+

WO2006067995A1 - 成膜方法および記憶媒体 - Google Patents

成膜方法および記憶媒体 Download PDF

Info

Publication number
WO2006067995A1
WO2006067995A1 PCT/JP2005/022800 JP2005022800W WO2006067995A1 WO 2006067995 A1 WO2006067995 A1 WO 2006067995A1 JP 2005022800 W JP2005022800 W JP 2005022800W WO 2006067995 A1 WO2006067995 A1 WO 2006067995A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
film forming
film
forming method
protective film
Prior art date
Application number
PCT/JP2005/022800
Other languages
English (en)
French (fr)
Inventor
Tadahiro Ishizaka
Atsushi Gomi
Satoshi Wakabayashi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to CN2005800438693A priority Critical patent/CN101084327B/zh
Priority to US11/720,404 priority patent/US20080107825A1/en
Publication of WO2006067995A1 publication Critical patent/WO2006067995A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric

Definitions

  • the present invention relates to a film forming method for forming a thin film on a substrate to be processed.
  • ALD method As a film forming method that satisfies these demands, by alternately supplying a plurality of types of processing gases one by one at the time of film formation, an atomic layer or a molecular layer can be formed through adsorption of the processing gas to the reaction surface. Recently, a method has been proposed in which film formation is performed at a level and a thin film having a predetermined thickness is obtained by repeating these steps. Such a film forming method is sometimes called an atomic layer deposition method (ALD method).
  • the outline in the case of performing the film formation by the ALD method may be as follows. First, a processing container is prepared which has a first gas supply path for supplying a first gas and a second gas supply path for supplying a second gas, and holds a substrate to be processed therein. Therefore, the first gas and the second gas may be alternately supplied to the processing container. Specifically, first, the first gas is supplied onto the substrate in the processing container, and the adsorption layer is formed on the substrate. Thereafter, the second gas is supplied onto the substrate in the processing container to react, and this processing is repeated a predetermined number of times as necessary.
  • the first gas after the first gas is adsorbed on the substrate, it reacts with the second gas, so that the film formation temperature can be lowered.
  • high quality film quality with few impurities can be obtained, and at the same time, when forming a fine pattern, the process gas is reacted and consumed in the upper part of the hole, which is a problem with the conventional CVD method. Good coverage characteristics that are not formed can be obtained.
  • a film containing a metal in the first gas A film containing the metal can be formed using the reducing gas of the first gas as the second gas, for example, Ta ⁇ TaN, Ta (C) N, Ti, TiN, Ti (C ) Powerful films such as N, W, WN and W (C) N can be formed.
  • a compound containing Ta for example, TaCl
  • H is used for the second processing gas.
  • a Ta film can be formed by reducing TaCl.
  • the film formed by such a film forming method has good film quality and excellent coverage characteristics, for example, it is formed between the insulating film and Cu when forming a Cu wiring in a semiconductor device. It may be used for Cu diffusion barrier film.
  • Patent Document 1 USP 5916365 Publication
  • Patent Document 2 USP 5306666
  • Patent Document 3 USP 6416822
  • Patent Document 4 WOOOZ79756 Publication
  • ions or radicals generated by the plasma are sputtered inside the processing container, for example, an electrode to which high-frequency power is applied, into the processing container. In some cases, it was scattered and became a source of contamination of particles and thin films formed. Specific examples are shown below.
  • FIGS. 1 (A) to 1 (D) show an example of a film forming method for forming a Ta film on a substrate to be processed, step by step.
  • a shower head unit E2 installed on the substrate to be processed for example, TaCl Become first
  • the processing gas G1 is supplied and adsorbed on the substrate Su to be processed.
  • the shear head portion E2 has a structure capable of supplying a processing gas onto the substrate to be processed and to which high frequency power is applied from the high frequency power supply R.
  • the shower head portion E2 provides, for example, a second force that also has H force.
  • H supplied to the gap Ga is dissociated, for example, H
  • a Ta film is formed on the substrate to be processed.
  • the HC1 formed is excited by plasma and the halogen element is activated to generate, for example, C1 + / C1 * (C1 ions and C1 radicals).
  • C1 + / C1 * C1 ions and C1 radicals.
  • the head portion E2 was etched.
  • the effect of sputtering by C1 ions is particularly large. This is because high frequency power is applied to the shower head E2, and so-called self-bias potential (Vdc) is generated, which increases ion bombardment and increases sputtering speed. For this reason, in some cases, the material constituting the shower head scattered by the sputtering is mixed in the substrate Su to be processed, which becomes a contamination source of the formed Ta film.
  • an object of the present invention is to provide a film forming method that solves the above-described problems.
  • a specific problem of the present invention is that when a process gas is excited with plasma and a film is formed on a substrate to be processed, scattering of a contamination source of the film is suppressed, and a clean and stable film can be formed. It is to do.
  • a film forming method comprising a film supply apparatus comprising: a gas supply unit that supplies a film gas or a reducing gas that reduces the film forming gas, wherein the film forming gas contains a metal element and a halogen element in the processing container And supplying the reducing gas into the processing container.
  • a film forming method characterized by further comprising a protective film forming step for forming a protective film for protecting the gas supply portion from etching of the halogen element activated in this step.
  • the above-described problem is solved in the processing container configured to be capable of applying a high-frequency power and a processing container provided with a holding base for holding the substrate to be processed. And a gas supply unit that supplies a film forming gas or a reducing gas that reduces the film forming gas, and a recording medium storing a program that causes a computer to operate a film forming method using a film forming apparatus.
  • a third step of applying a high frequency power to excite a plasma in the processing container to form a film on the substrate to be processed, and to activate the halogen element in the third step Protects the gas supply from etching
  • a recording medium further comprising a protective film forming step for forming the protective film.
  • FIG. 1 (A) to (D) schematically show a conventional film forming method.
  • FIG. 2 is a diagram schematically showing an example of a film forming apparatus for performing a film forming method according to Example 1.
  • FIG. 3 is a view schematically showing a cross section of a shower head unit used in the film forming apparatus of FIG. 2.
  • FIG. 4 is a flowchart (No. 1) showing a film forming method according to Embodiment 1.
  • FIG. 5 is a flowchart (No. 2) showing the film forming method according to the first embodiment.
  • FIG. 6 is a flowchart (part 3) illustrating the film forming method according to the first embodiment.
  • FIG. 7 is a graph showing a relationship between a film formation temperature and a film formation rate of a thin film to be formed.
  • FIG. 8 is a diagram schematically showing an example of a film forming apparatus for performing a film forming method according to Example 3.
  • FIG. 9 is a diagram showing a relationship between a film formation temperature and a film formation rate of a protective film to be formed.
  • FIG. 10 is a diagram showing a relationship between a film forming temperature and an optical refractive index of a protective film to be formed.
  • FIG. 2 is a diagram schematically showing a film forming apparatus for performing the film forming method according to the first embodiment.
  • the outline of the film forming apparatus shown in this drawing has a processing container 11 for storing a substrate W to be processed therein, and a gas line 200 and a gas line are formed in a processing space 11 A formed in the processing container 11.
  • the first processing gas and the second processing gas are supplied through the process 100, respectively.
  • the atomic layer / molecule is absorbed through the adsorption of the processing gas to the reaction surface. It is possible to form a thin film with a predetermined thickness on the substrate W to be processed by performing a so-called ALD method by forming a film at a level close to the layer and repeating these steps.
  • a film formed by such an ALD method has a low film formation temperature and a high quality film quality with few impurities. At the same time, a good coverage characteristic is obtained when forming a fine pattern. be able to.
  • the second processing gas for reducing the first processing gas containing metal is used after being plasma-excited.
  • the first processing gas is reduced.
  • the reaction is promoted, and the quality of the formed film is improved.
  • a protective film against etching is formed in the processing container or on the electrode, thereby realizing a clean and stable film formation. This specific method and details will be described later.
  • the film forming apparatus shown in the figure has a processing vessel 11 made of aluminum, aluminum or stainless steel whose surface is anodized, and the like. Inside the processing container 11 is installed a substantially disc-shaped substrate holding table 12 made of, for example, Hastelloy, supported by a substrate holding table support portion 12a, and the substrate holding table 12 has a center to be processed. A semiconductor substrate W to be processed is placed.
  • the substrate holder 12 has a structure that can heat a substrate to be processed to a desired temperature by incorporating a heater (not shown).
  • the processing space 11 A in the substrate processing container 11 is connected to the exhaust port 15 and is not shown.
  • the processing space 11 A can be in a reduced pressure state by being evacuated by the exhaust means. Further, the substrate W to be processed is carried into or out of the processing container 11 from a gate valve (not shown) installed in the processing container 11.
  • a substantially cylindrical gas supply unit having a force such as nickel or aluminum, for example, a shower head structure is provided so as to face the substrate holding table 12.
  • the shower head unit 13 is installed.
  • an insulator 16 made of ceramic such as quartz, Si N, or A1N is used. Is provided.
  • an opening is provided in the wall surface of the shower head portion 13 above the processing vessel 11, and an insulator 14 having an insulating force is passed therethrough.
  • the insulator 14 is connected to the introduction line 17a connected to the high-frequency power source 17, and the introduction line 17a is connected to the shower head unit 13.
  • the introduction line 17a connects the shower head unit 13 to the shower head unit 13.
  • the structure is such that a high frequency power supply is applied.
  • the gas line 200 that supplies the first processing gas to the processing space 11A and the gas line 100 that supplies the second processing gas to the processing space 11A include the shower head.
  • the first process gas and the second process gas are connected to the process section 13 and are supplied to the process space 11 A via the shower head section 13.
  • Insulators 200a and 100a are inserted into the gas line 200 and the gas line 100, respectively, so that the gas line is isolated from the high frequency power.
  • FIG. 3 is a cross-sectional view schematically showing details of the shower head unit 13.
  • the shower head unit 13 is engaged with the shower head main body 13A in which the gas flow path 200G of the first processing gas and the gas flow path 100G of the second processing gas are formed, and the shower head main body 13A.
  • the shower plate 13B has a gas hole 13E formed of a plurality of gas holes 13c and 13d.
  • the gas flow path 200G connected to the gas line 200 is further connected to a gas hole 13c of the shower plate 13B. That is, the first processing gas is configured to extend from the gas line 200 to the gas flow path 200G and further to the gas hole 13c.
  • the first gas supply path is supplied to the processing space 11A.
  • the gas flow path 100G connected to the gas line 100 is further connected to a gas hole 13d of the shower plate 13B. That is, the second processing gas is supplied to the processing space 11A through a second gas supply path configured from the gas line 100 to the gas flow path 100G and further to the gas hole 13d.
  • the shower head unit 13 is formed with the flow paths of the first processing gas and the second processing gas independently, and the first processing gas and the second processing gas are mainly formed.
  • V a so-called post-mix type shower head structure mixed in the processing space 11 A!
  • the shower head unit 13 is provided with, for example, a heating means 13a that also has a heater power, so that the shower head unit 13 can be heated.
  • a heating means 13a that also has a heater power, so that the shower head unit 13 can be heated.
  • the film formation rate depends on the temperature of the object to be formed, and the higher the temperature, the lower the film formation rate. It tends to be. Therefore, by heating the shower head portion by the heating means 13a, the film thickness of the film formed on the shower head portion 13 is reduced to prevent film peeling and particle generation, and maintenance such as cleaning. This has the effect of lengthening the cycle.
  • the gas line 200 is provided with a valve 202 a for supplying a first processing gas to the gas line 200, and the gas line 200 is separated from the gas line 200.
  • a gas line 206 with a valve 206a for supplying the first processing gas is connected. That is, the gas line 200 has a structure in which two kinds of first processing gases respectively supplied from the gas line 202 and the gas line 206 can be switched by opening and closing a valve.
  • a gas line 201 that supplies a purge gas to the gas line 200 is connected to the gas line 200.
  • a gas line 101 that supplies a second processing gas to the gas line 100 and a gas line 102 that supplies a purge gas to the gas line 100 are connected to the gas line 100.
  • the gas line 202 includes a mass flow controller 203A and a line 203 force S with a force applied to the noreb 203a, the noreb 203b, and the noreb 203c.
  • the connected line 203 is a raw material in which a raw material 204A such as TaCl is held, for example.
  • the raw material 204A is a raw material for a thin film containing a metal formed on a substrate to be processed.
  • the gas line 202 is connected to a mass flow controller 205A and a gas line 205 to which a carrier gas such as Ar, for example, having a valve 205a, 205b is introduced.
  • a carrier gas such as Ar
  • the first processing gas is supplied to the processing space 11A through the shower head unit 13 together with a carrier gas such as Ar supplied from the gas line 205.
  • the mass flow controller 207A and a line 207 provided with a valve 207a, a valve 207b, and a valve 207c are connected to the gas line 206.
  • the line 207 includes, for example, a raw material 208A such as TiCl. Is connected to the raw material container 208.
  • the 208A is a raw material for forming a protective film for protecting the shower head portion 13.
  • the gas line 206 is connected to a mass flow controller 209A and a gas line 209 for introducing a carrier gas, such as Ar, which is actuated by valves 209a and 209b.
  • a carrier gas such as Ar
  • the gas line 200 is formed with the first processing gas serving as a raw material for forming a thin film on the substrate to be processed and the protective film for protecting the shower head unit 13.
  • a first processing gas different from the first processing gas, which is a raw material for the processing, can be supplied into the processing container.
  • the gas line 201 for supplying purge gas to the gas line 200 is connected to a supply source of Ar gas, for example, purge gas, and a mass flow controller 201A and valves 201a and 201b are provided. The flow rate of the purge gas to be supplied is controlled.
  • a supply source of Ar gas for example, purge gas
  • a mass flow controller 201A and valves 201a and 201b are provided. The flow rate of the purge gas to be supplied is controlled.
  • the gas line 101 connected to the gas line 100 is connected to a supply source of, for example, H gas which is a second processing gas, and the mass flow controller 101A and the valve 1
  • Ola, 101b is attached to control the flow rate of the second processing gas supplied to the gas line 100.
  • the gas line 102 for supplying purge gas to the gas line 100 is connected to a supply source of, for example, Ar gas, which is purge gas, and a mass flow controller 102A and valves 102a and 102b are provided. The flow rate of the purge gas to be supplied is controlled.
  • control device 10 including a computer (CPU) 10A.
  • control device 10 incorporates a storage medium 10B made of, for example, a node disk.
  • the operation of the film forming method according to the present embodiment as described below is recorded in the storage medium 10B.
  • the program is executed by the computer 10A. Such a program may be called an apparatus recipe.
  • the film forming apparatus When forming a metal film or a metal-containing film on the substrate W to be processed, which is placed on the holding table 12, for example, using the film forming apparatus, the film forming apparatus includes: It is generally controlled as follows.
  • a first processing gas containing metal is supplied to the processing space 11A through the gas line 200 and the shower head unit 13. After the first processing gas is adsorbed on the substrate to be processed, the first processing gas remaining in the processing space 11A is exhausted from the exhaust port 15. In this case, the processing space 11A may be purged using a purge gas.
  • a second processing gas for reducing the first processing gas is supplied to the processing space 11 A through the gas line 100 and the shower head unit 13, and further to the shower head unit 13. Then, high frequency power is applied from the high frequency power source 17 to excite the plasma of the second processing gas in the processing space 11A. For this reason, the dissociation of the second processing gas proceeds, and the reduction of the first processing gas is promoted by the radicals and ions generated by the dissociation.
  • the second processing gas remaining in the processing space 11 A is exhausted from the exhaust port 15.
  • the processing space 11A may be purged using a purge gas.
  • the film formed by the so-called ALD method has a feature that the film quality is good with few impurities in the film.
  • an object facing the processing space 11A is damaged by, for example, etching due to ion radicals formed when plasma excitation is performed on the processing space 11A.
  • particles or substances that become the source of contamination of the thin film are scattered.
  • the shower head portion 13 in particular is negatively charged when a high-frequency voltage is applied, so that the ion bombardment is large.
  • the etching rate increases. Therefore, in the present embodiment, a step of forming a protective film is provided in a portion including the shower head portion 13 that can be an etching target facing the processing space 11A, and the protective film is formed.
  • the shower head portion 13 is also configured with a metal material force such as A1 or Ni, for example, when A1 or Ni is scattered by the sputtering, it becomes a contaminant of a thin film formed on the substrate to be processed. There was a problem. Therefore, in this embodiment, a protective film is formed so as to cover the shower head portion 13, for example, to cover the surface exposed to the processing space 11 A of the shower plate 13 B that is particularly sputter-etched. ! / Speak.
  • halogen radicals and ions contained in a metal halide compound used for the first processing gas there are, for example, halogen radicals and ions contained in a metal halide compound used for the first processing gas.
  • a metal halide compound used for the first processing gas for example, a force using a halogen compound such as TaCl is used as the first processing gas.
  • halogen radicals and halogen ions generated by activating the halogen element for example, C1 radicals and C1 ions are generated, and the shower head 13 is etched. Teshima! /, Especially, the problem that the shower head 13 was sputter-etched due to the attack of C1 ions was remarkable. Therefore, in the present embodiment, a force for forming a protective film that covers the shower head portion 13 with a protective film.
  • the protective film is generated by ions generated in the processing container from the material constituting the shower head. It is preferable that sputtering resistance is large. In this case, it is possible to efficiently suppress the sputter etching of the shower head unit 13.
  • the protective film preferably has higher resistance to sputtering by ions generated in the processing container than a thin film formed on the substrate to be processed.
  • the sputtering resistance of the protective film is higher than that of the thin film deposited on the shower head unit 13, so that the sputter etching of the shower head unit 13 is efficiently suppressed. It becomes possible to do.
  • H is used for the process gas 5 and the second process gas is used after plasma excitation.
  • a film containing Ti or a Ti film is used. It is also preferred that sputtering resistance is higher than Ta formed in the shower head during film formation.
  • the ions attacking the shower head unit 13 are not limited to halogen ions such as C1 ions.
  • a gas supplied into the processing vessel together with the second processing gas as a carrier gas for example, Ar ions generated from Ar gas may also be included, and the protective film preferably has high sputtering resistance against these Ar ions.
  • the threshold values of the self-bias potential (Vdc) at which the sputtering phenomenon occurs are 7V for Ni, 13V for A1, and 13V for Ta. The case shows a high value of 20V. (Refer to “Sputtering Phenomenon” by Satoshi Kanehara, 1984).
  • Ti has higher properties than Ar, Ni, and Ta with respect to Ar sputtering.
  • Ti is considered to have high resistance to C1 sputtering as well, and it is clear that a Ti film or a film containing Ti is preferable as a protective film for sputtering.
  • FIG. 4 is a flowchart showing a film forming method according to the present embodiment.
  • the same reference numerals are given to the parts explained earlier, and the explanation is omitted.
  • step 10 before the substrate to be processed is carried into the processing container, a portion facing the processing space 11A in the processing container 11, for example, a sha A protective film made of, for example, a Ti film is formed on the head part 3 to protect the shower head part 13 from sputter etching force.
  • a protective film made of, for example, a Ti film is formed on the head part 3 to protect the shower head part 13 from sputter etching force.
  • step 20 the substrate W to be processed is carried into the film forming apparatus and placed on the substrate holder 12.
  • step 30 the temperature of the substrate to be processed is raised by a heater built in the holding table 12.
  • step 40 the valves 203a, 203b, 203c are opened, and vaporized TaCl 1S is evaporated from the raw material container 204 together with Ar supplied from the gas line 205.
  • the gas is supplied to the processing space 11 A through the gas line 200.
  • TaCl that is the first processing gas is supplied onto the substrate to be processed.
  • the first processing gas is adsorbed on the substrate to be processed.
  • valve 102a and the valve 102b are opened, the flow rate is controlled by the mass flow controller 102A, and Ar as a backflow preventing gas is supplied from the gas line 100 to the processing space 11A.
  • the first processing gas may be prevented from flowing backward from the shower head unit 13 to the gas line 100 side.
  • step 50 the valves 203a, 203b, 203c are closed to stop the supply of the first processing gas to the processing space 11A, and are not adsorbed on the substrate to be processed.
  • the first processing gas remaining in the processing space 11A due to adsorption is discharged out of the processing container 11 from the exhaust port 15.
  • the processing space 11A may be purged by opening the valves 201a and 201b and the nozzles 102a and 102b and introducing Ar as the gas line 200 and gas line 100 force purge gas, respectively. .
  • the remaining first processing gas is quickly discharged from the processing space.
  • the valves 201a and 201b and the valves 102a and 102b are closed.
  • Step 60 the valves 101a and 101b are opened, and the flow rate is controlled by the mass flow controller 101A, so that the H gas as the second process gas is supplied to the gas.
  • a high frequency power is applied from the high frequency power source 17 to the shower head 13 to perform plasma excitation in the processing space 11A.
  • H in the treatment space is dissociated and H + ZH * (hydrogen ion and water
  • the second processing gas may be supplied for a predetermined time in order to stabilize the flow rate of the second processing gas and to increase the pressure in the processing space.
  • a Ta film is formed on the substrate to be processed.
  • the reaction shown in FIG. 4 occurs, that is, the formed HC1 is excited by plasma, and for example, C1 + ZC1 * (chlorine ion and chlorine radical) is generated.
  • C1 + ZC1 * chlorine ion and chlorine radical
  • the shower head 13 is etched by these radical ions.
  • the shower head is covered with a protective film made of a Ti film. It is possible to suppress it.
  • the etching to be suppressed includes both chemical etching and physical etching (sputter etching).
  • the valve 201a and the valve 201b are opened and the flow rate is controlled by the mass flow controller 201A so that Ar as a backflow preventing gas is converted into the processing space 11 from the gas line 200.
  • the second processing gas may be supplied to A and prevented from flowing backward from the shower head unit 13 to the gas line 200 side.
  • Ar may be supplied from the gas line 102 as a carrier gas.
  • Such showers are also performed by active species (Ar ions, etc.) generated by plasma excitation of a gas supplied into the processing vessel as a backflow prevention gas or carrier gas, such as Ar.
  • the head portion 13 may be etched, and the protective film can protect the shutter head with such an etching force.
  • step 70 the valves 101a and 101b are closed to stop the supply of the second processing gas to the processing space 11A, and the first processing gas on the substrate to be processed is stopped.
  • the second processing gas remaining in the processing space 11 A that has not reacted is discharged out of the processing container 11 through the exhaust port 15.
  • the processing space 11A may be purged by opening the valves 201a and 201b and the valves 102a and 102b and introducing Ar as a purge gas from the gas line 200 and the gas line 100, respectively. Good.
  • the remaining second processing gas is quickly discharged from the processing space.
  • the valves 201a and 201b and the valves 102a and 102b are closed.
  • step 80 in order to form a thin film having a required film thickness on the substrate to be processed, the film forming process is returned to step 40 as necessary, and the desired film thickness is obtained.
  • step AL 1 which is a film forming process by the so-called ALD method, consisting of steps 40 to 70, the process proceeds to the next step 90.
  • step 90 the substrate to be processed W is separated from the substrate holder 12 and unloaded from the processing container 11.
  • a metal film or a film containing metal for example, a Ta film
  • the first process gas is limited to TaCl.
  • halogen compound gases such as TaF, TaBr, Tal, etc.
  • the Ta film formed in this example shows a film containing at least Ta as a component in the film, and its binding state is not limited, and an additive may be included. Good.
  • a TaN film, a Ta (C) N film, or the like can be formed.
  • the metal film or metal-containing film formed according to the present example has high quality film quality with few impurities, and good coverage characteristics can be obtained when forming a fine pattern. It is preferably used as a diffusion barrier film (barrier film or adhesion film) for Cu wiring in a high performance semiconductor device having a miniaturized wiring pattern.
  • the film that can be formed by the film forming method according to the present embodiment is not limited to a film containing Ta, and for example, a film containing a metal such as Ti or W can be formed. is there.
  • FIG. 4 shows an example of a film forming method when, for example, one substrate to be processed is processed.
  • a predetermined process is performed. It is preferable to periodically clean the processing container after the number of films is formed to remove the thin film deposited inside the processing container. For this reason, an example of a film forming method including a cleaning step is shown in FIG.
  • FIG. 5 is a flowchart showing an example of a film forming method including a cleaning process in the case where film formation is continuously performed on a plurality of substrates to be processed.
  • the same reference numerals are given to the parts described above, and the description will be omitted.
  • step 90 the process proceeds to step 100.
  • step 1100 it is determined whether or not the number of processed sheets has reached a predetermined number, and the predetermined number is not reached. If so, return to step 20 and repeat cycle S from step 20 to step 90.
  • the process proceeds from step 100 to step 110, and the inside of the processing container is cleaned.
  • there are various methods such as introducing a fluorine-based gas to perform plasma excitation, supplying an active gas to perform gas cleaning, or opening the processing container to perform cleaning.
  • step 110 it is possible to remove a metal-containing film deposited in the processing vessel, such as a Ta film.
  • a metal-containing film deposited in the processing vessel such as a Ta film.
  • the process of continuously forming a film on a plurality of substrates to be processed is performed based on the flowchart shown in FIG.
  • the film forming method of the present embodiment for example, the amount of etching of a member facing the inside of the processing container such as a shower head is suppressed, so that scattering of particles and contaminants is suppressed, and a stable and clean growth is achieved. Since the film can be formed and the amount of etching of the member such as the shower head portion is suppressed, the maintenance cycle of the member such as the shower head portion can be lengthened, and the operating rate of the film forming apparatus can be increased. There is an effect to improve.
  • FIG. 4 and FIG. 5 an example of the details of the film forming method for the protective film forming step shown in Step 10 is shown in FIG.
  • FIG. 6 is a flowchart showing details of an example of the protective film forming process according to this embodiment.
  • the same reference numerals are given to the parts described above, and the description will be omitted.
  • step 11 when the formation of the protective film is started in step 11, from step 12 to step 15, the process AL1 shown in FIGS. 4 and 5, that is, the same as step 40 to step 70, is performed. Then, a protective film is formed in the processing container 11 including the surface of the shower head 13 such as the side of the shower plate 13B facing the processing space 11A.
  • the gas is supplied to the processing space 11A through the gas line 200.
  • the shower head unit 1 By supplying TiCl as a gas onto the substrate to be processed, for example, the shower head unit 1
  • the other first processing gas is adsorbed.
  • valve 102a and the valve 102b are opened, the flow rate is controlled by the mass flow controller 102A, and Ar is supplied as a backflow prevention gas from the gas line 100 to the processing space 11A. Then, the other first processing gas may be prevented from flowing backward from the shower head unit 13 to the gas line 100 side.
  • step 13 the valves 207a, 207b, 207c are closed to stop the supply of the other first processing gas to the processing space 11A, and are adsorbed onto the substrate to be processed.
  • the processing gas that has not been adsorbed and remained in the processing space 11 A is discharged from the exhaust port 15 to the outside of the processing container 11.
  • the processing space 11A may be purged by opening the valves 201a and 201b and the valves 102a and 102b and introducing Ar as a purge gas from the gas line 200 and the gas line 100, respectively. Good.
  • the remaining first processing gas is quickly discharged from the processing space.
  • the valves 201a and 201b and the valves 102a and 102b are closed.
  • step 14 the valves 101a and 101b are opened, and the mass flow is performed.
  • the H gas as the second process gas is
  • a high frequency power is applied from the high frequency power source 17 to the shower head 13 to perform plasma excitation in the processing space 11A.
  • H in the treatment space is dissociated and H + ZH * (hydrogen ion and water
  • a protective film made of a Ti film is formed in the processing container including the gate section 13.
  • valve 201a and the valve 201b are opened and the flow rate is controlled by the mass flow controller 201A, and Ar as a backflow preventing gas is supplied from the gas line 200 to the processing space 11.
  • the second processing gas may be supplied to A and prevented from flowing backward from the shower head unit 13 to the gas line 200 side.
  • Ar may be supplied from the gas line 102 as a carrier gas.
  • step 15 the valves 101a and 101b are closed to stop the supply of the second processing gas to the processing space 11A and remain in the unreacted processing space 11A. Then, the second processing gas is discharged from the exhaust port 15 to the outside of the processing container 11.
  • the processing space 11A may be purged by opening the valves 201a and 201b and the valves 102a and 102b and introducing Ar as a purge gas from the gas line 200 and the gas line 100, respectively. . In this case, the remaining second processing gas is quickly discharged from the processing space.
  • the valves 201a and 201b and the valves 102a and 102b are closed.
  • step 16 the film forming process is returned to step 12 as necessary, and steps 12 to 15 are performed until the protective film reaches a desired film thickness.
  • step 17 the process proceeds to the next step 17 to finish the protective film formation process. After step 17, for example, the process proceeds to step 20 shown in FIGS.
  • a protective film made of a metal film or a metal-containing film, for example, a Ti film is formed on the showerhead unit or the like by the process shown in FIG.
  • the first processing gas other processing gases other than those limited to TiCl can be used.
  • the Ti film formed in this example shows a film containing at least Ti as a component in the film, and the bonding state is not limited, and an additive may be included. Good.
  • the protective film formed by the so-called ALD method shown in FIG. 6 has a high quality film with few impurities, and has high resistance to chemical etching and physical etching (sputter etching). Has features.
  • the film forming method is the same as that for the thin film formed on the substrate to be processed, and the gas supply equipment, the control system, and the control are related. Software and other facilities can be shared today, and the cost of film formation can be reduced.
  • the characteristics and composition of the protective film, the metal contained, and the like can be arbitrarily changed and used as necessary.
  • the high-frequency power in the case of plasma excitation is large, that is, when the self-bias potential is large, it is possible to form a film with higher sputtering resistance as necessary.
  • FIG. 7 is a diagram showing the relationship between the film formation temperature and the film formation rate of the Ta film to be deposited. As the film formation temperature increases, the film formation rate decreases. For this reason, when the film formation temperature is high, the film thickness of the deposited Ta film becomes thin.
  • the thickness of the Ta film deposited on the shower head portion can be suppressed by heating the shower head portion 13. That Therefore, for example, it is possible to increase the predetermined number of sheets shown in Step 100 of FIG. 5, that is, the number of treatments that can be performed before cleaning is required, and the processing efficiency of the film forming apparatus can be improved. Become.
  • the protective film formed on, for example, the shield head portion for preventing etching of halogen or the like, for example, is limited to a film containing Ti as described above. It is also possible to use other films than ordinary ones.
  • a film containing Si and C is preferably used as the protective film.
  • the film containing Si and C means a film mainly composed of Si and C, for example, such as H.
  • the film can be formed so as to contain oxygen, it is preferable that the oxygen content is as small as possible because the film containing oxygen has low etching resistance.
  • a film containing Si and C is referred to as a SiC film.
  • the SiC film is excellent in sputtering resistance, and when used as the protective film, it has an excellent effect in sputtering resistance of Ar ions, C1 ions, and the like. Furthermore, the SiC film is characterized by excellent resistance to chemical etching by C1 radicals formed during film formation, and the etching resistance by C1 radicals includes the above Ti. It is more resistant than the membrane. For this reason, it has excellent characteristics in both sputtering by ions when ions are formed in the film forming process and chemical etching of the halogen radical formed in the film forming process. .
  • the effect of protecting the shower head portion from the etching in the film forming process is excellent, and the effect of preventing the scattering of the contaminants is great.
  • a film containing Ti can be used as a protective film, and a chemical such as a halogen radical can be used.
  • a film containing Si and C it is preferable to use a film containing Si and C.
  • the SiC film can be formed by the following apparatus.
  • FIG. 9 is a cross-sectional view schematically showing the film forming apparatus according to the present example.
  • the same reference numerals are given to the parts described above, and the description will be omitted.
  • the outline of the apparatus is the same as that of the film forming apparatus shown in FIG. 2, but the film forming apparatus according to the present embodiment is different in the following points.
  • the gas line 202 is connected to the gas line 220 via the valve 202a.
  • the gas line 220 is connected to a source gas holding unit 221 having a pressure control valve 221a via valves 220a and 220b and a mass flow controller 220A.
  • a protective film forming gas 221 A for forming a protective film is held.
  • the raw material for forming the SiC film is not limited to a gas at room temperature, and a raw material that is liquid at room temperature or a solid material can be used as necessary.
  • an organic silane gas such as trimethylsilane gas is used as the protective film forming gas 221A will be described as an example.
  • the gas line 220 through the gas line 202 and the shower head unit 13 are used. Then, the protective film forming gas 221A is supplied into the processing container 11 to excite the plasma to form a protective film.
  • the valves 202a, 220a, and 220b are opened, and the mass flow controller 220A controls the protective film forming gas 221A.
  • a protective film forming gas is supplied into the processing container 11 while controlling the flow rate. Therefore, by applying high frequency power from the high frequency power source 17 to the shower head unit 13, plasma can be excited to form a protective film made of a SiC film on the shower head unit 13. In this case, a gas such as He may be supplied from the gas line 102 instead of Ar.
  • the protective film is formed so as to cover the shower head unit 13, the film quality of the formed protective film (SiC film) is appropriately controlled by controlling the temperature of the shower head unit 13. It is possible to control.
  • Fig. 9 shows changes in the deposition rate at which the SiC film is formed when the deposition temperature is changed.
  • the protective film (SiC film) since it is difficult to directly measure the protective film (SiC film) formed on the shower head unit 13, the protective film (SiC film) is measured on the substrate to be processed.
  • the change in film formation characteristics with respect to the temperature is the same in the case of the protective film formed on the shower head portion 13.
  • the flow rate of trimethylsilane is 150 sccm
  • the flow rate of He is 800 sccm
  • the high-frequency power 800 W
  • the pressure in the processing vessel is 7.8 Torr.
  • the film formation temperature in this case, the temperature of the substrate to be processed
  • the film formation rate tends to decrease.
  • the density of the protective film (SiC film) to be formed is increased by increasing the deposition rate, so that the film is a so-called dense film.
  • FIG. 10 shows the change in the optical refractive index of the SiC film when the film formation temperature is changed.
  • the protective film formed on the substrate to be processed is measured.
  • the optical refractive index increases as the film formation temperature increases, and the density of the protective film increases as the film formation temperature increases. I will show you.
  • the protective film becomes dense, and etching resistance to, for example, halogen ions and halogen radicals becomes good. Conceivable. Therefore, for example, as shown in FIG. 3, it is preferable that the shower head portion 13 is formed with a heating means 13a for heating the shower head portion 13! /. By heating the shower head section 13 with the heating means 13a, the protective film formed on the shower head section 13 can be made dense and excellent in etching resistance.
  • the temperature of the shower head unit 13 is such that the film is formed on the substrate to be processed.
  • a preferable temperature range is determined by conditions relating to film formation. Therefore, it is preferable that the temperature is controlled to be an appropriate temperature in consideration of these conditions.
  • the film forming method according to the present embodiment is the same as the above-described process, that is, the protective film forming process.
  • a film containing Ta or a film containing Ti can be formed on the substrate to be processed.
  • TiC when Ti is formed on the substrate to be processed, TiC may be used in place of TaCl in the film forming step AL1 shown in FIG.
  • the method of forming a Ti film or a Ta film on a substrate to be processed is not limited to the V-type ALD method, and other various methods such as a PE-CVD method can be used. It can also be formed using. In this case, for example, TaCl or TiCl is used to form a Ti film or a Ta film.
  • Films containing Ta and Ti can be formed. Furthermore, a film containing Ta or Ti can be formed using a gas other than these gases or using various gases in addition to these gases.
  • a film containing Ti is formed on a substrate to be processed, it can be formed using TiCl, Ar, H, NH, or the like as a gas for forming the film. In this case, if necessary
  • the film forming process is configured to include a plurality of steps, and in each of the plurality of steps, the period and flow rate of each gas are changed and the applied high-frequency power is changed, and the plurality of steps are repeated. It is also possible to form a film containing Ti on the substrate to be processed.
  • the gas used for film formation is treated with TiCl, Ar, H, NH.
  • the film forming step is composed of the first step and the second step.
  • TiCl, Ar, and H are supplied into the processing vessel by 2.5 sccm, 750 sccm, and 1500 sccm, respectively.
  • High frequency power is applied to 350W.
  • NH, Ar and H are supplied at 200sccm, 750sccm, and 1500sccm, respectively, and high-frequency power is 50
  • the film forming method according to the present embodiment it is possible to form a film containing Ta, a film containing Ti, or the like on the substrate to be processed.
  • the protective film containing Si and C is formed on the shower head part, so that the scattering of contaminants in the shower head part force is suppressed, and a high-purity film with a reduced purity is formed. Is possible.
  • the protective film may have a structure in which a film containing Ti and a SiC film are stacked.
  • a film containing Ti and a SiC film are stacked.
  • a laminated structure such as / sic / Ti, sicZTiZsic can be used, and these structures can also be used in combination. In this case, the effect of preventing etching of the shower head and the like is increased, and the effect of preventing the scattering of impurities is improved.
  • the present invention when forming a film on a substrate to be processed using a process gas excited by plasma, scattering of a film contamination source is suppressed, and a clean and stable film can be formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 被処理基板を保持する保持台を内部に備えた処理容器と、前記処理容器内に成膜のための処理ガスを供給し、当該処理容器内にプラズマを励起するための高周波電力が印加されるシャワーヘッド部と、を有する成膜装置による成膜方法であって、前記被処理基板上に金属を含む薄膜を形成する成膜工程と、前記成膜工程の前に前記シャワーヘッド部に別の金属を含む保護膜を形成する保護膜形成工程と、を有することを特徴とする成膜方法。

Description

明 細 書
成膜方法および記憶媒体
技術分野
[0001] 本発明は、被処理基板に薄膜を形成する成膜方法に関する。
背景技術
[0002] 近年、半導体装置の高性能化に伴!、、半導体デバイスの高集積ィヒが進んで微細 化の要求が著しくなつており、配線ルールは 0. 10 m以下の領域へ開発が進んで いる。このような高性能の半導体装置のデバイスを形成するために用いられる薄膜に 対しては、例えば膜中不純物が少なぐ配向性がよいなど高品質な膜質が要求され 、さらには微細パターンへ形成する際のカバレッジが良好であることが好ましい。
[0003] これらの要望を満たす成膜方法として、成膜時に複数種の処理ガスを 1種類ずつ 交互に供給することで、処理ガスの反応表面への吸着を経由して原子層'分子層に 近 、レベルで成膜を行な 、、これらの工程を繰り返して所定の厚さの薄膜を得る方 法が提案されている。このような成膜方法を Atomic Layer Deposition法(ALD 法)と呼ぶことがある。
[0004] このような ALD法による成膜を実施する場合の概略は、例えば、以下のようにすれ ばよい。まず、第 1のガスを供給する第 1のガス供給路と、第 2のガスを供給する第 2 のガス供給路を有する、内部に被処理基板を保持する処理容器を用意する。そこで 、第 1のガスと第 2のガスを交互に前記処理容器に供給すればよい。具体的には、ま ず、第 1のガスを処理容器内の基板上に供給し、その吸着層を基板上に形成する。 その後に、第 2のガスを処理容器内の基板上に供給し反応させ、必要に応じてこの 処理を所定の回数繰り返せばよい。この方法によれば、第 1のガスが基板に吸着した 後、第 2のガスと反応するため、成膜温度の低温ィ匕を図ることができる。また、不純物 が少なく高品質な膜質が得られると同時に、微細パターンに成膜するにあたっては、 従来の CVD法で問題となって 、たような、処理ガスがホール上部で反応消費されて ボイドが形成されることがなぐ良好なカバレッジ特性を得ることができる。
[0005] このような成膜方法で形成することが可能な膜として、第 1のガスに金属を含む膜、 第 2のガスに当該第 1のガスの還元ガスを用いて、当該金属を含む膜を形成すること が可能であり、例えば、 Taゝ TaN、 Ta (C) N、 Ti、 TiN、 Ti(C) N、 W、 WNおよび W (C) Nなど力 なる膜を形成することが可能である。
[0006] 例えば、 Ta膜を形成する場合を例にとってみると、前記第 1の処理ガスには Taを含 む化合物、例えば TaCl、前記第 2の処理ガスには Hを用い、当該 Hをプラズマ励
5 2 2
起して TaClを還元することにより、 Ta膜を形成することが可能である。
5
[0007] このような成膜方法で形成される膜は、膜質が良好でカバレッジの特性に優れるた め、例えば、半導体デバイスで Cu配線を形成する場合の絶縁膜と Cuの間に形成さ れる、 Cu拡散防止膜に用いられる場合がある。
特許文献 1 :USP 5916365号公報
特許文献 2 :USP 5306666号公報
特許文献 3 :USP 6416822号公報
特許文献 4:WOOOZ79756号公報
発明の開示
発明が解決しょうとする課題
[0008] しかし、例えば処理ガスをプラズマ励起して用いる場合には、当該プラズマによって 生成されたイオンやラジカルなどで、処理容器内部、例えば高周波電力が印加され る電極がスパッタリングされて処理容器内に飛散し、パーティクルや、形成される薄膜 の汚染源となる場合があった。その具体的な例を以下に示す。
[0009] 例えば、図 1 (A)〜 (D)は、被処理基板上に Ta膜を形成する成膜方法を、手順を 追って示した一例である。
[0010] まず、図 1 (A)に示す工程では、基板保持台 E1に保持された被処理基板 Su上に、 当該被処理基板上に設置されたシャワーヘッド部 E2より、例えば TaClカゝらなる第 1
5
の処理ガス G1を供給し、当該被処理基板 Su上に吸着させる。この場合、前記シャヮ 一ヘッド部 E2は、処理ガスを被処理基板上に供給することが可能であり、かつ高周 波電源 Rより高周波電力が印加される構造を有している。
[0011] 次に、図 1 (B)に示す工程で、前記シャワーヘッド部 E2より、例えば H力もなる第 2
2
の処理ガス G2を供給し、さらに当該シャワーヘッド部 E2に高周波電力を印加するこ とで、前記基板保持台 Elと前記シャワーヘッド部 E2の間のギャップ Gaに、プラズマ を励起する。このため、当該ギャップ Gaに供給された Hが解離されて、例えば H
2 +Z
H* (水素イオンと水素ラジカル)が形成される。
[0012] 次に、図 1 (C)に示す工程では、
TaCl + H → Ta + HC1
5 2
で示される反応が生じて、被処理基板上には Ta膜が形成される。
[0013] し力し、一方で、図 1 (D)に示すように、
HC1 → C1+/C1* + H+/H*
で示す反応が生じ、すなわち形成された HC1がプラズマにより励起され、ハロゲン 元素が活性ィ匕されることで、例えば C1+/C1* (C1イオンと C1ラジカル)が生成され、こ れらによって前記シャワーヘッド部 E2がエッチングされてしまう問題があった。また、 生成される C1イオンと C1ラジカルのうち、特に C1イオンによるスパッタイリングの影響 が大きい。これは、前記シャワーヘッド部 E2には高周波電力が印加されており、いわ ゆるセルフバイアス電位 (Vdc)が発生することにより、イオン衝撃が大きくなつてスパ ッタリング速度が大きくなつてしまうためである。このため、前記被処理基板 Suに、ス ノ ッタリングにより飛散する前記シャワーヘッドを構成する材料が混入し、形成される Ta膜の汚染源となってしまう場合があった。
[0014] そこで、本発明では上記の問題を解決した成膜方法を提供することを課題としてい る。
[0015] 本発明の具体的な課題は、処理ガスをプラズマ励起して用い、被処理基板に成膜 を行う場合に、成膜の汚染源の飛散を抑制し、清浄で安定な成膜を可能とすることで ある。
課題を解決するための手段
[0016] 本発明の第 1の観点では、上記の課題を、被処理基板を保持する保持台を内部に 備えた処理容器と、高周波電力が印加可能に構成された、前記処理容器内に成膜 ガスまたは当該成膜ガスを還元する還元ガスを供給するガス供給部と、を備えた成 膜装置による成膜方法であって、前記処理容器内に金属元素とハロゲン元素を含む 前記成膜ガスを供給する第 1の工程と、前記処理容器内に前記還元ガスを供給する 第 2の工程と、前記ガス供給部に高周波電力を印加して前記処理容器内にプラズマ を励起し、前記被処理基板上に成膜を行う第 3の工程と、を有し、前記第 3の工程で 活性化される前記ハロゲン元素のエッチングから、前記ガス供給部を保護する保護 膜を形成する保護膜形成工程をさらに設けたことを特徴とする成膜方法により、解決 する。
[0017] また、本発明の第 2の観点では、上記の課題を、被処理基板を保持する保持台を 内部に備えた処理容器と、高周波電力が印加可能に構成された、前記処理容器内 に成膜ガスまたは当該成膜ガスを還元する還元ガスを供給するガス供給部と、を備 えた成膜装置による成膜方法をコンピュータに動作させるプログラムを記憶した記録 媒体であって、前記プログラムは、前記処理容器内に金属元素とハロゲン元素を含 む前記成膜ガスを供給する第 1の工程と、前記処理容器内に前記還元ガスを供給す る第 2の工程と、前記ガス供給部に高周波電力を印加して前記処理容器内にプラズ マを励起し、前記被処理基板上に成膜を行う第 3の工程と、を有し、前記第 3の工程 で活性化される前記ハロゲン元素のエッチングから、前記ガス供給部を保護する保 護膜を形成する保護膜形成工程をさらに設けたことを特徴とする記録媒体により、解 決する。
発明の効果
[0018] 本発明によれば、処理ガスをプラズマ励起して用い、被処理基板に成膜を行う場合 に、成膜の汚染源の飛散が抑制され、清浄で安定な成膜が可能となる。
図面の簡単な説明
[0019] [図 1] (A)〜 (D)は、従来の成膜方法を模式的に示した図である。
[図 2]実施例 1による成膜方法を実施する成膜装置の一例を模式的に示した図であ る。
[図 3]図 2の成膜装置に用いるシャワーヘッド部の断面を模式的に示した図である。
[図 4]実施例 1による成膜方法を示すフローチャート (その 1)である。
[図 5]実施例 1による成膜方法を示すフローチャート (その 2)である。
[図 6]実施例 1による成膜方法を示すフローチャート (その 3)である。
[図 7]成膜温度と形成される薄膜の成膜速度の関係を示す図である。 [図 8]実施例 3による成膜方法を実施する成膜装置の一例を模式的に示した図であ る。
[図 9]成膜温度と形成される保護膜の成膜速度の関係を示す図である。
[図 10]成膜温度と形成される保護膜の光学屈折率の関係を示す図である。
[図 11]被処理基板上に Tiを形成した場合の、成膜速度と比抵抗値である。
符号の説明
[0020] 11 処理容器
12 基板保持台
12a 基板保持台支持
13 シャワーヘッド部
13A シャワーヘッド本体
13B シャワープレート
13c, 13d, 13E ガス孑し
14, 16, 100a, 100b インシユレータ
15 排気口
17 高周波電力
17a 電源ライン
100, 101, 102, 200, 201, 202, 203, 205, 206, 207, 209 ガスライン 101A, 102A, 201A, 205A, 209A 質量流量コントローラ
101a, 101b, 102a, 102b, 201a, 201b, 203a, 203b, 202a, 203c, 205a, 205b, 206a, 207a, 207b, 207c, 209a, 209b ノ レブ
発明を実施するための最良の形態
[0021] 次に、本発明の実施の形態に関して図面に基づき、以下に報告する。
実施例 1
[0022] 図 2は、実施例 1による成膜方法を実施する成膜装置を、模式的に示した図である
[0023] 本図に示す成膜装置の概略は、内部に被処理基板 Wを収納する処理容器 11を有 し、当該処理容器 11内に形成される処理空間 11Aに、ガスライン 200およびガスライ ン 100を介して、それぞれ第 1の処理ガスおよび第 2の処理ガスが供給される構造に なっている。
[0024] そこで、前記処理空間 11Aには、ガスライン 200とガスライン 100より、処理ガスを 1 種類ずつ交互に供給することで、処理ガスの反応表面への吸着を経由して原子層 · 分子層に近いレベルで成膜を行ない、これらの工程を繰り返し、いわゆる ALD法に より、被処理基板 W上に所定の厚さの薄膜を形成することが可能となっている。この ような ALD法で形成された膜は、成膜温度が低温でありながら、不純物が少なく高 品質な膜質が得られると同時に、微細パターンに成膜するにあたっては、良好なカバ レツジ特性を得ることができる。
[0025] また、本実施例による成膜方法では、金属を含む第 1の処理ガスを還元する第 2の 処理ガスをプラズマ励起して用いており、このために、第 1の処理ガスを還元する反 応が促進され、形成される膜質が良好となる効果を奏する。
[0026] しかし、従来は、プラズマ励起を行う場合に、処理容器内で形成されるイオンゃラジ カルなどによって処理容器内部、例えばプラズマ励起のための高周波が印加される 電極などがエッチングされてしまう問題が生じていた。特に、形成される膜質が良好 であり、不純物が極めて少ないことが特長である ALD法による成膜方法の場合、こ れらの汚染が特に問題になる場合があった。
[0027] そこで、本実施例では、処理容器内部や電極にエッチングに対する保護膜を形成 することで、清浄で安定した成膜を実現している。この具体的な方法やその詳細につ いては後述する。
[0028] 次に、当該成膜装置の詳細についてみると、本図に示す成膜装置は、例えばアル ミニゥム、表面をアルマイト処理されたアルミニウムもしくはステンレススチールなどか らなる処理容器 11を有し、前記処理容器 11の内部には基板保持台支持部 12aに支 持された、略円板状の、例えばハステロイカゝらなる基板保持台 12が設置され、前記 基板保持台 12の中心には被処理基板である半導体被処理基板 Wが載置される。前 記基板保持台 12には図示しな ヽヒータが内蔵されて前記被処理基板を所望の温度 に加熱することが可能な構造となって 、る。
[0029] 前記基板処理容器 11内の処理空間 11 Aは、排気口 15に接続される、図示しない 排気手段により真空排気され、前記処理空間 11 Aを減圧状態とすることが可能であ る。また、前記被処理基板 Wは、前記処理容器 11に設置された図示しないゲートバ ルブより前記処理容器 11内に搬入もしくは搬出される。
[0030] また、前記処理容器 11内には、前記基板保持台 12に対向するように、例えばニッ ケルゃアルミニウムなど力もなる略円筒状の、ガス供給部である、例えばシャワーへッ ド構造を有するシャワーヘッド部 13が設置されており、前記シャワーヘッド部 13の側 壁面および当該シャワーヘッド部 13と前記処理容器 11の間には、例えば石英や Si N、 A1Nなどのセラミックなどからなるインシュレータ 16が設けられている。
[0031] また、前記シャワーヘッド部 13上の、前記処理容器 11の上の壁面には開口部が設 けられて、絶縁体力もなるインシユレータ 14が揷通されている。前記インシユレータ 1 4〖こは、高周波電源 17に接続された導入線 17aが揷通され、前記導入線 17aは前記 シャワーヘッド部 13に接続されて、前記導入線 17aによって前記シャワーヘッド部 13 には高周波電源が印加される構造となって 、る。
[0032] また、前記処理空間 11Aに、第 1の処理ガスを供給する前記ガスライン 200と、前 記処理空間 11 Aに、第 2の処理ガスを供給するガスライン 100は、前記シャワーへッ ド部 13に接続され、前記第 1の処理ガスと第 2の処理ガスは、当該シャワーヘッド部 1 3を介して前記処理空間 11 Aに供給される構造になっている。また、前記ガスライン 2 00およびガスライン 100にはそれぞれ、インシユレータ 200aおよび 100aが挿入され ており、ガスラインが高周波電力から隔絶される構造になっている。
[0033] 図 3は、前記シャワーヘッド部 13の詳細を模式的に示した断面図である。ただし図 中、先に説明した部分には同一の参照符号を付し、説明を省略する。前記シャワー ヘッド部 13は、内部に第 1の処理ガスのガス流路 200Gと、第 2の処理ガスのガス流 路 100Gが形成されたシャワーヘッド本体 13Aと、当該シャワーヘッド本体 13Aに係 合する、複数のガス孔 13cおよび 13dからなるガス孔 13Eが形成されたシャワープレ ート 13Bを有している。
[0034] 前記ガスライン 200に接続された前記ガス流路 200Gは、さらに前記シャワープレ ート 13Bのガス孔 13cに接続されている。すなわち、前記第 1の処理ガスは、前記ガ スライン 200から前記ガス流路 200G、さらに前記ガス孔 13cへかけて構成されてい る第 1のガス供給経路を介して前記処理空間 11Aに供給される。一方、前記ガスライ ン 100に接続された前記ガス流路 100Gは、さらに前記シャワープレート 13Bのガス 孔 13dに接続されている。すなわち、前記第 2の処理ガスは、前記ガスライン 100から 前記ガス流路 100G、さらに前記ガス孔 13dへかけて構成されている第 2のガス供給 経路を介して前記処理空間 11 Aに供給される。
[0035] このように、前記シャワーヘッド部 13は、第 1の処理ガスと第 2の処理ガスの流路が 独立に形成されており、当該第 1の処理ガスと第 2の処理ガスはおもに前記処理空間 11 Aで混合される、 V、わゆるポストミックス型のシャワーヘッド構造となって!/、る。
[0036] また、当該シャワーヘッド部 13には、例えば加熱ヒータ力もなる加熱手段 13aが設 置されており、当該シャワーヘッド部 13を加熱することが可能となっている。例えば T a膜などの金属膜または金属を含む膜などが成膜される場合には、成膜速度は成膜 される対象物の温度に依存し、当該温度が高いほどその成膜速度が低くなる傾向に ある。そのため、当該加熱手段 13aによってシャワーヘッド部を加熱することにより、 シャワーヘッド部 13に形成される膜の膜厚を薄くして、膜の剥離やパーティクルの発 生を防止し、またクリーニングなどのメンテナンスのサイクルを長くする効果を奏する。
[0037] また、前記ガスライン 200には、図 2に示すように、当該ガスライン 200に第 1の処理 ガスを供給する、バルブ 202aを付されたガスライン 202と、当該ガスライン 200に別 の第 1の処理ガスを供給する、バルブ 206aを付されたガスライン 206が接続されて!ヽ る。すなわち、前記ガスライン 200には、前記ガスライン 202と前記ガスライン 206から それぞれ供給される、 2種類の第 1の処理ガスを、バルブの開閉によって切り替えて 使用できる構造になっている。
[0038] さらに、前記ガスライン 200には、当該ガスライン 200にパージガスを供給するガス ライン 201が接続されている。
[0039] 一方、前記ガスライン 100には、当該ガスライン 100に第 2の処理ガスを供給するガ スライン 101と、当該ガスライン 100にパージガスを供給するガスライン 102が接続さ れている。
[0040] まず、前記ガスライン 202についてみると、前記ガスライン 202には、質量流量コン トローラ 203Aと、ノ ノレブ 203a、 ノ ノレブ 203b、 ノ ノレブ 203c力付されたライン 203力 S 接続され、当該ライン 203は、例えば、 TaClなどの、原料 204Aが保持された原料
5
容器 204に接続されている。当該原料 204Aは、被処理基板上に形成される金属を 含む薄膜の原料となる。また、前記ガスライン 202には、質量流量コントローラ 205A と、バルブ 205a、 205bが付された、例えば Arなどのキャリアガスを導入するガスライ ン 205が接続されている。前記ガスライン 200からは、前記ガスライン 205から供給さ れる Arなどのキャリアガスと共に前記第 1の処理ガスが前記シャワーヘッド部 13を介 して前記処理空間 11 Aに供給される構造になって 、る。
[0041] また、前記ガスライン 206には、質量流量コントローラ 207Aと、バルブ 207a、バル ブ 207b、バルブ 207cが付されたライン 207が接続され、当該ライン 207は、例えば 、 TiClなどの、原料 208Aが保持された原料容器 208に接続されている。当該原料
4
208Aは、前記シャワーヘッド部 13を保護する保護膜を形成する原料となる。また、 前記ガスライン 206には、質量流量コントローラ 209Aと、バルブ 209a、 209b力 寸さ れた、例えば Arなどのキャリアガスを導入するガスライン 209が接続されている。前記 ガスライン 200からは、前記ガスライン 209から供給される Arなどのキャリアガスと共 に前記第 1の処理ガスとは異なる別の第 1の処理ガスが前記シャワーヘッド部 13を介 して前記処理空間 11 Aに供給される構造になって 、る。
[0042] このように、前記ガスライン 200からは、被処理基板上に薄膜を形成するための原 料となる第 1の処理ガスと、前記シャワーヘッド部 13を保護する保護膜を形成するた めの原料となる、当該第 1の処理ガスと異なる別の第 1の処理ガスを処理容器内に供 給することが可能となって 、る。
[0043] また、前記ガスライン 200にパージガスを供給するための前記ガスライン 201には、 パージガスである、例えば、 Arガスの供給源が接続され、質量流量コントローラ 201 Aと、バルブ 201a、 201bが付され、供給されるパージガスの流量が制御される構造 になっている。
[0044] 一方、前記ガスライン 100に接続された、前記ガスライン 101には、第 2の処理ガス である、例えば Hガスの供給源が接続され、質量流量コントローラ 101Aと、バルブ 1
2
Ola, 101bが付されて、前記ガスライン 100に供給される第 2の処理ガスの流量が制 御される構造になっている。 [0045] また、前記ガスライン 100にパージガスを供給するための前記ガスライン 102には、 パージガスである、例えば、 Arガスの供給源が接続され、質量流量コントローラ 102 Aと、バルブ 102a、 102bが付され、供給されるパージガスの流量が制御される構造 になっている。
[0046] また、上記のバルブや質量流量コントローラ、高周波電源など、成膜装置の成膜方 法に係る動作は、コンピュータ (CPU) 10Aを内蔵した、制御装置 10により、制御さ れる構造になっている。また、当該制御装置 10には、例えばノヽードディスクなどよりな る記憶媒体 10Bが内蔵されており、例えば以下に示すような本実施例による成膜方 法の動作は、当該記憶媒体 10Bに記録されたプログラムによって、前記コンピュータ 10Aにより、実行される構造になっている。また、このようなプログラムを、装置レシピ と呼ぶ場合がある。
[0047] 前記成膜装置を用いて、例えば、前記保持台 12上に載置された、前記被処理基 板 W上に、金属膜や金属を含む膜を形成する場合、当該成膜装置は、概ね以下の ように制御される。
[0048] まず、前記ガスライン 200およびシャワーヘッド部 13を介して前記処理空間 11 Aに 金属を含む第 1の処理ガスを供給する。当該第 1の処理ガスが、前記被処理基板上 に吸着した後、当該処理空間 11Aに残留する当該第 1の処理ガスを、前記排気口 1 5より排気する。この場合、パージガスを用いて処理空間 11Aをパージしてもよい。
[0049] 次に、前記ガスライン 100およびシャワーヘッド部 13を介して前記処理空間 11 Aに 、前記第 1の処理ガスを還元する第 2の処理ガスを供給し、さらに前記シャワーヘッド 部 13に、前記高周波電源 17から高周波電力を印加して前記処理空間 11Aに、前 記第 2の処理ガスのプラズマを励起する。このため、当該第 2の処理ガスの解離が進 行し、解離することにより生成されるラジカルやイオンにより、前記第 1の処理ガスの 還元が促進される。
[0050] 次に、当該処理空間 11Aに残留する当該第 2の処理ガスを、前記排気口 15より排 気する。この場合、パージガスを用いて処理空間 11Aをパージしてもよい。
[0051] このような処理を繰り返すことにより、すなわち、処理空間に第 1の処理ガスを供給 して排出し、さらに第 2の処理ガスを供給して排出することを、所定の回数繰り返すこ とで、前記被処理基板 w上に、所望の厚さの薄膜が形成される。
[0052] このようにして、いわゆる ALD法により形成された膜は、膜中の不純物が少なぐ膜 質が良好である特長を有して 、る。
[0053] しかし、従来は、前記処理空間 11 Aにプラズマ励起を行った場合に形成されるィォ ンゃラジカルによって、前記処理空間 11Aに面する対象物が、例えばエッチングさ れるなどのダメージを受け、パーティクルや薄膜の汚染源となる物質が飛散してしまう 場合があった。
[0054] この場合、前記処理空間 11Aに面するエッチングの対象となりうる部分のうち、特に 前記シャワーヘッド部 13は高周波電圧が印加されて負に帯電して 、るため、イオン 衝撃が大きぐスパッタエッチングされる割合が大きくなつてしまう問題があった。そこ で、本実施例では、前記シャワーヘッド部 13を含む、前記処理空間 11 Aに面するェ ツチングの対象となりうる部分に、保護膜を形成する工程を設け、当該保護膜を形成 することによって、前記シャワーヘッド部 13などの処理空間 11Aに面する対象物がェ ツチングされることを防止し、パーティクルや汚染物質の飛散を防止することを可能と している。
[0055] 前記シャワーヘッド部 13は、例えば A1や Niなどの金属材料力も構成されるため、ス ノ ッタエッチングにより A1や Niが飛散した場合、被処理基板上に形成される薄膜の 汚染物質となってしまう問題があった。そこで、本実施例では、前記シャワーヘッド部 13を覆うように、例えば、特にスパッタエッチングされる前記シャワープレート 13Bの、 前記処理空間 11 Aに露出した表面を覆うように、保護膜を形成して!/ヽる。
[0056] 例えば、前記シャワーヘッド部 13などをエッチングまたはスパッタエッチングする活 性種としては、例えば第 1の処理ガスに用いる、金属のハロゲンィ匕合物に含まれるハ ロゲンのラジカルやイオンがある。例えば、被処理基板上に Ta膜を成膜する場合に は、第 1の処理ガスに TaClなどのハロゲンィ匕合物を用いる力 TaClを用いた場合
5 5
、図 1 (A)〜(D)に示したように、ハロゲン元素が活性ィ匕されて生成されるハロゲンラ ジカルやハロゲンイオン、例えば C1ラジカルや C1イオンが生成されてシャワーヘッド 部 13がエッチングされてしま!/、、特に C1イオンのアタックによってシャワーヘッド部 13 がスパッタエッチングされてしまう問題が顕著であった。 [0057] そこで、本実施例では、前記シャワーヘッド部 13を保護膜で覆う保護膜を形成する 力 当該保護膜が、前記シャワーヘッドを構成する材料より、前記処理容器内に生成 されるイオンによるスパッタリング耐性が大きいことが好ましい。この場合、効率よく前 記シャワーヘッド部 13のスパッタエッチングを抑制することが可能となる。
[0058] また、当該保護膜は、被処理基板上に形成される薄膜より、前記処理容器内に生 成されるイオンによるスパッタリング耐性が大きいことが好ましい。この場合、前記被 処理基板上に薄膜を形成する場合に、前記シャワーヘッド部 13に堆積する薄膜より も、前記保護膜のスパッタリング耐性が大きいため、効率よく前記シャワーヘッド部 13 のスパッタエッチングを抑制することが可能となる。
[0059] 例えば、被処理基板上に Ta膜を形成する場合には、第 1の処理ガスに TaCl、第 2
5 の処理ガスには Hを用いて、さらに第 2の処理ガスはプラズマ励起して用いる。この
2
場合、例えばスパッタリング耐性に優れる、前記シャワーヘッド部 13を保護する保護 膜としては、 Tiを含む膜、または Ti膜を用いると、例えばシャワーヘッド部 13を構成 する Aほたは Mよりもスパッタリング耐性が高ぐまた、成膜処理のときにシャワーへッ ド部に形成される Taよりもスパッタリング耐性が高ぐ好ま 、。
[0060] また、前記シャワーヘッド部 13にアタックするイオンは、 C1イオンなどのハロゲンィォ ンに限定されるものではなぐ例えば、キャリアガスとして第 2の処理ガスと共に処理 容器内に供給されるガス、例えば Arガスより生成される Arイオンなども含まれる場合 があり、これらの Arイオン等に対しても、保護膜のスパッタリング耐性が高いことが好 ましい。
[0061] 例えば、 Arによるスパッタリングに対して、スパッタリング現象が起きるセルフバイァ ス電位 (Vdc)のしきい値の値は、 Niが 7V、 A1が 13V、 Taが 13Vであるのに対して、 Tiの場合は 20Vと高い値を示している。 (「スパッタリング現象」、金原粲著、 1984、 参照)。
[0062] このように、 Tiは、 Arのスパッタリングに対し、 A1や Ni、 Taと比べて高!、而性を示し ている。また、 C1のスパッタに対しても Tiの耐性は同様に高いと考えられ、スパッタリ ングの保護膜としては Ti膜または Tiを含む膜が好ましいことがわかる。
[0063] 次に、図 2に示した成膜装置を用いて、本実施例の成膜方法を実施する場合の具 体的な一例を、図 4に示すフローチャートに基づき、説明する。
[0064] 図 4は、本実施例による成膜方法を示すフローチャートである。ただし図中、先に説 明した部分には同一の参照符号を付し、説明を省略する。
[0065] まず、ステップ 10 (図中 S 10と表記する、以下同様)において、被処理基板が処理 容器に搬入される前に、処理容器 11内の処理空間 11 Aに面する部分、例えばシャ ヮーヘッド部丄 3に、当該シャワーヘッド部 13をスパッタエッチング力も保護するため の、例えば Ti膜からなる保護膜を形成する。この場合、ステップ 10で示される保護膜 形成工程の詳細の一例に関しては、図 6で後述する。
[0066] 次に、ステップ 20にお ヽて、被処理基板 Wが前記成膜装置に搬入され、前記基板 保持台 12に載置される。
[0067] 次に、ステップ 30においては、前記保持台 12に内蔵したヒータによって前記被処 理基板が昇温される。
[0068] 次にステップ 40において、前記バルブ 203a、 203b, 203cが開放され、前記原料 容器 204から、気化した TaCl 1S 前記ガスライン 205から供給される Arと共に、前
5
記ガスライン 200を介して、前記処理空間 11 Aに供給される。
[0069] 本ステップにおいて、前記第 1の処理ガスである TaClが被処理基板上に供給され
5
ることで、被処理基板上に前記第 1の処理ガスが吸着される。
[0070] また、本ステップにお 、ては、バルブ 102aおよびバルブ 102bを開放して前記質量 流量コントローラ 102Aで流量を制御して、逆流防止ガスとして Arを、前記ガスライン 100より前記処理空間 11Aに供給し、第 1の処理ガスが前記シャワーヘッド部 13から 、前記ガスライン 100の側に逆流することを防止してもよい。
[0071] 次に、ステップ 50で、前記バルブ 203a、 203b, 203cを閉じて前記処理空間 11A への前記第 1の処理ガスの供給を停止し、前記被処理基板上に吸着していない、未 吸着で前記処理空間 11Aに残留していた第 1の処理ガスを、前記排気口 15より前 記処理容器 11の外へと排出する。この場合、前記バルブ 201a、 201b,および前記 ノ レブ 102a、 102bを開放して、それぞれ前記ガスライン 200およびガスライン 100 力 パージガスとして Arを導入して、前記処理空間 11 Aをパージしてもよい。この場 合、速やかに残留した第 1の処理ガスが処理空間より排出される。所定の時間のパ ージが終了後、前記バルブ 201a、 201b,および前記バルブ 102a、 102bを閉じる。
[0072] 次に、ステップ 60において、前記バルブ 101aおよび 101bを開放し、前記質量流 量コントローラ 101Aで流量を制御することで、第 2の処理ガスである Hガスを前記ガ
2
スライン 100より前記処理空間 11 Aに導入し、さらに、前記高周波電源 17より前記シ ャヮーヘッド部 13に高周波電力(RF)を印加して、前記処理空間 11 Aにてプラズマ 励起を行う。この場合、前記処理空間の Hが解離されて、 H+ZH* (水素イオンと水
2
素ラジカル)となり、前記被処理基板 W上に吸着している前記第 1の処理ガス (TaCl
3
)と反応する。この場合、プラズマを励起する前に、第 2の処理ガスの流量安定のため 、また処理空間の圧力上昇のために、第 2の処理ガスを所定の時間供給するようにし てもよい。
[0073] 本ステップでは、
TaCl +H → Ta + HC1
5 2
で示される反応が生じて、被処理基板上には Ta膜が形成される。
[0074] しかし、一方で、
HC1 → C1+/C1* + H+/H*
で示す反応が生じ、すなわち形成された HC1がプラズマにより励起され、例えば C1 +ZC1* (塩素イオンと塩素ラジカル)が生成される。従来は、これらのラジカルゃィォ ンによって前記シャワーヘッド部 13がエッチングされてしまう問題があった力 本実施 例ではシャワーヘッド部が Ti膜からなる保護膜で覆われて 、るため、エッチングを抑 制することが可能となっている。また、この場合、抑制さえるエッチングは化学的なェ ツチングと物理的なエッチング (スパッタエッチング)の双方を含む。
[0075] また、本ステップにお 、ては、バルブ 201aおよびバルブ 201bを開放して前記質量 流量コントローラ 201Aで流量を制御して、逆流防止ガスとして Arを、前記ガスライン 200より前記処理空間 11 Aに供給し、第 2の処理ガスが前記シャワーヘッド部 13から 、前記ガスライン 200の側に逆流することを防止してもよい。また、第 2の処理ガスを 供給する場合に、前記ガスライン 102から、キャリアガスとして Arを供給してもよい。こ のような、逆流防止ガスやキャリアガスとして処理容器内に供給されるガス、例えば A rなどがプラズマ励起されることで生成される活性種 (Arイオン等)によってもシャワー ヘッド部 13はエッチングされる場合があり、保護膜はこのようなエッチング力ももシャ ヮーヘッドを保護することが可能である。
[0076] 次に、ステップ 70で、前記バルブ 101a、 101bを閉じて前記処理空間 11Aへの前 記第 2の処理ガスの供給を停止し、前記被処理基板上の前記第 1の処理ガスと反応 していない前記処理空間 11 Aに残留していた第 2の処理ガスを、前記排気口 15より 前記処理容器 11の外へと排出する。この場合、前記バルブ 201a、 201b,および前 記バルブ 102a、 102bを開放して、それぞれ前記ガスライン 200およびガスライン 10 0からパージガスとして Arを導入して、前記処理空間 11 Aをパージしてもよい。この 場合、速やかに残留した第 2の処理ガスが処理空間より排出される。所定の時間の パージが終了後、前記バルブ 201a、 201b,および前記バルブ 102a、 102bを閉じ る。
[0077] 次に、ステップ 80にお ヽては、被処理基板上に必要な膜厚の薄膜を形成するため に、必要に応じて成膜工程を再びステップ 40に戻し、所望の膜厚となるまでステップ 40〜 70からなる、いわゆる ALD法による成膜工程である工程 AL 1を繰り返した後に 、次のステップ 90に移行する。
[0078] 次に、ステップ 90では前記被処理基板 Wを前記基板保持台 12より離間し、前記処 理容器 11から搬出する。
[0079] このようにして、本実施例よる成膜処理によって、被処理基板上に金属膜や金属を 含む膜、例えば Ta膜が形成される。この場合、第 1の処理ガスとしては、 TaClに限
5 定されるものではなぐ他のハロゲン化合物ガス、例えば、 TaF、 TaBr、 Tal、など
5 5 5 を用いることが可能であり、 TaClを用いた場合と同様の効果を奏する。
5
[0080] なお、本実施例で形成される Ta膜は、膜中の成分に、 Taを少なくとも含む膜を示し ており、その結合状態が限定されるものではなぐさらに、添加物を含むようにしてもよ い。また、 TaN膜、 Ta (C) N膜なども形成できる。
[0081] また、本実施例によって形成される金属膜や金属を含む膜は、不純物が少なく高 品質な膜質であり、微細パターンに成膜するにあたっては、良好なカバレッジ特性を 得ることができるため、微細化された配線パターンを有する高性能半導体装置の、 C u配線の拡散防止膜 (バリア膜または密着膜)に用いると好適である。 [0082] また、本実施例による成膜方法によって成膜が可能である膜は、 Taを含有する膜 に限定されず、例えば、 Ti、 Wなどの金属を含む膜を形成することが可能である。
[0083] また、図 4には、例えば被処理基板を 1枚処理する場合の成膜方法の一例を示した 力 複数の被処理基板に、連続的に成膜を行う場合には、所定の枚数の成膜後に 処理容器を定期的にクリーニングして、処理容器内部に堆積した薄膜を除去すること が好ましい。このため、クリーニング工程を含む成膜方法の一例を、次に、図 5に示す
[0084] 図 5は、複数の被処理基板上に連続的に成膜を行う場合の、クリーニング工程を含 む成膜方法の一例を示すフローチャートである。ただし図中、先に説明した部分には 同一の参照符号を付し、説明を省略する。
[0085] 本図に示す成膜方法の場合、ステップ 90の後に、ステップ 100に進み、ステップ 11 00では、処理枚数が所定の枚数に達したカゝどうかを判断し、所定の枚数に達しない 場合には処理をステップ 20に戻し、ステップ 20からステップ 90までのサイクル Sを繰 り返す。ここで、所定の枚数の処理が終了し、処理容器内のクリーニングが必要にな ると、ステップ 100から処理がステップ 110に進行し、処理容器内のクリーニングを行 う。処理容器内のクリーニングは、例えばフッ素系のガスを導入してプラズマ励起を する、または活性なガスを供給してガスクリーニングを行う、または処理容器を開放し てクリーニングを行うなど、様々な方法で、処理容器内に堆積した金属を含む膜、例 えば Ta膜などを除去することが可能である。本ステップで処理容器内のクリーンング が終了すると、処理をステップ 10に戻して、再びシャワーヘッド部 13を含む処理容器 内に保護膜を形成する。これは、ステップ 110のクリーニング工程において、保護膜 も除去されるためである。
[0086] このようにして、図 5に示したフローチャートに基づき、複数の被処理基板に連続的 に成膜を行う処理が実施される。本実施例による成膜方法によれば、例えばシャワー ヘッド部などの処理容器内に面する部材のエッチング量が抑制されるため、パーティ クルや汚染物質の飛散が抑制されて、安定で清浄な成膜が可能となるとともに、シャ ヮーヘッド部などの部材がエッチングされる量が抑制されるために、シャワーヘッド部 などの部材のメンテナンスサイクルを長くすることが可能となり、成膜装置の稼働率が 向上する効果を奏する。
[0087] 次に、図 4、図 5において、ステップ 10で示した、保護膜形成工程について、その成 膜方法の詳細の一例を図 6に示す
図 6は、本実施例による保護膜形成工程の一例の詳細を示したフローチャートであ る。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
[0088] まず、ステップ 11で保護膜の成膜が開始されると、ステップ 12からステップ 15にお いては、図 4、 5に示した工程 AL1、すなわち前記ステップ 40からステップ 70と同様 にして、前記シャワープレート 13Bの前記処理空間 11Aに面した側など、前記シャヮ 一ヘッド部 13の表面を含む処理容器 11内に保護膜を形成する。
[0089] 具体的に ίま、まず、ステップ 12にお!/、て、前記ノ ノレブ 207a、 207b, 207c力 ^開放 され、前記原料容器 208から、気化した TiCl力 前記ガスライン 209から供給される
4
Arと共に、前記ガスライン 200を介して、前記処理空間 11 Aに供給される。
[0090] 本ステップにおいて、前記第 1の処理ガスである TaClとは異なる、別の第 1の処理
5
ガスである TiClが被処理基板上に供給されることで、例えば前記シャワーヘッド部 1
4
3に、当該別の第 1の処理ガスが吸着される。
[0091] また、本ステップにおいては、バルブ 102aおよびバルブ 102bを開放して前記質量 流量コントローラ 102Aで流量を制御して、逆流防止ガスとして Arを、前記ガスライン 100より前記処理空間 11 Aに供給し、当該別の第 1の処理ガスが前記シャワーヘッド 部 13から、前記ガスライン 100の側に逆流することを防止してもよい。
[0092] 次に、ステップ 13で、前記バルブ 207a、 207b, 207cを閉じて前記処理空間 11A への前記別の第 1の処理ガスの供給を停止し、前記被処理基板上に吸着して 、な ヽ 、未吸着で前記処理空間 11 Aに残留していた処理ガスを、前記排気口 15より前記 処理容器 11の外へと排出する。この場合、前記バルブ 201a、 201b,および前記バ ルブ 102a、 102bを開放して、それぞれ前記ガスライン 200およびガスライン 100か らパージガスとして Arを導入して、前記処理空間 11 Aをパージしてもよい。この場合 、速やかに残留した第 1の処理ガスが処理空間より排出される。所定の時間のパージ が終了後、前記バルブ 201a、 201b,および前記バルブ 102a、 102bを閉じる。
[0093] 次に、ステップ 14において、前記バルブ 101aおよび 101bを開放し、前記質量流 量コントローラ 101Aで流量を制御することで、第 2の処理ガスである Hガスを前記ガ
2
スライン 100より前記処理空間 11 Aに導入し、さらに、前記高周波電源 17より前記シ ャヮーヘッド部 13に高周波電力(RF)を印加して、前記処理空間 11 Aにてプラズマ 励起を行う。この場合、前記処理空間の Hが解離されて、 H+ZH* (水素イオンと水
2
素ラジカル)となり、前記シャワーヘッド部 13などに吸着している前記第 1の処理ガス (TaCl )と反応し、例えば、前記シャワープレート 13Bの表面など、前記シャワーへッ
3
ド部 13を含む処理容器内に、 Ti膜からなる保護膜が形成される。
[0094] また、本ステップにお 、ては、バルブ 201aおよびバルブ 201bを開放して前記質量 流量コントローラ 201Aで流量を制御して、逆流防止ガスとして Arを、前記ガスライン 200より前記処理空間 11 Aに供給し、第 2の処理ガスが前記シャワーヘッド部 13から 、前記ガスライン 200の側に逆流することを防止してもよい。また、第 2の処理ガスを 供給する場合に、前記ガスライン 102から、キャリアガスとして Arを供給してもよい。
[0095] 次に、ステップ 15で、前記バルブ 101a、 101bを閉じて前記処理空間 11Aへの前 記第 2の処理ガスの供給を停止し、未反応の前記処理空間 11 Aに残留して 、た第 2 の処理ガスを、前記排気口 15より前記処理容器 11の外へと排出する。この場合、前 記バルブ 201a、 201b,および前記バルブ 102a、 102bを開放して、それぞれ前記 ガスライン 200およびガスライン 100からパージガスとして Arを導入して、前記処理空 間 11Aをパージしてもよい。この場合、速やかに残留した第 2の処理ガスが処理空間 より排出される。所定の時間のパージが終了後、前記バルブ 201a、 201b,および前 記バルブ 102a、 102bを閉じる。
[0096] 次に、ステップ 16では、必要に応じて成膜工程を再びステップ 12に戻し、保護膜が 所望の膜厚となるまでステップ 12〜 15からなる、 、わゆる ALD法による成膜工程で ある工程 AL2を繰り返した後に、次のステップ 17に移行し、保護膜形成工程を終了 する。ステップ 17の後は、例えば図 4、図 5に示した前記ステップ 20に移行する。
[0097] このようにして、図 6に示した処理によって、シャワーヘッド部などに金属膜や金属を 含む膜からなる保護膜、例えば Ti膜が形成される。この場合、第 1の処理ガスとして は、 TiClに限定されるものではなぐ他の処理ガスを用いることも可能であり、 TiCl
5 4 を用いた場合と同様の効果を奏する。 [0098] なお、本実施例で形成される Ti膜は、膜中の成分に、 Tiを少なくとも含む膜を示し ており、その結合状態が限定されるものではなぐさらに、添加物を含むようにしてもよ い。
[0099] また、図 6に示す、いわゆる ALD法によって形成される保護膜は、不純物が少なく 高品質な膜質であり、また、化学的なエッチングや物理的なエッチング (スパッタエツ チング)に対する耐性が高い特長を有している。
[0100] また、本実施例に示した保護膜の成膜方法によれば、被処理基板上に形成する薄 膜と成膜方法が同様であり、ガス供給設備や、制御系や制御に係るソフトウエアなど の設備を今日共有することが可能であり、成膜に係るコストを抑制することが可能であ る。
[0101] また、必要に応じて、保護膜の特性や組成、また含有する金属などは、任意に変更 して用いることが可能である。例えばプラズマ励起の場合の高周波電力が大きい場 合、すなわちセルフバイアス電位が大きい場合には、必要に応じてさらにスパッタリン グ耐性が高い膜などを形成することが可能であり、このように、被処理基板に成膜さ れる成膜処理に対応した保護膜を形成して用いることが可能であることは明らかであ る。
実施例 2
[0102] また、図 2に示した成膜装置の処理の効率を向上させるために、前記シャワーへッ ド部 13を加熱する方法があり、当該シャワーヘッド部 13に堆積する薄膜の厚さ、例え ば Ta膜の厚さを抑制する方法がある。
[0103] 図 7は、成膜温度と堆積される Ta膜の成膜速度の関係を示した図であるが、成膜 温度を増大させるに従い、成膜速度が低くなつている。そのため、成膜温度が高い場 合は堆積される Ta膜の膜厚が薄くなることがわ力る。
[0104] このような、温度と成膜速度の関係を利用し、例えば、図 3に示した加熱手段 13aに よってシャワーヘッド部を加熱することにより、シャワーヘッド部に堆積する Ta膜など の膜厚を薄くすることが可能となる。
[0105] 例えば、図 5に示した前記工程 AL1において、前記シャワーヘッド部 13を加熱する ことにより、シャワーヘッド部に堆積する Ta膜の厚さを抑制することができる。そのた め、例えば図 5のステップ 100に示した所定枚数、すなわちクリーニングが必要となる までに可能な処理枚数を増大させることが可能となり、成膜装置の処理の効率を良 好とすることが可能となる。
[0106] またこの場合、保護膜を形成する回数も同様に抑制されるため、保護膜を形成する 成膜方法と組み合わせて用いる場合には、特に成膜処理の効率が良好となる効果 を奏する。
[0107] 以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施 例に限定されるものではなく、特許請求の範囲に記載した要旨内にお 、て様々な変 形 ·変更が可能である。
実施例 3
[0108] また、本発明にお!/、て、例えばハロゲンなどのエッチングを防止する、例えばシャヮ 一ヘッド部に形成される保護膜は、上記に示したように Tiを含む膜に限定されるもの ではなぐ他の膜を用いることも可能である。
[0109] この場合、例えば、 Siと Cを含む膜を前記保護膜として用いると好適である。この場 合、 Siと Cを含む膜とは、例えば Siと Cを主成分とする膜を意味し、例えば Hなどの、
2 他の元素を含有していてもよい。また、酸素を含むように形成することも可能であるが 、酸素を含む膜は、エッチング耐性が小さくなるため、できるだけ酸素の含有率は小 さくなるようにすることが好ましい。以下文中では、 Siと Cを含む膜を、 SiC膜と表記す る。
[0110] 当該 SiC膜は、スパッタリング耐性に優れており、前記保護膜として用いた場合に は、 Arイオンや C1イオンなどのスパッタリング耐性に優れた効果を奏する。また、さら に、 SiC膜は、成膜中に形成される C1ラジカルによる化学的なエッチングによる耐性 に優れているという特徴を有しており、 C1ラジカルによるエッチング耐性に関しては、 上記の Tiを含む膜より更に耐性に優れている。このため、成膜工程において、イオン が形成される場合のイオンによるスパッタリングと、成膜工程において形成される、ハ ロゲンラジカルの化学的なエッチングの双方に優れて 、る特徴を有して 、る。このた め、シャワーヘッド部を、成膜工程におけるエッチングより保護する効果に優れており 、汚染物質が飛散することを防止する効果が大きい。 [0111] 例えば、特にイオンによりスパッタリングによりシャワーヘッド部がエッチングされるこ とが懸念される場合には、保護膜として Tiを含む膜を用いることが可能であり、さらに ハロゲンラジカルなどの化学的なエッチングの影響が大き 、場合には、 Siと Cを含む 膜を用いることが好適である。
[0112] 例えば、 SiC膜は、以下に示す装置によって形成することができる。
[0113] 図 9は、本実施例による成膜装置を模式的に示した断面図である。ただし図中、先 に説明した部分には同一の参照符号を付し、説明を省略する。この場合、装置の概 要は図 2に示した成膜装置と同様であるが、本実施例による成膜装置の場合、以下 の点で異なっている。本実施例による成膜装置の場合、前記ガスライン 202は、前記 バルブ 202aを介して、ガスライン 220と接続されている。当該ガスライン 220には、バ ルブ 220a, 220bと、質量流量コントローラ 220Aを介して、圧力制御弁 221aを有す る、原料ガス保持部 221が接続されている。当該原料ガス保持部 221内には、保護 膜を成膜するための、保護膜成膜ガス 221Aが保持されている。また、 SiC膜を形成 するための原料は、常温で気体の場合に限定されず、常温で液体の原料や固体の 原料を必要に応じて用いることができる。本実施例の場合、前記保護膜成膜ガス 22 1Aとして、有機シランガス、例えばトリメチルシランガスを用いる場合を例にとって説 明する。
[0114] 本実施例による成膜方法の場合、図 4〜図 5に示した、ステップ 10の保護膜形成ェ 程において、前記ガスライン 220から前記ガスライン 202、さらに前記シャワーヘッド 部 13を介して前記処理容器 11内に、前記保護膜成膜ガス 221Aを供給し、プラズマ を励起して、保護膜の成膜を行う。
[0115] 具体的には、例えば、保護膜形成工程が開始されると、まず、前記バルブ 202a、 2 20a、 220bを開放し、前記質量流量コントローラ 220Aで、前記保護膜成膜ガス 221 Aの流量を制御しながら、前記処理容器 11内に保護膜成膜ガスを供給する。そこで 、前記高周波電源 17より、前記シャワーヘッド部 13に高周波電力を印加することによ り、プラズマを励起して当該シャワーヘッド部 13に、 SiC膜よりなる保護膜を形成する ことができる。また、この場合、前記ガスライン 102より Arの代わりに Heなどのガスを 供給するようにしてもよ ヽ。 [0116] また、前記保護膜を、前記シャワーヘッド部 13を覆うように形成する場合、前記シャ ヮーヘッド部 13の温度を制御することにより、形成される保護膜 (SiC膜)の膜質を適 宜制御することが可能である。
[0117] 図 9は、成膜温度を変更した場合に、 SiC膜が形成される成膜速度の変化を示した ものである。この場合、保護膜 (SiC膜)は、シャワーヘッド部 13上に形成されたもの を直接測定することは困難であるため、被処理基板上に形成されたものを測定して いる。しかし、このような温度に対する成膜の特性の変化は、前記シャワーヘッド部 1 3上に形成された保護膜の場合も同様と考えられる。この場合、トリメチルシランの流 量は、 150sccm、 Heの流量が 800sccm、高周波電力は、 800W、処理容器内の圧 力が 7. 8Torrである。
[0118] 図 9を参照するに、成膜温度 (この場合被処理基板の温度)が上昇すると、成膜速 度が減少する傾向にあることがわかる。この場合、成膜速度を高くすることで、形成さ れる保護膜 (SiC膜)の密度が高くなり、いわゆる緻密な膜となっていることが考えられ る。
[0119] また、図 10には、成膜温度を変更した場合の、 SiC膜の光学屈折率の変化を示す 。この場合、図 9に示した場合と同様に、保護膜は、被処理基板上に形成されたもの を測定している。
[0120] 図 10を参照するに、成膜温度が上昇すると、光学屈折率が大きくなつており、成膜 温度が上昇するに従 、、保護膜の密度が増大して 、ると考えられる結果を示して ヽ る。
[0121] また、このように成膜温度を上昇させることで保護膜の密度を増大させると、当該保 護膜が緻密になって、例えばハロゲンイオンやハロゲンラジカルなどに対するエッチ ング耐性が良好となると考えられる。このため、例えば図 3に示したように、シャワーへ ッド部 13〖こは、当該シャワーヘッド部 13を加熱する加熱手段 13aが形成されているこ とが好まし!/、。当該加熱手段 13aによって当該シャワーヘッド部 13を加熱することに より、当該シャワーヘッド部 13に形成される保護膜を緻密でエッチング耐性に優れた ちのとすることがでさる。
[0122] また、一方で前記シャワーヘッド部 13の温度は、被処理基板上に成膜を行う成膜 工程において、成膜に係る条件より好ましい温度範囲が決まるため、これらの条件を 考慮して適切な温度となるように制御されることが好ま 、。
[0123] また、本実施例による成膜方法は、上記の工程、すなわち保護膜形成工程以外は
、実施例 1〜実施例 2に示した場合と同様にして行う事が可能である。また、本実実 施例による成膜方法では、被処理基板上に、例えば Taを含む膜や、 Tiを含む膜を 形成することが可能である。
[0124] 例えば、被処理基板上に Tiを形成する場合には、図 4に示した前記成膜工程 AL1 において、 TaClに換えて、 TiCを用いればよい。
5 4
[0125] また、被処理基板上に Ti膜または Ta膜を形成する方法にっ ヽては、 Vヽゎゆる AL D法に限定されず、他の様々な方法、例えば PE— CVD法などを用いて形成するこ とも可能である。この場合、 Ti膜や Ta膜を成膜するための、例えば TaClや TiClな
5 4 どの成膜ガスと、 Hや NHなどの還元ガスを、例えば同時に処理容器内に供給し、
2 3
または供給のタイミングを変更して処理容器内に供給し、プラズマを励起することで、
Taや Tiを含む膜を成膜することができる。また、さらにこれらのガス以外を用いて、ま たはこれらのガスに加えて様々なガスを用いて、 Taや Tiを含む膜を成膜することがで きる。
[0126] 例えば、被処理基板上に Tiを含む膜を形成する場合には、成膜するためのガスに 、 TiCl , Ar, H、 NHなどを用いて形成することができる。この場合、必要に応じて
4 2 3
成膜工程を複数のステップよりなるように構成し、複数のステップにおいて、それぞれ のガスの供給される期間や流量、また印加される高周波電力を変更して、当該複数 のステップを繰り返すことにより、被処理基板上に Tiを含む膜を形成することも可能で ある。
[0127] 例えば、図 11には、成膜するためのガスに、 TiCl , Ar, H、 NHを用いて被処理
4 2 3
基板上に Tiを形成した場合に、被処理基板温度を変更した場合の、成膜速度と比 抵抗値を示したものである。
[0128] この場合、成膜のステップは第 1ステップと第 2ステップよりなり、第 1ステップでは、 処理容器内に、 TiCl、 Ar, Hを、それぞれ、 2. 5sccm、 750sccm、 1500sccm供
4 2
給し、高周波電力を、 350W印加している。第 2ステップでは、処理容器内に、 NH、 Ar、 Hを、それぞれ、 200sccm、 750sccm、 1500sccm供給し、高周波電力を 50
2
OW印加している。またこの場合、必要な膜厚に応じてステップ 1とステップ 2を繰り返 して成膜を行う。
[0129] このように、本実施例による成膜方法では、被処理基板上に Taを含む膜や Tiを含 む膜などを成膜することが可能である。また、この場合に、シャワーヘッド部に Siと C を含む保護膜が形成されていることにより、シャワーヘッド部力 の汚染物質の飛散 が抑制され、不純物が抑制された純度の高 ヽ膜を形成することが可能である。
[0130] また、例えば前記保護膜として、 Tiを含む膜と SiC膜を積層した構造とすることも可 能である。例えば、保護膜として、 TiZSiC、 SiCZTaなどの積層構造、または、 Ti
/sic/Ti, sicZTiZsicなどの積層構造を用いることが可能であり、さらにこれら の構造を組み合わせて用いることも可能である。この場合、シャワーヘッド部などのェ ツチング防止効果が大きくなり、不純物の飛散防止効果が良好となる。
[0131] 以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施 例に限定されるものではなく、特許請求の範囲に記載した要旨内にお 、て様々な変 形 ·変更が可能である。
産業上の利用可能性
[0132] 本発明によれば、処理ガスをプラズマ励起して用い、被処理基板に成膜を行う場合 に、成膜の汚染源の飛散が抑制され、清浄で安定な成膜が可能となる。
[0133] 本国際出願は、 2004年 12月 20日に出願した日本国特許出願 2004— 367789 号に基づく優先権を主張するものであり、 2004— 367789号の全内容を本国際出 願に援用する。

Claims

請求の範囲
[1] 被処理基板を保持する保持台を内部に備えた処理容器と、
高周波電力が印加可能に構成された、前記処理容器内に成膜ガスまたは当該成 膜ガスを還元する還元ガスを供給するガス供給部と、を備えた成膜装置による成膜 方法であって、
前記処理容器内に金属元素とハロゲン元素を含む前記成膜ガスを供給する第 1の 工程と、
前記処理容器内に前記還元ガスを供給する第 2の工程と、
前記ガス供給部に高周波電力を印加して前記処理容器内にプラズマを励起し、前 記被処理基板上に成膜を行う第 3の工程と、を有し、
前記第 3の工程で活性ィ匕される前記ハロゲン元素のエッチングから、前記ガス供給 部を保護する保護膜を形成する保護膜形成工程をさらに設けたことを特徴とする成 膜方法。
[2] 前記第 1の工程は前記成膜ガスを前記処理容器内より排出する工程を含み、 前記第 2の工程は前記還元ガスを前記処理容器内より排出する工程を含むことを 特徴とする請求項 1記載の成膜方法。
[3] 前記第 3の工程は、前記還元ガスをプラズマ励起する工程であることを特徴とする 請求項 1記載の成膜方法。
[4] 前記第 1の工程乃至第 3の工程を繰り返し実施することで前記成膜を行うことを特 徴とする請求項 2記載の成膜方法。
[5] 前記保護膜は Tiを含むことを特徴とする請求項 1記載の成膜方法。
[6] 前記金属元素は Taであることを特徴とする請求項 5記載の成膜方法。
[7] 前記保護膜形成工程は、
前記ガス供給部より前記処理容器内に、保護膜成膜ガスを供給して排出する第4 の工程と、
前記ガス供給部より前記処理容器内に、当該保護膜成膜ガスを還元する還元ガス を供給し、前記還元ガスを前記ガス供給部に印加される高周波電力によりプラズマ 励起し、当該還元ガスを排出する第 5の工程と、を有し、 当該第 4の工程と第 5の工程を交互に繰り返すことを特徴とする請求項 1記載の成 膜方法。
[8] 前記保護膜は、 Siと Cを含む膜であることを特徴とする請求項 1記載の成膜方法。
[9] 前記保護膜を形成する工程は、
前記ガス供給部より前記処理容器内に、 Si元素と C元素を含む保護膜成膜ガスを 供給する第 6の工程と、
前記保護膜成膜ガスを、前記ガス供給部に印加される高周波電力によりプラズマ 励起する第 7の工程と、を有することを特徴とする請求項 8記載の成膜方法。
[10] 前記金属元素は、 Tiまたは Taであることを特徴とする請求項 8記載の成膜方法。
[11] 前記成膜ガスは、 TaCl , TaF , TaBrおよび Talのいずれかを含むことを特徴と
5 5 5 5
する請求項 8記載の成膜方法。
[12] 前記保護膜成膜ガスは、有機シランガスよりなることを特徴とする請求項 9記載の成 膜方法。
[13] 前記ガス供給部は、加熱手段により、加熱されることを特徴とする請求項 1記載の 成膜方法。
[14] 前記保護膜形成工程の前に、前記処理容器内の堆積物を除去するクリーニングェ 程を有することを特徴とする請求項 1記載の成膜方法。
[15] 前記保護膜形成工程では、前記保持台に前記被処理基板が載置されな!ヽことを 特徴とする請求項 1記載の成膜方法。
[16] 被処理基板を保持する保持台を内部に備えた処理容器と、
高周波電力が印加可能に構成された、前記処理容器内に成膜ガスまたは当該成 膜ガスを還元する還元ガスを供給するガス供給部と、を備えた成膜装置による成膜 方法をコンピュータに動作させるプログラムを記憶した記録媒体であって、
前記プログラムは、
前記処理容器内に金属元素とハロゲン元素を含む前記成膜ガスを供給する第 1の 工程と、
前記処理容器内に前記還元ガスを供給する第 2の工程と、
前記ガス供給部に高周波電力を印加して前記処理容器内にプラズマを励起し、前 記被処理基板上に成膜を行う第 3の工程と、を有し、
前記第 3の工程で活性ィ匕される前記ハロゲン元素のエッチングから、前記ガス供給 部を保護する保護膜を形成する保護膜形成工程をさらに設けたことを特徴とする記 録媒体。
PCT/JP2005/022800 2004-12-20 2005-12-12 成膜方法および記憶媒体 WO2006067995A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2005800438693A CN101084327B (zh) 2004-12-20 2005-12-12 成膜方法和存储介质
US11/720,404 US20080107825A1 (en) 2004-12-20 2005-12-12 Film-Forming Method and Recording Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-367789 2004-12-20
JP2004367789A JP4865214B2 (ja) 2004-12-20 2004-12-20 成膜方法および記憶媒体

Publications (1)

Publication Number Publication Date
WO2006067995A1 true WO2006067995A1 (ja) 2006-06-29

Family

ID=36601596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022800 WO2006067995A1 (ja) 2004-12-20 2005-12-12 成膜方法および記憶媒体

Country Status (5)

Country Link
US (1) US20080107825A1 (ja)
JP (1) JP4865214B2 (ja)
KR (1) KR100868837B1 (ja)
CN (1) CN101084327B (ja)
WO (1) WO2006067995A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187679B2 (en) * 2006-07-29 2012-05-29 Lotus Applied Technology, Llc Radical-enhanced atomic layer deposition system and method
KR20110100618A (ko) * 2008-12-05 2011-09-14 로터스 어플라이드 테크놀로지, 엘엘씨 향상된 장벽 층 특성을 갖는 얇은 막의 고속 증착
US8637123B2 (en) * 2009-12-29 2014-01-28 Lotus Applied Technology, Llc Oxygen radical generation for radical-enhanced thin film deposition
SG11201706564UA (en) 2015-02-13 2017-09-28 Entegris Inc Coatings for enhancement of properties and performance of substrate articles and apparatus
US12281385B2 (en) * 2015-06-15 2025-04-22 Taiwan Semiconductor Manufacturing Co., Ltd. Gas dispenser and deposition apparatus using the same
JP6924943B2 (ja) * 2017-05-12 2021-08-25 東京エレクトロン株式会社 成膜方法及び成膜装置
KR102520541B1 (ko) * 2018-02-14 2023-04-10 엘지디스플레이 주식회사 산화물 박막의 제조 장치와 제조 방법 및 그 산화물 박막을 포함하는 디스플레이 장치
US11639547B2 (en) * 2018-05-03 2023-05-02 Applied Materials, Inc. Halogen resistant coatings and methods of making and using thereof
US11524973B2 (en) 2019-05-14 2022-12-13 Samsung Electronics Co., Ltd. Metal compounds and methods of fabricating semiconductor devices using the same
JP7341099B2 (ja) * 2020-04-07 2023-09-08 東京エレクトロン株式会社 クリーニング方法およびプラズマ処理装置
JP7112768B2 (ja) * 2020-12-23 2022-08-04 株式会社クリエイティブコーティングス 金属膜のald装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897157A (ja) * 1994-09-29 1996-04-12 Sony Corp 半導体ウエハの成膜方法
JPH10144667A (ja) * 1996-11-14 1998-05-29 Tokyo Electron Ltd プラズマ処理方法
JP2000160342A (ja) * 1998-10-16 2000-06-13 Samsung Electronics Co Ltd 薄膜製造方法
JP2002053963A (ja) * 2000-07-22 2002-02-19 Ips Ltd クリーニング装置を備えたald薄膜蒸着装置及びそのクリーニング方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061514A (en) * 1990-07-13 1991-10-29 Olin Corporation Chemical vapor deposition (CVD) process for plasma depositing silicon carbide films onto a substrate
US5306666A (en) * 1992-07-24 1994-04-26 Nippon Steel Corporation Process for forming a thin metal film by chemical vapor deposition
US5916365A (en) * 1996-08-16 1999-06-29 Sherman; Arthur Sequential chemical vapor deposition
KR100502945B1 (ko) * 1996-11-14 2005-11-23 동경 엘렉트론 주식회사 플라즈마처리장치의세정방법
US6051286A (en) * 1997-02-12 2000-04-18 Applied Materials, Inc. High temperature, high deposition rate process and apparatus for depositing titanium layers
JP3365742B2 (ja) * 1998-10-29 2003-01-14 シャープ株式会社 プラズマcvd装置
JP3654142B2 (ja) * 2000-01-20 2005-06-02 住友電気工業株式会社 半導体製造装置用ガスシャワー体
US6416822B1 (en) * 2000-12-06 2002-07-09 Angstrom Systems, Inc. Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)
KR100459219B1 (ko) * 2001-12-28 2004-12-03 엘지.필립스 엘시디 주식회사 절연막 형성방법 및 이를 이용한 폴리실리콘박막트랜지스터의 형성방법
US6921556B2 (en) * 2002-04-12 2005-07-26 Asm Japan K.K. Method of film deposition using single-wafer-processing type CVD
US20030198749A1 (en) * 2002-04-17 2003-10-23 Applied Materials, Inc. Coated silicon carbide cermet used in a plasma reactor
JP2004277864A (ja) * 2003-03-18 2004-10-07 Toshiba Corp 成膜方法及び成膜装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897157A (ja) * 1994-09-29 1996-04-12 Sony Corp 半導体ウエハの成膜方法
JPH10144667A (ja) * 1996-11-14 1998-05-29 Tokyo Electron Ltd プラズマ処理方法
JP2000160342A (ja) * 1998-10-16 2000-06-13 Samsung Electronics Co Ltd 薄膜製造方法
JP2002053963A (ja) * 2000-07-22 2002-02-19 Ips Ltd クリーニング装置を備えたald薄膜蒸着装置及びそのクリーニング方法

Also Published As

Publication number Publication date
US20080107825A1 (en) 2008-05-08
KR20070086426A (ko) 2007-08-27
JP4865214B2 (ja) 2012-02-01
JP2006169617A (ja) 2006-06-29
CN101084327A (zh) 2007-12-05
CN101084327B (zh) 2010-12-22
KR100868837B1 (ko) 2008-11-14

Similar Documents

Publication Publication Date Title
KR102158307B1 (ko) 플라즈마 프로세싱 챔버에서의 인-시튜 챔버 세정 효율 향상을 위한 플라즈마 처리 프로세스
TWI394858B (zh) 用於沉積具有降低電阻率及改良表面形態之鎢膜的方法
KR100723078B1 (ko) 원료 가스와 반응성 가스를 사용하는 처리 장치
US6841203B2 (en) Method of forming titanium film by CVD
JP7320646B2 (ja) 被処理体を処理する方法
KR100960162B1 (ko) 성막 처리 방법
US7717061B2 (en) Gas switching mechanism for plasma processing apparatus
KR100606398B1 (ko) 반도체 처리용의 성막 방법
WO2007034624A1 (ja) 基板処理方法および記録媒体
JP6255335B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
US20090071404A1 (en) Method of forming titanium film by CVD
KR100934511B1 (ko) Ti계 막의 성막 방법 및 기억 매체
US5827408A (en) Method and apparatus for improving the conformality of sputter deposited films
JP2010018889A (ja) 処理装置
JP7071175B2 (ja) 被処理体を処理する方法
JP4865214B2 (ja) 成膜方法および記憶媒体
US6730355B2 (en) Chemical vapor deposition method of forming a material over at least two substrates
JP5073696B2 (ja) 処理装置
KR101217393B1 (ko) 성막 방법, 플라즈마 처리 장치 및 기억 매체
JP2004083983A (ja) Ti膜形成方法
TW202513844A (zh) 半導體元件耐蝕塗層之界面調整
JP2002217133A (ja) バリアメタル膜の形成方法
GB2412382A (en) Method of processing a workpiece

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11720404

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077013891

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580043869.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05814775

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5814775

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11720404

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载