 (ru) * 2006-01-18 2012-01-20 Спарксис Б.В. Новые мономерные и полимерные материалы
AU2007206898B2 (en) * 2006-01-18 2011-04-07 Sparkxis B.V. Novel monomeric and polymeric materials
EP2322582A1 (en) * 2006-01-18 2011-05-18 Sparkxis B.V. Novel monomeric and polymeric materials
EP2327745A1 (en) * 2006-01-18 2011-06-01 Sparkxis B.V. Novel monomeric and polymeric materials
JP2007197278A (ja) * 2006-01-27 2007-08-09 Mitsui Chemicals Inc 無機酸化物超微粒子およびその製造法
JP2007217241A (ja) * 2006-02-17 2007-08-30 Sumitomo Osaka Cement Co Ltd ルチル型酸化チタン微粒子及び高屈折率材料並びに高屈折率部材
JP2007246351A (ja) * 2006-03-17 2007-09-27 Tayca Corp 表面処理された酸化チタンゾルおよびその製造法
JP2007272156A (ja) * 2006-03-31 2007-10-18 Mitsui Chemicals Inc 高屈折率硬化膜
JP2007270098A (ja) * 2006-03-31 2007-10-18 Mitsui Chemicals Inc 高屈折率コーティング用組成物
JP2008239464A (ja) * 2007-03-29 2008-10-09 Fujifilm Corp 金属酸化物微粒子分散物及びその製造方法
JP2008308386A (ja) * 2007-06-18 2008-12-25 Sumitomo Osaka Cement Co Ltd 複合ルチル微粒子と複合ルチル微粒子分散液及び高屈折率材料、高屈折率部材、並びに複合ルチル微粒子の製造方法
US20110257298A1 (en) * 2008-12-27 2011-10-20 Jgc Catalysts And Chemicals Ltd. Coating composition containing high-refractive-index metal oxide fine particles, and curable coating film obtained by applying the coating composition onto base
JP2010168266A (ja) * 2008-12-27 2010-08-05 Jgc Catalysts & Chemicals Ltd 高屈折率金属酸化物微粒子の水分散ゾル、その調製方法および該金属酸化物微粒子の有機溶媒分散ゾル
JP5754943B2 (ja) * 2008-12-27 2015-07-29 日揮触媒化成株式会社 高屈折率金属酸化物微粒子を含む塗料組成物および該塗料組成物を基材上に塗布して得られる硬化性塗膜
WO2010073772A1 (ja) * 2008-12-27 2010-07-01 日揮触媒化成株式会社 高屈折率金属酸化物微粒子を含む塗料組成物および該塗料組成物を基材上に塗布して得られる硬化性塗膜
US8974592B2 (en) * 2008-12-27 2015-03-10 JGC Catalysts and Chemicals, Ltd. Coating composition containing high-refractive-index metal oxide fine particles, and curable coating film obtained by applying the coating composition onto base
US8632864B2 (en) 2009-08-24 2014-01-21 Lacks Industries, Inc. Decorative surface finish and method of forming same
JP5633571B2 (ja) * 2010-10-08 2014-12-03 信越化学工業株式会社 ルチル型酸化チタン微粒子分散液の製造方法
JPWO2012046493A1 (ja) * 2010-10-08 2014-02-24 信越化学工業株式会社 ルチル型酸化チタン微粒子分散液、その製造方法及び該ルチル型酸化チタン薄膜を表面に有する部材
WO2012046493A1 (ja) * 2010-10-08 2012-04-12 信越化学工業株式会社 ルチル型酸化チタン微粒子分散液、その製造方法及び該ルチル型酸化チタン薄膜を表面に有する部材
JPWO2013081136A1 (ja) * 2011-12-02 2015-04-27 日産化学工業株式会社 ルチル型酸化チタンゾルの製造方法
JP2013163715A (ja) * 2012-02-09 2013-08-22 Ito Kogaku Kogyo Kk ハードコート用組成物
JP2016108189A (ja) * 2014-12-08 2016-06-20 多木化学株式会社 被覆酸化チタンゾル
US10723915B2 (en) 2018-11-26 2020-07-28 Itoh Optical Industrial Co., Ltd. Hard coating composition
KR20220145817A (ko) 2020-03-26 2022-10-31 데이까 가부시끼가이샤 루틸형 산화티타늄 오르가노졸 및 루틸형 산화티타늄 오르가노졸의 제조 방법 그리고 이 루틸형 산화티타늄 오르가노졸을 사용한 고굴절률 피막 형성용 조성물 및 광학 소자

Also Published As

Publication number Publication date
KR100809758B1 (ko) 2008-03-04
CN1964920A (zh) 2007-05-16
EP1775120A1 (en) 2007-04-18
US20080026210A1 (en) 2008-01-31
JPWO2006001487A1 (ja) 2008-04-17
CN100572285C (zh) 2009-12-23
EP1775120A4 (en) 2009-12-02
KR20070027744A (ko) 2007-03-09
US7575731B2 (en) 2009-08-18

Similar Documents

Publication Publication Date Title
WO2006001487A1 (ja) スズ修飾ルチル型酸化チタン微粒子
TWI428282B (zh) 金屬氧化物複合溶膠,塗佈組成物及光學構件
KR101907882B1 (ko) 이산화규소-산화제2주석 복합산화물 피복 산화티탄 함유 금속 산화물 입자
EP1930298B1 (en) Zirconium oxide-tin oxide composite sol, coating composition and optical member
TWI433816B (zh) 改性金屬氧化物複合溶膠,塗覆組成物及光學構件
JP4749200B2 (ja) 高屈折率樹脂組成物
KR101437200B1 (ko) 표면 피복된 이산화티탄졸, 그 제조법 및 그것을 포함한 코팅 조성물
JP5651477B2 (ja) ハイブリッドビヒクル系
JP4749201B2 (ja) 半導体発光素子封止用組成物
JP7060583B2 (ja) 鉄含有ルチル型酸化チタン微粒子分散液の製造方法、鉄含有ルチル型酸化チタン微粒子およびその用途
WO2007145285A1 (ja) ポリマー被覆金属酸化物微粒子およびその応用
JP2007270098A (ja) 高屈折率コーティング用組成物
JP2004018311A (ja) アモルファス酸化ジルコニウムで被覆された酸化チタン超微粒子およびその製造方法
JP4906361B2 (ja) 無機酸化物超微粒子およびその製造法
JP4673664B2 (ja) コーティング用高屈折率樹脂組成物
JP6080583B2 (ja) 表面改質無機複合酸化物微粒子、その製造方法、該微粒子を含む分散液、光学基材用塗布液、光学基材用塗膜および塗膜付基材
JP6253484B2 (ja) 塗料組成物、ハードコート層およびハードコート層付き光学基材ならびにこれらの製造方法
JP5116285B2 (ja) 透明被膜付基材
JP5432430B2 (ja) 透明被膜形成用塗布液および透明被膜付基材
JP6278902B2 (ja) 連結型結晶性無機酸化物微粒子群を含む水および/または有機溶媒分散液、その製造方法、ならびに該連結型結晶性無機酸化物微粒子群を含む光学基材用塗布液
JP4641212B2 (ja) 複合酸化物超微粒子およびその製造法
JP2024004698A (ja) 光触媒膜被覆体及びその製造方法
JP2024072474A (ja) プライマー層形成用塗料組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528770

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580019123.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11630958

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005765178

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077001935

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020077001935

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005765178

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11630958

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载