WO2006052669A2 - Shunt utilise dans le traitement du glaucome - Google Patents
Shunt utilise dans le traitement du glaucome Download PDFInfo
- Publication number
- WO2006052669A2 WO2006052669A2 PCT/US2005/039820 US2005039820W WO2006052669A2 WO 2006052669 A2 WO2006052669 A2 WO 2006052669A2 US 2005039820 W US2005039820 W US 2005039820W WO 2006052669 A2 WO2006052669 A2 WO 2006052669A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shunt
- microchannel
- laser
- approximately
- fenestration
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/00781—Apparatus for modifying intraocular pressure, e.g. for glaucoma treatment
Definitions
- the present invention pertains to surgical treatments for glaucoma and methods for reducing intraocular pressure (IOP), and more particularly relates to an implantable shunt device for allowing aqueous outflows from the eye's anterior chamber and associated methods thereof.
- IOP intraocular pressure
- Glaucoma is a major public health problem, affecting about two percent of the U.S . population and the third most common cause of blindness in the U.S.
- IOP intraocular pressure
- the elevated IOP is caused by an imbalance in fluid inflows and outflows in the eye, and the pressure reduces the blood supply to the optic nerve.
- the principal objective of medical treatment is the lowering of intraocular pressure.
- the anterior chamber of the eye contains the aqueous humor, a clear fluid that is produced continuously by the ciliary body around the lens.
- the constant flow of aqueous humor though the eye's front chamber exits through two different routes.
- a limited outflow occurs through the uveoscleral route, wherein fluid migrates outwardly between muscle fibers of the ciliary body.
- the primary aqueous outflow pathway is through the trabecular meshwork (TM) and the Schlemm's canal.
- the trabecular meshwork is a filtering structure that extends around the circumference of the eye at the "angle" — the junction between the iris, sclera and cornea.
- the trabecular meshwork consists of layers of collagen webs that filter the outflows.
- the meshwork has a monolayer of trabecular cells that produce enzymes for degrading extracellular material that may be captured by the filtering structure.
- Aqueous humor that passes through the trabecular meshwork flows into Schlemm's canal, which is a passageway or series of septae that extend around the circumference of the eye adj acent to the meshwork.
- the aqueous fluid thereafter flows through a series of collecting channels that drain from Schlemm's canal and into the episcleral venous system.
- aqueous production by the ciliary body is equal to aqueous outflows to provide an IOP that remains constant in the 15 to 21 mm Hg range.
- the resistance through the outflow system is typically greater than 21 mm Hg.
- POAG primary open angle glaucoma
- the principal resistance to fluid outflow is centered about the region of trabecular meshwork that is adj acent Schlemm's canal. It is believed that an abnormal trabecular cell metabolism results in compacted meshwork layers or a build up of extracellular materials within the meshwork that inhibits fluid flows.
- Pharmacological therapies include topical ophthalmic drops and oral medications that reduce the production of aqueous by the ciliary body or increase aqueous outflows via the uveoscleral route.
- the treatments generally require applications at least daily and are relatively expensive.
- drugs may have occasional serious side effects, such as blurred vision, allergic reactions, headaches and potentially dangerous interactions with other drugs.
- Surgical approaches for treating open-angle glaucoma consist of laser trabeculoplasty, trabeculectomy, and the implantation of aqueous shunts.
- Trabeculectomy is a widely practiced surgery wherein microsurgical techniques are used to dissect the trabecular meshwork to allow more rapid aqueous outflow through the meshwork.
- the benefits of the dissection procedures diminish over time due to the body' s wound healing response and resulting fibrosis that repairs and closes the dissected opening in the meshwork. After the dissections are healed up, the intraocular pressure again increases. Thus these expensive procedures do not provide a long-lasting cure.
- Implantable shunts and surgical methods are also known for providing a fluid path for aqueous humor to exit the anterior chamber of the eye to the sclera or a space beneath the conjunctiva. See e.g., U.S. Pat. No. 6,050,970 to Baerveldt.
- One embodiment of the present invention provides a system for reducing intraocular pressure, the system comprising: an implantable shunt, the implantable shunt comprising; a substantially planar member; at least one microchannel disposed within the planar member; and a laser whereby at least one fenestration may be introduced into the microchannel.
- Another embodiment of the present invention provides such a system further comprising a closed cavity containing a pharmaceutical agent.
- a further embodiment of the present invention provides such a system wherein the cavity is smaller than 1 mm in diameter.
- a still further embodiment of the present invention provides such a system wherein the laser has a wavelength between about approximately 750 nm and about approximately 800 nm.
- Still another embodiment of the present invention provides such a system wherein a pharmaceutical agent is applied as a coating to the implantable shunt.
- An even further embodiment of the present invention provides such a system further comprising pre-implantation configured inlet and outlet apertures.
- the laser is a titanium sapphire laser.
- a yet still further embodiment of the present invention provides such a system wherein the laser is configured to close the fenestrations when applied by a user to the edge of the fenestration.
- One embodiment of the present invention provides a method for decreasing ocular hypertension, the method comprising: Implanting a microchannel shunt having at least one microchannel; and adjusting the flow of aqueous fluid through the shunt using a laser light beam having a wavelength of between about approximately 750 and about approximately 800 nm.
- Another embodiment of the present invention provides such a method wherein the shunt comprises a pharmaceutical agent.
- a further embodiment of the present invention provides such a method wherein the agent is selected from the group of agents consisting of beta blockers, alpha-2 antagonists, and prostaglandin analogues.
- Still another embodiment of the present invention provides such a method further comprising exposing the agent to the aqueous fluid by laser manipulation of the shunt.
- a still further embodiment of the present invention provides such a method wherein the step of adjusting the flow of aqueous fluid through the shunt comprises introducing at least one fenestration communicating with the microchannel.
- Yet another embodiment of the present invention provides such a method wherein the step of adjusting the flow of aqueous fluid through the shunt comprises gradually closing a fenestration in the microchannel.
- One embodiment of the present invention provides an apparatus for the treatment of ocular hypertension, the apparatus comprising: a microchannel shunt, the shunt having a microchannel, and being configured to receive a laser pulse having a wavelength of between 750 and 800 nm; fenestrations disposed within the microchannel, the fenestrations being configured to be opened and closed by operation of the laser.
- Another embodiment of the present invention provides such an apparatus wherein the shunt contains a pharmaceutical agent.
- a further embodiment of the present invention provides such an apparatus wherein the agent is selected from the group of agents consisting of beta blockers, alpha-2 antagonists, and prostaglandin analogues.
- Still another embodiment of the present invention provides such an apparatus wherein the shunt is longer than 4 mm.
- a still further embodiment of the present invention provides such an apparatus the shunt is between about approximately 5mm and about approximately 10 mm in length.
- FIG. 1 is a perspective view of a shunt configured in accordance with one embodiment of the present invention.
- FIG. 2 is a perspective view of such a shunt configured in accordance with one embodiment of the present invention disposed in a patient's eye.
- FIG. 3A is a cross sectional elevation view of a closed shunt fenestration configured in accordance with one embodiment of the present invention.
- FIG. 3B is a cross sectional elevation view of an open shunt fenestration configured in accordance with one embodiment of the present invention.
- FIG. 3C is a cross sectional elevation view of a partially closed shunt fenestration configured in accordance with one embodiment of the present invention.
- FIG. 4 is a perspective view of a shunt configured in accordance with one embodiment of the present invention.
- FIG. 5 is a perspective elevation view of an elongate shunt configured in accordance with one embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION
- One embodiment of the present invention comprises a shunt 10 used for the treatment of glaucoma.
- the shunt 10, illustrated in Figure 1 is configured from a biocompatible, non-toxic material. In one embodiment, this non-toxic biocompatible material is gold. Alloys of gold may be used, while in one embodiment 24 karat gold is used.
- the shunt 10 is, in one embodiment illustrated in Figure 2, implanted in the suprachoroidal region of the eye or the supracilliary space with a first end disposed proximate to the anterior chamber.
- the shunt 10 comprises at least one channel through which aqueous fluid passes.
- Fenestrations 12 proximate to either end of the shunt 10 permit the entrance of fluid into the shunt 10 or egress of fluid from the channel 14.
- Apertures 12 in the shunt 10 may be opened by application of laser light of a suitable intensity and wavelength. Negative hydrostatic pressure in the supracilliary space results in a decrease in intraocular pressure when the shunt 10 introduces a pathway from the flow of intraocular fluid from the anterior chamber to the supracilliary region.
- the shunt may be flexible or provided with a slight curvature.
- the shunt 10 is between about approximately 4 and 10 mm in length. In one such embodiment, the shunt 10 is greater than or equal to about approximately 5 mm. As illustrated in Figure 5, the shunt 10 may be substantially longer.
- the shunt 10 should be of sufficient length to connect the anterior chamber with regions of the eye having a negative pressure differential. The pressure differential between the anterior chamber and the suprachoroidal region is greater, the closer to the optic nerve that one measures in the suprachoroidal region. This pressure differential has been measured as being of the order of 1 mm Hg per mm of optic means. Fluid dynamic constraints, however, dictate that the shunt 10 must not be so long as allow flow resistance to counter the benefits of the extended shunt 10.
- the shunt 10 may be configured with drug delivery capabilities. Drug delivery may be achieved through a variety of techniques. In some embodiments, time release coatings may be applied to the exterior or interior surfaces of the shunt 10. Alternatively, pharmaceuticals may be enclosed within the shunt 10, either within sealed channels 16 or within the walls of the shunt 10 itself. Such sealed channels 16 could then be opened through the use of a laser having an appropriate wavelength and intensity to open an aperture 12 in the shunt 10 wall. Alternatively, the shunt 10 itself could be formed using nanoscale technology to form hollows or cavities within the walls of the shunt 10. In one such embodiment, the walls of the shunt 10 may be composed of nanoshells containing pharmacological agents. The nanoshells may be fused so as to form an apparently unitary shunt 10 body. Laser ablation of the shells would, as in the case of the sealed channels or cavities 16, release the pharmaceutical into the aqueous fluid of the patient' s eye.
- Examples of pharmaceutical agents that may be applied to, or contained, in the shunt 10 could in some embodiments comprise beta blockers, alpha-2 antagonists, or prostaglandin analogues, such as Bimatoprost and Latanoprost.
- beta blockers alpha-2 antagonists
- prostaglandin analogues such as Bimatoprost and Latanoprost.
- the selection of pharmaceutical used would depend upon the specific needs of the patient, as some glaucoma treatments may be contraindicated for some patients having a history of other health problems or allergies while in other situations other pharmaceuticals may be found to be more efficacious to treat Glaucoma and could be introduced into the patient via the same mechanism.
- Other diseases and syndromes may be treated through the introduction of pharmaceuticals via a shunt 10 according to one embodiment of the present invention.
- coatings may be applied to the shunt to facilitate the function of the shunt either through improved implantation or chemical properties of the shunt.
- Fenestrations 12 may be formed prior to implantation or after implantation. Post implantation fenestrations are illustrated in cross section in Figure 3A and Figure 3 B.
- Such a fenestration 12 is, according to one embodiment, achieved through the application of a titanium sapphire laser having a wavelength of between about approximately 750 nm and about approximately 800nm and of intensity measuring.
- a laser having a wavelength of 790 nm. The laser is directed to a laser target area 20.
- the number and diameter of the fenestrations 12 may be adjusted by the application of laser pulses to the wall of the shunt 10.
- the laser pulse melts or ablates the wall of the shunt 10, opening a fenestration 12 in the microchannel 14.
- Judicious application of the same laser to the periphery of a fenestration 12 thus created, results in a gradual thinning and spreading of the shunt 10 material, and a partial occlusion of the fenestration 12. Repetition of this thinning, eventually leads, as illustrated in Figure 3C to the complete closure of the fenestration 12.
- the clinician can adjust the outflow of the shunt 10 to regulate the intraocular pressure of the patient.
- a single microchannel 14 may be disposed in the shunt having a plurality of internal support structures, thereby forming a single partially obstructed microchannel.
- intakes or intake holes to these channels are occluded by a thin layer of gold, in one embodiment, approximately one fifth of the thickness of the surrounding walls of the channel. In one embodiment this layer is only 2 microns thick.
- a laser pulse, from a Titanium Sapphire or other laser of suitable wavelength and intensity is used to selectively ablate or melt the thin gold layer.
- the laser is tuned to ablate or to melt only the thickness of the layer, as the layer is significantly thinner than the surrounding shunt walls, the layer is ablated or melted without compromising the surrounding wall structure. An opening is thus created and fluid flow is permitted through the, now opened, channel. This ablation is repeated as necessary, until the desired intraocular pressure is achieved.
- a similar laser may be used to ablate residual tissue occluding the shunt.
- a Titanium Sapphire laser having an intensity of between 20 and 50 mJ is used. For opening of a fenestration, higher intensity is used, while for closure of a fenestration, a lower intensity is used. In one embodiment, and intensity of 30 mJ is used to close fenestrations opened by an intensity of 50 mJ in a target 20 that is 10 microns thick.
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05851336A EP1814613A2 (fr) | 2004-11-03 | 2005-11-03 | Shunt utilise dans le traitement du glaucome |
CA002586430A CA2586430A1 (fr) | 2004-11-03 | 2005-11-03 | Shunt utilise dans le traitement du glaucome |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US62468604P | 2004-11-03 | 2004-11-03 | |
US60/624,686 | 2004-11-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006052669A2 true WO2006052669A2 (fr) | 2006-05-18 |
WO2006052669A3 WO2006052669A3 (fr) | 2007-09-07 |
Family
ID=36337013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/039820 WO2006052669A2 (fr) | 2004-11-03 | 2005-11-03 | Shunt utilise dans le traitement du glaucome |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1814613A2 (fr) |
CA (1) | CA2586430A1 (fr) |
WO (1) | WO2006052669A2 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5462739A (en) * | 1991-11-21 | 1995-10-31 | Yeda Research And Development Co., Ltd. | Microdelivery device and method for enhanced drug administration to the eye |
US5626558A (en) * | 1995-05-05 | 1997-05-06 | Suson; John | Adjustable flow rate glaucoma shunt and method of using same |
US5830173A (en) * | 1994-12-12 | 1998-11-03 | Avery; Robert Logan | Intravitreal medicine delivery |
US20030229303A1 (en) * | 2002-03-22 | 2003-12-11 | Haffner David S. | Expandable glaucoma implant and methods of use |
-
2005
- 2005-11-03 CA CA002586430A patent/CA2586430A1/fr not_active Abandoned
- 2005-11-03 EP EP05851336A patent/EP1814613A2/fr not_active Withdrawn
- 2005-11-03 WO PCT/US2005/039820 patent/WO2006052669A2/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5462739A (en) * | 1991-11-21 | 1995-10-31 | Yeda Research And Development Co., Ltd. | Microdelivery device and method for enhanced drug administration to the eye |
US5830173A (en) * | 1994-12-12 | 1998-11-03 | Avery; Robert Logan | Intravitreal medicine delivery |
US5626558A (en) * | 1995-05-05 | 1997-05-06 | Suson; John | Adjustable flow rate glaucoma shunt and method of using same |
US20030229303A1 (en) * | 2002-03-22 | 2003-12-11 | Haffner David S. | Expandable glaucoma implant and methods of use |
Also Published As
Publication number | Publication date |
---|---|
EP1814613A2 (fr) | 2007-08-08 |
WO2006052669A3 (fr) | 2007-09-07 |
CA2586430A1 (fr) | 2006-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060069340A1 (en) | Shunt for the treatment of glaucoma | |
US10828473B2 (en) | Ocular implant delivery system and methods thereof | |
US10485702B2 (en) | System and method for treating an ocular disorder | |
US6699211B2 (en) | Method and apparatus for treatment of glaucoma | |
RU2234894C2 (ru) | Расширительное устройство и способ лечения глаукомы | |
US20030060752A1 (en) | Glaucoma device and methods thereof | |
US20090137992A1 (en) | Apparatus and Method for Treating Glaucoma | |
WO2002102274A2 (fr) | Dispositif permettant de traiter le glaucome et methodes associees | |
EP1814613A2 (fr) | Shunt utilise dans le traitement du glaucome | |
AU2012201744B8 (en) | Apparatus and method for treating ocular disorders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2586430 Country of ref document: CA |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005851336 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005851336 Country of ref document: EP |