+

WO2006051673A1 - 空気調和機の室内機 - Google Patents

空気調和機の室内機 Download PDF

Info

Publication number
WO2006051673A1
WO2006051673A1 PCT/JP2005/019184 JP2005019184W WO2006051673A1 WO 2006051673 A1 WO2006051673 A1 WO 2006051673A1 JP 2005019184 W JP2005019184 W JP 2005019184W WO 2006051673 A1 WO2006051673 A1 WO 2006051673A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
indoor
unit
indoor unit
heat exchanger
Prior art date
Application number
PCT/JP2005/019184
Other languages
English (en)
French (fr)
Inventor
Yohei Takada
Hitoshi Kawashima
Mikio Ito
Masaaki Kitazawa
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US11/666,878 priority Critical patent/US7849709B2/en
Priority to AU2005303286A priority patent/AU2005303286B2/en
Priority to EP05795585A priority patent/EP1821041A4/en
Publication of WO2006051673A1 publication Critical patent/WO2006051673A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0083Indoor units, e.g. fan coil units with dehumidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the present invention relates to an indoor unit of an air conditioner.
  • An indoor unit of an air conditioner includes a blower fan that generates an air flow and a heat exchange ⁇ that exchanges heat with the passing air, and blows out the heat-exchanged air into the room.
  • Forces that have air conditioning such as cooling and heating heat exchange layers with different areas may be provided overlapping.
  • an auxiliary heat exchanger having a size smaller than the width of the heat exchanger is overlapped with a part of the heat exchanger.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-205877
  • the refrigerant that has already undergone a certain amount of heat exchange has a high ratio of the gas phase, and when such a refrigerant flows into a portion that does not overlap with the auxiliary heat exchanger, There is a high risk that air with insufficient heat exchange will flow. As a result, air with sufficient heat exchange and air with insufficient heat exchange may mix and cause condensation on the blower fan.
  • An object of the present invention is to suppress the occurrence of condensation in an air blower fan in an indoor unit of an air conditioner including a heat exchanger in which heat exchange layers having different areas are stacked.
  • An indoor unit of an air conditioner includes a blower fan and heat exchange.
  • the blower fan generates a flow of air.
  • the heat exchange has a first heat exchange layer and a second heat exchange layer.
  • the second heat exchange layer has a smaller area than the first heat exchange layer, and is disposed so as to overlap a part of the first heat exchange layer in the air passing direction.
  • the refrigerant flows through the first heat exchange layer before the second heat exchange layer.
  • the refrigerant flows into the first heat exchange layer before the second heat exchange layer, and the refrigerant having a relatively high liquid phase ratio is supplied to the first heat exchange layer. Can flow. For this reason, sufficient heat exchange can be performed even in a portion of the second heat exchange layer that does not overlap the first heat exchange layer. Thereby, in this indoor unit of an air conditioner, the occurrence of condensation in the blower fan can be suppressed.
  • An air conditioner indoor unit according to a second invention is the air conditioner indoor unit according to the first invention, wherein the second heat exchange layer is a first heat exchange in a longitudinal direction of the first heat exchange layer. It has a shorter shape than the layer.
  • a portion that does not overlap the second heat exchange layer occurs in a part of the first heat exchange layer in the longitudinal direction.
  • the refrigerant flows through the first heat exchange layer prior to the second heat exchange layer, so that even in this portion, the refrigerant can flow at a relatively high liquid phase ratio. Sufficient heat exchange can be performed.
  • An indoor unit of an air conditioner according to a third invention is the indoor unit of the air conditioner of the first invention or the second invention, wherein the first heat exchange layer is closer to the blower fan than the second heat exchange layer Located in
  • An indoor unit of an air conditioner according to a fourth invention is the air conditioner according to any one of the first invention to the third invention.
  • the second heat exchange layer constitutes the outermost layer of the heat exchanger.
  • the second heat exchange layer which has a smaller area than the first heat exchange layer, constitutes the outermost layer of the heat exchange, so the heat exchange lacked a part of the outermost layer. Shape. For this reason, the part where the outermost layer is missing can be used for IJ as an arrangement space for other components.
  • An air conditioner indoor unit is the air conditioner indoor unit of the fourth aspect, wherein the first heat exchange layer constitutes the innermost layer of heat exchange.
  • the present invention that suppresses the flow of air with insufficient heat exchange by flowing the refrigerant through the first heat exchange layer before the second heat exchange layer is particularly effective.
  • An air conditioner indoor unit is the air conditioner indoor unit of any one of the first to fifth aspects of the present invention, and further includes a predetermined component. This component is disposed in a space facing a part of the first heat exchange layer that does not overlap the second heat exchange layer and located on the side of the second heat exchange layer.
  • predetermined components are located in a space facing a part of the first heat exchange layer that does not overlap the second heat exchange layer and located on the side of the second heat exchange layer. Arranged. That is, the structure is arranged in the space formed by the absence of the first heat exchange layer. Thereby, in this indoor unit of the air conditioner, the outer shape can be reduced in size.
  • the force that generates a portion that does not overlap with the second heat exchange layer in a part of the longitudinal direction of the first heat exchange layer A high-temperature refrigerant can flow and sufficient heat exchange can be performed.
  • the air conditioner indoor unit contrary to the prior art, it is located near the blower fan.
  • the first heat exchange layer force to be placed Since the refrigerant flows, it is possible to suppress the occurrence of condensation in the blower fan.
  • a portion lacking a part of the outermost layer of heat exchange can be used as an arrangement space for other components.
  • the present invention suppresses the flow of air with insufficient heat exchange by flowing the refrigerant through the first heat exchange layer prior to the second heat exchange layer. Is particularly effective.
  • the outer shape can be reduced by arranging the structure in the space formed by the absence of the first heat exchange layer.
  • FIG. 1 is an external view of an air conditioner.
  • FIG. 2 is a configuration diagram of a refrigerant circuit.
  • FIG. 3 is a side sectional view of the indoor unit.
  • FIG. 4 is a diagram showing a flow path of refrigerant in the indoor heat exchanger.
  • FIG. 5 is an external perspective view of the indoor heat exchange unit.
  • FIG. 6 is a control block diagram.
  • FIG. 7 is a side view of the indoor heat exchanger unit.
  • FIG. 1 to FIG. 6 show an air conditioner 1 including an indoor unit 2 that works in one embodiment of the present invention.
  • the explanation is as follows.
  • the air conditioner 1 of the present embodiment is a device for supplying conditioned air indoors, and is installed outside the indoor unit 2 that is attached to an indoor wall surface or the like.
  • the outdoor unit 3 is provided.
  • the indoor unit 2 stores indoor heat exchange described later, and the outdoor unit 3 stores outdoor heat exchange described later. Then, the indoor heat exchange 0 in the indoor unit 2 and the outdoor heat exchange in the outdoor unit 3 are connected by the refrigerant pipe 4 to constitute a refrigerant circuit.
  • the refrigerant circuit of the air conditioner 1 includes a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13, an electric expansion valve 14, and a first indoor heat.
  • the exchange unit 15 includes a first electromagnetic valve 16 a and a second electromagnetic valve 16 b, a second indoor heat exchange unit 17, and an accumulator 18.
  • the first indoor heat exchange unit 15 and the second indoor heat exchange unit 17 together constitute the indoor heat exchanger 10 shown in FIG. 3, FIG. 4, and FIG.
  • the compressor 11 raises the pressure of the refrigerant flowing in the refrigerant circuit and sends out the refrigerant.
  • the four-way switching valve 12 is connected to the discharge side of the compressor 11 and changes the refrigerant flow path during cooling and reheat dehumidifying operation and during heating operation. Note that the four-way switching valve 12 shown in FIG. 2 shows a state during cooling operation and reheat dehumidification operation.
  • the outdoor heat exchanger 13 is connected to the four-way switching valve 12 and functions as an evaporator during heating operation, and functions as a condenser during cooling and reheat dehumidification operations.
  • the outdoor heat exchanger 13 exchanges heat with the air sucked into the outdoor unit 3 by the propeller fan 38 disposed adjacent to the outdoor heat exchanger 13.
  • the electric expansion valve 14 is connected to the outdoor heat exchanger 13, and functions as an expansion mechanism that changes the pressure of the refrigerant. For example, during the cooling operation, the refrigerant is expanded in a closed state so that the first indoor heat exchanging unit 15 described later functions as an evaporator. On the other hand, during the reheat dehumidifying operation, the refrigerant pressure is not changed when the first indoor heat exchange unit 15 functions as a condenser, so that the fully open state is achieved.
  • the first indoor heat exchange unit 15 is connected to the electric expansion valve 14 and functions as an evaporator during the cooling operation, and functions as a condenser during the heating and reheat dehumidifying operations.
  • the first electromagnetic valve 16a and the second electromagnetic valve 16b are arranged in parallel with each other between the first indoor heat exchange unit 15 and the second indoor heat exchange unit 17 on the refrigerant circuit.
  • the flow of the refrigerant in the refrigerant circuit can be controlled.
  • the first solenoid valve 16a and the second solenoid valve 16b are expansion valves that expand the refrigerant that passes therethrough, and reduce the pressure of the refrigerant flowing to the second indoor heat exchange unit 17 during the reheat dehumidification operation. Can do.
  • the second indoor heat exchange section 17 is connected to the first electromagnetic valve 16a and the second electromagnetic valve 16b arranged in parallel, and serves as an evaporator during reheat dehumidifying operation and cooling operation, and during heating operation. Functions as a condenser.
  • the accumulator 18 is connected to the suction side of the compressor 11 and prevents the liquid coolant from entering the compressor 11.
  • the indoor unit 2 includes the first indoor heat exchange unit 15 and the second indoor heat exchange unit 17, and exchanges heat with the air that the indoor heat exchange units 15, 17 are in contact with.
  • the indoor unit 2 is a cross-flow fan that sucks indoor air and generates an airflow for discharging the air-conditioned air into the room via the first indoor heat exchange unit 15 and the second indoor heat exchange unit 17. 21 (see Fig. 2 and Fig. 3).
  • the cross flow fan 21 is rotationally driven around the central axis by an indoor fan motor 22 provided in the indoor unit 2.
  • the outdoor unit 3 includes a compressor 11, a four-way switching valve 12, an accumulator 18, an outdoor heat exchanger 13 and an electric expansion valve 14.
  • the electric expansion valve 14 is connected to the pipe 41 via the filter 35 and the liquid closing valve 36, and is connected to one end of the indoor heat exchange parts 15, 17 of the indoor unit 2 via the pipe 41.
  • the four-way selector valve 12 is connected to the pipe 42 through the gas shut-off valve 37, and is connected to the other ends of the indoor heat exchange units 15, 17 of the indoor unit 2 through the pipe 42. .
  • the pipes 41 and 42 correspond to the refrigerant pipe 4 in FIG.
  • the outdoor unit 3 is provided with a propeller fan 38 for sucking air into the outdoor unit 3 and discharging the air after heat exchange in the outdoor heat exchanger 13 to the outside.
  • the propeller fan 38 is rotationally driven by an outdoor fan motor 39.
  • the indoor unit 2 has a shape that is horizontal and long in the horizontal direction when viewed from the front (see FIG. 1).
  • the horizontal direction in the front view of the indoor unit 2 is simply referred to as “lateral Called “direction”.
  • the indoor unit 2 mainly includes a blower mechanism 7, an indoor heat exchanger unit 5, a first electromagnetic valve 16a and a second electromagnetic valve 16b, and an indoor unit casing housed in the indoor unit 2. 8 and control unit 90 (see FIG. 6).
  • the blower mechanism 7 is a mechanism that generates a flow of air that enters the interior of the indoor unit 2 from the room, passes through the indoor heat exchanger 10 and is blown back into the room, and includes a cross flow fan 21 and an indoor fan motor 22 (see FIG. 2) etc.
  • the cross flow fan 21 is configured in a cylindrical shape that is long in the horizontal direction, and is arranged so that the central axis is parallel to the horizontal direction.
  • the indoor fan motor 22 is disposed on the side of the cross flow fan 21 and rotationally drives the cross flow fan 21.
  • the air blowing mechanism 7 is supported by a bottom frame 62 described later.
  • the indoor heat exchanger unit 5 includes an indoor heat exchanger 10, an auxiliary pipe 50 (see FIG. 5), and the like.
  • the indoor heat exchange has the first indoor heat exchange unit 15 and the second indoor heat exchange unit 17 described above.
  • the first indoor heat exchange unit 15 and the second indoor heat exchange unit 17 included in the refrigerant circuit of FIG. 2 are configured independently of each other.
  • the indoor heat exchanger 10 has a shape that is long in the lateral direction, and is arranged in parallel to the longitudinal direction of the indoor unit casing 8 (see FIG. 1). As shown in FIG. 3, the indoor heat exchanger 10 is configured by combining a rear part 51, a first front part 52, and a second front part 53.
  • the rear part 51 constitutes the rear upper part of the indoor heat exchanger 10 and has a rectangular plate shape.
  • the rear portion 51 is disposed so as to be inclined so that the upper end is positioned forward of the lower end. Further, the rear part 51 is a two-row heat exchanger in which two rows of heat transfer tubes are arranged in the air passage direction.
  • the first front part 52 constitutes the front upper part of the indoor heat exchanger 10 and has the same rectangular shape as the rear part 51.
  • the first front part 52 is arranged so as to be inclined so that the upper end is located behind the lower end.
  • the upper end of the first front part 52 and the upper end of the rear part 51 are close to or joined to each other. Yes. That is, the first front part 52 and the rear part 51 are combined so as to have an inverted V-shape when viewed from the side.
  • the first front portion 52 has a two-row portion 81 and a one-row portion 82.
  • the two-row portion 81 is a portion where a plurality of heat transfer tubes that vertically penetrate a plurality of fins arranged in parallel to each other are arranged in two rows.
  • the one-row portion 82 is a portion where a plurality of heat transfer tubes vertically penetrating a plurality of fins arranged in parallel to each other are arranged in one row.
  • the plurality of heat transfer tubes in each row are arranged along a rear inclined surface 54 described later.
  • the two rows 81 are located on the innermost side of the indoor heat exchanger 10, that is, on the side closer to the cross flow fan 21 (see FIG. 3), and constitute a part of the innermost layer of the indoor heat exchanger.
  • the first row portion 82 is located on the outermost side of the indoor heat exchanger 10, that is, on the side far from the cross flow fan 21, and constitutes a part of the outermost layer of the indoor heat exchanger 10.
  • the first row portion 82 is provided so as to overlap the second row portion 81 in the air passing direction, and is adjacent to the second row portion 81 outside the second row portion 81.
  • the first row portion 82 and the second row portion 81 have the same length in the lateral direction, and the both side end portions of the first row portion 82 and the both side end portions of the second row portion 81 are aligned.
  • the first row portion 82 and the second row portion 81 have substantially the same size in the vertical direction, and the upper end portion and the lower end portion are also arranged.
  • the first front part 52 is a three-row heat exchanger in which a plurality of heat transfer tubes are arranged in three rows in the air passage direction, that is, the direction perpendicular to the lateral direction.
  • the second front part 53 constitutes the lower part on the front side of the indoor heat exchanger 10 and has a rectangular plate shape like the other parts.
  • the second front portion 53 is disposed below the first front portion 52, and the lower end of the first front portion 52 and the upper end of the second front portion 53 are close to or joined to each other.
  • the second front portion 53 has a second row portion 83 and a first row portion 84 as in the first front portion 52.
  • the two-row portion 83 is a portion where a plurality of heat transfer tubes that vertically penetrate a plurality of fins arranged in parallel to each other are arranged in two rows.
  • the first row portion 84 is a portion arranged in a plurality of rows of heat transfer tube forces penetrating vertically through a plurality of fins arranged in parallel to each other.
  • the plurality of heat transfer tubes in each row are arranged along a front inclined surface 55 described later.
  • the two rows 83 are located on the innermost side of the indoor heat exchanger 10, that is, on the side close to the cross flow fan 21, and constitute a part of the innermost layer of the indoor heat exchanger 10.
  • the first row portion 84 is located on the outermost side of the indoor heat exchanger 10, that is, on the side far from the cross flow fan 21, and constitutes a part of the outermost layer of the indoor heat exchanger 10.
  • the first row part 84 overlaps a part of the second row part 83 in the air passage direction. And is adjacent to the second row portion 83 outside the second row portion 83.
  • the first row portion 84 and the second row portion 83 are smaller in size than the second row portion 83 in the lateral direction, which is substantially the same size in the vertical direction. As shown in FIG. 5, one side end of the first row portion 84 in the horizontal direction is aligned with one side end of the second row portion 83 in the horizontal direction.
  • the side end is not aligned with the other side end of the two-row portion 83 in the horizontal direction, and the first row portion 84 is shorter than the two-row portion 83 in the horizontal direction.
  • the right end of the first row portion 84 in front view is aligned with the lateral right end of the second row portion 83, but the left end of the first row portion 84 is the left side of the second row portion 83. It is not aligned with the edge. Therefore, the second front section 53 has a three-row heat exchange section in which a plurality of heat transfer tubes are arranged in three rows in the air passage direction, and one row fewer heat transfer tubes in two rows than the three-row heat exchange portion.
  • the two-row heat exchange section is located near the left end of the second front section 53. Therefore, the first row portion 84 has an area smaller than that of the second row portion 83, and almost all the portions of the first row portion 84 overlap the second row portion 83, but a part of the second row portion 83 is 1 It overlaps with the line part 84 and is cunning.
  • the indoor heat exchanger 10 Since the indoor heat exchanger 10 is configured by combining the rear portion 51, the first front portion 52, and the second front portion 53 as described above, the indoor heat exchanger 10 has a shape that is convexly bent upward in a side view. Have.
  • the portion on the rear side of the apex T1 of the bending of the indoor heat exchange 10 is an inclined surface that is inclined so that the upper end is positioned forward and the lower end is positioned rearward (hereinafter referred to as “rear inclined surface 54”).
  • the rear inclined surface 54 is a part of the rear portion 51.
  • the portion of the indoor heat exchanger 10 that is in front of the bending vertex T1 has an inclined surface that is inclined so that the upper end is located rearward and the lower end is located forward (hereinafter referred to as “front inclined surface 55”).
  • the front inclined surface 55 is a part of the first front portion 52.
  • the joint portion between the front inclined surface 55 and the rear inclined surface 54 is the vertex T1 of the above-described bending.
  • the indoor heat exchanger 10 has a shape that is long in the horizontal direction, and the front inclined surface 55 and the rear inclined surface 54 are also long in the horizontal direction and become inclined planes having a rectangular shape.
  • the indoor heat exchanger 10 is disposed so as to face the circumferential surface of the cross flow fan 21 and is attached so as to surround the front and upper sides of the cross flow fan 21.
  • the first indoor heat exchange unit 15 and the second indoor heat exchange unit 17 are configured to prevent the first indoor heat exchange unit 15 and the second indoor heat exchange unit 15 and the second indoor heat exchange unit 15 and the second indoor heat exchange unit 15 and the second indoor heat exchange unit 15 and the second indoor heat exchange unit 15 and Heat is exchanged with the refrigerant passing through the inside of the heat transfer tube in the indoor heat exchange section 17.
  • the indoor unit 2 blows out air-conditioned air from the outlet 71 while adjusting the blowing direction by the horizontal flap 70.
  • Auxiliary piping 50 connects a plurality of heat transfer tubes whose side forces of the indoor heat exchanger 10 also protrude from each other, and connects the first indoor heat exchanging portion 15 and the second indoor heat exchanging portion 17 with the refrigerant piping 4. It is. Most of the auxiliary pipes 50 are intricately curved in the space on the side of the indoor heat exchanger 10, but some of the auxiliary pipes (hereinafter referred to as “rear auxiliary pipes 56”) are not shown in the figure. As shown in FIG. 5, the side force of the indoor heat exchanger 10 also passes through the space behind the indoor heat exchanger 10 and is connected to the first solenoid valve 16a and the second solenoid valve 16b.
  • the auxiliary pipe 50 on the side of the indoor heat exchanger 10 has a complicated curved shape, whereas the rear auxiliary pipe 56 has a relatively linear shape.
  • the rear auxiliary pipe 56 extends laterally behind the indoor heat exchanger 10 and is longer than the lateral length of the space in which the auxiliary pipe 50 on the side of the indoor heat exchanger 10 is disposed. .
  • the route of the refrigerant flowing through the indoor heat exchanger 10 through these auxiliary pipes 50 will be described below.
  • the refrigerant that has exited the outdoor heat exchanger 13 flows from the outdoor unit 3 through the pipe 41 to the indoor unit 2 through the electric expansion valve 14.
  • the refrigerant transported to the indoor unit 2 first flows to the first indoor heat exchange unit 15 through the auxiliary pipe 50 (see FIG. 5).
  • the refrigerant is divided into two routes by the auxiliary pipe 50 and flows to the rear part 51 and a part of the first front part 52 (see FIG. 3).
  • the refrigerant discharged from the first indoor heat exchange section 15 passes through the first electromagnetic valve 16a and the second electromagnetic valve 16b, respectively, is divided into two routes, and flows to the second indoor heat exchange section 17.
  • the refrigerant that has passed through the first solenoid valve 16a and the second solenoid valve 16b is divided into four routes R1-R4 by the auxiliary pipe 50 as indicated by arrows in FIG. To the front and second front 53.
  • the four auxiliary pipes 50 are connected to a part of the plurality of heat transfer tubes arranged in the innermost row of the first front part 52 and the second front part 53, respectively.
  • the refrigerant flowing through R4 flows through the heat transfer tubes in the innermost row in the first front portion 52 and the second front portion 53, that is, in the heat transfer tubes in the inner row of the second row portions 81 and 83.
  • the refrigerant flows through the heat transfer tubes in the outer rows in the second row portions 81 and 83, and finally flows through the heat transfer tubes in the first row portions 82 and 84.
  • the refrigerant is divided into four routes Rl-R4, and a part of the first front part 52 and the second front part 53 are connected to the inside. It flows to the outside and is discharged from the indoor heat exchanger ⁇ 10.
  • the refrigerant flows from the second row portion 83 before the first row portion 84 of the second front portion 53.
  • the refrigerant passing through the third route R3 first passes through the two heat transfer tubes included in the inner row in the second row portion 83, and then passes through the two heat transfer tubes included in the outer row in the second row portion 83, and finally. After passing through two heat transfer tubes included in one row portion 84, the second front portion 53 is discharged.
  • the refrigerant discharged from the indoor heat exchanger 10 by being divided into four routes R1 to R4 is collected into one by the auxiliary pipe 50 and sent to the outdoor unit 3 through the pipe 42.
  • the refrigerant flow direction is switched by the four-way selector valve 12, and the refrigerant flows in the opposite direction.
  • the indoor unit casing 8 accommodates the indoor heat exchanger unit 5 and the air blowing mechanism 7, and has a box shape that is long in the horizontal direction as shown in FIG.
  • the indoor unit casing 8 has a substantially D shape in a side view, and is a thin shape having a depth dimension, that is, a thickness smaller than the vertical dimension, that is, the height.
  • This indoor unit casing 8 has a front grill 61 and a bottom frame 62 as shown in FIG.
  • the front grill 61 is configured to cover the front and top of the indoor heat exchanger unit 5, and forms an outer surface on the upper surface side and the front surface side of the indoor unit 2.
  • the upper surface of the front grill 61 is provided with a plurality of lattice-shaped openings. These openings serve as suction ports 60 through which the air sucked into the indoor force indoor unit casing 8 passes. Further, the upper surface of the front grill 61 is close to the vertex T1 of the indoor heat exchanger 10 described above.
  • the bottom frame 62 is configured to cover the rear and lower sides of the indoor heat exchanger unit 5, and constitutes an outer shell on the bottom surface side and the back surface side of the indoor unit 2.
  • the bottom frame 62 includes a bottom frame lower part 63 that constitutes the bottom surface of the indoor unit 2, and a bottom frame rear surface part 64 that constitutes the back surface of the indoor unit 2.
  • the bottom frame lower part 63 is provided with a space for accommodating the cross flow fan 21 of the blower mechanism 7, and this space communicates with the air outlet 71 provided at the lower front part of the bottom frame 62.
  • the bottom frame rear surface portion 64 covers the rear of the indoor heat exchanger 10 and extends in the vertical direction.
  • Bottom frame rear part 64 Upper end T2 is the front grille Close or in contact with the rear edge of the top surface of 61. Further, the bottom frame rear surface portion 64 and the lower end of the rear portion 51 of the indoor heat exchanger 10 are close to each other.
  • the first solenoid valve 16a and the second solenoid valve 16b are located between the bottom frame rear face portion 64 and the indoor heat exchanger rear part 51 and behind the rear part 51. 10 are arranged at a distance in the longitudinal direction, that is, in the lateral direction. More specifically, the first solenoid valve 16a and the second solenoid valve 16b are disposed opposite to the upper vicinity of the rear inclined surface 54 of the indoor heat exchanger 10. That is, the first solenoid valve 16a and the second solenoid valve 16b are arranged in a wedge-shaped space between the rear part 51 of the indoor heat exchanger 10 and the bottom frame back part 64.
  • first solenoid valve 16a and the second solenoid valve 16b are arranged so that the distance from the rear part 51 of the indoor heat exchanger 10 is substantially the same, and are arranged in a straight line parallel to the horizontal direction. Has been. Accordingly, the first solenoid valve 16a and the second solenoid valve 16b are arranged in a straight line along the longitudinal direction of the indoor heat exchanger 10 at the same height. In addition, as shown in FIG. 3, the first solenoid valve 16a and the second solenoid valve 16b are arranged so as to overlap in a side view.
  • first solenoid valve 16a and the second solenoid valve 16b are disposed so as not to exceed the upper end T2 of the bottom frame rear surface portion 64, and are substantially the same height as the upper end T2 of the bottom frame rear surface portion 64. positioned.
  • the control unit 90 shown in FIG. 6 is provided separately for the indoor unit 2 and the outdoor unit 3, and performs the instructed air conditioning operation in accordance with an instruction from the remote controller 93. Further, as shown in FIG. 7, the control board 94 including a part of the control unit 90 is installed in a space provided in front of the left end of the second front part 53. That is, the control board 94 is disposed in a space that faces a part of the second row portion 83 that does not overlap the first row portion 84 of the second front portion 53 and is located on the left side of the first row portion 84. Specific contents of control by the control unit 90 will be described below.
  • the first indoor heat exchange unit 15 functions as a condenser and the second indoor heat exchange unit 17 functions as an evaporator. Therefore, while the electric expansion valve 14 is opened, one or both of the first solenoid valve 16a and the second solenoid valve 16b are closed. The As a result, the first indoor heat exchange unit 15 functions as a condenser, and the refrigerant flowing in the second indoor heat exchange unit 17 expands to become a low-temperature and low-pressure liquid refrigerant, so that the entire second indoor heat exchange unit 17 Or it becomes possible to make one part function as an evaporator.
  • Whether one or both of the first solenoid valve 16a and the second solenoid valve 16b are closed is determined according to the sensible heat load and latent heat load in the room. In other words, for example, when indoor humidity is high (latent heat load is large), it is necessary to perform a large amount of latent heat treatment. For this reason, both the first electromagnetic valve 16a and the second electromagnetic valve 16b are closed so that the entire second heat exchanger 17 can be used as an evaporator, and the second indoor heat exchanger 17 To function as an evaporator. On the other hand, if the indoor humidity is not so high (the latent heat load is small), only a part of the second indoor heat exchanging part 17 may be used as an evaporator. For this reason, only one of the first solenoid valves 16a is closed.
  • the first state and the second state are selectively used, thereby changing the season and time.
  • the area of the indoor heat exchanger 10 that performs the sensible heat treatment and the latent heat treatment can be changed according to the change in the magnitude of the indoor load accompanying the fluctuation, and more flexible control than the conventional reheat dehumidification operation becomes possible.
  • the switching between the first state and the second state depends on the magnitude of the sensible heat load and the latent heat load in the room detected by the temperature sensor 91 and the humidity sensor 92 (see Fig. 6) attached to the indoor unit 2. Depending on the situation, it may be controlled automatically or manually by the user.
  • both the first indoor heat exchange section 15 and the second indoor heat exchange section 17 can function as an evaporator.
  • both the first solenoid valve 16a and the second solenoid valve 16b are in an open state.
  • the indoor unit 2 having the reheat dehumidification type refrigerant circuit as in the present embodiment the electric power provided between the first indoor heat exchange unit 15 and the second indoor heat exchange unit 17 during the cooling operation.
  • the pressure loss of the refrigerant in the magnetic valve becomes a problem.
  • two first solenoid valves 16a and a second solenoid valve 16b are arranged in parallel between the first indoor heat exchange unit 15 and the second indoor heat exchange unit 17, so that the refrigerant The pressure loss can be reduced and the cooling capacity can be prevented from lowering.
  • the refrigerant flows in the direction opposite to that during the cooling operation.
  • the electric expansion valve 14 is closed, and the first solenoid valve 16a and the second solenoid valve 16b are both opened. Since the refrigerant that has passed through the electric expansion valve 14 expands to become a low-temperature and low-pressure liquid refrigerant, the outdoor heat exchange functions as an evaporator.
  • the refrigerant discharged from the compressor passes through the first indoor heat exchange unit 15 and the second indoor heat exchange unit 17, and both the first indoor heat exchange unit 15 and the second indoor heat exchange unit 17 are condensers. Function as.
  • the refrigerant flowing through the second indoor heat exchange unit 17 during the cooling operation flows from the inside to the outside of the second front part 53. Therefore, the second front part 53 having a short dimension is used.
  • the refrigerant flows into the second row portion 83 of the second front portion 53 before the first row portion 84 of the second front portion 53. For this reason, it overlaps with the first row portion 84 in the two row portions 83 of the second front portion 53, and the portion (hereinafter referred to as the “notch portion 86”) has a relatively high liquid phase ratio.
  • the refrigerant flows.
  • the air passing through the notched portion 86 can also be sufficiently heat-exchanged, and condensation in the cross flow fan 21 can be prevented.
  • the second indoor heat exchange unit 17 is located downstream of the refrigerant flow with respect to the first indoor heat exchange unit 15, and thus the refrigerant flowing in the downstream portion in the second indoor heat exchange unit 17.
  • the gas phase ratio tends to be high. Since the notch portion 86 does not overlap the one-row portion 84, the notch portion 86 has less heat exchange than the other portions. Therefore, when such a refrigerant with a high gas phase ratio flows through the notch 86, there is a high possibility that air with insufficient heat exchange will flow.
  • the refrigerant flows into the second row portion 83 of the second front portion 53 before the first row portion 84 of the second front portion 53 having the short dimension as described above. This prevents the refrigerant from finally flowing through the notch 86 in the indoor heat exchanger 10. Thus, air with insufficient heat exchange is prevented from flowing.
  • a structure such as the control board 94 is arranged in a space generated by arranging the first row part 84 having a short dimension on the second row part 83. For this reason, the indoor heat exchanger 10 and the structure can be arranged in a compact manner, and the outer shape of the indoor unit 2 can be reduced.
  • the first row portion 84 having a short horizontal dimension is overlapped with the second row portion 83.
  • the heat exchange portion having a short size in other directions may be provided.
  • a heat exchanging portion having a short dimension may be provided in the vertical direction or the inclined direction of the inclined surface of the indoor heat exchanger 10.
  • the heat exchanging part with a short dimension may be provided in another part of the force chamber heat exchanging part 10 provided in the second front part 53.
  • the first front part 52 and the rear part 51 may be provided.
  • the present invention has an effect of suppressing the occurrence of condensation in the blower fan, and is useful as an indoor unit of an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

 面積の異なる熱交換層が重ねられた熱交換器を備える空気調和機の室内機において、送風ファンにおける結露の発生を抑える。空気調和機の室内機は、クロスフローファンと室内熱交換器(10)とを備える。クロスフローファンは、空気の流れを生成する。室内熱交換器(10)は、2列部(83)と1列部(84)とを有する。1列部(84)は、2列部(83)よりも小さい面積を有し、空気の通過方向に2列部(83)の一部に重なって配置される。そして、冷房運転時においては、1列部(84)よりも先に2列部(83)に冷媒が流れる。

Description

明 細 書
空気調和機の室内機
技術分野
[0001] 本発明は、空気調和機の室内機に関する。
背景技術
[0002] 空気調和機の室内機には、空気の流れを生成する送風ファンと、通過する空気と 熱交換を行う熱交^^とを備え、熱交換された空気を室内へと吹き出すことによって 冷房や暖房などの空気調和を行うものがある力 このような空気調和機の室内機に おいて、面積の異なる熱交換層が重なって設けられることがある。例えば、以下に示 す特許文献 1にお ヽては、熱交換器の幅寸法よりも小さ ヽ寸法を有する補助熱交換 器が熱交換器の一部に重設されて ヽる。
特許文献 1:特開平 10— 205877号公報
発明の開示
発明が解決しょうとする課題
[0003] 上記のような熱交^^においては、面積の異なる熱交換層が重ねられているため、 空気流れ方向の厚みが異なる部分が生じる。上記の特許文献 1で言えば、熱交 のうち補助熱交換と重なって 、な 、部分は、補助熱交^^と重なって 、る部分と比 ベて空気の通過方向の厚みが薄ぐ通過する空気が接触する部分が少ない。このた め補助熱交^^と重なって 、な 、部分を通過する空気は十分に熱交換されな 、恐 れがある。特に、冷房運転時において、すでにある程度の熱交換が行われた冷媒は 、気体相の比率が高い状態となっており、このような冷媒が補助熱交^^と重なって いない部分に流れると、熱交換が不十分な空気が流れてしまう恐れが高い。その結 果、熱交換が十分に行われた空気と、熱交換が不十分な空気とが混ざり合い、送風 ファンにお 、て結露が生じることがある。
本発明の課題は、面積の異なる熱交換層が重ねられた熱交換器を備える空気調 和機の室内機にぉ 、て、送風ファンにおける結露の発生を抑えることにある。
課題を解決するための手段 [0004] 第 1発明にかかる空気調和機の室内機は、送風ファンと熱交翻とを備える。送風 ファンは、空気の流れを生成する。熱交 は、第 1熱交換層と第 2熱交換層とを有 する。第 2熱交換層は、第 1熱交換層よりも小さい面積を有し、空気の通過方向に第 1熱交換層の一部に重なって配置される。そして、冷房運転時においては、第 2熱交 換層よりも先に第 1熱交換層に冷媒が流れる。
この空気調和機の室内機では、冷房運転時においては、第 2熱交換層よりも先に 第 1熱交換層に冷媒が流れ、第 1熱交換層に液相の比率が比較的高い冷媒を流す ことができる。このため、第 2熱交換層のうち第 1熱交換層と重なっていない部分にお いても十分に熱交換を行うことができる。これにより、この空気調和機の室内機では、 送風ファンにおける結露の発生を抑えることができる。
[0005] 第 2発明にかかる空気調和機の室内機は、第 1発明の空気調和機の室内機であつ て、第 2熱交換層は、第 1熱交換層の長手方向に第 1熱交換層よりも短い形状を有す る。
この空気調和機の室内機では、第 1熱交換層の長手方向の一部に第 2熱交換層と 重なっていない部分が生じる。しかし、冷房運転時においては、第 2熱交換層よりも 先に第 1熱交換層に冷媒が流れることによって、この部分においても、液相の比率が 比較的高 ヽ冷媒を流すことができ、十分に熱交換を行うことができる。
第 3発明にかかる空気調和機の室内機は、第 1発明または第 2発明の空気調和機 の室内機であって、第 1熱交換層は、第 2熱交換層よりも送風ファンに近い側に位置 する。
従来、面積が大きい方の熱交換層が、面積が小さい方の熱交換層よりも送風ファン の近くに位置する場合、冷房運転時には、送風ファン力 遠くに位置する小さい方の 熱交換層から冷媒が流されることが多い。このような場合、上述したように、熱交換の 不十分な空気が流れて、送風ファンに結露が生じる恐れが高い。しかし、この空気調 和機の室内機では、従来とは逆に、送風ファンの近くに位置する第 1熱交換層から冷 媒が流される。これにより、この空気調和機の室内機では、送風ファンにおける結露 の発生を抑えることができる。
[0006] 第 4発明にかかる空気調和機の室内機は、第 1発明から第 3発明のいずれかの空 気調和機の室内機であって、第 2熱交換層は、熱交換器の最外層を構成する。 この空気調和機の室内機では、第 1熱交換層よりも小さい面積を有する第 2熱交換 層が熱交翻の最外層を構成するため、熱交翻は、最外層の一部が欠けた形状 となる。このため、最外層の一部が欠けた部分を他の構成部品の配置スペースとして 禾 IJ用することがでさる。
第 5発明にかかる空気調和機の室内機は、第 4発明の空気調和機の室内機であつ て、第 1熱交換層は、熱交翻の最内層を構成する。
この空気調和機の室内機では、第 1熱交換層が熱交^^の最内層を構成するため 、第 1熱交換層を通過した空気はそれ以上熱交換されずに送風ファンの近傍に到達 する恐れが高い。従って、第 2熱交換層よりも先に第 1熱交換層に冷媒を流すこと〖こ よって熱交換の不十分な空気が流れることを抑える本発明が特に有効である。
[0007] 第 6発明にかかる空気調和機の室内機は、第 1発明から第 5発明のいずれかの空 気調和機の室内機であって、所定の構成部品をさらに備える。この構成部品は、第 2 熱交換層と重ならない第 1熱交換層の一部に対向し、且つ、第 2熱交換層の側方に 位置する空間に配置される。
この空気調和機の室内機では、第 2熱交換層と重ならない第 1熱交換層の一部に 対向し、且つ、第 2熱交換層の側方に位置する空間に、所定の構成部品が配置され る。すなわち、第 1熱交換層が存在しないことによって形成された空間に構造物が配 置される。これにより、この空気調和機の室内機では、外形を小型化することができる 発明の効果
[0008] 第 1発明にかかる空気調和機の室内機では、冷房運転時において第 1熱交換層に 液相の比率が比較的高い冷媒を流すことができるため、送風ファンにおける結露の 発生を抑えることができる。
第 2発明にかかる空気調和機の室内機では、第 1熱交換層の長手方向の一部に第 2熱交換層と重なっていない部分が生じる力 この部分においても、液相の比率が比 較的高 ヽ冷媒を流すことができ、十分に熱交換を行うことができる。
第 3発明にかかる空気調和機の室内機では、従来とは逆に、送風ファンの近くに位 置する第 1熱交換層力 冷媒が流されるため、送風ファンにおける結露の発生を抑え ることがでさる。
第 4発明にかかる空気調和機の室内機では、熱交翻の最外層の一部が欠けた 部分を他の構成部品の配置スペースとして利用することができる。
[0009] 第 5発明にかかる空気調和機の室内機では、第 2熱交換層よりも先に第 1熱交換層 に冷媒を流すことによって熱交換の不十分な空気が流れることを抑える本発明が特 に有効である。
第 6発明にかかる空気調和機の室内機では、第 1熱交換層が存在しないことによつ て形成された空間に構造物が配置されることにより、外形を小型化することができる。 図面の簡単な説明
[0010] [図 1]空気調和機の外観図。
[図 2]冷媒回路の構成図。
[図 3]室内機の側面断面図。
[図 4]室内熱交換器における冷媒の流れの順路を示す図。
[図 5]室内熱交翻ユニットの外観斜視図。
[図 6]制御ブロック図。
[図 7]室内熱交換器ユニットの側面図。
符号の説明
[0011] 1 空気調和機
2 室内機
10 室内熱交換器 (熱交換器)
21 クロスフローファン(送風ファン)
83 2列部 (第 1熱交換層)
84 1列部 (第 2熱交換層)
94 制御基板 (構成部品)
発明を実施するための最良の形態
[0012] <空気調和機の構成 >
本発明の一実施形態に力かる室内機 2を備えた空気調和機 1について、図 1〜図 6 を用いて説明すれば、以下の通りである。
本実施形態の空気調和機 1は、図 1に示すように、調和された空気を室内に供給す るための装置であって、室内の壁面などに取り付けられる室内機 2と、室外に設置さ れる室外機 3とを備えている。
室内機 2内には、後述する室内熱交 が収納されており、室外機 3内には、 後述する室外熱交 が収納されている。そして、室内機 2内の室内熱交 0と室外機 3内の室外熱交 とが冷媒配管 4によって接続されることにより、冷媒 回路が構成される。
[0013] 空気調和機 1が有する冷媒回路は、図 2に示すように、圧縮機 11と、四路切換弁 1 2と、室外熱交換器 13と、電動膨張弁 14と、第 1室内熱交換部 15と、第 1電磁弁 16a および第 2電磁弁 16bと、第 2室内熱交換部 17と、アキュムレータ 18とを含んでいる 。なお、第 1室内熱交換部 15と第 2室内熱交換部 17とは、共に図 3、図 4および図 5 に示す室内熱交換器 10を構成する。
圧縮機 11は、冷媒回路内に流れる冷媒の圧力を上昇させて冷媒を送り出す。 四路切換弁 12は、圧縮機 11の吐出側と接続されており、冷房、再熱除湿運転時と 暖房運転時とで冷媒の流路を変更する。なお、図 2に示す四路切換弁 12は、冷房運 転時および再熱除湿運転時における状態を示している。
室外熱交 13は、四路切換弁 12と接続されており、暖房運転時には蒸発器とし て機能し、冷房、再熱除湿運転時には凝縮器として機能する。また、室外熱交換器 1 3は、隣接配置されたプロペラファン 38によって室外機 3内に吸い込まれた空気との 間で熱交換を行う。
[0014] 電動膨張弁 14は、室外熱交換器 13と接続されており、冷媒の圧力を変化させる膨 張機構として機能する。例えば、冷房運転時には、後述する第 1室内熱交換部 15を 蒸発器として機能させるために、閉状態となって冷媒を膨張させる。一方、再熱除湿 運転時には、第 1室内熱交換部 15を凝縮器として機能させるために、全開状態とな つて冷媒の圧力を変化させない。
第 1室内熱交換部 15は、電動膨張弁 14と接続されており、冷房運転時には蒸発 器として機能し、暖房、再熱除湿運転時には凝縮器として機能する。 第 1電磁弁 16aおよび第 2電磁弁 16bは、図 2に示すように、冷媒回路上において 第 1室内熱交換部 15と第 2室内熱交換部 17との間に互いに並列に配置されており、 冷媒回路の冷媒の流れを制御することができる。具体的には、第 1電磁弁 16aおよび 第 2電磁弁 16bは、通過する冷媒を膨張させる膨張弁であり、再熱除湿運転時には 第 2室内熱交換部 17へ流れる冷媒の圧力を低下させることができる。
[0015] 第 2室内熱交換部 17は、並列配置された第 1電磁弁 16aおよび第 2電磁弁 16bと 接続されており、再熱除湿運転時および冷房運転時に蒸発器として、暖房運転時に は凝縮器として機能する。
アキュムレータ 18は、圧縮機 11の吸引側と接続されており、圧縮機 11に液状の冷 媒が混入することを防止する。
室内機 2は、以上のように、第 1室内熱交換部 15および第 2室内熱交換部 17を備 えており、これらの室内熱交換部 15, 17が接触する空気との間で熱交換を行う。そし て、室内機 2は、室内空気を吸い込み第 1室内熱交換部 15および第 2室内熱交換部 17を経由して空気調和された空気を室内に排出するための気流を発生させるクロス フローファン 21 (図 2,図 3参照)を備えている。クロスフローファン 21は、室内機 2内 に設けられる室内ファンモータ 22によって中心軸を中心にして回転駆動される。
[0016] 室外機 3は、圧縮機 11と、四路切換弁 12と、アキュムレータ 18と、室外熱交翻 1 3と、電動膨張弁 14とを備えている。電動膨張弁 14は、フィルタ 35および液閉鎖弁 3 6を介して配管 41と接続されており、この配管 41を介して室内機 2の室内熱交換部 1 5, 17の一端と接続される。また、四路切換弁 12は、ガス閉鎖弁 37を介して配管 42 と接続されており、この配管 42を介して室内機 2の室内熱交換部 15, 17の他端と接 続されている。なお、この配管 41、 42は、図 1の冷媒配管 4に相当する。また、室外 機 3には、室外機 3内へ空気を吸い込み、室外熱交換器 13での熱交換後の空気を 外部に排出するためのプロペラファン 38が設けられている。このプロペラファン 38は 、室外ファンモータ 39によって回転駆動される。
<室内機の構成 >
室内機 2は、水平方向であり且つ正面視における横方向に長い形状を有している( 図 1参照)。以下、水平方向のうち、室内機 2の正面視における横方向を単に「横方 向」と呼ぶ。室内機 2は、図 3に示すように、主として、室内機 2の内部に収容されてい る送風機構 7、室内熱交換器ユニット 5、第 1電磁弁 16aおよび第 2電磁弁 16b、室内 機ケーシング 8および制御部 90 (図 6参照)を備える。
[0017] 〔送風機構〕
送風機構 7は、室内から室内機 2の内部に入り室内熱交換器 10を通って再び室内 へと吹き出される空気の流れを生成する機構であり、クロスフローファン 21、室内ファ ンモータ 22 (図 2参照)等を有する。クロスフローファン 21は、横方向に長い円筒形 状に構成され、中心軸が横方向に平行になるように配置されている。室内ファンモー タ 22は、クロスフローファン 21の側方に配置され、クロスフローファン 21を回転駆動 する。送風機構 7は、後述する底フレーム 62によって支持されている。
〔室内熱交翻ユニット〕
室内熱交換器ユニット 5は、図 3に示すように室内熱交換器 10、補助配管 50 (図 5 参照)などを有する。室内熱交 は、上述した第 1室内熱交換部 15および第 2 室内熱交換部 17を有している。なお、図 2の冷媒回路に含まれる第 1室内熱交換部 15および第 2室内熱交換部 17は、個々独立した構成となっているが、本実施形態で は、 1つの熱交^^の中でその一部分とそれ以外の部分とが第 1室内熱交換部 15 および第 2室内熱交換部 17に相当して 、る。
[0018] 室内熱交翻10は、図 5に示すように、横方向に長い形状を有しており、室内機ケ 一シング 8 (図 1参照)の長手方向に平行に配置されている。室内熱交^^ 10は、図 3に示すように、後部 51、第 1前部 52および第 2前部 53が組み合わされて構成され ている。
後部 51は、室内熱交換器 10の後側上部を構成しており、長方形の板状の形状を 有する。後部 51は、上端が下端よりも前方に位置するように傾斜して配置されている 。また、後部 51は、空気の通過方向に伝熱管が 2列配置された 2列熱交換器となつ ている。
第 1前部 52は、室内熱交換器 10の前側上部を構成しており、後部 51と同様の長 方形の形状を有する。第 1前部 52は、上端が下端よりも後側に位置するように傾斜し て配置されており、第 1前部 52の上端と後部 51の上端とは、近接または接合されて いる。すなわち、第 1前部 52と後部 51とは側面視において逆 V字型形状となるように 組み合わされている。また、図 4に示すように、第 1前部 52は、 2列部 81と 1列部 82と を有している。 2列部 81は、互いに平行に配置された複数のフィンを垂直に貫通する 複数の伝熱管が 2列に分かれて配置されている部分である。 1列部 82は、互いに平 行に配置された複数のフィンを垂直に貫通する複数の伝熱管が 1列に配置されてい る部分である。なお、各列の複数の伝熱管は、後述する後傾斜面 54に沿って並んで いる。 2列部 81は、室内熱交^^ 10の最も内側すなわちクロスフローファン 21 (図 3 参照)に近い側に位置しており、室内熱交 の最内層の一部を構成している。 1列部 82は、室内熱交^^ 10の最も外側すなわちクロスフローファン 21から遠い側 に位置しており、室内熱交翻 10の最外層の一部を構成している。 1列部 82は、空 気の通過方向に 2列部 81に重なって設けられており、 2列部 81の外側において 2列 部 81に隣接している。また、 1列部 82と 2列部 81とは、横方向に同じ長さを有してお り、 1列部 82の両側端部と 2列部 81の両側端部とは揃って配置されている。また、 1 列部 82と 2列部 81とは、上下方向にも略同じ寸法であり、上端部および下端部も揃 つて配置されている。このように、第 1前部 52は、空気の通過方向すなわち横方向に 垂直な方向に複数の伝熱管が 3列に分かれて並んだ 3列熱交換器となっている。 第 2前部 53は、室内熱交換器 10の前側下部を構成しており、他の部分と同様に長 方形の板状の形状を有する。第 2前部 53は、第 1前部 52の下方に配置されており、 第 1前部 52の下端と第 2前部 53の上端とは、近接又は接合されている。また、第 2前 部 53は、第 1前部 52と同様に 2列部 83と 1列部 84とを有している。 2列部 83は、互い に平行に配置された複数のフィンを垂直に貫通する複数の伝熱管が 2列に分かれて 配置されている部分である。 1列部 84は、互いに平行に配置された複数のフィンを垂 直に貫通する複数の伝熱管力 ^列に配置されている部分である。なお、各列の複数 の伝熱管は、後述する前傾斜面 55に沿って並んでいる。 2列部 83は、室内熱交換 器 10の最も内側すなわちクロスフローファン 21に近い側に位置しており、室内熱交 換器 10の最内層の一部を構成している。 1列部 84は、室内熱交換器 10の最も外側 すなわちクロスフローファン 21から遠い側に位置しており、室内熱交^^ 10の最外 層の一部を構成している。 1列部 84は、空気の通過方向に 2列部 83の一部に重なつ て設けられており、 2列部 83の外側において 2列部 83に隣接している。また、第 1列 部 84と第 2列部 83とは上下方向には略同じ寸法である力 横方向に関して、 1列部 8 4は 2列部 83よりも小さい寸法となっている。図 5に示すように、 1列部 84の横方向の 一側端は、 2列部 83の横方向の一側端と揃って配置されているが、 1列部 84の横方 向の他側端は 2列部 83の横方向の他側端と揃っておらず、 1列部 84は 2列部 83より も横方向に短い形状となっている。具体的には、 1列部 84の正面視における右側端 は、 2列部 83の横方向の右側端と揃って配置されているが、 1列部 84の左側端は 2 列部 83の左側端と揃っていない。従って、第 2前部 53は、空気の通過方向に複数の 伝熱管が 3列に分かれて並んだ 3列熱交換部と、 3列熱交換部よりも 1列少なく伝熱 管が 2列に分かれて並んだ 2列熱交換部とに分かれており、 2列熱交換部は、第 2前 部 53の左端近傍に位置している。従って、 1列部 84は 2列部 83よりも小さい面積を 有しており、 1列部 84の略全ての部分は第 2列部 83に重なっているが 2列部 83の一 部は 1列部 84に重なって ヽな 、。
[0020] 室内熱交換器 10は、上記のように、後部 51、第 1前部 52および第 2前部 53が組み 合わされて構成されているため、側面視において上方に凸に屈曲した形状を有して いる。室内熱交翻 10の屈曲の頂点 T1よりも後側の部分は、上端が前方に下端が 後方に位置するように傾斜した傾斜面となっている(以下「後傾斜面 54」と呼ぶ)。後 傾斜面 54は、後部 51の一部である。室内熱交換器 10の屈曲の頂点 T1よりも前側の 部分は、上端が後方に下端が前方に位置するように傾斜した傾斜面となっている(以 下「前傾斜面 55」と呼ぶ)。前傾斜面 55は、第 1前部 52の一部である。この前傾斜面 55と後傾斜面 54との接合部分が前述の屈曲の頂点 T1となっている。室内熱交 10は、横方向に長い形状を有しており、前傾斜面 55および後傾斜面 54もそれぞれ 横方向に長!、長方形の形状を有する傾斜した平面となって!/、る。
[0021] 室内熱交^^ 10は、クロスフローファン 21の円周面に対向して配置されており、ク ロスフローファン 21の前方、上方を取り囲むように取り付けられている。第 1室内熱交 換部 15および第 2室内熱交換部 17は、クロスフローファン 21が回転することにより発 生する気流によって吸い込まれた空気に対して、第 1室内熱交換部 15および第 2室 内熱交換部 17における伝熱管の内部を通過する冷媒との間で熱交換を行わせる。 そして、室内機 2は、水平フラップ 70によって吹き出し方向を調整しながら、吹出口 7 1から空気調和された空気を吹き出す。
補助配管 50は、室内熱交翻10の側面力も突出した複数の伝熱管を互いに繋い だり、第 1室内熱交換部 15および第 2室内熱交換部 17と冷媒配管 4とを繋いだりす る配管である。殆どの補助配管 50は、室内熱交換器 10の側方の空間において複雑 に湾曲して配設されているが、一部の補助配管(以下、「後部補助配管 56」と呼ぶ) は、図 5に示すように室内熱交翻10の側方力も室内熱交翻10の後方の空間を 通り、第 1電磁弁 16aおよび第 2電磁弁 16bに接続されている。室内熱交換器 10の 側方の補助配管 50は、複雑に湾曲した形状を有しているのに対して、後部補助配 管 56は、比較的直線的な形状を有している。後部補助配管 56は、室内熱交翻10 の後方において横方向に延設されており、室内熱交翻10の側方の補助配管 50 が配設されている空間の横方向の長さよりも長い。これらの補助配管 50によって室 内熱交換器 10に流される冷媒の順路について以下説明する。
冷房運転時および再熱除湿運転時は、図 2において、室外熱交換器 13を出た冷 媒は、電動膨張弁 14を通り、室外機 3から配管 41を通り室内機 2へと流れる。室内機 2へと運ばれた冷媒は、補助配管 50 (図 5参照)によって、まず第 1室内熱交換部 15 へと流れる。このとき冷媒は、補助配管 50によって 2つのルートに分かれて、後部 51 と第 1前部 52の一部とに流れる(図 3参照)。第 1室内熱交換部 15から出た冷媒は、 それぞれ第 1電磁弁 16aおよび第 2電磁弁 16bを通過して、それぞれ 2つのルートに 分かれ、第 2室内熱交換部 17へと流れる。このとき、第 1電磁弁 16aおよび第 2電磁 弁 16bを通過した冷媒は、補助配管 50によって図 4において矢印で示すように 4つ のルート R1— R4に分けられ、第 1前部 52の一部および第 2前部 53へと流れる。この とき、 4つに分かれた補助配管 50は、それぞれ第 1前部 52および第 2前部 53の最も 内側の列に配置された複数の伝熱管の一部に接続されており、各ルート R1— R4を 流れる冷媒は、第 1前部 52および第 2前部 53における最も内側の列の伝熱管すな わち 2列部 81, 83の内側の列の伝熱管を流れる。次に、冷媒は、 2列部 81, 83にお ける外側の列の伝熱管を流れ、最後に 1列部 82, 84の伝熱管を流れる。冷媒は、こ のように 4つのルート Rl—R4に分かれて第 1前部 52の一部と第 2前部 53とを内側か ら外側へと流れて室内熱交^^ 10から排出される。例えば、第 3ルート R3では、第 2 前部 53の 1列部 84よりも先に 2列部 83から冷媒が流れる。第 3ルート R3を通る冷媒 は、まず 2列部 83における内側の列に含まれる伝熱管を 2つ通り、次に 2列部 83に おける外側の列に含まれる伝熱管を 2つ通り、最後に 1列部 84に含まれる伝熱管を 2 つ通った後、第 2前部 53から排出される。 4つのルート R1—R4に分かれて室内熱交 翻10から排出された冷媒は、補助配管 50によって一つに纏められ、配管 42を通 つて室外機 3へと送られる。
暖房運転時には、四路切換弁 12によって冷媒の流れ方向が切り換えられ、上記と は逆方向に冷媒が流れる。
[0023] 〔室内機ケーシング〕
室内機ケーシング 8は、上述したように、室内熱交換器ユニット 5や送風機構 7を収 容するものであり、図 1に示すように、横方向に長い箱形の形状を有している。室内 機ケーシング 8は、側面視において略 D型の形状を有しており、奥行き方向の寸法す なわち厚さが上下方向の寸法すなわち高さよりも小さい薄型の形状となっている。こ の室内機ケーシング 8は、図 3に示すように、前面グリル 61と底フレーム 62とを有して いる。
前面グリル 61は、室内熱交換器ユニット 5の前方および上方を覆うように構成され ており、室内機 2の上面側、前面側の外郭を形成する。前面グリル 61の上面は、格 子状の複数の開口が設けられている。これらの開口は、室内力 室内機ケーシング 8 の内部に吸い込まれる空気が通過する吸込口 60となっている。また、前面グリル 61 の上面は、前述した室内熱交換器 10の頂点 T1と近接している。
[0024] 底フレーム 62は、室内熱交換器ユニット 5の後方および下方を覆うように構成され ており、室内機 2の底面側および背面側の外郭を構成する。底フレーム 62は、室内 機 2の底面を構成する底フレーム下部 63と、室内機 2の背面を構成する底フレーム 背面部 64とを有している。底フレーム下部 63には、送風機構 7のクロスフローファン 2 1を収容する空間が設けられており、この空間は、底フレーム 62の前面下部に設けら れた吹出口 71と連通している。底フレーム背面部 64は、室内熱交翻 10の後方を 覆っており、上下方向に延びている。底フレーム背面部 64の上端 T2は、前面グリル 61の上面の後端と近接または接触している。また、底フレーム背面部 64と、室内熱 交翻 10の後部 51の下端とは近接している。
〔第 1電磁弁および第 2電磁弁〕
第 1電磁弁 16aおよび第 2電磁弁 16bは、図 3および図 5に示すように、底フレーム 背面部 64と室内熱交 の後部 51との間であって後部 51の後方において室内 熱交翻10の長手方向すなわち横方向に距離を隔てて配置されている。より詳しく は、第 1電磁弁 16aおよび第 2電磁弁 16bは、室内熱交換器 10の後傾斜面 54の上 部近傍に対向して配置されている。すなわち、第 1電磁弁 16aおよび第 2電磁弁 16b は、室内熱交^^ 10の後部 51と底フレーム背面部 64との間のくさび型の空間に配 置されている。また、第 1電磁弁 16aおよび第 2電磁弁 16bは、室内熱交翻10の後 部 51からの距離が略同一となるように配置されており、横方向に平行に一直線上に 並んで配置されている。従って、第 1電磁弁 16aおよび第 2電磁弁 16bは、同じ高さ に室内熱交^^ 10の長手方向に沿って一直線上に並んで配置されている。また、 第 1電磁弁 16aおよび第 2電磁弁 16bは、図 3に示すように、側面視においては重な つて配置される。さらに、第 1電磁弁 16aおよび第 2電磁弁 16bは、底フレーム背面部 64の上端 T2を上方に越えないように配置されており、底フレーム背面部 64の上端 T 2と略同じ高さに位置している。
[0025] 〔制御部〕
図 6に示す制御部 90は、室内機 2と室外機 3とに分かれて設けられており、リモコン 93からの指示に従って、指示された空調運転を行う。また、図 7に示すように、この制 御部 90の一部を含む制御基板 94は、第 2前部 53の左端近傍の前方に設けられた 空間に設置される。すなわち、制御基板 94は、第 2前部 53の 1列部 84と重ならない 2 列部 83の一部に対向し、且つ、 1列部 84の左側方に位置する空間に配置される。 制御部 90による具体的な制御内容について以下説明する。
[0026] <再熱除湿運転時の動作 >
再熱除湿運転時には、室内機 2において、第 1室内熱交換部 15を凝縮器として、 第 2室内熱交換部 17を蒸発器として機能させる。このため、電動膨張弁 14を開状態 とする一方、第 1電磁弁 16aおよび第 2電磁弁 16bの片方あるいは両方を閉状態とす る。これにより、第 1室内熱交換部 15を凝縮器として機能させるとともに、第 2室内熱 交換部 17に流れる冷媒が膨張して低温低圧の液冷媒となるため、第 2室内熱交換 部 17の全体あるいは一部を蒸発器として機能させることが可能になる。
なお、第 1電磁弁 16aおよび第 2電磁弁 16bについて、片方あるいは両方を閉状態 とするか否かは、室内の顕熱負荷および潜熱負荷の大きさに応じて決定される。す なわち、例えば、室内の湿度が高い (潜熱負荷が大きい)場合には、潜熱処理を大 量に行う必要がある。このため、第 2室内熱交換部 17の全ての部分を蒸発器として 使用できるように、第 1電磁弁 16aおよび第 2電磁弁 16bの双方を閉状態とし、第 2室 内熱交換部 17全体を蒸発器として機能させる。一方、室内の湿度がそれほど高くな い (潜熱負荷が小さい)場合には、第 2室内熱交換部 17の一部だけを蒸発器として 使用できればよい。このため、片方の第 1電磁弁 16aのみを閉状態とする。
このように、第 1 ·第 2電磁弁 16a, 16bの両方を閉状態にするか、一方だけを閉状 態にするかによつて第 1状態と第 2状態とを使い分けることで、季節や時間変動に伴 う室内負荷の大きさの変化に応じて顕熱処理および潜熱処理を行う室内熱交換器 1 0の面積を変更でき、従来の再熱除湿運転よりも柔軟な制御が可能になる。
なお、この第 1状態と第 2状態との切り換えは、室内機 2に取り付けられた温度セン サ 91や湿度センサ 92 (図 6参照)によって検知された室内の顕熱負荷、潜熱負荷の 大きさに応じて、自動的に制御されていてもよいし、ユーザによって手動で行われて ちょい。
<冷房運転時の動作 >
本実施形態の室内機 2では、冷房運転時には、第 1室内熱交換部 15および第 2室 内熱交換部 17の双方を蒸発器として用いるために、電動膨張弁 14を閉状態とする。 これにより、電動膨張弁 14を通過した冷媒は膨張して低温低圧の液冷媒となるため 、第 1室内熱交換部 15および第 2室内熱交換部 17の双方を蒸発器として機能させる ことができる。なお、このときの第 1電磁弁 16aおよび第 2電磁弁 16bは、ともに開状 態となる。
ここで、本実施形態のような再熱除湿方式の冷媒回路を有する室内機 2では、冷房 運転時において第 1室内熱交換部 15と第 2室内熱交換部 17との間に設けられた電 磁弁における冷媒の圧力損失が問題となる。しかし、本実施形態の室内機 2では、第 1室内熱交換部 15と第 2室内熱交換部 17との間に 2つの第 1電磁弁 16aおよび第 2 電磁弁 16bを並列配置することで冷媒の圧力損失を低減して、冷房能力の低下を回 避することができる。
<暖房運転時の動作 >
本実施形態の室内機 2では、暖房運転時には、冷房運転時と逆方向に冷媒が流 れる。電動膨張弁 14は閉状態となり、第 1電磁弁 16aおよび第 2電磁弁 16bは、とも に開状態となる。電動膨張弁 14を通過した冷媒は膨張して低温低圧の液冷媒となる ため、室外熱交 は、蒸発機として機能する。また、圧縮機から吐出された冷媒は 、第 1室内熱交換部 15および第 2室内熱交換部 17を通り、第 1室内熱交換部 15お よび第 2室内熱交換部 17の双方が凝縮器として機能する。
<本空調室内機の特徴 >
(1)
この空気調和機 1の室内機 2では、冷房運転時において第 2室内熱交換部 17を流 れる冷媒は、第 2前部 53の内側から外側へと流れるため、寸法の短い第 2前部 53の 1列部 84よりも先に第 2前部 53の 2列部 83に冷媒が流れる。このため、第 2前部 53 の 2列部 83のなかで第 1列部 84と重なって 、な 、部分 (以下「切り欠き部分 86」と呼 ぶ)にも比較的液相の比率の高い冷媒が流れる。これにより、切り欠き部分 86を通過 する空気も十分に熱交換されることができ、クロスフローファン 21における結露を防 止することができる。
特に、冷房運転時においては、第 2室内熱交換部 17は、第 1室内熱交換部 15より も冷媒流れの下流に位置するため、第 2室内熱交換部 17内の下流部分を流れる冷 媒は、気相の比率が高くなり易い。切り欠き部分 86には 1列部 84が重なっていないこ とから、切り欠き部分 86は他の部分よりも熱交換を行う部分が少ない。従って、このよ うな気相の比率が高い冷媒が切り欠き部分 86を流れると、熱交換の不十分な空気が 流れる恐れが高い。しかし、この空気調和機 1の室内機 2では、上記のように寸法の 短い第 2前部 53の 1列部 84よりも先に第 2前部 53の 2列部 83に冷媒が流れる。この ため、冷媒が室内熱交翻10のなかで切り欠き部分 86を最後に流れることが防止さ れ、熱交換の不十分な空気が流れることが防止されている。
(2)
この空気調和機 1の室内機 2では、寸法の短い 1列部 84を 2列部 83に重ねて配置 することによって生じた空間に、制御基板 94などの構造物が配置される。このため、 室内熱交翻10と構造物とをコンパクトに配置することができ、室内機 2の外形を小 型ィ匕することができる。
[0029] <他の実施形態 >
上記の実施形態では、横方向の寸法の短い 1列部 84が 2列部 83に重ねられてい るが、横方向に限らず他の方向の寸法が短い熱交換部が設けられてもよい。例えば 、上下方向や室内熱交換器 10の傾斜面の傾斜方向に寸法が短い熱交換部が設け られてちよい。
また、上記の実施形態では、寸法の短い熱交換部が第 2前部 53に設けられている 力 室内熱交換部 10の他の部分に設けられてもよい。例えば、第 1前部 52や後部 5 1に設けられてもよい。
このような場合も上記実施形態と同様に熱交換の不十分な空気が流れる恐れがあ る力 本発明を適用することによって、クロスフローファン 21での結露を防止すること ができる。
産業上の利用可能性
[0030] 本発明は、送風ファンにおける結露の発生を抑えることができる効果を有し、空気 調和機の室内機として有用である。

Claims

請求の範囲
[1] 空気の流れを生成する送風ファン(21)と、
第 1熱交換層 (83)と、前記第 1熱交換層(83)よりも小さい面積を有し前記空気の 通過方向に前記第 1熱交換層(83)の一部に重なって配置される第 2熱交換層(84) とを有する熱交 (10)と、
を備え、
冷房運転時においては、前記第 2熱交換層(84)よりも先に前記第 1熱交換層 (83) に冷媒が流れる、
空気調和機(1)の室内機 (2)。
[2] 前記第 2熱交換層(84)は、前記第 1熱交換層(83)の長手方向に前記第 1熱交換 層(83)よりも短 、形状を有する、
請求項 1に記載の空気調和機(1)の室内機 (2)。
[3] 前記第 1熱交換層 (83)は、前記第 2熱交換層 (84)よりも前記送風ファン (21)に近 い側に位置する、
請求項 1または 2に記載の空気調和機(1)の室内機(2)。
[4] 前記第 2熱交換層(84)は、前記熱交換器 (10)の最外層を構成する、
請求項 1から 3のいずれかに記載の空気調和機(1)の室内機(2)。
[5] 前記第 1熱交換層(83)は、前記熱交換器 (10)の最内層を構成する、
請求項 4に記載の空気調和機(1)の室内機(2)。
[6] 前記第 2熱交換層 (84)と重ならな 、前記第 1熱交換層 (83)の一部に対向し、且つ
、前記第 2熱交換層 (84)の側方に位置する空間に配置される所定の構成部品(94) をさらに備える、
請求項 1から 5のいずれかに記載の空気調和機(1)の室内機(2)。
PCT/JP2005/019184 2004-11-12 2005-10-19 空気調和機の室内機 WO2006051673A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/666,878 US7849709B2 (en) 2004-11-12 2005-10-19 Indoor unit of an air conditioner
AU2005303286A AU2005303286B2 (en) 2004-11-12 2005-10-19 Indoor unit of an air conditioner
EP05795585A EP1821041A4 (en) 2004-11-12 2005-10-19 INDOOR UNIT FOR AIR CONDITIONING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004328890A JP4036860B2 (ja) 2004-11-12 2004-11-12 空気調和機の室内機
JP2004-328890 2004-11-12

Publications (1)

Publication Number Publication Date
WO2006051673A1 true WO2006051673A1 (ja) 2006-05-18

Family

ID=36336356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019184 WO2006051673A1 (ja) 2004-11-12 2005-10-19 空気調和機の室内機

Country Status (7)

Country Link
US (1) US7849709B2 (ja)
EP (1) EP1821041A4 (ja)
JP (1) JP4036860B2 (ja)
KR (1) KR20070058694A (ja)
CN (1) CN100504194C (ja)
AU (1) AU2005303286B2 (ja)
WO (1) WO2006051673A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106678971A (zh) * 2017-01-03 2017-05-17 美的集团股份有限公司 空调柜机和空调柜机的出风控制方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275218A (ja) * 2007-04-26 2008-11-13 Daikin Ind Ltd 熱交換器
US9459029B2 (en) * 2009-01-19 2016-10-04 Fujikoki Corporation Valve controller, valve controlling method, refrigeration and cold storage system, device and method for controlling the system
US10473355B2 (en) * 2011-05-18 2019-11-12 Therma-Stor LLC Split system dehumidifier
JP5803898B2 (ja) * 2012-12-27 2015-11-04 ダイキン工業株式会社 空気調和機
JP5731581B2 (ja) * 2013-06-25 2015-06-10 三菱電機株式会社 空気調和装置
JP6734624B2 (ja) * 2014-09-30 2020-08-05 ダイキン工業株式会社 空気調和装置の室内ユニット
JP2017026230A (ja) * 2015-07-23 2017-02-02 パナソニックIpマネジメント株式会社 空調制御装置、空調装置、空調制御方法、空調制御システム、空調制御プログラム、および記録媒体
CN105371336B (zh) * 2015-12-08 2017-08-01 广东美的制冷设备有限公司 一种烟机空调室内机及具有其的制冷油烟机
EP3505838A4 (en) * 2016-08-25 2019-10-23 Mitsubishi Electric Corporation AIR CONDITIONING DEVICE, AIR CONDITIONING METHOD, AND PROGRAM
KR102296771B1 (ko) * 2017-03-31 2021-09-02 엘지전자 주식회사 공기 조화기의 실내기
CN208170542U (zh) * 2017-12-25 2018-11-30 广东志高暖通设备股份有限公司 一种空调窗机及其风门组件
CN112204208B (zh) * 2018-06-01 2022-05-03 大金工业株式会社 送风装置
CN115540064A (zh) * 2021-06-30 2022-12-30 美的集团股份有限公司 空调室内机和空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135994A (ja) * 1994-11-02 1996-05-31 Mitsubishi Electric Corp 空気調和機
JPH10205877A (ja) 1997-01-20 1998-08-04 Fujitsu General Ltd 空気調和機
JPH11248290A (ja) * 1998-03-04 1999-09-14 Sanyo Electric Co Ltd 空気調和機
JP2000018699A (ja) 1998-06-26 2000-01-18 Matsushita Electric Ind Co Ltd 空気調和機
JP2001082759A (ja) * 2000-08-30 2001-03-30 Toshiba Kyaria Kk 空気調和機の室内ユニット

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313787A (en) * 1990-10-01 1994-05-24 General Cryogenics Incorporated Refrigeration trailer
JP3540530B2 (ja) 1996-12-13 2004-07-07 東芝キヤリア株式会社 空気調和装置
JPH10196984A (ja) 1997-01-13 1998-07-31 Hitachi Ltd 空気調和機
JP4316742B2 (ja) 1999-09-09 2009-08-19 東芝キヤリア株式会社 空気調和機の室内ユニット
AU2706401A (en) * 2000-01-28 2001-08-07 Toshiba Carrier Corporation Cassette type air conditioner for mounting in the ceiling
JP3731113B2 (ja) 2001-10-26 2006-01-05 ダイキン工業株式会社 空気調和機
JP4110863B2 (ja) * 2002-07-12 2008-07-02 株式会社富士通ゼネラル 空気調和機
KR100504478B1 (ko) * 2002-11-09 2005-08-03 엘지전자 주식회사 공기조화기용 실내열교환기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135994A (ja) * 1994-11-02 1996-05-31 Mitsubishi Electric Corp 空気調和機
JPH10205877A (ja) 1997-01-20 1998-08-04 Fujitsu General Ltd 空気調和機
JPH11248290A (ja) * 1998-03-04 1999-09-14 Sanyo Electric Co Ltd 空気調和機
JP2000018699A (ja) 1998-06-26 2000-01-18 Matsushita Electric Ind Co Ltd 空気調和機
JP2001082759A (ja) * 2000-08-30 2001-03-30 Toshiba Kyaria Kk 空気調和機の室内ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1821041A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106678971A (zh) * 2017-01-03 2017-05-17 美的集团股份有限公司 空调柜机和空调柜机的出风控制方法

Also Published As

Publication number Publication date
KR20070058694A (ko) 2007-06-08
AU2005303286B2 (en) 2009-05-14
EP1821041A1 (en) 2007-08-22
JP4036860B2 (ja) 2008-01-23
US7849709B2 (en) 2010-12-14
AU2005303286A1 (en) 2006-05-18
CN101057106A (zh) 2007-10-17
US20080028784A1 (en) 2008-02-07
EP1821041A4 (en) 2010-04-21
CN100504194C (zh) 2009-06-24
JP2006138550A (ja) 2006-06-01

Similar Documents

Publication Publication Date Title
JP4036860B2 (ja) 空気調和機の室内機
WO2013146006A1 (ja) 空気調和装置の熱交換器及び空気調和装置
JP7561483B2 (ja) 室内熱交換器及び空気調和装置
WO2006003860A1 (ja) マルチ形空気調和装置
JP7457229B2 (ja) 空気調和システム
JP4857776B2 (ja) 熱交換器
JP4568058B2 (ja) 天吊型空気調和装置
JP2005024223A (ja) 空気調和装置の室内ユニット及び室内熱交換器のシール板
JP7137092B2 (ja) 熱交換器
JP5195135B2 (ja) 空気調和機
JP2004316940A (ja) 空気調和機
JP4093227B2 (ja) 空気調和機の室内機
JP2020063860A (ja) 空気調和装置
JP4734915B2 (ja) 熱交換器およびそれを備えた空気調和機の室内機
JP2020186821A (ja) 空気調和システム
JP2020063861A (ja) 空気調和装置及び空気調和装置の熱源ユニット
JP7227516B2 (ja) 換気装置
JP4646611B2 (ja) 空気調和装置
JP2006138512A (ja) 空気調和機の室内機
WO2007063738A1 (ja) 空気調和機の室内機
WO2025009339A1 (ja) 冷凍装置
WO2022224406A1 (ja) 冷凍サイクル装置及び室内機
JP4396207B2 (ja) 空調室内機
JP2005016933A (ja) 空気調和装置の室内機
WO2024241412A1 (ja) 空気調和機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11666878

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077010089

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580038328.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005303286

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005795585

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005303286

Country of ref document: AU

Date of ref document: 20051019

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005303286

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005795585

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11666878

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载