WO2006057475A1 - Appareil et procede de detection et d'authentification de visage - Google Patents
Appareil et procede de detection et d'authentification de visage Download PDFInfo
- Publication number
- WO2006057475A1 WO2006057475A1 PCT/KR2004/003480 KR2004003480W WO2006057475A1 WO 2006057475 A1 WO2006057475 A1 WO 2006057475A1 KR 2004003480 W KR2004003480 W KR 2004003480W WO 2006057475 A1 WO2006057475 A1 WO 2006057475A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lace
- data
- image
- detection
- authentication
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims abstract description 61
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 86
- 238000012545 processing Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 17
- 239000000284 extract Substances 0.000 description 8
- 238000000605 extraction Methods 0.000 description 8
- 238000012549 training Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 5
- 210000001061 forehead Anatomy 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006854 communication Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000012821 model calculation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/168—Feature extraction; Face representation
- G06V40/171—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
Definitions
- the AdaBoost learning algorithm is used for enhancing lace recognition rates.
- the AdaBoost learning algorithm which is simple but efficient compared to other boost algorithms, is used for more precisely differentiating a lacial area from a non ⁇ acial area and boosting the probability of an area of an image determined to be a lacial area.
- locations of prototypes of Haar-like features can render more detailed lacial characteristics especially at a higher stage of classification.
- Haar-like features obtained using the AdaBoost learning algorithm are classified in stages, as shown in FIG. 2. Referring to FIG.
- an area of an image of one frame is determined as a lacial area using a group of trained lace images 300 while gradually decreasing the size of the image in a pyramid manner.
- a plurality of candidate areas for the lacial area of the image are generated in the process of recovering the size of the image, and an average of the candidate areas is output.
- Facial areas of trained lace images are detected and then differentiated from non ⁇ acial areas of the trained lace images using lace classifiers. Thereafter, lace authentication is performed by comparing the detected fecial area with the trained lace images using an HMM.
- a feature extraction unit 520 extracts features O , O , ..., O from the
- Table 1 shows trained location information and critical values of prototypes of
- FIG. 7 is a diagram illustrating lace authentication results obtained using the lace detection and authentication method according to an exemplary embodiment of the present invention.
- 48 lace images of 8 people (6 lace images per person) and a trained database of 24) lace images of 4) people (6 lace images per person) were used in experiments for testing the lace detection and authentication apparatus according to the exemplary embodiment of the present invention.
- the size of the forehead in lace images of people who ⁇ iled to be authenticated is larger than in lace images of people who were successfiilly verified, as shown in FlG. 7. Because of a larger forehead, the eyes in the lace images of those who f ⁇ iled to be authenticated deviate from expected locations when segmenting the corresponding lace images in a 2D HMM-based training process.
- FIG. 9 is a diagram illustrating another example of the lace detection and au- thentication method according to the exemplary embodiment of the present invention that uses a WPS 80.
- the WPS 83 automatically extracts &ce data from an image to be authenticated using a lace detection algorithm stored therein and wirelessly transmits the extracted lace data using a JPEG codec to a server 90.
- the server 90 stores a database of lace images and a lace authentication algorithm.
- the server 90 includes a lace authentication unit, which authenticates the image to be authenticated by comparing the extracted lace data with lace data stored therein.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
- Collating Specific Patterns (AREA)
Abstract
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040096171A KR100702225B1 (ko) | 2004-11-23 | 2004-11-23 | 얼굴 검출 및 인증 장치 및 그 방법 |
KR1020040096172A KR100702226B1 (ko) | 2004-11-23 | 2004-11-23 | 얼굴 검출 및 인증 장치 및 그 방법 |
KR10-2004-0096172 | 2004-11-23 | ||
KR10-2004-0096171 | 2004-11-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006057475A1 true WO2006057475A1 (fr) | 2006-06-01 |
Family
ID=36498191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2004/003480 WO2006057475A1 (fr) | 2004-11-23 | 2004-12-28 | Appareil et procede de detection et d'authentification de visage |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2006057475A1 (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8643691B2 (en) | 2008-05-12 | 2014-02-04 | Microsoft Corporation | Gaze accurate video conferencing |
CN104298969A (zh) * | 2014-09-25 | 2015-01-21 | 电子科技大学 | 基于颜色与haar特征融合的人群规模统计方法 |
CN104978550A (zh) * | 2014-04-08 | 2015-10-14 | 上海骏聿数码科技有限公司 | 基于大规模人脸数据库的人脸识别方法及系统 |
CN105260744A (zh) * | 2015-10-08 | 2016-01-20 | 北京航空航天大学 | 一种货运列车钩尾扁销部位故障的自动在线诊断方法及系统 |
CN106778445A (zh) * | 2015-11-20 | 2017-05-31 | 沈阳新松机器人自动化股份有限公司 | 基于人脸检测的服务机器人视觉引领方法 |
CN106971193A (zh) * | 2016-11-23 | 2017-07-21 | 南京理工大学 | 基于结构型Haar和Adaboost的目标检测方法 |
CN107315993A (zh) * | 2017-05-10 | 2017-11-03 | 苏州天平先进数字科技有限公司 | 一种基于人脸识别的门镜系统及其人脸识别方法 |
CN109711403A (zh) * | 2018-12-18 | 2019-05-03 | 电子科技大学 | 一种基于Haar特征和Adaboost的白带中霉菌检测方法 |
US10678903B2 (en) | 2016-05-02 | 2020-06-09 | Hewlett-Packard Development Company, L.P. | Authentication using sequence of images |
US11875268B2 (en) | 2014-09-22 | 2024-01-16 | Samsung Electronics Co., Ltd. | Object recognition with reduced neural network weight precision |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6088451A (en) * | 1996-06-28 | 2000-07-11 | Mci Communications Corporation | Security system and method for network element access |
US20030142854A1 (en) * | 2002-01-30 | 2003-07-31 | Samsung Electronics Co., Ltd. | Apparatus and method for providing security in a base or mobile station by using detection of face information |
US6633655B1 (en) * | 1998-09-05 | 2003-10-14 | Sharp Kabushiki Kaisha | Method of and apparatus for detecting a human face and observer tracking display |
-
2004
- 2004-12-28 WO PCT/KR2004/003480 patent/WO2006057475A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6088451A (en) * | 1996-06-28 | 2000-07-11 | Mci Communications Corporation | Security system and method for network element access |
US6633655B1 (en) * | 1998-09-05 | 2003-10-14 | Sharp Kabushiki Kaisha | Method of and apparatus for detecting a human face and observer tracking display |
US20030142854A1 (en) * | 2002-01-30 | 2003-07-31 | Samsung Electronics Co., Ltd. | Apparatus and method for providing security in a base or mobile station by using detection of face information |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8643691B2 (en) | 2008-05-12 | 2014-02-04 | Microsoft Corporation | Gaze accurate video conferencing |
CN104978550A (zh) * | 2014-04-08 | 2015-10-14 | 上海骏聿数码科技有限公司 | 基于大规模人脸数据库的人脸识别方法及系统 |
CN104978550B (zh) * | 2014-04-08 | 2018-09-18 | 上海骏聿数码科技有限公司 | 基于大规模人脸数据库的人脸识别方法及系统 |
US11875268B2 (en) | 2014-09-22 | 2024-01-16 | Samsung Electronics Co., Ltd. | Object recognition with reduced neural network weight precision |
CN104298969A (zh) * | 2014-09-25 | 2015-01-21 | 电子科技大学 | 基于颜色与haar特征融合的人群规模统计方法 |
CN105260744A (zh) * | 2015-10-08 | 2016-01-20 | 北京航空航天大学 | 一种货运列车钩尾扁销部位故障的自动在线诊断方法及系统 |
CN105260744B (zh) * | 2015-10-08 | 2018-08-14 | 北京航空航天大学 | 一种货运列车钩尾扁销部位故障的自动在线诊断方法及系统 |
CN106778445A (zh) * | 2015-11-20 | 2017-05-31 | 沈阳新松机器人自动化股份有限公司 | 基于人脸检测的服务机器人视觉引领方法 |
US10678903B2 (en) | 2016-05-02 | 2020-06-09 | Hewlett-Packard Development Company, L.P. | Authentication using sequence of images |
CN106971193A (zh) * | 2016-11-23 | 2017-07-21 | 南京理工大学 | 基于结构型Haar和Adaboost的目标检测方法 |
CN107315993A (zh) * | 2017-05-10 | 2017-11-03 | 苏州天平先进数字科技有限公司 | 一种基于人脸识别的门镜系统及其人脸识别方法 |
CN109711403A (zh) * | 2018-12-18 | 2019-05-03 | 电子科技大学 | 一种基于Haar特征和Adaboost的白带中霉菌检测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mahmood et al. | WHITE STAG model: Wise human interaction tracking and estimation (WHITE) using spatio-temporal and angular-geometric (STAG) descriptors | |
Khan et al. | Facial recognition using convolutional neural networks and implementation on smart glasses | |
Rodriguez et al. | Face authentication using adapted local binary pattern histograms | |
US8837786B2 (en) | Face recognition apparatus and method | |
JP2004133889A (ja) | 画像のオブジェクトを認識する方法及びシステム | |
Yang | Recent advances in face detection | |
JP2008123521A (ja) | 拡張されたガボールウェーブレット特徴を利用したフェース認識方法及び装置 | |
El Khiyari et al. | Age invariant face recognition using convolutional neural networks and set distances | |
Meenakshi | Real-Time Facial Recognition System—Design, Implementation and Validation | |
WO2006057475A1 (fr) | Appareil et procede de detection et d'authentification de visage | |
Stylianou et al. | GMM-based multimodal biometric verification | |
Naik | Detailed survey of different face recognition approaches | |
Islam et al. | A fully automatic approach for human recognition from profile images using 2D and 3D ear data | |
KR100702226B1 (ko) | 얼굴 검출 및 인증 장치 및 그 방법 | |
Suneetha | A survey on video-based face recognition approaches | |
KR20090005920A (ko) | 곡선형 가버 필터를 이용한 객체 기술자 생성 방법 및 장치 | |
Park et al. | Multimodal priority verification of face and speech using momentum back-propagation neural network | |
Singha et al. | Study and analysis on biometrics and face recognition methods | |
Olufade et al. | Biometric authentication with face recognition using principal component analysis and feature based technique | |
Kim et al. | Teeth recognition based on multiple attempts in mobile device | |
Shatnawi et al. | The impact of the number of eigen-faces on the face recognition accuracy using different distance measures | |
Hong et al. | Real time face detection and recognition system using Haar-like feature/HMM in ubiquitous network environments | |
Park et al. | Multi-modal human verification using face and speech | |
KR100702225B1 (ko) | 얼굴 검출 및 인증 장치 및 그 방법 | |
RAO | Experimental investigations to face recognition using openCV for monitoring turnout time |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT RULE 69(1) EPC, EPO FORM 1205A DATED 16.08.07 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 04808609 Country of ref document: EP Kind code of ref document: A1 |