WO2006050493A2 - Biodegradable implant for intertransverse process fusion - Google Patents
Biodegradable implant for intertransverse process fusionInfo
- Publication number
- WO2006050493A2 WO2006050493A2 PCT/US2005/039938 US2005039938W WO2006050493A2 WO 2006050493 A2 WO2006050493 A2 WO 2006050493A2 US 2005039938 W US2005039938 W US 2005039938W WO 2006050493 A2 WO2006050493 A2 WO 2006050493A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bone
- poly
- biodegradable
- fusion device
- pores
- Prior art date
Links
- 230000004927 fusion Effects 0.000 title claims abstract description 115
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000007943 implant Substances 0.000 title claims abstract description 29
- 230000008569 process Effects 0.000 title claims abstract description 24
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 110
- 239000000463 material Substances 0.000 claims abstract description 66
- 239000011159 matrix material Substances 0.000 claims abstract description 27
- 229920000642 polymer Polymers 0.000 claims abstract description 14
- 230000006835 compression Effects 0.000 claims abstract description 11
- 238000007906 compression Methods 0.000 claims abstract description 11
- -1 poly(lactic acid) Polymers 0.000 claims description 107
- 239000011148 porous material Substances 0.000 claims description 45
- 229920001577 copolymer Polymers 0.000 claims description 16
- 108090000623 proteins and genes Proteins 0.000 claims description 16
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 16
- 239000003102 growth factor Substances 0.000 claims description 15
- 102000004169 proteins and genes Human genes 0.000 claims description 15
- 238000004891 communication Methods 0.000 claims description 13
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 13
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 12
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 12
- 229920001610 polycaprolactone Polymers 0.000 claims description 11
- 229920001299 polypropylene fumarate Polymers 0.000 claims description 11
- 229920002988 biodegradable polymer Polymers 0.000 claims description 9
- 239000004621 biodegradable polymer Substances 0.000 claims description 9
- 239000000919 ceramic Substances 0.000 claims description 9
- 230000000921 morphogenic effect Effects 0.000 claims description 9
- 229920000954 Polyglycolide Polymers 0.000 claims description 8
- 239000000316 bone substitute Substances 0.000 claims description 8
- 102000018233 Fibroblast Growth Factor Human genes 0.000 claims description 7
- 108050007372 Fibroblast Growth Factor Proteins 0.000 claims description 7
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 claims description 7
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 claims description 7
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 claims description 7
- 102000013275 Somatomedins Human genes 0.000 claims description 7
- 239000000515 collagen sponge Substances 0.000 claims description 7
- 229940126864 fibroblast growth factor Drugs 0.000 claims description 7
- 239000002243 precursor Substances 0.000 claims description 6
- 102000008186 Collagen Human genes 0.000 claims description 5
- 108010035532 Collagen Proteins 0.000 claims description 5
- 210000001185 bone marrow Anatomy 0.000 claims description 5
- 229920001436 collagen Polymers 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 5
- 239000012634 fragment Substances 0.000 claims description 5
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 claims description 5
- 101800003838 Epidermal growth factor Proteins 0.000 claims description 4
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 claims description 4
- 102100031706 Fibroblast growth factor 1 Human genes 0.000 claims description 4
- 108010067306 Fibronectins Proteins 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 210000000845 cartilage Anatomy 0.000 claims description 4
- 230000010261 cell growth Effects 0.000 claims description 4
- 229940116977 epidermal growth factor Drugs 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 4
- 230000002188 osteogenic effect Effects 0.000 claims description 4
- 210000002379 periodontal ligament Anatomy 0.000 claims description 4
- 210000000130 stem cell Anatomy 0.000 claims description 4
- 208000037873 arthrodesis Diseases 0.000 claims description 2
- 102000009024 Epidermal Growth Factor Human genes 0.000 claims 3
- 102100037362 Fibronectin Human genes 0.000 claims 3
- 239000000017 hydrogel Substances 0.000 claims 3
- 102000003839 Human Proteins Human genes 0.000 claims 1
- 108090000144 Human Proteins Proteins 0.000 claims 1
- 210000001124 body fluid Anatomy 0.000 claims 1
- 230000000975 bioactive effect Effects 0.000 description 35
- 210000003205 muscle Anatomy 0.000 description 15
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 13
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 13
- 229940112869 bone morphogenetic protein Drugs 0.000 description 13
- 235000018102 proteins Nutrition 0.000 description 13
- 238000006073 displacement reaction Methods 0.000 description 12
- 230000001737 promoting effect Effects 0.000 description 11
- 210000004027 cell Anatomy 0.000 description 10
- 230000008468 bone growth Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 239000012876 carrier material Substances 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 239000001506 calcium phosphate Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 229940078499 tricalcium phosphate Drugs 0.000 description 6
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 6
- 235000019731 tricalcium phosphate Nutrition 0.000 description 6
- 108010049870 Bone Morphogenetic Protein 7 Proteins 0.000 description 5
- 102100022544 Bone morphogenetic protein 7 Human genes 0.000 description 5
- 210000004204 blood vessel Anatomy 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 4
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000011164 ossification Effects 0.000 description 4
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 208000006735 Periostitis Diseases 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 210000002808 connective tissue Anatomy 0.000 description 3
- OZJPLYNZGCXSJM-UHFFFAOYSA-N delta-Valerolactone Natural products O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 3
- 150000002596 lactones Chemical class 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 210000004705 lumbosacral region Anatomy 0.000 description 3
- 230000002138 osteoinductive effect Effects 0.000 description 3
- 210000003460 periosteum Anatomy 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- VPVXHAANQNHFSF-UHFFFAOYSA-N 1,4-dioxan-2-one Chemical compound O=C1COCCO1 VPVXHAANQNHFSF-UHFFFAOYSA-N 0.000 description 2
- REKYPYSUBKSCAT-UHFFFAOYSA-N 3-hydroxypentanoic acid Chemical compound CCC(O)CC(O)=O REKYPYSUBKSCAT-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 102100026632 Mimecan Human genes 0.000 description 2
- 101800002327 Osteoinductive factor Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 229920003232 aliphatic polyester Polymers 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 239000012503 blood component Substances 0.000 description 2
- 230000036770 blood supply Effects 0.000 description 2
- 210000002449 bone cell Anatomy 0.000 description 2
- 210000002805 bone matrix Anatomy 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 230000012292 cell migration Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 230000000278 osteoconductive effect Effects 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 229940065514 poly(lactide) Drugs 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- ZNLAHAOCFKBYRH-UHFFFAOYSA-N 1,4-dioxane-2,3-dione Chemical compound O=C1OCCOC1=O ZNLAHAOCFKBYRH-UHFFFAOYSA-N 0.000 description 1
- SJDLIJNQXLJBBE-UHFFFAOYSA-N 1,4-dioxepan-2-one Chemical compound O=C1COCCCO1 SJDLIJNQXLJBBE-UHFFFAOYSA-N 0.000 description 1
- AOLNDUQWRUPYGE-UHFFFAOYSA-N 1,4-dioxepan-5-one Chemical compound O=C1CCOCCO1 AOLNDUQWRUPYGE-UHFFFAOYSA-N 0.000 description 1
- QMDUQRDPJXKZAO-UHFFFAOYSA-N 3,3-diethyl-1,4-dioxane-2,5-dione Chemical compound CCC1(CC)OC(=O)COC1=O QMDUQRDPJXKZAO-UHFFFAOYSA-N 0.000 description 1
- ULKFLOVGORAZDI-UHFFFAOYSA-N 3,3-dimethyloxetan-2-one Chemical compound CC1(C)COC1=O ULKFLOVGORAZDI-UHFFFAOYSA-N 0.000 description 1
- MVXNGTMKSZHHCO-UHFFFAOYSA-N 3-methyl-1,4-dioxane-2,5-dione Chemical compound CC1OC(=O)COC1=O MVXNGTMKSZHHCO-UHFFFAOYSA-N 0.000 description 1
- YKVIWISPFDZYOW-UHFFFAOYSA-N 6-Decanolide Chemical compound CCCCC1CCCCC(=O)O1 YKVIWISPFDZYOW-UHFFFAOYSA-N 0.000 description 1
- 101150061927 BMP2 gene Proteins 0.000 description 1
- 208000006386 Bone Resorption Diseases 0.000 description 1
- 102100022545 Bone morphogenetic protein 8B Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 1
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 101000762366 Homo sapiens Bone morphogenetic protein 2 Proteins 0.000 description 1
- 101000899368 Homo sapiens Bone morphogenetic protein 8B Proteins 0.000 description 1
- 206010061246 Intervertebral disc degeneration Diseases 0.000 description 1
- 206010023509 Kyphosis Diseases 0.000 description 1
- 208000029725 Metabolic bone disease Diseases 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940030225 antihemorrhagics Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- GSCLMSFRWBPUSK-UHFFFAOYSA-N beta-Butyrolactone Chemical compound CC1CC(=O)O1 GSCLMSFRWBPUSK-UHFFFAOYSA-N 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 230000018678 bone mineralization Effects 0.000 description 1
- 230000010478 bone regeneration Effects 0.000 description 1
- 230000024279 bone resorption Effects 0.000 description 1
- 229940077737 brain-derived neurotrophic factor Drugs 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 208000018180 degenerative disc disease Diseases 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000002874 hemostatic agent Substances 0.000 description 1
- 102000045896 human BMP2 Human genes 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 208000021600 intervertebral disc degenerative disease Diseases 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- JMRZMIFDYMSZCB-UHFFFAOYSA-N morpholine-2,5-dione Chemical compound O=C1COC(=O)CN1 JMRZMIFDYMSZCB-UHFFFAOYSA-N 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 230000004819 osteoinduction Effects 0.000 description 1
- 210000004663 osteoprogenitor cell Anatomy 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 210000004623 platelet-rich plasma Anatomy 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 206010039722 scoliosis Diseases 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/4455—Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2002/2817—Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/30062—(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30599—Special structural features of bone or joint prostheses not otherwise provided for stackable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30621—Features concerning the anatomical functioning or articulation of the prosthetic joint
- A61F2002/30622—Implant for fusing a joint or bone material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2002/448—Joints for the spine, e.g. vertebrae, spinal discs comprising multiple adjacent spinal implants within the same intervertebral space or within the same vertebra, e.g. comprising two adjacent spinal implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2002/449—Joints for the spine, e.g. vertebrae, spinal discs comprising multiple spinal implants located in different intervertebral spaces or in different vertebrae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/006—Additional features; Implant or prostheses properties not otherwise provided for modular
- A61F2250/0063—Nested prosthetic parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00365—Proteins; Polypeptides; Degradation products thereof
Definitions
- the present invention relates to biodegradable devices and, more particularly, relates to a biodegradable fusion device for use in intertransverse process fusion to protect secondary carriers of growth factors.
- Spinal fusion is a surgical procedure in which adjacent vertebrae are joined together to prevent abnormal movement.
- Spinal fusions are used to treat scoliosis, kyphosis, fractures and injury to the vertebrae, symptomatic degenerative disc disease, and spinal instability resulting from tumors or infection.
- bone grafts from the patient's iliac crest have been used to fuse adjacent vertebrae with good results, but significant morbidity is often associated with the donor site. As healing occurs, the bone growth creates a solid fusion, which is usually complete within about three months after the procedure and continues to get stronger for one to two years. Bone morphogenetic proteins and other growth factors can be used to promote bone formation. Recently, bone morphogenetic protein (BMP-2) delivered through an absorbable collagen sponge has been found to be effective in osteoinduction and arthrodesis in anterior lumbar interbody fusion and with use of interbody fusion cages.
- BMP-2 bone morphogenetic protein
- a biodegradable implant for use in intertransverse process spinal fusion having an advantageous construction.
- the biodegradable implant comprises an absorbable matrix having a bone generating material disposed therein.
- a molded biodegradable case being made of bioabsorbable polymer can at least partially surround the absorbable matrix to carry a substantial portion of compression force relative to said absorbable matrix.
- FIG. 1 is a perspective view of a fusion device according to the present teachings
- FIG. 2 is a side perspective view of the fusion device
- FIG. 3 is a top perspective view of the fusion device
- FIG. 4 is a posterior view of the fusion device in a position on the lumbar spine (L4-L5);
- FIG. 5 is an axial view of the fusion device in a position on the lumbar spine (L4-L5);
- FIG. 6 is a posterior view of x-displacement where dark grey indicates zero displacement and light grey designates a displacement anteriorly towards the spine of 0.3 mm;
- FIG. 7 is a lateral view of x-displacement where dark grey indicates zero displacement and light grey designates a displacement anteriorly (towards the spine) of 0.3 mm;
- FIG. 8 is a perspective view of x-displacement where dark grey indicates zero displacement and light grey designates a displacement anteriorly towards the spine of 0.3 mm;
- FIG. 9 is a posterior view of x-stress where dark grey indicates a stress of 0.5 MPa posteriorly and light grey designates a stress of 1.5 MPa anteriorly towards the spine and the stress is borne primarily by the posterior region of the implant where it comes in contact with the muscle;
- FIG. 10 is a lateral view of exaggerated deformation where the undistorted implant is under compression by the muscles, the implant shows some curving at the ends in this exaggerated view, however, the anterior portion remains intact and the center cavity remains open, indicating that the collagen sponge would be protected and the implant functional;
- FIG. 11 is a perspective view of the back of the fusion device with slots for flange insertion;
- FIG. 12 is a perspective view of the back of the fusion device with slots for flange insertion
- FIG. 13 is a lateral view of a flange;
- FIG. 14 is a posterior view of the fusion device with a flange;
- FIG. 15 is a side view of the fusion device with a flange; and
- FIG. 16 is an anterior view of the fusion device with a flange.
- Spinal fusion is often used to inhibit or at least minimize motion between adjacent vertebrae.
- Typical surgical approaches to spinal fusion are performed from the front (anterior) or the back (posterior) of the patient.
- a posterior procedure an incision is made along the portion of the back adjacent the area of the spine to be fused.
- the muscles are moved or otherwise displaced to the side so as to gain access to the posterior side of the vertebrae.
- a fastener such as pedicle screws, or spinal instrumentation, such as wires, hooks, or rods, can be used to further immobilize the spine.
- one or more pedicle screws may be positioned down the small bony tube created by the pedicle one arch side of the vertebra, between nerve roots.
- the pedicle screw extends into the bone and holds the spine rigid, thereby facilitating immobilization and thus fusion of the targeted vertebrae.
- Additional surgical approaches to spinal fusion can employ interbody constructs in which the lumbar disc between adjacent vertebrae is replaced with metallic cages or bone dowels.
- Interbody fusion can be performed using an anterior or posterior technique and can be combined with instrumented posterolateral fusion.
- the three main posterior fusion techniques include posterolateral gutter fusion surgery, a posterior lumbar interbody fusion (PLIF) surgery, and a transforaminal lumbar interbody fusion (TLIF) surgery.
- PLIF posterior lumbar interbody fusion
- TLIF transforaminal lumbar interbody fusion
- Fusion device 200 is illustrated in accordance with some embodiments of the present teachings.
- Fusion device 20 is generally a biodegradable implant device useful in immobilizing adjacent vertebrae while reducing compression forces exerted upon a bone generating material disposed therein.
- Fusion device 200 generally comprises a biodegradable case or cage 201 having a bone generating or bioactive matrix assembly 203 disposed therein.
- fusion device 200 can be radiolucent, transparent to x-ray, and/or transparent to CT scan analysis.
- fusion device 200 is secured to a bone, such as a portion of a vertebra such as pedicle transverse process, spinous process, facia joint, vertebra body, and/or lamina.
- biodegradable case 201 can be a generally seamless member having a wall 204 defining first opened end 208, a second opened end 210, and a hollow interior volume 202.
- wall 204 may have various shapes, such as generally cylindrical (FIGS. 1-3), generally curved along a first portion 204A and flat along a second portion 204B (FIGS. 11-16), generally tapered, or any other seamless shape conducive to a preferred application.
- multiple biodegradable cases 201 may be stacked on each other for additional vertebrae coverage. In the case of tapered wall, a first biodegradable case 201 can be inserted within a second biodegradable case
- first opened end 208 and second opened end 210 are identical to first opened end 208 and second opened end 210.
- biodegradable case 201 comprises a plurality of pores 206 extending through wall 204 in fluid communication with hollow interior volume 202.
- the plurality of pores 206 can be in all or a portion of the surface area of wall 204.
- hollow interior volume As will be discussed herein, hollow interior volume
- biodegradable case 201 is adapted to carry a substantial portion of the compression forces exerted upon fusion device 200 following implantation, such as those created during movement of the paraspinal muscle.
- biodegradable case 201 protects, insulates, or otherwise minimizes compression forces exerted upon the composition of bone generating material within bone generating or bioactive matrix assembly 203 to improve the fusion rate of the targeted vertebrae.
- biodegradable case 201 can have a wall thickness of about 0.25 mm to about 3 mm.
- biodegradable case 201 can have a wall thickness of about 0.5 mm to about 2 mm. Additionally, in some embodiments, biodegradable case 201 can have a length from about 1 cm to about 5 cm. However, in some embodiments, biodegradable case 201 can have a length of about 3 cm for each level of spinal fusion. Likewise, in some embodiments, biodegradable case 201 can have a diameter from about 1 cm to about 2 cm. In some embodiments, biodegradable case 201 can have a diameter of about 1.5 cm.
- the plurality of pores 206 can provide a number of advantages, such as permitting both cell and fluid permeation therethrough.
- the plurality of pores 206 can enable vital contributions of blood vessels from surrounding tissues, musculature, and periosteum into hollow interior volume 202 of fusion device 200 to facilitate growth of bone tissue within bone generating or bioactive matrix assembly 203.
- blood vessels invading hollow interior volume 202 within fusion device 200 can greatly enhance the generation of new bone.
- the proliferation of blood vessels can increase the potential of spontaneous bone regeneration within hollow interior volume 202 of fusion device 200.
- At least some of the plurality of pores 206 may have a diameter from about 10 microns to about 3000 microns. In some embodiments, at least some of the plurality of pores 206 may have a diameter from about 20 microns to about 1000 microns.
- a pattern of distribution of the plurality of pores 206 may vary according to the dimensions and characteristics of the bone defect. For example, in some embodiments, a pattern of distribution of the plurality of pores 206 may cover substantially all of wall 204. In some embodiments, a pattern of distribution of the plurality of pores 206 may cover only a portion of wall 204. For example, in some embodiments, a pattern distribution of the plurality of pores 206 may cover the area of wall 204 that is in contact with a bone. With reference to FIGS. 11-16, in some embodiments the plurality of pores 206 extend along curved wall portion 204A or alternatively flat wall portion 204B.
- fusion device 200 may have directional porosity by a design of the plurality of pores 206. It should be understood that the ranges of pore sizes, pore shapes, and pore distributions can vary depending upon the specific application and intended environment of fusion device 200. Examples of different environmental conditions encountered in spinal or other bone defects include the location of the defect, the type of defect, size of the defect, the presence or absence of periosteum, the condition of the intervertebral disc, and/or the general condition of the adjacent soft tissues covering the spinal or bone defect.
- biodegradable case 201 comprises a slot or hole 212 sized to receive a protrusion, a hook (i.e. transverse process hook),, a flange, a banding, or other securing device 216 to aid in securing fusion device 200 to a bone, such as via one or more pedicle screws.
- biodegradable case 201 comprises a protrusion, flange, or hole formed directly and/or integrally with biodegradable case 201 that is operable to receive a fastener therethrough for fastening a fusion device 200 to a bone.
- biodegradable case 201 is made of a biodegradable material and, in some embodiments, can be made of a bioabsorbable and/or bioresorbable material.
- biodegradable case 201 can be made of a biodegradable polymer such as poly(glycolide), poly(lactide), poly( ⁇ -caprolactone), poly(trimethylene carbonate) and poly(p- dioxanone).
- biodegradable case 201 can be made of copolymers such as poly(lactide-co-glycolide), poly( ⁇ -caprolactone-co-glycolide), and poly(glycolide-co-trimethylene carbonate).
- biodegradable polymers examples include: lactide/tetramethylglycolide copolymers, lactide/trimethylene carbonate copolymers, Iactide/ ⁇ -valerolactone copolymers, lactide ⁇ -caprolactone copolymers, polydepsipeptides, poly(lactide)/polyethylene oxide copolymers, unsymmetrically 3,6-substituted poly(1 ,4-dioxane-2,5-dione), poly( ⁇ - hydroxybutyrate), poly( ⁇ -hydroxybutyrate)/( ⁇ -hydroxyvalerate) copolymers, poly( ⁇ -hydroxypropionate), poly( ⁇ -valerolatone), methylmethacrylate-N-vinyl pyrrolidone copolymers, polyesteramides, polyesters of oxalic acid, polydihydropyrans, polyalkyl-2-cyanoacrylates, polyurethanes, poly
- a biodegradable polymer can be a statistically random copolymer, a segmented copolymer, a block copolymer, a stereocopolymer, a graft copolymer or combinations of any of the above.
- biodegradable case 201 can be made of a polymer composite further comprising one or more of ⁇ -tricalcium phosphate, demineralized bone, autograft bone, allograft bone, hydroxyapatite, ceramics, bone substitutes, and combinations thereof.
- biodegradable case 201 can be made of poly(propylene fumarate)/ ⁇ -tricalcium phosphate (PPF/TCP) or poly( ⁇ -caprolactone)/ ⁇ -tricalcium phosphate (PCL/TCP).
- Aliphatic polyesters may be useful in the practice of the present teachings and can be typically synthesized by conventional techniques using conventional processes.
- lactone monomers can be polymerized in the presence of an organometallic catalyst and an initiator at elevated temperatures.
- the organometallic catalyst can be tin based, such as for example, stannous octoate, and can be present in the monomer mixture at a molar ratio of monomer to catalyst ranging from about 10,000:1 to about 100,000:1.
- the initiator can be typically an alkanol, a glycol, a hydroxyacid, or an amine, and can be present in the lactone monomer mixture at a molar ratio of monomer to initiator ranging from about 100:1 to about 5,000:1.
- the polymerization can be typically carried out at a temperature range from about 80°C to about 220 0 C, or from about 160 0 C to about 200 0 C, until the desired molecular weight and viscosity are achieved. Under these conditions, the aliphatic polyesters can typically have an average molecular weight of about 5,000 grams per mole to about 200,000 grams per mole, or about 10,000 grams per mole to about 100,000 grams per mole.
- lactone monomers examples include p-dioxanone, trimethylene carbonate, ⁇ -caprolactone, ⁇ - valerolactone, ⁇ -butyrolactone, ⁇ -decalactone, 2,5-diketomorpholine, pivalolactone, ⁇ - ⁇ -diethylpropiolactone, ethylene carbonate, ethylene oxalate, 3- methyl-1 ,4-dioxane-2,5-dione, 3,3-diethyl-1 ,4-dioxan-2,5-dione, ⁇ -butyrolactone, 1 ,4-dioxepan-2-one, 1 ,5-dioxepan-2-one, 1 ,4-dioxan-2-one, 6,8- dioxabicycIoctane-7-one and combinations of two or more thereof.
- biodegradable case 201 can be made of a material impregnated with a variety of substances for promoting the regeneration of different tissues, such as bone and blood vessels.
- biodegradable case 201 can be made of a material impregnated with a chemotactic substance for influencing cell-migration, an inhibitory substance for influencing cell-migration, a mitogenic growth factor for influencing cell proliferation and a growth factor for influencing cell differentiation (such as for example, insulin-like growth factor, transforming growth factor-beta, fibroblast growth factor, platelet-derived growth factor), and factors which promote neoangiogenesis (formation of new blood vessels).
- a chemotactic substance for influencing cell-migration an inhibitory substance for influencing cell-migration
- a mitogenic growth factor for influencing cell proliferation such as for example, insulin-like growth factor, transforming growth factor-beta, fibroblast growth factor, platelet-derived growth factor
- factors which promote neoangiogenesis formation of new blood vessels.
- biodegradable case 201 can be filled or partially filled with bone generating or bioactive matrix assembly 203.
- Bone generating or bioactive matrix assembly 203 can comprise a bone generating material or bioactive material held or otherwise suspended in a matrix or suitable carrier.
- such bone generating material or bioactive material can comprise bone grafts, bone graft substitutes, and/or fragments thereof. It should be understood, however, that bone graft fragments may naturally dispersed and be resorbed by the body unless they are rigidly held together and provided with sufficient blood supply. Such rigid hold and exposure to sufficient blood supply can be achieved using biodegradable case 201 of the present teachings..
- a medium such as for example, a sponge, a strip or other such suitable material for carrying a bioactive material to regulate the complex cascade of cellular events of bone repair, can be placed into the protected hollow interior volume 202 of biodegradable case 201 in addition to or as an alternative to bone grafts or other bone graft substitutes.
- the bioactive material of bone generating or bioactive matrix assembly 203 comprises a bone morphogenic protein (BMP) for use as an alternative or adjunctive bone graft material.
- Bone morphogenic protein (BMP) generally comprises an osteoinductive cytokine extracted from bone matrix that is capable of inducing bone formation when implanted in a fracture or surgical bone-formation site.
- BMP typically refers to a group of bone morphogenic proteins that belong to the TGF- ⁇ super family and can include the structures of eleven proteins--BMP-1 through BMP- 11.
- recombinantly produced human bone morphogenetic protein-2 (rhBMP-2) can be used as the bioactive material of bone generating or bioactive matrix assembly 203.
- the purification of bovine bone-derived, bone-inductive protein has led to the cloning of recombinant human (rh) BMP-2 through rhBMP-8.
- BMP-2 through BMP-8 are related proteins with several common characteristics.
- each BMP can be synthesized in a precursor form, with a hydrophobic secretory leader sequence and a substantial propeptide region.
- the mature protein can consists of a dimer of the carboxy-terminal portion of the propeptide molecule.
- rhBMPs may contain one or more N-linked glycosylation sites and seven cysteine residues. The locations of the cysteine residues can be conserved within all members of this gene family.
- these BMPs may prove particularly useful in spinal-fusion surgeries such as discussed herein and can be part of bone generating or bioactive matrix assembly 203 to assist in promoting osteogenic formation and healing.
- a BMP source can include a commercial source, for example, Medtronic INFUSE® Bone Graft contains recombinant human bone morphogenetic protein (rhBMP- 2), the genetically engineered version of a naturally occurring protein that is capable of initiating bone growth in specific, targeted areas of the spine.
- a BMP source can include a commercial source, for example, BMP-7, also known as osteogenic protein-1 (OP-1), available as Osigraft from Howmeclica International S. de R. L., and available as an OP-1 implant or OP-1 Putty from Stryker Biotech.
- BMP-7 also known as osteogenic protein-1 (OP-1), available as Osigraft from Howmeclica International S. de R. L., and available as an OP-1 implant or OP-1 Putty from Stryker Biotech.
- a BMP source can include a commercial source, for example, rhBMP-2 available from Wyeth-Genetics Institute.
- bioactive fluids which can be added to a suitable carrier held and hollow interior volume 202 can include sterile water, saline, blood, or blood components including plasma, platelet-rich plasma, buffy coat, autologous growth factors or other concentrated blood components, red blood cells, white blood cells or platelets in any combination, as well as cryoprecipitates.
- bioactive fluids which can be added to a suitable carrier and held in hollow interior volume 202 can include bone marrow, as well as growth factor solutions suspensions or gels, which include any of the well known growth factors such as Platelet-Derived Growth Factor (PDGF), Transforming Growth Factor Beta (TGF- ⁇ ), Insulin-Like Growth Factor (IGF), Fibroblast Growth Factor (FGF), Epidermal Growth Factor (EGF), Vascular Endothelial Growth Factor (VEGF), Bone Morphogenetic Proteins (BMPs), and vectors for gene therapy.
- PDGF Platelet-Derived Growth Factor
- TGF- ⁇ Transforming Growth Factor Beta
- IGF Insulin-Like Growth Factor
- FGF Fibroblast Growth Factor
- EGF Epidermal Growth Factor
- VEGF Vascular Endothelial Growth Factor
- BMPs Bone Morphogenetic Proteins
- bioactives which can be added which can be added to a suitable carrier held and hollow interior volume 202 may include cellular solutions, suspensions, and materials including osteoblasts, osteoprogenitor cells, chondroblasts, stem cells, or fibroblasts as well as any solutions or suspensions containing other therapeutic agents such as antibiotics, analgesics, antithrombinolytics, or chemotherapeutic agents.
- the bioactive material can be a substance, or metabolic precursor thereof, which is capable of promoting growth and survival of cells and tissues, or augmenting the activity of functioning cells, as for example, blood cells, neurons, muscle, bone marrow, bone cells and tissues, and the like.
- the bioactive material can be a nerve growth promoting substance, as for example, a ganglioside, phosphatidylserine, a nerve growth factor, brain-derived neurotrophic factor.
- the bioactive material can be a growth factor for soft or fibrous connective tissue such as for example, a fibroblast growth factor, an epidermal growth factor, an endothelial cell growth factor, a platelet derived growth factor, an insulin-like growth factor, a periodontal ligament cell growth factor, cementum attachment extracts, and fibronectin.
- the bioactive material can be a bone generating material, an osteogenic material, an osteoconductive material, an osteoinductive material, and/or a natural or synthetic bone morphogenic protein.
- the bioactive material can be an osteoinductive or osteoconductive substance and/or comprise a suitable bone growth promoting agent, such as osteoinductive factor (OIF), bone morphogenetic protein (BMP) or protein derived therefrom, demineralized bone matrix, and releasing factors thereof.
- a suitable bone growth promoting agent such as osteoinductive factor (OIF), bone morphogenetic protein (BMP) or protein derived therefrom, demineralized bone matrix, and releasing factors thereof.
- the bioactive material that comprises bone growth promoting agents can be a bone growth promoting substance such as hydroxyapatite, tricalcium phosphate, a di- or polyphosphonic acid, an anti-estrogen, a sodium fluoride preparation, a substance having a phosphate to calcium ratio similar to natural bone, and the like.
- the bone growth promoting substance can be in the form, such as for example, of bone chips, bone crystals or mineral fractions of bone and/or teeth, a synthetic hydroxyapatite, or other suitable form.
- the bone growth promoting agent may further be capable of treating metabolic bone disorders such as abnormal calcium and phosphate metabolism by, for example, inhibiting bone resorption, promoting bone mineralization, or inhibiting calcification.
- the bone growth promoting agent may also be used to promote the growth and survival of blood cells, as for example, a colony stimulating factor, and erythropoietin.
- the bioactive material can be mesenchymal stem cells, which can be found in surrounding mesodermal tissues and which are the precursor cells which eventually form muscle, cartilage, tendons, ligaments, connective tissues, and bone. In some embodiments, these cells can be present in these tissues and are involved in the perpetual renewal of each specific tissue, although in their earliest stage of development, these cells are not committed to becoming any given tissue. In some embodiments, an uncommitted mesenchymal stem cell found in muscle, for example, may not strictly become a muscle cell. If the mesenchymal stem cell is needed to become a bone cell, the mesenchymal stem cell may migrate to a bone defect and differentiate into a bone forming cell.
- mesenchymal stem cells which can be found in surrounding mesodermal tissues and which are the precursor cells which eventually form muscle, cartilage, tendons, ligaments, connective tissues, and bone. In some embodiments, these cells can be present in these tissues and are involved in the perpetual renewal of each specific tissue, although in their earliest stage of development, these
- the mechanism for attracting these cells, and for directing them to become specific tissue cells can be controlled by bioactive material such as for example bone morphogenic proteins and/or growth other factors.
- the plurality of pores 206 of fusion device 200 may harness this mechanism, by allowing, for example, bone morphogenic proteins from within hollow interior volume 202 of fusion device 200 to attract mesenchymal stem cells from the surrounding connective tissues, musculature, periosteum, and/or vasculature.
- the choice of a suitable carrier material can be based on biocompatibility, biodegradability, mechanical properties, and interface properties.
- the suitable carrier material can be any carrier capable of delivering BMP to an area that may facilitate spinal fusion.
- suitable carrier has the capability of being resorbed into the body.
- the suitable carrier material can be absorbable collagen sponge marketed by Integra LifeSciences Corporation under the trade name HELISTAT ® Absorbable Collagen Hemostatic Agent.
- the suitable carrier material can be an open cell polylactic acid polymer (OPLA).
- the suitable carrier material comprises compositions that can be biodegradable and chemically defined such as for example, calcium sulfate, tricalcium phosphate (TCP), hydroxyapatite (HA), biphasic TCP/HA ceramic, polylactic acids and polyanhydrides.
- compositions that can be biodegradable and chemically defined such as for example, calcium sulfate, tricalcium phosphate (TCP), hydroxyapatite (HA), biphasic TCP/HA ceramic, polylactic acids and polyanhydrides.
- suitable carrier can be biodegradable, such as for example, bone or collagen, to permit the suitable carrier material to be broken down by the body.
- the suitable carrier can comprise pure proteins or extracellular matrix components and/or can comprise poly(lactic acid), poly(lacide); poly(caprolactone), poly(glycolic acid), poly(glycolide), polypropylene fumarate), poly(dimethylglycolic) acid, poly(methylethylglycolic acid), combinations thereof, and/or copolymers thereof.
- the suitable carrier material can be provided in strips or sheets that can be folded to conform to hollow interior volume 202.
- suitable carrier may extend out of openings of the devices, such as for example, the openings 208, 210 or the plurality of pores 206, to facilitate contact of the bioactive material with the highly vascularized tissue surrounding vertebrae 250, 252.
- the bioactive material comprises a polylactic acid polymer acting as a suitable carrier for a bone morphogenic protein, for example, such as BMP-2 or rhBMP-2. Similar to the suitable carrier, the bioactive material can be a sheet that is overlapped and folds within hollow interior volume 202 of device.
- the sheet can be long enough so that when it is folded within fusion device 200 the sheet substantially completely fills hollow interior volume 202 and can extend at least partially into at least one pore opening the plurality of pores 206.
- bioactive material can be provided in several strips sized to fit within the hollow interior volume 202 of fusion device 200. In some embodiments, strips can be placed one against another to fill the hollow interior volume 202.
- bioactive material can be provided in a sponge that is placed into and held within hollow interior volume 202. In some embodiments, sponge comprising bioactive material when placed within fusion device 200 substantially completely fills hollow interior volume 202 and can extend at least partially into at least one pore opening of the plurality of pores 206.
- fusion device 200 may combine two functions: the plurality of pores 206 on the anterior portion of fusion device 200 delivers growth factor toward the transverse processes to induce bone formation, and a solid wall 204 of the posterior portion of fusion device 200 prevents growth factor from diffusing into the overlying muscle to prolong growth factor delivery to the target area and control dose.
- solid wall 204 of the posterior portion of fusion device 200 may provide the mechanical strength necessary to withstand the compressive forces exerted by the paraspinal muscles.
- FIGS. 6-10 the results of the finite-element analysis conducted modeling fusion device 200 and compressive force from the longissimus thoracis muscle (a paraspinal muscle), which lies directly posterior to the position of fusion device 200 on the vertebral transverse processes, are illustrated.
- FIGS. 6-8 show the calculated x-displacement of fusion device 200 under compressive force in the negative x direction (anteriorly, towards the spine). As can be seen, very little displacement occurs, with the maximum displacement of less than 0.3 mm occurring at the ends on the posterior side (shown in light grey 270 and zero is very light grey 280 in FIGS. 6-8), where the muscle is contacting fusion device 200.
- fusion device 200 can be position at or along a portion of a spine, such as for example on the lumbar spine at vertebra l_4 250 and vertebra L5 252. In some embodiments, fusion device 200 can be positioned in contact with transverse process 240 of vertebra L4 250 and transverse process 242 of vertebra L5 252.
- one fusion device 200 can be placed on transverse process 240 of vertebra L4 250 and transverse process 242 of vertebra L5 of 252 and a second fusion device 200 can be placed in contact with transverse process 244 of vertebra L4 250 and contact with transverse process 246 of vertebra L5 252.
- fusion device can be placed in contact with adjacent transverse processes of different vertebra.
- the plurality of pores 206 is in contact with transverse processes 240 and 242 such that bioactive material held in hollow interior volume 202 is in fluid communication with transverse processes 240 and 242.
- FIG. 9 is a posterior view of x-stress.
- the highest stress is borne by the posterior side of fusion device 200 where it is contacted directly by the muscle, and is only 1.5 MPa (towards the spine and shown in black 290) as compared to 0.5 MPa posteriorly (shown in grey 295).
- the maximum stress of 1.5 MPa is far less than an upper limit of stress a PPF-TCP material, which has an elastic modulus of about 680 MPa.
- fusion device 200 suggests that while the ends of fusion device 200 on the posterior side may curve 295, from the forces exerted by the paraspinal muscles, the plurality of pores 206 in the anterior portion and hollow interior volume 202 of fusion device 200 would remain intact. In some embodiments under extreme force from a posterior direction, bioactive material is protected by fusion device 200.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/800,086 US9724205B2 (en) | 2004-11-03 | 2007-05-03 | Biodegradable implant for intertransverse process fusion |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US62465804P | 2004-11-03 | 2004-11-03 | |
US60/624,658 | 2004-11-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/800,086 Continuation-In-Part US9724205B2 (en) | 2004-11-03 | 2007-05-03 | Biodegradable implant for intertransverse process fusion |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006050493A2 true WO2006050493A2 (en) | 2006-05-11 |
WO2006050493A3 WO2006050493A3 (en) | 2007-02-15 |
Family
ID=36319814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/039938 WO2006050493A2 (en) | 2004-11-03 | 2005-11-03 | Biodegradable implant for intertransverse process fusion |
Country Status (2)
Country | Link |
---|---|
US (1) | US9724205B2 (en) |
WO (1) | WO2006050493A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7943573B2 (en) | 2008-02-07 | 2011-05-17 | Biomimetic Therapeutics, Inc. | Methods for treatment of distraction osteogenesis using PDGF |
US8106008B2 (en) | 2006-11-03 | 2012-01-31 | Biomimetic Therapeutics, Inc. | Compositions and methods for arthrodetic procedures |
US8114841B2 (en) | 2004-10-14 | 2012-02-14 | Biomimetic Therapeutics, Inc. | Maxillofacial bone augmentation using rhPDGF-BB and a biocompatible matrix |
US8492335B2 (en) | 2010-02-22 | 2013-07-23 | Biomimetic Therapeutics, Llc | Platelet-derived growth factor compositions and methods for the treatment of tendinopathies |
US8870954B2 (en) | 2008-09-09 | 2014-10-28 | Biomimetic Therapeutics, Llc | Platelet-derived growth factor compositions and methods for the treatment of tendon and ligament injuries |
US9161967B2 (en) | 2006-06-30 | 2015-10-20 | Biomimetic Therapeutics, Llc | Compositions and methods for treating the vertebral column |
US9545377B2 (en) | 2004-10-14 | 2017-01-17 | Biomimetic Therapeutics, Llc | Platelet-derived growth factor compositions and methods of use thereof |
US9642891B2 (en) | 2006-06-30 | 2017-05-09 | Biomimetic Therapeutics, Llc | Compositions and methods for treating rotator cuff injuries |
US10258566B2 (en) | 2004-10-14 | 2019-04-16 | Biomimetic Therapeutics, Llc | Compositions and methods for treating bone |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100049322A1 (en) * | 2008-08-19 | 2010-02-25 | Warsaw Orthopedic, Inc. | Osteochondral repair implants and methods |
US9439685B2 (en) * | 2009-05-12 | 2016-09-13 | Bullard Spine, Llc | Multi-layer osteoinductive, osteogenic, and osteoconductive carrier |
US9399086B2 (en) | 2009-07-24 | 2016-07-26 | Warsaw Orthopedic, Inc | Implantable medical devices |
TW201215369A (en) * | 2010-10-01 | 2012-04-16 | Metal Ind Res & Dev Ct | Spinal implant structure and method for manufacturing the same |
EP2890314A4 (en) | 2012-08-31 | 2016-07-13 | Newsouth Innovations Pty Ltd | Bone stabilization device and methods of use |
US10201433B2 (en) * | 2012-10-19 | 2019-02-12 | Tyber Medical Llc | System and method for correcting scoliosis |
WO2015057604A1 (en) | 2012-10-19 | 2015-04-23 | Tyber Medical Llc | Wedge osteotomy device and method of use |
US9700435B2 (en) | 2013-03-14 | 2017-07-11 | Warsaw Orthopedic, Inc. | Surgical delivery system and method |
CN105592811B (en) | 2013-08-30 | 2018-06-22 | 新南创新公司 | Spinal stabilization device |
WO2015200032A1 (en) | 2014-06-25 | 2015-12-30 | Spine Wave, Inc. | Minimally invasive posterolateral fusion |
US9775723B2 (en) | 2015-06-16 | 2017-10-03 | Spine Wave, Inc. | Instrument and system for placing graft, implant and graft material for minimally invasive posterolateral fusion |
AU2019355859A1 (en) * | 2018-10-01 | 2021-05-13 | K2M, Inc. | Graft scaffold |
US11051953B2 (en) | 2019-07-31 | 2021-07-06 | Zavation Medical Products, Llc | Porous spinal implant |
US11857436B1 (en) | 2019-07-31 | 2024-01-02 | Zavation Medical Products, Llc | Porous spinal implant |
AU2020361594A1 (en) * | 2019-10-11 | 2022-04-21 | Advanced Solutions Life Sciences, Llc | Bone graft and methods of fabrication and use |
US11278420B2 (en) | 2019-10-25 | 2022-03-22 | Zavation, Llc | Recessed pocket spinal implant |
US20220347347A1 (en) * | 2021-04-28 | 2022-11-03 | Worcester Polytechnic Institute | Ligament Repair Scaffold |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6294041B1 (en) * | 1998-02-06 | 2001-09-25 | Osteotech, Inc. | Method for an osteoimplant manufacture |
US6719795B1 (en) * | 2001-04-25 | 2004-04-13 | Macropore Biosurgery, Inc. | Resorbable posterior spinal fusion system |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4351069A (en) * | 1979-06-29 | 1982-09-28 | Union Carbide Corporation | Prosthetic devices having sintered thermoplastic coatings with a porosity gradient |
JPS63119749A (en) * | 1985-11-27 | 1988-05-24 | 川原 春幸 | Dental implant having multiple capillary structure |
US5015247A (en) | 1988-06-13 | 1991-05-14 | Michelson Gary K | Threaded spinal implant |
US5487897A (en) | 1989-07-24 | 1996-01-30 | Atrix Laboratories, Inc. | Biodegradable implant precursor |
US5492697A (en) | 1990-03-05 | 1996-02-20 | Board Of Regents, Univ. Of Texas System | Biodegradable implant for fracture nonunions |
US5876452A (en) | 1992-02-14 | 1999-03-02 | Board Of Regents, University Of Texas System | Biodegradable implant |
CA2131902C (en) * | 1992-03-13 | 2004-08-03 | Paul Martakos | Controlled porosity expanded polytetrafluoroethylene products and fabrication |
US5702446A (en) * | 1992-11-09 | 1997-12-30 | Board Of Regents, The University Of Texas System | Bone prosthesis |
US6176874B1 (en) * | 1993-10-18 | 2001-01-23 | Masschusetts Institute Of Technology | Vascularized tissue regeneration matrices formed by solid free form fabrication techniques |
DE69526094T2 (en) * | 1994-09-15 | 2002-11-21 | Surgical Dynamics, Inc. | CONICAL FUSION CAGE |
US6758849B1 (en) | 1995-02-17 | 2004-07-06 | Sdgi Holdings, Inc. | Interbody spinal fusion implants |
US6206922B1 (en) | 1995-03-27 | 2001-03-27 | Sdgi Holdings, Inc. | Methods and instruments for interbody fusion |
ATE286696T1 (en) | 1995-03-27 | 2005-01-15 | Sdgi Holdings Inc | SPINAL FUSION IMPLANT AND INSERTION AND VERIFICATION TOOLS |
US5782919A (en) | 1995-03-27 | 1998-07-21 | Sdgi Holdings, Inc. | Interbody fusion device and method for restoration of normal spinal anatomy |
US6149688A (en) * | 1995-06-07 | 2000-11-21 | Surgical Dynamics, Inc. | Artificial bone graft implant |
US5702449A (en) * | 1995-06-07 | 1997-12-30 | Danek Medical, Inc. | Reinforced porous spinal implants |
US5527864A (en) | 1995-08-08 | 1996-06-18 | Suggs; Laura J. | Poly(propylene fumarate-co-ethylene oxide) |
US5716413A (en) | 1995-10-11 | 1998-02-10 | Osteobiologics, Inc. | Moldable, hand-shapable biodegradable implant material |
US6037519A (en) * | 1997-10-20 | 2000-03-14 | Sdgi Holdings, Inc. | Ceramic fusion implants and compositions |
US5925074A (en) * | 1996-12-03 | 1999-07-20 | Atrium Medical Corporation | Vascular endoprosthesis and method |
US5749916A (en) * | 1997-01-21 | 1998-05-12 | Spinal Innovations | Fusion implant |
KR20010006026A (en) | 1997-04-03 | 2001-01-15 | 존스 홉킨스 유니버시티 스쿨 오브 메디슨 | Biodegradable terephthalate polyester-poly(phosphate) polymers, compositions, articles, and methods for making and using the same |
EP1014897B1 (en) | 1997-05-30 | 2008-10-29 | Osteobiologics, Inc. | Fiber-reinforced, porous, biodegradable implant device |
US6039763A (en) * | 1998-10-27 | 2000-03-21 | Disc Replacement Technologies, Inc. | Articulating spinal disc prosthesis |
US6383519B1 (en) | 1999-01-26 | 2002-05-07 | Vita Special Purpose Corporation | Inorganic shaped bodies and methods for their production and use |
US6558423B1 (en) * | 1999-05-05 | 2003-05-06 | Gary K. Michelson | Interbody spinal fusion implants with multi-lock for locking opposed screws |
US20020128714A1 (en) * | 1999-06-04 | 2002-09-12 | Mark Manasas | Orthopedic implant and method of making metal articles |
JP4672947B2 (en) * | 1999-12-06 | 2011-04-20 | ウォーソー・オーソペディック・インコーポレーテッド | Intervertebral disc treatment apparatus and method |
US6517477B1 (en) * | 2000-01-27 | 2003-02-11 | Scimed Life Systems, Inc. | Catheter introducer system for exploration of body cavities |
US6814756B1 (en) * | 2000-02-04 | 2004-11-09 | Gary K. Michelson | Expandable threaded arcuate interbody spinal fusion implant with lordotic configuration during insertion |
ATE385742T1 (en) * | 2000-10-24 | 2008-03-15 | Howmedica Osteonics Corp | BARRELS-SHAPED THREADED DEVICE FOR FUSING ADJACENT BONE STRUCTURES |
CA2426932A1 (en) * | 2000-10-25 | 2002-06-20 | Sdgi Holdings, Inc. | Vertically expanding intervertebral body fusion device |
US20020169507A1 (en) * | 2000-12-14 | 2002-11-14 | David Malone | Interbody spine fusion cage |
CA2435552C (en) * | 2001-02-06 | 2010-04-27 | The Royal Alexandra Hospital For Children | A drug for the treatment of osteonecrosis and for the management of patients at risk of developing osteonecrosis |
US6855169B2 (en) * | 2001-02-28 | 2005-02-15 | Synthes (Usa) | Demineralized bone-derived implants |
US6899734B2 (en) * | 2001-03-23 | 2005-05-31 | Howmedica Osteonics Corp. | Modular implant for fusing adjacent bone structure |
US7056339B2 (en) * | 2001-04-20 | 2006-06-06 | The Board Of Trustees Of The Leland Stanford Junior University | Drug delivery platform |
DE60230739D1 (en) * | 2001-05-01 | 2009-02-26 | Amedica Corp | X-RAY BONE TRANSPLANT |
US7494482B2 (en) | 2001-05-15 | 2009-02-24 | The Brigham And Women's Hospital, Inc. | Methods and apparatus for application of micro-mechanical forces to tissues |
AU2002316355A1 (en) | 2001-06-22 | 2003-01-08 | The Regents Of The University Of Michigan | Design methodology for tissue engineering scaffolds and biomaterial implants |
US7087200B2 (en) | 2001-06-22 | 2006-08-08 | The Regents Of The University Of Michigan | Controlled local/global and micro/macro-porous 3D plastic, polymer and ceramic/cement composite scaffold fabrication and applications thereof |
GB0119652D0 (en) * | 2001-08-11 | 2001-10-03 | Stanmore Implants Worldwide | Surgical implant |
US6923830B2 (en) * | 2002-02-02 | 2005-08-02 | Gary K. Michelson | Spinal fusion implant having deployable bone engaging projections |
US7309358B2 (en) * | 2002-03-21 | 2007-12-18 | Warsaw Orthopedic, Inc. | Vertebral body and disc space replacement devices |
DE20207853U1 (en) * | 2002-05-21 | 2002-10-10 | Metz-Stavenhagen, Peter, Dr.med., 34537 Bad Wildungen | Vertebral body spacer |
US20040049270A1 (en) * | 2002-09-10 | 2004-03-11 | Gewirtz Robert J. | Bone graft device |
US20040186569A1 (en) * | 2003-03-20 | 2004-09-23 | Berry Bret M. | Height adjustable vertebral body and disc space replacement devices |
US7270679B2 (en) * | 2003-05-30 | 2007-09-18 | Warsaw Orthopedic, Inc. | Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance |
AU2004259762A1 (en) * | 2003-07-24 | 2005-02-03 | Tecomet, Inc. | Assembled non-random foams |
US7833256B2 (en) * | 2004-04-16 | 2010-11-16 | Biedermann Motech Gmbh | Elastic element for the use in a stabilization device for bones and vertebrae and method for the manufacture of such elastic element |
-
2005
- 2005-11-03 WO PCT/US2005/039938 patent/WO2006050493A2/en active Application Filing
-
2007
- 2007-05-03 US US11/800,086 patent/US9724205B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6294041B1 (en) * | 1998-02-06 | 2001-09-25 | Osteotech, Inc. | Method for an osteoimplant manufacture |
US6719795B1 (en) * | 2001-04-25 | 2004-04-13 | Macropore Biosurgery, Inc. | Resorbable posterior spinal fusion system |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11318230B2 (en) | 2004-10-14 | 2022-05-03 | Biomimetic Therapeutics, Llc | Platelet-derived growth factor compositions and methods of use thereof |
US10258566B2 (en) | 2004-10-14 | 2019-04-16 | Biomimetic Therapeutics, Llc | Compositions and methods for treating bone |
US8114841B2 (en) | 2004-10-14 | 2012-02-14 | Biomimetic Therapeutics, Inc. | Maxillofacial bone augmentation using rhPDGF-BB and a biocompatible matrix |
US9545377B2 (en) | 2004-10-14 | 2017-01-17 | Biomimetic Therapeutics, Llc | Platelet-derived growth factor compositions and methods of use thereof |
US11571497B2 (en) | 2004-10-14 | 2023-02-07 | Biomimetic Therapeutics, Llc | Platelet-derived growth factor compositions and methods of use thereof |
US11364325B2 (en) | 2004-10-14 | 2022-06-21 | Biomimetic Therapeutics, Llc | Platelet-derived growth factor compositions and methods of use thereof |
US9161967B2 (en) | 2006-06-30 | 2015-10-20 | Biomimetic Therapeutics, Llc | Compositions and methods for treating the vertebral column |
US9642891B2 (en) | 2006-06-30 | 2017-05-09 | Biomimetic Therapeutics, Llc | Compositions and methods for treating rotator cuff injuries |
US10456450B2 (en) | 2006-06-30 | 2019-10-29 | Biomimetic Therapeutics, Llc | Compositions and methods for treating rotator cuff injuries |
US11058801B2 (en) | 2006-06-30 | 2021-07-13 | Biomimetic Therapeutics, Llc | Compositions and methods for treating the vertebral column |
US8106008B2 (en) | 2006-11-03 | 2012-01-31 | Biomimetic Therapeutics, Inc. | Compositions and methods for arthrodetic procedures |
US8349796B2 (en) | 2008-02-07 | 2013-01-08 | Biomimetic Therapeutics Inc. | Methods for treatment of distraction osteogenesis using PDGF |
US7943573B2 (en) | 2008-02-07 | 2011-05-17 | Biomimetic Therapeutics, Inc. | Methods for treatment of distraction osteogenesis using PDGF |
US11135341B2 (en) | 2008-09-09 | 2021-10-05 | Biomimetic Therapeutics, Llc | Platelet-derived growth factor composition and methods for the treatment of tendon and ligament injuries |
US8870954B2 (en) | 2008-09-09 | 2014-10-28 | Biomimetic Therapeutics, Llc | Platelet-derived growth factor compositions and methods for the treatment of tendon and ligament injuries |
US11235030B2 (en) | 2010-02-22 | 2022-02-01 | Biomimetic Therapeutics, Llc | Platelet-derived growth factor compositions and methods for the treatment of tendinopathies |
US8492335B2 (en) | 2010-02-22 | 2013-07-23 | Biomimetic Therapeutics, Llc | Platelet-derived growth factor compositions and methods for the treatment of tendinopathies |
Also Published As
Publication number | Publication date |
---|---|
WO2006050493A3 (en) | 2007-02-15 |
US20070270844A1 (en) | 2007-11-22 |
US9724205B2 (en) | 2017-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9724205B2 (en) | Biodegradable implant for intertransverse process fusion | |
Parikh | Bone graft substitutes: past, present, future | |
Burg et al. | Biomaterial developments for bone tissue engineering | |
Frenkel et al. | Osseointegration on metallic implant surfaces: effects of microgeometry and growth factor treatment | |
US7776594B2 (en) | Bone marrow infusion chamber and method | |
Berven et al. | Clinical applications of bone graft substitutes in spine surgery: consideration of mineralized and demineralized preparations and growth factor supplementation | |
Carlisle et al. | Bone morphogenetic proteins for spinal fusion | |
US7833270B2 (en) | Implant depots to deliver growth factors to treat osteoporotic bone | |
Pecina et al. | Orthopaedic applications of osteogenic protein-1 (BMP-7) | |
US6761739B2 (en) | Cortical and cancellous allograft spacer | |
US20070077267A1 (en) | Bioactive composite implants | |
US20090196904A1 (en) | Highly-mineralized osteogenic sponge compositions and uses thereof | |
Kwon et al. | Carrier materials for spinal fusion | |
WO2006119244A1 (en) | Spinal fusion with osteogenic material and migration barrier | |
Gupta et al. | Bone grafts and bone morphogenetic proteins in spine fusion | |
US20080161923A1 (en) | Intervertebral Motion Disc Having A Resorbable Keel | |
Kim et al. | Bone graft alternatives in spinal fusion surgery | |
Hanft et al. | Implantable bone substitute materials | |
Olivera et al. | Bone substitutes in orthopedic and trauma surgery | |
Craig Boatright et al. | Biology of Spine Fusion: Biology and Clinical Applications | |
Chen et al. | In vivo banking for vascularized autograft bone by intramuscular inoculation of recombinant human bone morphogenetic protein-2 and β-tricalcium phosphate | |
Schmidmaier et al. | The Role of BMPs in Current Orthopedic Practice. | |
BRODANO et al. | Comparative studies on bone graft alternatives for common spine fusion procedures and focus on bioceramics | |
Tzermiadianos et al. | Advances in bone graft substitutes in spinal fusion | |
Giltaij | BMP-7 in orthopedic applications: a review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 11800086 Country of ref document: US |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 11800086 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05847771 Country of ref document: EP Kind code of ref document: A2 |