+

WO2006061988A1 - フッ化ビニリデン重合体及びその製造方法 - Google Patents

フッ化ビニリデン重合体及びその製造方法 Download PDF

Info

Publication number
WO2006061988A1
WO2006061988A1 PCT/JP2005/021358 JP2005021358W WO2006061988A1 WO 2006061988 A1 WO2006061988 A1 WO 2006061988A1 JP 2005021358 W JP2005021358 W JP 2005021358W WO 2006061988 A1 WO2006061988 A1 WO 2006061988A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
vinylidene fluoride
pressure
monomer
polymer
Prior art date
Application number
PCT/JP2005/021358
Other languages
English (en)
French (fr)
Inventor
Tomoaki Kawakami
Takumi Katsurao
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corporation filed Critical Kureha Corporation
Priority to CN2005800418384A priority Critical patent/CN101072801B/zh
Priority to US11/791,324 priority patent/US7943707B2/en
Priority to JP2006547768A priority patent/JP5274774B2/ja
Priority to EP05809462.4A priority patent/EP1820811B1/en
Publication of WO2006061988A1 publication Critical patent/WO2006061988A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride

Definitions

  • the present invention relates to a high-purity vinylidene fluoride polymer excellent in thermal stability (a homopolymer or copolymer of vinylidene fluoride) and a method for producing the same. More specifically, compared to a vinylidene fluoride polymer produced by a conventional suspension polymerization method, the vinylidene fluoride polymer having excellent coloration resistance at high temperatures and significantly less elution of organic substances and ionic components and the like. It relates to a manufacturing method.
  • Vinylidene fluoride polymer is a crystalline polymer and is used in various molded articles as a polymer having good mechanical strength. At this time, sufficient heat treatment (hereinafter referred to as “aging”) is performed before use so that the molded product maintains good dimensional stability for the purpose of use, and distortion during molding and new crystallization are performed. It is usually done to proceed. However, after this aging operation, the molded product is often colored yellow to brown, resulting in a problem that the commercial value of the molded product is lowered. For this reason, vinylidene fluoride polymer resins that are difficult to be colored are demanded, and some of them are also commercially available as color-improving products, but there is a demand for further improvements.
  • Solution polymerization, emulsion polymerization, and suspension polymerization are known as methods for producing a vinylidene fluoride polymer.
  • Solution polymerization is usually carried out at a relatively low pressure (for example, 1.5 MPa or less) at a polymerization temperature of 20 ° C. to 80 ° C., and a relatively low molecular weight (for example, a number average molecular weight of 100,000 or less; (Viscosity of about 0.5 dl / g or less) is used for the production of polymers for paints, but for the production of higher molecular weight vinylidene fluoride polymers used for molded products, other heavy polymers are used. Legal is used.
  • the solvent used is limited due to the strong hydrogen abstraction action of the growth radicals of vinylidene fluoride.
  • ketone solvents or acetate solvents Patent Document 1 below
  • chlorofluoroethane solvents Patent Document 2 below
  • Emulsion polymerization is carried out by using a chemically stable fluorine-based emulsifier or buffering agent, and polymerizing it.
  • the combined product is in the form of a latex having a small particle size of 0.2 to 0.5 xm, and a polymer powder is obtained after precipitation and granulation with an aggregating agent.
  • Emulsion polymerization has the advantage of high polymerization speed, but it is difficult to use due to simplicity and cost due to the use of expensive emulsifiers, powder separation by agglomeration / precipitation operation, and removal of ionic substances in the aggregating agent.
  • Suspension polymerization is a method that has been carried out with the development of an initiator capable of initiating at low temperatures, and allows polymerization at temperatures below 30.1 ° C (the critical temperature of vinylidene fluoride monomer). is there.
  • a suspending agent the vinylidene fluoride monomer is dispersed in water alone or together with a copolymerizable monomer, and polymerization proceeds in the presence of a polymerization initiator soluble in the droplets of the produced monomer. It is also possible to start the suspension polymerization below 30. C and increase the temperature after seeing particle formation. It is most suitable for giving a vinylidene fluoride polymer that is easy to post-process the resulting polymer and has excellent processability, mechanical properties and thermal stability.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 59-135257
  • Patent Document 2 Japanese Patent Laid-Open No. 6-322028
  • Patent Document 3 Japanese Patent Publication No. 3-48924
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-220403
  • the main object of the present invention is to provide a vinylidene fluoride polymer having a higher temperature resistance than ever before, and an industrially reasonable production method thereof. is there.
  • the inventors of the present invention have achieved a relatively small amount of a polymerization initiator added to the polymerization system for the polymerization of vinylidene fluoride as effectively as possible.
  • a polymerization initiator added to the polymerization system for the polymerization of vinylidene fluoride as effectively as possible.
  • the polymerization system at first, only the polymerization initiator and a part of the vinylidene fluoride monomer coexist and the polymerization system is heated up to the polymerization temperature T.
  • the pressure exceeds the critical pressure Per of vinylidene fluoride, but additional vinylidene fluoride is supplied so as to maintain the internal pressure that decreases as the polymerization continues, so that the internal pressure is maintained at or above Per.
  • it has been found that it is extremely effective to effectively use the initiator by forming a suspension polymerization system in which abundant vinylidene fluoride always exists around the radicals generated from the initiator.
  • the method for producing a vinylidene fluoride polymer of the present invention is based on such knowledge, and a monomer containing vinylidene fluoride as a main component is added to a polymerization system containing a polymerization initiator. It is characterized in that suspension polymerization is carried out by split supply at a pressure lower than Per and a pressure higher than Per. Such divided supply of vinylidene fluoride also has the effect of improving volumetric efficiency while preventing an excessive increase in pressure in the polymerization system.
  • the reaction tends to increase. That is, a granulated state of a monomer in which a relatively small amount of a polymerization initiator is stably dispersed is formed using a relatively small amount of a suspending agent, and polymerization is started at a low temperature. It is important to form nuclei or shells, make them stable, and prepare for the additional supply of vinylidene fluoride to the polymerization system above the critical pressure.
  • the vinylidene fluoride polymer of the present invention is formed as described above, and the total organic carbon elution amount after being immersed in pure water at 85 ° C for 1000 hours is 1500 ppb or less. It is characterized by thermal stability and high purity represented by an ionic conductivity of 10 / i S / cm or less and a yellowness YI value of 0 or less after 3 hours at 260 ° C.
  • a copolymer of vinylidene fluoride and a monomer copolymerizable with a component, preferably 50% by mass or more, and more preferably 65% by mass or more is included.
  • monomers copolymerizable with vinylidene fluoride include fluorinated bulu, trifluoroethylene, tetrafluoroethylene, black trifluoroethylene, hexafluoropropylene, and perfluoroalkyl butyl ether. The power that is not necessarily limited to them. Further, ethylene, monomethyl maleate, allylic glycidyl ether, and the like that can be used as monomers not containing fluorine are not necessarily limited thereto.
  • the initial charge amount of vinylidene fluoride alone or a mixture thereof with a monomer copolymerizable therewith (hereinafter collectively referred to as “vinylidene fluoride monomer”) 100 Part by mass and a relatively small amount of polymerization initiator are 200 to 500 parts by mass of an aqueous medium. And, more preferably, it is dispersed in 250 to 350 parts by mass, and suspension polymerization is started while the temperature is raised to the polymerization temperature T.
  • 10-hour half-life temperature T is 30 ° C (almost the criticality of vinylidene fluoride)
  • T 40.5 ° C
  • dinormal propyl peroxydicarbonate 40.5 ° C
  • Diisopropyl peroxydicarbonate is most preferred.
  • the amount of the polymerization initiator used is as small as possible, it is in accordance with the object of the present invention to obtain a vinylidene fluoride polymer having good thermal stability, but if it is too small, the polymerization time becomes extremely long. Therefore, the range of 0.001 to 0.12% by mass is preferable with respect to the total vinylidene fluoride monomer amount (the total amount of the initial addition amount and the intermediate addition amount described later), more preferably 0.001-0. A range of 09% by weight, more preferably 0.001-0.06% by weight is used. When the content exceeds 0.1% by mass, it becomes difficult to use up effectively in the polymerization reaction, and the resulting polymer tends to deteriorate in high-temperature coloration resistance and dissolution.
  • a dispersion using a relatively small amount of a suspending agent, such as methinoresenorelose, hydroxyethinoresenorelose, hydroxypropinoresenorose, hydroxypropyl.
  • a suspending agent such as methinoresenorelose, hydroxyethinoresenorelose, hydroxypropinoresenorose, hydroxypropyl.
  • Suspending agents such as methylcellulose, partially hatched polyvinyl acetate, and acrylic acid-based polymers are preferably 0.01 to 0.1% by mass, more preferably 0.01 based on the initially added vinylidene fluoride monomer. -0. Used at a rate of 07% by mass.
  • a known chain transfer agent can be used for the purpose of adjusting the molecular weight of the resulting polymer.
  • ethyl acetate, propyl acetate, acetone, jetyl carbonate, etc. can be used. is there.
  • the vinylidene fluoride polymer has an inherent viscosity (logarithmic viscosity at 30 ° C of a solution in which 4 g of resin is dissolved in 1 liter of N, N-dimethylformamide) in order to achieve a molecular weight suitable for molding applications. It is preferably 6 dl / g or more, particularly in the range of 0.8 to 1.5 dlZg.
  • the polymerization temperature T (° C) is T ⁇ T ⁇ T with respect to the 10-hour half-life temperature T (° C) of the polymerization initiator.
  • the radical generation rate from the polymerization initiator is slow.
  • the amount of the polymerization initiator used must be increased.
  • the polymerization initiator that did not contribute to the polymerization and the residue thereof remain in the polymer, and the coloration resistance and low elution property are deteriorated.
  • the polymerization temperature T is higher than T + 25 (° C)
  • the initial added vinylidene fluoride monomer causes the pressure in the system to exceed Per.
  • the system pressure tends to decrease.
  • the internal pressure (polymerization pressure) is not less than Per, and the added vinylidene fluoride monomer is continuously added so as to keep the internal pressure P substantially constant. Supply.
  • the polymerization conversion rate of the initially added monomer should be less than 20% when the system pressure first reaches Per as the temperature rises, that is, to suppress the progress of polymerization at a pressure less than Per. Is preferred to increase the effect of high pressure polymerization according to the method of the present invention,
  • the polymerization pressure P during the intermediate addition of the vinylidene fluoride monomer is assumed to be not less than the critical pressure of vinylidene fluoride (4.38 MPa). In other words, it is considered that by supplying and polymerizing the monomer in the supercritical state, the monomer can move to the reaction field more quickly, and efficient polymerization of the radical can proceed.
  • the polymerization pressure P exceeds the critical pressure of vinylidene fluoride + 5 (MPa) it becomes so-called overfilling, which not only affects the granulation such as coalescence of polymers, but also increases the danger at high pressure. .
  • the polymerization pressure P is preferably substantially constant (within 10% of soil, more preferably within ⁇ 7%) within the range of Pcr to Pcr + 5 (MPa) described above.
  • the intermediate addition of the vinylidene fluoride monomer is preferable after the initially charged monomer is polymerized to some extent to form polymerization nuclei and form stable particles. More specifically, the initial process It is preferable to add the monomer when the polymerization conversion rate of the monomer reaches 0.1 to 70%, more preferably 0.5 to 50%, and still more preferably 1 to 40%.
  • the intermediate addition amount of the vinylidene fluoride monomer is preferably 20 to 200 parts by weight, more preferably 50 to 150 parts by weight with respect to 100 parts by weight of the initial charge. If it is less than 20 parts by mass, the effect of divided addition of the present invention is poor, and if it exceeds 200 parts by mass, the polymerization rate tends to be extremely reduced due to the deactivation of the initially charged polymerization initiator.
  • the end point of the polymerization is appropriately selected in consideration of the balance between the decrease in the amount of unreacted monomer and the lengthening of the polymerization time (that is, the productivity of the product polymer).
  • the polymer slurry is dehydrated, washed with water and dried to obtain a polymer powder.
  • the vinylidene fluoride polymer of the present invention obtained through the steps as described above has an elution amount of total organic carbon of 1000 ppb or less after being immersed in pure water at 85 ° C for 1000 hours, It is characterized by thermal stability and high purity represented by an ionic conductivity of 10 / i S / cm or less and a yellowness YI value of 0 or less after 3 hours at 260 ° C.
  • the above characteristics are based on the following dissolution test and measured values by colorability.
  • Cut sheets of vinylidene fluoride polymer powder pressed at 220 ° C (size: approx. 40mm X lOmm X O. 3mm) 18 polypropylene containers (content: 100ml, mass: approx. 18g; manufactured by AZONE Corporation , Product name: put in a water bottle, rinse in pure water, soak in pure water (resistivity 1 ⁇ ⁇ 'cm or more) for 2 hours at 85 ° C, then replace with 100 ml of pure water .
  • 8 Measure the ionic conductivity in water after standing at 5 ° C for 1000 hours with an ionic conductivity meter (conductivity meter DS-51, manufactured by HORIBA, Ltd.) and the total organic carbon meter. To do.
  • the vinylidene fluoride polymer of the present invention thus obtained is preferably used as a raw material resin for forming various molded articles by utilizing its excellent heat stability and low elution characteristics.
  • the polymerization was continued for about 13.5 hours at 50 ° C, and suspension polymerization was carried out for a total of 33.25 hours from the start of the temperature increase until the pressure dropped to 2.5 MPa.
  • the polymer slurry was dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer powder B.
  • the polymerization rate was 93.3%, and the resulting polymer B had an inherent viscosity. The degree was 0.988 dlZg.
  • the vinylidene fluoride was maintained so that the polymerization pressure was maintained at 5.99-6. OlMPa. 4, 190 g was gradually added. Thereafter, the polymerization was continued at 60 ° C. for about 6.3 hours, and suspension polymerization was carried out for a total of 17.0 hours from the start of the temperature increase until the pressure dropped to 2.0 MPa. After the polymerization was completed, the polymer slurry was dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain polymer powder C. The polymerization rate was 96.1%, and the resulting polymer C had an inherent viscosity of 0.999 dl / g.
  • the polymer slurry was dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer powder I.
  • the polymerization rate was 98.5% and the obtained polymer I had an inherent viscosity of 1.070 dl / g.
  • ion-exchanged water 10894 g, methyl cellulose 2.095 g, oxalic acid ethinole 159.22 g, diisopropinoleno, 1-year-old xydicarbonate 2.095 g, fusubi biridene 4, 106.2 g, Sixty-two mouthpiece pyrene 83. 8g is charged and 50. After heating up to 2C between 2B temples, maintained at 50 ° C. The maximum pressure reached 6.2 MPa. After another 0.5 hours, the polymerization pressure S5. 99-6.
  • the polymer slurry was dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer powder D.
  • the polymerization rate was 89.7%, and the inherent viscosity of the obtained polymer D was 1.107 dl / g.
  • the pressure when the polymerization was stopped was 4.06 MPa, and the suspension polymerization time from the start of the temperature elevation was 14.5 hours in total.
  • the polymer slurry was dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer powder E.
  • the polymerization rate was 87.8%, and the inherent viscosity of the obtained polymer E was 1.166 dlZg.
  • the pressure when the polymerization was stopped was 4.08 MPa, and the suspension polymerization time from the start of the temperature increase was 7.8 hours in total.
  • the polymer slurry was dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer powder F.
  • the polymerization rate was 87.0%, and the obtained polymer F had an inherent viscosity of 1.069 dlZg.
  • polymerization was continued at 60 ° C. for about 5.4 hours, and suspension polymerization was carried out for a total of 12.0 hours from the start of temperature increase until the pressure dropped to 1.5 MPa.
  • the polymer slurry was dehydrated, washed with water and dried at 80 ° C. for 20 hours to obtain polymer powder H.
  • the polymerization rate was 95.0%, and the obtained polymer H had an inherent viscosity of 0.99 dl / g.
  • a monomer mainly composed of vinylidene fluoride is added to a polymerization system containing a polymerization initiator at a pressure lower than the critical pressure Per and a pressure higher than Per.
  • the suspension polymerization is carried out by splitting with a high-temperature coloring resistance that requires no labor and cost for the use of a large amount of special halogenated hydrocarbon solvent, and the elution of organic substances and ionic components is extremely low. It can be seen that a vinylidene fluoride polymer is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 重合開始剤を含む重合系に、フッ化ビニリデンを主成分とするモノマーを、フッ化ビニリデンの臨界圧力Pcr(=4.38MPa)未満の圧力と、Pcr以上の圧力とで、分割供給して懸濁重合する。これにより、特別なハロゲン化炭化水素溶剤の大量使用による回収の手間とコストを要することなく、高温耐着色性が優れ、且つ有機物やイオン成分の溶出が著しく少ないフッ化ビニリデン重合体を製造する。

Description

明 細 書
フッ化ビニリデン重合体及びその製造方法
技術分野
[0001] 本発明は、熱安定性に優れた高純度のフッ化ビニリデン重合体 (フッ化ビニリデン の単独重合体または共重合体)、及びその製造方法に関する。さらに詳しくは、従来 の懸濁重合法で製造されたフッ化ビニリデン重合体と比較して、高温耐着色性が優 れ、且つ有機物やイオン成分の溶出が著しく少ないフッ化ビニリデン重合体及びそ の製造方法に関する。
背景技術
[0002] フッ化ビニリデン重合体は、結晶性ポリマーであり、機械的強度の良好なポリマーと して種々の成形物に使用される。この際、成形物が使用目的に対し良好な寸法安定 性を保持するように、使用前に十分な熱処理 (以下「エージング」と呼ぶ)を行い、成 形時の歪みの除去と新たな結晶化を進行せしめることが、通常行われる。しかしこの エージング操作の後に、成形体がしばしば黄色〜褐色に着色し、成形体としての商 品価値を低下させるという問題があった。このため着色しにくいフッ化ビニリデン重合 体樹脂が求められており、レ、くつかは着色性改良品として市販もされているが、より一 層の改良が求められている。
[0003] フッ化ビニリデン重合体の製造方法としては、溶液重合、乳化重合、懸濁重合が知 られている。溶液重合は、通常、重合温度 20°C〜80°Cの比較的低圧下 (例えば 1. 5MPa以下)で行われ、比較的低分子量 (例えば数平均分子量 10万以下、後述す るインへレント粘度として約 0. 5dl/g以下)の塗料用途の重合体の製造に用いられ るが、成形体等に用レ、られるより高分子量のフッ化ビニリデン重合体製造のためには 、他の重合法が用いられる。またフッ化ビニリデンの成長ラジカルの強い水素引き抜 き作用のため、使用溶媒が限定され、例えばケトン系溶剤あるいは酢酸エステル系 溶剤(下記特許文献 1)、クロ口フルォロェタン溶剤(下記特許文献 2)などが用いられ ている。
[0004] 乳化重合は、化学的に安定なフッ素系乳化剤や緩衝剤を使用して重合を行い、重 合生成物は 0. 2〜0. 5 x mの小粒径のラテックス状であり、凝集剤などにより析出、 造粒処理の後、重合体粉末を得るものである。乳化重合は、重合速度が速いという 利点があるものの、高価な乳化剤の使用、凝集 ·析出操作による粉体分離、凝集剤 中のイオン性物質の除去、等で簡便性やコストに難がある。
[0005] 懸濁重合法は、低温で開始能のある開始剤の開発と共に 30. 1°C (フッ化ビニリデ ンモノマーの臨界温度)以下での重合が可能となり、行われるようになった方法であ る。懸濁剤を用いてフッ化ビニリデンモノマーを単独または共重合可能なモノマーと ともに水中に分散し、生成したモノマーの液滴中に可溶な重合開始剤の存在下に重 合を進行させる。懸濁重合を 30. C以下で開始し、粒子の生成をみた後に、温度 を上昇させることも可能である。生成重合体の後処理が容易であり、加工性、機械物 性ならびに熱安定性に優れたフッ化ビニリデン重合体を与えるためには最も適して いる。
[0006] 懸濁重合に使用される懸濁剤、連鎖移動剤、重合開始剤、の選択およびその使用 量力 重合で得られたフッ化ビニリデン重合体またはその成形物の着色性に影響を 与えることは知られている。例えば、ビス(ェチル)カーボネート等の特定の連鎖移動 剤(連鎖調整剤)を用いて着色しにくいフッ化ビニリデン重合体を得るための懸濁重 合法が提案されている(下記特許文献 3)。しかしながら、上記のような連鎖移動剤を 用いた場合にも得られるフッ化ビニリデン重合体の着色性には未だ満足できるレべ ノレにない。
[0007] また、フッ化ビニリデンモノマーと重合開始剤の双方に対し良好な溶解性を有し且 つ連鎖移動効果の小さい特定のハロゲン化溶剤を使用することで重合開始剤使用 量を減少し、高温耐着色性と低溶出性の改善されたフッ化ビニリデン重合体を製造 することも提案されている(下記特許文献 4)。この方法によれば、確かに高温耐着色 性と低溶出性の改善されたフッ化ビニリデン重合体が得られるが、比較的に高価な 溶剤の回収に手間とコストがかかる問題がある。また高温耐着色性および低溶出性 の総合的な一層の改善も望まれるところである。
特許文献 1:特開昭 59— 135257号公報
特許文献 2:特開平 6— 322028号公報 特許文献 3:特公平 3— 48924号公報
特許文献 4 :特開 2002— 220403号公報
[0008] 発明の開示
上記従来技術の問題点に鑑み、本発明の主要な目的は、従来よりも一段と優れた 高温耐着色性を有するフッ化ビニリデン重合体、およびその工業的に合理的な製造 方法を提供することにある。
[0009] 本発明者らは、上述の目的で鋭意研究した結果、上述の目的の達成のためには、 重合系に添加した比較的少量の重合開始剤をできるだけ有効にフッ化ビニリデンの 重合に関与させ使い切ることが好ましぐその実現のためには懸濁重合系において、 当初、重合開始剤とフッ化ビニリデンモノマーの一部のみを共存させ、重合温度 Tま で昇温する過程で重合系圧力がフッ化ビニリデンの臨界圧力 Perを超えるが、重合 の継続とともに低下する系内圧力を維持するように追加のフッ化ビニリデンを供給し て、系内圧力を Per以上に保持する期間を持たせることにより、開始剤から発生する ラジカルの周辺にいつも潤沢なフッ化ビニリデンが存在する懸濁重合系を形成させ て開始剤の有効利用を図ることが極めて有効であることが見出された。
[0010] 本発明のフッ化ビニリデン重合体の製造方法は、このような知見に基づくものであり 、重合開始剤を含む重合系に、フッ化ビニリデンを主成分とするモノマーを、その臨 界圧力 Per未満の圧力と、 Per以上の圧力とで、分割供給して懸濁重合することを特 徴とするものである。このようなフッ化ビニリデンの分割供給により、重合系の過剰な 圧力上昇を防止しつつ、容積効率を向上する効果も得られる。
[0011] 本発明の方法においては、重合系に当初から重合剤を添加し、超臨界状態になる 以前から重合を開始させておくことが必要である。これは、高温高圧での重合開始剤 の添カ卩によるトラブル発生時の危険性の増大を回避するという安全面の配慮に加え て、重合開始剤および懸濁剤等の助剤の有効利用による減量を通じて、高温耐着 色性に優れ且つ溶出成分の少ないフッ化ビニリデン重合体を得るという本発明の目 的の達成に有効だからである。すなわち、超臨界状態になつてから、モノマーとともに あるいは他の溶剤等とともに重合開始剤を重合系に添加する場合には、系の運動性 が高まっているために、添加した重合開始剤等の均一分散が困難になり、安定に開 始剤が溶解したモノマー粒子の安定した造粒状態を得るためには、より多くの懸濁剤 が必要になる。これは、高温耐着色性に優れ、且つ溶出成分の少ないフッ化ビニリ デン重合体を得るという本発明の目的の達成のためには好ましくない。また、超臨界 状態になってからの重合開始剤の添加は、均質な重合を行ううえで不利であり、重合 開始剤の偏在部分での急激なラジカル発生による水素引き抜きゃ不均化などの副 反応が多くなりがちである。すなわち、比較的少量の重合開始剤を安定に分散させ たモノマーの造粒状態を、比較的少量の懸濁剤を使用して形成し、低温で重合を開 始させて、早期に重合体の核または殻を形成させ、安定な粒子にしておいて、臨界 圧力以上でのフッ化ビニリデンの重合系への追加供給に備えることが肝要である。
[0012] また、本発明のフッ化ビニリデン重合体は、上記のようにして形成されたものであり、 85°Cの純水に 1000時間浸漬後の全有機炭素の溶出量が 1500ppb以下で、イオン 導電率が 10 /i S/cm以下、且つ 260°Cで 3時間保持後の黄色度 YI値が 0以下で 代表される熱安定性且つ高純度を特徴とするものである。
発明を実施するための最良の形態
[0013] 以下、本発明の好ましい実施の形態を逐次説明する。
[0014] 本発明でレ、ぅフッ化ビニリデン重合体には、フッ化ビニリデン(臨界温度 Tc = 30. 1 °C、臨界圧力 Pcr = 4. 38MPa)の単独重合体、およびフッ化ビニリデンを主成分、 好ましくは 50質量%以上、更に好ましくは 65質量%以上、とするフッ化ビニリデンと 共重合可能なモノマーとの共重合体が含まれる。フッ化ビニリデンと共重合可能なモ ノマーとして、フッ化ビュル、トリフルォロエチレン、テトラフルォロエチレン、クロ口トリ フルォロエチレン、へキサフルォロプロピレン、パーフルォロアルキルビュルエーテル 、などが挙げられる力 必ずしもそれらに限定されるものではなレ、。また、フッ素を含ま ない単量体として、エチレン、マレイン酸モノメチル、ァリルグリシジルエーテル、等も 使用可能である力 必ずしもそれらに限定されるものではない。
[0015] 本発明法に従い、上述したようなフッ化ビニリデン単独またはこれと共重合可能な モノマーとの混合物(以下、これらを総称して「フッ化ビニリデン系モノマー」と称する) の初期仕込量 100質量部と、比較的少量の重合開始剤とを、水性媒体 200〜500 質量部 (分散安定剤等の各種助剤を含み得るが、水のみの質量と解して差し支えな レ、)、より好ましくは 250〜350質量部中に分散させて、重合温度 Tまで昇温しつつ 懸濁重合を開始させる。
[0016] 重合開始剤としては、 10時間半減期温度 T が 30°C (ほぼフッ化ビニリデンの臨界
10
温度)〜90°Cのものが好ましく用いられ、その好ましい例としてはジイソプロピルパー ォキシジカーボネート(T =40. 5°C)、ジノルマルプロピルパーォキシジカーボネー
10
ト(T =40. 3°C)、パーブチルパーォキシピバレー HT = 54. 6°C)が挙げられ、
10 10
ジイソプロピルパーォキシジカーボネートが最も好ましい。
[0017] 重合開始剤の使用量は、できるだけ少ないことが熱安定性の良いフッ化ビニリデン 重合体を得るという本発明の目的に即しているが、余り少ないと重合時間が極端に長 くなるので、全フッ化ビニリデン系モノマー量 (前記初期添加量と後記途中添加量の 合計量)に対し、 0. 001 -0. 12質量%の範囲が好ましぐより好ましくは 0. 001-0 . 09質量%、更に好ましくは 0. 001-0. 06質量%の範囲が用いられる。 0. 12質 量%を超えると、重合反応で有効に使い切ることが困難になり、結果的に得られる重 合体の高温耐着色性や溶出性が悪化しがちである。
[0018] また、本発明においては、比較的少量の懸濁剤を用いて分散系を形成することも 好ましく、メチノレセノレロース、ヒドロキシェチノレセノレロース、ヒドロキシプロピノレセノレロー ス、ヒドロキシプロピルメチルセルロース、部分鹼化ポリ酢酸ビニル、アクリル酸系重合 体等の懸濁剤が、好ましくは当初添加フッ化ビニリデン系モノマーに対して、 0. 01 〜0. 1質量%、より好ましくは 0. 01-0. 07質量%の割合で用いられる。
[0019] 本発明の重合においては、得られる重合体の分子量を調節する目的で、公知の連 鎖移動剤の使用でき、例えば、酢酸ェチル、酢酸プロピル、アセトン、炭酸ジェチル 、等が使用可能である。フッ化ビニリデン重合体は、成形用途に適した分子量とする ため、インへレント粘度(樹脂 4gを 1リットルの N, N—ジメチルホルムアミドに溶解させ た溶液の 30°Cにおける対数粘度)が 0. 6dl/g以上、特に 0. 8〜: 1. 5dlZgの範囲 とすることが好ましい。
[0020] 重合温度 T (°C)は、重合開始剤の 10時間半減期温度 T (°C)に対し、 T ≤T≤T
10 10
+ 25の条件を満足する温度に設定することが好ましい。
10
[0021] 重合温度 Τが Τ より低い場合は、重合開始剤からのラジカル生成速度が遅いので 、重合体の合理的な生産性 (例えば、重合時間 30時間以内で重合体収率 80%以 上)を確保するために重合開始剤の使用量を多くせざるを得ない。その結果、重合に 寄与しなかった重合開始剤およびその残渣が重合体中に残ることになり、耐着色性 および低溶出性を悪化させる。一方、重合温度 Tが T + 25 (°C)より高い場合は、重
10
合途中で重合速度の急激な低下を招き、途中で重合を停止せざるを得ず、結果的 に形成されるフッ化ビニリデン重合体の耐着色性および低溶出性も悪くなる。これは 、ラジカル生成速度が速くなりすぎ、フッ化ビニリデンの重合に寄与する以外に、ラジ カル同士の不均化反応や水素引き抜き反応などの副反応が多くなるためと考えられ る。
[0022] 上記のように系が重合温度 Tまで上昇すると初期添加フッ化ビニリデン系モノマー により系内の圧力が Perを超える力 重合の進行に従レ、系内圧力が低下傾向を示す 。ここで、本発明に従い、好ましくは系内圧力(重合圧力)が Perを下回らないうちに、 系内圧力 Pをほぼ一定に保つように追力卩のフッ化ビ二リデン系モノマーを継続的に供 給する。なお、温度上昇に伴い系内圧力が最初に Perに到達する時点での初期添 加モノマーの重合転化率は 20%未満とすること、すなわち、 Per未満の圧力での重 合進行を抑制することが、本発明法による高圧重合の効果を増大する上で好ましレ、
[0023] フッ化ビニリデン系モノマーの途中添加時の重合圧力 Pは、フッ化ビニリデンの臨 界圧力(4. 38MPa)以上であることとする。すなわち超臨界状態でモノマーを供給、 重合させることで、モノマーの反応場への移動が速まり、ラジカルに対し効率的な重 合が進行できると考えられる。重合圧力 Pがフッ化ビニリデンの臨界圧力 + 5 (MPa) を超えた場合は、いわゆる詰め込みすぎの状態となり、重合体同士の合一など造粒 に影響するばかりか、高圧での危険性が高まる。この期間に重合圧力を変化させるこ とは、重合系の不安定化をもたらすのみで利点はなレ、。したがって、追加モノマーの 途中添加中は重合圧力 Pを上記した Pcr〜Pcr+ 5 (MPa)の範囲内でほぼ一定(土 10%以内、より好ましくは ± 7%以内)とすることが好ましい。
[0024] フッ化ビニリデン系モノマーの途中添加は、初期仕込みモノマーがある程度重合し て、重合核が生成し安定な粒子が形成してからが好ましい。より具体的には、初期仕 込みモノマーの重合転化率が 0. 1~70%,より好ましくは 0. 5〜50%、更に好ましく は 1〜40%に達した時点で添カ卩することが好ましい。
[0025] フッ化ビニリデン系モノマーの途中添カ卩量は、初期仕込み量 100質量部に対し、好 ましくは 20〜200質量部、より好ましくは、 50〜: 150質量部である。 20質量部未満で は、本発明の分割添加効果が乏し 200質量部を超えると、初期仕込の重合開始 剤の失活により重合速度が極端に低下しがちである。
[0026] 重合終了時点は、未反応モノマー量の減少と、重合時間の長時間化とのバランス( すなわち製品ポリマーの生産性)を考慮して、適宜選択される。重合完了後は、重合 体スラリーを脱水、水洗、乾燥して、重合体粉末を得る。
[0027] 上記したような工程を経て得られる本発明のフッ化ビニリデン重合体は、前述したよ うに、 85°Cの純水に 1000時間浸漬後の全有機炭素の溶出量が 1500ppb以下で、 イオン導電率が 10 /i S/cm以下、且つ 260°Cで 3時間保持後の黄色度 YI値が 0以 下で代表される熱安定性且つ高純度を特徴とするものである。ここで、上記特性は、 以下の溶出試験および着色性による測定値に基づくものである。
[0028] (プレス成形品の溶出試験)
フッ化ビニリデン重合体粉末を 220°Cでプレスしたシートの裁断物(大きさ約 40mm X lOmm X O. 3mm) 18枚をポリプロピレン製容器(内容量: 100ml、質量:約 18g ; ァズワン株式会社製、商品名:ァイボ一^ f)に入れ、純水中で濯いだ後、 85°Cで純水 (抵抗率 1Μ Ω ' cm以上)中に 2時間浸漬後に、新たな純水 100mlに入れ替える。 8 5°Cで 1000時間静置後の水中のイオン導電率をイオン導電率計 (株式会社堀場製 作所製導電率メータ DS— 51)により、 TOC濃度を全有機体炭素計により、それぞれ 測定する。溶出量については、測定値から、新たなポリプロピレン製容器に純水 100 mlのみを入れ、 85°C、 1000時間放置後に行った溶出量測定値 1540ppbを差し引 レ、て、試料フッ化ビニリデン重合体の溶出量とする。
[0029] (着色性の評価)
フッ化ビニリデン重合体粉末をテフロン (登録商標)製坩堝容器に 14g入れ、ギアォ ーブン中で 260°C、 3時間静置して溶融物とする。坩堝を室温まで空冷後に塊状物 を取り出し、 220°Cでプレスしたシートの色調を色差計(日本電色製 ZE— 2000)で 測定し、 ASTM D1925に従い黄色度 YI値で評価する。 ΥΙ値は、その値が小さい 程、着色が少ないことを示す。
[0030] このようにして得られた本発明のフッ化ビニリデン重合体は、その優れた耐熱安定 性および低溶出特性を利用して、各種成形体形成用原料樹脂として好ましく使用さ れる。
[0031] 以下、実施例、比較例により、本発明を更に具体的に説明する。
実施例
[0032] (実施例 1)
内容量 2リットルのオートクレーブに、イオン交換水 1 , 040g、メチルセノレロース 0. 2 Og、酢酸ェチル 12g、ジイソプロピルパーォキシジカーボネート 0. 2g、フッ化ビニリ デン 400gを仕込み、 50°Cまで 2時間で昇温後、 50°Cを維持した。この間の最高到 達圧力は 6. 3MPaであり、この時点での重合転化率は約 5%であった。さらに、 0. 5 時間 (50°Cまで昇温後からの経過時間として)後、初期仕込みモノマーの重合転化率 が約 30%に達し、圧力が 6. OMPaになった時点から、重合圧力が 5. 99〜6. 01M Pa ( >Pcr=4. 38MPa)を維持するようにフッ化ビニリデン 444gを徐々に添カロした。 添加終了後も約 4時間、 50°Cで重合を続け、圧力が 4. 5MPaに下るまで、昇温開始 力 合計 23. 8時間の懸濁重合を行った。重合完了後、重合体スラリーを脱水、水洗 し、更に 80°Cで 20時間乾燥して重合体粉末 Aを得た。重合率は 86. 5%で、得られ た重合体 Aのインへレント粘度は 1. 15dlZgであった。
[0033] (実施例 2)
内容量 2リットルのオートクレーブに、イオン交換水 1 , 040g、メチルセノレロース 0. 2 Og、酢酸ェチル 15. 2g、ジイソプロピルパーォキシジカーボネート 0· 2g、フッ化ビニ リデン 400gを仕込み、 50°Cまで 2時間で昇温後、 50°Cを維持した。最高到達圧力 は 6. 3MPaであった。さらに 0. 5時間後から、重合圧が 5. 99〜6. OlMPaを維持 するようにフッ化ビニリデン 400gを徐々に添カ卩した。その後も約 13. 5時間、 50°Cで 重合を続け、圧力が 2. 5MPaに下るまで、昇温開始から合計 33. 25時間の懸濁重 合を行った。重合完了後、重合体スラリーを脱水、水洗し、更に 80°Cで 20時間乾燥 して重合体粉末 Bを得た。重合率は 93. 3%で、得られた重合体 Bのインへレント粘 度は 0. 988dlZgであった。
[0034] (実施例 3)
内容量 20リットルのオートクレーブに、イオン交換水 10, 894g、メチルセルロース 2 . 095g、醉酸ェチノレ 108. 94g、ジイソプロピノレノ、°一才キシジカーボネート 4. 19g、 フッ化ビニリデン 4, 190gを仕込み、 60°Cまで 2時間で昇温後、 60°Cを維持した。最 高到達圧力は 7. IMPaであり、この時点での重合転化率は約 18%であった。さらに 0. 5時間後、初期仕込みモノマーの重合転化率が約 45%に達し、圧力が 6. OMPa になった時点から、重合圧が 5. 99-6. OlMPaを維持するようにフッ化ビニリデン 4 , 190gを徐々に添加した。その後も約 6. 3時間、 60°Cで重合を続け、圧力が 2· 0M Paに下るまで、昇温開始から合計 17. 0時間の懸濁重合を行った。重合完了後、重 合体スラリーを脱水、水洗し、更に 80°Cで 20時間乾燥して重合体粉末 Cを得た。重 合率は 96. 1 %で、得られた重合体 Cのインへレント粘度は 0. 999dl/gであった。
[0035] (実施例 4)
内容量 20リットルのオートクレーブに、イオン交換水 10, 894g、メチルセルロース 2 . 095g、ジェチルカーボネート 83· 8g、ジイソプロピルパーォキシジカーボネート 4. 19g、フッ化ビニリデン 4, 190gを仕込み、 50°Cまで 2時間で昇温後、 50°Cを維持し た。最高到達圧力は 6. 5MPaであった。さらに 0. 5時間後から、重合圧が 5. 99〜6 . OlMPaを維持するようにフッ化ビニリデン 5, 447gを徐々に添加した。その後も約 6. 3時間、 50°Cで重合を続け、圧力が 2. 5MPaに下がるまで、昇温開始から合計 2 5. 2時間の懸濁重合を行った。重合完了後、重合体スラリーを脱水、水洗し、更に 8 0°Cで 20時間乾燥して重合体粉末 Iを得た。重合率は 98. 5%で、得られた重合体 I のインへレント粘度は 1. 070dl/gであった。
[0036] (実施例 5)
内容量 20リットルのオートクレーブに、イオン交換水 10, 894g、メチルセルロース 2 . 095g、醉酸ェチノレ 159. 22g、ジイソプロピノレノ、°一才キシジカーボネート 2. 095g、 フツイ匕ビユリデン 4, 106. 2g、六フツイ匕プ口ピレン 83. 8gを仕込み、 50。Cまで 2B寺間 で昇温後、 50°Cを維持した。最高到達圧力は 6. 2MPaであった。さらに 0. 5時間後 力ら、重合圧力 S5. 99〜6. OlMPaを維持するようにフツイ匕ビニリデン 5, 338. 06gと 六フッ化プロピレン 108. 94gの混合モノマー 5, 447gを徐々に添カロした。その後も 約 8. 8時間、 50°Cで重合を続け、圧力が 2. 5MPaに下がるまで、昇温開始から合 計 38. 7時間の懸濁重合を行った。重合完了後、重合体スラリーを脱水、水洗し、更 に 80°Cで 20時間乾燥して重合体粉 を得た。重合率は 92. 1 %で、得られた重合 f本 Jのインへレント米占度は 0. 943dl/gであった。
[0037] (比較例 1)
内容量 20リットルのオートクレーブに、イオン交換水 10, 894g、メチルセルロース 2 • 095g、醉酸ェチノレ 75. 4g、ジイソプロピノレノヽ。一才キシジカーボネート 4· 19g、フッ ィ匕ビ二リデン 4, 190gを仕込み、 60°Cまで 2. 4時間で昇温後、 60°Cを維持した。最 高到達圧力は 7. IMPaであった。フッ化ビニリデンを途中添加することなく 60°Cで 重合を続け、圧力が 2MPaに下るまで、昇温開始から合計 5. 75時間の懸濁重合を 行った。重合完了後、重合体スラリーを脱水、水洗し、更に 80°Cで 20時間乾燥して 重合体粉末 Dを得た。重合率は 89. 7%で、得られた重合体 Dのインへレント粘度は 1. 107dl/gであった。
[0038] (比較例 2)
内容量 2リットルのオートクレーブに、イオン交換水 1 , 036g、メチルセノレロース 0. 2 0g、酢酸ェチル 6. 0g、ジイソプロピルパーォキシジカーボネート 0· 4g、フッ化ビニリ デン 400gを仕込み、 60°Cまで 2時間で昇温後、 60°Cを維持した。最高到達圧力は 7. OMPaであった。さらに 0. 5時間後力ら、重合圧力 4. 06〜4. 08MPa (< Pcr = 4. 38MPa)を維持するようにフッ化ビニリデン 363gを徐々に添加した時点で、重合 発熱が微小になったので重合を停止した。重合停止時の圧力は 4. 06MPaであり、 昇温開始からの懸濁重合時間は、合計 14. 5時間であった。重合終了後、重合体ス ラリーを脱水、水洗し、更に 80°Cで 20時間乾燥して重合体粉末 Eを得た。重合率は 87. 8%で、得られた重合体 Eのインへレント粘度は 1. 166dlZgであった。
[0039] (比較例 3)
内容量 2リットルのオートクレーブに、イオン交換水 1 , 036g、メチノレセノレロース 0. 2 0g、酢酸ェチル 6. 0g、ジイソプロピルパーォキシジカーボネート 0. 4g、フッ化ビニリ デン 400gを仕込み、 70°Cまで 2時間で昇温後、 70°Cを維持した。最高到達圧力は 7. 2MPaであった。さらに 0. 5時間後力ら、重合圧力 4. 06〜4. 08MPaを糸隹持す るようにフッ化ビニリデンを徐々に添カ卩していった力 168gを添カ卩した時点で、重合 発熱が微小になったので重合を停止した。重合停止時の圧力は 4. 08MPaであり、 昇温開始からの懸濁重合時間は、合計 7. 8時間であった。重合終了後、重合体スラ リーを脱水、水洗し、更に 80°Cで 20時間乾燥して重合体粉末 Fを得た。重合率は 87 . 0%で、得られた重合体 Fのインへレント粘度は 1. 069dlZgであった。
[0040] (比較例 4)
特開 2002— 220403号公報の実施例 1と同様にして重合を行った。
[0041] すなわち内容量 2リットルのオートクレーブに、イオン交換水 1 , 204g、 1, 1, 2, 2, 3—ペンタフルオロー 1, 3—ジクロロプロパン 160g、メチルセルロース 0. 30g、酢酸 ェチル 10g、ジイソプロピルパーォキシジカーボネート 0. 12g、フッ化ビニリデン 240 gを仕込み、 60°Cまで 2時間で昇温後、 60°Cを維持した。最高到達圧力は 4. 5MPa であった。さらに 0. 5時間後から、重合圧が 4· 15〜4. 17MPaを維持するようにフッ 化ビニリデン 240gを徐々に添加した。その後、 60°Cで約 5· 4時間重合を続け、圧力 が 1. 5MPaに低下するまで、昇温開始から合計 12. 0時間の懸濁重合を行った。重 合完了後、重合体スラリーを脱水、水洗後 80°Cで 20時間乾燥して重合体粉末 Hを 得た。重合率は 95. 0%で、得られた重合体 Hのインへレント粘度は 0. 99dl/gであ つた。
[0042] なお、上記実施例、比較例のいずれにおいても、重合中および重合終了後に重合 缶内および接続ライン中の重合物の付着または閉塞は起らなかった。
[0043] 上記実施例、比較例における重合条件の概容および得られたフッ化ビニリデン重 合体について前記方法によって測定されたイオン導電率、全有機炭素および黄色 度 YI値の測定結果を、着色性改良グレードのフッ化ビニリデン重合体市販品 (参考 例 1および 2)についての測定結果とともに、次表 1にまとめて記す。
[表 1] 実施例および比較例の重合法概要および製品重合体の評価一覧
Figure imgf000013_0001
*市販品 S: Solef6010(Solvay¾t) 市販品 K: Kynar 1000HD(Arkema社)
産業上の利用可能性
上記表 1に示す結果から明らかなように、本発明に従い、重合開始剤を含む重合 系に、フッ化ビニリデンを主成分とするモノマーを、その臨界圧力 Per未満の圧力と、 Per以上の圧力とで分割供給して懸濁重合することにより、特別なハロゲン化炭化水 素溶剤の大量使用による回収の手間とコストを要することなぐ高温耐着色性が優れ 、且つ有機物やイオン成分の溶出が著しく少なレ、フッ化ビニリデン重合体が得られて レ、ることが分る。

Claims

請求の範囲
[1] フッ化ビニリデンを主成分とするモノマーを懸濁重合するに際して、該モノマーを、重 合開始剤を含む重合系に、まずフッ化ビニリデンの臨界圧力 Pcr ( = 4. 38MPa)未 満の圧力で供給して重合を開始させ、 Per以上の圧力で追加供給して重合を継続す ることを特徴とするフッ化ビニリデン重合体の製造方法。
[2] 重合系に添加する全モノマー量の 0. 001-0. 12質量%の重合開始剤を使用して 懸濁重合する請求項 1に記載の製造方法。
[3] 重合系に添加する全モノマー量の 0. 001-0. 09質量%の重合開始剤を使用して 懸濁重合する請求項 1に記載の製造方法。
[4] 重合系圧力が最初に Perに到達する時点での重合系への当初供給モノマーの重合 転化率が 20%未満である請求項 1〜3のいずれかに記載の製造方法。
[5] 当初供給モノマーの重合転化率が 0.:!〜 70。/oに到達した時点で追加モノマーの供 給を開始する請求項 1〜4のいずれかに記載の製造方法。
[6] 10時間半減期温度 T が 30〜90°Cである重合開始剤を使用する請求項 1〜5のい
10
ずれかに記載の製造方法。
[7] フッ化ビニリデンを主成分とするモノマーを、圧力 Pが Per (MPa)〜Pcr + 5 (MPa) の範囲内を維持するように途中添加して、 T 〜Τ + 25 (°C)の範囲内の重合温度
10 10
τで懸濁重合する請求項 6に記載の製造方法。
[8] フッ化ビニリデンを主成分とするモノマーを、圧力 Pがほぼ一定となるように追加供給 して、重合温度 Tで懸濁重合する請求項 7に記載の製造方法。
[9] モノマーがフッ化ビニリデンのみからなる請求項 1〜8のいずれかに記載の製造方法
[10] 85°Cの純水に 1000時間浸漬後の全有機炭素の溶出量が 1500ppb以下で、イオン 導電率が 10 /i S/cm以下、且つ 260°Cで 3時間保持後の黄色度 YI値が 0以下であ ることを特徴とする熱安定性且つ高純度のフッ化ビニリデン重合体。
PCT/JP2005/021358 2004-12-08 2005-11-21 フッ化ビニリデン重合体及びその製造方法 WO2006061988A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800418384A CN101072801B (zh) 2004-12-08 2005-11-21 1,1-二氟乙烯聚合物及其制备方法
US11/791,324 US7943707B2 (en) 2004-12-08 2005-11-21 Vinylidene fluoride polymer and process for producing the same
JP2006547768A JP5274774B2 (ja) 2004-12-08 2005-11-21 フッ化ビニリデン重合体及びその製造方法
EP05809462.4A EP1820811B1 (en) 2004-12-08 2005-11-21 Vinylidene fluoride polymer and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-355938 2004-12-08
JP2004355938 2004-12-08

Publications (1)

Publication Number Publication Date
WO2006061988A1 true WO2006061988A1 (ja) 2006-06-15

Family

ID=36577819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021358 WO2006061988A1 (ja) 2004-12-08 2005-11-21 フッ化ビニリデン重合体及びその製造方法

Country Status (6)

Country Link
US (1) US7943707B2 (ja)
EP (1) EP1820811B1 (ja)
JP (1) JP5274774B2 (ja)
CN (1) CN101072801B (ja)
TW (1) TW200630387A (ja)
WO (1) WO2006061988A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090298A (ja) * 2008-10-09 2010-04-22 Kureha Corp 耐酸着色性の優れたフッ化ビニリデン重合体の製造方法
JP2011057871A (ja) * 2009-09-10 2011-03-24 Kureha Corp 耐酸着色性の優れたフッ化ビニリデン重合体の製造方法
US8298446B2 (en) 2007-10-11 2012-10-30 Kureha Corporation Vinylidene fluoride based polymer powder and use thereof
WO2020137116A1 (ja) 2018-12-27 2020-07-02 株式会社クレハ 樹脂組成物、樹脂組成物の製造方法、成形体および成形体の製造方法
WO2023181878A1 (ja) 2022-03-25 2023-09-28 株式会社クレハ ポリフッ化ビニリデン樹脂組成物および成形体

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267016B2 (en) 2009-10-30 2016-02-23 Kureha Corporation Vinylidene fluoride polymer powder and vinylidene fluoride polymer solution
US20120329923A1 (en) * 2011-06-22 2012-12-27 Arkema Inc. Fluoropolymer composition
JP2013253141A (ja) * 2012-06-05 2013-12-19 Kureha Corp フッ化ビニリデン系重合体およびその製造方法
CN103588922A (zh) * 2012-08-14 2014-02-19 中化蓝天集团有限公司 一种偏氟乙烯共聚物、其制备方法及应用
CN103588921B (zh) * 2012-08-14 2016-04-27 中化蓝天集团有限公司 一种高粘度自交联偏氟乙烯共聚物、其制备方法及应用
CN103524647B (zh) * 2013-08-16 2016-10-12 巨化集团技术中心 一种聚偏氟乙烯树脂的制备方法
CN104151457B (zh) * 2014-08-11 2017-10-27 东莞市长安东阳光铝业研发有限公司 一种制备聚偏氟乙烯的方法
US10676549B2 (en) * 2014-09-17 2020-06-09 Solvay Specialty Polymers Italy S.P.A. Vinylidene fluoride polymers
CN104448149A (zh) * 2014-12-06 2015-03-25 常熟丽源膜科技有限公司 用于制备热稳定性聚偏氟乙烯的工艺
CN104448094A (zh) * 2014-12-06 2015-03-25 常熟丽源膜科技有限公司 用于生产热稳定性聚偏氟乙烯的工艺
JP7191681B2 (ja) 2018-12-27 2022-12-19 株式会社クレハ ポリフッ化ビニリデン樹脂組成物および成形体
CN111690092B (zh) * 2020-06-03 2022-04-19 乳源东阳光氟树脂有限公司 一种聚偏氟乙烯表面改性的核壳结构锂电池粘结剂及其制备方法和应用
CN112409517B (zh) * 2020-10-21 2023-03-31 浙江巨化技术中心有限公司 一种聚偏氟乙烯树脂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3624064A (en) * 1967-05-15 1971-11-30 Kureha Chemical Ind Co Ltd Polymerization of fluoroethylenes
JPS62104815A (ja) * 1985-09-17 1987-05-15 エルフアトケム ソシエテ アノニム フルオロエチレンの懸濁重合方法及びフルオロエチレンの重合反応装置
JP2002220403A (ja) * 2001-01-26 2002-08-09 Kureha Chem Ind Co Ltd フッ化ビニリデン重合体及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780007A (en) * 1969-12-23 1973-12-18 Diamond Shamrock Corp Polymerization of vinylidene fluoride in aqueous suspension
FR2652089B1 (fr) 1989-09-15 1993-03-19 Solvay Procede pour la polymerisation en discontinu dans un milieu aqueux de mise en suspension du fluorure de vinylidene et utilisation des polymeres du fluorure de vinylidene resultants pour le revetement d'articles par poudrage.
EP1454920A4 (en) 2001-11-12 2006-12-06 Daikin Ind Ltd PROCESS FOR PREPARING FLUOROPOLYMER
AT413710B (de) 2004-03-30 2006-05-15 Plasser Bahnbaumasch Franz Transportfahrzeug und verfahren

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3624064A (en) * 1967-05-15 1971-11-30 Kureha Chemical Ind Co Ltd Polymerization of fluoroethylenes
JPS62104815A (ja) * 1985-09-17 1987-05-15 エルフアトケム ソシエテ アノニム フルオロエチレンの懸濁重合方法及びフルオロエチレンの重合反応装置
JP2002220403A (ja) * 2001-01-26 2002-08-09 Kureha Chem Ind Co Ltd フッ化ビニリデン重合体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1820811A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298446B2 (en) 2007-10-11 2012-10-30 Kureha Corporation Vinylidene fluoride based polymer powder and use thereof
JP2010090298A (ja) * 2008-10-09 2010-04-22 Kureha Corp 耐酸着色性の優れたフッ化ビニリデン重合体の製造方法
JP2011057871A (ja) * 2009-09-10 2011-03-24 Kureha Corp 耐酸着色性の優れたフッ化ビニリデン重合体の製造方法
WO2020137116A1 (ja) 2018-12-27 2020-07-02 株式会社クレハ 樹脂組成物、樹脂組成物の製造方法、成形体および成形体の製造方法
WO2023181878A1 (ja) 2022-03-25 2023-09-28 株式会社クレハ ポリフッ化ビニリデン樹脂組成物および成形体

Also Published As

Publication number Publication date
EP1820811B1 (en) 2016-10-19
EP1820811A4 (en) 2009-06-10
TWI378105B (ja) 2012-12-01
US20080071045A1 (en) 2008-03-20
EP1820811A1 (en) 2007-08-22
CN101072801A (zh) 2007-11-14
TW200630387A (en) 2006-09-01
CN101072801B (zh) 2010-10-13
JP5274774B2 (ja) 2013-08-28
JPWO2006061988A1 (ja) 2008-06-05
US7943707B2 (en) 2011-05-17

Similar Documents

Publication Publication Date Title
WO2006061988A1 (ja) フッ化ビニリデン重合体及びその製造方法
CN105218712B (zh) 一种聚四氟乙烯的制造方法
JP3519411B2 (ja) テトラフルオロエチレンのコポリマー
EP2638082A1 (en) Nucleation in aqueous polymerization of fluoromonomer
CN102336854B (zh) 高耐热性聚偏氟乙烯的制备方法
JP7144298B2 (ja) フッ化ビニリデン重合体の製造方法
CN107001509B (zh) 制备氟聚合物分散体的方法
US7863384B2 (en) Fluoropolymers having improved whiteness
JP2002526574A (ja) 重合反応中の非常に速い開始剤の連続的配量
CN111247176B (zh) 合成氟聚合物的方法
TW200305578A (en) Continuous dosing of extremely fast initiators during polymerization reactions
JP4851254B2 (ja) フッ化ビニリデン系樹脂組成物およびその製造方法
EP3129417A1 (en) Multistage polymer powder composition, its method of preparation and use
TWI321137B (en) Co-metering of organic initiators and protective colloids during polymerization reactions
CN112300314B (zh) 一种四氟乙烯改性氟橡胶及其制备方法
JP2004263190A (ja) 熱的に安定なpvdfの製造方法
JP4683735B2 (ja) フッ化ビニリデン重合体及びその製造方法
JP7083681B2 (ja) フッ化ビニリデン共重合体の製造方法
KR101411098B1 (ko) 부틸 아크릴레이트가 함유된 염화비닐 중합체의 제조방법
JP5320227B2 (ja) 耐酸着色性の優れたフッ化ビニリデン重合体の製造方法
JP2004175916A (ja) 含フッ素共重合体
JP5680924B2 (ja) 中空塩化ビニル樹脂粒子及びその製造方法
JP2002525401A (ja) 迅速に架橋可能なフッ素ゴムの製造方法
JPH09143208A (ja) 塩化ビニル系重合体の製造方法
JP3584591B2 (ja) 塩化ビニル系重合体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11791324

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2005809462

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005809462

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580041838.4

Country of ref document: CN

Ref document number: 2006547768

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005809462

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11791324

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载