+

WO2006001296A1 - テアニンの製造法 - Google Patents

テアニンの製造法 Download PDF

Info

Publication number
WO2006001296A1
WO2006001296A1 PCT/JP2005/011420 JP2005011420W WO2006001296A1 WO 2006001296 A1 WO2006001296 A1 WO 2006001296A1 JP 2005011420 W JP2005011420 W JP 2005011420W WO 2006001296 A1 WO2006001296 A1 WO 2006001296A1
Authority
WO
WIPO (PCT)
Prior art keywords
theanine
dartaminase
culture supernatant
solution
derived
Prior art date
Application number
PCT/JP2005/011420
Other languages
English (en)
French (fr)
Inventor
Yukitaka Okada
Makoto Ozeki
Nobuyuki Aoi
Original Assignee
Taiyokagaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyokagaku Co., Ltd. filed Critical Taiyokagaku Co., Ltd.
Priority to US11/571,074 priority Critical patent/US8211674B2/en
Priority to AU2005257281A priority patent/AU2005257281B2/en
Priority to CA2570828A priority patent/CA2570828C/en
Priority to KR1020077001224A priority patent/KR101189613B1/ko
Priority to EP05752874A priority patent/EP1764416A4/en
Priority to JP2006528552A priority patent/JP4874105B2/ja
Priority to CN2005800218335A priority patent/CN1977047B/zh
Publication of WO2006001296A1 publication Critical patent/WO2006001296A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine

Definitions

  • the present invention relates to a novel method for producing theanine.
  • Theanine is known as a main component of the umami of green tea, and is an important substance as a flavor component of foods including tea. It has been pointed out that ⁇ -daltamyl derivatives containing theanine act as bioactive substances in animals and plants. For example, Chem. Parm. Bull., 19 (7) 1301—1307 (1971) has been reported to antagonize convulsions induced by theanine or L-gnoretamine S-caffeine. From this, it is considered that these compounds act on the central nervous system, and are expected to be useful as physiologically active substances.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 225789
  • Patent Document 2 Japanese Patent Laid-Open No. 5-328986
  • Non-patent literature l Chem. Parm. Bull., 19 (7) 1301— 1307 (1971)
  • the present invention has been made in view of the above problems, and an object thereof is to provide an efficient method for producing theanine.
  • the inventors have used a dartaminase derived from one or more microorganisms of the genus Bacillus, brilliant or yeast, and It was found that the synthesis was possible in a high yield and the by-product was very small, and the present invention was basically completed. That is, the gist of the present invention relates to a method for producing theanine, characterized in that a mixture of glutamine and ethylamine derivatives is allowed to act on one or more microorganisms of the genus Bacillus, fungi, or yeast. .
  • the present invention it is possible to provide an efficient new method for producing theanine and to enable simple and industrially advantageous production. That is, by using dalutaminase derived from one or more microorganisms of the genus Bacillus, mold, or yeast, a conversion rate to theanine is recognized higher than before, and industrial production becomes possible.
  • Theanine used in the present invention is a glutamic acid derivative contained in tea leaves, which is a main component of the umami of tea and is used as a food additive for the purpose of taste. Specifically, it is a compound referred to as ⁇ -daltamylethylamide, L-glutamic acid- ⁇ ethylamide or the like.
  • the ethylamine derivatives used in the present invention are ethylamine, ethylamine hydrochloride, ethylamine salt oxalate, ethylamine fatty acid salt, ethylamine picrate, ⁇ benzenesulfol compound, ethylamine ⁇ - ⁇ toluene Forces including sulfole compounds and the like, but not limited thereto.
  • ethylamine and ethylamine hydrochloride are particularly preferred.
  • the dartaminase in the present invention has a dartaminase activity that hydrolyzes L-glutamine to produce L-glutamic acid, and is used for improving the umami taste of fermented foods such as miso soy sauce. It is what. Daltaminase is known to have higher ⁇ -daltamyl transfer activity than hydrolysis activity under alkaline conditions, and can also be used for the synthesis of alkylamides including thean.
  • the dartaminase activity in the present invention is measured by quantifying L-glutamic acid produced by the action of an enzyme using L-glutamine as a substrate.
  • the amount of L-glutamic acid produced can be measured using a commercially available kit, for example, F kit L-glutamic acid (Roche Diagnostics).
  • F kit L-glutamic acid As the unit of this enzyme, the amount of enzyme that produces 1 / z mol of glutamic acid per minute was defined as “mU”.
  • this definition was used to define the amount of enzyme per mg protein in solution as the specific activity of dalutaminase “mUZmg”.
  • the Bacillus genus in the present invention is a microorganism having various properties such as Gram-positive aerobic bacteria, Neisseria gonorrhoeae, spore-forming ability and motility.
  • the origin of Daltaminase derived from the genus Bacillus in the present invention is not particularly limited and is preferably ⁇ , preferably ⁇ .
  • An enzyme derived from thermoproteolyticus From the viewpoint that bacteria with particularly high glutaminase activity are preferred, Bacillus subtilis, Bacillus amyloli are most preferred.
  • daltaminase derived from the genus Bacillus those produced by a modified bacterium such as genetic recombination by applying biotechnology can be used.
  • the fungus in the present invention is a general term for fungi that form an indefinite aggregate in which mycelia are entangled, and is found in a large number of algae, ascomycetes and some basidiomycetes. It is done.
  • the origin of mold-derived dartaminase in the present invention is not particularly limited, and is preferably an enzyme derived from Aspergillus oryzae, Aspergillus niger, Penicillium notatum, Rizopus s tolonifer, Mucor sponosus. From the viewpoint that bacteria having a particularly high glutaminase specific activity are preferable, glutaminase derived from Aspergillus oryzae or Aspergillus niger is most preferable.
  • mold-derived dartaminase can also be produced by applying biotechnology and using modified bacteria such as gene recombination.
  • the yeast in the present invention is a fungus belonging to an ascomycetous fungus. It does not contain chlorophyll and breeds by budding, but it may be due to division. Used in the production of alcoholic beverages, soy sauce and bread.
  • the origin of the yeast-derived dartaminase in the present invention is not particularly limited, and is an enzyme derived from Saccharomyces cerevisiae, Saccharomyces rouxn, Candida utilis, and ndida antarctica, Hansenulla anomala, Schizosaccaromyces octosporus. From the viewpoint that a bacterium having a particularly high activity of daltaminase is preferable, most preferred is glutaminase derived from Saccharomyces cerevisiae, saccharomyces rouxn, Candida utilis, and anmda anta rctica.
  • yeast-derived daltaminase can be produced by applying biotechnology to produce modified bacteria such as genetic recombination.
  • dartaminase derived from microorganisms such as the genus Bacillus, mold, yeast, etc.
  • (1) the microorganism itself or (2) a crude enzyme from which microbial power is also extracted can be used.
  • purified dartaminase for microbial activity.
  • Any known enzyme purification method may be used as the purification method for dartaminase. For example, column chromatography, partitioning with solvents, dialysis, ultrafiltration, electrolysis Examples include electrophoresis, fractional salting out with neutral salts, fractional precipitation using alcohol and acetone, and HPLC.
  • dartaminase is preferably purified by a combination of solvent partitioning, various types of chromatography, and HPLC. Further, CM-cellulose column chromatography, Sephadex G150 column chromatography, hydroxyapatite column chromatography, and butyl Toyopearl column chromatography may be combined.
  • the method for producing theanine according to the present invention includes one or more of the genera Bacillus, Penicillium, Rizopus, Mucor, Aspergillus J3 ⁇ 4, Hansenulla, Schizosaccaromyces, and Candida. It is preferable to cause a glutaminase derived from a microorganism to act on glutamine and an ethylamine derivative. In this case, it is preferable that (1) the culture supernatant of these microorganisms is cultured under conditions where the specific activity of dartaminase is lOmUZ mg or more. (2) Daltaminase is the main product in the present invention. It is also preferable to use a compound having a ratio of theanine which is a by-product and glutamic acid which is a by-product (theanine Z-glutamic acid) is greater than 5 in order to reduce the by-product.
  • the liquidity during the synthesis of the theanine enzyme in the present invention is not particularly limited, but the pH is more preferably about 10 to L: about 9 to 12 is more preferable.
  • the reaction temperature is not particularly limited, but is preferably about 4 ° C to 30 ° C, preferably about 0 ° C to 45 ° C.
  • the concentration of L-glutamine or ethylamine derivative used as a substrate is not particularly limited, but is preferably about 0.1 mol or more of L-glutamine and about 1 mol or more of ethylamine derivative.
  • L-glutamine includes a suitable inorganic salt or organic salt such as potato salt containing pure L-glutamine and L-glutamine sodium salt.
  • any known amino acid purification method may be used, for example, column chromatography, partition using a solvent, dialysis, crystallization. Examples thereof include ultrafiltration, electrophoresis, fractional salting out with neutral salt, fractional precipitation using alcohol and acetone, and HPLC. Of these, it is preferable to combine solvent partitioning, various types of chromatography, and HPLC.
  • CM—Senorelose column chromatography, Cefadex G150 column chromatography, Nodoxyapatite column chromatography, Butyl Toyopearl column chromatography One may be combined.
  • the carrier in the present invention is for immobilizing daltaminase, for example, celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics and other inorganic carriers, ceramic powder And organic polymers such as polybulal alcohol, polypropylene, chitosan, ion exchange resin, hydrophobic adsorption resin, chelate resin, and synthetic adsorption resin, but are not limited thereto.
  • daltaminase for example, celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics and other inorganic carriers, ceramic powder And organic polymers such as polybulal alcohol, polypropylene, chitosan, ion exchange resin, hydrophobic adsorption resin, chelate resin, and synthetic adsorption resin, but are not limited thereto.
  • Bacillus subtilis was cultured at a temperature of 30 ° C. in a pH 7.0 medium containing 0.3% glucose, 3.0% polypeptone, 1.0% yeast extract, and 0.5% sodium chloride.
  • the obtained culture broth was centrifuged to obtain a culture supernatant.
  • Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected.
  • the obtained precipitate was dissolved in a phosphate buffer solution (PH7.0) and dialyzed.
  • the dialysate was adsorbed using DEAE—Sepharose Fast Flow, and the purity of the protein was increased by elution with a salt solution.
  • the obtained dartaminase solution was concentrated and desalted using UF membrane (UFP-5-C-3MA) (Amersham Biosciences) to obtain purified dartaminase.
  • the specific activity of dalutaminase in the culture supernatant was 67 mU / mg.
  • Bacillus amyloliquefaciens was cultured at a temperature of 30 ° C. in a pH 7.0 medium containing 0.3% glucose, 3.0% polypeptone, 1.0% yeast extract and 0.5% sodium chloride sodium. The obtained culture solution was centrifuged to obtain a culture supernatant. Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected. The resulting precipitate was dissolved in a phosphate buffer solution (PH7.0) and dialyzed. The dialysate was adsorbed using DEAE—Sepharose Fast Flow and then the purity of the protein was increased by elution with a salt solution.
  • PH7.0 phosphate buffer solution
  • the obtained dartaminase solution was concentrated and removed using UF membrane (UFP-5-C-3MA) (Amersham Biosciences). Salting was performed to obtain purified dartaminase.
  • the specific activity of dalutaminase in the culture supernatant was 53 mU / mg.
  • Bacillus coagulans was cultured at a temperature of 30 ° C. in a pH 7.0 medium containing 0.3% glucose, 3.0% polypeptone, 1.0% yeast extract, and 0.5% sodium chloride. The obtained culture solution was centrifuged to obtain a culture supernatant. Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected. The resulting precipitate was dissolved in a phosphate buffer solution (PH7.0) and analyzed. The dialysate was adsorbed using DEAE—Sepharose Fast Flow, and the purity of the protein was increased by elution with a salt solution.
  • PH7.0 phosphate buffer solution
  • the obtained dartaminase solution was concentrated and desalted using a UF membrane (UFP-5-C-3MA) (Amersham Biosciences) to obtain purified dartaminase.
  • the specific activity of dalutaminase in the culture supernatant was 43 mUZ mg.
  • Bacillus licheniformis was cultured at a temperature of 30 ° C. in a pH 7.0 medium containing 0.3% glucose, 3.0% polypeptone, 1.0% yeast extract, and 0.5% sodium chloride. The obtained culture solution was centrifuged to obtain a culture supernatant. Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected. The resulting precipitate was dissolved in a phosphate buffer solution (PH7.0) and analyzed. The dialysate was adsorbed using DEAE—Sepharose Fast Flow, and the purity of the protein was increased by elution with a salt solution.
  • PH7.0 phosphate buffer solution
  • the obtained dartaminase solution was concentrated and desalted using a UF membrane (UFP-5-C-3MA) (Amersham Biosciences) to obtain purified dartaminase.
  • the specific activity of dalutaminase in the culture supernatant was 40 mUZ mg.
  • Bacillus cereus was cultured at a temperature of 30 ° C. in a pH 7.0 medium containing 0.3% glucose, 3.0% polypeptone, 1.0% yeast extract, and 0.5% sodium chloride.
  • the obtained culture broth was separated by centrifugation to obtain a culture supernatant.
  • Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected.
  • the obtained precipitate was dissolved in a phosphate buffer solution (PH7.0) and dialyzed.
  • the dialysate is adsorbed using DEAE—Sepharose Fast Flow and then salt solution. Elution with increased the purity of the protein.
  • the obtained dartaminase solution was concentrated and desalted using a UF membrane (UF P-5-C-3MA) (Amershamnoscience Co., Ltd.) to obtain purified dartaminase.
  • the specific activity of dalutaminase in the culture supernatant was 5 mU / mg.
  • theanine was synthesized enzymatically under the conditions of 10mL of substrate solution (0.5M L-glutamine and various concentrations of ethylamine) at pH 10.0 and temperature 30 ° C.
  • the amount of theanine and glutamic acid in the enzyme reaction solution in which the enzyme synthesis of theanine was performed were quantified by subjecting the reaction solution to appropriate dilution and applying HPLC. Using the obtained theanine amount (mol / L) and glutamic acid amount (molZL), the molar conversion rate (%) from the glutamine amount (molZL) of the substrate was calculated.
  • Thean products L _Theanine Kurita Industry Co., Ltd.
  • Test Example 1 Synthesis of theanine enzyme by glutaminase derived from the genus Bacillus and glutaminase derived from the genus Pseudomonas
  • the theanine enzyme synthesis test was conducted under the conditions of Example 6 using the dartaminase derived from each microorganism prepared in Examples 1 to 5 and Comparative Example 1.
  • the amount of theanine and the amount of glutamic acid after the test were measured under the conditions of Example 7.
  • the test results are shown in Fig. 1.
  • the molar conversion rate of L-glutamine strength to theanine was 50% or more.
  • the molar conversion rates of glutaminase in Examples 1 to 4 were as high as 78%, 76%, 72%, and 70%, respectively.
  • the molar conversion rate of L-glutamine to L-glutamic acid (by-product production) was as low as 6% or less for the dartaminase of Examples 1 to 4.
  • Force Example 5 and Comparative Example 1 Daltaminase showed a high value of 15% or more.
  • the molar conversion rate to L-glutamic acid as a by-product is low in addition to the high molar conversion rate to theanine. By doing so, the purification process of theanine can be simplified.
  • Aspergilus oryzae was cultivated at a temperature of 30 ° C. in a medium of pH 5.0 containing 2.0% of monolet extract (Malt extract), 2.0% of glucose, 0.1% of peptone and 0.1% of yeast extract (Yeast extract).
  • the obtained culture solution was centrifuged to obtain a culture supernatant.
  • Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected.
  • the resulting precipitate is converted into a phosphate buffer solution. It was dissolved in (pH 7.0) and dialyzed.
  • the dialysate was adsorbed using DEAE—Sepharose Fast Flow, and the purity of the protein was increased by elution with a salt solution.
  • the obtained dartaminase solution was concentrated and desalted using UF membrane (UFP-5-C-3MA) (Amersham Biosciences) to obtain purified dartaminase.
  • the specific activity of dalutaminase in the culture supernatant was 42 mUZmg.
  • Aspergilus niger was cultured at a temperature of 30 ° C. in a pH 5.0 medium containing malt extract 2.0%, glucose 2.0%, peptone 0.1%, and yeast extract 0.1%.
  • the obtained culture solution was centrifuged to obtain a culture supernatant.
  • Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected.
  • the obtained precipitate was dissolved in a phosphate buffer solution (PH7.0) and dialyzed.
  • the dialysate was adsorbed using DEAE—Sepharose Fast Flow, and the purity of the protein was increased by elution with a salt solution.
  • the obtained dartaminase solution was concentrated and desalted using a UF membrane (UFP-5-C-3MA) (Amershamno Science Co., Ltd.) to obtain a purified dartaminase.
  • the specific activity of dartaminase in the culture supernatant was 39 mUZmg.
  • Rizopus stolonifer was cultured at a temperature of 30 ° C. in a medium of pH 5.0 containing 2.0% malt extract, 2.0% glucose, 0.1% peptone and 0.1% yeast extract.
  • the obtained culture broth was separated by centrifugation to obtain a culture supernatant.
  • Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected.
  • the obtained precipitate was dissolved in a phosphate buffer solution (PH7.0) and dialyzed.
  • the dialysate was adsorbed using DEAE—Sepharose Fast Flow, and the purity of the protein was increased by elution with a salt solution.
  • the obtained dartaminase solution was concentrated and desalted using a UF membrane (UF P-5-C-3MA) (Amershamnoscience Co., Ltd.) to obtain purified dartaminase.
  • the specific activity of dalutaminase in the culture supernatant was 15mUZmg.
  • Mucor sponosus was cultured at a temperature of 30 ° C. in a pH 5.0 medium containing malt extract 2.0%, glucose 2.0%, peptone 0.1%, and yeast extract 0.1%. Centrifuge the obtained culture broth Separated to obtain a culture supernatant. Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected. The obtained precipitate was dissolved in a phosphate buffer solution (PH7.0) and dialyzed. The dialysate was adsorbed using DEAE—Sepharose Fast Flow, and the purity of the protein was increased by elution with a salt solution.
  • PH7.0 phosphate buffer solution
  • the obtained dartaminase solution was concentrated and desalted using a UF membrane (UFP-5-C-3MA) (Amershamno Science Co., Ltd.) to obtain a purified dartaminase.
  • the specific activity of dartaminase in the culture supernatant was 5 mUZmg.
  • Test Example 2 Theanine enzyme synthesis by mold-derived glutaminase and Pseudomonas genus glutaminase
  • the theanine enzyme synthesis test was conducted under the conditions of Example 6 using the dartaminase derived from each microorganism prepared in Examples 8 to 11 and Comparative Example 1.
  • the amount of theanine and the amount of glutamic acid after the test were measured under the conditions of Example 7.
  • the test results are shown in FIG.
  • the molar conversion rate to L-glutamic acid as a by-product is low in view of the high molar conversion rate to theanine. Then, the purification process of theanine can be simplified.
  • a glutaminase derived from mold particularly, Aspergillus genus, Rizopus genus, Mucor genus
  • the culture supernatant had a dartaminase specific activity of lOmUZmg or more.
  • Saccharomyces cerevisiae with malt extract 0.3%, yeast extract 0.3%, peptone 0.5% The cells were cultured at a temperature of 30 ° C. in a pH 5.0 medium containing 1.0% glucose. The obtained culture solution was centrifuged to obtain a culture supernatant. Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected. The resulting precipitate was dissolved in a phosphate buffer solution (PH7.0) and analyzed. The dialysate was adsorbed using DEAE—Sepharose Fast Flow, and the purity of the protein was increased by elution with a salt solution.
  • PH7.0 phosphate buffer solution
  • the obtained dartaminase solution was concentrated and desalted using a UF membrane (UFP-5-C-3MA) (Amersham Biosciences) to obtain purified dartaminase.
  • the specific activity of dalutaminase in the culture supernatant was 45 mUZ mg.
  • Saccharomyces rouxii was cultured at a temperature of 30 ° C. in a pH 5.0 medium containing 0.3% malt extract, 0.3% yeast extract, 0.5% peptone and 1.0% glucose.
  • the obtained culture broth was centrifuged to obtain a culture supernatant.
  • Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected.
  • the resulting precipitate was dissolved in a phosphate buffer solution (PH7.0) and dialyzed.
  • the dialysate was adsorbed using DEAE—Sepharose Fast Flow, and the purity of the protein was increased by elution with a salt solution.
  • the obtained dartaminase solution was concentrated and desalted using a UF membrane (UFP-5-C-3MA) (Amersham Biosciences) to obtain purified dartaminase.
  • the specific activity of dalutaminase in the culture supernatant is about 40mUZmg.
  • Candida utilis was cultured at a temperature of 30 ° C. in a medium having a pH of 5.0 containing malt extract 0.3%, yeast extract 0.3%, peptone 0.5% and dalcose 1.0%.
  • the obtained culture solution was centrifuged to obtain a culture supernatant.
  • Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected.
  • the obtained precipitate was dissolved in a phosphate buffer solution (PH7.0) and dialyzed.
  • the dialysate was adsorbed using DEAE—Sepharose Fast Flow, and the purity of the protein was increased by elution with a salt solution.
  • Candida antarctica was cultured at a temperature of 30 ° C. in a pH 5.0 medium containing 0.3% malt extract, 0.3% yeast extract, 0.5% peptone and 1.0% glucose. The obtained culture broth was separated by centrifugation to obtain a culture supernatant. Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected. The obtained precipitate was dissolved in a phosphate buffer solution (PH7.0) and dialyzed. The dialysate was adsorbed using DEAE—Sepharose Fast Flow, and the purity of the protein was increased by elution with a salt solution.
  • PH7.0 phosphate buffer solution
  • the obtained dartaminase solution was concentrated and desalted using a UF membrane (UF P-5-C-3MA) (Amershamnoscience Co., Ltd.) to obtain purified dartaminase.
  • the specific activity of dalutaminase in the culture supernatant was 25 mUZmg o
  • Hansenulla anomala was cultured at a temperature of 30 ° C. in a pH 5.0 medium containing malt extract 0.3%, yeast extract 0.3%, peptone 0.5% and glucose 1.0%.
  • the obtained culture broth was separated by centrifugation to obtain a culture supernatant.
  • Cold ethanol was added to the culture supernatant, and the resulting precipitate was centrifuged and collected.
  • the obtained precipitate was dissolved in a phosphate buffer solution (PH7.0) and dialyzed.
  • the dialysate was adsorbed using DEAE—Sepharose Fast Flow, and the purity of the protein was increased by elution with a salt solution.
  • the obtained dartaminase solution was concentrated and desalted using a UF membrane (UF P-5-C-3MA) (Amershamnoscience Co., Ltd.) to obtain purified dartaminase.
  • the specific activity of dalutaminase in the culture supernatant was 15mUZmg.
  • Test Example 3 Theanine enzyme synthesis by glutaminase derived from yeast and glutaminase derived from Pseudomonas genus
  • the theanine enzyme synthesis test was carried out under the conditions of Example 6 using the daltaminase derived from each genus prepared in Examples 12 to 16 and Comparative Example 1.
  • the amount of theanine and the amount of glutamic acid after the test were measured under the conditions of Example 7.
  • the test results are shown in FIG.
  • the molar conversion rate to L-glutamine strength theanine was 50% or more.
  • the molar conversion rates of dartaminase in Example 12 to Example 15 are as high as 70% or more, respectively. I got it.
  • the molar conversion rate of L glutamine to L glutamic acid was 10% for the glutaminase of Comparative Example 1 in which the deviation was low for the dullaminase of Examples 12 to 15. It was high.
  • the molar conversion rate to L-dalamic acid which is a by-product
  • the purification process of theanine can be simplified.
  • a commercially available chitopearl 4010 (Fujibo Co., Ltd.), a chitosan bead, was immersed in 50 mM sodium phosphate buffer (PH7.4) for 24 hours. After equilibration, 10 mL of Chitopearl 4010 was immersed in 25 mL of dartaminase (15 mgZmL) prepared in Example 3, and shaken for about 2 hours. Thereafter, Chitopearl 4010 from which the adhering liquid had been removed was added to a 2.5% dartalaldehyde solution, and the mixture was further shaken for 2 hours. After treatment with dartalaldehyde, it was washed with 30 volumes of 50 mM sodium phosphate buffer (PH7.4) until the absorbance (280 nm) was 0.01 or less, and filled into a force ram.
  • Diaion HPA25 (Mitsubishi Chemical Corporation), which is an anion-exchanged resin, was added to 25 mL of the purified daltaminase (15 mgZmL) obtained in Example 3, and then shaken for about 2 hours. Thereafter, HPA25 from which the adhering liquid had been removed was added to a 2.5% dartalaldehyde solution and further shaken for 2 hours. After treatment with dartalaldehyde, wash with 30 volumes of 50 mM sodium phosphate buffer (PH7.4) until the absorbance (280 nm) is 0.01 or less, and fill the column. Filled.
  • PH7.4 50 mM sodium phosphate buffer
  • Example 20 Enzymatic reaction with immobilized hydraltaminase
  • FIG. 1 A table showing the amounts of synthetic thea and glutamate when L-glutamine and ethylamine were also synthesized with theanine using glutaminase derived from the genus Bacillus and glutaminase derived from the genus Pseudomonas.
  • FIG. 2 is a table showing the amounts of synthesized theanine and glutamate when L-glutamine and ethylamine strength theanine were enzymatically synthesized using mold-derived glutaminase and glutaminase derived from the genus Pseudomonas.
  • FIG. 3 Synthetic theanine content when L-glutamine and ethylamine strength theanine are enzymatically synthesized using glutaminase derived from yeast and glutaminase derived from the genus Pseudomonas It is the table
  • FIG. 4 is a graph showing IR spectra of a theanine sample and an isolated substance.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

 本発明は、テアニンの効率的な新規製造法を提供し、副産物が少なく、簡易かつ工業的に有利なテアニン生産を可能とすることを目的とする。グルタミンとエチルアミン誘導体の混合物に、Bacillus属、カビ(特に、Aspergillus属、Rizopus属、Mucor属)、または酵母(特に、Hansenulla属、Saccharomyces属、Candida属)由来のうちの一種または二種以上の微生物由来のグルタミナーゼを用いることで上記課題が解決される。

Description

明 細 書
テアニンの製造法
技術分野
[0001] 本発明は、テアニンの新規な製造法に関する。
背景技術
[0002] テアニンは、緑茶の旨味の主要成分として知られ、茶をはじめとする食品の香味成 分として重要な物質である。テアニンを含む γ —ダルタミル誘導体は、動物及び植物 体における生理活性物質として作用することが指摘されている。例えば、 Chem. Par m. Bull. , 19 (7) 1301— 1307 (1971)に ίま、テアニンや Lーグノレタミンカ Sカフエイ ンによって誘発される痙攣に拮抗することが報告されて 、る。このことからこれらのィ匕 合物が中枢神経系に作用することが考えられ、生理活性物質としての有用性が期待 されている。
[0003] 従来より、テアニンの製造方法としては、テアニンを含有する玉露の生産用茶園に おいて得られる茶葉乾燥物より抽出する方法が一般的である。しかし、この方法を用 いた場合、次の二つの短所がある。すなわち、(1)テア-ンは茶葉乾燥物あたり、わ ずか 1.5%前後程度しか蓄積されない、及び (2)—般の煎茶用茶園では光合成が活 発であるため、合成されたテアニンが速やかに分解され、蓄積量が少ない。従って、 茶葉乾燥物からの抽出法では、工業的に十分な量のテアニンを生産することが難し ぐ実用的ではないことが指摘されている。
[0004] このようなことから、工業的生産方法の開発が期待されており、その一つとして、テ ァニンをィ匕学的に有機合成する方法が報告されている(前述: Chem. Parm. Bull. , 19 (7) 1301— 1307 (1971) )。しかし、この有機合成反応は収率が低ぐ合成物 の分離精製等にぉ 、て煩雑な操作を必要とすると 、う問題点が指摘されて 、る。 また、別の工業的生産方法として、 Pseudomonas属由来のグルタミナーゼの γ— ダルタミル基転移反応を利用して、 L—グルタミンとェチルアミンカもテアニンを合成 する酵素法が報告されている(特開平 1卜 225789)。加えて、この酵素を担体に固 定化した酵素法が開発されている(特開平 5— 328986)。し力し、 Pseudomonas属 由来のダルタミナーゼを用いた場合には、テアニンを合成する反応と共に、加水分解 反応によって L グルタミン酸が副反応物として合成されてしまう。このため、副産物 としての L グルタミン酸力 テアニン精製を煩雑にするという問題点がある。
[0005] 特許文献 1 :特開平 11 225789号公報
特許文献 2:特開平 5— 328986号公報
非特許文献 l : Chem. Parm. Bull. , 19 (7) 1301— 1307 (1971)
発明の開示
発明が解決しょうとする課題
[0006] 本発明は上記問題に鑑みてなされたものであり、その目的はテアニンの効率的な 製造法を提供することにある。
課題を解決するための手段
[0007] 発明者らは前記の課題を解決するために鋭意研究を重ねた結果、 Bacillus属、力 ビ、または酵母のうちの一種または二種以上の微生物由来のダルタミナーゼを用い、 テア-ンを高収率で合成でき、かつ副産物が極めて少量であることを見い出し、基本 的には本発明を完成させるに至った。即ち、本発明の要旨はグルタミンとェチルアミ ン誘導体の混合物に Bacillus属、カビ、または酵母のうちの一種または二種以上の 微生物由来のダルタミナーゼを作用させることを特徴とするテアニンの製造法に関す る。
発明の効果
[0008] 本発明によれば、テアニンの効率的な新規製造法を提供し、簡易かつ工業的有利 な生産を可能とすることができる。すなわち、 Bacillus属、カビ、または酵母のうちの 一種または二種以上の微生物由来のダルタミナーゼを用いることにより、従来よりも 高 、テアニンへの転換率が認められ、工業的な生産が可能となる。
発明を実施するための最良の形態
[0009] 次に、本発明の実施形態について、詳細に説明するが、本発明の技術的範囲は、 下記の実施形態によって限定されるものではなぐその要旨を変更することなぐ様 々に改変して実施することができる。また、本発明の技術的範囲は、均等の範囲にま で及ぶものである。
[0010] 本発明に用いられるテアニンとは、茶の葉に含まれているグルタミン酸誘導体で、 茶の旨味の主成分であって、呈味を用途とする食品添加物として使用されている。具 体的には、 γ—ダルタミルェチルアミド、 L—グルタミン酸— γ ェチルアミドなどと称 する化合物である。
本発明に用いられるェチルァミン誘導体とは、ェチルァミン、ェチルァミン塩酸塩、 ェチルアミン塩ィ匕金酸塩、ェチルァミン脂肪酸塩、ェチルァミンピクラート、ェチルァ ミンの Ν ベンゼンスルホ-ル化合物、ェチルァミンの Ν— ρ トルエンスルホ -ル化 合物等が挙げられる力 これらに限定されない。また、特にこれらのうち、ェチルアミ ン、ェチルァミン塩酸塩を用いることが好ましい。
[0011] 本発明におけるダルタミナーゼとは、 L—グルタミンを加水分解して L—グルタミン酸 を生成するダルタミナーゼ活性を有し、味噌'醤油等の醱酵食品のうま味向上'呈味 性向上に用いられているものである。ダルタミナーゼは、アルカリ条件下において、 γ -ダルタミル転移活性が加水分解活性よりも高くなることが知られており、テア-ンをは じめとしたアルキルアミドの合成にも利用できる。
[0012] 本発明におけるダルタミナーゼ活性は、 L—グルタミンを基質として酵素を作用させ 、生成する L グルタミン酸を定量することにより測定される。生成した L グルタミン 酸量は、巿販のキット、例えば Fキット L グルタミン酸(ロシュ'ダイァグノスティックス 社)を用い測定することができる。本酵素の単位としては、 1分間当たり l /z molのグ ルタミン酸を生成する酵素量を「mU」と定義した。また、この定義を使用し、溶液中の 蛋白質 lmg当りの酵素量をダルタミナーゼ比活性「mUZmg」と定義した。
[0013] 本発明における Bacillus属とは、細胞形態学的に、グラム陽性の好気性菌、桿菌、 芽胞形成能、運動性を有するなどの諸性質を有する微生物である。
本発明における Bacillus属由来のダルタミナーゼの起源は特に限定されるもので ίまな ヽカ、好ましく【ま、 Bacillus subtilis, Bacillus amyloliquefaciens , Bacillus coagulan s, Bacillus lentus, Bacillus licheniformis, Bacillus polymixa, Bacillus stearothermophil us, Bacillus thermoproteolyticus由来の酵素である。グルタミナーゼ比活性が特に高 ぃ菌が好ましいという観点から見ると、最も好ましくは Bacillus subtilis, Bacillus amyloli quefaciens由来のグノレタミナーゼである。
また、 Bacillus属由来のダルタミナーゼは、バイオテクノロジーを応用して、遺伝子 組替え等の改変菌によって製造したものも用いることができる。
[0014] 本発明におけるカビとは、真菌類のうち、菌糸がからみ合った不定形の集合体をな すものの総称であり、藻菌類、子嚢菌類の多ぐおよび担子菌類の一部に見られる。 本発明におけるカビ由来のダルタミナーゼの起源は、特に限定されるものではない 、好ましく【ま、 Aspergillus oryzae, Aspergillus niger, Penicillium notatum, Rizopus s tolonifer, Mucor sponosus由来の酵素である。グルタミナーゼ比活性が特に高い菌が 好ましいという観点より、最も好ましくは Aspergillus oryzae, Aspergillus niger由来のグ ルタミナーゼである。
また、カビ由来のダルタミナーゼは、バイオテクノロジーを応用して、遺伝子組替え 等の改変菌によって製造したものも用いることができる。
[0015] 本発明における酵母とは、子嚢菌類に属する菌類である。葉緑素を含まず、出芽 によって繁殖するが、分裂によることもある。酒類、醤油、パンなどの製造に利用され る。
本発明における酵母由来のダルタミナーゼの起源は特に限定されるものではない 力、タ十 しく ίま、 Saccharomyces cerevisiae, Saccharomyces rouxn, Candida utilis, し a ndida antarctica, Hansenulla anomala, Schizosaccaromyces octosporus由来の酵素で ある。ダルタミナーゼ比活性が特に高い菌が好ましいという観点力 見ると、最も好ま し、は Saccharomyces cerevisiae, saccharomyces rouxn, Candida utilis, し anmda anta rctica由来のグルタミナーゼである。
また、酵母由来のダルタミナーゼは、バイオテクノロジーを応用して、遺伝子組替え 等の改変菌によって製造したものも用いることができる。
[0016] 上記 Bacillus属、カビ、酵母等の微生物由来のダルタミナーゼとしては、(1)微生 物そのもの、または(2)微生物力も抽出される粗酵素を用いることもできる。しかしな がら、テアニン転換率の観点から見ると、微生物力もダルタミナーゼを精製して用いる ことが好ましい。ダルタミナーゼの精製方法は、公知のいかなる酵素精製法を用いて も良い。例えば、カラムクロマトグラフィー、溶媒を用いた分配、透析、限外濾過、電 気泳動、中性塩による分別塩析、アルコール、アセトンを用いる分別沈殿法、 HPLC などを例示することができる。このうち溶媒分配および各種クロマトグラフィー、 HPLC を組み合わせて、ダルタミナーゼを精製することが好ましい。更に、 CM—セルロース カラムクロマトグラフィー、セフアデックス G150カラムクロマトグラフィー、ハイドロキシ アパタイトカラムクロマトグラフィー、ブチルトヨパールカラムクロマトグラフィーを組み 合わせても良い。
[0017] こうして、本発明に係るテアニンの製造法お 、ては、 Bacillus属、 Penicillium属、 Rizopus属、 Mucor属、 Aspergillus J¾、 Hansenulla晨、 Schizosaccaromyces 属、 Candida属のうちの一種または二種以上の微生物由来のグルタミナーゼをグル タミンとェチルァミン誘導体に作用させることが好ましい。この場合に、(1)これら微生 物の培養上清のダルタミナーゼ比活性が lOmUZmg以上となる条件で培養したも のである場合が好ましぐまた(2)ダルタミナーゼについては、本発明における主産 物であるテアニンと副産物であるグルタミン酸との比(テアニン Zグルタミン酸)が 5より も大であるものを用いることが副産物を軽減させる点力も好ましい。
[0018] 本発明におけるテアニン酵素合成時の液性は特に限定するものではないが、 pH は約 9〜12が好ましぐ約 10〜: L 1がより好ましい。また、反応温度は特に限定するも のではないが約 0°C〜45°Cが好ましぐ約 4°C〜30°Cがより好ましい。基質として使 用する L—グルタミン、ェチルァミン誘導体濃度は特に限定するものではないが、 L —グルタミン約 0.1モル以上、ェチルァミン誘導体約 1モル以上が好ましい。本発明 における L—グルタミンとは、純粋な L—グルタミンを含むほカゝ、 L—グルタミンナトリウ ム塩など、適当な無機塩あるいは有機塩を含む。
[0019] 本発明の方法によって合成されたテアニンを反応液から単離精製するには、公知 のいかなるアミノ酸精製法を用いても良ぐ例えばカラムクロマトグラフィー、溶媒を用 いた分配、透析、晶析、限外濾過、電気泳動、中性塩による分別塩析、アルコール、 アセトンを用いる分別沈殿法、 HPLCなどを例示することができる。このうち溶媒分配 および各種クロマトグラフィー、 HPLCを組み合わせることが好ましい。さらに CM— セノレロースカラムクロマトグラフィー、セフアデックス G150カラムクロマトグラフィー、ノヽ イドロキシアパタイトカラムクロマトグラフィー、ブチルトヨパールカラムクロマトグラフィ 一を組み合わせても良い。
[0020] 本発明における担体とは、ダルタミナーゼを固定化するものであり、例えばセライト、 ケイソゥ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、 炭酸カルシウム、セラミックス等の無機担体、セラミックスパウダー、ポリビュルアルコ ール、ポリプロピレン、キトサン、イオン交換榭脂、疎水吸着榭脂、キレート榭脂、合成 吸着榭脂等の有機高分子等が挙げられるが、これらに限定されるものではない。 実施例
[0021] 以下、実施例および試験例により本発明を更に詳細に説明する。これらは、本発明 の実施例の一部であり、本発明は当該実施例および試験例によって限定されるもの ではない。
[0022] 実施例 1
Bacillus subtilisをグルコース 0.3%、ポリペプトン 3.0%、酵母エキス 1.0%、塩化ナ トリウム 0.5%を含む pH7.0の培地にて 30°Cの温度で培養した。得られた培養液を 遠心分離し、培養上清を得た。この培養上清に冷エタノールを添加し、得られた沈殿 を遠心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (PH7.0)に溶解し、透析 を行った。透析液は、 DEAE— Sepharose Fast Flowを用いて吸着した後に、塩 溶液による溶離により蛋白質の純度を高めた。得られたダルタミナーゼ溶液を UF膜 ( UFP-5-C-3MA) (アマシャムバイオサイエンス (株))を用いて、濃縮及び脱塩を行 い、精製ダルタミナーゼを得た。培養上清のダルタミナーゼ比活性は、 67mU/mg であった。
[0023] 実施例 2
Bacillus amyloliquefaciensをグルコース 0.3%、ポリペプトン 3.0%、酵母エキス 1.0 %、塩ィ匕ナトリウム 0.5%を含む pH7.0の培地にて 30°Cの温度で培養した。得られた 培養液を遠心分離し、培養上清を得た。この培養上清に冷エタノールを添加し、得ら れた沈殿を遠心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (PH7.0)に溶解 し透析を行った。透析液は、 DEAE— Sepharose Fast Flowを用いて吸着した後 に塩溶液による溶離により蛋白質の純度を高めた。得られたダルタミナーゼ溶液を U F膜 (UFP- 5- C- 3MA) (アマシャムバイオサイエンス (株))を用いて、濃縮及び脱 塩を行い、精製ダルタミナーゼを得た。培養上清のダルタミナーゼ比活性は、 53mU / mgであった。
[0024] 実施例 3
Bacillus coagulansをグルコース 0.3%、ポリペプトン 3.0%、酵母エキス 1.0%、塩 化ナトリウム 0.5%を含む pH7.0の培地にて 30°Cの温度で培養した。得られた培養 液を遠心分離し、培養上清を得た。この培養上清に冷エタノールを添加し、得られた 沈殿を遠心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (PH7.0)に溶解し透 析を行った。透析液は、 DEAE— Sepharose Fast Flowを用いて吸着した後に 塩溶液による溶離により蛋白質の純度を高めた。得られたダルタミナーゼ溶液を UF 膜 (UFP- 5- C- 3MA) (アマシャムバイオサイエンス (株))を用いて、濃縮及び脱塩 を行い、精製ダルタミナーゼを得た。培養上清のダルタミナーゼ比活性は、 43mUZ mgであった。
[0025] 実施例 4
Bacillus licheniformisをグルコース 0.3%、ポリペプトン 3.0%、酵母エキス 1.0%、塩 化ナトリウム 0.5%を含む pH7.0の培地にて 30°Cの温度で培養した。得られた培養 液を遠心分離し、培養上清を得た。この培養上清に冷エタノールを添加し、得られた 沈殿を遠心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (PH7.0)に溶解し透 析を行った。透析液は、 DEAE— Sepharose Fast Flowを用いて吸着した後に 塩溶液による溶離により蛋白質の純度を高めた。得られたダルタミナーゼ溶液を UF 膜 (UFP- 5- C- 3MA) (アマシャムバイオサイエンス (株))を用いて、濃縮及び脱塩 を行い、精製ダルタミナーゼを得た。培養上清のダルタミナーゼ比活性は、 40mUZ mgであった。
[0026] 実施例 5
Bacillus cereusをグルコース 0.3%、ポリペプトン 3.0%、酵母エキス 1.0%、塩化ナト リウム 0.5%を含む pH7.0の培地にて 30°Cの温度で培養した。得られた培養液を遠 心分離し、培養上清を得た。この培養上清に冷エタノールを添加し、得られた沈殿を 遠心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (PH7.0)に溶解し透析を行 つた。透析液は、 DEAE— Sepharose Fast Flowを用いて吸着した後に塩溶液 による溶離により蛋白質の純度を高めた。得られたダルタミナーゼ溶液を UF膜 (UF P-5-C-3MA) (アマシャムノィォサイエンス (株))を用いて、濃縮及び脱塩を行い、 精製ダルタミナーゼを得た。培養上清のダルタミナーゼ比活性は、 5mU/mgであつ た。
[0027] 比較例 1 Pseudomonas nitroreducens由来の精製グルタミナーゼの調製
Pseudomonas nitroreducensをグルタミン酸ナトリウム 0.6%、酵母エキス 0.1%、グ ルコース 1.0%、 KH PO 0.05%、 K HPO 0.05%、 MgSO · 7Η Ο 0.07%、 ED
2 4 2 4 4 2
TA-Fe 0.01%を含む培養液(pH7)を用いて、 30L容のジャーファメンター(30L 、通気 lwm= 25L/分、回 2, OOOrpm)中、 Pseudomonas nitroreducensを約 20時間培養した。得られた培養液 175L分の菌体を洗浄後、 30mMリン酸カリウム 緩衝液 (pH7.0) 7.5Lに懸濁し、 5〜20°Cで超音波破砕し、菌体破砕物を得た。
[0028] 7%アンモニア水で pHを 7に調整しながら菌体破砕物を硫酸アンモ-ゥム分画を行 い、 45〜90%飽和画分を得た。これを 0.01Mリン酸カリウム緩衝液に溶かし、同緩 衝液に対して透析した。 DEAE—セルロースカラム(15 X 60cm)に吸着させ、グルタ ミナーゼを 0.1Mの食塩を含む緩衝液で溶出し、ダルタミナーゼ液を得た。得られた グルタミナーゼ溶液を UF膜 (UFP- 5- C- 3MA) (アマシャムバイオサイエンス(株)) を用いて、濃縮及び脱塩を行い、精製ダルタミナーゼを得た。培養上清のグルタミナ ーゼ比活性は、 15mU/mgであった。
[0029] 実施例 6 精製ダルタミナーゼによるテアニンの酵素合成
精製ダルタミナーゼ (O.lmL)を用いて、基質溶液 10mL (0.5M L—グルタミン、及 び種々の濃度のェチルァミン)を pH10.0、温度 30°Cの条件にて、テアニンの酵素 合成を行った。
[0030] 実施例 7 HPLCによるテアニン量及びグルタミン酸量の定量
テアニンの酵素合成を行った酵素反応液中のテアニン量及びグルタミン酸量は、 反応液を適宜希釈した後、 HPLCにかけることにより定量した。得られたテアニン量( mol/L)及びグルタミン酸量(molZL)を用いて、基質のグルタミン量(molZL) らのモル転換率 (%)を計算した。
HPLCの定量条件は、下表の通りであった。 [0031] [表 1] 分析カラム : Develosi l ODS HG- 5 野村化学 (株)
検出器 : Waters2487デュアル; L UV/VIS検出器 /"Waters
テア-ン標品: L _テアニン 栗田工業 (株)
内部標準物質: ニコチンアミ ド/ナカライテスタ
移動相 : 純水: メタノール: トリフルォロ酢酸 = 980: 20: 1
[0032] 試験例 1 Bacillus属由来のグルタミナーゼ及び Pseudomonas属由来のグルタミ ナーゼによるテアニン酵素合成
実施例 1〜実施例 5、及び比較例 1で調整した各微生物由来のダルタミナーゼを用 いて、実施例 6の条件でテアニン酵素合成試験を行った。試験後のテアニン量、及 びグルタミン酸量は、実施例 7の条件で測定した。試験の結果を図 1に示した。
[0033] 実施例 1〜実施例 5、及び比較例 1のいずれのダルタミナーゼを用いた場合にも、 L—グルタミン力 テアニンへのモル転換率は、 50%以上であった。特に、実施例 1 〜実施例 4のグルタミナーゼのモル転換率は、それぞれ 78%、 76%、 72%及び 70 %という高値であった。一方、 L—グルタミン力も L—グルタミン酸へのモル転換率(副 産物の生産)は、実施例 1〜実施例 4のダルタミナーゼでは 6%以下の低値であった 力 実施例 5及び比較例 1のダルタミナーゼでは 15%以上の高値を示した。ダルタミ ナーゼを用いてテアニンを合成する場合には、テアニンへのモル転換率が高 ヽこと に加えて、副産物である L—グルタミン酸へのモル転換率が低いことが好ましい。そう すれば、テアニンの精製工程を簡易とすることができる。本試験例において、このよう な条件を満足させるためには、 Bacillus属由来のダルタミナーゼであって、その培養 上清のダルタミナーゼ比活性が lOmUZmg以上のものを用いることが好ましい。
[0034] 実施例 8
Aspergilus oryzaeをモノレツエキス(Malt extract) 2.0%、グルコース 2.0%、ペプトン 0.1%、酵母エキス(Yeast extract) 0.1%を含む pH5.0の培地にて 30°Cの温度で培 養した。得られた培養液を遠心分離し、培養上清を得た。この培養上清に冷エタノー ルを添加し、得られた沈殿を遠心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (pH7.0)に溶解し透析を行った。透析液は、 DEAE— Sepharose Fast Flowを 用いて吸着した後に塩溶液による溶離により蛋白質の純度を高めた。得られたダル タミナーゼ溶液を UF膜 (UFP-5-C-3MA) (アマシャムバイオサイエンス (株))を用 いて、濃縮及び脱塩を行い、精製ダルタミナーゼを得た。培養上清のダルタミナーゼ 比活性は、 42mUZmgであった。
[0035] 実施例 9
Aspergilus nigerをモルツエキス 2.0%、グルコース 2.0%、ペプトン 0.1%、酵母ェ キス 0.1%を含む pH5.0の培地にて 30°Cの温度で培養した。得られた培養液を遠心 分離し、培養上清を得た。この培養上清に冷エタノールを添加し、得られた沈殿を遠 心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (PH7.0)に溶解し透析を行つ た。透析液は、 DEAE— Sepharose Fast Flowを用いて吸着した後に塩溶液に よる溶離により蛋白質の純度を高めた。得られたダルタミナーゼ溶液を UF膜 (UFP- 5-C-3MA) (アマシャムノィォサイエンス (株))を用いて、濃縮及び脱塩を行い、精 製ダルタミナーゼを得た。培養上清のダルタミナーゼ比活性は、 39mUZmgであつ た。
[0036] 実施例 10
Rizopus stoloniferをモルツエキス 2.0%、グルコース 2.0%、ペプトン 0.1%、酵母 エキス 0.1%を含む pH5.0の培地にて 30°Cの温度で培養した。得られた培養液を遠 心分離し、培養上清を得た。この培養上清に冷エタノールを添加し、得られた沈殿を 遠心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (PH7.0)に溶解し透析を行 つた。透析液は、 DEAE— Sepharose Fast Flowを用いて吸着した後に塩溶液 による溶離により蛋白質の純度を高めた。得られたダルタミナーゼ溶液を UF膜 (UF P-5-C-3MA) (アマシャムノィォサイエンス (株))を用いて、濃縮及び脱塩を行い、 精製ダルタミナーゼを得た。培養上清のダルタミナーゼ比活性は、 15mUZmgであ つた o
[0037] 実施例 11
Mucor sponosusをモルツエキス 2.0%、グルコース 2.0%、ペプトン 0.1%、酵母ェ キス 0.1%を含む pH5.0の培地にて 30°Cの温度で培養した。得られた培養液を遠心 分離し、培養上清を得た。この培養上清に冷エタノールを添加し、得られた沈殿を遠 心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (PH7.0)に溶解し透析を行つ た。透析液は、 DEAE— Sepharose Fast Flowを用いて吸着した後に塩溶液に よる溶離により蛋白質の純度を高めた。得られたダルタミナーゼ溶液を UF膜 (UFP- 5-C-3MA) (アマシャムノィォサイエンス (株))を用いて、濃縮及び脱塩を行い、精 製ダルタミナーゼを得た。培養上清のダルタミナーゼ比活性は、 5mUZmgであった
[0038] 試験例 2 カビ由来のグルタミナーゼ及び Pseudomonas属由来のグルタミナーゼ によるテアニン酵素合成
実施例 8〜実施例 11、及び比較例 1で調整した各微生物由来のダルタミナーゼを 用いて、実施例 6の条件でテアニン酵素合成試験を行った。試験後のテアニン量、 及びグルタミン酸量は、実施例 7の条件で測定した。試験の結果を図 2に示した。
[0039] 実施例 8〜実施例 11、及び比較例 1の 、ずれのダルタミナーゼを用いた場合にも、 L—グルタミン力 テアニンへのモル転換率は、 50%以上であった。特に、実施例 8 及び実施例 9のダルタミナーゼのモル転換率は、それぞれ 72%及び 73%と 、う高値 であった。一方、 L—グルタミンから L—グルタミン酸へのモル転換率(副産物の生産 )は、実施例 8及び実施例 9のダルタミナーゼでは 5%以下の低値であつたが、比較 例 1のダルタミナーゼでは 10%と!、う高値であった。ダルタミナーゼを用いてテアニン を合成する場合には、テアニンへのモル転換率が高いことにカ卩えて、副産物である L —グルタミン酸へのモル転換率が低いことが好ましい。そうすれば、テアニンの精製 工程を簡易とすることができる。本試験例において、このような条件を満足させるため には、カビ由来(特に、 Aspergillus属、 Rizopus属、 Mucor属)のグルタミナーゼで あって、(1)その培養上清のダルタミナーゼ比活性が lOmUZmg以上のもの、また は(2) L—グルタミン力ものモル転換率において、本実施例における主産物であるテ ァニンと副産物であるグルタミン酸との比(テアニン Zグルタミン酸の比 =X)力 X> 5であるものを用いることが好まし!/、。
[0040] 実施例 12
Saccharomyces cerevisiaeをモルツエキス 0.3%、酵母エキス 0.3%、ペプトン 0.5% 、グルコース 1.0%を含む pH5.0の培地にて 30°Cの温度で培養した。得られた培養 液を遠心分離し、培養上清を得た。この培養上清に冷エタノールを添加し、得られた 沈殿を遠心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (PH7.0)に溶解し透 析を行った。透析液は、 DEAE— Sepharose Fast Flowを用いて吸着した後に 塩溶液による溶離により蛋白質の純度を高めた。得られたダルタミナーゼ溶液を UF 膜 (UFP- 5- C- 3MA) (アマシャムバイオサイエンス (株))を用いて、濃縮及び脱塩 を行い、精製ダルタミナーゼを得た。培養上清のダルタミナーゼ比活性は、 45mUZ mgであった。
[0041] 実施例 13
Saccharomyces rouxiiをモルツエキス 0.3%、酵母エキス 0.3%、ペプトン 0.5%、グ ルコース 1.0%を含む pH5.0の培地にて 30°Cの温度で培養した。得られた培養液を 遠心分離し、培養上清を得た。この培養上清に冷エタノールを添加し、得られた沈殿 を遠心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (PH7.0)に溶解し透析を 行った。透析液は、 DEAE— Sepharose Fast Flowを用いて吸着した後に塩溶 液による溶離により蛋白質の純度を高めた。得られたダルタミナーゼ溶液を UF膜 (U FP-5-C-3MA) (アマシャムバイオサイエンス (株))を用いて、濃縮及び脱塩を行い 、精製ダルタミナーゼを得た。培養上清のダルタミナーゼ比活性は、 40mUZmgで めつに。
[0042] 実施例 14
Candida utilisをモルツエキス 0.3%、酵母エキス 0.3%、ペプトン 0.5%、ダルコ一 ス 1.0%を含む pH5.0の培地にて 30°Cの温度で培養した。得られた培養液を遠心 分離し、培養上清を得た。この培養上清に冷エタノールを添加し、得られた沈殿を遠 心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (PH7.0)に溶解し透析を行つ た。透析液は、 DEAE— Sepharose Fast Flowを用いて吸着した後に塩溶液に よる溶離により蛋白質の純度を高めた。得られたダルタミナーゼ溶液を UF膜 (UFP- 5-C-3MA) (アマシャムノィォサイエンス (株))を用いて、濃縮及び脱塩を行い、精 製ダルタミナーゼを得た。培養上清のダルタミナーゼ比活性は、 30mUZmgであつ [0043] 実施例 15
Candida antarcticaをモルツエキス 0.3%、酵母エキス 0.3%、ペプトン 0.5%、グル コース 1.0%を含む pH5.0の培地にて 30°Cの温度で培養した。得られた培養液を遠 心分離し、培養上清を得た。この培養上清に冷エタノールを添加し、得られた沈殿を 遠心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (PH7.0)に溶解し透析を行 つた。透析液は、 DEAE— Sepharose Fast Flowを用いて吸着した後に塩溶液 による溶離により蛋白質の純度を高めた。得られたダルタミナーゼ溶液を UF膜 (UF P-5-C-3MA) (アマシャムノィォサイエンス (株))を用いて、濃縮及び脱塩を行い、 精製ダルタミナーゼを得た。培養上清のダルタミナーゼ比活性は、 25mUZmgであ つた o
[0044] 実施例 16
Hansenulla anomalaをモルツエキス 0.3%、酵母エキス 0.3%、ペプトン 0.5%、グル コース 1.0%を含む pH5.0の培地にて 30°Cの温度で培養した。得られた培養液を遠 心分離し、培養上清を得た。この培養上清に冷エタノールを添加し、得られた沈殿を 遠心分離、回収した。得られた沈殿物をリン酸緩衝溶液 (PH7.0)に溶解し透析を行 つた。透析液は、 DEAE— Sepharose Fast Flowを用いて吸着した後に塩溶液 による溶離により蛋白質の純度を高めた。得られたダルタミナーゼ溶液を UF膜 (UF P-5-C-3MA) (アマシャムノィォサイエンス (株))を用いて、濃縮及び脱塩を行い、 精製ダルタミナーゼを得た。培養上清のダルタミナーゼ比活性は、 15mUZmgであ つた o
[0045] 試験例 3 酵母由来のグルタミナーゼ及び Pseudomonas属由来のグルタミナーゼ によるテアニン酵素合成
実施例 12〜実施例 16、及び比較例 1で調整した各属由来のダルタミナーゼを用 いて、実施例 6の条件でテアニン酵素合成試験を行った。試験後のテアニン量、及 びグルタミン酸量は、実施例 7の条件で測定した。試験の結果を図 3に示した。
[0046] 実施例 12〜実施例 16、及び比較例 1のいずれのダルタミナーゼを用いた場合にも 、 L—グルタミン力 テアニンへのモル転換率は、 50%以上であった。特に、実施例 1 2〜実施例 15のダルタミナーゼのモル転換率は、それぞれ 70%以上という高値であ つた。一方、 L グルタミンから L グルタミン酸へのモル転換率(副産物の生産)は、 実施例 12〜実施例 15のダルタミナーゼでは 、ずれも低値であった力 比較例 1のグ ルタミナーゼでは 10%と 、う高値であった。ダルタミナーゼを用いてテアニンを合成 する場合には、テアニンへのモル転換率が高いことにカ卩えて、副産物である L—ダル タミン酸へのモル転換率が低いことが好ましい。そうすれば、テアニンの精製工程を 簡易とすることができる。本試験例において、このような条件を満足させるためには、 酵母(特に、 Saccharomyces属、 Candida属)由来のグルタミナーゼであって、その 培養上清のダルタミナーゼ比活性が lOmUZmg以上のものを用いることが好ましい
[0047] 実施例 17 キトパール 4010を用いた固定ィ匕ダルタミナーゼの調製
キトサンビーズである市販品のキトパール 4010 (富士紡績 (株))を 50mMリン酸ナ トリウム緩衝液 (PH7.4)に 24時間浸漬した。この平衡化後キトパール 4010の 10mL を実施例 3にて調製したダルタミナーゼ(15mgZmL) 25mLに浸漬し、約 2時間振 盪した。その後、付着液を除去したキトパール 4010を 2.5%ダルタルアルデヒド溶液 に加え、さらに 2時間振盪した。ダルタルアルデヒド処理後、 30倍量の 50mMリン酸 ナトリウム緩衝液 (PH7.4)を用いて吸光度 (280nm)が 0.01以下になるまで洗浄し、力 ラムに充填した。
[0048] 実施例 18 固定化ダルタミナーゼによる酵素反応
実施例 17にて調整した固定ィ匕ダルタミナーゼを使用し、基質溶液 (4%グルタミン、 25%ェチルァミン
ρΗΙΟ.Ο)を 30°C、 SV=0.2の流速で通筒した場合、 70%の収率でテアニンを得る ことができた。
[0049] 実施例 19 陰イオン交換榭脂を用いた固定ィ匕ダルタミナーゼの調製
実施例 3にて得られた精製ダルタミナーゼ(15mgZmL) 25mLに対し、陰イオン交 換榭脂であるダイヤイオン HPA25 (三菱化学 (株))を 10mL添加後、約 2時間振盪 した。その後、付着液を除去した HPA25を 2.5%ダルタルアルデヒド溶液に加え、さ らに 2時間振盪した。ダルタルアルデヒド処理後、 30倍量の 50mMリン酸ナトリウム緩 衝液 (PH7.4)を用いて吸光度(280nm)が 0.01以下になるまで洗浄し、カラムに充 填した。
[0050] 実施例 20 固定ィヒダルタミナーゼによる酵素反応
実施例 19にて調整した固定ィ匕ダルタミナーゼを使用し、基質溶液 (4%グルタミン、 25%ェチルァミン
ρΗΙΟ.Ο)を 30°C、 SV=0.2の流速で通筒した場合、 75%の収率でテアニンを得る ことができた。
[0051] 実施例 21 テアニンの精製
テアニンの反応液からの単離精製は、反応液よりェチルァミンを減圧濃縮により除 去した後に、 RO膜による脱塩を行い、その後 Dowex50 X 8、 Dowexl X 2カラムク 口マトグラフィーにかけ、これをエタノール処理することにより行った。
この単離物質をアミノ酸アナライザー、ペーパークロマトグラフィーにかけたところ、 テアニン標準物質と同じ挙動を示した。また、単離物質を塩酸あるいはグルタミナ一 ゼで加水分解処理を行ったところ、 1: 1の割合で L—グルタミン酸とェチルアミンを生 じた。このように、単離物質がダルタミナーゼによって加水分解されたことから、ェチ ルァミンが L—グルタミン酸の γ位に結合していたことが示された。また、加水分解で 生じた L—グルタミン酸が L型であることは、 L—グルタミン酸デヒドロゲナーゼ(GluD H)により確認された。図 4には、テア-ン標品及び単離物質の IRスペクトルを示した 。両物質は、共に同等のスペクトルを示した。これらのことから、単離物質がテアニン であることが確認された。
図面の簡単な説明
[0052] [図 l]Bacillus属由来のグルタミナーゼ及び Pseudomonas属由来のグルタミナーゼ を用いて、 L—グルタミンとェチルアミンカもテアニンを酵素合成した際の合成テア- ン量、グルタミン酸量を示した表である。
[図 2]カビ由来のグルタミナーゼ及び Pseudomonas属由来のグルタミナーゼを用い て、 L—グルタミンとェチルァミン力 テアニンを酵素合成した際の合成テアニン量、 グルタミン酸量を示した表である。
[図 3]酵母由来のグルタミナーゼ及び Pseudomonas属由来のグルタミナーゼを用い て、 L—グルタミンとェチルァミン力 テアニンを酵素合成した際の合成テアニン量、 グルタミン酸量を示した表である。
[図 4]テアニン標品及び単離物質の IRスペクトルを示したグラフである。

Claims

請求の範囲
[1] Bacillus属、カビ、または酵母のうちの一種または二種以上の微生物由来のダルタミ ナーゼをグルタミンとェチルァミン誘導体に作用させることを特徴とするテアニンの製 造法。
[2] 前記ダルタミナーゼは、 Bacillus属、カビ、または酵母のうちの一種または二種以上 の微生物の培養上清のダルタミナーゼ比活性が lOmUZmg以上となる条件で培養 したものであることを特徴とする請求項 1記載のテアニンの製造法。
[3] 前記ダルタミナーゼは、主産物であるテアニンと副産物であるグルタミン酸との比 (テ ァニン Zグルタミン酸)が 5よりも大であることを特徴とする請求項 1記載のテアニンの 製造法。
[4] 前記ダルタミナーゼが、担体に固定ィ匕されていることを特徴とする請求項 1〜請求項 3の 、ずれかに記載のテアニンの製造法。
PCT/JP2005/011420 2004-06-28 2005-06-22 テアニンの製造法 WO2006001296A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US11/571,074 US8211674B2 (en) 2004-06-28 2005-06-22 Method of making theanine
AU2005257281A AU2005257281B2 (en) 2004-06-28 2005-06-22 Method of producing theanine
CA2570828A CA2570828C (en) 2004-06-28 2005-06-22 Method of making theanine
KR1020077001224A KR101189613B1 (ko) 2004-06-28 2005-06-22 테아닌의 제조법
EP05752874A EP1764416A4 (en) 2004-06-28 2005-06-22 PROCESS FOR THE MANUFACTURE OF THEANIN
JP2006528552A JP4874105B2 (ja) 2004-06-28 2005-06-22 テアニンの製造法
CN2005800218335A CN1977047B (zh) 2004-06-28 2005-06-22 茶氨酸的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004189048 2004-06-28
JP2004-189048 2004-06-28
JP2004376443 2004-12-27
JP2004-376443 2004-12-27

Publications (1)

Publication Number Publication Date
WO2006001296A1 true WO2006001296A1 (ja) 2006-01-05

Family

ID=35781760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011420 WO2006001296A1 (ja) 2004-06-28 2005-06-22 テアニンの製造法

Country Status (9)

Country Link
US (1) US8211674B2 (ja)
EP (1) EP1764416A4 (ja)
JP (1) JP4874105B2 (ja)
KR (1) KR101189613B1 (ja)
CN (1) CN1977047B (ja)
AU (1) AU2005257281B2 (ja)
CA (1) CA2570828C (ja)
TW (1) TW200605873A (ja)
WO (1) WO2006001296A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089689A (ja) * 2007-10-11 2009-04-30 Okumoto Seifun Kk フェルラ酸エステル類化合物の製造方法
CN102181501A (zh) * 2011-03-18 2011-09-14 南京工业大学 一种酶法合成l-茶氨酸的方法
WO2018190398A1 (ja) * 2017-04-13 2018-10-18 協和発酵バイオ株式会社 テアニンの製造方法
CN112899319A (zh) * 2021-02-19 2021-06-04 同济大学 一种田园除草剂转化为茶氨酸的绿色合成方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101711638B1 (ko) * 2014-12-24 2017-03-06 대상 주식회사 테아닌 효소 반응액으로부터 에틸아민의 회수 정제 방법
AU2016317046B2 (en) 2015-08-31 2022-03-10 Nutramax Laboratories, Inc. Compositions comprising magnolia, phellodendron, theanine and/or whey protein
CN110376307A (zh) * 2019-08-13 2019-10-25 深圳市深大检测有限公司 水产品中孔雀石绿的残留检测方法
CN114507623B (zh) * 2022-03-04 2023-03-10 安徽农业大学 一种芽孢杆菌及其应用
CN114774488A (zh) * 2022-05-13 2022-07-22 山东福瑞达生物科技有限公司 一种含低内毒素γ-聚谷氨酸的生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568578A (ja) * 1991-09-14 1993-03-23 Taiyo Kagaku Co Ltd テアニンの製造方法
JPH05328986A (ja) * 1992-05-30 1993-12-14 Taiyo Kagaku Co Ltd テアニンの製造方法
JPH0889266A (ja) * 1994-09-30 1996-04-09 Ajinomoto Co Inc L−γ−グルタミルアミド化合物の製造方法
JPH11225789A (ja) * 1998-02-13 1999-08-24 Taiyo Kagaku Co Ltd L−テアニンの製造方法
WO2004016798A1 (ja) * 2002-08-06 2004-02-26 Taiyokagaku Co.,Ltd. テアニンの製造法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05284983A (ja) * 1992-04-10 1993-11-02 Daiwa Kasei Kk L−γ−グルタミル低級アルキルアミドの製造方法
WO1996006931A1 (en) * 1994-08-26 1996-03-07 Novo Nordisk A/S Microbial transglutaminases, their production and use
CN100374108C (zh) * 2000-04-05 2008-03-12 太阳化学株式会社 睡眠促进用组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568578A (ja) * 1991-09-14 1993-03-23 Taiyo Kagaku Co Ltd テアニンの製造方法
JPH05328986A (ja) * 1992-05-30 1993-12-14 Taiyo Kagaku Co Ltd テアニンの製造方法
JPH0889266A (ja) * 1994-09-30 1996-04-09 Ajinomoto Co Inc L−γ−グルタミルアミド化合物の製造方法
JPH11225789A (ja) * 1998-02-13 1999-08-24 Taiyo Kagaku Co Ltd L−テアニンの製造方法
WO2004016798A1 (ja) * 2002-08-06 2004-02-26 Taiyokagaku Co.,Ltd. テアニンの製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1764416A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089689A (ja) * 2007-10-11 2009-04-30 Okumoto Seifun Kk フェルラ酸エステル類化合物の製造方法
CN102181501A (zh) * 2011-03-18 2011-09-14 南京工业大学 一种酶法合成l-茶氨酸的方法
CN102181501B (zh) * 2011-03-18 2013-01-02 南京工业大学 一种酶法合成l-茶氨酸的方法
WO2018190398A1 (ja) * 2017-04-13 2018-10-18 協和発酵バイオ株式会社 テアニンの製造方法
JPWO2018190398A1 (ja) * 2017-04-13 2020-02-27 協和発酵バイオ株式会社 テアニンの製造方法
US11155845B2 (en) 2017-04-13 2021-10-26 Kyowa Hakko Bio Co., Ltd. Method for producing theanine
JP7035024B2 (ja) 2017-04-13 2022-03-14 協和発酵バイオ株式会社 テアニンの製造方法
CN112899319A (zh) * 2021-02-19 2021-06-04 同济大学 一种田园除草剂转化为茶氨酸的绿色合成方法

Also Published As

Publication number Publication date
TWI359014B (ja) 2012-03-01
EP1764416A4 (en) 2011-08-24
JPWO2006001296A1 (ja) 2008-04-17
US20070224667A1 (en) 2007-09-27
CA2570828C (en) 2014-11-04
TW200605873A (en) 2006-02-16
EP1764416A1 (en) 2007-03-21
KR101189613B1 (ko) 2012-10-10
KR20070026823A (ko) 2007-03-08
US8211674B2 (en) 2012-07-03
CN1977047A (zh) 2007-06-06
AU2005257281A1 (en) 2006-01-05
CA2570828A1 (en) 2006-01-05
CN1977047B (zh) 2010-12-01
AU2005257281B2 (en) 2010-08-12
JP4874105B2 (ja) 2012-02-15

Similar Documents

Publication Publication Date Title
JP7156594B2 (ja) 1ステップ発酵による(r)-3-ヒドロキシ酪酸またはその塩の調製
Hummel et al. Isolation of L-phenylalanine dehydrogenase from Rhodococcus sp. M4 and its application for the production of L-phenylalanine
CN1084388C (zh) 用于产生有旋光力的化合物的方法
JPH0523191A (ja) D−パントテン酸の製造法
JP4874105B2 (ja) テアニンの製造法
JP5102076B2 (ja) サッカロマイセス・セレビシエ変異株、及び該変異株を用いたrna高含有酵母の製造方法。
CN100510090C (zh) 茶氨酸的制造方法
JP2009225705A (ja) テアニンの製造法
EP1409688B1 (en) Nucleic acid sequences encoding enantioselective amidases
JP3210080B2 (ja) テアニンの製造方法
JP5001016B2 (ja) エルロースの製造方法
JPH09154589A (ja) エリスリトールの製造方法
JP2007185132A (ja) α−アミノ酸−ω−アミド化合物の製造方法
JP3759833B2 (ja) L−テアニンの製造方法
JP2674078B2 (ja) D−α−アミノ酸の製造法
JP2007319053A (ja) 光学活性なアミノ酸誘導体の製造方法
JPH09154590A (ja) エリスリトールの製造方法
JP2674076B2 (ja) D−α−アミノ酸の製造方法
JPWO2003031638A1 (ja) D−アラニンの製造方法
JP2001204485A (ja) 微生物によるカルボニル化合物の製法
JP2002325596A (ja) テアニンの製造法
JPH07250694A (ja) L−2−アミノ−4−(ヒドロキシメチルホスフィニル)−酪酸の製法
JPH01132379A (ja) 新規ウレアーゼ及びその製造方法
WO1991009959A1 (en) Process for producing optically active 3-hydroxy-2-methylbutyrates
JP2001112493A (ja) 微生物によるカルボニル化合物の製法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528552

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2570828

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005257281

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11571074

Country of ref document: US

Ref document number: 2007224667

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005752874

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580021833.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077001224

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2005257281

Country of ref document: AU

Date of ref document: 20050622

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005257281

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020077001224

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005752874

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11571074

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载