+

WO2006051665A1 - 位相折り返し展開方法とこの方法を用いた磁気共鳴イメージング装置 - Google Patents

位相折り返し展開方法とこの方法を用いた磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2006051665A1
WO2006051665A1 PCT/JP2005/018822 JP2005018822W WO2006051665A1 WO 2006051665 A1 WO2006051665 A1 WO 2006051665A1 JP 2005018822 W JP2005018822 W JP 2005018822W WO 2006051665 A1 WO2006051665 A1 WO 2006051665A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
group
data
groups
phase data
Prior art date
Application number
PCT/JP2005/018822
Other languages
English (en)
French (fr)
Inventor
Masato Ikedo
Masao Yui
Original Assignee
Kabushiki Kaisha Toshiba
Toshiba Medical Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation filed Critical Kabushiki Kaisha Toshiba
Priority to JP2006515489A priority Critical patent/JPWO2006051665A1/ja
Priority to EP05793167A priority patent/EP1797821A4/en
Priority to US11/404,840 priority patent/US20070035302A1/en
Publication of WO2006051665A1 publication Critical patent/WO2006051665A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56563Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0

Definitions

  • TECHNICAL FIELD Field of the invention is a phase folding expansion method and a magnetic resonance imaging apparatus using the method.
  • the present invention relates to a phase folding expansion method in which a phase is determined by folding each phase of a plurality of phase data into a range of 2 ⁇ .
  • the phase is obtained by data processing in an MRI (magnetic resonance imaging) apparatus. It relates to technology applied when creating maps. Background art
  • an MRI apparatus in order to perform shimming processing for correcting an inhomogeneous component of a magnetic field, creates a phase map representing a distribution of phase variation due to the inhomogeneity of the magnetic field. At this time, it is necessary to perform phase folding expansion to obtain the true value ⁇ + 2 ⁇ ( ⁇ : integer) of the phase ⁇ obtained by folding back in the range of 2 ⁇ .
  • phase folding expansion As a conventional example of phase folding expansion, first, there is a method described in the document "Radology 1994; 192: 555-561". The method described in this document establishes the phase of one point of phase data, refers to the phase of the determined phase data, and then determines the value of the phase data. This is a technique of repeating the procedure to determine the phase by performing folding expansion on one. In other words, this method is characterized in that the true phase of uncertain phase data existing in the vicinity of the data whose phase has been determined is estimated on the assumption that the phase change between adjacent phase data is steep. There is.
  • phase data located at the boundary of tissue or phase data including noise.
  • phase wrapping expansion will be performed with reference to nearby deterministic data, so the true phase will be incorrectly estimated.
  • the fear increases.
  • the processing proceeds assuming that the phase of the confirmed phase data is correct, if it fails to fold back once and the phase is confirmed while falsely estimating the true phase, the erroneously estimated phase data will be displayed. In the subsequent expansion after referencing, the true value is falsely estimated in a chain.
  • Figure 1 shows the phase data located at the boundary of the tissue and the phase data including noise.
  • the conventional phase folding expansion method shows an example in which the folding expansion fails due to the influence of noise.
  • phase wrapping expansion is performed on the phase data with reference to the determined data in the vicinity, so that there is a high possibility that the true phase is erroneously estimated.
  • the phase wrapping expansion is performed sequentially so as to match the phase between each piece of data, so there was only one piece of data with a sharper phase change than the surroundings listed above.
  • phase folding expansion failure occurs over a wide range.
  • the problem of the present invention is that a true value can be erroneously guessed, the influence of phase data can be suppressed, a robust and highly stable phase that can perform phase folding expansion.
  • An object of the present invention is to provide a folding expansion method and a magnetic resonance imaging apparatus capable of creating an ideal phase map using this method and appropriately correcting the inhomogeneous component of the magnetic field.
  • the phase wrapping expansion method according to the present invention is a phase wrapping expansion method in which the phases of a plurality of phase data in a target region are respectively expanded and expanded to determine the phase, and under a predetermined condition.
  • the phase is shifted by a predetermined amount, folded back in groups, and then phase-matched with other duplications.
  • a magnetic resonance imaging apparatus is a device that performs shimming processing for the purpose of correcting an inhomogeneous component of a magnetic field, and a phase map representing a distribution of phase variation due to the inhomogeneity of the magnetic field.
  • the phase matching means shifts the phase of all the phase data in any of the groups divided by a predetermined amount and performs folding expansion on a group basis, and then matches the phase with other groups. It is a thing.
  • FIG. 1 As an example to which the phase wrapping expansion method according to the present invention is applied, in the case where there is data having a steep phase change compared to the surroundings, the conventional phase wrapping expansion method has the effect of noise. It is a wave form diagram which shows the case where folding-back development fails by.
  • FIG. 2 is a flow chart showing a procedure flow of one embodiment of a phase folding and expanding method according to the present invention.
  • FIG. 3 is a diagram for explaining a one-to-one phase folding expansion process for a group by the method shown in FIG. 2.
  • FIG. 3 is a diagram for explaining the merger of the groups after performing the folding expansion.
  • FIG. 5 is a diagram for explaining a one-to-many folding expansion process for a group by the method shown in FIG. 2.
  • FIG. 6 is a diagram for explaining a specific example of phase wrapping expansion processing according to the present invention.
  • FIG. 7 is a configuration diagram showing a basic configuration of an MRI apparatus according to the present embodiment.
  • FIG. 8 is a diagram for explaining “spatially different partial areas” for obtaining shimming values in the MRI apparatus shown in FIG. 7.
  • FIG. 9 In the MRI apparatus shown in Fig. 7, the magnetic field of the Y-Z plane perpendicular to slice areas # 1 to # 3 It is a figure which shows field distribution.
  • FIG. 10 is an explanatory diagram of a method for obtaining the 0th-order component and first-order component simulation values for each slice region in the MRI apparatus shown in FIG. 7.
  • FIG. 11 is a diagram showing a state in which the offset differs for each slice area on the pulse sequence in the MRI apparatus shown in FIG. 7.
  • FIG. 12 is a diagram showing a correspondence relationship between shimming values and slice region pulse sequences in the MRI apparatus shown in FIG. 7.
  • FIG. 13 is a diagram showing the correspondence relationship between the magnetic field distribution before correction, the shimming value of the X 2 + Y 2 shim coil, and the partial region pulse sequence in the MRI apparatus shown in FIG. 7.
  • the phase folding expansion method proposed in the present invention is roughly divided into three procedures as shown in FIG.
  • the first is a procedure S1 for grouping the phase data before performing the phase folding expansion process.
  • the second is a procedure S2 for performing phase wrapping expansion in order to achieve phase matching between two or more arbitrary groups among the grouped groups.
  • the third is procedure S3 for merging some or all of the groups targeted for turnaround.
  • phase data grouping is performed first.
  • the procedure S1 to S3 in which the target group is merged after performing the phase wrapping expansion for the group described above, is repeatedly applied until the termination condition is satisfied by the decision procedure S4. Become.
  • phase data grouping procedure a description will be given of the phase data grouping procedure. The following explains the rules for deciding whether to include in a group with phase data for which the group is not yet determined.
  • phase difference between the phase data belonging to a certain group and the group to which the group still belongs is within a certain threshold
  • the phase difference between the phase data is within a certain threshold
  • the unaffiliated data is set to the same group and the threshold is exceeded Is a separate group for unaffiliated data.
  • (1 1) The minimum condition is that this threshold is set to a value smaller than 180 [deg], which is generally used as an indicator that phase wrapping occurs if the difference between data is larger than this. .
  • the affiliation confirmed phase data that is the counterpart of the phase difference with the unaffiliated phase data is data located in the vicinity of the unaffiliated data.
  • the data adjacent to each other vertically, horizontally, or diagonally is set as the difference partner.
  • a threshold for determining whether or not a group is the same is set in advance, and the opponent who takes the phase difference is limited to the vicinity.
  • phase data located at the center of gravity of the group is used as a phase difference pair not only in the vicinity but also at any position.
  • the threshold value may be fixed to a certain value as in (1-1), but it is more effective to use a value weighted according to the distance between the two data as the threshold value. It is. There is also a method that does not use the phase difference as an index.
  • the affiliation group has already been determined! / The power of having one assigned phase data in (1) to determine the phase data group. If the difference between the average value of the phase data and the phase of the unaffiliated phase data is within a certain threshold value, the conditions may be set to the same group, or different groups. In this case, the threshold is set to a value smaller than 180 [deg], as in (1). For example, the threshold is less than 30 [deg]. It is desirable to set a smaller value.
  • the average value of the phase data of the loop may be the average of all the phase data belonging to the group, or may be limited to data located in the vicinity of the unaffiliated phase data, for example. Take the average with the phase data!
  • phase dispersion of the phase data within the group may be included in the group if it is within a certain range, for example, within 10%.
  • the range of dispersion may be set for the entire group, or dispersion may be applied to some phase data of the group, for example, limited to the vicinity of unassigned phase data. Oh ,.
  • phase data at an arbitrary position is set as the start point, and the first group is added to the phase data at the start point.
  • the power to give ID starts.
  • the top, bottom, left, and right are the unaffiliated phase data that are diagonally adjacent to each other! )
  • the grouping of the unaffiliated phase data adjacent to any of the phase data determined by the group is determined using one of the conditions (1) to (3). Repeat the above process until all phase data groups are determined.
  • the center phase data is used as the starting point, and the force is spiraled.
  • the order of grouping must be set so that the phase data does not leak when grouped.
  • condition (1) to (3) may be fixed to the same condition throughout, or the condition may be changed during the process.
  • condition (1) (1 1) it is preferable to use condition (1) (1 1) while the phase data belonging to the group is small.
  • the power of explaining the method of grouping using the phase of the phase data is based on the absolute value instead of the phase of the phase data You may go.
  • Another example of completely different grouping that does not use the phase data information is to divide the phase data into arbitrary shapes such as rectangular for 2D, rectangular parallelepiped for 3D, and so on!
  • phase data in order to perform grouping of the phase data, it is not always necessary to perform the phase data itself obtained first, and it is not necessary to perform the grouping on the phase data obtained by performing some processing. Good.
  • the contents of processing include, for example, arbitrary filter processing such as differential filter and smooth filter, arbitrary arithmetic operation, background
  • phase data with a small signal value may be excluded from the phase data in advance by threshold processing.
  • the A and B groups were merged to form a new group with F!
  • two or more arbitrary groups, for example, C, D, and E are folded back to match the phases of each group, and the groups are merged.
  • the end condition for repeating the folding and merging is until there is one group, but the condition is not limited to this.
  • the termination condition may be arbitrarily set, such as the number of times of repeated deployment and merger, the number of groups, the number of group boundaries, and the variance of the phase at the end of the merger.
  • the priority order is determined according to the group ID (A, B,... In the previous example), the number of belonging phase data, the number of adjacent groups, etc. For example, select a high group and a group located in the vicinity of the group, or select a combination of all target groups or a group that minimizes the phase difference and dispersion between groups. Can be mentioned.
  • phase wrapping expansion processing for groups and group merging.
  • the phase data is grouped into two groups as shown in Fig. 3 where there are only four phase data from a to d on the two-dimensional plane.
  • Phase wrapping expansion processing according to the present method is performed according to an evaluation value calculated based on the phase of the target group. Although the evaluation value calculated based on the phase is not particularly limited as to what condition should be satisfied, the following is an example! Will be explained.
  • the number of combinations of data that takes a phase difference varies depending on how the vicinity of the boundary is set. This is also not particularly limited. In Fig. 3, for example, if there are 4 neighborhoods in the top, bottom, left, and right, there are 2 combinations of a and b, a and c, and the combination that takes the phase difference between groups ⁇ and ⁇ . There are three pairs with a and d added to the neighborhood combination.
  • phase of the group B phase data is shifted to minimize the average phase difference with A, and the description will be continued assuming that the combination that takes the phase difference is 4 neighborhoods.
  • n -int ((int (a Z 7c) + sign (o;)) / 2) ⁇ ⁇ !
  • Int (x) means the integer part of X that is rounded down.
  • the sign (x) value is 1 when X is negative and 1 otherwise.
  • group B is merged with A, and as shown in Fig. 4, a new group C having four phase data from a to d is created.
  • (B) The difference between the average values of the phases of some or all of the phase data belonging to the group is used as an evaluation value, and the phase of the phase data in the group is shifted by 2 ⁇ so that the evaluation value is minimized.
  • the average of some phase data may be used.
  • phase data for which the variance is calculated may be all phase data (four of a force d). Also, for example, you can calculate with only a part of the data, such as data adjacent in 4 neighborhoods (3 except d).
  • phase shift amount of each group is determined so as to satisfy the condition that there is an evaluation value obtained based on the phase, such as phase difference, average, and variance.
  • the merger may be the one having the smallest absolute value of the evaluation values.
  • the evaluation value may be calculated by any method. For example, a combination that minimizes the average and variance of the phases may be used to perform the merger.
  • phase folding expansion processing proposed in the present invention will be described by taking the phase data as shown in FIG. 6 (a) in which the phase is folded in the range of ⁇ 180 to 180 [deg] as an example.
  • the phase data is grouped before the obtained phase data is folded back.
  • grouping for example, when comparing the phases of four adjacent data in the upper, lower, left, and right neighborhoods, if the difference is within 90 [deg], it is the same group, and if different, it is a different group!
  • the /, U rule the rule described in (1 1) above
  • the phase data is divided into four groups A, B, C, and D, as shown in Fig. 6 (b).
  • phase folding expansion When performing phase folding expansion on a target group, the phase difference between phase data located at the boundary is minimized in a group adjacent to the target group in the vicinity of the top, bottom, left, and right After performing a folded expansion that shifts the phase of all data in the target group by 2 ⁇ , merge the target group with the adjacent group.
  • a target group for folding expansion is specified.
  • the order in which the target groups are specified is not particularly specified. For example, as shown in Fig. 6 (c), group D is the target dull.
  • the phase shift when the target group D is folded back is obtained for each target group.
  • the average phase difference between the boundary data after performing the folding expansion for each target group group is used as the evaluation value, and one-to-one merge is performed with the pair with the smaller value. Since it is a rule, the evaluation value is calculated as follows for each target group.
  • phase wrapping is performed on group D and merged with group B, there are three phase data groups (A, B, C) as shown in Fig. 6 (g).
  • A, B, C phase data groups
  • n l from the above equation (1). Therefore, in the target group 3, the data shift amount due to the folding expansion of the target group C is +360 [deg]. On the other hand, the average phase difference in the target group 4 consisting of C and B is
  • n 0. Therefore, in the target group group 4, the phase shift amount due to the folding expansion of the target group C is 0, that is, the data of the target group C does not change.
  • target group 4 is optimal. Therefore, Group C will merge with Drup B this time.
  • group B is the target group and processing continues.
  • the target group is only one set of B and A.
  • the group B is folded back and merged into the group A, so the number of groups becomes one, and the application of the method proposed in the present invention is finished.
  • FIG. 6 (k) shows a phase map finally obtained by phase wrapping expansion in units of groups.
  • the conditions for grouping, the method of taking a pair of phase data for calculating the phase difference, the condition for ending the phase wrapping expansion processing for each group, and the like are always the same during processing.
  • this condition is only an example, and any condition other than this condition can be taken.
  • conditions may change during the process.
  • phase wrapping expansion is limited to the case where the phase data force S exists only on the two dimensions for the sake of simplicity. It is the same. At that time, the phase data viewed as the vicinity of the boundary is only expanded in the three-dimensional direction.
  • the present method may be applied to all phase data at once, and the phase data may be divided into certain regions, applied independently in each region, and then applied in a large region. In other words, it may be performed step by step while expanding the application area of this method.
  • the method was first applied independently in units of two-dimensional planes, and after phase matching was achieved on a two-dimensional plane, the phase data of each two-dimensional plane was combined into one group. This method may be applied to 3D.
  • the evaluation value used in the phase folding expansion for each stage may be continuously the same standard, or may be changed depending on the stage.
  • phase matching between the phase data can be obtained by applying the method described so far, there is a possibility that the force offset is added to the value as a whole.
  • the phase There is some meaning to the phase that is not just the purpose of matching between the phases, and depending on the processing, there is a case where you want to adjust the offset by shifting the whole phase data by a certain amount in order to use it as an appropriate value . In such a case, for example, it is possible to compare some evaluation values such as the average value of the phase before and after applying this method, and shift the entire phase so that it is minimized.
  • FIG. 7 is a configuration diagram showing a basic configuration of the MRI apparatus according to the present embodiment.
  • a gantry 20 having a cylindrical inner space so as to accommodate the subject P is equipped with a static magnetic field magnet 1, a ⁇ ⁇ ⁇ ⁇ ⁇ axis gradient magnetic field coil 2, an RF coil 3, and a multichannel shim coil 15.
  • the static magnetic field magnet 1 which is a normal conducting magnet or a superconducting magnet is configured to receive a current supply from the static magnetic field control device 4 and to form a static magnetic field along the Z-axis inside the cylinder.
  • the XYZ axis gradient magnetic field coil 2 receives current supply from the gradient magnetic field power supplies 7, 8, and 9 corresponding to the X, Y, and X axis, respectively, and arbitrarily determines the imaging section and area, and spatially outputs magnetic resonance signals. There are also three sets of coil forces that create gradient magnetic fields for the X, ⁇ , and ⁇ axes to provide position information. Magnetic resonance signals can be collected in the region where the magnetic field strengths in all three directions change linearly. When magnetic resonance signals are collected, the subject's eyelid is placed on the top plate of the bed 13 and inserted into the imaging region along with the top plate slide.
  • the RF coil 3 is a coil for transmitting an RF pulse (both high-frequency magnetic field and rotating magnetic field) to the subject and receiving a magnetic resonance signal from the subject force. In this way, instead of using the RF coil 3 for transmission and reception, the transmission coil and the reception coil may be provided separately.
  • the transmitter 5 supplies a high-frequency pulse corresponding to the Larmor frequency specific to the target nucleus to the RF coil 3 to bring the spin of the target nucleus into an excited state.
  • the receiver 6 receives the high frequency magnetic resonance signal emitted in the process of relaxation of the excited spin, It has the function of receiving the signal via file 3, amplifying it, quadrature detection, and further converting it to analog Z-digital.
  • the computer system 11 takes in the magnetic resonance signal digitized by the receiver 6 and reconstructs the magnetic resonance image by performing two-dimensional Fourier transform (2DFT). This image is displayed on the display unit 12.
  • Sequencer 10 controls the operation timing of transmitter 5, receiver 6, and gradient magnetic field power supplies 7, 8 and 9 for each axis XYZ to determine a shimming value and a panoramic sequence for imaging. Run the sequence.
  • shimming by shim coils and shimming called FUC method Field Uniformity Correction method
  • FUC method Field Uniformity Correction method
  • the FUC method is a force that directly corrects the first-order inhomogeneous component of a static magnetic field by superimposing an offset on the gradient magnetic fields Gx, Gy, Gz.
  • this FUC method is used, Higher-order, that is, second-order inhomogeneous components can be corrected indirectly.
  • the principle of realizing this indirect correction is the shimming value determination method, which will be described in detail later.
  • the multi-channel shim coil 15 includes a V ⁇ higher-order inhomogeneous magnetic field component that is directly and indirectly corrected by the FUC method, and a static magnetic field inhomogeneous magnetic field that is to be corrected.
  • a plurality of shim coils having different components are included. Generally, 13 or 18 channels of shim coils are prepared.
  • the shim coil power supply 16 is configured to supply current (shim current) to each of the plurality of shim coils of the multi-channel shim coil 15 independently! RU
  • the shim controller 14 takes in the magnetic resonance signal digitized by the receiver 6, obtains a spatial magnetic field distribution based on the signal, and performs shimming for each component based on the magnetic field distribution. Find the value. Then, the shim coil power supply 16 is supplied while changing the shim value of the non-uniform component targeted by the multi-channel shim coil 15 in accordance with the movement of the partial area where data is collected. The shim coil power supply 16 supplies a shim current corresponding to the shimming value to the corresponding shim coil.
  • the shim controller 14 uses the shimming value of the first-order non-uniform component as an offset value,
  • the data is supplied to the sequencer 10 while changing according to the movement of the partial area where data is collected.
  • the sequencer 10 adds this offset value to the reference value, and supplies this added value to the gradient magnetic field power supplies 7, 8, 9.
  • the gradient magnetic field power supplies 7, 8 and 9 supply gradient magnetic field currents corresponding to the added values to the ⁇ ⁇ ⁇ ⁇ ⁇ axis gradient magnetic field coil 2.
  • the primary component is shimmed.
  • the shim controller 14 shims the 0th-order component by adjusting the reference frequency of quadrature detection in the receiver 6 in accordance with the 0th-order component, that is, the shimming value for the resonance frequency shift.
  • shimming means correcting a non-uniform magnetic field component in order to improve the uniformity of the static magnetic field in the target region as much as possible, and there are the following methods for obtaining a shimming value.
  • the best method is the method (3), and the method (3) is adopted here.
  • this method for example, a very thin 3 mm-thick slice region is of interest, and if the slice direction is considered to be the most common Z direction, components z 1 , z 3 , z representing the non-uniformity in the Z direction If 5 ,... Are obtained from the magnetic field distribution of only one thin slice area, there is a concern that accuracy will be reduced. In this embodiment, this concern is solved by obtaining the magnetic field distribution from a wide area, that is, the entire slice area.
  • the shimming value is obtained for each spatially different partial region, and the non-uniform component of the static magnetic field is corrected with a different shimming value for each partial region.
  • a wide area such as a multi-slice area in the multi-slice method. Wide! ⁇ Go to the area!
  • nth order equation first order equation in the FUC method
  • shimming value of each magnetic field component is obtained based on this nth order equation.
  • the spatially different partial regions mentioned above refer to, for example, an arbitrary cross-sectional region as shown in FIG. 8 (a) and a slice region by the multi-slice method as shown in FIG. 8 (b).
  • FIG. 9 shows the magnetic field distribution on the YZ plane orthogonal to slice regions # 1 to # 3.
  • the average primary component of the entire region over slice regions # 1 to # 3 is obtained by some method such as (1) to (3) above, and the same shimming value is obtained for all slice regions # 1 to # 3. (Offset value) is used for correction, but in this embodiment, a shimming value of the primary component is obtained for each slice area, and an offset is applied to the gradient magnetic field using a different shimming value for each slice area.
  • FIG. 10 (a) shows the magnetic field distribution in the Z-axis direction.
  • This magnetic field distribution b shows, for example, a parabola-like curve, and when viewed in the entire slice region # 1 to # 3, it is observed that it has a second-order or higher intensity distribution.
  • the magnetic field distribution is linearly approximated by a linear equation for each slice region # 1 to # 3 as shown in the following equations (1), (2), and (3).
  • the 0th-order component shimming value for slice region # 1 is clO
  • the 1st-order component shimming value is cll
  • the 0th-order component shimming value for slice region # 2 is c20
  • the 1st-order component shimming value is c21.
  • the 0th-order component shimming value for slice region # 3 is given as c30
  • the 1st-order component shimming value is given as c31.
  • Shimming of the first-order component is realized by adding an offset to the gradient magnetic field according to the shimming value of the first-order component. Shimming with respect to the zero-order component, that is, the shift of the resonance frequency, is orthogonal phase in the receiver 6. Adjust the reference frequency for detection according to the shimming value of the 0th-order component It is realized by doing.
  • the corrected magnetic field distribution is approximated to the reference magnetic field strength b0 in each slice region, and it can be seen that the accuracy of uniformity is improved.
  • the second order component which is only the first order component that can be directly shimmed by the FUC method, is also simulated!
  • FIG. 11 shows a pulse sequence when the multi-slice method is used in combination with the field echo method as an example.
  • Figure 12 shows the time sequence of pulse sequence execution and shimming value usage.
  • the offset of the gradient magnetic field is changed for each of the slice regions # 1 to # 3 according to the shimming value obtained for each of the slice regions # 1 to # 3.
  • Fig. 13 (a) shows the secondary magnetic field distribution before correction (for convenience of explanation, only XY is shown). As shown in Fig. 13 (b), it is shown in the partial regions Rl and R2. It can be seen that the components of the magnetic field distribution of X 2 + Y 2 type are different. Since we show the R1 in concave X 2 + Y 2 components lambda 1 is negative, it indicates R2 in convex X 2 + Upsilon 2 component e 2 is positive preparative ing. Therefore, shimming value given to X 2 + Upsilon 2 shim coils in the partial regions R1 - depending on the lambda 1, also provided in accordance with the R2 in Ichie 2.
  • the shimming value is obtained for each spatially different partial area, and the static magnetic field is calculated for each partial area based on each shimming value.
  • the non-uniform component is corrected.
  • the shimming value is obtained for each spatially different partial area such as a slice in the multi-slice method, and the non-uniform component of the static magnetic field is corrected for each partial area based on each of them. Uniformity is improved, and even higher-order components are more effective than inhomogeneous components that are directly corrected by the calculated shimming values, and static magnetic field inhomogeneities are corrected with higher accuracy.
  • the primary component of the non-uniform static magnetic field is corrected by the offset of the gradient magnetic field
  • an offset value is obtained for each spatially different partial region, and based on each of the offset values
  • the primary component of the non-uniform static magnetic field is corrected for each partial region.
  • an offset value is obtained for each spatially different partial area such as a slice in the multi-slice method, and the non-uniform primary component of the static magnetic field is corrected for each partial area based on each offset value.
  • the uniformity of the static magnetic field is improved, and the correction effect is effective for the second and higher order inhomogeneous components, and the nonuniform component of the static magnetic field can be corrected with higher accuracy.
  • Echo Branner Imaging EPI
  • Spetatroscopy MRS
  • Imaging MRS1
  • Water Fat Separation MFS1
  • Water Fat Separation MFS1
  • Water Fat Separation MFS1
  • Fat Suppression etc.
  • phase wrapping is performed.
  • phase data located at the boundary of the tissue, phase data including noise, and the like, data having a sharper phase change than the surroundings are obtained. If it exists, there is a high possibility that the folding will fail due to noise. Therefore, the phase folding expansion method according to the present invention is applied when creating a phase map in this shimming process.
  • phase folding expansion method when the phase folding expansion method according to the present invention is applied, the phase data obtained by shimming is grouped under a predetermined condition, and phase matching is performed between at least two groups. Take. At this time, the phase of all the phase data in an arbitrary group divided into groups is shifted by a predetermined amount, folded and expanded in units of groups, and then phase-matched with other groups. In order to achieve matching, a separate center frequency is obtained in advance for each group, and the phase is shifted accordingly.
  • a group that has been expanded once is a new group created by the merger and will continue to be expanded, so even if the phase is determined once, it will be repeated as many times as possible to achieve matching with the other groups. Since it is deployed, it is possible to prevent the occurrence of chained wrapping failure, and the failure of wrapping is reduced compared to the conventional method, and stability is improved.
  • the folding and unfolding method according to the present invention includes carrying out the process of determining the phase after the execution.
  • the present invention is not limited to the above-described embodiments as they are, but can be specifically modified by modifying the constituent elements without departing from the spirit of the invention in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components such as all the components shown in the embodiment may be deleted. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • the folding expansion method according to the present invention is applied when creating a phase map by data processing in, for example, an MRI (magnetic resonance imaging) apparatus.
  • MRI magnetic resonance imaging

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Image Analysis (AREA)

Abstract

 本発明に係る位相折り返し展開方法では、最初に位相データのグループ分けを行い(S1)、次にグループを対象とした位相折り返し展開を行ったのち(S2)、対象グループの合併を行う(S3)という手順を繰り返し適用する。折り返し展開処理が進むほどグループが大きくなっていき、その分グループ間の位相差に関する情報が増えるため、折り返し展開失敗のもとになりやすい位相データの影響が次第に小さくなり、従来法よりロバスト性が高い結果が得られる。また、1度折り返し展開したグループは合併により作られる新たなグループで引き続き折り返し展開を行っていくため、1度位相を確定しても他のグループとの位相で整合をとるべく何度でも折り返し展開される。この結果、連鎖的な折り返し展開失敗の発生を防ぐことができ、従来法より折り返し展開の失敗も減り、安定性が向上する。

Description

明 細 書
位相折り返し展開方法とこの方法を用いた磁気共鳴イメージング装置 技術分野
[0001] 本発明は複数の位相データの位相をそれぞれ 2 πの範囲に折り返し展開して位相 を確定する位相折り返し展開方法に関するもので、例えば、 MRI (磁気共鳴イメージ ング)装置におけるデータ処理で位相マップ作成時に適用される技術に関する。 背景技術
[0002] 周知のように、 MRI装置では磁場の不均一成分を補正するシミング処理を行うため に、磁場の不均一性による位相の変動量の分布を表した位相マップが作成される。 このとき、 2 πの範囲に折り返されて求められる位相 φの真の値 φ + 2η π (η:整数) を求める、位相折り返し展開を行う必要がある。
[0003] 位相折り返し展開の従来例として、まず、文献" Radiology 1994; 192:555-561 "に記 載されている方法があげられる。この文献に記載される方法は、ある 1点の位相デー タの位相を確定し、以降確定した位相データの位相を参照して、値のまだ確定して Vヽな 、位相データのどれか 1つに対して折り返し展開を行って位相を確定する手順 を繰り返すという手法である。すなわち、この方法は、近傍の位相データ同士では位 相変化は急峻でな ヽことを前提として、位相を確定したデータの近傍に存在する未 確定位相データの真の位相の推測を行う点に特徴がある。
[0004] しカゝしながら、実際には、組織の境界に位置する位相データや、ノイズを含む位相 データなど、周囲に比べて位相変化が急峻であるデータが存在する場合がある。こ のような位相データに対して上記の方法に沿って処理した場合には、近傍の確定デ ータを参照して位相折り返し展開を行うことになるため、真の位相を誤推測してしまう おそれが高くなる。また、確定した位相データの位相は正しいものとして処理を進め てしまうため、 1度折り返し展開に失敗して真の位相を誤推測したまま位相を確定し てしまうと、誤推測された位相データを参照する以降の折り返し展開で、連鎖的に真 の値の誤推測が発生してしまう。
[0005] 図 1は、組織の境界に位置する位相データやノイズを含む位相データなど、周囲に 比べて位相変化が急峻であるデータが存在する場合に、従来の位相折り返し展開 方法ではノイズの影響によって折り返し展開が失敗する例を示している。
[0006] この例から明らかなように、従来方法では、位相データに対して、近傍の確定デー タを参照して位相折り返し展開を行うため、真の位相を誤推測するおそれが高い。ま た、確定した位相データの位相は正しいものとして処理を進めるため、 1度折り返し展 開に失敗して真の位相を誤推測したまま位相を確定してしまうと、誤推測された位相 データを参照する以降の折り返し展開で、連鎖的に真の値の誤推測が発生してしま う。このように、従来方法では 1つ 1つのデータ間で位相の整合をとるべく逐次的に位 相折り返し展開を行うため、先に挙げた周囲に比べ位相変化が急峻なデータが 1つ あっただけで、広範囲に渡って位相折り返し展開の失敗が発生してしまうという問題 がある。
[0007] そこで、このようなデータが及ぼす影響を最終的に小さくするために、 1つ 1つ位相 折り返し展開を行うのではなぐ複数の位相データ間で位相の整合をとるべぐ分断 された領域間で位相折り返し展開を行うと!ヽぅ方法が日本特許出願公開 2002— 30 6445公報に提示されて 、る。
[0008] 但し、この文献に記載される方法では、領域間で位相折り返し展開を行う前に、ま ず各領域内で位相折り返し展開を行うことが前提となっており、領域内部の折り返し 展開をどのように行うかについては言及されていない。このことから、各領域の内部に おいては先に挙げた逐次的な位相折り返し展開の方法と同じ問題が解消されずに 依然として存在すると推測される。
発明の開示
[0009] 本発明の課題は、真の値を誤推測しやす 、位相データの影響を抑制することがで き、ロバスト (robust)で安定性の高!、位相折り返し展開を行うことのできる位相折り返 し展開方法と、この方法を用いて理想的な位相マップを作成し、磁場の不均一成分 を適切に補正することのできる磁気共鳴イメージング装置を提供することにある。
[0010] 本発明に係る位相折り返し展開方法は、対象領域における複数の位相データの位 相をそれぞれ折り返し展開して位相を確定する位相折り返し展開方法にぉ 、て、所 定の条件のもとで前記位相データのグループ分けを行う第 1の手順と、前記第 1の手 順で分けられた少なくとも 2つ以上のグループ間で位相の整合をとる第 2の手順とを 具備し、前記第 2の手順は、前記グループ分けされた任意のグループ内の全位相デ ータの位相を所定量シフトしてグループ単位で折り返し展開を行つた後に他のダル ープとの間で位相の整合をとるようにしたものである。
[0011] 本発明に係る磁気共鳴イメージング装置は、磁場の不均一成分を補正することを 目的としてシミング処理を行う装置において、前記磁場の不均一性による位相の変 動量の分布を表した位相マップの各位相データを所定の条件のもとでグループ分け するグループ分け手段と、前記グループ分け手段で分けられた少なくとも 2つ以上の グループ間で位相の整合をとる位相整合手段とを具備し、前記位相整合手段は、前 記グループ分けされた任意のグループ内の全位相データの位相を所定量シフトして グループ単位で折り返し展開を行った後に他のグループとの間で位相の整合をとる ようにしたものである。
図面の簡単な説明
[0012] [図 1]本発明に係る位相折り返し展開方法が適用される例として、周囲に比べて位相 変化が急峻であるデータが存在する場合に、従来の位相折り返し展開方法ではノィ ズの影響によって折り返し展開が失敗する場合を示す波形図である。
[図 2]本発明に係る位相折り返し展開方法の一実施形態の手順の流れを示すフロー チャートである。
[図 3]図 2に示す方法によるグループを対象とした 1対 1の位相折り返し展開処理を説 明するための図である。
[図 4]図 3に折り返し展開を行った後のグループの合併を説明するための図である。
[図 5]図 2に示す方法によるグループを対象とした 1対多の折り返し展開処理を説明 するための図である。
[図 6]本発明の位相折り返し展開処理の具体的な例を説明するための図である。
[図 7]本実施形態による MRI装置の基本的な構成を示す構成図である。
[図 8]図 7に示す MRI装置において、シミング値を求める「空間的に異なる部分領域」 を説明するための図である。
[図 9]図 7に示す MRI装置において、スライス領域 # 1〜# 3に直交する Y— Z面の磁 場分布を示す図である。
[図 10]図 7に示す MRI装置において、スライス領域毎に 0次成分と 1次成分のシミン グ値を求める方法の説明図である。
[図 11]図 7に示す MRI装置において、パルスシーケンス上でスライス領域毎にオフセ ットが異なる様子を示す図である。
[図 12]図 7に示す MRI装置において、シミング値とスライス領域のパルスシーケンスと の対応関係を示す図である。
[図 13]図 7に示す MRI装置において、補正前の磁場分布及び X2 +Y2シムコイルの シミング値と部分領域のパルスシーケンスとの対応関係を示す図である。
発明を実施するための最良の形態
[0013] 以下、図面を参照して本発明の実施の形態を詳細に説明する。
[0014] 本発明で提案する位相折り返し展開方法は、大きく分けると図 2に示すように 3つの 手順カゝらなる。 1つ目は、位相折り返し展開処理を行う前に、位相データのグループ 分けを行う手順 S1である。 2つ目は、グループ分けされたグループのうち 2つ以上の 任意のグループを対象に、グループ間で位相の整合をとるべく位相折り返し展開を 行う手順 S2である。そして 3つ目は、折り返し展開の対象としたグループの一部また は全部を合併する手順 S3である。
[0015] 本手法の処理順序を説明する。まず、位相データのグループ分けを最初に行う。次 に、先に説明したグループを対象とした位相折り返し展開を行ったのち、対象グルー プの合併を行うという手順 S1〜S3を、判断手順 S4により終了条件を満たすまで繰り 返し適用するという流れになる。
[0016] 大きく 3つに分けた手順それぞれについて説明を行う。
[0017] 初めは位相データのグループ分けの手順に関する説明である。以下にまだ所属グ ループの決まっていない位相データがあるグループに含めるかどうかを決めるときの ルールに関して説明を行う。
[0018] (1)あるグループに属する位相データとまだ所属グループの決まって ヽな 、位相デ ータとの位相差がある閾値以内であれば、未所属データを同じグループとし、閾値を 越える場合には未所属データは別のグループとする。 [0019] (1 1)この閾値は、データ間の差がこれより大きければ位相折り返しが起こってい るものとする指標として一般に用いられる 180[deg]より小さな値に設定することが最低 条件である。この閾値が小さければ小さいほどグループ分けが細力べ行われるわけで あるが、例として 30〜90[deg]に設定するのが望ましい。但し、先に挙げた最低条件を 満たせばこの限りではないことは言うまでもない。また、未所属位相データと位相差を とる相手となる所属確定済み位相データは、未所属データの近傍に位置するデータ にすることが望ましい。例えば 2次元や 3次元において、上下左右あるいは斜めに隣 接するデータを差分相手に設定する。
[0020] (1 2)上記(1 1)は、グループが同じかどうかを決める閾値が予め設定され、位 相差をとる相手も近傍に限られて 、たが、それとは異なるグループ決めの例を述べる 。未所属位相データの差分相手として、例えばグループの重心に位置する位相デー タなど、近傍に限らず任意の位置のデータを位相差のペアとする。このとき、閾値を( 1 - 1)と同じようにある値に固定して用いてもょ 、が、閾値として両データの距離に応 じて重み付けした値を用いるようにした方がより効果的である。また、位相差を指標と しない方法もある。その例として、所属グループデータと未所属グループデータとの 間で位相の値でフィッティングした近似直線を引き、近似直線の端に未所属グルー プデータを含める前後で近似式の傾きの変動がある値以下なら同じグループとし、 違えば別グループと 、う条件にしてもょ 、。
[0021] (2)まだ所属グループの決まって!/ヽな 、位相データのグループ決めに、(1)では所 属済み位相データを 1つ対応させていた力 それ以外の方法として、グループの位 相データの平均値と未所属位相データの位相との差がある閾値以内であれば同じグ ループ、違えば別グループとする条件にしてもよい。この場合の閾値は、(1)と同様 に、 180[deg]より小さな値に設定することはもちろんである力 例えば 30[deg]以下とす るなど、(1)で望ましいとされる閾値よりは小さめに設定した方が望ましい。また、ダル ープの位相データの平均値はそのグループに属する全位相データの平均をとつても よいし、例えば未所属位相データの近傍に位置するデータに限定するなど、グルー プの一部の位相データで平均をとつてもよ!、。
[0022] (3)他の方法として、仮に未所属位相データをグループに含めた場合に、その前 後でグループ内における位相データの位相分散の変動が例えば 10%以内など、あ る範囲内にあればそのグループに含めるという条件にしてもよい。この場合も、(2)と 同様、分散をとる範囲をそのグループ全部に設定してもよいし、例えば未所属位相 データ近傍に限定するなど、グループの一部の位相データで分散をとつてもょ 、。
[0023] 実際のグループ分け手順の例としては、初めは所属グループの決まっている位相 データは 1つも無いので、任意の位置にある位相データを始点として設定し、始点の 位相データに最初のグループ IDを与えること力も始める。次に、始点と 2次元または 3次元にぉ 、て上下左右ある 、は斜めに隣接する未所属位相データにつ!、て、始 点のグループと同じか別かを、先にあげた(1)から(3)の条件のどれかを用いて決定 する。その後は同じように所属グループの決まった位相データのどれかに隣接する 未所属位相データのグループ決めを(1)から(3)のどれ力 1つの条件を用いて決定 する。以上の作業を全位相データのグループが決まるまで繰り返して 、く。
[0024] 尚、始点をどこに設定してどのような順番でグループ分けを進めて 、くかは、例えば 中央の位相データを始点にしてそこ力 螺旋状に迪つても、端を始点にして軸方向 に 1行 1行迪つてもよぐ特に指定するものではない。但し、グループ決めを行う順番 は位相データにグループ分けで漏れが出ないように設定しなければならない。
[0025] また、グループ分けの条件を(1)から(3)のどれにするかは終始同じ条件に固定す るようにしてもよいし、処理の途中で条件を変えてもよく自由である。但し、グループ に属する位相データが少ないうちは(1)の(1 1)の条件を使う方が望ましい。
[0026] ここまでは位相データの位相を利用したグループの分けの方法を説明した力 他の グループ分けの例として、例えば上記と同様のグループ分けを位相データの位相で はなく絶対値に基づいて行ってもよい。他に、位相データの情報を利用しない全く別 のグループ分けの例として、位相データを例えば 2次元なら矩形、 3次元なら直方体 、うように任意の形状に区分けしてもよ!/、。
[0027] また、位相データのグループ分けを行うのに、必ずしも最初に得られる位相データ そのものを対象に行う必要はなぐ位相データに何らかの加工を行ったものを対象に してグループ分けを行ってもよい。加工の内容としては、例えば、微分フィルタや平 滑ィ匕フィルタなど任意のフィルタ処理を行ったり、任意の算術演算を行ったり、背景な ど信号値の小さい位相データを閾値処理により予め位相データから除外したりする などが考えられる。
[0028] 次にグループの合併に関して例を挙げて説明を行う。まず、位相データのグループ 分けにより、 A、 B、 C、 D、 Eの 5つのグループができたとする。折り返し展開の対象と して 2つ以上の任意のグループ、例えば Aと Bを選択し、両グループ間で位相の整合 をとるべく折り返し展開を行う。
[0029] そののち、 A、 B両グループを合併し、 Fと!、う新たなグループを作る。この段階で残 るグループは C、 D、 E、 Fの 4つになる。先と同様に、 2つ以上の任意のグループ、例 えば C、 D、 Eを対象に各グループ間で位相の整合をとるべく折り返し展開を行い、グ ループの合併を行う。このとき、グループの合併は C、 D、 Eの 3グループを一度に合 併してもょ 、し、 Cと Eなど一部のグループだけを合併してもよ 、。
[0030] D、 Eの 2グループを合併して Gという新たなグループを作ったとして話を進めると、 この時点で残るグループは Cと Fと Gである。次に、 Cと Fと Gを対象に折り返し展開を 行 ヽ、 3グループを合併して Hと!ヽぅグループができた時点で位相データのグループ は HIつとなり、本手法で提案する位相折り返し展開処理は終了である。
[0031] 尚、この例では、折り返し展開と合併を繰り返す終了条件はグループが 1つになる までであるが、その条件についてはこの限りではない。例えば、折り返し展開と合併を 繰り返す回数や、グループ数、グループの境界数、合併終了時の位相の分散などを 指標としたりするなど、終了条件を任意に設定してもよい。また、位相折り返し展開処 理の対象として選択するグループを決定する条件も任意に設定もしてょ ヽ。対象グ ループの選択の条件として、例えばグループ ID (先の例でいうと A、 B、 · ··)、所属位 相データ数、隣接グループ数などの大小で優先順位を決め、優先順位の最も高いグ ループおよびそのグループの近傍に位置するグループを対象として選択したり、対 象グループ全部あるいはグループ間の位相差や分散が最小となるグループの組み 合わせを対象として選択したりするなどが例として挙げられる。
[0032] 最後に、グループを対象とした位相折り返し展開処理およびグループの合併に関 しての説明を行う。以下では、簡単のために図 3のように位相データが 2次元平面上 に aから dまで 4つしかなぐ図のように 2つにグループ分けされているものとする。 [0033] 本手法による位相折り返し展開処理は、対象グループの位相に基づいて算出した 評価値に従って行われる。位相に基づいて算出する評価値が、どのような条件を満 たすようにするかにっ ヽては特に限定するものではな 、が、以下ではその例を!、くつ か挙げつつ位相折り返し展開の説明を行うことにする。
[0034] (A)グループ間の境界近傍に位置する位相データ同士の位相差の平均を評価値 とし、評価値が最小となるようにグループ内の位相データの位相を 2η πシフトする。
[0035] 境界近傍をどう設定するかによって位相差をとるデータの組み合わせの数が変わる 力 これも特に限定するものではない。図 3で言えば、例えば上下左右の 4近傍なら ば、グループ Αと Βの位相差をとる組み合わせは aと b、 aと cの 2組であり、さらに斜め も加えた 8近傍ならば、 4近傍の組み合わせに aと dをカ卩えた 3組となる。
[0036] 但し、位相差の平均を最小にする nが決まっても、片方のグループを 2η π + C (C は任意)、もう片方のグループを Cだけシフトしてやれば、位相差の平均が最小になる シフト量は、 Cのとり方によって無限の組み合わせだけ値を持つことになつてしまう。 そこで、シフト量は C = 0、すなわち、一方のグループの位相シフトは行わないものと する。また、位相シフトを行うグループを A、 Bどちらに設定するかによって nの符号が 異なり、その値が変わる。このため、位相をシフトするグループは、例えば合併の説明 のときに述べたグループの優先順位の大小に従って決めるなどすればよい。
[0037] 以下では、グループ Bの位相データの位相をシフトして Aとの平均位相差を最小に するものとし、位相差をとる組み合わせを 4近傍として説明を続ける。
[0038] 位相データ pの位相を φ pとすると、グループ B、 A間の評価値 α は
ΒΑ
α = { { \) ~ &) + { ο - &) ) /2
ΒΑ
である。このとき ηは次の式によって求める。
n= -int((int( a Z 7c ) + sign( o; ))/2) ■■■{ !)
BA BA
尚、 int(x)は Xの小数点以下を切り捨てた整数部分を意味し、 sign(x)の値は Xが負の とき一 1、それ以外では 1となることを表している。 nが求められた場合には、グループ Bに属する全位ネ目データの位ネ目(φ !)、 φ φ (1)に 2η πカロえて φ !)、 φ c、 φ dの値 を更新し、グループ Bを Aに合併して、図 4に示すように、 aから dの 4つの位相データ を持つ新たなグループ Cを作る。 [0039] (B)グループに属する一部または全部の位相データの位相の平均値の差を評価 値とし、評価値が最小となるようにグループ内の位相データの位相を 2η πシフトする
[0040] これは、図 3の例において、 α = ( φ !)+ φ。+ φ (1) Ζ3— φ &とする以外は(Α)と
BA
同じである。この式ではグループ Bの位相の平均値を全位相データで算出して!/、る 力 全部で無くても、例えば 4近傍に限定して α = { \^ + ά) /2- aとするな
BA
ど、一部の位相データの平均にしてもよい。
[0041] (C)対象グループの一部または全部の位相データの分散を評価値とし、評価値が 最小となるようにグループ内の位相データの位相を 2η πシフトする。
[0042] これは、 (Β)で平均の差が少なくなるように位相をシフトした代わりに、分散が最も 小さくなるように位相をシフトすることに他ならない。対象グループが Αと Βである図 3 の例で言えば、分散を計算する対象となる位相データは全位相データ (a力 dの 4つ )でも合ってもよい。また、例えば 4近傍で隣接するデータ (dを除く 3つ)というように、 一部のデータのみで計算を行ってもょ 、。
[0043] 以上は、図 3に示すように、 1対 1のグループの合併に関する折り返し展開を説明し たものである力 3つ以上のグループを 1つのグループに合併させる場合も同様であ る。例えば位相の差や平均や分散など、位相に基づいて得る評価値がある条件を満 たすように各グループの位相シフト量を決定すればょ 、。
[0044] 次に、 3つ以上のグループを対象として、対象グループの一部のグループに限定し て合併を行う方法について説明する。簡単のため、図 5に示すように 4つの位相デー タが 3つのグループに分かれて!/、るとする。
[0045] いま、グループ Aの位相データをシフトして B力 Cのどちら力と合併させることを考え る。この場合、合併の組み合わせごとに評価値を複数求める。評価値の算出法として 、先ほど説明した (A)のやり方を用いるものとし、位相差をとる境界を 8近傍とすると、 α = Ά - α = ( ( φ &— φ ο) + ( φ &— φ (1) ) Ζ2である。そして、合併先
AB AC
の候補ごとに得られた評価値の中で最適な値を持つものに対して nを計算し、グルー プ Aのデータの位相をシフトし、合併する。
[0046] 何をもって最適とするかの評価値に対する条件については特に限定するものでは ないが、例えば評価値の絶対値が最小となるものを合併先とする、としてもよい。また 、評価値の算出方法は、先で述べたようにどのようなやり方でもよぐ例えば位相の平 均や分散が最小となる組み合わせについて折り返し展開を行って合併を行ってもよ い。
[0047] (具体例)
1.位相データ取得結果
簡単のために、 2次元平面上で図 6 (a)に示すような 3 X 3の計 9個の位相データが 得られたとする。尚、図に記されている値は各データにおける位相の値を表したもの で、その単位は [deg]である。位相が— 180〜180[deg]の範囲に折り返された図 6 (a)に示すような位相データを例にして、本発明で提案する位相折り返し展開処理の 説明を行う。
[0048] 2.位相データのグループ分け
得られた位相データに対して折り返し展開を行う前に、まず位相データのグループ 分けを行う。グループ分けをするに当たり、例えば、上下左右の 4近傍に隣接するデ ータ同士の位相を比較したとき、その差が 90 [deg]以内であれば同じグループ、超 えて 、れば違うグループと!/、うルール(前述の(1 1)に書 、てあるルール)を適用す るとする。そのルールのもとでグループ分けを行った結果、図 6 (b)に示すように、位 相データは 4つのグループ A, B, C, Dに分けられることになる。
[0049] 3.グループ単位の位相折り返し展開
位相データのグループ分けが終わった後に行うグループ単位の位相折り返し展開 を、例えば以下のルールを適用するものとして、説明を行う。
[0050] ·あるグループを対象に位相折り返し展開を行うとき、その対象グループと上下左右 4 近傍で隣接するグループにお ヽて、境界に位置する位相データ同士の位相差が最 も小さくなるように対象グループの全データの位相を 2η πシフトする折り返し展開を 行ったのち、対象グループと隣接グループを合併する。
[0051] · 1回の折り返し展開につき 1対 1のグループの合併を行い、グループが 1つになるま で処理を続ける。
[0052] '位相折り返し展開の対象グループに対して、上下左右の 4近傍で隣接するグルー プが複数存在する場合、位相折り返し展開実施により境界に位置する位相データ同 士の位相差の平均が最も小さくなるグループに対象グループを合併する。
[0053] 4.折り返し展開の対象グループ指定
まず、折り返し展開の対象グループを指定する。対象グループの指定順について は特に指定するものではないが、例えば図 6 (c)に示すようにグループ Dを対象ダル ープとする。
[0054] 5.対象グループ群
対象グループ Dの合併先の候補となる、 4近傍で隣接するグループは、図 6 (d)に 示すように Bと Cの 2つ存在する。先に取り決めたように、 1回の折り返し展開では 1対 1のグループの合併しか行わな 、と 、うルールだったため、合併の組み合わせの候 補 (対象グループ群)が複数存在する場合、 Dと B、 Dと Cのそれぞれの対象グループ 群にっ 、て評価値を求め、その値が最適な対象グループ群でグループの合併を行
[0055] 6.対象グループ群ごとの評価値の計算
まず、対象グループ Dを折り返し展開したときの位相シフト量を対象グループ群ごと に求める。
[0056] 図 6 (e)に示す Dと B力も成る対象グループ群 1の場合で位相差の計算を行うと、 (1 40— (― 150) ) Zl = 290なので、(1)式より n=— 1が求められる。したがって、折り 返し展開の結果、対象グループのデータは一 2 πつまり一 360 [deg]シフトすること になるので、対象グループのデータは 140— 360=— 220[deg]となる。同様に、図 6 (f)に示す Dと Cカゝら成る対象グループ群 2で折り返し展開を行った場合の計算を行 うと、こちらも対象グループのデータは 220 [deg]となる。
[0057] 先に決めたルールでは、対象グループ群ごとに折り返し展開を実施した後の境界 データ同士の平均位相差を評価値として、その値が小さい方のペアで 1対 1の合併 を行うというルールであったため、対象グループ群ごとに評価値の計算を行うと、以下 のようになる。
対象グループ群 1の場合: I - 220- (- 150) | /1 = 70
対象グループ群 2の場合: I - 220- (- 140) I /1 =80 したがって、対象グループ Dの合併先は、評価値の小さい Bが選択されることになる。
[0058] 7.グノレープの合併
グループ Dに位相折り返し展開を行い、グループ Bに合併した時点で、存在する位 相データのグループは図 6 (g)に示すように 3つ(A, B, C)である。先に述べたルー ルでは、グループが 1つになるまでグループ単位の折り返し展開を繰り返し適用する ということが終了条件としたため、再度対象グループを指定して、同様の処理を続け ること〖こなる。そこで、今度はグループ Cを対象グループとして、説明を続ける。
[0059] 8.グループ単位の位相折り返し展開の繰り返し適用
対象グループ Cに対する対象グループ群は、図 6 (h) , (i)に示すように 2つ存在す る。 Cと Aから成る対象グループ群 3における境界データの平均位相差は
( ( - 140) - 140) + ( (-80) - 160) ) /2= - 260
であるので、前述の(1)式より n= lとなる。したがって、対象グループ群 3においては 、対象グループ Cの折り返し展開によるデータのシフト量は + 360 [deg]である。一 方、 Cと Bカゝら成る対象グループ群 4における平均位相差は
( (一 140)一 (一 220) ) /1=80
であるので、 n=0となる。したがって、対象グループ群 4においては、対象グループ C の折り返し展開による位相シフト量は 0、すなわち対象グループ Cのデータは変動し な 、。位相折り返し展開後にお 、てそれぞれの対象グループ群で評価値の計算を 行うと、対象グループ群 3の場合、
I (220- 140) + (280- 160) | ,2= 100
であり、対象グループ群 4の場合、
I (- 140) - (- 220) I /1 =80
であるため、対象グループ群 4が最適となる。したがって、今回はグループ Cがダル ープ Bに合併することになる。
[0060] 9.提案手法適用による最終結果
この時点でグループは図 6 (j)に示すようにまだ 2つ (A, B)存在しており、処理適用 の終了条件を満たさないので、例えばグループ Bを対象グループとして、さらに処理 を続ける。このときの対象グループ群は Bと Aの 1組だけであるため、評価値計算によ る対象グループ群選択までには至らず、グループ Bに対して折り返し展開を行い、グ ループ Aに合併するとグループは 1つとなり、本発明で提案した手法の適用は終了で ある。
[0061] 図 6 (k)は、グループ単位の位相折り返し展開により最終的に得られた位相マップ を表したものである。
[0062] 尚、ここまでの説明ではグループ分けの条件や位相差分を計算する位相データの ペアの取り方、グループ単位の位相折り返し展開処理の終了条件などは、処理中は 常に同じ条件であつたが、この条件はあくまでも一例であり、条件に関してはこの限り でなぐ任意の条件を取り得る。また、処理の途中で条件が変わることもあり得る。
[0063] 以上が本発明における手順の説明である。この説明から明らかなように、本発明で は折り返し展開処理が進むほどグループが大きくなつて 、き、その分グループ間の 位相差に関する情報が増えるため、折り返し展開失敗のもとになりやすい位相データ の影響が次第に小さくなり、従来法よりロバスト性が高くなり、より正しい結果が得られ る。また、 1度折り返し展開したグループは合併により作られる新たなグループで引き 続き折り返し展開を行って ヽくため、 1度位相を確定しても他のグループとの位相で 整合をとるべく何度でも折り返し展開される。この結果、連鎖的な折り返し展開失敗の 発生を防ぐことができ、従来法より折り返し展開の失敗も減り、安定性が向上する。
[0064] 尚、上記説明において、位相折り返し展開については、簡単のために位相データ 力 S 2次元上にのみ存在している場合に限定していた力 位相データが 3次元上にあ る場合も同様である。そのときは境界の近傍として見る位相データが 3次元方向にも 拡張されるだけである。
[0065] また、本手法の適用を全位相データに対して一度に行ってもょ 、し、位相データを ある領域に分けて、それぞれの領域で独立して適用したのちに大きな領域で適用す る、というように、本手法の適用領域を広げつつ段階的に行ってもよい。例えば、 2次 元平面単位でまず独立して本手法の適用を行 ヽ、 2次元平面状で位相の整合がと れたのち、各 2次元平面の位相データを 1つのグループとしてまとめ、今度は 3次元 を対象として本手法を適用してもよい。その際、段階ごとに位相折り返し展開で用い る評価値は継続して同じ基準でもよいし、段階によって変えてもよい。 [0066] また、ここまでで説明した手法の適用により位相データ間の位相の整合はとれるが 、その値は全体にいくつ力オフセットが加えられたままになっている可能性がある。位 相間で整合をとることだけが目的ではなぐ位相に何らかの意味があり、処理によって は適切な値として使うために全体の位相データをある量シフトしてオフセットの調整を 行いたいという場合が考えられる。このような場合には、例えば本手法の適用前後で 位相の平均値など何らかの評価値を比べ、それが最小となるように全体の位相をシ フトすると ヽうことが考えられる。
[0067] 他の例として、 MRI装置におけるシミング等のデータ処理に本発明を適用する場 合、中心周波数を別に求めておき、本手法適用後にその分だけ位相をシフトするな どが考えられる。
[0068] 以下、本発明が適用される MRI装置の一実施形態について説明する。
[0069] 図 7は本実施形態による MRI装置の基本的な構成を示す構成図である。被検体 P を収容できるように円筒状の内部空間を有するガントリ 20には、静磁場磁石 1、 Χ·Υ· Ζ軸傾斜磁場コイル 2、 RFコイル 3、多チャンネル型シムコイル 15が装備される。常電 導磁石又は超電導磁石である静磁場磁石 1は、静磁場制御装置 4から電流供給を 受けて円筒内部に通常、 Z軸に沿って静磁場を形成可能に構成されている。 X-Y-Z 軸傾斜磁場コイル 2は、 X、 Y、 Ζ軸それぞれに対応する傾斜磁場電源 7, 8, 9から電 流供給を受けて、任意に撮影断面や領域を決めたり、磁気共鳴信号に空間的位置 情報を与えたりするための X、 Υ、 Ζ各軸の傾斜磁場を作る 3組のコイル力も構成され ている。これら 3方向の磁場強度が全て線形に変化する領域内で磁気共鳴信号の収 集が可能である。磁気共鳴信号の収集時には、被検体 Ρは寝台 13の天板に載置さ れた状態で、天板のスライドに伴って撮像領域に挿入される。
[0070] RFコイル 3は、 RFパルス(高周波磁場または回転磁場とも 、う)を被検体に送信し 、被検体力ゝらの磁気共鳴信号を受信するためのコイルである。このように送受信に R Fコイル 3を兼用するのではなぐ送信用コイルと受信用コイルとを別体で設けてもよ い。送信器 5は、対象原子核に固有のラーモア周波数に応じた高周波パルスを RFコ ィル 3に供給して、対象原子核のスピンを励起状態にするためのものである。受信器 6は、励起されたスピンが緩和する過程で放出される高周波の磁気共鳴信号を RFコ ィル 3を介して受信し、これを増幅し、直交位相検波し、さらにアナログ Zディジタル 変換する機能を有している。
[0071] コンピュータシステム 11は、受信器 6でディジタルィ匕された磁気共鳴信号を取り込 み、これを 2次元フーリエ変換 (2DFT)することにより磁気共鳴画像を再構成する。こ の画像は表示部 12に表示される。シーケンサ 10は、送信器 5、受信器 6、 XYZ各軸 の傾斜磁場電源 7, 8, 9の各動作タイミングを制御して、シミング値を決めるためのパ ノレスシーケンスやイメージングのためのパノレスシーケンスを実行する。
[0072] 本実施形態では、シムコイルによるシミングと、傾斜磁場にオフセットを与えることに よるいわゆる FUC法 (Field Uniformity Correction法)と呼ばれるシミングとを併用する 。 FUC法とは、傾斜磁場 Gx , Gy , Gzにオフセットを重畳することにより、静磁場の 1次の不均一成分を直接的に補正するものである力 本実施形態ではこの FUC法を 使って、これよりも高次、つまり 2次の不均一成分についても間接的に補正することを 可能とする。この間接的な補正を実現する原理はシミング値の決定方法にあり、詳細 は後述する。
[0073] 多チャンネル型シムコイル 15には、 FUC法で直接的及び間接的に補正対象としな Vヽ高次の不均一磁場成分を補正対象とし、且つ補正対象とする静磁場の不均一磁 場成分が各々異なる複数のシムコイルを含んでいる。一般的には、 13チャンネルや 18チャンネル分のシムコイルが準備されて 、る。本実施形態では FUC法と同様に、 シムコイル各々が直接的に補正する不均一成分以外の成分も間接的に補正すること を可能とする。シムコイル電源 16は、多チャンネル型シムコイル 15の複数のシムコィ ル各々に独立して電流 (シム電流)を供給できるように構成されて!、る。
[0074] シムコントローラ 14は、受信器 6でディジタルィ匕された磁気共鳴信号を取り込み、こ れに基づ 、て空間的な磁場分布を求め、この磁場分布に基づ 、て成分毎にシミング 値を求める。そして、多チャンネル型シムコイル 15が対象とする不均一成分のシミン グ値を、データ収集する部分領域の移動に応じて変えながらシムコイル電源 16に供 給する。シムコイル電源 16は、シミング値に応じたシム電流を対応するシムコイルに 供給する。
[0075] また、シムコントローラ 14は、 1次の不均一成分のシミング値をオフセット値として、 データ収集する部分領域の移動に応じて変えながらシーケンサ 10に供給する。シー ケンサ 10は、このオフセット値を規準値に加算して、この加算値を傾斜磁場電源 7, 8 , 9に供給する。傾斜磁場電源 7, 8, 9は、加算値に応じた傾斜磁場電流を Χ·Υ·Ζ 軸傾斜磁場コイル 2に供給する。これにより 1次成分がシミングされる。シムコントロー ラ 14は、 0次成分、つまり共鳴周波数のずれに対するシミング値に応じて、受信器 6 内における直交位相検波の参照周波数を調整することにより、 0次成分をシミングす る。
[0076] 次にシミング値の決定方法にっ 、て例に説明する。
[0077] まず、シミングとは、対象領域の静磁場の均一性を極力向上させるために不均一な 磁場成分を補正することをいい、シミング値を求める方法としては、次の方法がある。
(1)対象領域からの磁気共鳴信号を、傾斜磁場を重畳することなく取得し、この信号 減衰時定数が最も長 ヽシム電流値を求める。
(2)対象領域からの磁気共鳴信号を、傾斜磁場を重畳することなく取得し、この磁気 共鳴信号をフーリエ変換し、その変換データの周波数帯域が最小になるようなシム電 流値を求める。
(3)磁場分布を位相マップとして空間的に求め、この磁場分布をシミング対象として いる磁場成分毎に展開 (分解)し、磁場成分毎に磁場分布が安定的となるような磁場 強度を得るに要するシム電流値を求める。
[0078] このうち最良の方法は(3)の方法であり、ここでは (3)の方法を採用するものとする 。この方法では、例えば、非常に薄い 3mm厚のスライス領域が関心対象であり、スラ イス方向は最も一般的な Z方向と考えると、 Z方向の不均一性を表わす成分 z1 , z3 , z5 ,…などを薄い 1枚のスライス領域だけの磁場分布から求めると、精度低下が懸念 される。本実施形態では、広い領域、つまり複数枚のスライス領域全体の磁場分布か ら求めることでこの懸念を解消する。
[0079] 本実施形態では、静磁場の不均一成分を補正するにあたり、空間的に異なる部分 領域毎にシミング値を求め、部分領域毎に異なるシミング値でもって静磁場の不均 一成分を補正する。また広い領域、例えばマルチスライス法では複数スライス領域に わたる広!ヽ領域につ!ヽて磁場分布を、補正対象とする静磁場の n次項 (FUC法では n= 1)の不均一成分よりも高次の磁場分布 (FUC法では 2次の磁場分布)を求め、こ の磁場分布の形状を n次方程式 (FUC法では 1次方程式)で近似し、この n次方程式 に基づいて各磁場成分のシミング値を求める。なお、上述した空間的に異なる部分 領域とは、例えば、図 8 (a)に示すような任意断面領域、図 8 (b)に示すようなマルチ スライス法によるスライス領域のことを 、う。
[0080] 次に 0次成分と 1次成分のシミング値の決定方法について、マルチスライス法を併 用する場合を例に具体的に説明する。
[0081] 図 9は、スライス領域 # 1〜# 3に直交する Y— Z面の磁場分布を示す。一般には、 スライス領域 # 1〜 # 3にわたる全体領域の平均的な 1次成分を上記(1)〜(3)等の 何らかの方法で求め、全てのスライス領域 # 1〜# 3について同一のシミング値 (オフ セット値)を用いて補正を行なうが、本実施形態では、スライス領域毎に 1次成分のシ ミング値を求め、スライス領域毎に異なるシミング値を用いて、傾斜磁場にオフセット を与えるものとする。
[0082] 図 10 (a)に Z軸方向の磁場分布を示す。この磁場分布 bは、例えば放物線様の曲 線を示し、スライス領域 # 1〜 # 3全体で見ると、 2次以上の強度分布を持っているの が観測される。磁場分布についてスライス領域 # 1〜# 3毎に次の(1)式, (2)式, (3 )式に示すように 1次方程式で直線近似する。
スライス領域 # 1 ;C1 =cll(Z) + clO +b0
スライス領域 # 2 ;C2 =c21(Z) + c20 +b0 · '· (2)
スライス領域 # 3 ;C3 =c31(Z) + c30 +b0 · '· (3)
したがって、スライス領域 # 1に関する 0次成分のシミング値が clO、 1次成分のシ ミング値がー cll、スライス領域 # 2に関する 0次成分のシミング値が c20、 1次成 分のシミング値が c21、スライス領域 # 3に関する 0次成分のシミング値が— c30、 1 次成分のシミング値が— c31としてそれぞれ与えられる。
[0083] 1次成分のシミングは当該 1次成分のシミング値に応じて傾斜磁場にオフセットを与 えることで実現され、 0次成分、つまり共鳴周波数のずれに対するシミングは受信器 6 内における直交位相検波の参照周波数を当該 0次成分のシミング値に応じて調整す ることで実現される。
[0084] これにより、補正後の磁場分布は図 10 (b)に示すように、各スライス領域ともに規準 磁場強度 b0に近似されて均一性の精度が向上していることが分かる。また、 FUC法 で直接的にシミング可能な 1次成分だけでなぐ 2次成分についても近似的にシミン グがなされて!/ヽることが理解されよう。
[0085] 図 11に一例としてフィールドエコー法にマルチスライス法を併用した場合のパルス シーケンスを示す。図 12にパルスシーケンス実行と、シミング値使用の時系列的な対 応が示されている。ここで、スライス領域 # 1〜 # 3毎に求めたシミング値にしたがって 、スライス領域 # 1〜# 3毎に傾斜磁場のオフセットを変化させている。
[0086] 図 13 (a)に補正前の 2次の磁場分布 (説明の便宜上、 XYについてのみ示す)が示 されており、図 13 (b)に示すように部分領域 Rl , R2上での X2 +Y2型の磁場分布 の成分が異なっていることが伺える。ここでは R1では凹形状を示しているので X2 + Y2成分 λ 1は負となり、 R2では凸形状を示しているので X22成分え 2は正とな る。したがって、 X22シムコイルに与えるシミング値は部分領域 R1では— λ 1に 応じて、また R2では一え 2に応じて与えられる。
[0087] すなわち、上記構成による MRI装置では、静磁場の不均一成分を補正する場合に 、空間的に異なる部分領域毎にシミング値を求め、シミング値各々に基づいて部分 領域毎に静磁場の不均一成分を補正するようにしている。この手法によれば、マルチ スライス法におけるスライスのような空間的に異なる部分領域毎にシミング値を求め、 これら各々に基づいて部分領域毎に静磁場の不均一成分を補正するので、静磁場 の均一性が向上し、さらに、求めたシミング値が直接的に補正する不均一成分よりも 高次の成分についても補正の効力が及び、静磁場の不均一性の補正をより高精度 で行うことができ、これによりエコーブラナーイメージング (ΕΡΙ)、スぺタトロスコピー( MRS) ,同イメージング (MRS1)、水脂肪分離、脂肪抑制等、高い磁場均一性を要 求される撮影であっても、よりアーチファクトの少ない良好な画像を得ることが可能と なる。
[0088] また、不均一な静磁場の 1次成分を傾斜磁場のオフセットにより補正する場合には 、空間的に異なる部分領域毎にオフセット値を求め、前記オフセット値各々に基づい て前記部分領域毎に不均一な静磁場の 1次成分を補正するようにしている。この手 法によれば、マルチスライス法におけるスライスのような空間的に異なる部分領域毎 にオフセット値を求め、これら各々に基づいて部分領域毎に不均一な静磁場の 1次 成分を補正するので、静磁場の均一性が向上し、さらに、 2次以上高次の不均一成 分についても補正の効力が及び、静磁場の不均一成分の補正をより高精度で行うこ とができ、これによりエコーブラナーイメージング(EPI)、スぺタトロスコピー(MRS)、 同イメージング (MRS1)、水脂肪分離、脂肪抑制等、高い磁場均一性を要求される 撮影であっても、よりアーチファクトの少ない良好な画像を得ることが可能となる。さら に、この効果はオフセット値を部分領域毎に求めるというソフト的な変更のみで対処 可能である。
[0089] このような MRI装置において、磁場の不均一成分を補正するためのシミング処理に お!、て位相マップを作成するとき、位相折り返し展開が行われて 、る。
[0090] この位相折り返し展開において、従来方法では、図 1に示したように、組織の境界 に位置する位相データや、ノイズを含む位相データなど、周囲に比べて位相変化が 急峻であるデータが存在する場合にノイズの影響によって折り返し展開が失敗する おそれが高い。そこで、このシミング処理における位相マップ作成時に本発明による 位相折り返し展開方法を適用する。
[0091] すなわち、本発明による位相折り返し展開方法を適用した場合、シミングによって 得られる位相データを所定の条件のもとでグループ分けするグループ分けを行い、 少なくとも 2つ以上のグループ間で位相の整合をとる。このとき、グループ分けされた 任意のグループ内の全位相データの位相を所定量シフトしてグループ単位で折り返 し展開を行った後に他のグループとの間で位相の整合をとる。整合をとるために、グ ループ毎に、予め中心周波数を別に求めておき、その分だけ位相をシフトする。
[0092] 以上の処理を実行することにより、シミング処理における位相マップ作成時に、周囲 に比べて位相変化が急峻であるデータが存在する場合でも、折り返し展開を確実に 行うことが可能となり、ノイズの影響による失敗を極めて低減することが可能となる。
[0093] そして、折り返し展開処理が進むほどグループが大きくなつて 、き、その分グルー プ間の位相差に関する情報が増えるため、折り返し展開失敗のもとになりやすい位 相データの影響をどんどん小さくすることができ、従来法よりロバスト性が高い。また、
1度折り返し展開したグループは合併により作られる新たなグループで引き続き折り 返し展開を行って ヽくため、 1度位相を確定しても他のグループとの位相で整合をと るべく何度でも折り返し展開されるため、連鎖的な折り返し展開失敗の発生を防ぐこ とができ、従来法より折り返し展開の失敗も減り、安定性が向上する。
[0094] 尚、本発明による折り返し展開方法は、その実行後に位相を確定させる処理をカロえ て行うことも含むものとする。
[0095] また、本発明は上記実施形態そのままに限定されるものではなぐ実施段階ではそ の要旨を逸脱しない範囲で構成要素を変形して具体ィ匕できる。また、上記実施形態 に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成で きる。例えば、実施形態に示される全構成要素カゝら幾つかの構成要素を削除しても よい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
産業上の利用可能性
[0096] 本発明に係る折り返し展開方法は、例えば MRI (磁気共鳴イメージング)装置にお けるデータ処理で位相マップ作成時に適用される。

Claims

請求の範囲
[1] 対象領域における複数の位相データの位相をそれぞれ折り返し展開して位相を確 定する位相折り返し展開方法にぉ 、て、
所定の条件のもとで前記位相データのグループ分けを行う第 1の手順と、 前記第 1の手順で分けられた少なくとも 2つ以上のグループ間で位相の整合をとる 第 2の手順とを具備し、
前記第 2の手順は、前記グループ分けされた任意のグループ内の全位相データの 位相を所定量シフトしてグループ単位で折り返し展開を行った後に他のグループと の間で位相の整合をとる位相折り返し展開方法。
[2] さらに、前記第 2の手順で折り返し展開された対象グループ群のうち任意の数のグ ループ同士を合併して新たにグループを作る第 3の手順を備える請求項 1に記載の 位相折り返し展開方法。
[3] 前記第 3の手順は、前記第 2の手順の処理によってグループ単位で折り返し展開さ れた少なくとも 1つ以上の特定のグループを含むグループ群の組み合わせの候補が 複数あるカゝ否かを判断し、複数ある場合には、各グループ間の位相に基づいた評価 値をグループ群ごとに求め、最適な評価値を持つグループ群を対象に前記グルー プ単位で折り返し展開を行つたのち、対象グループ群のうち任意の数のグループ同 士を合併して新たにグループを作る請求項 2に記載の位相折り返し展開方法。
[4] さらに、前記第 3の手順による前記グループの合併と、前記第 2の手順によるダル ープ単位での折り返し展開を繰り返し実行するルーチンを備える請求項 2に記載の 位相折り返し展開方法。
[5] 前記対象領域を複数領域に分割し、分割領域ごとに独立して前記第 1の手順乃至 第 3の手順による位相折り返し展開を実行し、段階的に領域を広げて前記位相折り 返し展開を実行する請求項 4に記載の位相折り返し展開方法。
[6] 前記位相折り返し展開の実行前後で前記位相データの位相に基づ!/ヽて算出した 評価値の変動が最適になるように、前記位相折り返し展開後の位相データの位相を シフトする請求項 3に記載の位相折り返し展開方法。
[7] 前記位相折り返し展開の実行後に、別に求めたある値だけ前記位相データの位相 をシフトする請求項 6に記載の位相折り返し展開方法。
[8] 前記位相データのグループ分けの条件を、任意の位相データ同士の位相に基づ
V、て算出した評価値がある閾値以下であれば同じグループとする請求項 1に記載の 位相折り返し展開方法。
[9] 前記位相データのグループ分けの条件を、あるグループの位相データの位相に基 づいて算出した評価値と所属グループが未確定の位相データの位相との差がある閾 値以下であれば同じグループとする請求項 1に記載の位相折り返し展開方法。
[10] 前記閾値は、 30〜90[deg]の範囲内とする請求項 8または 9記載の位相折り返し展 開方法。
[11] 前記位相データのグループ分けの条件を、あるグループの位相データの位相に基 づ 、て評価値を算出する際に、所属グループが未確定の位相データをグループに 加えたときに生じる前記評価値の変動がある閾値以内であれば同じグループとする 請求項 1に記載の位相折り返し展開方法。
[12] 前記位相データのグループ分けの条件を、任意の形状に区分けする請求項 1に記 載の位相折り返し展開方法。
[13] 前記位相データのグループ分けの条件は、
任意の位相データ同士の位相に基づいて算出した評価値がある閾値以内であれば 同じグループとする第 1の条件、
あるグループの位相データの位相に基づ 、て算出した評価値と所属グループが未 確定の位相データの位相との差がある閾値以内であれば同じグループとする第 2の 条件、あるグループの位相データの位相に基づいて評価値を算出する際に、所属グ ループが未確定の位相データをグループに加えたときに生じる前記評価値の変動が ある閾値以内であれば同じグループとする第 3の条件、
任意の形状に区分けする第 4の条件、
の少なくとも 、ずれか複数の条件を任意に組み合わせて適用する請求項 1に記載の 位相折り返し展開方法。
[14] さらに、前記第 1の手順によりグループ分けが行われ、前記第 2の手順により位相の 整合がとられた位相データの位相をある値だけシフトする第 4の手順を有する請求項 1に記載の位相折り返し展開方法。
[15] 磁場の不均一成分を補正することを目的としてシミング処理を行う磁気共鳴ィメー ジング装置において、
前記磁場の不均一性による位相の変動量の分布を表した位相マップの各位相デ ータを所定の条件のもとでグループ分けするグループ分け手段と、
前記グループ分け手段で分けられた少なくとも 2つ以上のグループ間で位相の整 合をとる位相整合手段とを具備し、
前記位相整合手段は、前記グループ分けされた任意のグループ内の全位相デー タの位相を所定量シフトしてグループ単位で折り返し展開を行つた後に他のグルー プとの間で位相の整合をとる磁気共鳴イメージング装置。
[16] さらに、前記位相整合手段で折り返し展開された対象グループ群のうち任意の数 のグループ同士を合併して新たにグループを作るグループ合併手段を備える請求項
15に記載の磁気共鳴イメージング装置。
[17] 前記グループ合併手段は、前記位相整合手段の処理によってグループ単位で折り 返し展開された少なくとも 1つ以上の特定のグループを含むグループ群の組み合わ せの候補が複数ある力否かを判断し、複数ある場合には、各グループ間の位相に基 づ 、た評価値をグループ群ごとに求め、最適な評価値を持つグループ群を対象に 前記グループ単位で折り返し展開を行ったのち、対象グループ群のうち任意の数の グループ同士を合併して新たにグループを作る請求項 16に記載の磁気共鳴ィメー ジング装置。
[18] さらに、前記グループ合併手段による前記グループの合併と、前記位相整合手段 によるグループ単位での折り返し展開を繰り返し実行するルーチンを備える請求項 1 6に記載の磁気共鳴イメージング装置。
[19] 前記対象領域を複数領域に分割し、分割領域ごとに独立して前記グループ分け手 段、位相整合手段、グループ合併手段による位相折り返し展開を実行し、段階的に 領域を広げて前記位相折り返し展開を実行する請求項 16に記載の磁気共鳴ィメー ジング装置。
[20] 前記位相整合手段は、前記位相折り返し展開の実行前後で前記位相データの位 相に基づいて算出した評価値の変動が最適になるように、前記位相折り返し展開後 の位相データの位相をシフトする請求項 17に記載の磁気共鳴イメージング装置。
[21] 前記位相整合手段は、前記位相折り返し展開の実行後に、別に求めたある値だけ 前記位相データの位相をシフトする請求項 20に記載の磁気共鳴イメージング装置。
[22] 前記グループ分け手段は、前記位相データのグループ分けの条件を、任意の位相 データ同士の位相に基づいて算出した評価値がある閾値以下であれば同じグルー プとする請求項 15に記載の磁気共鳴イメージング装置。
[23] 前記グループ分け手段は、前記位相データのグループ分けの条件を、あるグルー プの位相データの位相に基づ!/、て算出した評価値と所属グループが未確定の位相 データの位相との差がある閾値以下であれば同じグループとする請求項 15に記載 の磁気共鳴イメージング装置。
[24] 前記閾値は、 30〜90[deg]の範囲内とする請求項 22または 23記載の磁気共鳴ィメ 一ジング装置。
[25] 前記グループ分け手段は、前記位相データのグループ分けの条件を、あるグルー プの位相データの位相に基づいて評価値を算出する際に、所属グループが未確定 の位相データをグループに加えたときに生じる前記評価値の変動がある閾値以内で あれば同じグループとする請求項 15に記載の磁気共鳴イメージング装置。
[26] 前記グループ分け手段は、前記位相データのグループ分けの条件を、任意の形状 に区分けする請求項 15に記載の磁気共鳴イメージング装置。
[27] 前記グループ分け手段における前記位相データのグループ分けの条件は、
任意の位相データ同士の位相に基づいて算出した評価値がある閾値以内であれば 同じグループとする第 1の条件、
あるグループの位相データの位相に基づ 、て算出した評価値と所属グループが未 確定の位相データの位相との差がある閾値以内であれば同じグループとする第 2の 条件、あるグループの位相データの位相に基づいて評価値を算出する際に、所属グ ループが未確定の位相データをグループに加えたときに生じる前記評価値の変動が ある閾値以内であれば同じグループとする第 3の条件、
任意の形状に区分けする第 4の条件、 の少なくともいずれか複数の条件を任意に組み合わせて適用する請求項 15に記載 の磁気共鳴イメージング装置。
さらに、前記グループ分け手段によりグループ分けが行われ、前記位相整合手段 により位相の整合がとられた位相データの位相をある値だけシフトする位相シフト手 段を備える請求項 15に記載の磁気共鳴イメージング装置。
PCT/JP2005/018822 2004-11-10 2005-10-12 位相折り返し展開方法とこの方法を用いた磁気共鳴イメージング装置 WO2006051665A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006515489A JPWO2006051665A1 (ja) 2004-11-10 2005-10-12 位相折り返し展開方法とこの方法を用いた磁気共鳴イメージング装置
EP05793167A EP1797821A4 (en) 2004-11-10 2005-10-12 PHASE CUTTING FOCUSING METHOD AND MAGNETIC RESONANCE IMAGING DEVICE USING THE SAME
US11/404,840 US20070035302A1 (en) 2004-11-10 2006-04-17 Phase unwrapping evolution method and magnetic resonance imaging apparatus using the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-326640 2004-11-10
JP2004326640 2004-11-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/404,840 Continuation US20070035302A1 (en) 2004-11-10 2006-04-17 Phase unwrapping evolution method and magnetic resonance imaging apparatus using the method

Publications (1)

Publication Number Publication Date
WO2006051665A1 true WO2006051665A1 (ja) 2006-05-18

Family

ID=36336348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018822 WO2006051665A1 (ja) 2004-11-10 2005-10-12 位相折り返し展開方法とこの方法を用いた磁気共鳴イメージング装置

Country Status (5)

Country Link
US (1) US20070035302A1 (ja)
EP (1) EP1797821A4 (ja)
JP (1) JPWO2006051665A1 (ja)
CN (1) CN1897874A (ja)
WO (1) WO2006051665A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522574A (ja) * 2009-04-02 2012-09-27 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Swift−mriによる磁性粒子の位置特定

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592812B2 (en) * 2006-04-13 2009-09-22 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and static magnetic field correction method
US7372393B2 (en) * 2006-07-07 2008-05-13 Mitsubishi Electric Research Laboratories, Inc. Method and system for determining unwrapped phases from noisy two-dimensional wrapped-phase images
JP5982406B2 (ja) * 2011-02-14 2016-08-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 検出コイルにおいて部分的に補償された磁気励起場を有する磁気誘導インピーダンス測定装置のためのコイル配置
US10261150B2 (en) * 2013-02-12 2019-04-16 Hitachi, Ltd. Magnetic resonance imaging apparatus and processing method
DE102013217650B4 (de) * 2013-09-04 2016-01-21 Siemens Aktiengesellschaft Zwei-Punkt Dixon-Technik
WO2015076082A1 (ja) * 2013-11-22 2015-05-28 株式会社 日立メディコ 磁気共鳴イメージング装置
US10156619B2 (en) * 2014-03-06 2018-12-18 Hitachi, Ltd. Magnetic resonance imaging system, static magnetic field homogeneity adjusting system, magnetic field homogeneity adjusting method, and magnetic field homogeneity adjusting program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237160A (ja) * 1999-02-16 2000-09-05 Hitachi Medical Corp 磁気共鳴画像診断装置
JP2002306445A (ja) * 2001-04-11 2002-10-22 Hitachi Medical Corp 磁気共鳴イメージング装置及び画像処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797615A (en) * 1987-09-30 1989-01-10 Elscint Ltd. Determining and correcting for phase jumps
US5539316A (en) * 1995-08-25 1996-07-23 Bruker Instruments, Inc. Shimming method for NMR magnet having large magnetic field inhomogeneities
US5783942A (en) * 1996-12-30 1998-07-21 Bernstein; Matthew A. Unwrap correction for MR phase data encoding flow-related parameter
JP3510542B2 (ja) * 1999-10-22 2004-03-29 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 位相分布測定方法および装置、位相補正方法および装置、並びに、磁気共鳴撮像装置
US6703835B2 (en) * 2002-04-11 2004-03-09 Ge Medical Systems Global Technology Co. Llc System and method for unwrapping phase difference images

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237160A (ja) * 1999-02-16 2000-09-05 Hitachi Medical Corp 磁気共鳴画像診断装置
JP2002306445A (ja) * 2001-04-11 2002-10-22 Hitachi Medical Corp 磁気共鳴イメージング装置及び画像処理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JENKINSON M.: "Fast, Automated, N-Dimensional Phase-Unwrapping Algorithm.", MAGN RESON MED., vol. 49, no. 1, January 2003 (2003-01-01), pages 193 - 197, XP002994968 *
LI AN ET AL: "A Fast Implementation of the Minimum Spanning Tree Method for Phase Unwrapping.", IEEE TRANS MED IMAGING., vol. 19, no. 8, August 2000 (2000-08-01), pages 805 - 808, XP002994969 *
STRAND J ET AL: "Two-Dimensional Phase Unwrapping Using Robust Derivative Estimation and Adaptive Integration.", IEEE TRANSACTIONS ON IMAGE PROCESSING., vol. 11, no. 10, October 2002 (2002-10-01), pages 1192 - 1200, XP002994970 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522574A (ja) * 2009-04-02 2012-09-27 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Swift−mriによる磁性粒子の位置特定
JP2016174946A (ja) * 2009-04-02 2016-10-06 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Swift−mriによる磁性粒子の位置特定
US9841480B2 (en) 2009-04-02 2017-12-12 Regents Of The University Of Minnesota Localization of magnetic particles by means of swift-MRI

Also Published As

Publication number Publication date
US20070035302A1 (en) 2007-02-15
EP1797821A4 (en) 2007-07-18
JPWO2006051665A1 (ja) 2008-05-29
CN1897874A (zh) 2007-01-17
EP1797821A1 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
EP2457503B1 (en) Magnetic resonance imaging device and magnetic resonance imaging method
CN104583799B (zh) 基于快速图像采集的运动跟踪
JP5443695B2 (ja) 磁気共鳴イメージング装置
US10162037B2 (en) Navigator-based data correction for simultaneous multislice MR imaging
CN104101849B (zh) 磁共振系统控制序列的确定
US7843194B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US8934691B2 (en) System for motion compensated MR parallel imaging
CN102342833B (zh) 用于建立磁共振图像的方法和相应的磁共振设备
US8378678B2 (en) System for ordering acquisition of frequency domain components representing MR image data
JP4546179B2 (ja) スピンエコーシーケンスを用いた磁気共鳴断層撮影における周辺の妨害信号の回避方法および磁気共鳴断層撮影装置
US20070035302A1 (en) Phase unwrapping evolution method and magnetic resonance imaging apparatus using the method
CN107209238A (zh) 具有对边带伪迹的抑制的并行多切片mr成像
US11965945B2 (en) Magnetic resonance system and shimming method and imaging method thereof
WO2014157237A1 (ja) 磁気共鳴イメージング装置
JP7187206B2 (ja) 磁気共鳴イメージング装置
US10094899B2 (en) Magnetic resonance T2 preparatory pulses for magnetic field inhomogeneity robustness and contrast optimization
JP7139143B2 (ja) 磁気共鳴イメージング装置およびマルチスライス撮像方法
JP7353735B2 (ja) 磁気共鳴イメージング装置
CN106137198B (zh) 一种磁共振成像方法及装置
WO2016178413A1 (ja) 磁気共鳴イメージング装置
JP2007159718A (ja) 磁気共鳴イメージング装置および画像補正評価方法
JP6681708B2 (ja) 磁気共鳴イメージング装置
US10908242B2 (en) Magnetic resonance imaging apparatus and multi-slice imaging method
JP7183048B2 (ja) 磁気共鳴イメージングシステム、磁気共鳴イメージング方法、及び磁気共鳴イメージングプログラム
JP6850224B2 (ja) 磁気共鳴イメージング装置及び信号抑制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001402.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006515489

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005793167

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11404840

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11404840

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005793167

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2005793167

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载