+

WO2006093262A1 - タンタル窒化物膜の形成方法 - Google Patents

タンタル窒化物膜の形成方法 Download PDF

Info

Publication number
WO2006093262A1
WO2006093262A1 PCT/JP2006/304072 JP2006304072W WO2006093262A1 WO 2006093262 A1 WO2006093262 A1 WO 2006093262A1 JP 2006304072 W JP2006304072 W JP 2006304072W WO 2006093262 A1 WO2006093262 A1 WO 2006093262A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
tantalum
gas
nitride film
tantalum nitride
Prior art date
Application number
PCT/JP2006/304072
Other languages
English (en)
French (fr)
Inventor
Narishi Gonohe
Satoru Toyoda
Harunori Ushikawa
Tomoyasu Kondo
Kyuzo Nakamura
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to US11/885,345 priority Critical patent/US8796142B2/en
Priority to CN2006800014741A priority patent/CN101091004B/zh
Publication of WO2006093262A1 publication Critical patent/WO2006093262A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using DC or AC discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76859After-treatment introducing at least one additional element into the layer by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for forming a tantalum nitride film, and more particularly to a method for forming a tantalum nitride film that is useful as a NOR film for a wiring film according to a CVD method.
  • a metal thin film ie, a conductive barrier film
  • a copper film is formed thereon.
  • a thin film as a wiring layer copper was prevented from diffusing by preventing direct contact between the copper thin film and the underlying insulating film such as a silicon oxide film (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2002_26124 (Claims)
  • tantalum nitride (TaN) film useful as a barrier film by a CVD method while ensuring adhesion with a Cu wiring film. is there.
  • the organic group such as an alkyl group in the source gas is cut and removed to reduce the C content, and the bond between Ta and N is cut to increase the TaZN composition ratio. It is necessary to develop a film forming process capable of [0007] Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art.
  • the content of C and N is low, the Ta / N composition ratio is high, and a wiring film (for example, It is an object of the present invention to provide a method for forming a low-resistance tantalum nitride film useful as a noria film that ensures adhesion to a (Cu wiring film).
  • the method for forming a tantalum nitride film according to the present invention is based on the CVD method.
  • N (1, 1, and 'is around 1 to 6 carbon atoms around the tantalum element (Ta).
  • a raw material gas consisting of a coordination compound coordinated with each other (which may be the same or different groups) and NH gas, and reducing the raw material compound on the substrate Coughing, reduction
  • a compound film is formed, and a part of R (R ′) group bonded to N is cut and removed, and then a gas containing H atom is introduced to react with the reducing compound film.
  • the Ta—N bond of —NNH is cut, and the remaining R (R ′) group bonded to N is cut and removed to form a tantalum-rich tantalum nitride film.
  • the number of carbon atoms in the coordination compound is exceeded, a large amount of carbon remains in the film.
  • the H atom-containing gas is converted into radicals by heat or plasma in a film formation chamber, and reacts with the radicals and a reducing compound film to form a tantalum-rich tantalum nitride film. To do.
  • the C and N contents in the obtained film are reduced, the TaZN composition ratio is increased, and adhesion with a wiring film (for example, a Cu wiring film) is secured.
  • a low resistance tantalum nitride film useful as a barrier film can be formed.
  • the source gas is pentadimethylamino tantalum (PDMAT), tert-amylimidotris (dimethylamide) tantalum (TAIMATA), pentajetylaminotantalum (PEMAT), tert-butylimidotris (dimethylamide) ) Tantanole (TBTDET), tert-butylimidotris (ethylmethylamido) tantalum (TBTEMT), Ta (N (CH)) (NCH CH) (DEMAT),
  • TaX a halogen atom selected from chlorine, bromine and iodine
  • Desirable to be a kind of coordination compound gas is a kind of coordination compound gas.
  • the H atom-containing gas is at least one gas selected from H, NH, SiH force.
  • a tantalum-rich low-resistance thin film in which the composition ratio of tantalum and nitrogen in the film satisfies Ta / N ⁇ 2.0 is obtained.
  • the method for forming a tantalum nitride film of the present invention also causes tantalum particles to be incident on the tantalum nitride film obtained by the above formation method by sputtering using a target containing tantalum as a main constituent. It is characterized by that. As a result, a tantalum-rich tantalum nitride film sufficiently satisfying Ta / N ⁇ 2.0 can be formed.
  • the sputtering is preferably performed by adjusting DC power and RF power so that the DC power is low and the RF power is high.
  • a barrier having a low C and N content and a high Ta / N composition ratio and ensuring adhesion with a wiring film for example, a Cu wiring film. It is possible to form a low-resistance tantalum-rich tantalum nitride film useful as a film.
  • a tantalum-rich tantalum nitride film can be obtained by implanting tantalum into the tantalum nitride film obtained by the CVD method by a PVD method such as a sputtering method. There is an effect that it can be formed.
  • a low resistance tantalum nitride film having a low C and N content and a high Ta / N composition ratio is formed in accordance with a CVD method such as a thermal CVD method or a plasma CVD method.
  • the substrate gas placed in the vacuum chamber is reacted with the source gas composed of the tantalum-containing coordination compound and NH gas, so that the substrate has a Ta—N—NH bond.
  • radicals such as 2 3 H radicals and NH radicals derived from NH gas.
  • the above-described ones may be introduced as they are. It may be introduced together with an inert gas such as N gas or Ar gas. Regarding the amount of these reactants
  • NH gas is 100-100 for the source gas, eg, 5 sccm for the source gas.
  • H atom-containing compound gas it is desirable to use the H atom-containing compound gas at a flow rate of about 100 to 1000 sccm (H conversion) with respect to 5 sccm of the source gas, for example.
  • the temperature of the above two reactions may be any temperature at which the reaction occurs.
  • the temperature of the above two reactions is generally 300 ° C or lower, preferably 150 to 300 ° C.
  • the temperature is generally 300 ° C. or lower, preferably 150 to 300 ° C.
  • the pressure in the vacuum chamber should be 1 to 100 Pa for the first reduction reaction and 100 to 1 OOPa for the next film formation reaction.
  • N (R, R ') (R and R' around the tantalum element (Ta) represents an alkyl group having from 6 to 6 carbon atoms, Each may be the same group or a different group.
  • This alkyl group is, for example, a methyl, ethyl, propyl, butyl, pentyl or hexyl group, which may be linear or branched.
  • This coordination compound is usually a compound in which 4 to 5 N— (R, R ′) are coordinated around Ta.
  • the method of the present invention described above has a Ta—N—NH bond, for example, by introducing a source gas and NH gas and performing a reduction reaction in a vacuum chamber as a film forming chamber in accordance with the CVD method.
  • the tantalum nitride forming method of the present invention can be carried out without any limitation as long as it is a film forming apparatus capable of performing a so-called CVD method.
  • a film forming apparatus capable of performing a so-called CVD method for example, an embodiment in which the method of the present invention is carried out using the plasma CVD film forming apparatus shown in FIG. 1 will be described below.
  • the plasma CVD apparatus shown in FIG. 1 includes a vacuum chamber 1 that is a film forming chamber.
  • a vacuum exhaust system 2 is connected to a side wall of the vacuum chamber, and a vacuum chamber is disposed above the vacuum chamber.
  • Electrode 3 is disposed in an insulated state. High frequency connected to this electrode 3
  • a wave power source 4 is disposed outside the vacuum chamber 1 and is configured to apply high-frequency power to the electrodes to generate plasma in the vacuum chamber.
  • a substrate mounting stage 6 containing a heating means 5 such as a heater is disposed below the vacuum chamber 1 so that the substrate mounting surface faces the electrode surface in parallel with each other. Yes.
  • a gas chamber 7 is provided inside the electrode 3, and a plurality of holes 8 functioning as shower nozzles are opened on the surface of the electrode facing the substrate mounting stage 6, from which gas is evacuated.
  • the electrode can be introduced into the chamber and supplied to the substrate surface, and this electrode functions as a shower plate.
  • One end of a gas introduction system 9 is connected to the gas chamber 7, and the other end of this gas introduction system is filled with a plurality of gas cylinders filled with raw material gas NH gas, H atom-containing gas, etc. (Fig. Shown
  • a plurality of gas introduction systems 9 may be connected to the gas chamber 7 and each may be connected to a separate gas cylinder.
  • each gas flow rate can be controlled by a mass flow controller.
  • the source gas can be introduced using a source gas filling gas cylinder.
  • the tantalum-containing organometallic compound is contained in a heated and insulated container, and an inert gas such as Ar as a publishing gas. May be supplied into the container via a mass flow controller or the like to sublimate the raw material, and the raw material gas may be introduced into the vacuum chamber together with this publishing gas, or the raw material vaporized via a vaporizer or the like Gas may be introduced into the vacuum chamber.
  • An embodiment of a process for carrying out the tantalum nitride forming method of the present invention using the plasma CVD film forming apparatus shown in Fig. 1 is as follows.
  • the inside of the vacuum chamber 1 is evacuated to a predetermined pressure (for example, 10 10 — 5 p a ) by the evacuation system 2, the substrate S is placed on the substrate placement stage 6, and then heated.
  • the means 5 is energized to heat the substrate to a predetermined temperature (for example, 150 to 300 ° C.).
  • the source gas and NH gas are introduced from the gas introduction system 9 into the gas chamber 7, and supplied from the hole 8 toward the substrate S surface.
  • the substrate S is not particularly limited.
  • the substrate S may be a substrate in which a known base adhesion layer is provided on an insulating layer, and the surface thereof is pretreated such as degassing. Good.
  • the high-frequency power source 4 After the pressure in the vacuum chamber 1 is stabilized at a predetermined pressure, from the high-frequency power source 4, the frequency 2 7. 12 MHz, thereby outputting a high-frequency AC voltage of the power density 0. 2W / cm 2.
  • an AC voltage from this high frequency power source is applied to the electrode 3, it is configured to function as a force sword, and is placed on the electrode holder 3 and the substrate holder 6 that is configured to function as an anode.
  • Source gas and NH gas or NH radical for example, NH gas
  • Source gas and NH gas radicals are generated in this plasma.
  • the H atom-containing gas is introduced into the vacuum chamber 11 through the gas introduction system 9 and activated. That is, as described above, plasma is generated in the chamber, and radicals generated in this plasma are incident on the surface of the reducing compound film formed as described above to react with the reduced compound.
  • the Ta—N bond in the film is cut and removed, and the remaining R (R ′) group bonded to N is cut and removed to form a tantalum-rich tantalum nitride film.
  • the operation of the high frequency power supply 4 is stopped, the introduction of the H atom-containing gas is stopped, and the substrate S is carried out of the vacuum chamber 11.
  • a reactive gas such as NH gas or H atom-containing gas is used.
  • a tantalum-rich tantalum nitride film can also be formed by a thermal CVD method in the same manner as described above under known process conditions.
  • sputtering gas such as Ar is used as a target or target.
  • a voltage is applied to generate plasma, the target is sputtered, and a metal thin film, that is, a wiring film side adhesion layer (barrier film side base layer) is formed on the surface of the tantalum nitride film. It may be formed.
  • a laminated film is formed on the substrate S through the above steps, and then a wiring film (for example, a Cu wiring film) is formed on the wiring film side adhesion layer by a known method.
  • a wiring film for example, a Cu wiring film
  • the film forming apparatus is connected to at least the degassing chamber and the wiring film forming chamber through a transfer chamber that can be evacuated, and the substrate is detached from the film forming apparatus from the transfer chamber by the transfer robot. If the composite wiring film forming apparatus is configured to be transported between the gas chamber and the wiring film forming chamber, a series of processes from pretreatment to wiring film formation can be performed by this apparatus.
  • a tantalum-rich tantalum nitride film can be formed by implanting tantalum particles into the tantalum nitride film formed as described above by a PVD method such as sputtering.
  • a PVD method such as sputtering.
  • it can be carried out using a known sputtering apparatus in which a target is installed at a position facing the substrate holder above the vacuum chamber.
  • a voltage applying apparatus is connected to the target for generating a plasma for sputtering the surface of the target and releasing particles of the target constituent material.
  • the target used here is composed mainly of a metal constituent element (Ta) contained in the source gas, and the voltage application device includes a high-frequency generator, an electrode connected to the target, It is composed of
  • the sputtering gas may be a known inert gas such as argon gas or xenon gas.
  • an inert gas such as Ar is introduced into the sputtering chamber and discharged.
  • a target containing tantalum, which is a constituent component of the source gas, as a main constituent component is sputtered so that tantalum particles, which are sputtered particles, are incident on a thin film formed on the substrate.
  • tantalum can be incident from the target into the thin film on the substrate surface by sputtering, the content of tantalum in the barrier film can be further increased, and the desired low-resistance tantalum can be obtained.
  • Rich tantalum nitride film can be obtained.
  • the source gas is an organic tantalum compound
  • the constituent element tantalum
  • the constituent element is incident on the surface of the substrate by the above sputtering, so that decomposition is promoted and impurities such as C and N are ejected from the S barrier film.
  • impurities such as C and N are ejected from the S barrier film.
  • a low resistance barrier film with few impurities can be obtained.
  • This sputtering is performed to implant tantalum particles into a tantalum nitride film, to sputter off C and N, and to modify this film. Therefore, it is necessary to carry out the process under conditions where a tantalum film is not formed, that is, etching with tantalum particles. Therefore, for example, it is necessary to adjust DC power and RF power so that DC power is low and RF power is high. For example, by setting the DC power to 5 kW or less and increasing the RF power, for example, 400 to 800 W, the condition that the tantalum film is not formed can be achieved. Since RF power depends on DC power, the degree of film modification can be adjusted by adjusting DC power and RF power appropriately. Further, the sputtering temperature may be a normal sputtering temperature, for example, the same temperature as the formation temperature of the tantalum nitride film.
  • a sputtering gas such as Ar is introduced into the substrate S on which the barrier film having a desired film thickness is formed as described above, for example, in accordance with a known sputtering film forming method, and is supplied from the voltage application device.
  • a voltage may be applied to the target to generate plasma, and the target may be sputtered to form a metal thin film, that is, a wiring film side adhesion layer (barrier film side base layer) on the surface of the barrier film.
  • a laminated film is formed on the substrate S through the above steps, and then a wiring film is formed on the wiring film side adhesion layer by a known method.
  • FIG. 2 schematically illustrates a configuration diagram of a composite wiring film forming apparatus including the film forming apparatus illustrated in FIG.
  • the composite wiring film forming apparatus 100 includes a preprocessing unit 101, a film forming processing unit 103, and a relay unit 102 that connects them. In either case, the inside is kept in a vacuum atmosphere before processing.
  • the pretreatment substrate disposed in the carry-in chamber 101a is carried into the degassing chamber 101c by the pretreatment unit side loading / unloading port bot 101b. Before treatment in this degassing chamber 101c The substrate is heated, and moisture on the surface is evaporated to perform degassing treatment.
  • the degassed substrate is carried into the reduction chamber lOld by the carry-in / out bot 101b. In the reduction treatment chamber lOld, annealing is performed to heat the substrate and remove the metal oxide in the lower layer wiring with a reducing gas such as hydrogen gas.
  • the substrate is taken out from the reduction processing chamber lOld by the carry-in / out entrance bot 101 b and carried into the relay unit 102.
  • the loaded substrate is transferred by the relay unit 102 to the film formation processing unit side loading / unloading bot 103a of the film formation processing unit 103.
  • the transferred substrate is carried into the film formation chamber 103b by the carry-in / out entrance bot 103a.
  • the film formation chamber 103b corresponds to the film formation apparatus 1 described above.
  • the laminated film on which the barrier film and the adhesive layer are formed in the film formation chamber 103b is carried out of the film formation chamber 103b by the carry-in / out entrance bot 103a and carried into the wiring film chamber 103c.
  • a wiring film is formed on the barrier film (or an adhesion layer when an adhesion layer is formed on the barrier film).
  • the substrate is moved from the wiring film chamber 103c to the carry-out chamber 103d by the carry-in / out entrance bot 103a and carried out.
  • the composite wiring film forming apparatus 100 is configured such that the pretreatment unit 101 is provided with one degassing chamber 101c and a reduction treatment chamber lOld, and the film formation processing unit 103 is provided with a film formation chamber 103b.
  • One wiring film chamber 103c is provided for each, but the present invention is not limited to this configuration.
  • the pre-processing unit 101 and the film-forming processing unit 103 are polygonal, and the degassing chamber 101 c and the reduction processing chamber 101, and the film-forming chamber 103 b and the wiring film chamber 103 c are formed on the respective surfaces. If a plurality of are provided, the processing capability is further improved.
  • tantalum nitride was formed using the film forming apparatus shown in Fig. 1 and using pentadimethylamino tantalum (MO) gas as the source gas, NH gas, and NH gas as the H atom-containing gas.
  • MO pentadimethylamino tantalum
  • a chemical film was formed.
  • a degassing pretreatment step for the surface of the substrate S having the SiO insulating film is performed.
  • the substrate S was loaded into the vacuum chamber 1 evacuated to 10 _5 Pa or less by the evacuation system 2.
  • the substrate is not particularly limited.
  • Ar sputtering gas is used, a voltage is applied to a target having Ta as a main component to generate plasma, and the target is formed.
  • a substrate having a substrate-side adhesion layer formed on the surface by sputtering may be used.
  • the substrate S After loading the substrate S into the vacuum chamber 1 and placing the substrate S on the substrate placing stage 6, the substrate S is heated to 250 ° C by the heater 5, and the gas introducing system 9 is connected to the gas chamber. Introduce 5 sccm of the above raw material gas and lOOsccm of the above NH gas to 7 and supply them from the hole 8 toward the substrate S surface.
  • a high-frequency AC voltage having a frequency of 27.12 MHz and a power density of 0.2 WZ cm 2 is output from the high-frequency power source 4, and the surface of the electrode 3 and the substrate S Plasma of source gas and NH gas was generated between Raw material in this plasma
  • Gas and NH gas radicals are generated and oxidized by Ta on the substrate S surface.
  • a reducing compound film having a —N—NH bond was formed.
  • Reduction compound having a predetermined film thickness Reduction compound having a predetermined film thickness
  • the operation of the high-frequency power source 4 was stopped, and the introduction of the source gas and the nitrogen / hydrogen atom-containing gas was stopped.
  • the H atom-containing gas is introduced into the vacuum chamber 11 through the gas introduction system 9, and plasma is generated in the chamber 1 as described above, and radicals generated in the plasma are removed. Then, the light was incident on the surface of the reduced compound film formed as described above and reacted. By this reaction, the Ta—N bond in the reduced compound film was cleaved and removed, and the remaining R (R ′) group bonded to N was cleaved and removed. As a result, a tantalum-rich tantalum nitride film was formed. After forming a tantalum nitride film having a predetermined thickness, the operation of the high-frequency power source 4 was stopped, the introduction of the H atom-containing gas was stopped, and the substrate S was carried out of the vacuum chamber 1.
  • MO film and H radical are used (2000 ⁇ -cm) and MO gas and NH gas are used (5000 ⁇ cm).
  • MO gas and NH gas are used (5000 ⁇ cm).
  • the Ta—N bond of the source gas is partially broken by NH, and then the H radical is supplied.
  • the Ta—N bond in the reduced compound with high resistance is cleaved, and the remaining R and R ′ groups (alkyl groups) are removed, so that the content ratio of C and N is reduced, resulting in formation. This is considered to indicate that the film composition became rich in tantalum and the specific resistance of the film decreased.
  • plasma is generated by applying Ar sputtering gas and applying a voltage to the target, for example, according to a known sputtering film forming method. And a target is sputtered to form a metal thin film, that is, a wiring film side adhesion layer as an underlayer on the surface of the barrier film.
  • a Cu wiring film was formed on the substrate S on which the laminated film was formed through the above steps, that is, on the barrier film side adhesion layer according to known process conditions. It was confirmed that the adhesion between the films was excellent.
  • the tantalum nitride film obtained in Example 1 was implanted with tantalum particles by sputtering using a known sputtering apparatus to form a tantalum-rich tantalum nitride film. did.
  • Ar sputtering gas is introduced into the sputtering apparatus, a voltage is applied from the voltage application apparatus to the target to discharge it, plasma is generated, and a target containing tantalum as a main constituent is sputtered.
  • the tantalum particles, which are sputtered particles, were made incident on the thin film formed above.
  • the sputtering conditions were DC power: 5 kW and RF power: 600 W.
  • the sputtering temperature was 1-30 to 150 ° C.
  • the content of tantalum in the barrier film could be further increased, and a desired low-resistance tantalum-rich tantalum nitride film could be obtained.
  • tantalum is incident on the surface thin film of the substrate S, decomposition of the thin film is promoted and impurities such as C and N are ejected from the film, so that a low resistance barrier film with few impurities can be obtained. It was.
  • the modified tantalum nitride film having a desired film thickness is formed as described above, for example, Ar sputtering gas is introduced, and voltage is applied to the voltage application device according to the known sputter deposition process conditions. May be applied to generate plasma, and the target may be sputtered to form a metal thin film, that is, a wiring film side adhesion layer as an underlayer on the surface of the barrier film.
  • a Cu wiring film was formed on the substrate S on which the laminated film was formed through the above steps, that is, on the wiring film-side adhesion layer according to known process conditions. It was confirmed that the adhesion between the films was excellent.
  • Example 1 According to Example 1, except that H gas was used as a reaction gas for generating H radicals. When the film formation process was performed, the same results as in Example 1 were obtained.
  • low resistance tantalum nitride is useful as a barrier film in which the C and N content is low and the Ta / N composition ratio is high and adhesion with the Cu film is ensured according to the CVD method.
  • the ability to form material films. Therefore, the present invention is applicable to a thin film formation process in the semiconductor device field.
  • FIG. 1 is a configuration diagram schematically showing an example of a film forming apparatus for carrying out the film forming method of the present invention.
  • FIG. 2 is a schematic configuration diagram of a composite wiring film forming apparatus incorporating a film forming apparatus for performing the film forming method of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

CVD法に従って、成膜室内にTa元素の周りにN=(R,R')(R及びR'は、炭素原子数1~6個のアルキル基を示し、それぞれが同じ基であっても異なった基であってもよい)が配位した配位化合物からなる原料ガス及びNH3ガスを同時に導入して基板上で反応させて、Ta-NN3を有する還元化合物を生成し、次いでH原子含有ガスを導入してタンタルリッチのタンタル窒化物膜を形成する。これにより、C、N含有量が低く、Ta/N組成比が高く、Cu膜との密着性が確保されているバリア膜として有用な低抵抗タンタル窒化物膜を提供できる。また、得られた膜中にスパッタリングによりタンタル粒子を打ち込み、さらにタンタルリッチとする。

Description

明 細 書
タンタル窒化物膜の形成方法
技術分野
[0001] 本発明は、タンタル窒化物膜の形成方法に関し、特に、 CVD法に従って配線膜用 のノ リア膜として有用なタンタル窒化物膜を形成する方法に関する。
背景技術
[0002] 近年、半導体分野の薄膜製造技術において微細加工の要求が加速しており、それ に伴レ、様々な問題が生じてレ、る。
[0003] 半導体デバイスにおける薄膜配線力卩ェを例にあげれば、配線材料としては、抵抗 率が小さい等の理由力 銅の使用が主流化している。しかし、銅は、エッチングが困 難であり、下地層の絶縁膜中に拡散しやすいという性質があるため、デバイスの信頼 性が低下するとレ、う問題が生じてレ、る。
[0004] この問題を解決するために、従来、多層配線構造における多層間接続孔の内壁表 面に CVD法等で金属薄膜げなわち、導電性のバリア膜)を形成し、その上に銅薄膜 を形成して配線層とすることにより、銅薄膜と下地層のシリコン酸化膜等の絶縁膜とが 直接接触しないようにして、銅の拡散を防いでいた (例えば、特許文献 1参照)。
[0005] この場合、上記多層配線化やパターンの微細化に伴レ、、アスペクト比の高い微細 なコンタクトホールやトレンチ等を、薄いバリア膜で、ステップカバレッジ良く坦め込む ことが要求されている。
特許文献 1:特開 2002 _ 26124号公報 (特許請求の範囲等)
発明の開示
発明が解決しょうとする課題
[0006] 上記従来技術の場合、 Cu配線膜との密着性を確保しながらバリア膜として有用な 低抵抗のタンタル窒化物 (TaN)膜を CVD法により形成することは困難であるという問 題がある。この問題を解決するためには、原料ガス中のアルキル基等の有機基を切 断除去して C含有量を減らし、かつ、 Taと Nとの結合を切断して TaZN組成比を高く することの可能な成膜プロセスを開発することが必要になる。 [0007] そこで、本発明の課題は、上記従来技術の問題点を解決することにあり、 CVD法 に従って、 C、 N含有量が低ぐ Ta/N組成比が高ぐまた、配線膜 (例えば、 Cu配線 膜)との密着性が確保されたノ リア膜として有用な低抵抗タンタル窒化物膜を形成す る方法を提供することにある。
課題を解決するための手段
[0008] 本発明のタンタル窒化物膜の形成方法は、 CVD法に従って、成膜室内に、タンタ ル元素 (Ta)の周りに N = (1,1 及ひ 'は、炭素原子数 1〜6個のアルキル基を示 し、それぞれが同じ基であっても異なった基であってもよい)が配位した配位化合物 からなる原料ガス及び NHガスを導入し、基板上で原料化合物を還元せしめ、還元
3
化合物膜を形成して Nに結合している R(R')基を一部切断除去し、次いで H原子含 有ガスを導入して前記還元化合物膜と反応させて、還元化合物膜中の Ta -N-N Hの Ta— N結合を切断し、かつ、残っている Nに結合した R(R')基を切断除去し、タ ンタルリッチのタンタル窒化物膜を形成することを特徴とする。上記配位化合物中の 炭素原子数力 ¾を超えると、炭素が膜中に多く残存するという問題がある。
[0009] 前記 H原子含有ガスは、成膜室内で、熱又はプラズマによりラジカルに変換され、 このラジカルと還元化合物膜とを反応させてタンタルリッチのタンタル窒化物膜を形 成することを特徴とする。
[0010] 前記構成によれば、得られた膜中の C、 N含有量が減少し、 TaZN組成比が増大 し、また、配線膜 (例えば、 Cu配線膜)との密着性が確保されたバリア膜として有用な 低抵抗タンタル窒化物膜を形成することができる。
[0011] 前記原料ガスは、ペンタジメチルァミノタンタル(PDMAT)、 tert-アミルイミドトリス( ジメチルアミド)タンタル(TAIMATA)、ペンタジェチルァミノタンタル(PEMAT)、 te rt-ブチルイミドトリス(ジメチルアミド)タンタノレ(TBTDET)、 tert-ブチルイミドトリス(ェ チルメチルアミド)タンタル(TBTEMT)、 Ta(N(CH ) ) (NCH CH ) (DEMAT)、
3 2 3 3 2 2
TaX (X:塩素、臭素及びヨウ素から選ばれたハロゲン原子)から選ばれた少なくとも
5
一種の配位化合物のガスであることが望ましレ、。
[0012] 前記 H原子含有ガスは、 H、 NH、 SiH力 選ばれた少なくとも一種のガスである
2 3 4
ことが望ましい。 [0013] 前記タンタル窒化物膜の形成方法によれば、膜中のタンタルと窒素との組成比が T a/N≥2. 0を満足するタンタルリッチの低抵抗の薄膜が得られる。
[0014] 本発明のタンタル窒化物膜の形成方法はまた、上記形成方法により得られたタンタ ル窒化物膜に対して、タンタルを主構成成分とするターゲットを用いるスパッタリング により、タンタル粒子を入射させることを特徴とする。これにより、さらにタンタルリッチ な、 Ta/N≥2. 0を十分に満足するタンタル窒化物膜が形成され得る。
[0015] 前記スパッタリングは、 DCパワーと RFパワーとを調整して、 DCパワーが低ぐかつ 、 RFパワーが高くなるようにして行われることが望ましい。
発明の効果
[0016] 本発明によれば、 CVD法に従って、低い C、 N含有量、かつ、高い Ta/N組成比 を有し、配線膜 (例えば、 Cu配線膜)との密着性が確保されたバリア膜として有用な低 抵抗のタンタルリッチのタンタル窒化物膜を形成することができるという効果を奏する
[0017] また、本発明によれば、上記 CVD法により得られたタンタル窒化物膜に対して、ス パッタ法等の PVD法によりタンタルを打ち込むことにより、さらにタンタルリッチのタン タル窒化物膜を形成することができるという効果を奏する。
[0018] さらに、本発明によれば、上記バリア膜上に、優れた密着性と平滑性とを併せ持つ て、配線膜を形成できという効果を奏する。
発明を実施するための最良の形態
[0019] 本発明によれば、低い C、 N含有量、高い Ta/N組成比を有する低抵抗のタンタ ル窒化物膜は、熱 CVD法やプラズマ CVD法等の CVD法に従って、成膜室である 真空チャンバ内に載置された基板上で、上記タンタル含有配位化合物からなる原料 ガスと NHガスとを反応させることにより、基板上に Ta— N— NHの結合を有する還
3
元化合物膜を形成させ、次いでこの還元化合物と、真空チャンバ内へ導入された H 原子含有ガスを熱やプラズマにより活性化して生成された Hガス又は HNガス由来
2 3 の Hラジカル、 NHガス由来の NHラジカル等のラジカルとを反応させて形成される
3
[0020] 原料ガス、 NHガス、 H原子含有ガスとしては、上記したものをそのまま導入しても 、 Nガスや Arガス等の不活性ガスと共に導入してもよい。これらの反応体の量に関し
2
ては、 NHガスは、原料ガスに対して、例えば、原料ガス 5sccmに対して 100〜100
3
Osccm程度の流量で用い、また、 H原子含有化合物ガスは、例えば、原料ガス 5scc mに対して 100〜: 1000sccm(H換算)の流量で用いることが望ましい。
2
[0021] 上記二つの反応の温度は、反応が生じる温度であればよぐ例えば、原料ガスと N Hガスとの還元反応では、一般に 300°C以下、好ましくは 150〜300°C、また、この
3
還元反応の生成物とラジカルとの反応では、一般に 300°C以下、好ましくは 150〜3 00°Cである。また、真空チャンバ内の圧力は最初の還元反応の場合 1〜: 100Pa、次 の成膜反応の場合:!〜 1 OOPaであることが望ましレ、。
[0022] 配位化合物は、上記したように、タンタル元素 (Ta)の周りに N = (R,R')(R及び R'は 、炭素原子数:!〜 6個のアルキル基を示し、それぞれが同じ基であっても異なった基 であってもよレ、)が配位したものである。このアルキル基は、例えばメチル、ェチル、プ 口ピル、ブチル、ペンチル、へキシル基であり、直鎖でも分岐したものでもよレ、。この 配位化合物は、通常、 Taの周りに 4つから 5つの N— (R,R')が配位した化合物である
[0023] 上記本発明の方法は、 CVD法に従って、成膜室である真空チャンバ内において、 例えば、原料ガスと NHガスとを導入して還元反応を行って Ta— N— NH結合を有
3
する還元化合物膜を形成し、次いで水素原子含有化合物ガスを導入して、熱又はプ ラズマにより生成されたラジカルと上記還元化合物とを反応せしめて、タンタル窒化 物膜を形成してもよいし、また、その後このプロセスを所望の回数繰り返してもよいし 、或いはまた、上記還元反応を所望の回数繰り返した後、ラジカルとの反応を行って あよい。
[0024] 本発明のタンタル窒化物の形成方法は、いわゆる CVD法を実施できる成膜装置で あれば特に制約なく実施できる。例えば、図 1に示すプラズマ CVD成膜装置を使用 して本発明方法を実施する場合の一実施の形態について、以下説明する。
[0025] 図 1に示すプラズマ CVD装置は、成膜室である真空チャンバ 1からなり、この真空 チャンバの側壁には真空排気系 2が接続されており、真空チャンバの上方部には真 空チャンバと絶縁した状態で電極 3が配置されている。この電極 3に接続された高周 波電源 4が真空チャンバ 1の外部に配置されており、電極に高周波電力を印加し、真 空チャンバ内にプラズマを発生させることができるように構成されてレ、る。真空チャン バ 1内には、その下方部にヒータ等の加熱手段 5を内蔵する基板載置用ステージ 6が 、その基板載置面を電極面と互いに平行して対向するように配設されている。
[0026] 電極 3の内部には、ガス室 7が設けられ、電極の基板載置用ステージ 6に対向する 面にはシャワーノズルとして機能する複数の孔 8が開口され、この孔からガスを真空 チャンバ内へ導入し、基板表面へ供給できるように構成されており、この電極はシャ ワープレートとして機能する。
[0027] ガス室 7には、ガス導入系 9の一端が接続され、このガス導入系の他端には原料ガ スゃ NHガスや H原子含有ガス等がそれぞれ充填された複数のガスボンベ (図示せ
3
ず)が接続されている。この場合、ガス室 7にガス導入系 9が複数接続され、それぞれ 力 別個のガスボンベに接続されていてもよレ、。図示していないが、マスフローコント ローラで各ガス流量を制御できるようになつている。
[0028] 原料ガスは、原料ガス充填ガスボンベを用いて導入することもできる力 その他に、 上記タンタル含有有機金属化合物を加熱保温された容器内に収容し、パブリングガ スとしての Ar等の不活性ガスをマスフローコントローラ一等を介して容器内に供給し て原料を昇華させ、このパブリングガスと共に原料ガスを真空チャンバ内へ導入する ようにしてもよいし、気化器等を介して気化された原料ガスを真空チャンバ内へ導入 してもよい。
[0029] 図 1に示すプラズマ CVD成膜装置を用い、本発明のタンタル窒化物形成方法を実 施するプロセスの一実施の形態は、以下の通りである。
[0030] まず、真空排気系 2により、真空チャンバ一 1内を所定の圧力 (例えば、 10 10_ 5pa)まで真空排気し、基板載置用ステージ 6上に基板 Sを載置した後、加熱手段 5に 通電して基板を所定の温度 (例えば、 150〜300°C)に加熱する。次いで、ガス導入 系 9からガス室 7へ原料ガスと NHガスとを導入し、孔 8から基板 S表面に向かって供
3
給する。この基板 Sとしては、特に制限はないが、例えば、公知の下地密着層が絶縁 層上に設けられたものであって、その表面が脱ガス等の前処理をしてあるものであつ てもよい。 [0031] 真空チャンバ 1内の圧力が所定の圧力で安定した後、高周波電源 4から、周波数 2 7. 12MHz,電力密度 0. 2W/ cm2の高周波交流電圧を出力させる。この高周波電 源からの交流電圧が電極 3に印加されると、力ソードとして機能するように構成されて レ、る電極 3とアノードとして機能するように構成されている基板ホルダー 6上に載置さ れた基板 S表面との間に原料ガスと NHガス又は NHラジカル (例えば、 NHガス)と
3 3 のプラズマが発生する。このプラズマ中で原料ガス及び NHガスのラジカルが生成さ
3
れ、基板 S表面上で還元反応が起こり、 Ta-N-NH結合を有する還元化合膜が
3
形成される。所定の膜厚を有する還元化合物膜が形成された後、高周波電源 4の動 作を停止し、原料ガスと NHガスとの導入を停止する。
3
[0032] 次いで、真空チャンバ一 1内へガス導入系 9を介して H原子含有ガスを導入して活 性化する。すなわち、上記したようにして、チャンバ一内にプラズマを発生せしめ、こ のプラズマ中で発生したラジカルを、上記したようにして形成した還元化合物膜の表 面に入射して反応せしめ、この還元化合物膜中の Ta— N結合を切断除去し、かつ、 残ってレ、る Nに結合した R(R')基を切断除去し、タンタルリッチのタンタル窒化物膜を 形成する。所定の膜厚を有するタンタル窒化物膜が形成されたら、高周波電源 4の 動作を停止し、 H原子含有ガスの導入を停止し、基板 Sを真空チャンバ一 1外へ搬出 する。
[0033] 上記したようにして形成されたタンタル窒化物膜について、 AESによって分析した ところ、 C5%以下、 N33〜35%、 Ta/N= l . 9〜2. 0であり、比抵抗は 600 /i Ω - c m以下であった。
[0034] 上記したように、プラズマ CVD法では、 NHガスや H原子含有ガス等の反応ガスが
3
プラズマ中で活性化されるので、比較的低温でも薄膜を形成することができる。また、 熱 CVD法によっても、公知のプロセス条件で上記と同じようにしてタンタルリッチのタ ンタル窒化物膜を形成することができる。
[0035] 上記したようにして所望の膜厚を有するタンタル窒化物膜が形成された基板に対し て、例えば、公知のスパッタ成膜法に従って、 Ar等のスパッタリングガスを用レ、、ター ゲットに電圧を印加してプラズマを発生させ、ターゲットをスパッタリングして上記タン タル窒化物膜の表面に金属薄膜、すなわち配線膜側密着層 (バリア膜側下地層)を 形成させてもよい。
[0036] 以上の工程を経て基板 S上に積層膜が形成され、次いで、上記配線膜側密着層の 上に、公知の方法により配線膜 (例えば、 Cu配線膜)を形成する。
[0037] ところで、本発明のタンタル窒化物形成方法では、このバリア膜が形成される前に、 基板 S表面に吸着しているガス等の不純物を除去する公知の脱ガス処理を行うこと が必要であり、また、この基板上にバリア膜を形成した後に、最終的に例えば Cuから なる配線膜が形成される。そのため、この成膜装置を、真空排気可能な搬送室を介 して、少なくとも脱ガス室及び配線膜形成室に接続して、基板が搬送用ロボットによつ て搬送室から成膜装置と脱ガス室と配線膜形成室との間を搬送できるように構成され た複合型配線膜形成装置とすれば、前処理から配線膜形成までの一連の工程をこ の装置で実施できる。
[0038] 上記したようにして形成されたタンタル窒化物膜に対して、スパッタリング法等の PV D法によりタンタル粒子を打ち込んで、さらにタンタルリッチのタンタル窒化物膜を形 成することもできる。例えば、真空チャンバの上方で、基板ホルダーに対向する位置 にターゲットが設置されている公知のスパッタリング装置を用いて実施できる。
[0039] このようなスパッタリング装置の場合、ターゲットには、その表面をスパッタリングし、 ターゲット構成物質の粒子を放出させるプラズマを発生させるための電圧印加装置 が接続されている。ここで用いるターゲットは、上記原料ガスに含まれる金属の構成 元素 (Ta)を主成分とするもので構成されており、また、電圧印加装置は、高周波発生 装置と、ターゲットに接続された電極とから構成されている。スパッタリングガスは、公 知の不活性ガス、例えばアルゴンガス、キセノンガス等であればよい。
[0040] 上記のようにして得られたタンタル窒化物膜であるバリア膜の形成された基板 Sをス パッタ室内に載置した後に、スパッタ室内へ Ar等の不活性ガスを導入して放電させ、 原料ガスの構成成分であるタンタルを主構成成分とするターゲットをスパッタリングし 、基板上に形成された薄膜中にスパッタリング粒子であるタンタル粒子を入射させる ようする。このように、スパッタリングによって、ターゲットから基板表面の薄膜中にタン タルを入射させることができるので、バリア膜中のタンタルの含有率をさらに増加せし めることができ、所望の低抵抗のタンタルリッチのタンタル窒化物膜を得ることができ る。なお、原料ガスが有機タンタルイ匕合物であるので、上記スパッタリングによって構 成元素 (タンタル)が基板の表面に入射することにより、分解が促進されて Cや N等の 不純物力 Sバリア膜からはじき出されて、不純物の少ない低抵抗のバリア膜を得ること ができる。
[0041] このスパッタリングは、タンタル粒子をタンタル窒化物膜中に打ち込んで、 Cや Nを スパッタ除去し、この膜の改質を行うために行われるのであって、タンタル膜を積層す るのではないので、タンタル膜が形成されない条件、すなわちタンタル粒子によるェ ツチングができる条件で行うことが必要である。そのため、例えば、 DCパワーと RFパ ヮ一とを調整して、 DCパワーが低ぐかつ、 RFパワーが高くなるようにする必要があ る。例えば、 DCパワーを 5kW以下に設定し、 RFパワーを高ぐ例えば 400〜800W とすることで、タンタル膜が形成されない条件が達成できる。 RFパワーは DCパワー に依存するので、 DCパワーと RFパワーを適宜調整することにより、膜の改質程度を 調整できる。また、スパッタリング温度は、通常のスパッタリング温度でよぐ例えばタ ンタル窒化物膜の形成温度と同一温度でよい。
[0042] 上記したようにして所望の膜厚を有するバリア膜が形成された基板 Sに対して、例え ば、公知のスパッタ成膜法に従って、 Ar等のスパッタリングガスを導入し、電圧印加 装置からターゲットに電圧を印加してプラズマを発生させ、ターゲットをスパッタリング して上記バリア膜の表面に金属薄膜、すなわち配線膜側密着層 (バリア膜側下地層) を形成させてもよい。
[0043] 以上の工程を経て基板 S上に積層膜が形成され、次いで、上記配線膜側密着層の 上に、公知の方法で配線膜を形成する。
[0044] 図 2は、図 1に示す成膜装置を備えた複合型配線膜形成装置の構成図を模式的に 示す。
[0045] この複合型配線膜形成装置 100は、前処理部 101と成膜処理部 103とこれらをつ なぐ中継部 102とから構成されている。いずれも、処理を行う前には、内部を真空雰 囲気にしておく。
[0046] まず、前処理部 101では、搬入室 101aに配置された処理前基板を前処理部側搬 出入口ボット 101bによって脱ガス室 101cに搬入する。この脱ガス室 101cで処理前 基板を加熱し、表面の水分等を蒸発させて脱ガス処理を行う。次に、この脱ガス処理 された基板を搬出入口ボット 101bによって還元処理室 lOldに搬入する。この還元 処理室 lOld内では、上記基板を加熱して水素ガス等の還元性ガスによって下層配 線のメタル酸化物を除去するァニール処理を行う。
[0047] ァニール処理の終了後、搬出入口ボット 101bによって還元処理室 lOldから上記 基板を取り出し、中継部 102に搬入する。搬入された基板は、中継部 102で成膜処 理部 103の成膜処理部側搬出入口ボット 103aに受け渡される。
[0048] 受け渡された上記基板は、搬出入口ボット 103aによって成膜室 103bに搬入される 。この成膜室 103bは、上記成膜装置 1に相当する。成膜室 103bでバリア膜及び密 着層が形成された積層膜は、搬出入口ボット 103aによって成膜室 103bから搬出さ れ、配線膜室 103cに搬入される。ここで、上記バリア膜 (バリア膜上に密着層が形成 されている場合は、密着層)の上に配線膜が形成される。配線膜が形成された後、こ の基板を搬出入口ボット 103aによって配線膜室 103cから搬出室 103dに移動し、搬 出する。
[0049] 以上の通り、上記バリア膜形成の前後の工程、すなわち、脱ガス工程と配線膜形成 工程とを一連で行う上記複合型配線膜形成装置 100の構成をとれば、作業効率が 向上する。
[0050] なお、上記複合型配線膜形成装置 100の構成は、前処理部 101に脱ガス室 101c と還元処理室 lOldとを各々 1室ずつ設け、成膜処理部 103に成膜室 103bと配線膜 室 103cとを各々 1室ずつ設けたが、この構成に限定されるものではない。
[0051] 従って、例えば、前処理部 101及び成膜処理部 103の形状を多角形状にし、各々 の面に上記脱ガス室 101 c及び還元処理室 101、並びに成膜室 103b及び配線膜室 103cを複数個設ければ、さらに処理能力は向上する。
実施例 1
[0052] 本実施例では、図 1に示す成膜装置を用い、原料ガスとしてペンタジメチルアミノタ ンタル (MO)ガス、 NHガス及び H原子含有ガスとして NHガスを用いてタンタル窒
3 3
化物膜を形成した。
[0053] 公知の方法に従って、 SiO絶縁膜を有する基板 Sの表面の脱ガス前処理工程を 実施した後、真空排気系 2によって 10_5Pa以下に真空排気された真空チャンバ 1内 に基板 Sを搬入した。この基板としては、特に制限はないが、例えば、通常のスパッタ 成膜法に従って、 Arスパッタリングガスを用い、 Taを主構成成分として有するターゲ ットに電圧を印加してプラズマを発生させ、ターゲットをスパッタリングして表面に基板 側密着層を形成させた基板を用レ、てもよい。
[0054] 真空チャンバ 1内に基板 Sを搬入し、基板載置用ステージ 6上に基板 Sを載置した 後、この基板をヒーター 5で 250°Cに加熱し、ガス導入系 9からガス室 7へ上記原料ガ スを 5sccm、上記 NHガスを lOOsccm導入し、孔 8から基板 S表面に向かって供給
3
した。
[0055] 真空チャンバ 1内の圧力が所定の圧力で安定した後、高周波電源 4から、周波数 2 7. 12MHz,電力密度 0. 2WZ cm2の高周波交流電圧を出力させ、電極 3と基板 S 表面との間に原料ガスと NHガスとのプラズマを発生させた。このプラズマ中で原料
3
ガス及び NHガスのラジカルを生成させ、基板 S表面上での酸化反応によって、 Ta
3
-N-NH結合を有する還元化合物膜を形成した。所定の膜厚を有する還元化合
3
物膜を形成した後、高周波電源 4の動作を停止し、原料ガスと窒素、水素原子含有 ガスとの導入を停止した。
[0056] 次いで、真空チャンバ一 1内へガス導入系 9を介して上記 H原子含有ガスを導入し 、上記したようにして、チャンバ一内にプラズマを発生せしめ、このプラズマ中で発生 したラジカルを、上記したようにして形成した還元化合物膜の表面に入射して反応せ しめた。この反応により、この還元化合物膜中の Ta— N結合が切断除去され、かつ、 残っている Nに結合した R(R')基が切断除去された。その結果、タンタルリッチのタン タル窒化物膜が形成された。所定の膜厚を有するタンタル窒化物膜を形成した後、 高周波電源 4の動作を停止し、 H原子含有ガスの導入を停止し、基板 Sを真空チャン バー 1外へ搬出した。
[0057] 力べして得られたバリア膜の組成は、 TaZN= l . 9であり、 C含有量は 5%以下であ り、 N含有量は 35%であった。
[0058] なお、比較のために、上記原料ガス (MOガス)と NHガスとを用いた場合、及び上
3
記原料ガスと反応ガス (Hラジカル)とを用いた場合について、上記方法に準じて成膜 した。
[0059] 上記方法で得られたそれぞれの薄膜について、比抵抗 Ρ ( μ Ω ' cm)を算出した。
この比抵抗は、 4探針プローブ法でシート抵抗 (Rs)を測定し、 SEMで膜厚 (T)を測定 して、式: p =Rs 'Tに基づいて算出したものである。
[0060] 原料ガス (M〇ガス)を NHガスで還元した後に H原子含有ガス (Hラジカル)を流して
3
成膜した場合には、 MOガスと Hラジカルとを用いて成膜した場合 (2000 μ Ω - cm) 及び MOガスと NHガスとを用いて成膜した場合 (5000 μ Ω · cm)よりも低い比抵抗(
3
600 μ Ω - cm)が得られた。
[0061] これは、 M〇ガスと Hラジカルとの成膜では反応で十分に R (アルキル基)、すなわち Cが除去できず、比抵抗が下がらないこと、また、 MOガスと NHガスとの成膜では、
3
Taリッチの膜が出来にくいことを示すものと考えられる。
[0062] 一方、 M〇ガスと NHガスと H原子含有ガスとを用いた成膜では、上記したように、
3
まず NHにより原料ガスの Ta— Nの結合が一部切断され、次いで Hラジカルの供給
3
により高抵抗の還元化合物における Ta— N結合が切断されて、残っている R,R'基( アルキル基)が除去されることにより、 C、 Nの含有割合が減少し、その結果、形成され た膜組成がタンタルリッチとなり、膜の比抵抗が下がったことを示しているものと考えら れる。
[0063] 上記したようにして所望の膜厚を有するバリア膜が得られた基板に対し、例えば、 公知のスパッタ成膜方法に従って、 Arスパッタリングガスを用レ、、ターゲットに電圧を 印加してプラズマを発生させ、ターゲットをスパッタリングして上記バリア膜の表面に 金属薄膜、すなわち下地層としての配線膜側密着層を形成させてもよい。
[0064] 以上の工程を経て積層膜が形成された基板 S上に、すなわち上記バリア膜側密着 層の上に、公知のプロセス条件に従って Cu配線膜を形成した。各膜同士の接着性 は優れてレ、ることが確認された。
実施例 2
[0065] 本実施例では、実施例 1で得られたタンタル窒化物膜に対して、公知のスパッタ装 置を用いて、スパッタリングによりタンタル粒子を打ち込んで、さらにタンタルリッチの タンタル窒化物膜を形成した。 [0066] スパッタ装置内に Arスパッタリングガスを導入し、電圧印加装置からターゲットに電 圧を印加して放電させて、プラズマを発生させ、タンタルを主構成成分とするターゲッ トをスパッタリングし、基板 S上に形成された薄膜中にスパッタリング粒子であるタンタ ル粒子を入射させるようにした。このスパッタリング条件は、 DCパワー: 5kW、 RFパヮ 一: 600Wとした。また、スパッタリング温度は、一 30〜150°Cで行った。
[0067] 上記タンタル粒子を打ち込むスパッタリングにより、バリア膜中のタンタルの含有率 をさらに増加せしめることができ、所望の低抵抗のタンタルリッチのタンタル窒化物膜 を得ることができた。なお、タンタルが基板 Sの表面薄膜中に入射することにより、薄 膜の分解が促進されて Cや N等の不純物が膜からはじき出されて、不純物の少ない 低抵抗のバリア膜を得ることができた。力、くして得られた薄膜は、 Ta/N = 3. 5、 C及 び Nの含有量: C = 0. 1 %以下、 N = 22%、並びに得られた薄膜の比抵抗: 90 μ Ω •cmであった。
[0068] 上記のようにして所望の膜厚の改質タンタル窒化物膜を形成した後、例えば、 Arス パッタリングガスを導入し、公知のスパッタ成膜プロセス条件に従って電圧印加装置 力 ターゲットに電圧を印加してプラズマを発生させ、ターゲットをスパッタリングして 上記バリア膜の表面に金属薄膜、すなわち下地層としての配線膜側密着層を形成さ せてもよい。
[0069] 以上の工程を経て積層膜が形成された基板 S上に、すなわち上記配線膜側密着 層の上に、公知のプロセス条件に従って Cu配線膜を形成した。各膜同士の接着性 は優れてレ、ることが確認された。
実施例 3
[0070] 原料ガスとして、ペンタジメチルァミノタンタルの代わりに tert-アミルイミドトリス (ジメ チルァミノ)タンタルを用いたこと以外は、実施例 1に準じて成膜プロセスを実施したと ころ、タンタルリッチの低抵抗のタンタル窒化物膜が得られた。得られた膜において、 Ta/N = l . 8、 C含有量 5%、 N含有量 35. 7%、並びに得られた薄膜の比抵抗は 7 00 μ Ω ' cmであった。
実施例 4
[0071] Hラジカルを生成する反応ガスとして、 Hガスを用いたこと以外は、実施例 1に準じ て成膜プロセスを実施したところ、実施例 1と同様な結果が得られた。
産業上の利用可能性
[0072] 本発明によれば、 CVD法に従って、 C、 N含有量が低ぐ Ta/N組成比が高ぐ C u膜との密着性が確保されるバリア膜として有用な低抵抗のタンタル窒化物膜を形成 すること力 Sできる。そのため、本発明は、半導体デバイス分野の薄膜形成プロセスに 適用可能である。
図面の簡単な説明
[0073] [図 1]本発明の成膜方法を実施するための成膜装置の一例を模式的に示す構成図
[図 2]本発明の成膜方法を実施するための成膜装置を組み込んだ複合型配線膜形 成装置の模式的構成図。
符号の説明
[0074] 1 真空チャンバ 2 真空排気系
3 電極 4 高周波電源
5 加熱手段 6 基板載置用ステージ
7 ガス室 8 孔
9 ガス導入系 S 基板

Claims

請求の範囲
[1] CVD法に従って、成膜室内に、タンタル元素 (Ta)の周りに N = (R,R')(R及び R'は、 炭素原子数:!〜 6個のアルキル基を示し、それぞれが同じ基であっても異なった基で あってもよい)が配位した配位化合物からなる原料ガス及び NHガスを同時に導入し
3
、基板上で原料化合物を還元せしめ、還元化合物膜を形成して Nに結合している R( R')基を一部切断除去し、次レ、で H原子含有ガスを導入して前記還元化合物膜と反 応させて、還元化合物中の Ta— N結合を切断し、かつ、残っている Nに結合した R( R')基を切断除去し、タンタルリッチのタンタル窒化物膜を形成することを特徴とするタ ンタル窒化物膜の形成方法。
[2] 前記 H原子含有ガスが、成膜室内で、熱又はプラズマによりラジカルに変換され、こ のラジカルと還元化合物膜とを反応させてタンタルリッチのタンタル窒化物膜を形成 することを特徴とする請求項 1記載のタンタル窒化物膜の形成方法。
[3] 前記原料ガスが、ペンタジメチルァミノタンタル、 tert-アミルイミドトリス (ジメチルアミド) タンタル、ペンタジェチルァミノタンタル、 tert-ブチルイミドトリス(ジメチルアミド)タン タル、 tert-ブチルイミドトリス(ェチルメチルアミド)タンタル、 Ta(N(CH ) ) (NCH C
3 2 3 3
H )、TaX (X:ハロゲン原子)から選ばれた少なくとも一種の配位化合物のガスであ
2 2 5
ることを特徴とする請求項 1又は 2記載のタンタル窒化物膜の形成方法。
[4] 前記 H原子含有ガスが、 H、 NH、 SiH力、ら選ばれた少なくとも一種のガスであるこ
2 3 4
とを特徴とする請求項 1〜3のいずれかに記載のタンタル窒化物膜の形成方法。
[5] 前記タンタル窒化物膜において、タンタルと窒素との組成比が、 Ta/N≥2. 0を満 足する膜であることを特徴とする請求項 1〜4のいずれかに記載のタンタル窒化物膜 の形成方法。
[6] 請求項 1〜5のいずれかに記載の形成方法により得られたタンタル窒化物膜に対し て、タンタルを主構成成分とするターゲットを用いるスパッタリングにより、タンタル粒 子を入射させることを特徴とするタンタル窒化物膜の形成方法。
[7] 前記スパッタリング力 DCパワーと RFパワーとを調整して、 DCパワーが低ぐかつ、 RFパワーが高くなるようにして行われることを特徴とする請求項 6記載のタンタル窒 化物膜の形成方法。 前記タンタル粒子を入射させたタンタル窒化物膜にぉレ、て、タンタルと窒素との組成 比が、 Ta/N≥2. 0を満足する膜であることを特徴とする請求項 6又は 7に記載のタ ンタル窒化物膜の形成方法。
PCT/JP2006/304072 2005-03-03 2006-03-03 タンタル窒化物膜の形成方法 WO2006093262A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/885,345 US8796142B2 (en) 2005-03-03 2006-03-03 Method for forming tantalum nitride film
CN2006800014741A CN101091004B (zh) 2005-03-03 2006-03-03 钽氮化物膜的形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005059085A JP4931173B2 (ja) 2005-03-03 2005-03-03 タンタル窒化物膜の形成方法
JP2005-059085 2005-03-03

Publications (1)

Publication Number Publication Date
WO2006093262A1 true WO2006093262A1 (ja) 2006-09-08

Family

ID=36941292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304072 WO2006093262A1 (ja) 2005-03-03 2006-03-03 タンタル窒化物膜の形成方法

Country Status (6)

Country Link
US (1) US8796142B2 (ja)
JP (1) JP4931173B2 (ja)
KR (2) KR100954714B1 (ja)
CN (1) CN101091004B (ja)
TW (1) TWI397952B (ja)
WO (1) WO2006093262A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048717B2 (en) * 2007-04-25 2011-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Method and system for bonding 3D semiconductor devices
CN103839604A (zh) * 2014-02-26 2014-06-04 京东方科技集团股份有限公司 导电膜及其制备方法、阵列基板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135155A (ja) * 1996-10-16 1998-05-22 Samsung Electron Co Ltd 障壁金属膜の形成方法
JP2003342732A (ja) * 2002-05-20 2003-12-03 Mitsubishi Materials Corp タンタル錯体を含む有機金属化学蒸着法用溶液原料及びそれを用いて作製されたタンタル含有薄膜
JP2005203569A (ja) * 2004-01-15 2005-07-28 Semiconductor Leading Edge Technologies Inc 半導体装置の製造方法及び半導体装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153519A (en) * 1997-03-31 2000-11-28 Motorola, Inc. Method of forming a barrier layer
US5893752A (en) * 1997-12-22 1999-04-13 Motorola, Inc. Process for forming a semiconductor device
US6265311B1 (en) 1999-04-27 2001-07-24 Tokyo Electron Limited PECVD of TaN films from tantalum halide precursors
US6410432B1 (en) * 1999-04-27 2002-06-25 Tokyo Electron Limited CVD of integrated Ta and TaNx films from tantalum halide precursors
US6139922A (en) * 1999-05-18 2000-10-31 Gelest, Inc. Tantalum and tantalum-based films formed using fluorine-containing source precursors and methods of making the same
US6398929B1 (en) 1999-10-08 2002-06-04 Applied Materials, Inc. Plasma reactor and shields generating self-ionized plasma for sputtering
KR100403454B1 (ko) 2000-06-20 2003-11-01 주식회사 하이닉스반도체 반도체 소자의 금속 배선 형성 방법
US7098131B2 (en) * 2001-07-19 2006-08-29 Samsung Electronics Co., Ltd. Methods for forming atomic layers and thin films including tantalum nitride and devices including the same
US7049226B2 (en) * 2001-09-26 2006-05-23 Applied Materials, Inc. Integration of ALD tantalum nitride for copper metallization
US6916398B2 (en) * 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
EP1420080A3 (en) * 2002-11-14 2005-11-09 Applied Materials, Inc. Apparatus and method for hybrid chemical deposition processes
US20060113603A1 (en) * 2004-12-01 2006-06-01 Amberwave Systems Corporation Hybrid semiconductor-on-insulator structures and related methods
US8026605B2 (en) * 2006-12-14 2011-09-27 Lam Research Corporation Interconnect structure and method of manufacturing a damascene structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135155A (ja) * 1996-10-16 1998-05-22 Samsung Electron Co Ltd 障壁金属膜の形成方法
JP2003342732A (ja) * 2002-05-20 2003-12-03 Mitsubishi Materials Corp タンタル錯体を含む有機金属化学蒸着法用溶液原料及びそれを用いて作製されたタンタル含有薄膜
JP2005203569A (ja) * 2004-01-15 2005-07-28 Semiconductor Leading Edge Technologies Inc 半導体装置の製造方法及び半導体装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHO K.-N. ET AL.: "Remote Plasma-Assisted Metal Organic Chemical Vapor Deposition of Tantalum Nitride Thin Films with Different Radicals", JPN. J. APPL. PHYS., vol. 37, no. 12A, PART 1, December 1998 (1998-12-01), pages 6502 - 6505, XP000927319 *
PARK S.G. AND KIM D.-H.: "Stability of Plasma Posttreated TiN Films Prepared by Alternating Cyclic Pulses of Tetrakis-Dimethylamido-Titanium and Ammonia", JPN. J. APPL. PHYS., vol. 43, no. 1, 2004, pages 303 - 304, XP002998700 *

Also Published As

Publication number Publication date
TWI397952B (zh) 2013-06-01
KR100942685B1 (ko) 2010-02-16
JP4931173B2 (ja) 2012-05-16
CN101091004A (zh) 2007-12-19
US20090104775A1 (en) 2009-04-23
KR20070085592A (ko) 2007-08-27
CN101091004B (zh) 2010-08-25
JP2006241524A (ja) 2006-09-14
US8796142B2 (en) 2014-08-05
KR100954714B1 (ko) 2010-04-23
TW200636832A (en) 2006-10-16
KR20090043554A (ko) 2009-05-06

Similar Documents

Publication Publication Date Title
KR100942686B1 (ko) 탄탈 질화물막의 형성 방법
KR100942684B1 (ko) 탄탈 질화물막의 형성 방법
TWI410517B (zh) Method for forming tantalum nitride film
TWI392018B (zh) Method for forming tantalum nitride film
WO2006093262A1 (ja) タンタル窒化物膜の形成方法
JP4931172B2 (ja) タンタル窒化物膜の形成方法
US8158197B2 (en) Method for forming tantalum nitride film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077012311

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680001474.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715155

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11885345

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097004614

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载