+

WO2006068138A1 - 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物 - Google Patents

密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物 Download PDF

Info

Publication number
WO2006068138A1
WO2006068138A1 PCT/JP2005/023364 JP2005023364W WO2006068138A1 WO 2006068138 A1 WO2006068138 A1 WO 2006068138A1 JP 2005023364 W JP2005023364 W JP 2005023364W WO 2006068138 A1 WO2006068138 A1 WO 2006068138A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
carbon atoms
diffractive optical
resin
bifunctional
Prior art date
Application number
PCT/JP2005/023364
Other languages
English (en)
French (fr)
Inventor
Akiko Miyakawa
Masayuki Shijo
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to US11/793,523 priority Critical patent/US8367872B2/en
Priority to JP2006549000A priority patent/JP4872671B2/ja
Priority to EP05819858.1A priority patent/EP1830205B1/en
Publication of WO2006068138A1 publication Critical patent/WO2006068138A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1852Manufacturing methods using mechanical means, e.g. ruling with diamond tool, moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/361Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons
    • B29C2043/3615Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/361Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons
    • B29C2043/3615Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices
    • B29C2043/3634Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices having specific surface shape, e.g. grooves, projections, corrugations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • B29L2011/005Fresnel lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block

Definitions

  • Adhesive multilayer diffractive optical element, optical material used therefor, resin precursor and resin precursor composition Adhesive multilayer diffractive optical element, optical material used therefor, resin precursor and resin precursor composition
  • the present invention relates to a multi-contact diffractive optical element, an optical material that is a resin used therefor, a resin precursor, and a resin precursor composition.
  • a close-contact multilayer diffractive optical element in which two optical members, which are optical material forces, are in close contact with each other to form a diffraction grating, can be used in a wider wavelength range. It is easy to align and has the advantages.
  • the optical characteristics of the two optical members sandwiching the diffractive optical surface are relatively high in refractive index.
  • Low dispersion and low refractive index and high dispersion are required.
  • Examples of general existing low-refractive-high dispersion resins include optical plastics described in JP-A-4366115, and the two optical members of the contact multilayer diffractive optical element are:
  • Patent Document 1 Japanese Patent Application Laid-Open No. 9 127322
  • Patent Document 2 Japanese Patent Application Laid-Open No. 4-366115
  • the optical material used for the optical member of this multi-layered diffractive optical element can be manufactured in a low-cost manner because the element can be reduced in weight, and mass productivity can be improved. Oil is suitable.
  • an ultraviolet curable resin is desirable because it has excellent transferability, requires a short time for curing, and does not require a heat source, so that the cost can be further reduced.
  • it has been difficult to achieve special optical properties such as high refractive index, low power, and low dispersion by using a conventional resin that has been used in the optical field.
  • the present invention provides a high refractive index and low dispersion resin suitable for an optical material used for a multi-contact diffractive optical element, a precursor thereof, a composition containing the precursor, It is an object of the present invention to provide an adhesive multi-layer diffractive optical element using
  • the resin having an alicyclic skeleton has a small dispersion. I understood this. It was also found that substances having sulfur atoms have a high refractive index.
  • an ultraviolet curable resin having both structures should be used, and a composition comprising an acrylate having an alicyclic skeleton, a thiol having a sulfur atom, and a photopolymerization initiator is used.
  • an adhesive multilayered diffractive optical element was produced by curing with ultraviolet rays, the problem of deterioration of the working environment due to the odor of thiols, the rate of addition reaction of attalyloyl groups to mercapto groups, and the rate of homopolymerization reaction of attalyloyl groups There was a problem that the curing was non-uniform because they differed significantly.
  • a terminal acrylate oligomer obtained by reacting an excess of phthalate with a thiol as a resin precursor is used, and a photopolymerization initiator is added to the terminal acrylate oligomer. It was decided to add and use as an ultraviolet curable resin composition. Since the terminal acrylate oligomer used in the present invention does not have a mercapto group, it does not have a thiol odor.
  • Such a terminal acrylate oligomer can be synthesized from, for example, a reaction between a mercapto group and an allyloyl group using a tertiary amine as a catalyst and an excess of acrylate with respect to thiol. .
  • an adhesion multilayer diffractive optical element comprising a resin which is a cured product of a resin precursor composition containing the obtained terminal acrylate oligomer and a photopolymerization initiator.
  • a resin precursor that is a terminal acrylate oligomer obtained by reacting a bifunctional thiol with an excess of a bifunctional thiolate, a resin precursor composition containing the precursor, And a cured product.
  • the cured resin has a refractive index n of 1 at wavelengths of 587 and 56 nm of the d-line.
  • the average dispersion of the resin after curing that is, the difference (n ⁇ n) between the refractive index n at the wavelength of 486.13 nm for the F-line and the refractive index n at the wavelength of 656.27 nm for the C-line is 0. 013
  • This resin precursor composition of the present invention comprises a terminal acrylate oligomer obtained by reacting a bifunctional thiol with excess bifunctional acrylate, and a photopolymerization initiator.
  • an optically uniform high refractive index is reduced by aligning the reaction site of the rosin precursor with the attalyloyl group while realizing a high refractive index by making a sulfur atom present in the molecule. It is possible to form a dispersed resin layer, and to produce a contact multilayer diffractive optical element efficiently by preliminarily reacting with a mercapto group, thereby preventing deterioration of the working environment due to the odor of thiol. Can do.
  • FIG. 1 is an explanatory view showing a production process of a contact multilayer diffractive optical element in Example 1.
  • FIG. 2 is an infrared absorption spectrum chart of the ultraviolet curable resin precursor composition a of Example 1.
  • FIG. 3 is an infrared absorption spectrum chart of the cured product of the precursor composition a of Example 1.
  • FIG. 4 is an infrared absorption spectrum chart of the ultraviolet curable resin precursor composition b of Example 1.
  • FIG. 5 is an infrared absorption spectrum chart of the cured product of the precursor composition b of Example 1.
  • FIG. 6 is an infrared absorption spectrum chart of the ultraviolet curable resin precursor composition c of Example 2.
  • FIG. 7 is an infrared absorption spectrum chart of the cured product of the precursor composition c of Example 2.
  • the optical characteristics of the optical member sandwiching the diffractive optical surface are required to be relatively high refractive index low dispersion and low refractive index high dispersion.
  • the grating height d which is optimized so that the m-th order diffraction efficiency is 100% at the wavelength, is a high refractive index.
  • ⁇ and ⁇ be the refractive indices at ⁇ of materials with low dispersion and low refractive index and high dispersion, respectively.
  • the grating height d is the refractive index between a material with high refractive index and low dispersion and a material with low refractive index and high dispersion.
  • the resin of the present invention, its precursor, and the composition containing the precursor are combined with an existing low-refractive high-dispersion resin, and thus have a very low lattice strength that cannot be realized conventionally. It has excellent optical properties that can achieve high height, and is particularly suitable for a contact multilayer diffractive optical element.
  • a terminal acrylate oligomer which is a reaction product of a bifunctional thiol and an excess of a bifunctional acrylate, is used as a resin precursor.
  • Terminal Atarylate used in the present invention
  • the ligomer those having a structure represented by the following general formula (ii) are preferable.
  • the average number of repetitions n in the general formula (ii) 1 is less than 4. In this way, the reaction sites that contribute to the polymerization during UV curing are unified, so that non-uniformity due to the difference in curing rate can be avoided.
  • R 1 is a divalent organic group having 7 to 15 carbon atoms (preferably an alkylene group) having an alicyclic skeleton
  • R 2 is an alkylene group having 2 to 20 carbon atoms or a carbon number. 2 to 20 polythiaalkylene groups, and n is a positive integer.
  • the molar ratio of the bifunctional acrylate and the bifunctional thiol is preferably 1.5: 1 to 10: 1, and more preferably 2.5: 1 to 5: 1. This is because if the thiol content is increased, the refractive index becomes higher, but if it is increased too much, the viscosity of the terminal acrylate oligomer may become too high and workability may be lowered.
  • Examples of the bifunctional attalylate suitable for the present invention include ataliroyl at both ends of a divalent organic group having 7 to 15 carbon atoms having an alicyclic skeleton represented by the following general formula (Chemical Formula 2). Examples include diatalylate having an oxy group bonded thereto.
  • H 2 C CH-C-0 -R ⁇ OC-CH ⁇ Hz
  • R 1 is a divalent organic group having 7 to 15 carbon atoms having an alicyclic skeleton (preferably an alkylene group)
  • Examples of such diatarates include:
  • Nonane Tricyclo [5.2 . 1.0 2 '6] decane, tricyclo [3. 3. 1. I 3' 7] decane (Adamantan), tricyclo [3. 3. 2.0 2 '8] decane, tricyclo [4. 3.1 I 2 ' 5 ] Unde force, tricyclo [5. 4. 0. 0 2 ' 5 ] Undecane, tricyclo [6. 4. 0. 0 1 ' 5 ] Dodecane, tricyclo [5. 5. 1.
  • 0 3 '11] which comprises a tricyclic skeleton of 8 to 13 carbon atoms such as tridecane, spiro [4.4] nonane, spiro [4.5] decane, spiro [5.5] Undekan, spiro [5.6] de Decane, Spiro [4. 7] Dodecane, Spiro [6. 6] Tridecane, Spiro [5. 7] Tridecane, Spout [6. 7] Tetradecane, Spiro [7. 7] Pentadecane, 9-15 carbon spiro Examples include those with a collar shape.
  • the allyloyloxy group may be directly bonded to these rings or may be bonded to an alkyl group bonded to the ring.
  • carbon of these skeletons is bonded to the attaroyloxy group or the attaroyloxyalkyl group, and it can be determined as appropriate according to the level of synthesis.
  • These bifunctional attalylates do not work even if one kind of compound is used alone or a plurality of compounds are used in combination.
  • a thiol group is bonded to both ends of an alkylene group or a polythiaalkylene group having 2 to 20 carbon atoms represented by the following general formula (Formula 3).
  • Dithiol is mentioned.
  • a dithiol having a thiol group bonded to both ends of an alkylene group or polyalkylene group having 2 to 8 carbon atoms is preferred.
  • R 2 is an alkylene group having 2 to 8 carbon atoms, desired optical characteristics are easily obtained.
  • the workability is good because the viscosity is low.
  • the number of carbon atoms relative to the number of sulfur atoms is more desirable.
  • the ratio (CZS) is preferably 2 or less.
  • R 2 is an alkylene group having 2 to 20 carbon atoms or a polythiaalkylene group having 2 to 20 carbon atoms.
  • dithiols examples include:
  • the photopolymerization initiator is not particularly limited, and can be appropriately selected as necessary.
  • Examples of the photopolymerization initiator suitable for the present invention include aacetophenone series, benzoin series, benzophenone series, thixanthone series, and acylphosphine oxide series.
  • one kind of compound selected from these may be used as a photopolymerization initiator, or two or more kinds of compounds may be used in combination.
  • a photopolymerization initiation assistant can also be used.
  • the blending amount of the photopolymerization initiator is desirably 0.1 to 5 wt% of the total amount of the resin precursor in order to be cured at an appropriate speed without deteriorating the characteristics of the resin.
  • the resin of the present invention obtained by polymerizing the resin precursor of the present invention includes, for example, a repeating unit represented by the following general formula (ii).
  • R 1 is a divalent organic group having 7 to 15 carbon atoms (preferably an alkylene group) having an alicyclic skeleton
  • R 2 is an alkylene group having 2 to 20 carbon atoms or a carbon number 2 to 20 polythiaalkylene groups
  • n is a positive integer.
  • the curing process at the time of molding of the resin can be performed in a vacuum in order to prevent air bubbles from being mixed in.
  • all the molecular weights of the above-mentioned rosin precursor compositions are 180 or more (excluding the photopolymerization initiator).
  • adsorbent tomiter AD700NS (Tonda Pharmaceutical Co., Ltd.) was added and stirred to remove the catalyst, and after removing the adsorbent by filtration, Irgacure 1 84 (Ciba Specialty Chemicals) was used as a photopolymerization initiator. ) was added with 0.5 wt% and further stirred to obtain ultraviolet curable resin precursor compositions a and b containing oligomer a or b. This ultraviolet curable resin precursor composition had a strong thiol odor.
  • the obtained oligomers a and b are considered to be terminal acrylate oligomers each having a structure represented by the following structural formula (Formula 5).
  • R 3 is a hydrocarbon group having a tricyclo [5. 2. 1. 0 2 ' 6 ] decane skeleton represented by the following structural formula (I ⁇ 6), and n is 1 to 3 )
  • the obtained rosin precursor compositions a and b were each cured by irradiating with ultraviolet rays of 8000 mJ and cm 2 , and the refractive index thereof was measured. The fact that optical characteristics suitable as a high refractive index and low dispersion optical member of an optical element were realized was remarkable. It should be noted that the cured product had no power deterioration due to optical inhomogeneity.
  • Resin precursor composition molar ratio n F — nc
  • FIG. 4 and FIG. 5 show infrared absorption spectrum charts of the rosin precursor composition b and its cured product.
  • 2,2,3,3,4,4,5,5-octafluorohexane 1,6 diatalylate is a bifunctional fluorine-containing allylate, 56 parts by weight, and is a bifunctional acrylate with a fluorene structure 9 , 9 Bis [41 (2-Atalyloxyethoxy) phenol] fluorene 43 parts by weight and Irgacure 184 (Ciba Specialty Chemicals), a photoinitiator, are mixed in 0.5 wt% to achieve low refraction A highly dispersed rosin precursor composition was obtained.
  • the obtained low refractive index and high dispersion resin precursor composition was cured by irradiating ultraviolet rays with SOOOmjZcm 2 and its refractive index was measured.
  • the refractive index n at 22.5 ° C was 1. 528 , Flat d
  • the average dispersion (n ⁇ n) was 0 ⁇ 0150.
  • a resin obtained by curing this low-refractive-high dispersion resin composition is a network-like random copolymer having two repeating units represented by the following structural formula (Chemical Formula 7) It is ignored.
  • the outer diameter is 50 mm
  • the lattice height is A 20 m contact multilayer diffractive optical element was prepared.
  • the lattice pitch of the element was 3.5 mm near the center and 0.17 mm near the outer periphery, and the pitch was made smaller as it was closer to the outer periphery (periphery).
  • step (a) in FIG. 1 silane coupling treatment was performed on the surface 2 of the glass base material 1 on which the resin layer was formed (step (a) in FIG. 1).
  • step (b) of FIG. 1 the treatment surface 2 and the mold 3 having the above-described lattice-shaped mold surface are opposed to each other, and the low refractive index and high dispersion resin precursor composition therebetween.
  • the product 4 was filled and cured by irradiating ultraviolet rays to form an optical member 5 made of a low refractive index and high dispersion resin, and then released (step (c) in FIG. 1). Subsequently, as shown in step (d) of FIG.
  • this optical member 5 is opposed to a mold 7 having a continuous flat surface or curved surface having no diffraction grating, and the above-described steps are performed therebetween.
  • an optical member 8 made of a high refractive index low dispersion resin was obtained. The mold was released (step (e) in Fig. 1).
  • the resin constituting the optical member 8 formed in this example is considered to be a network-like copolymer having a repeating unit force represented by the following structural formula (Formula 8).
  • R 3 is a hydrocarbon group having a tricyclo [5. 2. 1. 0 2 ' 6 ] decane skeleton represented by the above structural formula (ii ⁇ 6), and n is 1 to 3 )
  • FIG. 6 shows an infrared absorption spectrum chart of the obtained ultraviolet curable resin precursor composition c.
  • the oligomer c is considered to be a terminal acrylate oligomer having a structure represented by the following structural formula (Chem. 9).
  • R 3 is a hydrocarbon group having a tricyclo [5. 2. 1. 0 2 ' 6 ] decane skeleton represented by the following structural formula (Formula 6), and n is an integer of 1 or more. )
  • a contact multilayer diffractive optical element including an optically homogeneous high refractive index and low dispersion resin layer with efficiency without deteriorating the working environment.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

 均質な高屈折率低分散の樹脂層を備える密着複層型回折光学素子を得るために、2官能チオールに過剰の2官能アクリレートを反応させて得られる末端アクリレートオリゴマーを高屈折率低分散樹脂層用の樹脂前駆体として用いる。

Description

明 細 書
密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及 び樹脂前駆体組成物
技術分野
[0001] 本発明は、密着複層型回折光学素子と、それに用いられる榭脂である光学材料、 榭脂前駆体及び榭脂前駆体組成物とに関する。
背景技術
[0002] 光学材料力 なる 2つの光学部材が密着し、その界面が回折格子を構成している 密着複層型回折光学素子は、使用波長の広帯域化が可能であり、さらに格子と格子 との位置合わせが容易であると 、う長所を備えて 、る。
[0003] この密着複層型回折光学素子では、たとえば特開平 9— 127322号公報に記載さ れているように、回折光学面を挟む 2つ光学部材の光学特性が、相対的に高屈折率 低分散及び低屈折率高分散であることが求められる。なお、一般的な既存の低屈折 高分散榭脂としては、例えば、特開平 4 366115号公報に記載された光学用ブラ スチックなどが挙げられ、密着複層型回折光学素子の 2つの光学部材は、一方がこ のような低屈折高分散榭脂、他方がこの低屈折高分散榭脂に対して相対的に高屈 折率低分散な榭脂である必要がある。
[0004] 特許文献 1 特開平 9 127322号公報
特許文献 2 特開平 4— 366115号公報
発明の開示
発明が解決しょうとする課題
[0005] この密着複層型回折光学素子の光学部材に用いられる光学材料には、素子を軽 量ィ匕できる上に、量産性が向上し低コストでの製造を実現することができるため、榭 脂が適している。特に紫外線硬化榭脂は、転写性に優れ、硬化に要する時間が短く 、熱源が不要であるなどの理由により、更にコストを低減することができるため望まし い。しかし、光学分野において従来力も用いられてきた榭脂では、高屈折率でありな 力 低分散であるという特殊な光学特性を実現することが困難である。 [0006] そこで本発明は、密着複層型回折光学素子に用いられる光学材料に好適な、高屈 折率低分散の榭脂と、その前駆体と、該前駆体を含む組成物と、それを用いた密着 複層型回折光学素子とを提供することを目的とする。
課題を解決するための手段
[0007] 上記目的を達成するため、種々の構造の榭脂について、化学構造及び組成と、屈 折率及び分散との関係を調査した結果、脂環族骨格を有する榭脂は分散が小さ ヽこ とが分かった。また硫黄原子を有する物質は屈折率が高!ヽことが分かった。
[0008] そこで、双方の構造を有する紫外線硬化榭脂を用いればよ!、と考え、脂環族骨格 を有するアタリレートと、硫黄原子を有するチオールと、光重合開始剤とからなる組成 物を紫外線硬化させて密着複層型回折光学素子を作製したところ、チオールの臭気 で作業環境が悪化するという問題や、アタリロイル基のメルカプト基への付加反応の 速度とアタリロイル基の単独重合反応の速度とが大幅に異なることから硬化が不均一 になるという問題があった。
[0009] これを解決するため本発明では、榭脂前駆体としてチオールにあら力じめ過剰のァ タリレートを反応させた末端アタリレートオリゴマーを用い、この末端アタリレートオリゴ マーに光重合開始剤を添加して紫外線硬化榭脂組成物として用いることとした。この 本発明で用いられる末端アタリレートオリゴマーは、メルカプト基がないためチオール 臭がない。なお、このような末端アタリレートオリゴマーは、例えば 3級アミン類を触媒 とし、チオールに対して過剰量のアタリレートを用いて、メルカプト基とアタリロイル基と を反応させること〖こより合成することができる。
[0010] そこで本発明では、互いに密接した 2つの光学部材を備え、該光学部材の界面が 回折格子を構成し、光学部材の一方は、 2官能チオールに過剰の 2官能アタリレート を反応させて得られる末端アタリレートオリゴマーと光重合開始剤とを含む榭脂前駆 体組成物の硬化物である樹脂からなる密着複層型回折光学素子が提供される。
[0011] また本発明では、 2官能チオールに過剰の 2官能アタリレートを反応させて得られる 末端アタリレートオリゴマーである榭脂前駆体と、該前駆体を含む榭脂前駆体組成物 と、その硬化物とが提供される。
[0012] さらに本発明では、硬化後の樹脂の d線の波長 587, 56nmにおける屈折率 nが 1 . 55以上であり、硬化後の樹脂の平均分散すなわち F線の波長 486. 13nmにおけ る屈折率 nと C線の波長 656. 27nmにおける屈折率 n との差 (n—n )が 0. 013
F C F C
以下である密着複層型回折光学素子用榭脂前駆体,袓成物と、その硬化物である光 学材料と、それを用いた密着複層型回折光学素子とが提供される。この本発明の榭 脂前駆体組成物は、 2官能チオールに過剰の 2官能アタリレートを反応させて得られ る末端アタリレートオリゴマーと光重合開始剤とを含む。
[0013] 本発明によれば、分子中に硫黄原子を存在させることで高屈折率を実現しながら、 榭脂前駆体の反応部位をアタリロイル基に揃えることにより光学的に均質な高屈折率 低分散の榭脂層を形成することができ、また、メルカプト基をあらかじめ反応させてお くことで、チオールの臭気による作業環境の悪化がなぐ効率よく密着複層型回折光 学素子を製造することができる。
図面の簡単な説明
[0014] [図 1]図 1は、実施例 1における密着複層型回折光学素子の製造工程を示す説明図 である。
[図 2]図 2は、実施例 1の紫外線硬化性榭脂前駆体組成物 aの赤外吸収スペクトルチ ヤートである。
[図 3]図 3は、実施例 1の前駆体組成物 aの硬化物の赤外線吸収スペクトルチャートで ある。
[図 4]図 4は、実施例 1の紫外線硬化性榭脂前駆体組成物 bの赤外吸収スペクトルチ ヤートである。
[図 5]図 5は、実施例 1の前駆体組成物 bの硬化物の赤外線吸収スペクトルチャートで ある。
[図 6]図 6は、実施例 2の紫外線硬化性榭脂前駆体組成物 cの赤外吸収スペクトルチ ヤートである。
[図 7]図 7は、実施例 2の前駆体組成物 cの硬化物の赤外線吸収スペクトルチャートあ る。
[0015] <符号の説明 >
1…ガラス製母材、 2…榭脂層成形面、 3…金型、 4…低屈折率高分散榭脂前駆体 組成物、 5· · ·低屈折率高分散樹脂からなる光学部材 (第 1の榭脂層)、 6· · ·高屈折率 低分散樹脂前駆体組成物、 7…金型、 8…高屈折率低分散樹脂からなる光学部材( 第 2の榭脂層)
発明を実施するための最良の形態
[0016] 密着複層型回折光学素子では、回折光学面を挟む光学部材の光学特性が、相対 的に高屈折率低分散と低屈折率高分散であることが求められる。以下、一般的な既 存の低屈折高分散樹脂の例として、特開平 4— 366115号公報の実施例 2に記載さ れた低屈折高分散の光学用プラスチック (n = 1. 5424、 v = 32. 4、平均分散 =0 d d
. 01674)を用いて説明する。
[0017] 波長え で m次回折効率が 100%になるように最適化した格子高 dは、高屈折率
0 0 0
低分散と低屈折率高分散の材料の λ における屈折率をそれぞれ η 、η とす
0
れば、下記のように表される。
m — n ) X d =m X λ
0 0 0
すなわち、格子高 dは高屈折率低分散の材料と低屈折率高分散の材料との屈折率
0
差に反比例する。
[0018] 本発明の榭脂は、 nが 1. 55以上である。例えば n = 1. 55の榭脂は、上述した既 d d
存の低屈折高分散樹脂と 1次回折効率が d線で 100%になるように組み合わせて密 着複層型回折光学素子を作製すると、 λ ά=0. 587562 mとなり、 d = 77. 3 μ ΐη
0
と、非常に低い格子高を実現することができ、画角依存性が少ない点で優れている。 また格子高が低い方が、型作製や成形後の離型も容易である点で、生産性にも優れ ている。また、本発明の榭脂では、既存の高屈折率榭脂よりも低い平均分散が実現 されている。
[0019] したがって、本発明の榭脂、その前駆体及び該前駆体を含む組成物は、既存の低 屈折高分散樹脂との組み合わせにより、従来は実現することのできな力つた非常に 低い格子高を実現することのできる優れた光学特性を備えており、密着複層型回折 光学素子に特に好適である。
[0020] 本発明では、榭脂前駆体として 2官能チオールと過剰の 2官能アタリレートとの反応 物である末端アタリレートオリゴマーを用いる。本発明で用いられる末端アタリレートォ リゴマーとしては、下記一般式 (ィ匕 1)で挙げられる構造を備えるものが好ましい。また 、室温で良好な作業性を維持できる適度な粘性を実現するため、一般式 (ィ匕 1)にお ける繰り返し数 nの平均は 4未満であることが望ましい。このようにすれば、紫外線硬 化時の重合に寄与する反応部位が統一されるため、硬化速度の違いによる不均一 を回避することができる。
[0021] [化 1]
H2C=CH-
Figure imgf000007_0001
… (化 1 )
[0022] (ただし、 R1は脂環族骨格を有する炭素数 7〜15の 2価の有機基 (好ましくはアルキ レン基)であり、 R2は炭素数 2〜20のアルキレン基又は炭素数 2〜20のポリチアアル キレン基であり、 nは正の整数である。 )
なお、 3官能以上では反応時にゲルィ匕してしまう場合があるため、アタリレート及び チオールはともに 2官能である必要がある。また、 2官能アタリレートと 2官能チオール とのモル比は、 1. 5 : 1〜10 : 1が望ましく、 2. 5 : 1〜5 : 1がさらに望ましい。チオール の含有量を多くすれば屈折率は高くなるが、増やし過ぎると末端アタリレートオリゴマ 一の粘度が高くなりすぎ作業性が低下する場合があるためである。
[0023] チオールの含有量を少なくし過ぎると粘度を低くすることができるが、所望の屈折率 に至らない場合がある。
[0024] 本発明に好適な 2官能アタリレートとしては、下記一般式 (化 2)で表される、脂環族 骨格を有する炭素数 7〜15の 2価の有機基の両末端にアタリロイルォキシ基が結合 したジアタリレートが挙げられる。
[0025] [化 2]
H2C=CH-C-0 -R^O-C-CH^Hz
II II … (化 2 )
0 0
[0026] (ただし、 R1は脂環族骨格を有する炭素数 7〜15の 2価の有機基 (好ましくはアルキ レン基)である) このようなジアタリレートとしては、例えば、
ビシクロ [3. 2. 0]ヘプタン、ビシクロ [2. 2. 1]ヘプタン、ビシクロ [4. 1. 0]ヘプタ ン、ビシクロ [2. 2. 2]オクタン、ビシクロ [3. 3. 0]オクタン、ビシクロ [3. 2. 1]ォクタ ン、ビシクロ [4. 3. 0]ノナン、ビシクロ [3. 3. 1]ノナン、ビシクロ [4. 3. 1]デカン、ビ シクロ [3. 3. 3]ゥンデカン、ビシクロ [4. 3. 2]ゥンデカンといった炭素数 7〜: L 1の 2 環性骨格を備えるものや、
トリシクロ [3. 3. 0. 03' 7]オクタン、トリシクロ [4. 2. 0. 02' 5]オクタン、トリシクロ [5. 3. 0. 01' 4]ノナン、トリシクロ [5. 2. 1. 02' 6]デカン、トリシクロ [3. 3. 1. I3' 7]デカン (ァダマンタン)、トリシクロ [3. 3. 2. 02' 8]デカン、トリシクロ [4. 3. 1. I2' 5]ゥンデ力 ン、トリシクロ [5. 4. 0. 02' 5]ゥンデカン、トリシクロ [6. 4. 0. 01' 5]ドデカン、トリシクロ [5. 5. 1. 03' 11]トリデカンといった炭素数 8〜13の 3環性骨格を備えるもの、 スピロ [4. 4]ノナン、スピロ [4. 5]デカン、スピロ [5. 5]ゥンデカン、スピロ [5. 6]ド デカン、スピロ [4. 7]ドデカン、スピロ [6. 6]トリデカン、スピロ [5. 7]トリデカン、スピ 口 [6. 7]テトラデカン、スピロ [7. 7]ペンタデカンといった炭素数 9〜15のスピロ環骨 格を備えるものなどが挙げられる。
[0027] アタリロイルォキシ基は、これらの環に直接結合していてもよぐ環に結合したアル キル基に結合していてもよい。また、これらの骨格のいずれの炭素にアタリロイルォキ シ基又はアタリロイルォキシアルキル基が結合するかは特に限定されるものではなく 、合成のしゃすさなどに応じて適宜定めることができる。これらの 2官能アタリレートは 、いずれ力 1種類の化合物を単独で用いてもよぐ複数の化合物を併用しても力まわ ない。
[0028] 本発明に好適な 2官能チオールとしては、下記一般式 (化 3)で表される、炭素数が 2〜20であるアルキレン基又はポリチアアルキレン基の両末端にチオール基が結合 したジチオールが挙げられる。望ましくは、炭素数が 2〜8であるアルキレン基又はポ リチアアルキレン基の両末端にチオール基が結合したジチオールが良い。ここで、 R2 が炭素数 2〜8であるアルキレン基の場合、所望の光学特性を得やすい。また、 が 炭素数 2〜8であるポリチアアルキレン基の場合、低粘度になるため作業性がよい。 なお、高屈折率を実現するため、さらに望ましくは、硫黄原子数に対する炭素原子数 の比(CZS)は 2以下であることが望まし 、。
[0029] [化 3]
H S - R 2 - S H · · · (ィ匕 3 )
[0030] (ただし、 R2は炭素数 2〜20のアルキレン基又は炭素数 2〜20のポリチアアルキレン 基である。 )
このようなジチオールとしては、例えば、
1, 2 エタンジチオール、 1, 3 プロパンジチオール、 1, 4 ブタンジチオール、 ジ(2 メルカプトェチル)スルフイド、ジ(3 メルカプトプロピル)スルフイド、 1, 8 ジ メルカプト 3, 6 ジチアオクタン、 1, 9ージメルカプト 3, 7 ジチアノナン、 1, 1 0 ジメルカプト— 4, 7 ジチアデカン、 1, 11ージメルカプト 3, 6, 9 トリチアゥ ンデカン、 1, 13 ジメルカプト— 4, 7, 10 トリチアトリデカン、 1, 13 ジメルカプト -3, 7, 11—トリチアトリデカン、 1, 14 ジメルカプト— 3, 6, 9, 12—テ卜ラチアテ卜 ラデカン、 1, 15 ジメルカプト— 3, 6, 10, 13—テトラチアペンタデカン、 1, 16— ジメルカプト—3, 6, 11, 14ーテトラチアへキサデカン、 1, 16 ジメルカブト—3, 7 , 10, 14ーテトラチアへキサデカン、 1, 16 ジメルカブト 4, 7, 10, 13—テトラチ ァへキサデカンと 、つた直鎖構造のものや、
3, 4ージメルカプトテトラヒドロチォフェン、 3, 4—ジ (メルカプトメチル)テトラヒドロチ ォフェン、 3, 4—ジ (メルカプトェチルチオ)テトラヒドロチォフェン、 3, 4—ジ (メルカ プトェチルチオメチル)テトラヒドロチォフェン、 2, 5 ジ (メルカプトメチル)テトラヒドロ チォフェン、 2, 5 ジ (メルカプトェチルチオメチル)テトラヒドロチォフェン、 2, 3 ジ メルカプトメチルー 1, 4ージチアン、 2, 5 ジメルカプトメチルー 1, 4ージチアン、 2, 3 ジ(メルカプトェチルチオメチル) 1, 4ージチアン、 2, 5 ジ (メルカプトェチル チオメチル) 1, 4ージチアン、 2, 3 ジ (メルカプトプロピルチオメチル) 1, 4 ジチアン、 2, 5 ジ (メルカプトプロピルチオメチル) 1, 4ージチアン、 2, 3 ジ (メ ルカプトェチルチオェチル) 1, 4ージチアン、 2, 5 ジ(メルカプトェチルチオェチ ル)— 1, 4 ジチアンといった環構造を備えるものが挙げられる。これらの 2官能チォ ールは、いずれか 1種類の化合物を単独で用いてもよぐ複数の化合物を併用しても かまわない。
[0031] 光重合開始剤は特に限定されるものではなぐ必要に応じて適宜選択することがで きる。本発明に好適な光重合開始剤としては、例えば、ァセトフエノン系、ベンゾイン 系、ベンゾフエノン系、チォキサントン系、ァシルフォスフィンオキサイド系などが挙げ られる。本発明では、光重合開始剤として、これらから選択された 1種類の化合物を 用いてもよぐ 2種類以上の化合物を組み合わせて用いてもよい。また、必要に応じ てさらに光重合開始助剤を用いることもできる。光重合開始剤の配合量は、榭脂の特 性を低下させずに適度な速度で硬化させるために、榭脂前駆体総量の 0. l〜5wt %であることが望ましい。
[0032] 本発明の榭脂前駆体を重合させて得られる本発明の榭脂は、たとえば、下記一般 式 (ィ匕 4)で表される繰り返し単位を備える。
[0033] [化 4]
Figure imgf000010_0001
… (化 4 )
[0034] (ただし、 R1は脂環族骨格を有する炭素数 7〜15の 2価の有機基 (好ましくはアルキ レン基)であり、 R2は炭素数 2〜20のアルキレン基又は炭素数 2〜20のポリチアアル キレン基であり、 nは正の整数である。 )
なお、榭脂の成形時の硬化工程は、気泡の混入を防止するために、真空中で行う ことができるが、力かる場合に成分の一部が揮発してしまうと、糸且成が不均一になって しまう。そこで、上述した榭脂前駆体組成物の分子量は全て 180以上であるのが好ま しい (ただし、光重合開始剤を除く)。
<実施例 1 >
A.末端アタリレートオリゴマーの調製
2官能アタリレートであるトリシクロ [5. 2. 1. 02' 6]デカンジメタノールジアタリレートと 、 2官能チオールであるジ(2—メルカプトェチル)スルフイドとを、 2官能アタリレート: 2 官能チオール = 3: 1又は 2. 5: 1のモル比で混合した。均一になったところで触媒と して 0. lwt%のトリエチルァミンをカ卩えて室温で更に攪拌を続けたところ、混合物は 次第に増粘した。
[0035] 4日間経過後、触媒を除くために吸着剤トミター AD700NS (富田製薬株式会社) を加え攪拌し、ろ過により吸着剤を取り除いた後、光重合開始剤としてィルガキュア 1 84 (チバスペシャルティーケミカルズ)を 0. 5wt%添カ卩して更に攪拌し、オリゴマー a 又は bを含む紫外線硬化性榭脂前駆体組成物 a, bを得た。この紫外線硬化性榭脂 前駆体組成物は、チオールの臭気がな力つた。
[0036] 得られたオリゴマー a, bは、それぞれ、つぎの構造式 (化 5)により表される構造を備 える末端アタリレートオリゴマーであると考えられる。なお、紫外線硬化性榭脂前駆体 組成物 a, bは、 n=0としたとき構造式 (ィ匕 5)で表される 2官能アタリレート(すなわち、 未反応の原料アタリレート)を 20モル%程度含有して 、た。
[0037] [化 5]
Figure imgf000011_0001
- (ィ匕 5 )
[0038] (ただし、 R3は下記構造式 (ィ匕 6)で表される、トリシクロ [5. 2. 1. 02' 6]デカン骨格を 備える炭化水素基であり、 nは 1〜3の整数である。 )
[0039] [化 6]
Figure imgf000011_0002
[0040] 得られた榭脂前駆体組成物 a, bに、それぞれ紫外線を 8000mJ,cm2照射して硬 化させ、その屈折率を測定したところ、表 1に示すような密着複層型回折光学素子の 高屈折率低分散光学部材として好適な光学特性が実現されたことがわ力 た。なお 、硬化物には光学的不均質による特性劣化は見られな力つた。
[0041] [表 1] 硬化物平均分散
硬化物屈折率 n d
樹脂前駆体組成物 モル比 n F— n c
( 2 2 . 5 °C )
( 2 2 . 5 °C ) a 3 : 1 1 . 5 5 4 0 . O i l b 2 . 5 : 1 1 . 5 5 7 0 . O i l
[0042] 榭脂前駆体組成物 a及びその硬化物の赤外吸収スペクトルチャートを図 2及び図 3 に示す。
[0043] 榭脂前駆体組成物 b及びその硬化物の赤外吸収スペクトルチャートを図 4及び図 5 に示す。
[0044] B.低屈折率高分散榭脂前駆体組成物の調製
2官能含フッ素アタリレートである 2, 2, 3, 3, 4, 4, 5, 5,—ォクタフルォ口へキサ ン 1, 6 ジアタリレート 56重量部と、フルオレン構造を有する 2官能アタリレートで ある 9, 9 ビス [4一(2—アタリロイルォキシエトキシ)フエ-ル]フルオレン 43重量部 と、光重合開始剤であるィルガキュア 184 (チバスペシャルティーケミカルズ) 0. 5wt %とを混合し、低屈折率高分散榭脂前駆体組成物を得た。
[0045] 得られた低屈折率高分散榭脂前駆体組成物に紫外線を SOOOmjZcm2で照射し て硬化させ、その屈折率を測定したところ、 22. 5°Cにおける屈折率 nは 1. 528、平 d
均分散(n— n )は 0· 0150であった。
F C
[0046] この低屈折高分散榭脂前駆体組成物を硬化させて得られた榭脂は、つぎの構造 式 (化 7)により表される二つの繰り返し単位を備える網目状のランダム共重合体であ ると考免られる。
[0047] [化 7]
Figure imgf000013_0001
… (化 7 )
[0048] C.密着複層型回折光学素子の作製
上述の工程 Aにより得られた高屈折率低分散榭脂前駆体組成物 bと、工程 Bにより 得られた低屈折率高分散榭脂前駆体組成物とを用いて、外径 50mm、格子高 20 mの密着複層型回折光学素子を作成した。なお、素子の格子ピッチは中心付近で 3 . 5mm、外周付近で 0. 17mmとし、外周(周辺)に近いほどピッチが小さくなるように した。
[0049] まず、ガラス製母材 1の、榭脂層を成形する面 2にシランカップリング処理をした(図 1の工程 (a) )。次に、図 1の工程 (b)に示すように、処理面 2と上述した格子形状の成 型面を備える金型 3とを対向させ、その間に前記低屈折率高分散榭脂前駆体組成物 4を充填し、紫外線を照射して硬化させ低屈折率高分散樹脂からなる光学部材 5とし た後、離型した(図 1の工程 (c) )。続いて、図 1の工程 (d)に示すように、この光学部 材 5と回折格子の無い連続面の平面又は曲面形状の成型面を備える金型 7とを対向 させ、その間に上述の工程により得られた高屈折率低分散榭脂前駆体組成物 6を充 填し、紫外線を照射して硬化させ高屈折率低分散樹脂からなる光学部材 8とした後、 離型した(図 1の工程 (e) )。
[0050] 本実施例によれば、チオール臭による作業環境の悪化もなぐ良好な作業性で所 期の光学特性を備える密着複層型回折光学素子を作製することができた。本実施例 において形成された光学部材 8を構成する榭脂は、つぎの構造式 (化 8)により表され る繰り返し単位力 なる網目状の共重合体であると考えられる。
[0051] [化 8]
R3-0-
Figure imgf000014_0001
… (化 8 )
[0052] (ただし、 R3は上記構造式 (ィ匕 6)で表される、トリシクロ [5. 2. 1. 02' 6]デカン骨格を 備える炭化水素基であり、 nは 1〜3の整数である。 )
<実施例 2 >
A.末端アタリレートオリゴマーの調製
2官能アタリレートであるトリシクロ [5. 2. 1. 02' 6]デカンジメタノールジアタリレート(1 5. 22g)と、 2官能チオールである 2, 5 ジ (メルカプトメチル) 1, 4ージチアン(1. 18g)を混合した。均一になったところで触媒としてトリェチルァミン(18. 8mg)を加え て室温で撹拌を続けた。
[0053] 3日間経過後、混合物はいくぶん増粘していた。ここに 2, 5 ジ (メルカプトメチル) — 1. 4 ジチアン(1. 18g)をカ卩えて室温で再び撹拌を続けた。
[0054] 更に 3日間(トータル 6日間)経過後、混合物はさらに増粘していた。ここに 2, 5 ジ
(メルカプトメチル)—1, 4 ジチアン(1. 18g)を加えて室温で三たび撹拌を続けた 。最終的なモル比は 2官能アタリレート: 2官能チオール = 3 : 1である。
[0055] 更に 4日間(トータル 10日間)経過後、混合物の粘度は 11500cps (22. 5°C)まで 上昇していた。減圧しながらトリェチルァミンを室温で留去したのち、光重合開始剤と してィルガキュア 184 (チバスペシャルティーケミカルズ)を 0. 5wt%添カ卩して更に撹 拌し、オリゴマー cを含む紫外線硬化性榭脂前駆体組成物 cを得た。この紫外線硬化 性榭脂前駆体組成物は、チオールの臭気がな力つた。
[0056] 得られた紫外線硬化性榭脂前駆体組成物 cの赤外吸収スペクトルチャートを図 6に 示す。
[0057] オリゴマー cは、つぎの構造式 (化 9)により表される構造を備える末端アタリレートオリ ゴマーであると考えられる。
[0058] [化 9]
Figure imgf000015_0001
… (化 9 )
[0059] (ただし、 R3は下記構造式 (化 6)で表されるトリシクロ [5. 2. 1. 02' 6]デカン骨格を備え る炭化水素基であり、 nは 1以上の整数である。 )
[0060] [化 10]
… (化 6 )
Figure imgf000015_0002
[0061] 得られた榭脂前駆体組成物 cに、紫外線を 8000miZcm2照射して硬化させた。得 られた硬化物の屈折率 nは 1. 5577 (22. 5°C)、平均分散(n — n )は 0. 0111 (2 d F C
2. 5°C)で、密着複層型回折光学素子の高屈折率低分散光学部材として好適な光 学特性が実現されたことがわ力つた。なお、硬化物は光学的不均質による特性劣化 は見られなかった。
[0062] 硬化物の赤外線吸収スペクトルチャートを図 7に示す。
産業上の利用可能性
[0063] 本発明によれば、作業環境を悪化させることなぐ効率よぐ光学的に均質な高屈 折率低分散の榭脂層を備える密着複層型回折光学素子を製造することができる。

Claims

請求の範囲
[1] 互いに密接した 2つの光学部材を備え、該光学部材の界面が回折格子を構成する 密着複層型回折光学素子であって、
上記光学部材の一方は、
2官能チオールに過剰の 2官能アタリレートを反応させて得られる末端アタリレート オリゴマーと光重合開始剤とを含む榭脂前駆体組成物を硬化させて得られる榭脂か らなり、
上記榭脂の屈折率 nは 1. 55以上であり、
d
上記榭脂の平均分散 (n— n )は 0. 013以下である
F C
ことを特徴とする密着複層型回折光学素子。
[2] 上記 2官能アタリレートと上記 2官能チオールとのモル比は、 1. 5 : 1〜: L0 : 1である ことを特徴とする請求項 1記載の密着複層型回折光学素子。
[3] 上記 2官能アタリレートと上記 2官能チオールとのモル比は、 2. 5: 1〜5: 1であるこ とを特徴とする請求項 2記載の密着複層型回折光学素子。
[4] 上記 2官能アタリレートは、脂環族骨格を有するアルキレン基を備えることを特徴と する請求項 1〜3のいずれかに記載の密着複層型回折光学素子。
[5] 上記 2官能アタリレートは、トリシクロ [5. 2. 1. 02' 6]デカンジメタノールジァクリレー トであることを特徴とする請求項 4記載の密着複層型回折光学素子。
[6] 上記 2官能チオールは、ジ(2 メルカプトェチル)スルフイド及び 2, 5 ジ (メルカ プトメチル) 1, 4ージチアンのうちの少なくともいずれかであることを特徴とする請求 項 1〜5のいずれかに記載の密着複層型回折光学素子。
[7] 下記構造式 (ィ匕 1)で表されることを特徴とする末端アタリレートオリゴマー。
[化 1] -0-C-CH=CH2
Figure imgf000016_0001
… (化 1 )
(ただし、 R1は脂環族骨格を有する炭素数 7〜15の 2価の有機基であり、 R2は炭素 数 2〜20のアルキレン基又は炭素数 2〜20のポリチアアルキレン基であり、 nは正の 整数である。 )
[8] 上記 R2は炭素数 2〜8のアルキレン基又は炭素数 2〜8のポリチアアルキレン基で ある
ことを特徴とする請求項 7記載の末端アタリレートオリゴマー。
[9] 下記構造式 (ィ匕 1)で表されることを特徴とする末端アタリレートオリゴマーと、 [化 2]
Figure imgf000017_0001
… (化 1 )
(ただし、 R1は脂環族骨格を有する炭素数 7〜15の 2価の有機基であり、 R2は炭素 数 2〜20のアルキレン基又は炭素数 2〜20のポリチアアルキレン基であり、 nは正の 整数である。 )
光重合開始剤と
を含む榭脂前駆体組成物。
[10] 下記構造式 (ィ匕 1)で表されることを特徴とする末端アタリレートオリゴマーを硬化さ せて得られる榭脂。
[化 3]
Figure imgf000017_0002
… (化 1 )
(ただし、 R1は脂環族骨格を有する炭素数 7〜15の 2価の有機基であり、 R2は炭素 数 2〜20のアルキレン基又は炭素数 2〜20のポリチアアルキレン基であり、 nは正の 整数である。 )
[11] 屈折率 nが 1. 55以上であり、
d
平均分散 (n -n )が 0. 013以下であることを特徴とする密着複層型回折光学素
F C
子用光学材料。
[12] 硬化後の榭脂の屈折率 nが 1. 55以上であり、 硬化後の樹脂の平均分散 (n— n )が 0. 013以下であることを特徴とする密着複
F C
層型回折光学素子用榭脂前駆体組成物。
PCT/JP2005/023364 2004-12-20 2005-12-20 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物 WO2006068138A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/793,523 US8367872B2 (en) 2004-12-20 2005-12-20 Close-bonded diffractive optical element, optical material used therefor, resin precursor, and resin precursor composition
JP2006549000A JP4872671B2 (ja) 2004-12-20 2005-12-20 密着複層型回折光学素子
EP05819858.1A EP1830205B1 (en) 2004-12-20 2005-12-20 Close-bonded diffractive optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-367607 2004-12-20
JP2004367607 2004-12-20

Publications (1)

Publication Number Publication Date
WO2006068138A1 true WO2006068138A1 (ja) 2006-06-29

Family

ID=36601738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023364 WO2006068138A1 (ja) 2004-12-20 2005-12-20 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物

Country Status (4)

Country Link
US (1) US8367872B2 (ja)
EP (1) EP1830205B1 (ja)
JP (1) JP4872671B2 (ja)
WO (1) WO2006068138A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213200A (ja) * 2012-03-06 2013-10-17 Arakawa Chem Ind Co Ltd 多官能チオ(メタ)アクリレート樹脂、これを含有する活性エネルギー線硬化型ハードコート樹脂組成物とこれを硬化して得られた硬化膜、硬化膜が積層されたプラスチックフィルム、プラスチックフィルムを用いたプラスチック射出成型品及び加工製品。
JP2014526575A (ja) * 2011-09-08 2014-10-06 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド スルフィド結合を有する(メタ)アクリレートモノマーを含む重合性組成物
US8958154B2 (en) 2008-04-11 2015-02-17 Nikon Corporation Microscope objective lens including a diffractive optical element
US9030750B2 (en) 2008-02-25 2015-05-12 Nikon Corporation Objective lens
JP2016044285A (ja) * 2014-08-26 2016-04-04 株式会社ニコン 光学材料用樹脂前駆体組成物、この組成物から得られる光学要素およびこの光学要素を用いて構成される回折光学素子
JP2016126157A (ja) * 2014-12-26 2016-07-11 株式会社ニコン 回折光学素子、光学機器、および回折光学素子の光学材料設計方法
JPWO2016031249A1 (ja) * 2014-08-26 2017-06-08 株式会社ニコン 光学材料用樹脂前駆体組成物、この組成物から得られる光学要素およびこの光学要素を用いて構成される回折光学素子
WO2017179476A1 (ja) * 2016-04-11 2017-10-19 三菱瓦斯化学株式会社 複合回折光学素子用の高屈折率低分散樹脂用組成物、及び、それを用いた複合回折光学素子
JP2018163360A (ja) * 2018-06-05 2018-10-18 株式会社ニコン 回折光学素子の光学材料設計方法および回折光学素子の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068137A1 (ja) * 2004-12-20 2006-06-29 Nikon Corporation 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物
JP4860500B2 (ja) * 2007-02-13 2012-01-25 株式会社 ニコンビジョン 色消しレンズ系、光学装置
JPWO2009038134A1 (ja) * 2007-09-19 2011-01-06 株式会社ニコン 樹脂複合型光学素子及びその製造方法
CN101896848B (zh) 2007-12-20 2012-04-25 株式会社尼康 目镜系统和光学装置
US8252369B2 (en) 2008-05-21 2012-08-28 Essilor International (Compagnie Generale D'optique) Process for applying a coating onto a fresnel lens forming surface
JP5532456B2 (ja) 2010-05-24 2014-06-25 株式会社ニコン 望遠鏡光学系及びこれを備える光学装置
JP5641461B2 (ja) 2011-04-06 2014-12-17 株式会社ニコン ズーム光学系及びこれを有する撮像装置
WO2013128856A1 (ja) 2012-02-29 2013-09-06 株式会社ニコン ズーム光学系
EP3096173B1 (en) 2014-01-15 2022-08-17 Nikon Corporation Objective lens and microscope
JP7346262B2 (ja) * 2019-11-26 2023-09-19 キヤノン株式会社 回折光学素子、回折光学素子の製造方法、光学機器および撮像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411613A (ja) * 1990-04-27 1992-01-16 Nippon Oil & Fats Co Ltd プラスチックレンズ
JPH04366115A (ja) 1991-06-12 1992-12-18 Nikon Corp 低屈折率高分散の光学用プラスチック
JPH09127322A (ja) 1995-08-29 1997-05-16 Olympus Optical Co Ltd 回折光学素子
JPH09127321A (ja) * 1994-09-12 1997-05-16 Olympus Optical Co Ltd 回折光学素子
JP2002500700A (ja) * 1998-04-03 2002-01-08 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック 高い屈折率および高いアッベ数を有する光学レンズを製造するための重合性組成物、およびそれから得られるレンズ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235332A (ja) 1987-03-25 1988-09-30 Showa Denko Kk 光学用素子
US5326501A (en) * 1989-12-28 1994-07-05 Hoya Corporation Polythiol compound, and optical material and product produced therefrom
US5847877A (en) * 1994-09-12 1998-12-08 Olympus Optical Co., Ltd. Diffractive optical element
US5880176A (en) * 1994-10-21 1999-03-09 Hitachi Maxell, Ltd. Fluorescent marking composition and fluorescent mark formed by said composition
JPH11507087A (ja) * 1995-05-30 1999-06-22 ソーラー・インターナショナル・ホールディングズ・リミテッド 高屈折率/高アッベ数組成物
US6313251B1 (en) * 1995-05-30 2001-11-06 Sola International Holdings, Ltd. High index/high abbe number composition
ATE238375T1 (de) * 1995-10-24 2003-05-15 Basf Ag Verwendung von polymerisaten als hilfsmittel bei der trocknung wässriger polymerisatdispersionen
FR2777092B1 (fr) * 1998-04-03 2003-02-14 Essilor Int Lentille optique en materiau organique polymere transparent de haut indice de refraction et haut nombre d'abbe
JP4132397B2 (ja) 1998-09-16 2008-08-13 積水化学工業株式会社 光硬化性樹脂組成物、液晶注入口封止剤及び液晶表示セル
WO2002031026A2 (en) * 2000-10-10 2002-04-18 Corning Incorporated High refractive index waveguide polymers
JP2003171473A (ja) 2001-09-25 2003-06-20 Mitsubishi Chemicals Corp 硬化性樹脂シート
EP1455200A4 (en) * 2001-11-30 2005-09-28 Nikon Corp OPTICAL RESIN PRECURSOR COMPOSITION, OPTICAL USE RESIN, OPTICAL ELEMENT AND ARTICLE
US6872333B2 (en) * 2002-02-07 2005-03-29 Mitsubishi Gas Chemical Company, Ltd. Enic compounds, sulfur-containing polyenic compound, sulfur-containing polythiol compound, high refractive index photocurable composition and cured product thereof
DE10252006A1 (de) * 2002-11-06 2004-05-27 Röhm GmbH & Co. KG Hochtransparenter Kunststoff für optische Materialien
JP2004240417A (ja) * 2003-01-14 2004-08-26 Nikon Corp 光学素子及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411613A (ja) * 1990-04-27 1992-01-16 Nippon Oil & Fats Co Ltd プラスチックレンズ
JPH04366115A (ja) 1991-06-12 1992-12-18 Nikon Corp 低屈折率高分散の光学用プラスチック
JPH09127321A (ja) * 1994-09-12 1997-05-16 Olympus Optical Co Ltd 回折光学素子
JPH09127322A (ja) 1995-08-29 1997-05-16 Olympus Optical Co Ltd 回折光学素子
JP2002500700A (ja) * 1998-04-03 2002-01-08 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック 高い屈折率および高いアッベ数を有する光学レンズを製造するための重合性組成物、およびそれから得られるレンズ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1830205A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9030750B2 (en) 2008-02-25 2015-05-12 Nikon Corporation Objective lens
US8958154B2 (en) 2008-04-11 2015-02-17 Nikon Corporation Microscope objective lens including a diffractive optical element
US9134520B2 (en) 2008-04-11 2015-09-15 Nikon Corporation Microscope objective lens including a first lens group with a positive refractive power, a second lens group with a positive refractive power, and a third lens group having a negative refractive power
US9158102B2 (en) 2008-04-11 2015-10-13 Nikon Corporation Microscope objective lens including a first lens group with a positive refractive power, a second lens group, and a third lens group having a negative refractive power
JP2014526575A (ja) * 2011-09-08 2014-10-06 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド スルフィド結合を有する(メタ)アクリレートモノマーを含む重合性組成物
US9334345B2 (en) 2011-09-08 2016-05-10 Ppg Industries Ohio, Inc. Polymerizable compositions containing (meth)acrylate monomers having sulfide linkages
JP2013213200A (ja) * 2012-03-06 2013-10-17 Arakawa Chem Ind Co Ltd 多官能チオ(メタ)アクリレート樹脂、これを含有する活性エネルギー線硬化型ハードコート樹脂組成物とこれを硬化して得られた硬化膜、硬化膜が積層されたプラスチックフィルム、プラスチックフィルムを用いたプラスチック射出成型品及び加工製品。
US10577446B2 (en) 2014-08-26 2020-03-03 Nikon Corporation Resin precursor composition for optical materials, optical element obtained from the composition, and diffractive optical element configured using the optical element
JP2016044285A (ja) * 2014-08-26 2016-04-04 株式会社ニコン 光学材料用樹脂前駆体組成物、この組成物から得られる光学要素およびこの光学要素を用いて構成される回折光学素子
JPWO2016031249A1 (ja) * 2014-08-26 2017-06-08 株式会社ニコン 光学材料用樹脂前駆体組成物、この組成物から得られる光学要素およびこの光学要素を用いて構成される回折光学素子
JP2016126157A (ja) * 2014-12-26 2016-07-11 株式会社ニコン 回折光学素子、光学機器、および回折光学素子の光学材料設計方法
CN108780166A (zh) * 2016-04-11 2018-11-09 三菱瓦斯化学株式会社 复合衍射光学元件用的高折射率低色散树脂用组合物、和使用其的复合衍射光学元件
JPWO2017179476A1 (ja) * 2016-04-11 2019-03-28 三菱瓦斯化学株式会社 複合回折光学素子用の高屈折率低分散樹脂用組成物、及び、それを用いた複合回折光学素子
EP3444644A4 (en) * 2016-04-11 2019-04-24 Mitsubishi Gas Chemical Company, Inc. COMPOSITION FOR RESINS WITH HIGH BREAKING INDEX AND LOW DISPERSION FOR ASSOCIATED DIFFERENTIAL OPTICAL ELEMENTS AND ASSOCIATED DIFFERENTIAL OPTICAL ELEMENT THEREWITH
WO2017179476A1 (ja) * 2016-04-11 2017-10-19 三菱瓦斯化学株式会社 複合回折光学素子用の高屈折率低分散樹脂用組成物、及び、それを用いた複合回折光学素子
CN108780166B (zh) * 2016-04-11 2021-09-28 三菱瓦斯化学株式会社 复合衍射光学元件用的高折射率低色散树脂用组合物、和使用其的复合衍射光学元件
US11214650B2 (en) 2016-04-11 2022-01-04 Mitsubishi Gas Chemical Company, Inc. Composition for high refractive index low dispersion resins for composite diffractive optical elements, and composite diffractive optical element using the same
JP2018163360A (ja) * 2018-06-05 2018-10-18 株式会社ニコン 回折光学素子の光学材料設計方法および回折光学素子の製造方法

Also Published As

Publication number Publication date
US8367872B2 (en) 2013-02-05
EP1830205A1 (en) 2007-09-05
US20080107903A1 (en) 2008-05-08
EP1830205A4 (en) 2011-03-09
JPWO2006068138A1 (ja) 2008-06-12
EP1830205B1 (en) 2014-08-20
JP4872671B2 (ja) 2012-02-08

Similar Documents

Publication Publication Date Title
WO2006068138A1 (ja) 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物
CN107641200B (zh) 一种用于3d打印的硫醇‐烯光固化树脂及其制备方法
KR101313403B1 (ko) 광학용품용 경화성 티올-엔 조성물
JP4760714B2 (ja) 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物
CN108780166B (zh) 复合衍射光学元件用的高折射率低色散树脂用组合物、和使用其的复合衍射光学元件
JP6438199B2 (ja) 重合性無機粒子分散剤、該重合性無機粒子分散剤を含む無機有機複合粒子、および無機有機樹脂複合材
KR102252348B1 (ko) 3d 프린팅에 사용되는 폴리디메틸실록산 기반의 광경화형 고분자 및 제조 방법
WO2012147712A1 (ja) 硬化性組成物および光学用接着剤
JP6037109B2 (ja) 光硬化性樹脂組成物
KR20130062054A (ko) 광경화형 수지 조성물 및 이를 이용한 복제몰드의 제조방법
TWI521035B (zh) A hardening composition and an optical follower
JP7234677B2 (ja) 多官能プロパルギル化合物及びそれを含む光学用組成物
JP6289039B2 (ja) ビニルエーテル系樹脂組成物
TWI515233B (zh) A hardening composition and an optical follower
JP2019001785A (ja) 新規テトラチアスピロ化合物、それを含む光学用組成物、及びその製造方法
WO2020196140A1 (ja) 光学材料用重合性組成物
WO2017183549A1 (ja) 新規テトラチアスピロ化合物、それを含む光学用組成物、及びその製造方法
JP5742443B2 (ja) 硬化性組成物および光学接着剤
WO2025089145A1 (ja) 重合性組成物及びそれを重合硬化してなる樹脂
WO2024228342A1 (ja) 重合性組成物及びそれを重合硬化してなる樹脂、並びに該樹脂を含む光学材料
JP2010211115A (ja) 複合光学素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006549000

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11793523

Country of ref document: US

Ref document number: 2005819858

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005819858

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11793523

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载