+

WO2006001352A1 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
WO2006001352A1
WO2006001352A1 PCT/JP2005/011565 JP2005011565W WO2006001352A1 WO 2006001352 A1 WO2006001352 A1 WO 2006001352A1 JP 2005011565 W JP2005011565 W JP 2005011565W WO 2006001352 A1 WO2006001352 A1 WO 2006001352A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
driving
emitting device
emitting diodes
Prior art date
Application number
PCT/JP2005/011565
Other languages
English (en)
French (fr)
Inventor
Mitsuhiro Omae
Original Assignee
Sanyo Electric Co., Ltd.
Tottori Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd., Tottori Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to US11/630,140 priority Critical patent/US20070295975A1/en
Priority to JP2006528603A priority patent/JPWO2006001352A1/ja
Publication of WO2006001352A1 publication Critical patent/WO2006001352A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/16Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of types provided for in two or more different subclasses of H10B, H10D, H10F, H10H, H10K or H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of types provided for in two or more different subclasses of H10B, H10D, H10F, H10H, H10K or H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/24Controlling the colour of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00
    • H01L25/0753Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a light emitting element that is integrally provided with a light emitting diode and an IC for driving the light emitting diode.
  • Patent Document 1 discloses a light-emitting element that can emit pseudo white light by combining a light-emitting diode and a phosphor that emits light of a complementary color of the light-emitting color.
  • a light emitting diode that emits blue light and a phosphor that emits yellow light in combination are often used, but a specific color component, in this example a mixture of blue and yellow, is used.
  • a specific color component in this example a mixture of blue and yellow
  • Patent Document 1 JP 2001-217463 A
  • An object of the present invention is to provide a configuration capable of simplifying the adjustment of the light emission intensity of a plurality of light emitting diodes.
  • Another object is to provide a structure that does not require an external circuit for adjustment and has good assembly workability. It is another object of the present invention to provide a structure that facilitates adjustment for mixing a plurality of emission colors to obtain a desired emission color.
  • Another object is to provide a shape compatible with a conventional two-terminal light emitting element even in the case of emitting light by mixing a plurality of colors.
  • the light-emitting device of the present invention is a light-emitting device comprising a plurality of light-emitting diodes and a driving IC that drives these light-emitting diodes, as described in claim 1.
  • the driver IC has a built-in circuit that controls the current value for each of the light-emitting diodes or the current ratio between the light-emitting diodes, so that the optimum current ratio is adjusted in advance between the light-emitting diodes. be able to. As a result, the light obtained by combining the light from the plurality of light emitting diodes can be kept in a uniform state.
  • the light-emitting element of the present invention is characterized in that, as described in claim 2, the plurality of light-emitting diodes have a light emission color capable of emitting white light by a color mixture of the light.
  • the plurality of light emitting diodes can provide elements suitable for various types of illumination and light sources by providing a light emitting color capable of emitting white light by mixing the light.
  • the light emitting device of the present invention is characterized in that the plurality of light emitting diodes include three primary colors of red, green, and blue. Since the plurality of light emitting diodes include the three primary colors of red, green, and blue, a white light source with excellent color rendering can be provided. The color rendering properties can be further improved by adding different emission colors to the three primary emission colors.
  • the light-emitting element of the present invention is characterized in that the plurality of light-emitting diodes include light-emitting colors having a complementary color relationship. Multiple light emitting diodes are complementary colors Since the related emission colors are included, a white light source using two light emitting diodes can be provided, and the number of components can be reduced.
  • the light emitting device of the present invention is characterized in that, as described in claim 5, the plurality of light emitting diodes include different emission colors. Since the plurality of light emitting diodes include different emission colors, the color characteristics can be maintained in a certain state when providing a desired color other than white by providing a mixed color.
  • the light emitting device of the present invention is characterized in that, as described in claim 6, the plurality of light emitting diodes include the same light emitting color. Since the plurality of light emitting diodes include the same light emitting color, when the light amount distribution is changed among the light emitting diodes of the same color, it is possible to set and maintain the current distribution according to the light amount distribution.
  • the plurality of light emitting diodes in the plurality of light emitting diodes, at least two light emitting diodes are connected in series, and two light emitting diodes connected in series are provided.
  • the photodiode may be the same color or a different color selected from red, orange and yellow light emitting diodes.
  • Luminous efficiency can be increased by connecting specific light emitting diodes in series, such as light emitting diodes with small VF and light emitting diodes that fill in the valleys of the spectrum, and the continuity of the spectrum can be enhanced.
  • the light emitting device of the present invention is characterized in that, as described in claim 9, the driving IC has a plurality of transistors connected in series for each light emitting diode. Depending on the transistor design, the value of the current flowing through the light emitting diode can be set individually for each light emitting diode.
  • the light-emitting device of the present invention is characterized in that, as described in claim 10, a transistor of the driving IC uses a field effect transistor or a bipolar transistor.
  • a versatile element structure can be provided as a driving IC.
  • the light-emitting element of the present invention is characterized in that, as described in claim 11, the gate terminal or base terminal of the transistor of the driving IC is commonly connected. By connecting them in common, the operation timing of each transistor can be aligned. In addition, the output current value or current ratio can be adjusted easily.
  • a light emitting device of the present invention is a transistor gate of the driving IC.
  • the gate terminal or base terminal is commonly connected to the wiring of the light emitting diode having the highest VF voltage among the light emitting diodes after adjusting the current value or current ratio.
  • the light-emitting element of the present invention is characterized in that, as described in claim 13, the light-emitting element is a two-terminal element including only the two external terminals as terminals connected to the outside. Since it is a two-terminal element having only two external terminals, a structure compatible with the conventional two-terminal element can be provided.
  • the voltage applied between the two external terminals is, for example, ⁇ 10% of a specified value (if 5V system, 5 ⁇ 0.5V range)
  • the light-emitting element of the present invention is characterized in that, as described in claim 15, the driving IC includes an external terminal. By providing external terminals on the driving IC, it is possible to reduce the number of parts and reduce the size of the element.
  • the light emitting element of the present invention is characterized in that, as described in claim 16, the external terminal is a control terminal for changing a current value or a current ratio of the plurality of light emitting diodes. .
  • the external terminal is a control terminal for changing a current value or a current ratio of the plurality of light emitting diodes.
  • the external terminal is connected to a gate terminal or a base terminal of a transistor of the driving IC, and currents flowing through the respective light emitting diodes are externally transmitted. More controllable. Since the current flowing to the light emitting diode can be controlled by the external terminal, the range of usage can be expanded.
  • the external terminal is commonly connected to a gate terminal or a base terminal of the transistor of the driving IC, and currents flowing through the respective light emitting diodes are externally connected. It can be controlled at the same timing. Since control is possible at the same timing, the number of terminals can be reduced.
  • the external terminal is connected to each of the light emitting diodes independently of the driving of the transistor of the driving IC so as to be individually controllable. It is characterized by that. Since the current flowing to the light emitting diode can be controlled by the external terminal, the range of usage can be expanded.
  • the driving IC includes a current supply circuit that supplies a reference current, and the light emitting diode that receives current supply from the current supply circuit.
  • a driver circuit for supplying a current set for each of the external terminals, and the external terminals are connected so that the operation of the driver circuit can be controlled by an external force.
  • the driving IC has a function of finely adjusting a current value for each of the plurality of light emitting diodes or a current ratio for each of the light emitting diodes. It is characterized by that. By providing a function that finely adjusts the current ratio, it is possible to suppress output fluctuations caused by variations in the initial characteristics of the light emitting diodes or the driving ICs.
  • the driving IC is provided from a nonvolatile memory that stores correction data, data stored in the memory, and the external terminal. And a control circuit for controlling the operation of the driver circuit based on the obtained data.
  • the driving IC finely adjusts the current value for each of the plurality of light emitting diodes based on data stored in the memory! To do Features. Since the current value for each light emitting diode is finely adjusted based on the data stored in the memory, the light output of the light emitting diode can be controlled with higher accuracy.
  • the fine adjustment is performed by laser trimming a cutting region provided on a surface of the driving IC, or in the driving IC. It is characterized by being performed by zapping the cutting area provided in Fine adjustment by laser trimming or zubbing can improve the workability of fine adjustment.
  • the fine adjustment selects whether or not a wire bond is present for one or more wire bond terminals provided on a surface of the driving IC. It is characterized by being performed. Since it is performed depending on the presence or absence of wire bonding, the workability of fine adjustment can be improved.
  • the light emitting element of the present invention is characterized in that the plurality of light emitting diodes and the driving IC are mounted on a circuit board. Since a plurality of light emitting diodes and a driving IC are mounted on a circuit board, an element structure using a general-purpose circuit board can be adopted to improve productivity.
  • the light emitting device of the present invention is characterized in that, as described in claim 27, the plurality of light emitting diodes are arranged on the driving IC. Since a plurality of light-emitting diodes are arranged on the driving IC, it is possible to assemble a plurality of light-emitting diodes and the driving IC in advance, thereby improving the assembly workability. Further, the area of the element can be reduced, and the element size can be reduced.
  • the light emitting element of the present invention is characterized in that, as described in claim 28, the plurality of light emitting diodes and the driving IC are covered with the same grease. By covering with grease, both can be protected and the light extraction efficiency of a plurality of light emitting diodes can be increased.
  • the present invention it is possible to provide a configuration capable of simplifying various adjustment operations of a plurality of light emitting diodes.
  • the color rendering property when white light is emitted can be enhanced.
  • FIG. 1 is a perspective view of a light-emitting element according to a first embodiment as seen through a mold resin.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3A is a circuit diagram of the light emitting device of the first embodiment
  • FIG. 3B is an equivalent circuit diagram.
  • FIG. 4 is a detailed circuit diagram of the light emitting device of the first embodiment.
  • FIG. 5 is a timing chart showing the operation of the light emitting device of the first embodiment.
  • Fig. 6 is a perspective view of the light emitting device of the second embodiment as seen through a mold resin.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.
  • FIG. 8 is a perspective view of the light emitting device of the third embodiment seen through the mold grease.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG.
  • FIG. 10 is a perspective view of the light emitting device of the fourth embodiment as seen through the mold grease.
  • FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG.
  • FIG. 12 is a perspective view of a light emitting device according to a fifth embodiment.
  • FIG. 13 is a cross-sectional view along XIII-XIII in FIG.
  • FIG. 14 is a perspective view showing the arrangement of the light emitting diode and the driving IC shown in FIG.
  • FIG. 15 is a perspective view of a light-emitting element according to a sixth embodiment as seen through a mold resin.
  • FIG. 16 is a cross-sectional view taken along the line XVI--XVI in FIG.
  • FIG. 17 is a detailed circuit diagram of a light emitting device according to a seventh embodiment.
  • FIG. 18 is a detailed circuit diagram of a light emitting device according to an eighth embodiment.
  • FIG. 19A is a circuit diagram of a light emitting device according to a ninth embodiment
  • FIG. 19B is an equivalent circuit diagram.
  • FIG. 20 is a detailed circuit diagram of the light emitting device according to the ninth embodiment.
  • FIG. 21 is a circuit diagram of a light emitting device according to the tenth embodiment.
  • FIG. 22 is a circuit diagram of a light emitting device according to the eleventh embodiment.
  • FIG. 23A is a schematic circuit diagram of a light emitting device according to the twelfth embodiment
  • FIG. 23B is a detailed circuit diagram of the light emitting device according to the twelfth embodiment.
  • FIG. 24 is a timing chart showing the operation of the light emitting device according to the twelfth embodiment.
  • FIG. 25 is a perspective view of the light emitting device according to the twelfth embodiment as seen through the mold resin.
  • FIG. 26A is a schematic circuit diagram of the light emitting device according to the thirteenth embodiment
  • FIG. 26B is a detailed circuit diagram of the light emitting device according to the thirteenth embodiment.
  • FIG. 27 is a timing chart showing the operation of the light emitting device according to the thirteenth embodiment.
  • FIG. 28 is a perspective view of the light emitting device according to the thirteenth embodiment as seen through the mold resin.
  • FIG. 29A is a schematic circuit diagram of the light emitting device according to the fourteenth embodiment
  • FIG. 29B is a detailed circuit diagram of the light emitting device according to the fourteenth embodiment.
  • FIG. 30 is a timing chart showing the operation of the light emitting device according to the fourteenth embodiment.
  • FIG. 31 is a perspective view of the light emitting device according to the fourteenth embodiment as seen through the mold resin.
  • FIG. 32A is a schematic circuit diagram of the light emitting device according to the fifteenth embodiment
  • FIG. 32B is a detailed circuit diagram of the light emitting device according to the fifteenth embodiment.
  • FIG. 33 is a timing chart showing the operation of the light emitting device according to the fifteenth embodiment.
  • FIG. 34 is a perspective view of the light emitting device according to the fifteenth embodiment as seen through the mold grease.
  • FIG. 35A is a schematic circuit diagram of a light emitting device according to the sixteenth embodiment
  • FIG. FIG. 36 is a detailed circuit diagram of a light emitting device according to a sixteenth embodiment.
  • FIG. 36 is a timing chart showing the operation of the light emitting device according to the sixteenth embodiment.
  • FIG. 37A is a schematic circuit diagram of the light emitting device according to the seventeenth embodiment
  • FIG. 37B is a detailed circuit diagram of the light emitting device according to the seventeenth embodiment.
  • FIG. 38 is a detailed circuit diagram of a light emitting device according to an eighteenth embodiment.
  • FIG. 39 is a detailed circuit diagram of a modification of the light emitting device according to the eighteenth embodiment.
  • FIG. 40 is a detailed circuit diagram of another modification of the light emitting device according to the eighteenth embodiment.
  • FIG. 41 is a detailed circuit diagram of still another modified example of the light emitting device according to the eighteenth embodiment.
  • FIG. 42 is a detailed circuit diagram of still another modified example of the light emitting device according to the eighteenth embodiment.
  • FIG. 43 is a detailed circuit diagram of still another modified example of the light emitting device according to the eighteenth embodiment.
  • FIG. 44 is a detailed circuit diagram of still another modified example of the light emitting device according to the eighteenth embodiment.
  • FIG. 45A is a circuit diagram of the light emitting element 1a of the nineteenth embodiment corresponding to FIG. 37B
  • FIG. 45B is a circuit diagram showing details of a portion related to the red light emitting diode 2R. Explanation of symbols
  • FIGS. Fig. 1 is a perspective view of the light-emitting element 1A seen through the mold grease
  • Fig. 2 is a sectional view taken along II II in Fig. 1
  • Fig. 3A is a circuit diagram of the light-emitting element 1A
  • Fig. 3B is an equivalent circuit diagram
  • 4 is a detailed circuit diagram of the light emitting element 1A
  • FIG. 5 is a timing chart showing the operation of the light emitting element 1A.
  • the light emitting element 1 A is configured by integrating a plurality of light emitting diodes 2 in a chip state and a driving IC 3 for driving these light emitting diodes 2 on a circuit board 4.
  • Light-emitting diode 2 is composed of bare chips that are separated from Ueno, and has three primary colors of red (R), green (G), and blue (B) to emit white light. It is composed of light emitting diodes 2R, 2G, 2B.
  • the driving IC 3 includes output terminals 3R, 3G, and 3B corresponding to the light emitting diodes 2R, 2G, and 2B on the surface, and the current value for each of the plurality of light emitting diodes 2R, 2G, and 2B or the light emitting diodes It has a built-in drive circuit that controls the current ratio between 2R, 2G, and 2B to a constant level. By this drive circuit, the output current of each output terminal is adjusted, and the light emission intensity of each of the light emitting diodes 2R, 2G, 2B is maintained within a preset range. In the driving IC3, the current value of each output or the ratio of the current is preset so that white can be obtained by mixing the light emission colors of the three light emitting diodes 2R, 2G, and 2B.
  • the light-emitting element 1A is a two-terminal light-emitting element, and includes two external terminals 5 and 6 on the circuit board 4.
  • the driving IC 3 is fixedly placed on one external terminal 5 functioning as an anode using a conductive material or an insulating material, and each light emitting diode 2R, 2G, 2B is fixedly arranged using a conductive material.
  • the light emitting diode 2 and the driving IC 3 are arranged and fixed on the circuit board 4 so as to be positioned at four corners of the rectangle.
  • the driving IC 3 has power supply terminals 3D, 3S and output terminals 3R, 3G, 3B, etc. arranged on the surface, and between these terminals and the external terminals 5, 6 or a light emitting diode.
  • the wires 2R, 2G, and 2B are electrically connected using wires such as gold wires.
  • the back surface can be fixed on the external terminal 5 or the insulating base material of the circuit board 4 using an insulating material.
  • the back surface is formed of an N-type semiconductor substrate, it can be fixed to the external terminal 5 using a conductive material.
  • the light-emitting diode 2 has a force sword electrode on the back surface, a force that is fixed to the external terminal 6 with a conductive material.
  • the circuit board 4 is composed of a printed type board in which an insulating material such as glass epoxy or polyimide is used as a base, and a conductive pattern is formed on the front and back surfaces by printed wiring or the like.
  • the external terminals 5 and 6 are constituted by this conductive pattern.
  • the light-emitting diode 2 and the driving IC 3 are fixed on a large-area circuit board having a plurality of patterns individually corresponding to a plurality of light-emitting elements, and after wiring, the light-transmitting grease 7 is used. Cover these.
  • a plurality of light emitting elements 1A can be manufactured by dividing them individually using a dividing means such as a dicing saw.
  • the light emitting element 1A has a circuit configuration in which a light emitting circuit including a driving IC 3 and a light emitting diode 2 connected thereto is connected between two external terminals 5 and 6, as shown in FIG. 3A.
  • the external terminals 5 and 6 are used by connecting to corresponding terminals of a circuit (not shown).
  • the driving IC 3 operates, and the current value set in advance for each of the light emitting diodes 2R, 2G, and 2B, or 2: 2: 1
  • a preset ratio of current, such as ratio, is provided. With this current, each of the light emitting diodes 2R, 2G, and 2B emits red, green, and blue colors. These lights are mixed in the light emission path to become white light. Therefore, an equivalent circuit of the light emitting element 1A is as shown in FIG. 3B, which is equivalent to one having one white light emitting diode between the external terminals 5 and 6.
  • the driving IC 3 includes a plurality of transistors Tr for applying a predetermined ratio of current to the light emitting diodes 2R, 2G, and 2B.
  • This transistor Tr can be constituted by, for example, a MOS type FET.
  • a P-channel MOSFET is connected between the source (S) and drain (D) terminals, and the reverse Use in a connected state where a bias is applied.
  • the transistor Tr and light emitting diode 2 are connected in series, and these series circuits are connected in parallel between the external terminals 5 and 6. The configuration is connected to.
  • the gate (G) terminal of each transistor Tr is connected to the connection between the light emitting diode 2 and the transistor Tr.
  • the light emitting element 1A is used by connecting the external terminals 5 and 6 to corresponding terminals of a circuit (not shown).
  • a constant voltage Vdd or a constant current is applied between the external terminals 5 and 6, the driving IC 3 operates, and a preset current is set for each of the light emitting diodes 2R, 2G, and 2B.
  • a ratio for example, a preset ratio of currents I (R), KG), 1 (B), such as a ratio of 2: 2: 1, is applied to each light emitting diode.
  • This current ratio can be preset by, for example, the area ratio of the transistor Tr.
  • the current ratio is the same, the color mixture state varies substantially. Nah ...
  • the light emitting diodes 2R, 2G, and 2B emit red, green, and blue colors. These lights are mixed in the light emission path to become white light (W). Therefore, an equivalent circuit of the light emitting element 1A is as shown in FIG. 3B, and is equivalent to one having one white light emitting diode between the external terminals 5 and 6.
  • the light-emitting element 1 can emit white light by mixing three colors of red, green, and blue, even though it does not have two external terminals 5 and 6 and has a conventional one chip.
  • White light can be emitted while having a structure compatible with a light emitting element of a type.
  • FIGS. 6 is a perspective view of the light emitting element 1B seen through the mold resin
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.
  • the same components as those of the light emitting device 1A according to the first embodiment are denoted by the same reference numerals.
  • the light emitting device 1B according to the second embodiment is greatly different from the light emitting device 1A of the first embodiment in that the circuit board 4 is a type using a lead frame instead of a printed type board.
  • the other substrate is basically the same.
  • the substrate 4 is formed by integrally forming a metal lead frame 8 and a resin 9 in which an iron-based or copper-based material is plated. Is configured.
  • the lead frame 8 is composed of a pair of frames having an inner part functioning as a component placement area and an outer part functioning as an external terminal, and these are integrated with the resin 9 using a technique such as insert molding.
  • the outer part of the frame 8 is bent to the back side of the grease as necessary after being separated from the lead frame force, and functions as the external terminals 5 and 6.
  • the surface of the inner where the light emitting diode 2 and the driving IC 3 should be arranged is exposed without being covered with the resin 9.
  • the resin 9 constituting the circuit board 4 also serves as a reflection frame for reflecting the light of the light emitting diode 2.
  • white resin having excellent reflectivity as the resin 9.
  • a light emitting element 1B is formed by disposing a resin 7 for molding the light emitting diode 2 and the driving IC 3 in a recess surrounded by the reflecting wall 10.
  • the circuit configuration is the same as that shown in Figure 3A.
  • FIG. 8 is a perspective view of the light emitting element 1C viewed through the mold resin
  • FIG. 9 is a cross-sectional view taken along the line IX IX in FIG.
  • the light emitting device 1C according to the third embodiment is greatly different from the light emitting device 1A of the first embodiment in that the light emitting diode 2 arranged on the circuit board 4 is mounted on the driving IC 3.
  • the other configurations are basically the same.
  • the driving IC 3 is fixed on the circuit board 4 using an insulating material or a conductive material, and is electrically connected to the external terminals 5 and 6 using wires. In this example, the driving IC 3 is fixed on the insulating base material of the circuit board 4.
  • the power sword side of the light emitting diodes 2R, 2G, 2B is fixed on the surface of the power IC 3 formed on the surface of the driving IC 3 using a conductive material, and the output terminals 3R, 3G formed on the surface of the driving IC 3
  • the anode side of the light emitting diode is connected to 3B using a wire.
  • the driving IC 3 operates by receiving a constant voltage or a constant current supply from the pair of power supply terminals 3D and 3S, and is preset in each of the light emitting diodes 2R, 2G, and 2B. Current. This current supply causes each of the light emitting diodes 2R, 2G, and 2B to emit light of a predetermined color, and is mixed to produce a desired color, in this example, white light. can get.
  • the light emitting element 1C is not provided with two external terminals 5 and 6, but by mixing three colors of red, green and blue. White light can be emitted, and white light can be emitted even though the structure is compatible with a conventional one-chip light emitting device. Since the driving IC 3 is composed of silicon in most cases, it has better thermal conductivity and higher heat dissipation than glass epoxy. Further, since the difference in coefficient of thermal expansion with the semiconductor material constituting the light emitting diode 2 can be reduced, the occurrence of stress and distortion due to the difference in coefficient of thermal expansion can be suppressed to increase reliability.
  • the configuration in which the light emitting diode 2 is disposed on the driving IC 3 can be applied to other than the first embodiment.
  • the configuration can be applied to other embodiments including the second embodiment. can do.
  • FIGS. 10 is a perspective view of the light emitting element 1 of the fourth embodiment as seen through the mold resin 7, and FIG. 11 is a cross-sectional view taken along line XI-XI in FIG.
  • the light emitting device 1D according to the fourth embodiment is greatly different from the light emitting device 1C of the third embodiment in that a plurality of light emitting diodes 2R, 2G, and 2B arranged on the driving IC 3 are arranged in a row.
  • the other configurations are basically the same.
  • a slim light emitting element 1 having a narrow width can be provided.
  • FIGS. 12 is a perspective view of the fifth light-emitting element 1E
  • FIG. 13 is a cross-sectional view along XIII-XIII in FIG. 12
  • FIG. 14 is a perspective view showing the arrangement of the light-emitting diode and the driving IC shown in FIG. is there.
  • the light-emitting diodes of the first to fourth embodiments have a top-view structure in which the light-emitting elements 1A to 1D extract light in a direction perpendicular to the substrate to which the light-emitting elements 1A to 1D are attached.
  • the embodiment is different in basic configuration in that the light emitting element 1E has a side view structure in which light is extracted in a direction parallel to a substrate to which the light emitting element 1E is attached.
  • the circuit board 4 of this embodiment has the same structure as that of the light emitting element 1 of the lead frame type according to the second embodiment, and has a lead frame.
  • Form 8 is formed integrally with resin 9 using insert molding techniques.
  • the arrangement of the light emitting diode 2 and the driving IC 3 is the same as in the fourth embodiment, and the light emitting diodes 2R, 2G, and 2B are arranged in a row on the driving IC 3.
  • the light emitting diode 2 and the driving IC 3 can be arranged in the same manner as in the first to third embodiments and other embodiments.
  • FIG. 15 is a perspective view of a state in which the mold resin 7 of the light emitting element 1F according to the sixth embodiment is seen through
  • FIG. 16 is a cross-sectional view along XVI-XVI in FIG.
  • the light emitting element 1F according to the sixth embodiment is greatly different from the light emitting elements 1C and ID of the third and fourth embodiments in that the external terminals 5 and 6 provided on the circuit board 4 are used for driving.
  • the circuit board 4 is omitted by providing the IC3. That is, a feature is that a pair of external terminals 5 and 6 are formed on a pair of side surfaces of the driving IC 3.
  • the external terminals 5 and 6 are formed not only on the side surfaces of the driving IC 3 but also on the front and back surfaces.
  • an insulating film for insulating from the external terminals 5 and 6 is interposed in a region requiring electrical insulation from the external terminals 5 and 6.
  • One of the external terminals 5 and 6 is a force sword electrode, and the force sword electrodes of the light emitting diodes 2R, 2G, and 2B are connected to each other by a conductive material.
  • the anode electrodes of the light emitting diodes 2R, 2G, and 2B are connected to the output terminals 3R, 3G, and 3B of the driving IC through wires.
  • the rows of light emitting diodes 2R, 2G, and 2B are arranged so as to be orthogonal to the arrangement of the external terminals 5 and 6.
  • the rows of output terminals 3R, 3G, 3B are arranged between the external terminals 5, 6. With such an arrangement, the planar shape of the light-emitting element 1 can be made closer to a square.
  • a light-transmitting resin 7 is molded on the surface of the driving IC 3 so as to cover the light-emitting diodes 2R, 2G, 2B and their wirings. If the external terminals 5 and 6 are formed directly on the driving IC 3 as described above, the light emitting element 1F can be downsized.
  • the light emitting element 1G according to the seventh embodiment has the same basic configuration as the light emitting element 1A of the first embodiment, the description will focus on the differences.
  • the light emitting device 1G according to the seventh embodiment is different from the light emitting device 1A of the first embodiment in the internal configuration of the driving IC 3.
  • the gate terminal of each transistor Tr was connected to its own drain terminal.
  • the gate terminals of each transistor Tr are connected to each other, and the connection point is set. Connect to a preset series circuit of light-emitting diode 2 and transistor Tr.
  • the connection destination of the commonly connected gate terminals is selected based on the VF (forward voltage) of the light emitting diode.
  • VF forward voltage
  • the VF of each diode is 1.95V, 4.3V, and 3.8V.
  • the green light emitting diode 2G has the highest VF power.
  • VF is high, the rise of current slows down and the light emission timing becomes uneven. Therefore, by connecting the commonly connected gate terminals to a series circuit of light emitting diodes 2 with the highest VF, the current rise of the circuit is accelerated.
  • the light emission timings of the respective light emitting diodes 2 are easily aligned.
  • the current value or current ratio flowing through each of the light emitting diodes 2R, 2G, and 2B can be controlled with higher accuracy.
  • the light emitting element 1H according to the eighth embodiment has the same basic configuration as that of the light emitting element 1A according to the first embodiment, and thus the description will focus on the differences.
  • the light emitting element 1H according to the eighth embodiment is different from the light emitting element 1A according to the first embodiment in that another light emitting diode is connected in series to a certain light emitting diode.
  • an orange light-emitting diode 20 is connected in series to a red light-emitting diode 2R! /
  • the VF of each light emitting diode is 1.85V, 1.85V, 3.4V, 3. 4V.
  • the total of VF of both is 3.7V, and the difference from 3.4V of other light emitting diodes can be reduced.
  • the load voltage to each transistor is reduced. It can be almost equivalent.
  • the power that wasted in the transistor in the case of only the red light emitting diode is effectively utilized by the light emitting diode 20. Therefore, luminous efficiency can be increased.
  • other light emitting diodes such as red and yellow can be selected in addition to orange.
  • the peak wavelength of green light emitting diodes is greatly biased toward the blue light emitting diode side from the midpoint between the peak wavelengths of blue and red light emitting diodes.
  • the discontinuous wavelength region can be filled, and color rendering can be improved. Can be increased.
  • light emitting diodes such as yellow light emitting diodes can be adopted as long as the light emitting diodes to be added have a peak wavelength between the light emission peak wavelengths of red and green light emitting diodes.
  • the operation of the light emitting element 1H according to the eighth embodiment is the same as that of the light emitting element 1A according to the first embodiment, and follows the timing chart shown in FIG.
  • the light emitting element 1J according to the ninth embodiment has the same basic configuration as that of the light emitting element 1A according to the first embodiment, and therefore, the description will focus on the differences.
  • the light emitting element 1J according to the ninth embodiment is different from the light emitting element 1A according to the first embodiment in the internal configuration of the driving IC 3 and the connection form of the light emitting diode and the driving IC.
  • the force used to connect the driving IC to the anode side of the light emitting diode In this embodiment, the driving IC is connected to the power sword side of the light emitting diode.
  • the transistor Tr of the driver IC is composed of an N-channel MOSFET and is used in a connection state where forward bias is applied.
  • the operation of the light emitting element 1J according to the ninth embodiment is the same as that of the light emitting element 1A according to the first embodiment, and follows the timing chart shown in FIG.
  • the light emitting element 1K according to the tenth embodiment has the same basic configuration as that of the light emitting element 1A according to the first embodiment, and thus the description will focus on the differences.
  • the light-emitting element 1K according to the tenth embodiment is different from the light-emitting element 1A according to the first embodiment as shown in FIG. 21 as the driving IC3, and the respective light-emitting diodes 2R, 2G, 2B preset constant In order to supply a current, the current supply circuit 10 and a plurality of transistors Tr are used.
  • the current supply circuit 10 is constituted by a constant current circuit that supplies a constant current set in advance for each of the plurality of transistors Tr, and also includes a gate control circuit for controlling the gates of the plurality of transistors Tr.
  • the transistor Tr can be composed of, for example, a MOS type FET. In this example, a P-channel MOSFET is used.
  • the transistor Tr and the light emitting diode 2 are connected in series by connecting the drain side of each transistor Tr to the anode side of each light emitting diode 2R, 2G, 2B.
  • the gate (G) terminal of each transistor Tr is connected in common and connected to the gate control circuit of the current supply circuit 10.
  • the gate control circuit of the current supply circuit 10 is configured to output a signal for turning on the transistor Tr when the voltage Vdd is applied.
  • the light emitting device 1K is used by connecting the external terminals 5 and 6 to corresponding terminals of a circuit (not shown).
  • a constant voltage Vdd is applied between the external terminals 5 and 6, the driving IC 3 operates, and the current value preset for each light emitting diode 2R, 2G, 2B, for example, 40mA, 40mA, 20mA, etc.
  • a predetermined constant current I (R), 1 (G), 1 (B) is applied to each light emitting diode 2.
  • This current value is preset by the current supply circuit 10 and each transistor Tr. In the circuit shown in Fig. 21, even if the voltage applied between the external terminals 5 and 6 varies somewhat, for example, ⁇ 10% of the specified value.
  • the ratio of the current value flowing through each of the light emitting diodes 2R, 2G, and 2B to the current ratio is also kept the same, and as a result, the light color mixing state is almost the same. Does not fluctuate.
  • the operation of the light emitting device 1K according to the tenth embodiment is the same as that of the light emitting device 1A according to the first embodiment, and follows the timing chart shown in FIG.
  • the light emitting element 1L according to the eleventh embodiment has the same basic configuration as that of the light emitting element 1K according to the tenth embodiment, and thus the description will focus on the differences.
  • the light emitting element 1L according to the eleventh embodiment is different from the light emitting element 1K according to the tenth embodiment in that another light emitting diode is connected in series to a certain light emitting diode.
  • the red light emitting diode 2R is Connect the light emitting diodes 20 in series.
  • the light emitting diode has the lowest VF.
  • the load voltage to each transistor can be made almost the same.
  • the power that is wasted inside the transistor can be effectively used by the light emitting diode 20, so that the light emission efficiency can be increased.
  • other light emitting diodes such as red and yellow can be selected in addition to orange.
  • an orange light emitting diode having a peak wavelength is added between the red and green light emitting diodes, thereby discontinuous wavelength regions. Can be filled, and color rendering can be improved. If the light emitting diode to be added has a peak wavelength between the light emitting peak wavelengths of the red and green light emitting diodes, other light emitting diodes such as a yellow light emitting diode can be adopted in addition to orange.
  • the operation of the light emitting device 1L according to the eleventh embodiment is the same as that of the light emitting device 1A according to the first embodiment, and follows the timing chart shown in FIG.
  • FIG. 23A is a schematic circuit diagram of the light emitting device 1M according to the twelfth embodiment
  • FIG. 23B is a detailed circuit diagram of the light emitting device 1M according to the twelfth embodiment
  • FIG. 24 is a light emission according to the twelfth embodiment.
  • FIG. 25 is a timing chart showing the operation of the element 1M
  • FIG. 25 is a perspective view of the light emitting element 1M according to the twelfth embodiment as seen through the mold grease.
  • the light emitting element 1M according to the twelfth embodiment is greatly different from the light emitting element 1A of the first embodiment in that the light emitting state of each of the light emitting diodes 2R, 2G, and 2B is also externally applied to the driving IC 3. This is the point where control terminals CR, CG, and CB are provided for control. These control terminals C R, CG, and CB are connected to the gate terminal of each transistor so that each transistor can be controlled individually. Each transistor is composed of a P-channel MOSFET, and its drain terminal is connected to the anode side of the light-emitting diode. The source side of the transistors is connected in common and connected to the external terminal 5.
  • each control terminal CR, CG, CB is normally used as an active low terminal so that the transistor is active when it is in a low state.
  • bars are placed on CR, CG, and CB to indicate active low.
  • the light emitting element does not perform the light emitting operation in the normal state in which only the constant voltage Vdd is held between the external terminals.
  • all of the control terminals CR, CG, and CB are in the low state, all the transistors are turned on and current flows in all the light emitting diodes.
  • White (W) light emission can be obtained by designing the driving IC (its transistor) so that the current value of each light-emitting diode can be white. If only one of the control terminals CR, CG, CB is selectively set to the low state, only one light emitting diode selectively operates, such as R (red), G (green), B (blue), etc. Light emission of a predetermined color is obtained. By changing the combination of the control terminals CR, CG, and CB that are in the low state, the emission color can be obtained by mixing multiple colors.
  • FIG. 25 shows an example of the light-emitting element 1 configured to include such control terminals CR, CG, and CB.
  • the light emitting element 1M shown in FIG. 25 is greatly different from the light emitting element 1A of the first embodiment in that the light emitting diode 2 arranged on the circuit board 4 is arranged on the driving IC3.
  • the output terminals 3R formed on the surface of the driving IC 3 are fixed on the surface of the driving IC 3 by fixing the light diode 2R, 2G, 2B on the surface of the driving IC 3 on the surface of the driving IC 3 with a conductive material.
  • the anode side of the light emitting diode is connected to the 3G and 3B using a wire.
  • two external terminals 5 and 6 are connected to a predetermined power supply terminal, and control terminals CR, CG, and CB are connected to a predetermined control circuit and used.
  • the operation of white light emission and multi-color light emission operation can be performed by mixing three colors.
  • the driving IC 3 is usually made of silicon. Silicon has better thermal conductivity and higher heat dissipation than glass epoxy. Also, the semiconductor constituting the light emitting diode 2 Since the difference in coefficient of thermal expansion with the body material can be reduced, placing a light emitting diode on the driving IC3 suppresses the occurrence of stress and distortion due to the difference in the normal coefficient of thermal expansion, thereby improving reliability. It can also be increased.
  • the light emitting device 1M of the twelfth embodiment is an example in which control terminals corresponding to the respective light emitting diodes are provided in addition to the external terminals 5 and 6.
  • the light emitting device 1N according to the thirteenth embodiment is an external device. It is characterized in that in addition to terminals 5 and 6, a common control terminal CRGB is provided for each light emitting diode.
  • 26A is a schematic circuit diagram of the light-emitting element 1N according to the thirteenth embodiment
  • FIG. 26B is a detailed circuit diagram of the light-emitting element 1N according to the thirteenth embodiment
  • FIG. 27 is a circuit diagram of the thirteenth embodiment.
  • FIG. 28 is a timing chart showing the operation of the light emitting element 1N according to the present invention
  • FIG. 28 is a perspective view of the light emitting element 1N according to the thirteenth embodiment as seen through the mold grease.
  • the light-emitting element 1N is provided with one control terminal CRGB for controlling the light-emitting state of each of the light-emitting diodes 2R, 2G, and 2B with an external force in the driving IC 3. It has a terminal structure.
  • This control terminal CRGB is connected in common to the gate terminals of the transistors so that the transistors can be controlled simultaneously.
  • Each transistor is composed of a P-channel MOSFET, and its drain terminal is connected to the anode side of the light emitting diode.
  • the source sides of the transistors are connected in common and connected to the external terminal 5.
  • the control terminal CRGB is normally used as a negative low terminal so that the transistor is active when it is in the low, low state.
  • Figures 26-28 have a bar over C RGB to indicate active low!
  • the light emitting element 1N does not perform the light emitting operation in the normal state in which only the constant voltage Vdd is held between the external terminals.
  • the control terminal CRGB is set to the low state, all the transistors are turned on, and a current flows through all the light emitting diodes 2.
  • White light emission can be obtained by designing the driving IC (its transistor) so that the current value of each light-emitting diode 2 can be white.
  • FIG. 28 shows an example of a light emitting element 1N having such a control terminal CRGB.
  • This The light-emitting element IN is greatly different from the light-emitting element 1A of the first embodiment in that a circuit board 4 is a type of board that uses a lead frame instead of a printed board.
  • the substrate 4 is formed by integrally forming a metal lead frame 8 and a resin 9 in which an iron-based or copper-based material is plated.
  • the lead frame 8 is composed of a plurality of frames having an inner part functioning as a component placement area and an outer part functioning as an external terminal, and these forces are integrated with the resin 9 using a technique such as insert molding. .
  • the outer part of the frame 8 is bent to the back side of the grease as necessary after the lead frame force is also cut off, and functions as the external terminals 5 and 6 and the control terminal CRGB.
  • the surface of the inner where the light emitting diode 2 and the driving IC 3 should be arranged is exposed without being covered with the resin 9.
  • the resin 9 constituting the circuit board 4 also serves as a reflection frame for reflecting the light of the light emitting diode 2. In order to function as a reflection frame, it is preferable to use white resin having excellent reflectivity as the resin 9. Also,
  • a reflecting wall 10 for reflecting light upward around the circuit board 4 is also preferable for enhancing the function of the reflecting frame.
  • a light emitting element 1N is formed by disposing a resin 7 for molding the light emitting diode 2 and the driving IC 3 in a recess surrounded by the reflecting wall 10.
  • the light-emitting element 1N of the thirteenth embodiment is an example in which the control terminals CR, CG, and CB are provided on the driving IC of the light-emitting element 1N.
  • the light-emitting element 1P according to the fourteenth embodiment emits light with the driving IC. It is characterized in that control terminals CR, CG, and CB for directly driving the light emitting diode from the outside are connected to the diode connection portion.
  • FIG. 29A shows the light emitting element 1P according to the fourteenth embodiment.
  • FIG. 29B is a schematic circuit diagram, FIG.
  • FIG. 29B is a detailed circuit diagram of the light-emitting element 1P according to the fourteenth embodiment
  • FIG. 30 is a timing chart showing the operation of the light-emitting element 1P according to the fourteenth embodiment.
  • 31 is a perspective view of the light emitting device 1P according to the fourteenth embodiment as seen through a mold resin.
  • the control terminals CR, CG, and CB are provided on the light emitting element 1P, and this is connected to the connection portion between the driving IC 3 and each of the light emitting diodes 2R, 2G, and 2B. ing.
  • the control terminals CR, CG, CB Use in the open state. Then, by turning on and off the voltage Vdd applied to the external terminal, a form similar to that of the light emitting element 1A of the first embodiment can be taken.
  • the external terminal 5 is used in an open state. Then, the voltage applied to the control terminals CR, CG, CB is switched between high and low, or the current value to be supplied is set to an arbitrary value to switch the combination state of the light emitting diodes and the light emission luminance of each light emitting diode. use.
  • FIG. 31 shows an example of a light emitting device IP having such control terminals CR, CG, and CB.
  • This light emitting element 1P is characterized in that a substrate 4 of a type using a lead frame is used like the light emitting element 1N in the thirteenth embodiment.
  • FIG. 32 (b) is a schematic circuit diagram of the light-emitting element 1Q according to the fifteenth embodiment
  • FIG. 32 (b) is a detailed circuit diagram of the light-emitting element 1Q according to the fifteenth embodiment
  • FIG. 33 is a fifteenth embodiment.
  • 34 is a timing chart showing the operation of the light-emitting element 1Q according to FIG. 34
  • FIG. 34 is a perspective view of the light-emitting element 1Q according to the fifteenth embodiment as seen through the mold grease.
  • the light emitting device 1Q according to the fifteenth embodiment is greatly different from the light emitting device 1K according to the tenth embodiment in that the light emitting state of each of the light emitting diodes 2R, 2G, and 2B is also externally applied to the driving IC 3.
  • Each transistor is an N-channel MOSFET
  • the source terminal is connected to the anode side of the light emitting diode.
  • the drain terminal of the transistor is connected to the current supply circuit 10.
  • the current supply circuit 10 has the same configuration as that used in the light emitting device 1K of the tenth embodiment, and is configured by a constant current circuit that supplies a constant current set in advance for each of the plurality of transistors Tr. Has been.
  • the current supply circuit 10 includes the gate control circuit like the light emitting element 1K of the tenth embodiment. Absent. A current supply circuit 10 incorporating a control circuit can also be used. In that case, the gate control circuit of the current supply circuit 10 and each control terminal CR, CG, CB may be connected.
  • the light emitting element does not perform the light emitting operation in the normal state in which only the constant voltage Vdd is held between the external terminals.
  • all of the control terminals CR, CG, and CB are in the high state, all the transistors Tr are turned on, and current flows in all the light emitting diodes 2.
  • White (W) light emission can be obtained by designing the driving IC (its current supply circuit) so that the current value of each light-emitting diode 2 is such that white can be obtained.
  • control terminals CR, CG, CB are selectively set to the high state, only one light-emitting diode operates selectively, and R (red), G (green), B (blue), etc. Can be emitted.
  • R red
  • G green
  • B blue
  • the emission color can be obtained by mixing multiple colors.
  • FIG. 34 shows an example of a light emitting element 1Q configured to include such control terminals CR, CG, and CB.
  • the light emitting element 1Q is greatly different from the light emitting element 1K of the tenth embodiment in that the light emitting diode 2 is arranged on the circuit board 4 and the driving IC 3 is arranged.
  • the anode side of the light emitting diode is connected to 3G and 3B using a wire.
  • control terminals CR, CG, and CB are connected to a predetermined control circuit and used. It is possible to perform white light emission by mixing three colors and multi-color light emission.
  • control terminals CR, CG, and CB may be connected in common to be used as one terminal and used only for on / off control during white light emission operation.
  • the driving IC 3 is usually made of silicon. Silicon has better thermal conductivity and higher heat dissipation than glass epoxy. In addition, since the difference in thermal expansion coefficient from the semiconductor material constituting the light-emitting diode 2 can be reduced, by placing the light-emitting diode on the driving IC 3, it is possible to reduce the stress and strain normally caused by the difference in thermal expansion coefficient. It is also possible to suppress the occurrence and increase reliability.
  • FIG. 35 a light emitting element 1R according to the sixteenth embodiment will be described with reference to FIGS. 35 to 36.
  • the light-emitting element 1R according to the sixteenth embodiment is an example in which the light-emitting element 1Q according to the fifteenth embodiment is provided with the control terminals CR, CG, and CB in the driving IC of the light-emitting element 1Q. However, it is characterized in that control terminals CR, CG, and CB for directly driving the light emitting diode 2 are also connected to the connecting portion of the driving IC 3 and the light emitting diode 2 with an external force.
  • 35A is a schematic circuit diagram of the light emitting device 1R according to the sixteenth embodiment
  • FIG. 35B is a detailed circuit diagram of the light emitting device 1R according to the sixteenth embodiment
  • FIG. 36 is a diagram of the sixteenth embodiment. 4 is a timing chart showing the operation of the light emitting element 1R involved.
  • the control terminals CR, CG, and CB are provided on the light emitting element 1R, and this is connected to the connection portion of the driving IC 3 and each of the light emitting diodes 2R, 2G, and 2B. ing.
  • light-emitting element 1 is used as a white light-emitting element, use the control terminals CR, CG, and CB in the open state. Then, as shown in FIG. 36, by turning on and off the voltage Vdd applied to the external terminal, it is possible to take a form similar to that of the light emitting element 1Q of the fifteenth embodiment.
  • the external terminal 5 is used in an open state. Then, the voltage applied to the control terminals CR, CG, CB is switched between high and low, or the current value to be supplied is set to an arbitrary value to switch the combination state of the light emitting diodes and the light emission luminance of each light emitting diode. use.
  • FIG. 37A is a schematic circuit diagram of the light-emitting element 1S according to the seventeenth embodiment
  • FIG. 37B is a detailed circuit diagram of the light-emitting element 1S according to the seventeenth embodiment.
  • the light-emitting element 1S according to the seventeenth embodiment has the same basic configuration as the light-emitting element 1Q of the fifteenth embodiment, and thus the description will focus on the differences.
  • the light emitting device 1S according to the seventeenth embodiment differs from the light emitting device 1Q of the fifteenth embodiment in the internal configuration of the driving IC 3, and the current supply circuit 10, the driver 11, and the opening and closing of the driver 11 It has an inverter for controlling the signal of the external terminal for controlling the signal.
  • the driver 11 is composed of a plurality of constant current circuits that supply a constant current value preset for each light emitting diode based on a constant current supplied from the current supply circuit 10.
  • the number of light emitting diodes to be connected is 3 (3 outputs), but 3 constant current circuits are built-in, but the number of built-in constant current circuits can be increased or decreased depending on the number of outputs. .
  • the control signal is given to the driver 11 through the control terminals CR, CG, CB force and two inverters.
  • the lighting state of the light-emitting diode is controlled by signals applied to the control terminals CR, CG, and CB.
  • the operation of the light emitting device 1S according to the seventeenth embodiment is the same as the operation of the light emitting device 1Q of the fifteenth embodiment (FIG. 33).
  • FIG. 38 is a detailed circuit diagram of the light emitting device 1T according to the eighteenth embodiment.
  • the light emitting element 1T according to the eighteenth embodiment has the same basic configuration as the light emitting element 1A according to the first embodiment, and thus the description will focus on the differences.
  • the light emitting device 1T according to the eighteenth embodiment differs from the light emitting device 1A according to the first embodiment in the internal configuration of the driving IC 3, and the current value applied to each light emitting diode can be finely adjusted. like This is the point where a fine adjustment circuit is added.
  • This fine adjustment circuit is a transistor for current correction in parallel with each basic transistor Tr.
  • the force using two correction transistors Tra may be one, or three or more.
  • the configuration of each correcting transistor Tra may be the same or different.
  • correction transistor Tra having a smaller current capacity than the basic transistor Tr.
  • the correction transistor Tra and the basic transistor Tr have the same configuration and the same current capacity. Also good!
  • the number of correcting transistors Tra may be changed in accordance with the characteristics of the light emitting diodes connected to the same force.
  • the basic transistor Tr has a different configuration (area, etc.) for each light emitting diode to set the current ratio of the light emitting diode, but the basic transistor Tr may have the same configuration.
  • a configuration in which the basic transistor Tr and the correction transistor Tra are combined as one set may be the same regardless of the light emitting diode.
  • the correction transistor Tra includes a cutting region Aj used for cutting the current path in a part thereof.
  • This cutting area Aj can be cut by performing a laser trimming process, a zubbing (thermal fusing) process, or the like. To perform laser trimming
  • the fine adjustment circuit used in the eighteenth embodiment can be applied to each of the above-described embodiments.
  • the light emitting element 1U in FIG. 39 shows an example applied to the light emitting element 1G of the seventh embodiment shown in FIG. 17, and the light emitting element IV in FIG. 40 is suitable for the light emitting element 1M of the twelfth embodiment shown in FIG.
  • the light emitting element 1W of FIG. 41 is an example applied to the light emitting element 1N of the thirteenth embodiment shown in FIG.
  • the light emitting element IX in FIG. 42 shows an example applied to the light emitting element 1K of the tenth embodiment shown in FIG. 21, and the light emitting element 1Y in FIG. 43 is shown in the fifteenth embodiment shown in FIG.
  • Light emitting element 1 An example applied to Q is shown, and a light emitting element 1Z in FIG. 44 shows an example applied to the light emitting element 1R of the sixteenth embodiment shown in FIG.
  • the cutting area Aj may be opened in advance, and the portion may be electrically connected using a conductive material (such as solder or wire).
  • a force bipolar transistor using a MOS transistor as the transistor Tr can also be used.
  • the gate is used as the base, the source is replaced with the emitter, and the drain is replaced with the collector.
  • a fine adjustment circuit may be provided in a region where the amplification factor of the transistor is set.
  • the base current may be changed by applying a laser trimming process or a zubbing process.
  • a light emitting element 1 a according to a nineteenth embodiment incorporating a circuit for finely adjusting an output current will be described with reference to FIG.
  • the basic configuration of the light emitting device 1 ⁇ of the nineteenth embodiment is the same as that of the light emitting device 1S of the seventeenth embodiment shown in FIG. 37, but the configuration of the driver 11 and the control circuit 12 that controls the driver 11 is the same. There are some differences and a feature is that a memory 13 for correction is added.
  • FIG. 45A is a circuit diagram of the light emitting element 1a of the nineteenth embodiment corresponding to FIG. 37B, and FIG. 45B is a detailed diagram of a portion related to one light emitting diode, in this example, the red light emitting diode 2R.
  • FIG. 45A is a circuit diagram of the light emitting element 1a of the nineteenth embodiment corresponding to FIG. 37B, and FIG. 45B is a detailed diagram of a portion related to one light emitting diode, in this example, the red light emitting diode 2R.
  • FIG. 45A is a circuit diagram of the light emitting element 1a of the nineteenth embodiment corresponding to FIG. 37B
  • FIG. 45B is a detailed diagram of a portion related to one light emitting diode, in this example, the red light emitting diode 2R.
  • the driver 11 includes drivers B, C, and D for correction in addition to the basic driver A.
  • the drivers A to D are configured by a constant current circuit that receives a constant current supply from the current supply circuit 10 and outputs a preset current value.
  • the basic driver A outputs 10 mA
  • the correction driver B outputs 5 mA
  • the correction driver one C outputs 3 mA
  • the correction driver D outputs 2 mA, etc.
  • Set to Each driver A to D is controlled by the control circuit 12.
  • the control circuit 12 uses the control terminal CR data and the 3-bit data stored in the correction memory.
  • the drivers A to D are controlled based on the data.
  • the basic driver A operates by a signal given through two inverters when the control terminal CR is in the high state, and outputs 10 mA.
  • the correction drivers B to D operate according to the data stored in the memory and the signal after AND processing is performed by the AND circuit, and outputs 5, 3, and 2 mA. .
  • the outputs of the drivers A to D are added together and given to the light emitting diode 2R. Therefore, by setting various values of correction data stored in the memory 13, the current value applied to the light emitting diode can be changed. In this example, the current value can be varied in the range of 10 mA to 20 mA.
  • the number of drivers for correction can be changed in various ways, and the configuration of the control circuit and memory can be changed in accordance with the change.
  • the correction memory 13 is configured by a non-volatile memory that stores correction data of 3 bits corresponding to each light emitting diode. 3-bit data for correction can be written in advance through control terminals CR, CG, and CB.
  • the operation of the light emitting device 1a of the nineteenth embodiment is the same as that of the light emitting device 1Q of the fifteenth embodiment shown in FIG.
  • the above embodiment shows an example in which one each of red, green, and blue light emitting diodes is used, the number of light emitting diodes of each color is not limited to one, and a plurality of light emitting diodes may be used.
  • a combination of light emission colors other than the three primary colors of red, green, and blue can be used.
  • a combination of a plurality of light emitting diodes having a complementary color relationship such as a combination of blue and yellow or a combination of blue green and orange can be used. By doing so, the number of light emitting diodes can be reduced.
  • the above-described embodiment can be applied to other than white or pseudo white that is close to white.
  • the light emitting state of each light emitting diode is adjusted to the current when the light emitting color is adjusted. Even if it is a two-terminal type, or a light-emitting element having three or more terminals, which is desired to be adjusted in advance according to the ratio of the above, it can be applied.
  • a light-emitting element including a plurality of light-emitting diodes of the same color
  • other light-emitting states that brighten some light-emitting states of the plurality of diodes are darkened, and directivity is reduced.
  • the present invention can also be applied to a two-terminal type or a three-terminal or more light-emitting element in which it is desired that the light-emitting state of each light-emitting diode be adjusted in advance by the ratio of current when changing the light-emitting characteristics.
  • the present invention can be applied to light emitting elements such as white, full color, multicolor, and monocolor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

 本発明の発光素子は、複数の発光ダイオード2R、2G、2Bと、これらの発光ダイオード2R、2G、2Bを駆動する駆動用IC3を一体化した発光素子1であって、前記駆動用IC3は、前記複数の発光ダイオード2毎の電流値もしくは前記発光ダイオード間の電流比率を一定に制御する回路を内蔵したことを特徴とする。本発明によれば、複数の発光ダイオードの発光強度の調整を簡素化することができ、また、調整のための外付け回路が不要で、組立作業性が良い構造を提供することができ、さらに、複数の発光色を混色して所望の発光色を得ようとする場合に、その混色のための調整を容易にできるとともに、白色発光させる場合の演色性を高めるのに適した構造を提供することができる。

Description

発光素子
技術分野
[0001] 本発明は、発光ダイオードとその駆動用の ICを一体に備える発光素子に関する。
背景技術
[0002] 発光ダイオードとその発光色の補色の光を発する蛍光体との組み合わせによって、 疑似的に白色を発光可能な発光素子が特許文献 1に開示されている。一般的に、発 光ダイオードとして青色発光するもの、蛍光体として黄色発光するものを組み合わせ て擬似的に白色発光するものが多用されているが、特定の色成分、この例では青と 黄色の混色による場合、赤色成分が少ないことによって演色性に欠けるという問題が ある。
[0003] また、白色発光させる別の方式として、 RGB3原色の発光ダイオードの混色を用い る例もある。し力しながら、 3原色の混色によって白色発光する場合は各色の発光度 合 、を調整するための電流調整が面倒になる。
[0004] 白色発光以外にも、同色のあるいは異なる色の複数の発光ダイオードを用いて所 望の色や発光強度分布を得る場合に、それぞれの発光ダイオードの発光強度を調 整するための電流調整が面倒になる。外付けの回路によって調整することもできるが 、個々の素子毎に外付けの回路を設けると回路構成が複雑ィ匕する。
特許文献 1 :特開 2001— 217463号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、複数の発光ダイオードの発光強度の調整を簡素化することができる構 成を提供することを課題の 1つとする。
[0006] また、調整のための外付け回路が不要で、組立作業性が良い構造を提供すること を課題の 1つとする。また、複数の発光色を混色して所望の発光色を得ようとする場 合に、その混色のための調整を容易にする構造を提供することを課題の 1つとする。
[0007] また、白色発光させる場合の演色性を高めるに適した構造を提供することを課題の 1つとする。また、複数の色を混色して発光する場合に於いても、従来の 2端子型の 発光素子とコンパチブルな形状を提供することを課題の 1つとする。
[0008] また、赤、緑、青の 3原色による白色発光では赤と緑の発光スペクトル間に不連続 な領域が有り、白色としては不完全であるが、これを赤から青まで連続的な白色発光 を容易に得られる様にすることを課題の 1つとするものである。
[0009] また、赤、青、緑の 3原色の制御を行う為には、少なくとも 4端子の外部端子が必要 であったが、これを 3端子などの少ない外部端子により制御可能とし、少ない外部端 子にて複雑な色制御を可能とさせることを課題の 1つとするものである。
課題を解決するための手段
[0010] 本発明の発光素子は、請求項 1に記載のように、複数の発光ダイオードと、これらの 発光ダイオードを駆動する駆動用 ICを一体ィ匕した発光素子であって、前記駆動用 I Cは、前記複数の発光ダイオード毎の電流値もしくは前記発光ダイオード間の電流 比率を一定に制御する回路を内蔵したことを特徴とする。駆動用 ICが複数の発光ダ ィオード毎の電流値もしくは前記発光ダイオード間の電流比率を一定に制御する回 路を内蔵しているので、複数の発光ダイオード間において最適な電流比率を予め調 整することができる。その結果、複数の発光ダイオードの光が合成された光を均一な 状態に保つことができる。
[0011] 本発明の発光素子は、請求項 2に記載のように、前記複数の発光ダイオードは、そ れらの光の混色によって白色発光が可能な発光色を備えることを特徴とする。複数の 発光ダイオードは、それらの光の混色によって白色発光が可能な発光色を備えること により、各種の照明や光源に適した素子を提供することができる。
[0012] 本発明の発光素子は、請求項 3に記載のように、前記複数の発光ダイオードは、赤 、緑、青色の 3原色の発光色を含むことを特徴とする。複数の発光ダイオードは、赤、 緑、青色の 3原色の発光色を含むので、演色性に優れた白色光源を提供することが できる。 3原色の発光色に別の発光色をカ卩えれば、演色性をさらに高めることができ る。
[0013] 本発明の発光素子は、請求項 4に記載のように、前記複数の発光ダイオードは、補 色の関係を有する発光色を含むことを特徴とする。複数の発光ダイオードは、補色の 関係を有する発光色を含むので、 2つの発光ダイオードを用いた白色光源を提供す ることができ、部品点数の削減を図ることができる。
[0014] 本発明の発光素子は、請求項 5に記載のように、前記複数の発光ダイオードは、異 なる発光色を含むことを特徴とする。複数の発光ダイオードは、異なる発光色を含む ので、白色以外にも混色によって所望の色を提供する際に、その色特性を一定の状 態に保つことができる。
[0015] 本発明の発光素子は、請求項 6記載のように、前記複数の発光ダイオードは、同じ 発光色を含むことを特徴とする。複数の発光ダイオードは、同じ発光色を含むので、 同一色の発光ダイオードの中で光量分布に変化を持たせる場合などに、その光量分 布に応じた電流分布の設定と保持が可能となる。
[0016] 本発明の発光素子は、請求項 7、請求項 8記載のように、複数の発光ダイオードに おいて、少なくとも 2個の発光ダイオードが直列に接続され、 2個の直列接続される発 光ダイオードは、赤色、橙、黄の発光ダイオードの内から選択された同色、または異 色のものであることを特徴とする。 VFが小さな発光ダイオード、スペクトルの谷間を埋 める発光ダイオードなど特定の発光ダイオードを直列に接続することによって発光効 率を高めることができ、また、スペクトルの連続性を高めることができる。
[0017] 本発明の発光素子は、請求項 9記載のように、前記駆動用 ICは、複数のトランジス タをそれぞれの発光ダイオード毎に直列に接続していることを特徴とする。トランジス タの設計によって発光ダイオードに流れる電流値を発光ダイオード毎に個別に設定 することができる。
[0018] 本発明の発光素子は、請求項 10記載のように、前記駆動用 ICのトランジスタは、電 界効果型トランジスタあるいはバイポーラ型トランジスタを使用したことを特徴とする。 駆動用 ICとして汎用性のある素子構造を提供することができる。
[0019] 本発明の発光素子は、請求項 11記載のように、前記駆動用 ICのトランジスタのゲ ート端子ある 、はベース端子は共通接続されて 、ること特徴とする。共通接続するこ とによって各トランジスタの動作タイミングを揃えることができる。さらに出力電流値あ るいは電流比率の調整が行 、やすくなる。
[0020] 本発明の発光素子は、請求項 12記載のように、前記駆動用 ICのトランジスタのゲ ート端子あるいはベース端子は電流値、または、電流比率を調整した後の各発光ダ ィオードの内、最も VF電圧が高い発光ダイオードの配線に共通接続されていること 特徴とする。最も VF電圧が高い発光ダイオードの配線に共通接続することによって、 立ち上がり特性の悪い発光ダイオードを先に動作させることができ、動作タイミングを 揃えることができる。
[0021] 本発明の発光素子は、請求項 13記載のように、前記発光素子は、外部と接続する 端子として前記 2つの外部端子のみを備える 2端子型の素子であることを特徴とする 。 2つの外部端子のみを備える 2端子型の素子であるので、従来の 2端子型の素子と コンパチブルな構造を提供することができる。
[0022] 本発明の発光素子は、請求項 14記載のように、前記駆動用 ICは、前記 2つの外部 端子間に加わる電圧が例えば規定値の ± 10% (5V系で有れば、 5±0. 5Vの範囲) 変動しても前記複数の発光ダイオード毎の電流値を一定に制御する回路を内蔵した ことを特徴とする。上記構成によって、一対の外部端子間に加わる電圧が変動しても 複数の発光ダイオード毎の電流値を一定に制御することができ、複数の発光ダイォ ードの発光状態を安定に保つことができる。その結果、複数の発光ダイオードの光の 混色状態を一定なものに保つことができる。
[0023] 本発明の発光素子は、請求項 15記載のように、前記駆動用 ICは、外部端子を備え ていることを特徴とする。駆動用 ICに外部端子を設けたことで、部品点数の削減と素 子の小型化を図ることができる。
[0024] 本発明の発光素子は、請求項 16記載のように、前記外部端子は、前記複数の発 光ダイオードの電流値あるいは電流比率を変更するための制御端子であることを特 徴とする。制御端子を別途設けたことによって、一定の混色状態を保つモードと、外 部端子の信号によって混色状態を任意に変更するモードの使い分けが可能となり、 汎用性を高めることができる。
[0025] 本発明の発光素子は、請求項 17記載のように、前記外部端子は、前記駆動用 IC のトランジスタのゲート端子あるいはベース端子に接続され、それぞれの発光ダイォ ードに流れる電流を外部より制御可能としたことを特徴とする。外部端子によって発 光ダイオードに流れる電流を制御可能としたので、使用形態の幅を広げることができ る。
[0026] 本発明の発光素子は、請求項 18記載のように、前記外部端子は、前記駆動用 IC のトランジスタのゲート端子あるいはベース端子に共通に接続され、それぞれの発光 ダイオードに流れる電流を外部より同一タイミングにて制御可能としたことを特徴とす る。同一タイミングにて制御可能としたので、端子数の削減を図ることができる。
[0027] 本発明の発光素子は、請求項 19記載のように、前記外部端子は、前記駆動用 IC のトランジスタの駆動とは関係無ぐそれぞれの発光ダイオードを個別に制御可能に 接続されて ヽることを特徴とする。外部端子によって発光ダイオードに流れる電流を 制御可能としたので、使用形態の幅を広げることができる。
[0028] 本発明の発光素子は、請求項 20記載のように、前記駆動用 ICは、基準となる電流 を供給する電流供給回路と、前記電流供給回路から電流供給を受けて前記発光ダ ィオード毎に設定された電流を供給するドライバー回路とを備え、前記外部端子は、 前記ドライバー回路の動作を外部力 制御可能に接続されていることを特徴とする。 ドライバー回路を備えることによって、電流供給回路力 供給される基準電流に基づ いて、種々の電流値を設定することが容易になる。
[0029] 本発明の発光素子は、請求項 21記載のように、前記駆動用 ICは、前記複数の発 光ダイオード毎の電流値もしくは前記発光ダイオード毎の電流比率を微調整する機 能を備えることを特徴とする。電流比率を微調整する機能を備えることによって、発光 ダイオードあるいは駆動用 ICの初期特性のバラツキなどに起因する出力の変動を微 調整することによって抑制することができる。
[0030] 本発明の発光素子は、請求項 22記載のように、前記駆動用 ICは、補正用のデータ を記憶する不揮発性のメモリと、前記メモリに記憶したデータと前記外部端子から与 えられるデータに基づいて前記ドライバー回路の動作を制御する制御回路を備える ことを特徴とする。不揮発性メモリに補正用のデータを記憶させておくことにより、特 性のバラツキを電気的に補正することが可能となる。特性にバラツキが発生する都度 、繰り返して補正を行うことができる。
[0031] 本発明の発光素子は、請求項 23記載のように、前記駆動用 ICは、前記複数の発 光ダイオード毎の電流値を前記メモリに記憶したデータに基づ!/、て微調整することを 特徴とする。発光ダイオード毎の電流値をメモリに記憶したデータに基づいて微調整 するので、発光ダイオードの光出力をより高精度に制御することができる。
[0032] 本発明の発光素子は、請求項 24記載のように、前記微調整は、前記駆動用 ICの 表面に設けた切断領域をレーザトリミングすることによって行われる、もしくは、前記駆 動用 IC内に設けた切断領域をザッビングすることによって行われることを特徴とする 。レーザトリミングあるいはザッビング処理によって微調整することによって、微調整の 作業性を高めることができる。
[0033] 本発明の発光素子は、請求項 25記載のように、前記微調整は、前記駆動用 ICの 表面に設けた 1個以上のワイヤボンド端子に対して、ワイヤボンドの有無を選択する ことによって行われることを特徴とする。ワイヤボンドの有無によって行うので微調整 の作業性を高めることができる。
[0034] 本発明の発光素子は、請求項 26記載のように、前記複数の発光ダイオードと前記 駆動用 ICは回路基板上に載置されていることを特徴とする。複数の発光ダイオードと 駆動用 ICを回路基板上に載置するので、汎用性のある回路基板を利用した素子構 造を採用して生産作業性を高めることができる。
[0035] 本発明の発光素子は、請求項 27記載のように、前記複数の発光ダイオードは、前 記駆動用 ICの上に配置されて ヽることを特徴とする。複数の発光ダイオードを駆動 用 ICの上に配置するので、事前に複数の発光ダイオードと駆動用 ICを組み立てるこ とが可能となり組立作業性を高めることができる。また、素子の面積を狭くすることが でき、素子サイズの小型化を図ることができる。
[0036] 本発明の発光素子は、請求項 28記載のように、前記複数の発光ダイオードと前記 駆動用 ICは、同じ榭脂によって覆われていることを特徴とする。榭脂によって覆うこと によって、両者の保護を図ることができると共に、複数の発光ダイオードの光取り出し 効率を高めることができる。
発明の効果
[0037] 本発明によれば、複数の発光ダイオードの各種調整作業を簡素化することができる 構成を提供することができる。また、組立作業性が良い素子構造を提供することがで きる。また、白色発光させる場合の演色性を高めることができる。また、複数の色を混 色する場合においても、従来の 2端子型の発光素子とコンパチな形状を提供すること ができる。
図面の簡単な説明
[図 1]図 1は第 1の実施形態の発光素子のモールド榭脂を透視した状態の斜視図で ある。
[図 2]図 2は図 1の II IIに沿った断面図である。
[図 3]図 3Aは第 1の実施形態の発光素子の回路図、図 3Bは等価回路図である。
[図 4]図 4は第 1の実施形態の発光素子の詳細な回路図である。
[図 5]図 5は第 1の実施形態の発光素子の動作を示すタイミングチャートである。
[図 6]図 6は第 2の実施形態の発光素子のモールド榭脂を透視した状態の斜視図で ある。
[図 7]図 7は図 6の VII— VIIに沿った断面図である。
[図 8]図 8は第 3の実施形態の発光素子のモールド榭脂を透視した状態の斜視図で ある。
[図 9]図 9は図 8の IX— IXに沿った断面図である。
[図 10]図 10は第 4の実施形態の発光素子のモールド榭脂を透視した状態の斜視図 である。
[図 11]図 11は図 10の XI— XIに沿った断面図である。
[図 12]図 12は第 5の実施形態の発光素子の斜視図である。
[図 13]図 13は図 12の XIII— XIIIに沿った断面図である。
[図 14]図 14は図 13に示す発光ダイオードと駆動用 ICの配置を示す斜視図である。
[図 15]図 15は第 6の実施形態に係わる発光素子のモールド榭脂を透視した状態の 斜視図である。
[図 16]図 16は図 15の XVI— XVIに沿った断面図である。
[図 17]図 17は第 7の実施形態の発光素子詳細な回路図である。
[図 18]図 18は第 8の実施形態の発光素子の詳細な回路図である。
[図 19]図 19Aは第 9の実施形態に係わる発光素子の回路図、図 19Bは等価回路図 である。 圆 20]図 20は第 9の実施形態に係わる発光素子の詳細な回路図である。
圆 21]図 21は第 10の実施形態に係わる発光素子の回路図である。
圆 22]図 22は第 11の実施形態に係わる発光素子回路図である。
圆 23]図 23Aは第 12の実施形態に係わる発光素子の概略的な回路図、図 23Bは 第 12の実施形態に係わる発光素子の詳細な回路図である。
圆 24]図 24は第 12の実施形態に係わる発光素子の動作を示すタイミングチャートで ある。
圆 25]図 25は第 12の実施形態に係わる発光素子のモールド榭脂を透視した状態の 斜視図である。
圆 26]図 26Aは第 13の実施形態に係わる発光素子の概略的な回路図、図 26Bは 第 13の実施形態係わる発光素子の詳細な回路図である。
圆 27]図 27は第 13の実施形態に係わる発光素子の動作を示すタイミングチャートで ある。
圆 28]図 28は第 13の実施形態に係わる発光素子のモールド榭脂を透視した状態の 斜視図である。
圆 29]図 29Aは第 14の実施形態に係わる発光素子の概略的な回路図、図 29Bは 第 14の実施形態に係わる発光素子の詳細な回路図である。
圆 30]図 30は第 14の実施形態に係わる発光素子の動作を示すタイミングチャートで ある。
圆 31]図 31は第 14の実施形態に係わる発光素子のモールド榭脂を透視した状態の 斜視図である。
圆 32]図 32Aは第 15の実施形態に係わる発光素子の概略的な回路図、図 32Bは 第 15の実施形態に係わる発光素子の詳細な回路図である。
圆 33]図 33は第 15の実施形態に係わる発光素子の動作を示すタイミングチャートで ある。
圆 34]図 34は第 15の実施形態に係わる発光素子のモールド榭脂を透視した状態の 斜視図である。
圆 35]図 35Aは第 16の実施形態に係わる発光素子の概略的な回路図、図 35Bは 第 16の実施形態に係わる発光素子の詳細な回路図である。
[図 36]図 36は第 16の実施形態に係わる発光素子の動作を示すタイミングチャートで ある。
[図 37]図 37Aは第 17の実施形態に係わる発光素子の概略回路図、図 37Bは第 17 の実施形態に係わる発光素子の詳細な回路図である。
[図 38]図 38は第 18の実施形態に係わる発光素子の詳細な回路図である。
[図 39]図 39は第 18の実施形態に係わる発光素子の変形例の詳細な回路図である。
[図 40]図 40は第 18の実施形態に係わる発光素子の別の変形例の詳細な回路図で ある。
[図 41]図 41は第 18の実施形態に係わる発光素子のさらに別の変形例の詳細な回 路図である。
[図 42]図 42は第 18の実施形態に係わる発光素子のさらに別の変形例の詳細な回 路図である。
[図 43]図 43は第 18の実施形態に係わる発光素子のさらに別の変形例の詳細な回 路図である。
[図 44]図 44は第 18の実施形態に係わる発光素子のさらに別の変形例の詳細な回 路図である。
[図 45]図 45Aは図 37Bに対応した第 19の実施形態の発光素子 1 aの回路図であり 、図 45Bは赤の発光ダイオード 2Rに関係する部分の詳細を示す回路図である。 符号の説明
1 発光素子
2 発光ダイオード
3 駆動用 IC
4 回路基板
5 外部端子
6 外部端子
7 モールド榭脂
8 フレーム 9 榭脂
発明を実施するための最良の形態
[0040] 以下、本発明の実施形態について、図面を参照して説明する。
[0041] 初めに、第 1の実施形態に係わる発光素子 1Aについて図 1〜図 5を参照して説明 する。図 1は発光素子 1Aのモールド榭脂を透視した状態の斜視図、図 2は図 1の II IIに沿った断面図、図 3Aは発光素子 1Aの回路図、図 3Bは等価回路図、図 4は発光 素子 1 Aの詳細な回路図、図 5は発光素子 1 Aの動作を示すタイミングチャートである
[0042] 発光素子 1 Aは、チップ状態の複数の発光ダイオード 2と、これらの発光ダイオード 2を駆動する駆動用 IC3を回路基板 4上に一体化して構成される。発光ダイオード 2 は、ウエノ、から分割された状態のベアチップで構成され、白色発光を行うために、 3 原色である赤 (R)、緑 (G)、青 (B)の発光色を持つ 3つの発光ダイオード 2R、 2G、 2 Bによって構成される。
[0043] 駆動用 IC3は、前記各発光ダイオード 2R、 2G、 2Bに対応した出力端子 3R、 3G、 3Bを表面に備え、前記複数の発光ダイオード 2R、 2G、 2B毎の電流値もしくは前記 発光ダイオード 2R、 2G、 2B間の電流比率を一定に制御するための駆動回路を内 蔵している。この駆動回路によって、各出力端子の出力電流が調整され、前記各発 光ダイオード 2R、 2G、 2Bの発光強度が各々予め設定した範囲内に維持される。駆 動用 IC3は、 3つの発光ダイオード 2R、 2G、 2Bの発光色が混色されることによって、 白色が得られるように、各出力の電流値あるいは、電流の比率が予め設定されている
[0044] 発光素子 1Aは 2端子型の発光素子で、 2つの外部端子 5、 6を回路基板 4に備えて いる。アノードとして機能する一方の外部端子 5の上に駆動用 IC3を導電材料あるい は絶縁材料を用いて固定配置し、力ソードとして機能する他方の外部端子 6の上に 各発光ダイオード 2R、 2G、 2Bを導電材料を用いて固定配置している。
[0045] 発光ダイオード 2と駆動用 IC3は、各々が長方形の 4つの隅に位置するように回路 基板 4上に配置固定している。駆動用 IC3は、表面に電源端子 3D、 3Sや出力端子 3R、 3G、 3B等の端子を配置し、これらの端子と前記外部端子 5、 6間や発光ダイォ ード 2R、 2G、 2B間を金線などのワイヤーを用いて電気的に接続している。
[0046] 駆動用 IC3は、表面側から全ての端子を取り出すので、裏面を絶縁材料を用いて 外部端子 5上あるいは回路基板 4の絶縁基材上に固定することができるが、駆動用 I C3の裏面を N型の半導体基板によって構成する場合は、導電材料を用いて外部端 子 5に固定することもできる。発光ダイオード 2は、裏面に力ソード電極を備えている ので導電材料で外部端子 6に固定している力 発光ダイオード 2が表面にアノードと 力ソードの両方の電極を備える場合は、これらの両方の電極にワイヤーによる配線を 施す必要がある。
[0047] 回路基板 4は、ガラスエポキシ、ポリイミドなどの絶縁材料をベースとして、その表裏 面に導電パターンがプリント配線等によって形成されたプリントタイプの基板で構成し ている。外部端子 5、 6は、この導電パターンによって構成される。
[0048] 複数の発光素子に個々に対応した複数のパターンを備える大面積の回路基板上 に、発光ダイオード 2と駆動用 IC3を固定し、配線を施した後に、光透過性の榭脂 7 によってこれらを覆う。そして、ダイシングソ一等の分割手段を用いてそれらを個々に 分割することによって、複数の発光素子 1Aを製造することができる。
[0049] 発光素子 1Aは、図 3Aに示すように、駆動用 IC3とそれに接続した発光ダイオード 2からなる発光回路を 2つの外部端子 5、 6間に接続した回路構成をとる。そして、外 部端子 5、 6を図示しない回路の対応する端子に接続して用いられる。外部端子 5、 6 間に一定の電圧あるいは一定の電流が与えられると、駆動用 IC3が動作し、各発光 ダイオード 2R、 2G、 2B毎に予め設定された電流値、あるいは 2 : 2 : 1という比率のよ うな予め設定された比率の電流が与えられる。この電流によって、各発光ダイオード 2 R、 2G、 2Bが赤、緑、青の色を発光する。これらの光は、その発光経路中において 混色され、白色光となる。したがって、この発光素子 1Aの等価回路は、図 3Bに示す ようになり、外部端子 5、 6間に 1つの白色発光ダイオードを備えるものと同等になる。
[0050] 駆動用 IC3は、図 4に示すように、各発光ダイオード 2R、 2G、 2Bに予め設定した 一定比率の電流を与えるための複数のトランジスタ Trによって構成される。このトラン ジスタ Trは、例えば MOS型の FETによって構成することができる。この例では、 Pチ ヤンネル型の MOSFETをソース(S) 'ドレイン (D)端子間を接続した状態とし、逆バ ィァスが加わる接続状態で用いて ヽる。各トランジスタ Trのドレイン側を各発光ダイォ ード 2R、 2G、 2Bのアノード側に接続することによってトランジスタ Trと発光ダイォー ド 2を直列接続し、これらの直列回路を外部端子 5、 6間に並列に接続した構成となつ ている。各トランジスタ Trのゲート(G)端子は、発光ダイオード 2とトランジスタ Trの接 続部分に接続している。
[0051] 発光素子 1Aは、外部端子 5、 6を図示しない回路の対応する端子に接続して用い られる。図 5に示すように、外部端子 5、 6間に一定の電圧 Vddあるいは一定の電流が 与えられると、駆動用 IC3が動作し、各発光ダイオード 2R、 2G、 2B毎に予め設定さ れた電流比率、例えば、 2 : 2 : 1という比率のような予め設定された比率の電流 I (R)、 KG) , 1 (B)が各発光ダイオードに与えられる。この電流比率は、例えばトランジスタ T rの面積比によって予め設定することができる。図 3に示す回路に於いて、外部端子 5 、 6間に加わる電圧が変動すると、各発光ダイオードに流れる電流も変動するが、そ の電流比率は同じであるので、混色の状態は殆ど変動しな 、。
[0052] この電流 I (R)、 I (G)、 I (B)によって、各発光ダイオード 2R、 2G、 2Bが赤、緑、青 の色を発光する。これらの光は、その発光経路中において混色され、白色光 (W)と なる。したがって、この発光素子 1Aの等価回路は、図 3Bに示すようになり、外部端子 5、 6間に 1つの白色発光ダイオードを備えるものと同等になる。
[0053] このように、発光素子 1は 2つの外部端子 5、 6し力備えていないにも係わらず、赤、 緑、青の 3色の混色によって白色発光することができ、従来の 1チップ型の発光素子 とコンパチブルな構造でありながらも白色発光を行うことができる。
[0054] 次に、第 2の実施形態に係わる発光素子 1Bについて、図 6〜図 7を参照して説明 する。なお、図 6は発光素子 1Bのモールド榭脂を透視した状態の斜視図、図 7は図 6 の VII— VIIに沿った断面図である。また、以下においては第 1の実施形態の発光素 子 1Aと同一の構成部分には同一の参照符号を付与して説明する。
[0055] 第 2の実施形態に係わる発光素子 1Bが第 1の実施形態の発光素子 1Aと大きく相 違する点は、回路基板 4として、プリントタイプの基板に代えてリードフレームを利用し たタイプの基板を用いた点であり、他の構成は基本的に同じである。基板 4は、鉄系 あるいは銅系の素材にメツキを施した金属製のリードフレーム 8と榭脂 9を一体形成し て構成している。リードフレーム 8は、部品配置領域として機能するインナ一部分と外 部端子として機能するアウター部分を備える一対のフレームで構成され、それらがィ ンサート成形等の手法を用いて榭脂 9と一体ィ匕される。フレーム 8のアウター部分は、 リードフレーム力 切り離された後に、必要に応じて榭脂の裏側に折り曲げられ、外 部端子 5、 6として機能する。発光ダイオード 2や駆動用 IC3を配置すべきインナ一の 表面は榭脂 9に覆われることなく露出している。回路基板 4を構成する榭脂 9は、発光 ダイオード 2の光を反射する反射枠も兼ねている。反射枠として機能するように、榭脂 9として反射性に優れる白色系の榭脂を用いることが好ましい。また、回路基板 4の周 囲に光を上向きに反射するための反射壁 10を設けることも反射枠の機能を高める上 で好ましい。この反射壁 10で囲まれるくぼみ内に、発光ダイオード 2と駆動用 IC3を モールドするための榭脂 7を配置して発光素子 1Bが形成される。回路構成は、図 3A に示す構成と同じである。
[0056] 次に、第 3の実施形態に係わる発光素子 1Cについて、図 8〜図 9を参照して説明 する。図 8は発光素子 1Cのモールド榭脂を透視した状態の斜視図、図 9は図 8の IX IXに沿った断面図である。
[0057] 第 3の実施形態に係わる発光素子 1Cが第 1の実施形態の発光素子 1Aと大きく相 違する点は、回路基板 4の上に配置していた発光ダイオード 2を駆動用 IC3の上に配 置した点であり、他の構成は基本的に同じである。駆動用 IC3は、回路基板 4の上に 絶縁材料あるいは導電材料を用いて固定され、ワイヤーを用いて外部端子 5、 6と電 気的な接続が成される。この例では、回路基板 4の絶縁基材の上に駆動用 IC3を固 定している。駆動用 IC3の表面に形成された力ソード用の端子の上に発光ダイオード 2R、 2G、 2Bの力ソード側が導電材料を用いて固定され、駆動用 IC3の表面に形成 された出力端子 3R、 3G、 3Bに発光ダイオードのアノード側がワイヤーを用いて接続 されている。
[0058] 駆動用 IC3は、先の実施形態と同様に、一対の電源端子 3D、 3Sから一定の電圧 あるいは一定の電流供給を受けて動作し、各発光ダイオード 2R、 2G、 2Bに予め設 定された電流を与える。この電流供給によって各発光ダイオード 2R、 2G、 2Bがそれ ぞれに所定色の発光を行い、それが混合されて所望の色、この例では白色の発光が 得られる。
[0059] この例に於いても、先の実施形態と同様に、発光素子 1Cは 2つの外部端子 5、 6し 力備えていないにも係わらず、赤、緑、青の 3色の混色によって白色発光することが でき、従来の 1チップ型の発光素子とコンパチブルな構造でありながらも白色発光を 行うことができる。駆動用 IC3は、殆どの場合シリコンで構成されるので、ガラスェポキ シなどに比べて熱伝導性が良く放熱性を高めることができる。また発光ダイオード 2を 構成する半導体材料との熱膨張率の差を小さくできるので、熱膨張率差に起因する ストレスや歪みの発生を抑制して信頼性を高めることもできる。
[0060] 駆動用 IC3の上に発光ダイオード 2を配置する構成は、第 1の実施形態以外にも適 用することができ、例えば、第 2の実施形態を含めた他の実施形態にも適用すること ができる。
[0061] 次に、第 4の実施形態に係わる発光素子 1Dについて、図 10〜図 11を参照して説 明する。なお、図 10は第 4の実施形態の発光素子 1のモールド榭脂 7を透視した状 態の斜視図、図 11は図 10の XI— XIに沿った断面図である。
[0062] 第 4の実施形態に係わる発光素子 1Dが第 3の実施形態の発光素子 1Cと大きく相 違する点は、駆動用 IC3の上に配置した複数の発光ダイオード 2R、 2G、 2Bを一列 に配置した点であり、他の構成は基本的に同じである。複数の発光ダイオード 2R、 2 G、 2Bを一列に配置することによって、幅が狭いスリムな発光素子 1を提供することが できる。
[0063] 次に、第 5の実施形態に係わる発光素子 1Eについて、図 12〜図 14を参照して説 明する。なお、図 12は第 5の発光素子 1Eの斜視図、図 13は図 12の XIII— XIIIに沿 つた断面図、図 14は図 13に示す発光ダイオードと駆動用 ICの配置を示す斜視図で ある。
[0064] 第 1〜4の実施形態の発光ダイオードは、発光素子 1A〜1Dがそれを取り付ける基 板に垂直な方向に光を取り出すトップビュー構造であつたのに対して、この第 5の実 施形態は、発光素子 1Eがそれを取り付ける基板に平行な方向に光を取り出すサイド ビュー構造である点で基本構成が相違する。この実施形態の回路基板 4は、先の第 2の実施形態に係わるリードフレームタイプの発光素子 1と同様な構造で、リードフレ ーム 8を榭脂 9にインサート成形手法などを用いて一体ィ匕して形成して 、る。発光ダ ィオード 2と駆動用 IC3の配置は、第 4の実施形態と同様で、駆動用 IC3の上に発光 ダイオード 2R、 2G、 2Bを一列に配置した形態としている。発光ダイオード 2と駆動用 IC3の配置は、第 4の実施形態以外にも、第 1〜第 3の実施形態やその他の実施形 態と同様の配置を採用することができる。
[0065] 次に、第 6の実施形態に係わる発光素子 1Fについて、図 15〜図 16を参照して説 明する。図 15は第 6実施形態に係わる発光素子 1Fのモールド榭脂 7を透視した状 態の斜視図、図 16は図 15の XVI— XVIに沿った断面図である。
[0066] 第 6の実施形態に係わる発光素子 1Fが第 3、第 4の実施形態の発光素子 1C、 ID と大きく相違する点は、回路基板 4に設けていた外部端子 5、 6を駆動用 IC3に設け ることにより、回路基板 4を省略した点である。すなわち、駆動用 IC3の一対の側面に 、一対の外部端子 5、 6を形成したことを特徴としている。外部端子 5、 6は、駆動用 IC 3の側面のみならず、表面と裏面にも形成されている。駆動用 IC3の内部回路の内、 前記外部端子 5、 6と電気的な絶縁を必要とする領域には、外部端子 5、 6と絶縁する ための絶縁膜を介在している。外部端子 5、 6の一方を力ソード電極とし、その上に各 発光ダイオード 2R、 2G、 2Bの力ソード電極を導電材料で接続している。発光ダイォ ード 2R、 2G、 2Bのアノード電極は、ワイヤーを介して駆動用 ICの出力端子 3R、 3G 、 3Bに接続されている。発光ダイオード 2R、 2G、 2Bの列は、外部端子 5、 6の配列と 直交するように配置している。出力端子 3R、 3G、 3Bの列は、外部端子 5、 6の間に 配置している。このような配置とすることによって、発光素子 1の平面形状を正方形に 近づけることができる。駆動用 IC3の表面に前記発光ダイオード 2R、 2G、 2Bとその 配線を覆うようにして光透過性の榭脂 7をモールドして 、る。このように駆動用 IC3に 直接外部端子 5、 6を形成した構成とすれば、発光素子 1Fの小型化を図ることができ る。
[0067] 次に、第 7の実施形態に係わる発光素子 1Gについて、図 17を参照して説明する。
第 7の実施形態に係わる発光素子 1Gは、第 1の実施形態の発光素子 1Aと基本構 成は同じであるので、相違部分を中心に説明する。第 7の実施形態に係わる発光素 子 1Gが第 1の実施形態の発光素子 1Aと相違するのは駆動用 IC3の内部構成であり 、各トランジスタ Trのゲート端子の接続形態に相違がある。先の実施形態では、各ト ランジスタ Trのゲート端子を各自のドレイン端子に接続して ヽたが、この実施形態で は、各トランジスタ Trのゲート端子を相互に接続した上で、その接続点を予め設定し た発光ダイオード 2とトランジスタ Trの直列回路に接続して 、る。共通接続したゲート 端子の接続先は、発光ダイオードの VF (フォワード電圧)に基づいて選択される。白 色を得るために、発光ダイオード 2R、 2G、 2Bにそれぞれ、 40mA、 40mA, 20mA の電流を与える場合、各ダイオードの VFは、 1. 95V、 4. 3V、 3. 8Vになる。緑の発 光ダイオード 2Gの VFが最も高くなる力 VFが高くなると電流の立ち上がりが遅くなり 、発光タイミングが不揃いになる。そこで、共通接続したゲート端子を、 VFが最も高く なる発光ダイオード 2の直列回路に接続することによって、その回路の電流立ち上が りを早めるようにしている。その結果、各発光ダイオード 2の発光タイミングが揃い易く なる。また、同時にゲート端子を共通の電位に接続することによって、発光ダイオード 2R、 2G、 2Bの各々に流れる電流値あるいは電流比率をより精度良く制御することが できる。
[0068] 次に、第 8の実施形態に係わる発光素子 1Hについて、図 18を参照して説明する。
第 8の実施形態に係わる発光素子 1Hは、第 1の実施形態に係わる発光素子 1Aと基 本構成は同じであるので、相違部分を中心に説明する。第 8の実施形態に係わる発 光素子 1Hが第 1の実施形態に係わる発光素子 1Aと相違するのは、ある発光ダイォ ードに他の発光ダイオードを直列接続した点である。この例では、赤の発光ダイォー ド 2Rにオレンジの発光ダイオード 20を直列に接続して!/、る。
[0069] 白色を得るために、発光ダイオード 2R、 20、 2G、 2B、にそれぞれ、 10mAの電流 を与える場合、各発光ダイオードの VFは、 1. 85V, 1. 85V, 3. 4V、 3. 4Vになる。 発光ダイオード 2R、 20を直列に接続することによって両者の VFの合計が 3. 7Vに なり、他の発光ダイオードの 3. 4Vとの差を少なくすることができる。このように、 RGB の 3つの発光ダイオードの内、 VFが最も低い発光ダイオードに直列に他の発光ダイ オードを接続して VFを同等の値に調整することによって、各トランジスタへの負荷電 圧をほぼ同等とすることができる。さらに、赤の発光ダイオードのみの場合にトランジ スタ内部で無駄に消費されていた電力を、発光ダイオード 20によって有効に利用す ることができるので、発光効率を高めることができる。直列に接続するダイオードは、 オレンジ以外にも赤や黄色などの他の発光ダイオードを選択することもできる。
[0070] 一般に、 RGBの発光ダイオードのスペクトル分布特性は、緑の発光ダイオードのピ ーク波長が、青と赤の発光ダイオードのピーク波長の中間点よりも青の発光ダイォー ド側に大きく偏った特性となり、緑と赤の発光ダイオードの間に波長の不連続な領域 が存在する。し力しながら、上記の様に、赤と緑の発光ダイオードの中間にピーク波 長を持つオレンジ色の発光ダイオードを追加することによって、波長の不連続な領域 を埋めることができ、演色性を高めることができる。追加する発光ダイオードは、赤と 緑の発光ダイオードの発光ピーク波長の間にピーク波長を持つものであれば、ォレ ンジ以外に黄色の発光ダイオードなど他の発光ダイオードを採用することができる。 この第 8の実施形態に係わる発光素子 1Hの動作は、第 1の実施形態に係わる発光 素子 1Aと同じであり、図 5に示すタイミングチャートに従ったものとなる。
[0071] 次に、第 9の実施形態に係わる発光素子 1Jについて、図 19、図 20を参照して説明 する。第 9の実施形態に係わる発光素子 1Jは、第 1の実施形態に係わる発光素子 1 Aと基本構成は同じであるので、相違部分を中心に説明する。第 9の実施形態に係 わる発光素子 1Jが第 1の実施形態に係わる発光素子 1Aと相違するのは駆動用 IC3 の内部構成、並びに発光ダイオードと駆動用 ICの接続形態である。先の実施形態で は、発光ダイオードのアノード側に駆動用 ICを接続していた力 この実施形態では、 発光ダイオードの力ソード側に駆動用 ICを接続して 、る。この接続形態の変更に伴 つて、駆動用 ICのトランジスタ Trを Nチャンネル型の MOSFETで構成し、順バイァ スが加わる接続状態で用いている。この第 9の実施形態に係わる発光素子 1Jの動作 は、第 1の実施形態に係わる発光素子 1Aと同じであり、図 5に示すタイミングチャート に従ったものとなる。
[0072] 次に、第 10の実施形態に係わる発光素子 1Kについて、図 21を参照して説明する 。第 10の実施形態に係わる発光素子 1Kは、第 1の実施形態に係わる発光素子 1A と基本構成は同じであるので、相違部分を中心に説明する。第 10の実施形態に係 わる発光素子 1Kが第 1の実施形態に係わる発光素子 1Aと相違するのは、駆動用 I C3として、図 21〖こ示すよう〖こ、各発光ダイオード 2R、 2G、 2Bに予め設定した一定の 電流を与えるために、電流供給回路 10と複数のトランジスタ Trによって構成されてい る点である。電流供給回路 10は、複数のトランジスタ Tr毎に予め設定した一定の電 流を供給する定電流回路で構成され、複数のトランジスタ Trのゲートを制御するため のゲート制御回路も内蔵している。トランジスタ Trは、例えば MOS型の FETによって 構成することができる。この例では、 Pチャンネル型の MOSFETを用いている。各トラ ンジスタ Trのドレイン側を各発光ダイオード 2R、 2G、 2Bのアノード側に接続すること によってトランジスタ Trと発光ダイオード 2を直列接続した構成となって 、る。各トラン ジスタ Trのゲート (G)端子は、共通接続して電流供給回路 10のゲート制御回路に接 続している。電流供給回路 10のゲート制御回路は、電圧 Vddが与えられると、トラン ジスタ Trをオンさせる信号を出力する構成として 、る。
[0073] 第 10の実施形態に係わる発光素子 1Kは、外部端子 5、 6を図示しない回路の対応 する端子に接続して用いられる。外部端子 5、 6間に一定の電圧 Vddが与えられると、 駆動用 IC3が動作し、各発光ダイオード 2R、 2G、 2B毎に予め設定された電流値、 例えば、 40mA, 40mA, 20mAというような予め設定された一定の電流 I (R)、 1 (G) 、 1 (B)が各発光ダイオード 2に与えられる。この電流値は、電流供給回路 10と各トラ ンジスタ Trによって予め設定される。図 21に示す回路に於いて、外部端子 5、 6間に 加わる電圧が多少変動、例えば規定値の ± 10%程度、 5V系の電源の場合は 5±0 . 5V変動しても、電流供給回路 10から各々出力される電流値は一定に保たれるの で、各発光ダイオード 2R、 2G、 2Bに流れる電流値と電流の比率も同じに保たれ、そ の結果、光の混色状態は殆ど変動しない。この第 10の実施形態に係わる発光素子 1 Kの動作は、第 1の実施形態に係わる発光素子 1Aと同じであり、図 5に示すタイミン グチャートに従ったものとなる。
[0074] 次に、第 11の実施形態に係わる発光素子 1Lについて、図 22を参照して説明する 。第 11の実施形態に係わる発光素子 1Lは、第 10の実施形態に係わる発光素子 1K と基本構成は同じであるので、相違部分を中心に説明する。第 11の実施形態に係 わる発光素子 1Lが第 10の実施形態に係わる発光素子 1Kと相違するのは、ある発 光ダイオードに他の発光ダイオードを直列接続した点である。この例では、第 8の実 施形態に係わる発光素子 1Hの場合と同様に、赤の発光ダイオード 2Rにオレンジの 発光ダイオード 20を直列に接続して 、る。
[0075] この第 11の実施形態に係わる発光素子 1Lでは、第 8の実施形態に係わる発光素 子 1Hの場合と同様に、 RGBの 3つの発光ダイオードの内、 VFが最も低い発光ダイ オードに直列に他の発光ダイオードを接続して VFを同等の値に調整することによつ て、各トランジスタへの負荷電圧をほぼ同等とすることができる。さらに、赤の発光ダイ オードのみの場合にトランジスタ内部で無駄に消費されていた電力を、発光ダイォー ド 20によって有効に利用することができるので、発光効率を高めることができる。直 列に接続するダイオードは、オレンジ以外にも赤や黄色などの他の発光ダイオードを 選択することちできる。
[0076] さらに、この第 11の実施形態に係わる発光素子 1Lでは、赤と緑の発光ダイオード の中間にピーク波長を持つオレンジ色の発光ダイオードを追加することによって、波 長の不連続な領域を埋めることができ、演色性を高めることができる。追加する発光 ダイオードは、赤と緑の発光ダイオードの発光ピーク波長の間にピーク波長を持つも のであれば、オレンジ以外に黄色の発光ダイオードなど他の発光ダイオードを採用 することができる。この第 11の実施形態に係わる発光素子 1Lの動作は、第 1の実施 形態に係わる発光素子 1Aと同じであり、図 5に示すタイミングチャートに従ったものと なる。
[0077] 次に、第 12の実施形態に係わる発光素子 1Mについて、図 23〜図 25を参照して 説明する。先の実施形態の発光素子 1A〜: LLは、外部端子 5、 6のみを用いる 2端子 型の素子として利用するものであつたが、この第 12の実施形態に係わる発光素子 1 Mは、白色発光のみならず、多色発光も行えるように構成した点に特徴を有している 。図 23Aは第 12の実施形態に係わる発光素子 1Mの概略的な回路図、図 23Bは第 12の実施形態に係わる発光素子 1Mの詳細な回路図、図 24は第 12の実施形態に 係わる発光素子 1Mの動作を示すタイミングチャートであり、また、図 25は第 12の実 施形態に係わる発光素子 1Mのモールド榭脂を透視した状態の斜視図である。
[0078] この第 12の実施形態に係わる発光素子 1Mが第 1の実施形態の発光素子 1Aと大 きく相違する点は、駆動用 IC3に各発光ダイオード 2R、 2G、 2Bの発光状態を外部 力も制御するための制御端子 CR、 CG、 CBを設けた点である。これらの制御端子 C R、 CG、 CBは、各トランジスタを個別に制御することができるように、各トランジスタの ゲート端子に接続されている。各トランジスタは、 Pチャンネル型の MOSFETで構成 し、ドレイン端子を発光ダイオードのアノード側に接続している。トランジスタのソース 側は共通に接続されて外部端子 5に接続されている。トランジスタを逆バイアス状態 で用いるために、各制御端子 CR、 CG、 CBは、通常はハイ状態で、ロー状態になつ たときにトランジスタをアクティブとする様にアクティブローの端子として用いられる。図 23〜図 25には、アクティブローを示すように CR、 CG、 CBの上にバーを付している。
[0079] 上記の構成によれば、図 24に示すように、外部端子間に一定の電圧 Vddをカ卩えた のみの通常状態では、発光素子は発光動作をしない。制御端子 CR、 CG、 CBをい ずれもロー状態とすると、全てのトランジスタがオン状態となり、全ての発光ダイオード に電流が流れる。各発光ダイオードの電流値を白色が得られるように駆動用 IC (その トランジスタ)を設計しておくことによって、白色 (W)発光が得られる。制御端子 CR、 CG、 CBの 1つのみを選択的にロー状態とすれば、 1つの発光ダイオードのみが選 択的に動作し、 R (赤)、 G (緑)、 B (青)等の所定の色の発光が得られる。ロー状態と する制御端子 CR、 CG、 CBの組み合せを変更することによって、複数の色の混色に よる発光色が得られる。
[0080] 図 25は、そのような制御端子 CR、 CG、 CBを備える構成とした発光素子 1の一例を 示している。この図 25に示した発光素子 1Mが第 1の実施形態の発光素子 1Aと大き く相違する点は、回路基板 4の上に配置していた発光ダイオード 2を駆動用 IC3の上 に配置するとともに、駆動用 IC3の表面に形成された力ソード用の端子の上に発光ダ ィオード 2R、 2G、 2Bの力ソード側が導電材料を用いて固定され、駆動用 IC3の表面 に形成された出力端子 3R、 3G、 3Bに発光ダイオードのアノード側がワイヤーを用い て接続されて ヽる点、である。
[0081] この例においては、 2つの外部端子 5、 6を所定の電源端子に接続し、制御端子 CR 、 CG、 CBを所定の制御回路に接続して用いることによって、赤、緑、青の 3色の混 色によって白色発光の動作と、マルチ(多色)カラーの発光動作を行うことができる。
[0082] 駆動用 IC3は、通常シリコンで構成される。シリコンはガラスエポキシなどに比べて 熱伝導性が良く放熱性を高めることができる。また発光ダイオード 2を構成する半導 体材料との熱膨張率の差を小さくできるので、駆動用 IC3の上に発光ダイオードを配 置することによって、通常熱膨張率差に起因するストレスや歪みの発生を抑制して信 頼性を高めることもできる。
[0083] 次に、第 13の実施形態に係わる発光素子 1Nについて、図 26〜28を参照して説 明する。第 12の実施形態の発光素子 1Mは外部端子 5、 6に加えて各発光ダイォー ドに対応した制御端子を設ける例であつたが、この第 13の実施形態に係わる発光素 子 1Nは、外部端子 5、 6に加えて各発光ダイオードに共通の制御端子 CRGBを設け た点に特徴を有している。なお、図 26Aは第 13の実施形態に係わる発光素子 1Nの 概略的な回路図、図 26Bは第 13の実施形態に係わる発光素子 1Nの詳細な回路図 、図 27は第 13の実施形態に係わる発光素子 1Nの動作を示すタイミングチャートで あり、また、図 28は第 13の実施形態に係わる発光素子 1Nのモールド榭脂を透視し た状態の斜視図である。
[0084] 第 13の実施形態に係わる発光素子 1Nは、駆動用 IC3に各発光ダイオード 2R、 2 G、 2Bの発光状態を外部力も制御するための 1つの制御端子 CRGBを設けることに よって、 3端子構造となっている。この制御端子 CRGBは、各トランジスタを同時に制 御することができるように、トランジスタの各ゲート端子に共通に接続されている。各ト ランジスタは、 Pチャンネル型の MOSFETで構成し、ドレイン端子を発光ダイオード のアノード側に接続して 、る。トランジスタのソース側は共通に接続されて外部端子 5 に接続されている。トランジスタを逆ノィァス状態で用いるために、制御端子 CRGB は、通常はノ、ィ状態で、ロー状態になったときにトランジスタをアクティブとする様にァ タティブローの端子として用いられる。図 26〜28には、アクティブローを示すように C RGBの上にバーを付して!/、る。
[0085] 上記の構成によれば、図 27に示すように、外部端子間に一定の電圧 Vddをカ卩えた のみの通常状態では、発光素子 1Nは発光動作をしない。制御端子 CRGBをロー状 態とすると、全てのトランジスタがオン状態となり、全ての発光ダイオード 2に電流が流 れる。各発光ダイオード 2の電流値を白色が得られるように駆動用 IC (そのトランジス タ)を設計しておくことによって、白色発光が得られる。
[0086] 図 28は、そのような制御端子 CRGBを備えた発光素子 1Nの一例を示している。こ の発光素子 INが第 1の実施形態の発光素子 1Aと大きく相違する点は、回路基板 4 として、プリントタイプの基板に代えてリードフレームを利用したタイプの基板を用いた 点である。
[0087] 基板 4は、鉄系あるいは銅系の素材にメツキを施した金属製のリードフレーム 8と榭 脂 9を一体形成して構成している。リードフレーム 8は、部品配置領域として機能する インナ一部分と外部端子として機能するアウター部分を備える複数のフレームで構成 され、それら力 Sインサート成形等の手法を用いて榭脂 9と一体ィ匕される。フレーム 8の アウター部分は、リードフレーム力も切り離された後に、必要に応じて榭脂の裏側に 折り曲げられ、外部端子 5、 6、制御端子 CRGBとして機能する。発光ダイオード 2や 駆動用 IC3を配置すべきインナ一の表面は榭脂 9に覆われることなく露出している。 回路基板 4を構成する榭脂 9は、発光ダイオード 2の光を反射する反射枠も兼ねて ヽ る。反射枠として機能するように、榭脂 9として反射性に優れる白色系の榭脂を用いる ことが好ましい。また、
回路基板 4の周囲に光を上向きに反射するための反射壁 10を設けることも反射枠の 機能を高める上で好ましい。この反射壁 10で囲まれるくぼみ内に、発光ダイオード 2 と駆動用 IC3をモールドするための榭脂 7を配置して発光素子 1Nが形成される。
[0088] 次に、第 14の実施形態に係わる発光素子 1Pについて、図 29〜図 31を参照して説 明する。第 13の実施形態の発光素子 1Nは発光素子 1Nの駆動用 ICに制御端子 C R、 CG、 CBを設ける例であった力 この第 14の実施形態に係わる発光素子 1Pは、 駆動用 ICと発光ダイオードの接続部分に外部から発光ダイオードを直接駆動するた めの制御端子 CR、 CG、 CBを接続した点に特徴を有しているなお、図 29Aは第 14 の実施形態に係わる発光素子 1Pの概略的な回路図、図 29Bは第 14の実施形態に 係わる発光素子 1Pの詳細な回路図、図 30は第 14の実施形態に係わる発光素子 1P の動作を示すタイミングチャートであり、また、図 31は第 14の実施形態に係わる発光 素子 1Pのモールド榭脂を透視した状態の斜視図である。
[0089] この第 14の実施形態に係わる発光素子 1Pは、発光素子 1Pに制御端子 CR、 CG、 CBを設け、これを駆動用 IC3と各発光ダイオード 2R、 2G、 2Bの接続部分に接続し ている。発光素子 1Pを白色の発光素子として使う場合は、制御端子 CR、 CG、 CBを オープン状態で使用する。そして、外部端子に与える電圧 Vddをオン'オフすること によって、第 1の実施形態の発光素子 1Aと同様の形態を取ることができる。
[0090] 一方、発光素子 1Pをマルチカラーの発光素子として使う場合は、外部端子 5をォ ープン状態で使用する。そして、制御端子 CR、 CG、 CBに与える電圧をハイとロー に切り替える、あるいは供給する電流値を任意の値とすることによって発光ダイオード の発光色の組み合わせ状態や各発光ダイオードの発光輝度を切り替えて使用する。
[0091] ここで、外部端子のみを用いて白色を発光する場合 (発光色として Wと記載)と、制 御端子 CR、 CG、 CBと端子 6のみを用いて白色発光する場合 (発光色として RGBと 記載)は、トランジスタを介して流れる電流値と制御端子を介して流れる電流値が必 ずしも一致しな 、ので、同じ白色でも若干色合 、が相違することがある。
[0092] 図 31は、そのような制御端子 CR、 CG、 CBを備えた発光素子 IPの一例を示してい る。この発光素子 1Pは、第 13の実施形態との発光素子 1Nと同様にリードフレームを 利用したタイプの基板 4を用 Vヽた点に特徴がある。
[0093] 次に、第 15の実施形態に係わる発光素子 1Qについて、図 32〜34を参照して説 明する。先の第 10、第 11の実施形態の発光素子 1K、 1Lは、電流供給回路 10を有 するとともに発光素子 1K、 1Lを外部端子 5、 6のみを用いる 2端子型の素子として利 用して白色光のみを発光するものであつたが、この第 15の実施形態に係わる発光素 子 1Qは白色発光のみならず、多色発光も行えるように構成した点に特徴を有してい る。なお、図 32Αは第 15の実施形態に係わる発光素子 1Qの概略的な回路図、図 3 2Βは第 15の実施形態に係わる発光素子 1Qの詳細な回路図、図 33は第 15の実施 形態に係わる発光素子 1Qの動作を示すタイミングチャートであり、また、図 34は第 1 5の実施形態に係わる発光素子 1Qのモールド榭脂を透視した状態の斜視図である
[0094] この第 15の実施形態に係わる発光素子 1Qが第 10の実施形態に係わる発光素子 1Kと大きく相違する点は、駆動用 IC3に各発光ダイオード 2R、 2G、 2Bの発光状態 を外部力も制御するための制御端子 CR、 CG、 CBを設けた点である。これらの制御 端子 CR、 CG、 CBは、各トランジスタを個別に制御することができるように、各トランジ スタのゲート端子に接続されている。各トランジスタは、 Nチャンネル型の MOSFET で構成し、ソース端子を発光ダイオードのアノード側に接続している。トランジスタのド レイン端子は電流供給回路 10に接続されている。この電流供給回路 10は、第 10の 実施形態の発光素子 1Kで用いられているものと同様な構成であり、複数のトランジ スタ Tr毎に予め設定した一定の電流を供給する定電流回路で構成されている。
[0095] トランジスタ Trのゲート制御を制御端子 CR、 CG、 CBによって制御するこの例では 、第 10の実施形態の発光素子 1Kのように電流供給回路 10にゲートの制御回路を内 蔵させる必要はない。制御回路を内蔵した電流供給回路 10を用いることもできる。そ の場合は、電流供給回路 10のゲート制御回路と各制御端子 CR、 CG、 CBを接続し ても良い。
[0096] 上記の構成によれば、図 33に示すように、外部端子間に一定の電圧 Vddをカ卩えた のみの通常状態では、発光素子は発光動作をしない。制御端子 CR、 CG、 CBをい ずれもハイ状態とすると、全てのトランジスタ Trがオン状態となり、全ての発光ダイォ ード 2に電流が流れる。各発光ダイオード 2の電流値を白色が得られるような値とする ように駆動用 IC (その電流供給回路)を設計しておくことによって、白色 (W)発光が 得られる。制御端子 CR、 CG、 CBの 1つのみを選択的にハイ状態とすれば、 1つの 発光ダイオードのみが選択的に動作し、 R (赤)、 G (緑)、 B (青)等の所定の色の発 光が得られる。ノ、ィ状態とする制御端子 CR、 CG、 CBの組み合せを変更することに よって、複数の色の混色による発光色が得られる。
[0097] 図 34は、そのような制御端子 CR、 CG、 CBを備える構成とした発光素子 1Qの一例 を示している。この発光素子 1Qが第 10の実施形態の発光素子 1Kと大きく相違する 点は、回路基板 4の上に配置して 、た発光ダイオード 2を駆動用 IC3の上に配置した 点である。駆動用 IC3の表面に形成された力ソード用の端子の上に発光ダイオード 2 R、 2G、 2Bの力ソード側が導電材料を用いて固定され、駆動用 IC3の表面に形成さ れた出力端子 3R、 3G、 3Bに発光ダイオードのアノード側がワイヤーを用いて接続さ れている。
[0098] この例においては、 2つの外部端子 5、 6を所定の電源端子に接続し、制御端子 CR 、 CG、 CBを所定の制御回路に接続して用いることによって、赤、緑、青の 3色の混 色による白色発光の動作と、マルチ(多色)カラーの発光動作を行うことができる。 [0099] さらに、制御端子 CR、 CG、 CBは、共通に接続して 1端子とし、白色発光動作時に オン ·オフ制御のみに使用しても良 、。
[0100] 駆動用 IC3は、通常シリコンで構成される。シリコンはガラスエポキシなどに比べて 熱伝導性が良く放熱性を高めることができる。また発光ダイオード 2を構成する半導 体材料との熱膨張率の差を小さくできるので、駆動用 IC3の上に発光ダイオードを配 置することによって、通常熱膨張率差に起因するストレスや歪みの発生を抑制して信 頼性を高めることもできる。
[0101] 次に、第 16の実施形態に係わる発光素子 1Rについて、図 35〜図 36を参照して 説明する。
[0102] この第 16の実施形態に係わる発光素子 1Rは、前記の第 15の実施形態に係わる 発光素子 1Qは発光素子 1Qの駆動用 ICに制御端子 CR、 CG、 CBを設ける例であ つたが、駆動用 IC3と発光ダイオード 2の接続部分に外部力も発光ダイオード 2を直 接駆動するための制御端子 CR、 CG、 CBを接続した点に特徴を有している。なお、 図 35Aは第 16の実施形態に係わる発光素子 1Rの概略的な回路図、図 35Bは第 16 の実施形態に係わる発光素子 1Rの詳細な回路図、図 36は第 16の実施形態に係わ る発光素子 1Rの動作を示すタイミングチャートである。
[0103] この第 16の実施形態に係わる発光素子 1Rは、発光素子 1Rに制御端子 CR、 CG、 CBを設け、これを駆動用 IC3と各発光ダイオード 2R、 2G、 2Bの接続部分に接続し ている。発光素子 1を白色の発光素子として使う場合は、制御端子 CR、 CG、 CBを オープン状態で使用する。そして、図 36に示すように、外部端子に与える電圧 Vdd をオン'オフすることによって、第 15の実施形態の発光素子 1Qと同様の形態を取る ことができる。
[0104] 一方、発光素子 1Rをマルチカラーの発光素子として使う場合は、外部端子 5をォ ープン状態で使用する。そして、制御端子 CR、 CG、 CBに与える電圧をハイとロー に切り替える、あるいは供給する電流値を任意の値とすることによって発光ダイオード の発光色の組み合わせ状態や各発光ダイオードの発光輝度を切り替えて使用する。
[0105] ここで、外部端子 5、 6のみを用いて白色を発光する場合 (発光色として Wと記載)と 、制御端子 CR、 CG、 CBと端子 6のみを用いて白色発光する場合 (発光色として RG Bと記載)は、トランジスタ Trを介して流れる電流値と制御端子 CR、 CG、 CBを介して 流れる電流値が必ずしも一致しな 、ので、同じ白色でも若干色合 、が相違すること がある。
[0106] なお、第 16の実施形態に係わる発光素子 1Rのモールド榭脂を透視した状態の斜 視図は、図 31に示した第 14の実施形態に係わる発光素子 1Pと同様となる。
[0107] 次に、第 17の実施形態に係わる発光素子 1Sについて図 37A、図 37Bを参照して 説明する。なお、図 37Aは 17の実施形態に係わる発光素子 1Sの概略回路図、図 3 7Bは第 17の実施形態に係わる発光素子 1Sの詳細な回路図である。この第 17の実 施形態に係わる発光素子 1Sは第 15の実施形態の発光素子 1Qと基本構成は同じで あるので、相違部分を中心に説明する。この第 17の実施形態に係わる発光素子 1S が第 15の実施形態の発光素子 1Qと相違するのは駆動用 IC3の内部構成であり、電 流供給回路 10と、ドライバー 11と、ドライバー 11の開閉を制御する外部端子の信号 制御用インバーターを有して 、る点である。
[0108] このドライバー 11は、電流供給回路 10から供給される一定の電流に基づいて、各 発光ダイオード毎に予め設定された一定の電流値を供給する複数の定電流回路で 構成される。接続する発光ダイオードの数が 3個(3出力)のこの例では、 3個の定電 流回路を内蔵しているが、出力数に応じて内蔵する定電流回路の数を増減すること ができる。
[0109] ドライバー 11には、制御端子 CR、 CG、 CB力 、 2つのインバータを通って制御信 号が与えられる。制御端子 CR、 CG、 CBに与えられる信号によって、発光ダイオード の点灯状態が制御される。この第 17の実施形態に係わる発光素子 1Sの動作は、第 15の実施形態の発光素子 1Qの動作(図 33)と同様である。
[0110] 次に、第 18の実施形態に係わる発光素子 1Tについて図 38を参照して説明する。
なお、図 38は第 18の実施形態に係わる発光素子 1Tの詳細な回路図である。この第 18の実施形態に係わる発光素子 1Tは第 1の実施形態に係わる発光素子 1Aと基本 構成は同じであるので、相違部分を中心に説明する。この第 18の実施形態に係わる 発光素子 1Tが第 1の実施形態に係わる発光素子 1Aと相違するのは駆動用 IC3の 内部構成であり、各発光ダイオードに与える電流値を微調整することができるように 微調整回路を付加して 、る点である。
[0111] この微調整回路は、基本となる各トランジスタ Trに並列に電流補正用のトランジスタ
Traを接続して構成している。この例では、補正用のトランジスタ Traを 2個用いてい る力 1個でも良いし、 3個以上でも良い。補正用トランジスタ Tmを複数用いる場合、 各補正用のトランジスタ Traの構成を同じにしても良いし、異ならせても良い。
[0112] 補正用のトランジスタ Traは、基本のトランジスタ Trに比べて電流容量が小さなもの を用いるのが好ましいが、補正用のトランジスタ Traと基本のトランジスタ Trの構成を 同じとして電流容量を同じにしても良!、。
[0113] 補正用のトランジスタ Traの個数は、同じに設定している力 接続する発光ダイォー ドの特性に応じて変更しても良い。
[0114] 基本トランジスタ Trは、発光ダイオードの電流比率を設定するために発光ダイォー ド毎に構成 (面積等)が相違するが、基本トランジスタ Trの構成を全て同じにしても良 い。基本トランジスタ Trと補正用のトランジスタ Traを 1組とする構成も、発光ダイォー ドに係わらず全て同じ構成としても良い。
[0115] 補正用のトランジスタ Traは、その一部に電流経路を切断することに利用する切断 領域 Ajを備えている。この切断領域 Ajは、レーザトリミング処理、ザッビング (熱溶断) 処理等を施すことによって切断することができる。レーザトリミング処理を行うためには
、切断領域 Ajを駆動用 IC3の表面に設けることが好ま 、。
[0116] 上記のようなレーザトリミング処理、ザッビング処理等を施すことによって補正用のト ランジスタ Traに流れる電流を遮断し、発光ダイオード 2に流れる電流量を調整するこ とがでさる。
[0117] 第 18の実施形態で用いた微調整回路は、前述の各実施形態に適用することがで きる。図 39の発光素子 1Uは、図 17に示す第 7の実施形態の発光素子 1Gに適用し た例を示し、図 40の発光素子 IVは図 23に示す第 12実施形態の発光素子 1Mに適 用した例を示し、図 41の発光素子 1Wは図 26に示す第 13の実施形態の発光素子 1 Nに適用した例を示している。
[0118] さらに、図 42の発光素子 IXは、図 21に示す第 10の実施形態の発光素子 1Kに適 用した例を示し、図 43の発光素子 1Yは図 32に示す第 15の実施形態の発光素子 1 Qに適用した例を示し、さらに、図 44の発光素子 1Zは図 35に示す第 16の実施形態 の発光素子 1Rに適用した例を示している。
[0119] 上記の微調整に係わる実施形態は、通常はつながっているトランジスタ Traの回路 を切断領域 Ajにて切断することによって電流値を絞り込む場合を例示したが、その 逆に開放領域を接続して電流値を増加させるような形態とすることもできる。例えば、 切断領域 Ajを予め開放状態としておき、その部分を導電材料 (半田やワイヤ線等)を 用 、て電気的に接続する形態としても良 、。
[0120] また、上記実施形態は、トランジスタ Trとして MOS型のトランジスタを用いた力 バ ィポーラ型のトランジスタを用いることもできる。この場合は、ゲートをベースに、ソース をェミッタに、ドレインをコレクタに置き換えれば良い。
[0121] ノ ィポーラ型のトランジスタを用いる場合、微調整回路をトランジスタの増幅度を設 定する領域に設けても良い。例えば、ベース電流をレーザトリミング処理ゃザッビング 処理を施すことによって変更しても良い。
[0122] 次に、出力電流を微調整するための回路を内蔵した第 19の実施形態の発光素子 1 aについて図 45を参照して説明する。この第 19の実施形態の発光素子 1 αの基 本構成は、図 37に示す第 17の実施形態の発光素子 1Sと同じであるが、ドライバー 1 1とそれを制御する制御回路 12の構成に若干の相違があるとともに、補正用のメモリ 13を追加した点に特徴がある。
[0123] 図 45Αは図 37Βに対応した第 19の実施形態の発光素子 1 aの回路図であり、図 4 5Bは 1つの発光ダイオード、この例では赤の発光ダイオード 2Rに関係する部分の詳 細を示す回路図である。
[0124] 図 45Bに示したように、ドライバー 11は基本となるドライバー Aに加えて、補正用の ドライバー B、 C、 Dを備えている。ドライバー A〜Dは、電流供給回路 10から一定の 電流供給を受け、予め設定した電流値を出力する定電流回路で構成される。例えば 、基本となるドライバー Aは 10mA、補正用のドライバー Bは 5mA、補正用のドライバ 一 Cは 3mA、補正用のドライバー Dは 2mAというように、値の異なる複数種類の電流 値を出力するように設定される。各ドライバー A〜Dの制御は制御回路 12によって行 われる。制御回路 12は、制御端子 CRのデータと、補正メモリに記憶した 3ビットのデ ータに基づいて各ドライバー A〜Dの制御を行う。基本ドライバー Aは、制御端子 CR がハイ状態のとき 2つのインバータを介して与えられる信号によって動作し、 10mAの 出力を行う。補正用のドライバー B〜Dは、制御端子 CRがハイ状態のとき、メモリに記 憶したデータとアンド回路によってアンド処理が成された後の信号によって動作し、 5 、 3、 2mAの出力を行う。各ドライバー A〜Dの出力が合算されて発光ダイオード 2R に与えられる。したがって、メモリ 13に記憶する補正用のデータの値を種々設定する ことによって、発光ダイオードに与える電流値を変更することができる。この例では、 1 0mA〜20mAの範囲で電流値を可変することができる。補正用のドライバーの数は 、種々変更することができ、その変更に合せて制御回路やメモリの構成も変更するこ とがでさる。
[0125] 赤以外の緑や青の発光ダイオード 2G、 2Bに対する回路も図 45Bに示す回路と同 様である。
[0126] 補正メモリ 13は、各発光ダイオードに対応してそれぞれ 3ビットの補正データを記憶 する不揮発性のメモリによって構成される。 3ビット構成の補正用のデータは、制御端 子 CR、 CG、 CBを通じて事前に書き込むことができる。
[0127] この第 19の実施形態の発光素子 1 aの動作は、図 33に示した第 15の実施形態の 発光素子 1Qと同様である。
[0128] 上記の実施形態は、赤、緑、青色の発光ダイオードを各々 1つずつ用いた例を示し たが、各色の発光ダイオードは、 1つに限らず複数個用いることもできる。
[0129] また、白色発光するために、 3原色の発光ダイオードに加えて、 3原色以外の発光 色、例えば、青緑、橙、黄色などの発光ダイオードを加えて、 4色以上の構成とするこ ともできる。図 5に示すように、最も VFが低い発光ダイオードに直列に追加すべき発 光ダイオードを接続することによって、演色性高めると同時に、トランジスタによって消 費される無駄な電力を低減し、発光効率を高めることができる。
[0130] また、白色発光するために、赤、緑、青色の 3原色以外の発光色の組み合わせを用 いることができる。例えば、青色と黄色の組み合わせや、青緑色と橙色の組み合わせ など、補色の関係にある複数の発光ダイオードの組み合わせを用いることもできる。 そうすることによって、発光ダイオードの数を削減することが可能となる。 [0131] 上記の実施形態は、白色あるいは白色に近い疑似白色以外にも適用することがで きる。
[0132] 上記の実施形態は、異なる色、例えば、赤と緑の発光ダイオードを組み合わせて橙 色を発光する発光素子において、その発光色を調整する場合など、各発光ダイォー ドの発光状態を電流の比率などによって予め調整しておくことが望まれる 2端子型、 あるいは 3端子以上の発光素子にぉ 、ても適用することができる。
[0133] また、上記の実施形態は、同じ色の複数の発光ダイオードを備える発光素子にお いて、複数のダイオードのいくつかの発光状態を明るぐその他の発光状態を暗くし て指向性などの発光特性を変更する場合など、各発光ダイオードの発光状態を電流 の比率などによって予め調整しておくことが望まれる 2端子型あるいは 3端子以上の 発光素子においても適用することができる。
産業上の利用可能性
[0134] 白色、フルカラー、マルチカラー、モノカラーなどの発光素子に適用することができ る。

Claims

請求の範囲
[I] 複数の発光ダイオードと、これらの発光ダイオードを駆動する駆動用 ICを一体化し た発光素子であって、前記駆動用 ICは、前記複数の発光ダイオード毎の電流値もし くは前記発光ダイオード間の電流比率を一定に制御する回路を内蔵したことを特徴 とする発光素子。
[2] 前記複数の発光ダイオードは、それらの光の混色によって白色発光が可能な発光 色を備えることを特徴とする請求項 1記載の発光素子。
[3] 前記複数の発光ダイオードは、赤、緑、青色の 3原色の発光色を含むことを特徴と する請求項 2記載の発光素子。
[4] 前記複数の発光ダイオードは、補色の関係を有する発光色を含むことを特徴とする 請求項 2記載の発光素子。
[5] 前記複数の発光ダイオードは、異なる発光色を含むことを特徴とする請求項 1記載 の発光素子。
[6] 前記複数の発光ダイオードは、同じ発光色を含むことを特徴とする請求項 1記載の 発光素子。
[7] 前記複数の発光ダイオードは、少なくとも 2個の発光ダイオードが直列に接続され て 、ることを特徴とする請求項 1に記載の発光素子。
[8] 前記少なくとも 2個の直列接続される発光ダイオードは、赤色、橙、黄の発光ダイォ ードの内から選択された同色、または異色のものであること特徴とする請求項 7に記 載の発光素子。
[9] 前記駆動用 ICは、複数のトランジスタをそれぞれの発光ダイオード毎に直列に接 続して 、ることを特徴とする請求項 1に記載の発光素子。
[10] 前記駆動用 ICのトランジスタは、電界効果型トランジスタあるいはバイポーラ型トラ ンジスタを使用したことを特徴とする請求項 9記載の発光素子。
[I I] 前記駆動用 ICのトランジスタのゲート端子あるいはベース端子は共通接続されて 、 ること特徴とする請求項 10に記載の発光素子。
[12] 前記駆動用 ICのトランジスタのゲート端子あるいはベース端子は電流値、または、 電流比率を調整した後の各発光ダイオードの内、最も VF電圧が高 ヽ発光ダイオード の配線に共通接続されて ヽること特徴とする請求項 11に記載の発光素子。
[13] 前記発光素子は、外部と接続する端子として前記 2つの外部端子のみを備える 2端 子型の素子であることを特徴とする請求項 1記載の発光素子。
[14] 前記駆動用 ICは、前記 2つの外部端子間に加わる電圧が変動しても前記複数の 発光ダイオード毎の電流値を一定に制御する回路を内蔵したことを特徴とする請求 項 13記載の発光素子。
[15] 前記駆動用 ICは、外部端子を備えて ヽることを特徴とする請求項 1記載の発光素 子。
[16] 前記外部端子は、前記複数の発光ダイオードの電流値あるいは電流比率を変更 するための制御端子であることを特徴とする請求項 15記載の発光素子。
[17] 前記外部端子は、前記駆動用 ICのトランジスタのゲート端子あるいはベース端子に 接続され、それぞれの発光ダイオードに流れる電流を外部より制御可能としたことを 特徴とする請求項 16記載の発光素子。
[18] 前記外部端子は、前記駆動用 ICのトランジスタのゲート端子あるいはベース端子に 共通に接続され、それぞれの発光ダイオードに流れる電流を外部より同一タイミング にて制御可能としたことを特徴とする請求項 17記載の発光素子。
[19] 前記外部端子は、前記駆動用 ICのトランジスタの駆動とは関係無ぐそれぞれの発 光ダイオードを個別に制御可能に接続されて ヽることを特徴とする請求項 15に記載 の発光素子。
[20] 前記駆動用 ICは、基準となる電流を供給する電流供給回路と、前記電流供給回路 力 電流供給を受けて前記発光ダイオード毎に設定された電流を供給するドライバ 一回路とを備え、前記外部端子は、前記ドライバー回路の動作を外部から制御可能 に接続されて ヽることを特徴とする請求項 15に記載の発光素子。
[21] 前記駆動用 ICは、前記複数の発光ダイオード毎の電流値もしくは前記発光ダイォ ード毎の電流比率を微調整する機能を備えることを特徴とする請求項 16記載の発光 素子。
[22] 前記駆動用 ICは、補正用のデータを記憶する不揮発性のメモリと、前記メモリに記 憶したデータと前記外部端子力 与えられるデータに基づいて前記ドライバー回路 の動作を制御する制御回路を備えることを特徴とする請求項 21に記載の発光素子。
[23] 前記駆動用 ICは、前記複数の発光ダイオード毎の電流値を前記メモリに記憶した データに基づいて微調整することを特徴とする請求項 22に記載の発光素子。
[24] 前記微調整は、前記駆動用 ICの表面に設けた切断領域をレーザトリミングすること によって行われる、もしくは、前記駆動用 IC内に設けた切断領域をザッビングするこ とによって行われることを特徴とする請求項 21に記載の発光素子。
[25] 前記微調整は、前記駆動用 ICの表面に設けた 1個以上のワイヤボンド端子に対し て、ワイヤボンドの有無を選択することによって行われることを特徴とする請求項 21に 記載の発光素子。
[26] 前記複数の発光ダイオードと前記駆動用 ICは回路基板上に載置されていることを 特徴とする請求項 1記載の発光素子。
[27] 前記複数の発光ダイオードは、前記駆動用 ICの上に配置されていることを特徴と する請求項 1記載の発光素子。
[28] 前記複数の発光ダイオードと前記駆動用 ICは、同じ榭脂によって覆われていること を特徴とする請求項 1〜27のいずれかに記載の発光素子。
PCT/JP2005/011565 2004-06-25 2005-06-23 発光素子 WO2006001352A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/630,140 US20070295975A1 (en) 2004-06-25 2005-06-23 Light-Emitting Device
JP2006528603A JPWO2006001352A1 (ja) 2004-06-25 2005-06-23 発光素子

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-187404 2004-06-25
JP2004187404 2004-06-25
JP2004214333 2004-07-22
JP2004-214333 2004-07-22
JP2004-222467 2004-07-29
JP2004222467 2004-07-29

Publications (1)

Publication Number Publication Date
WO2006001352A1 true WO2006001352A1 (ja) 2006-01-05

Family

ID=35781803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011565 WO2006001352A1 (ja) 2004-06-25 2005-06-23 発光素子

Country Status (3)

Country Link
US (1) US20070295975A1 (ja)
JP (1) JPWO2006001352A1 (ja)
WO (1) WO2006001352A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227678A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd 発光ダイオードを用いた白色照明装置
JP2007311736A (ja) * 2006-04-21 2007-11-29 Nichia Chem Ind Ltd 発光装置
WO2008050679A1 (fr) * 2006-10-25 2008-05-02 Panasonic Electric Works Co., Ltd. Circuit d'éclairage de diode électroluminescente et appareil d'éclairage utilisant ledit circuit
JP2008108564A (ja) * 2006-10-25 2008-05-08 Matsushita Electric Works Ltd Led点灯回路およびそれを用いる照明器具
JP2008108565A (ja) * 2006-10-25 2008-05-08 Matsushita Electric Works Ltd Led点灯回路およびそれを用いる照明器具
JP2008130989A (ja) * 2006-11-24 2008-06-05 Matsushita Electric Works Ltd Led点灯回路およびそれを用いる照明器具
JP2008211132A (ja) * 2007-02-28 2008-09-11 Koa Corp 発光部品
WO2009037888A1 (ja) * 2007-09-22 2009-03-26 Krongthip Innovation Inc. 多色発光ダイオード及びそれを用いた電飾ケーブル
WO2010021261A1 (ja) * 2008-08-21 2010-02-25 株式会社福産コーポレーション 発光素子およびその発光色制御システム
JP2012114450A (ja) * 2006-04-21 2012-06-14 Nichia Chem Ind Ltd 発光装置
JP2012216856A (ja) * 2007-07-17 2012-11-08 Cree Inc 一体型定電流駆動回路を有するled
JP2013502066A (ja) * 2009-08-13 2013-01-17 セミエルイーディーズ オプトエレクトロニクス カンパニー リミテッド 発光ダイオードを含む高機能集積発光システム、及び、特定用途向け集積回路(asic)
US9226383B2 (en) 2003-01-02 2015-12-29 Cree, Inc. Group III nitride based flip-chip integrated circuit and method for fabricating
JP2017045855A (ja) * 2015-08-26 2017-03-02 大日本印刷株式会社 フレキシブル透明基板及びそれを用いたシースルー型のled表示装置
JP2018502447A (ja) * 2014-11-26 2018-01-25 エルイーディエンジン・インコーポレーテッド 穏やかな調光及び色調整可能なランプ用のコンパクトエミッタ
CN107710424A (zh) * 2015-08-06 2018-02-16 林谊 Led像素点、发光组件、发光面板和显示屏
US10149363B2 (en) 2010-04-08 2018-12-04 Ledengin, Inc. Method for making tunable multi-LED emitter module
JP2020111313A (ja) * 2019-01-11 2020-07-27 億光電子工業股▲ふん▼有限公司Everlight Electronics Co.,Ltd. 車両用照明装置

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US7821023B2 (en) 2005-01-10 2010-10-26 Cree, Inc. Solid state lighting component
US9793247B2 (en) * 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
US8669572B2 (en) * 2005-06-10 2014-03-11 Cree, Inc. Power lamp package
US7675145B2 (en) * 2006-03-28 2010-03-09 Cree Hong Kong Limited Apparatus, system and method for use in mounting electronic elements
US8969908B2 (en) 2006-04-04 2015-03-03 Cree, Inc. Uniform emission LED package
US9335006B2 (en) 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
US8748915B2 (en) 2006-04-24 2014-06-10 Cree Hong Kong Limited Emitter package with angled or vertical LED
US8735920B2 (en) 2006-07-31 2014-05-27 Cree, Inc. Light emitting diode package with optical element
US10295147B2 (en) 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
US9711703B2 (en) 2007-02-12 2017-07-18 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
US10505083B2 (en) 2007-07-11 2019-12-10 Cree, Inc. Coating method utilizing phosphor containment structure and devices fabricated using same
US9401461B2 (en) * 2007-07-11 2016-07-26 Cree, Inc. LED chip design for white conversion
JP4438842B2 (ja) * 2007-08-31 2010-03-24 セイコーエプソン株式会社 半導体発光素子のための駆動回路およびこれを用いた光源装置、照明装置、モニタ装置、画像表示装置
CN101388161A (zh) * 2007-09-14 2009-03-18 科锐香港有限公司 Led表面安装装置和并入有此装置的led显示器
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
US8866169B2 (en) 2007-10-31 2014-10-21 Cree, Inc. LED package with increased feature sizes
JP5416975B2 (ja) 2008-03-11 2014-02-12 ローム株式会社 半導体発光装置
US8877524B2 (en) * 2008-03-31 2014-11-04 Cree, Inc. Emission tuning methods and devices fabricated utilizing methods
AT506709B1 (de) * 2008-05-30 2009-11-15 Kuster Martin Leuchtmittel
US10271778B2 (en) * 2008-06-03 2019-04-30 Nonin Medical, Inc. LED control utilizing ambient light or signal quality
US9425172B2 (en) 2008-10-24 2016-08-23 Cree, Inc. Light emitter array
US8791471B2 (en) 2008-11-07 2014-07-29 Cree Hong Kong Limited Multi-chip light emitting diode modules
US20110037083A1 (en) * 2009-01-14 2011-02-17 Alex Chi Keung Chan Led package with contrasting face
US10431567B2 (en) 2010-11-03 2019-10-01 Cree, Inc. White ceramic LED package
US8368112B2 (en) * 2009-01-14 2013-02-05 Cree Huizhou Opto Limited Aligned multiple emitter package
DE102009022901A1 (de) * 2009-05-27 2010-12-02 Osram Opto Semiconductors Gmbh Optoelektronisches Modul und Verfahren zur Herstellung eines optoelektronischen Moduls
US8901583B2 (en) * 2010-04-12 2014-12-02 Cree Huizhou Opto Limited Surface mount device thin package
WO2011137442A1 (en) * 2010-04-30 2011-11-03 Marvell World Trade Ltd System and method of tuning current for leds
JP5734581B2 (ja) * 2010-05-21 2015-06-17 シャープ株式会社 半導体発光装置
US9831393B2 (en) * 2010-07-30 2017-11-28 Cree Hong Kong Limited Water resistant surface mount device package
US9240395B2 (en) 2010-11-30 2016-01-19 Cree Huizhou Opto Limited Waterproof surface mount device package and method
US9786811B2 (en) 2011-02-04 2017-10-10 Cree, Inc. Tilted emission LED array
US10842016B2 (en) 2011-07-06 2020-11-17 Cree, Inc. Compact optically efficient solid state light source with integrated thermal management
US11032884B2 (en) 2012-03-02 2021-06-08 Ledengin, Inc. Method for making tunable multi-led emitter module
KR20140002330A (ko) * 2012-06-29 2014-01-08 삼성전기주식회사 중첩 모듈 패키지 및 그 제조 방법
JP2016503968A (ja) * 2013-01-10 2016-02-08 モレックス エルエルシー Ledアセンブリ
US9711489B2 (en) 2013-05-29 2017-07-18 Cree Huizhou Solid State Lighting Company Limited Multiple pixel surface mount device package
DE102014105734A1 (de) * 2014-04-23 2015-10-29 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
US9601670B2 (en) 2014-07-11 2017-03-21 Cree, Inc. Method to form primary optic with variable shapes and/or geometries without a substrate
US10622522B2 (en) 2014-09-05 2020-04-14 Theodore Lowes LED packages with chips having insulated surfaces
DE102017124321A1 (de) * 2017-10-18 2019-04-18 Osram Opto Semiconductors Gmbh Halbleiterbauteil
KR102620829B1 (ko) 2019-08-27 2024-01-03 삼성전자주식회사 발광소자 패키지 및 이를 포함하는 디스플레이 장치
US11830862B2 (en) * 2020-11-12 2023-11-28 Excellence Opto. Inc. Chip structure of micro light-emitting diode display
CN112747295B (zh) * 2021-01-25 2024-10-01 崇义县精亿灯饰制品有限公司 灯珠支架及灯具
TWI770813B (zh) * 2021-02-08 2022-07-11 友達光電股份有限公司 顯示裝置及其製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113466U (ja) * 1991-03-19 1992-10-05 株式会社シチズン電子 チツプ型発光ダイオード
JPH073155U (ja) * 1993-06-15 1995-01-17 スタンレー電気株式会社 Ledランプ
JPH0710790U (ja) * 1993-07-27 1995-02-14 株式会社コスモ Ledの発光色合成を利用した簡易な多色表示方式
JPH11163412A (ja) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd Led照明装置
JP2001203427A (ja) * 2000-01-20 2001-07-27 Canon Inc 波長多重面型発光素子装置、その製造方法およびこれを用いた波長多重伝送システム
JP2002335015A (ja) * 2001-05-09 2002-11-22 Rohm Co Ltd 半導体発光素子
JP2002358035A (ja) * 2001-06-04 2002-12-13 Nichia Chem Ind Ltd Led照明装置
JP2004128408A (ja) * 2002-10-07 2004-04-22 Masayoshi Hoshino 発光部材およびそれを用いた照明ランプ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329758B1 (en) * 1994-12-20 2001-12-11 Unisplay S.A. LED matrix display with intensity and color matching of the pixels
US5938312A (en) * 1995-09-22 1999-08-17 Rohm Co., Ltd. Surface mounting type light emitting display device, process for making the same, and surface mounting structure of the same
TW408497B (en) * 1997-11-25 2000-10-11 Matsushita Electric Works Ltd LED illuminating apparatus
JP2004254190A (ja) * 2003-02-21 2004-09-09 Seiko Epson Corp 電子回路、電子装置、電気光学装置及び電子機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113466U (ja) * 1991-03-19 1992-10-05 株式会社シチズン電子 チツプ型発光ダイオード
JPH073155U (ja) * 1993-06-15 1995-01-17 スタンレー電気株式会社 Ledランプ
JPH0710790U (ja) * 1993-07-27 1995-02-14 株式会社コスモ Ledの発光色合成を利用した簡易な多色表示方式
JPH11163412A (ja) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd Led照明装置
JP2001203427A (ja) * 2000-01-20 2001-07-27 Canon Inc 波長多重面型発光素子装置、その製造方法およびこれを用いた波長多重伝送システム
JP2002335015A (ja) * 2001-05-09 2002-11-22 Rohm Co Ltd 半導体発光素子
JP2002358035A (ja) * 2001-06-04 2002-12-13 Nichia Chem Ind Ltd Led照明装置
JP2004128408A (ja) * 2002-10-07 2004-04-22 Masayoshi Hoshino 発光部材およびそれを用いた照明ランプ

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9226383B2 (en) 2003-01-02 2015-12-29 Cree, Inc. Group III nitride based flip-chip integrated circuit and method for fabricating
JP2007227678A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd 発光ダイオードを用いた白色照明装置
KR101316495B1 (ko) * 2006-04-21 2013-10-10 니치아 카가쿠 고교 가부시키가이샤 발광 장치
JP2007311736A (ja) * 2006-04-21 2007-11-29 Nichia Chem Ind Ltd 発光装置
KR101356262B1 (ko) * 2006-04-21 2014-01-28 니치아 카가쿠 고교 가부시키가이샤 발광 장치
JP2012114450A (ja) * 2006-04-21 2012-06-14 Nichia Chem Ind Ltd 発光装置
WO2008050679A1 (fr) * 2006-10-25 2008-05-02 Panasonic Electric Works Co., Ltd. Circuit d'éclairage de diode électroluminescente et appareil d'éclairage utilisant ledit circuit
JP2008108564A (ja) * 2006-10-25 2008-05-08 Matsushita Electric Works Ltd Led点灯回路およびそれを用いる照明器具
JP2008108565A (ja) * 2006-10-25 2008-05-08 Matsushita Electric Works Ltd Led点灯回路およびそれを用いる照明器具
JP2008130989A (ja) * 2006-11-24 2008-06-05 Matsushita Electric Works Ltd Led点灯回路およびそれを用いる照明器具
JP2008211132A (ja) * 2007-02-28 2008-09-11 Koa Corp 発光部品
JP2012216856A (ja) * 2007-07-17 2012-11-08 Cree Inc 一体型定電流駆動回路を有するled
WO2009037888A1 (ja) * 2007-09-22 2009-03-26 Krongthip Innovation Inc. 多色発光ダイオード及びそれを用いた電飾ケーブル
WO2010021261A1 (ja) * 2008-08-21 2010-02-25 株式会社福産コーポレーション 発光素子およびその発光色制御システム
JP2013502066A (ja) * 2009-08-13 2013-01-17 セミエルイーディーズ オプトエレクトロニクス カンパニー リミテッド 発光ダイオードを含む高機能集積発光システム、及び、特定用途向け集積回路(asic)
US10149363B2 (en) 2010-04-08 2018-12-04 Ledengin, Inc. Method for making tunable multi-LED emitter module
JP2018502447A (ja) * 2014-11-26 2018-01-25 エルイーディエンジン・インコーポレーテッド 穏やかな調光及び色調整可能なランプ用のコンパクトエミッタ
US10172206B2 (en) 2014-11-26 2019-01-01 Ledengin, Inc. Compact emitter for warm dimming and color tunable lamp
CN107710424A (zh) * 2015-08-06 2018-02-16 林谊 Led像素点、发光组件、发光面板和显示屏
JP2017045855A (ja) * 2015-08-26 2017-03-02 大日本印刷株式会社 フレキシブル透明基板及びそれを用いたシースルー型のled表示装置
JP2020111313A (ja) * 2019-01-11 2020-07-27 億光電子工業股▲ふん▼有限公司Everlight Electronics Co.,Ltd. 車両用照明装置

Also Published As

Publication number Publication date
US20070295975A1 (en) 2007-12-27
JPWO2006001352A1 (ja) 2008-07-31

Similar Documents

Publication Publication Date Title
WO2006001352A1 (ja) 発光素子
US8669722B2 (en) Color temperature adjustment for LED lamps using switches
US6841931B2 (en) LED lamp
US20050012457A1 (en) Light-emitting semiconductor device packaged with light-emitting diode and current-driving integrated circuit
US20110037081A1 (en) White light-emitting diode packages with tunable color temperature
US8017955B2 (en) Composite LED modules
KR20040062374A (ko) 혼색 발광 다이오드
EP2527728B1 (en) Variable color light emitting device and illumination apparatus using the same
CN104106140A (zh) 有源发光二极管模块
KR100586734B1 (ko) 발광반도체소자
JP2009076684A (ja) 発光装置および灯具
JP2006108517A (ja) Led接続用基板及びそれを用いた照明装置及びそれを用いた表示装置
JP4749975B2 (ja) 発光ダイオードのパッケージ構造
US20200053852A1 (en) Light emitting device
CN114183724B (zh) 灯具单元以及车辆用灯具
KR20070070237A (ko) 정합형 발광 다이오드 및 그 제조방법
KR20050001521A (ko) 4 리드의 다색 발광 소자
JP2006054336A (ja) 発光素子
KR100707870B1 (ko) 복수개의 발광 다이오드칩이 배치된 발광 다이오드 패캐지
JP2006054312A (ja) 発光素子
JP2006135007A (ja) 発光素子
US20070152909A1 (en) Led device
US20240063355A1 (en) Optoelectronic component, luminescent assembly and mounting strap
JP2006135006A (ja) 発光素子
JP3098474U (ja) 発光ダイオードのフリップチップ構造

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528603

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11630140

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11630140

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载