+

WO2006046471A1 - 静電容量型超音波振動子及びその体腔内超音波診断システム - Google Patents

静電容量型超音波振動子及びその体腔内超音波診断システム Download PDF

Info

Publication number
WO2006046471A1
WO2006046471A1 PCT/JP2005/019336 JP2005019336W WO2006046471A1 WO 2006046471 A1 WO2006046471 A1 WO 2006046471A1 JP 2005019336 W JP2005019336 W JP 2005019336W WO 2006046471 A1 WO2006046471 A1 WO 2006046471A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic transducer
ultrasonic
cavity
capacitive
state
Prior art date
Application number
PCT/JP2005/019336
Other languages
English (en)
French (fr)
Inventor
Hideo Adachi
Katsuhiro Wakabayashi
Akiko Mizunuma
Atsushi Osawa
Tatsuo Kaimai
Shinji Yasunaga
Kiyoshi Nemoto
Miyuki Murakami
Kousei Tamiya
Yu Kondo
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004312172A external-priority patent/JP4624763B2/ja
Priority claimed from JP2005014415A external-priority patent/JP4733988B2/ja
Priority claimed from JP2005014414A external-priority patent/JP2006198239A/ja
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to US11/666,372 priority Critical patent/US20070299345A1/en
Priority to EP05795888A priority patent/EP1810619B1/en
Publication of WO2006046471A1 publication Critical patent/WO2006046471A1/ja
Priority to US13/040,922 priority patent/US8930169B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/76Medical, dental
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49005Acoustic transducer

Definitions

  • the present invention relates to a capacitive ultrasonic transducer that uses a silicon micromachining technique to force a silicon semiconductor substrate, and an intracorporeal ultrasonic wave equipped with the capacitive ultrasonic transducer. It relates to a diagnostic system.
  • An ultrasonic diagnostic method is widely used in which an ultrasonic wave is irradiated toward the inner wall of a body cavity, and its echo signal force is used to image and diagnose a state inside the body.
  • One of the equipment used for this ultrasonic diagnostic method is an ultrasonic endoscope scope.
  • An ultrasonic endoscope scope has an ultrasonic transducer (ultrasonic transducer) attached to the tip of the insertion section that is inserted into the body cavity. This transducer converts electrical signals into ultrasonic waves and irradiates them into the body cavity. Also, it receives ultrasonic waves reflected in the body cavity and converts them into electrical signals.
  • a ceramic piezoelectric material PZT lead zirconate titanate
  • PZT lead zirconate titanate
  • c MUT Capacitive Ultrasonic Transducer
  • MEMS Micro Electro-Mechanical System
  • a MEMS element is formed as a fine structure on a substrate such as a silicon substrate or a glass substrate, and includes a driving body that outputs a mechanical driving force, a driving mechanism that drives the driving body, and a driving mechanism. It is an element that is electrically and mechanically coupled to a semiconductor integrated circuit to be controlled.
  • the basic feature of MEMS elements is that a drive body configured as a mechanical structure is incorporated in a part of the element. The drive body is driven by applying Coulomb BI force between the electrodes. Is done electrically.
  • Non-Patent Document 1 discloses a cMUT as shown in FIG. Figure 1 (a) is 6 Two sets of four-element 1D c-MUT array top views are shown, and Figure 1 (b) shows a single isolated c-MUT element with a dummy neighbor. 1 (c) shows an enlarged view of the c-MUT element consisting of 8X160 cells connected in parallel.
  • the MUT element 150 is composed of a plurality of cells 151, an upper electrode 152, a ground electrode 152, an electrode 153, a dummy neighbor 155, and a groove 156 provided above each cell. ing.
  • the upper electrode 152 is also electrically connected and connected to the electrodes 152 and 153 at both ends.
  • the dummy neighbor 155 is for preventing crosstalk with adjacent elements.
  • a groove 156 is provided between the electrodes 152 and 153 and the dummy neighbor.
  • the upper electrode is supported by a membrane.
  • a lower electrode is provided inside the cell at a position facing the upper electrode 152, and there is a gap between the lower electrode and the membrane.
  • each cell When a voltage is applied to the upper electrode and the lower electrode of the element, each cell is driven simultaneously and vibrates all at the same phase. Thereby, ultrasonic waves are emitted.
  • FIG. 2 shows a vibration wave generated in the membrane 160 when an ultrasonic wave is generated using the c-MUT of FIG.
  • This figure is a cross-sectional view of the element of FIG. Like the element 150, when the groove 156 is provided at both ends and the end portion 161 is clear, the standing wave 162 having the end portion 161 as a node is generated.
  • a standing wave is generated between a pair of spaced walls with a frequency determined by the distance and the sound velocity of the material (silicon in FIG. 2) filling the distance.
  • the vibration wave excited on the membrane is transmitted along the membrane surface as a Lamb wave and a Stone Ray wave, and the right wall of the left groove and the left side of the right groove.
  • the ultrasonic wave which is a vibration wave
  • a transverse standing wave is a base having a frequency component with a distance L of ⁇ 2 ⁇ , and is a vibration wave with its higher-order standing waves overlapping. Gatsutsu
  • a standing wave is generated by the presence of such a pair of walls.
  • the standing wave 162 can be a noise component in ultrasonic transmission / reception.
  • Non-Patent Document 1 Xuecheng Jin, 3 others, “Characterization of One—Dimensio nal Capacitive Micromachmed Ultrasonic Immersion Transducer Arr aysj,“ IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTR ICS, AND FREQUENCY CONTROL ”, VOL. 48, NO. 3, P750 — 760, MAY 2001
  • Non-Patent Document 2 AG Bashford, 2 others, "Micromachined Ultrasonic Capacitance Transducers for Immersion ApplicationsJ," IEEE Transaction ON Ultrasonics, Ferroelectrics, AND Frequency Control ", Vol. 45, No. 2, March (1996), P367 — P375
  • a capacitive ultrasonic transducer composed of a transducer cell force composed of a membrane that supports the second electrode has a groove between adjacent transducer elements.
  • a conductive film is formed in the groove.
  • a silicon substrate a first electrode disposed on the upper surface of the silicon substrate, and a second electrode disposed opposite to the first electrode and spaced apart by a predetermined gap
  • a vibrator element comprising a vibrator cell force comprising a membrane that supports the second electrode, and a flexible printed board joined to the back surface of the silicon substrate via an electrode pad.
  • a method of manufacturing a capacitive ultrasonic transducer includes a groove forming step of providing a groove portion between adjacent transducer elements, a conductive step of making the groove portion conductive and forming a third electrode at the bottom of the groove portion, Consists of.
  • An intra-body-cavity ultrasonic diagnostic system includes an ultrasonic endoscope scope provided with a capacitive ultrasonic transducer that transmits and receives ultrasonic waves, and the capacitive ultrasonic transducer. From the transducer state discriminating means for discriminating the state of the sensor and the sensing information sensed by the capacitive ultrasonic transducer, the state determined by the transducer state discriminating means Image constructing means for constructing a corresponding ultrasonic diagnostic image.
  • An intracorporeal ultrasound diagnostic system includes an ultrasonic endoscope scope provided with a capacitive ultrasonic transducer for transmitting and receiving ultrasonic waves, and the capacitive ultrasonic vibration. Based on the result of determination by the vibrator state determining means, the vibrator state determining means for determining the state of the child, the storage means for storing the sensing information sensed by the capacitive ultrasonic transducer A storage control unit for storing the sensing information in the storage unit corresponding to the determination result, and at least one of the sensing information stored in the storage unit. Computing means for performing, and image constructing means for constructing an ultrasound diagnostic image from the computation results computed by the computing means.
  • the capacitive ultrasonic wave used in an intracorporeal ultrasound diagnostic system including an ultrasonic endoscope scope provided with a capacitive ultrasonic transducer for transmitting and receiving ultrasonic waves.
  • a noise removing device that removes a noise component from sensing information sensed by a vibrator is a first sensor sensed by emitting ultrasonic waves to the capacitive ultrasonic vibrator under a condition in which the ultrasonic waves are not reflected.
  • the first storage means for storing the sensing information of 1 and the capacitive ultrasonic transducer are sensed by transmitting and receiving the ultrasonic wave in a body cavity but not in contact with the inner wall of the body cavity
  • FIG. 1 is a diagram showing a conventional c MUT.
  • FIG. 2 is a diagram showing a standing wave generated on the membrane when the c-MUT of FIG. 1 is used.
  • FIG. 3 is a diagram showing a capacitive radial scanning array ultrasonic transducer in the first embodiment.
  • FIG. 4 is a diagram showing a top view of a single vibrator unit 2 according to the first to first embodiments.
  • FIG. 5 is a view showing a top view of a single transducer element 3 in the first to first embodiments.
  • FIG. 6 is a cross-sectional view taken along Aa—Ab in FIG.
  • FIG. 7A is a diagram showing a manufacturing process of the capacitive ultrasonic transducer in the first embodiment. (Part 1).
  • FIG. 7B is a diagram (No. 2) showing a manufacturing process of the capacitive ultrasonic transducer in the first embodiment.
  • FIG. 7C is a diagram (part 3) illustrating a manufacturing process of the capacitive ultrasonic transducer in the first embodiment.
  • FIG. 8 is a diagram showing an example (part 1) of variations in the shape of the groove in the first and second embodiments.
  • FIG. 9 is a diagram showing an example (part 2) of variations in the shape of the groove in the first and second embodiments.
  • FIG. 10 is a diagram showing an example (part 3) of variations in the shape of the groove in the first and second embodiments.
  • FIG. 11 is a diagram showing an example (part 1) of the nobility of the capacitive vibrator element according to the first to third embodiments.
  • FIG. 12 is a diagram showing an example (No. 2) of the nobility of the capacitive vibrator element according to the first to third embodiments.
  • FIG. 13 is a diagram showing an example (No. 3) of the nobility of the capacitive vibrator element according to the first to third embodiments.
  • FIG. 14 is a diagram showing an example (No. 4) of the nobility of the capacitive vibrator element according to the first to third embodiments.
  • FIG. 15 is a diagram showing an example (No. 5) of the nobility of the capacitive resonator element according to the first to third embodiments.
  • FIG. 16A is a diagram showing an example of forming a curved groove when the transducer element 3 in the first to third embodiments is also viewed from the upper surface force.
  • FIG. 16B is a diagram showing an example of a case where a curved groove is formed when the transducer element 3 in the first to third embodiments is also viewed from the upper surface force.
  • FIG. 16C is a diagram showing an example in which a curved groove is formed when the transducer element 3 in the first to third embodiments is also viewed from the upper surface force.
  • FIG. 17 is a diagram showing an outline of an intra-body-cavity ultrasonic diagnostic system in the second embodiment.
  • FIG. 18 is a diagram showing an external configuration of an ultrasonic endoscope scope 2 in the present embodiment in the second embodiment.
  • FIG. 19 is a diagram showing a configuration of a capacitive radial scanning array ultrasonic transducer in the second embodiment.
  • FIG. 20 is a diagram showing an ultrasonic anechoic cell 70 in a second embodiment.
  • FIG. 21A is a diagram showing a case where the ultrasonic transducer 6 according to the second embodiment is inserted into a body cavity (a state where it is inserted into the mouth).
  • FIG. 21B is a diagram showing a case where the ultrasonic transducer 6 according to the second embodiment is inserted into a body cavity (a state where the ultrasonic transducer 206 is brought into contact with the inner wall of the stomach to transmit / receive ultrasonic waves). is there.
  • FIG. 22 is a diagram showing an outline of the internal configuration of an intra-body-cavity ultrasound diagnostic system in a second embodiment.
  • FIG. 23 is a diagram showing a frequency characteristic when the ultrasonic transducer in the third embodiment is in contact with a target and is not in contact with Z.
  • FIG. 24 is a diagram showing an outline of an internal configuration of an intra-body-cavity ultrasound diagnostic system in a third embodiment.
  • FIG. 25 is a diagram showing an arithmetic control circuit 150 that performs signal processing of a plurality of patterns in the fourth embodiment.
  • the groove portion 156, the dummy neighbor region 155, and the electrode region 153 are provided between the groove portion 156 and a cell region that transmits and receives ultrasonic waves, like the vibrator element 150, the vibrator element 150 The ratio of the transducer cell area to the whole is reduced.
  • the transducer element needs to be enlarged, and the ultrasonic transducer using this c MUT must be miniaturized. I can't. Also, if the size of the element is to be maintained at the same level as before, the area of the cell region must be reduced, leading to a reduction in the output of the generated ultrasonic wave.
  • the ultrasonic wave generated without reducing the area ratio of the cell region in the whole We provide a capacitive ultrasonic transducer with no output drop.
  • the conventional piezoelectric vibrator when operated in the air, it may be destroyed or suddenly deteriorated in characteristics, and the operation in the air has been avoided. For this reason, conventional ultrasonic endoscope scopes can only be operated while in contact with the inner wall of the body cavity. Similarly, since it was not possible to radiate ultrasonic waves in the air, it was difficult to detect a noise signal derived only from the transducer.
  • the ultrasonic transducer When using an ultrasonic transducer that can transmit and receive ultrasonic waves without contact with the inner wall of the body cavity (hereinafter referred to as aerial ultrasonic waves), the ultrasonic transducer There is a need to detect information regarding the state of the ultrasonic transducer, such as whether or not it is in contact with the inner wall of the cavity.
  • an intracorporeal ultrasound diagnostic system that detects information related to the state of the ultrasonic transducer, such as whether the ultrasonic transducer is in contact with the body cavity inner wall. provide.
  • an ultrasonic diagnostic image obtained when the ultrasonic transducer is brought into contact with the inner wall of the body cavity and an ultrasonic diagnostic image obtained when the ultrasonic transducer is brought into non-contact with the inner wall of the body cavity are used as one type of ultrasonograph.
  • Intracavitary ultrasound diagnostic systems acquired with acoustic transducers have not been successful.
  • Non-Patent Document 1 crosstalk between elements is suppressed by providing grooves at both ends of the transducer element.
  • a groove there was a problem that noise caused by standing waves was generated when an element having grooves 156 at both ends was used as described in FIG. .
  • an ultrasonic endoscope scope equipped with one type of capacitive ultrasonic transducer is used regardless of whether or not the force is in contact with the inner wall of the body cavity.
  • An ultrasonic diagnostic image related to the contour of the inner wall of the body cavity is constructed while being inserted into the interior of the body cavity.
  • a body cavity ultrasonic diagnostic system is provided in which noise components are removed from these constructed ultrasonic diagnostic images.
  • FIG. 3 shows a capacitive radial scanning array ultrasonic transducer according to this embodiment.
  • the capacitive radial scanning array ultrasonic transducer 1 includes a transducer unit 2 composed of a plurality of transducer elements 3, a control circuit unit 4, and an FPC (flexible printed circuit board) 5 for wiring.
  • a transducer unit 2 composed of a plurality of transducer elements 3, a control circuit unit 4, and an FPC (flexible printed circuit board) 5 for wiring.
  • FPC flexible printed circuit board
  • the plurality of rectangular vibrator units 2 are connected in series in the short-side direction, and form a cylindrical shape.
  • the wiring FPC5 has a wiring pattern and electrode pads formed on the FPC.
  • the control circuit unit 4 is arranged as one control circuit unit in one transducer unit with the FPC 5 aligned with the transducer unit 2 on the opposite side of the cMUT.
  • the control circuit unit 4 is provided on the back surface (cylindrical inside) of the vibrator unit 2 and controls the transmission and reception of electric signals to the vibrator unit 2. Through holes are formed through the FPC with the cMUT element as a unit, and the cMUT unit and the control circuit unit are arranged through it.
  • the control circuit unit 4 is composed of an integrated circuit such as a pulser, a charge amplifier, and a multiplexer.
  • the shape of the resonator unit 2 is not limited to a rectangle.
  • FIG. 4 shows a top view of the vibrator unit 2 alone in the present embodiment.
  • the vibrator unit 2 is composed of a plurality of square vibrator elements 3.
  • the vibrator unit 2 is configured by arranging a plurality of vibrator elements 3 in one dimension.
  • a groove (groove unit array direction groove) 7 penetrating to the FPC 5 perpendicular to the vibrator unit array direction is provided.
  • a transducer element groove 6 having a depth up to the middle of the silicon substrate 16 is provided.
  • the shape of the transducer element is not limited to a square.
  • FIG. 5 shows a top view of the transducer element 3 alone in the present embodiment.
  • the transducer element 3 is composed of the transducer unit arrangement direction groove 7, the transducer element groove 6, the transducer cell electrode interconnect electrodes 8, 9, 10, the transducer cell upper electrode 11, the sacrificial layer agent removal hole 13, the lower portion It consists of 14 electrode through-hole electrode parts.
  • a cavity is formed on the back surface (perpendicular to the drawing) of the transducer cell upper electrode 11 and is represented as a cavity peripheral edge 12.
  • the transducer element 3 is composed of a plurality of transducer cells, and the transducer cell is also configured with four transducer cell forces in the figure equal to the number of cavities.
  • Reference numeral 15 denotes a dicing line for separating units.
  • FIG. 6 is a cross-sectional view taken along Aa-Ab in FIG.
  • the structural unit indicated by 30 is called a vibrator cell.
  • the membrane is a film covering the upper part of the cell 30, and in FIG. 6, it is a film composed of the upper electrode 11, the membrane upper layer 24, and the membrane lower layer 22.
  • This membrane is a vibrating membrane fixed by membrane support portions 20 at both ends of each transducer cell.
  • a lower electrode 19 is formed on the surface of the silicon substrate 16 (the bottom of the recess) between the membrane support portions 20 so as to face the upper electrode 11, and a dielectric film 27 (for example, SiO 2, Si N) is formed thereon.
  • a dielectric film 27 for example, SiO 2, Si N
  • the lower electrode 19 is provided with a lower electrode through-hole electrode portion 14 for electrically connecting the lower electrode 19 and a signal input / output terminal electrode pad 26 provided on the bottom surface of the silicon substrate 16. . Specifically, the lower electrode 19 and the signal input / output terminal electrode pad 26 are electrically connected by the interconnect wiring 28 formed on the hole surface of the lower electrode through-hole electrode portion 14.
  • the bottom surface of the silicon substrate 16 is coated with a silicon oxide film 17.
  • the upper electrode 11 and the interconnect electrode 10 between the transducer cell electrodes are made of a metal film such as Au, Al, Pt, Ta, Mo, W or the like.
  • the upper electrode is electrically connected to the metal film coated on the side and bottom surfaces of the grooves 6 and 7.
  • the ground electrode pad 25 is a node / node for electrically connecting the electrode formed on the bottom surface of the grooves 6 and 7 to the bottom surface of the silicon substrate 16 in order to connect the upper electrode 11 to GND.
  • the dielectric film 27 is for increasing the capacitance between the upper electrode 11 and the lower electrode 19 with the cavity interposed therebetween.
  • the depletion layer 18 is a layer in which almost no electrons or holes exist, and a reverse bias voltage may be applied to reduce the capacitance of the depletion layer, that is, parasitic capacitance. .
  • the cavity (gap part) 21 refers to a space surrounded by the membrane, the membrane support part 20, the lower electrode 19, and the dielectric film 27.
  • a sacrificial layer is formed in the cavity portion in the manufacturing process, and sacrificial layer agent removal hole 23 for removing the sacrificial layer is provided in the membrane lower layer 22 (Si N). The sacrificial layer is removed.
  • the “contact resistance” between the electrode disposed on the bottom of the groove portions 6 and 7 and the installation electrode pad 25 is extremely small (ohmic contact).
  • the operation of the transducer cell 30 will be described.
  • a voltage is applied to a pair of electrodes of the upper electrode 11 and the lower electrode 19, the electrodes are pulled, and when the voltage is reduced to 0, the original state is restored.
  • ultrasonic waves are generated, and the ultrasonic waves are irradiated upward in the upper electrode 11.
  • FIG. 7 (FIG. 7A, FIG. 7B, FIG. 7C) describes the manufacturing process of the capacitive ultrasonic transducer in this embodiment.
  • an oxide film (SiO 2) 41 is formed on the upper surface of an N-type silicon substrate 40 (thickness of about 100 to 500 / ⁇ ⁇ ).
  • the mask is formed by a wet oxidation method, for example, a thickness of about 3000-40.
  • a 00A oxide film is formed. Then, pattern ung for forming the lower electrode through hole electrode portion 42 is performed in the photolithography process, and the oxide film patterned in the etching process is removed.
  • Step 2 by performing ICP-RIE (Inductively Coupled Plasma Reactive Ion Etching), holes 42 are opened in portions not masked by Stepl (Step 2).
  • ICP-RIE Inductively Coupled Plasma Reactive Ion Etching
  • the depletion layer 43 is formed (Step 3).
  • the bottom surface of the N-type silicon substrate 40 is also masked with an oxide film (SiO 2), and a depletion layer 43 is formed by a photolithography process.
  • Patterning is performed on the upper and lower surfaces of the N-type silicon substrate 40, and the oxide film patterned by the etching process is removed. Then, P-type ions are implanted (Dope (P + )) And a heat treatment is performed to form a P-type diffusion layer.
  • a contact layer (N +) 44 is formed on both surfaces (Step 4). Except for the part where the contact layer 44 is formed by the mask formation process, photolithography process, and etching process,
  • an N-type diffusion layer is formed by implanting N-type ions (Dop e (N +)) into the unmasked portion and performing heat treatment. This is performed for the contact layer (N +) 44 on both sides of the silicon substrate.
  • an electrode film (PtZTi) 45 is formed on both surfaces (Step 5). First, after removing the mask 41, the portion other than the portion where the electrode film is formed is masked with a resist material. Thereafter, an electrode film 45 is formed by sputtering, and the resist material masked in the lift-off process is removed.
  • the material of the electrode is not limited to PtZTi, but may be Au / Cr, Mo, W, phosphor bronze, A1, or the like.
  • a dielectric film is formed (Step 6).
  • a dielectric film (for example, SrTiO 3) 50 is formed through a mask formation process, a sputtering process, and a lift-off process.
  • the dielectric film 50 is made of SrTiO
  • a material having a high dielectric constant such as tantalum, acid / niobium stable / pentamate / tantalum, acid / aluminum, or acid / titanium titanium may be used.
  • a membrane support layer is formed (Step 7). After masking the part other than the part that forms the membrane support part, the SiN layer is formed by CVD and the mask is removed. As a result, a membrane support made of SiN is formed.
  • polysilicon 52 is filled as a sacrificial layer between the membrane support portions formed in Step 7 (Step 8).
  • polysilicon is used for the sacrificial layer.
  • the membrane lower layer 22 is formed (Step 9). First, the portions to be the sacrificial layer etching hole 54 and the groove 55 are masked. Then, a SiN film 53 is formed by CVD. Then remove the mask. Then, a membrane 53 made of SiN, a sacrificial layer etching hole 54, and a groove 55 are formed.
  • the sacrificial layer 52 is removed by etching (SteplO).
  • etching is performed using XeF as an etcher, and the sacrificial layer (
  • PolySi is removed from the sacrificial layer etching hole 54. Then, cavity 56 and groove 55 Is formed.
  • the sacrificial layer etching hole 54 is closed (Step 11). First, the bottom portion (contact electrode) of the groove 55 is masked, and a SiN film is formed on the entire upper surface of the element using CVD. Then, the mask is removed, and the bottom portion (contact electrode) of the groove 55 is exposed.
  • the transducer cell electrode interconnect electrodes 8, 9, 10, the transducer cell upper electrode 11, the bottom electrode of the transducer unit arrangement direction groove 7, the transducer element Oscillator element 3 is completed by masking other than the electrode at the bottom of groove 6 and forming electrode film (Pt / Ti) 61 on the entire top surface of the transducer element by sputtering and lift-off (Step 12). To do.
  • the electrode film in the formation of the electrode film (and the contact layer), that is, in the process of forming the electrode in the groove (conducting process), ion implantation or CVD (Chemical Vapor Deposition) Phase growth method) and diffusion treatment, or PVD (Physical Vapor Deposition).
  • CVD Chemical Vapor Deposition
  • PVD Physical Vapor Deposition
  • a radial type capacitive ultrasonic transducer is used as an example.
  • the present invention is not limited to this, and may be a convex type, a linear type, or a sector type.
  • FIG. 8 shows an example (part 1) of variations in the shape of the groove in the present embodiment.
  • Reference numerals 70 and 71 denote grooves.
  • Reference numeral 76 denotes a silicon substrate.
  • Reference numerals 72 72a, 72b, 72c) denote contact electrodes on the upper surface side of the silicon substrate 76.
  • Reference numeral 73 (73a, 73b, 73c) denotes a contact layer formed around the contact electrode 72 (72a, 72b, 72c).
  • Reference numeral 74 denotes a contact electrode on the lower surface side of the silicon substrate 76.
  • 75 shaped around contact electrode 74 The formed contact layer is shown.
  • 77 and 78 indicate SiN layers.
  • Reference numeral 79 denotes an electrode film.
  • [0055] 70 indicates a case where the groove is tapered and the opening is wider than the bottom. In this way, when the pore diameter is larger than a certain size, it is possible to form an electrode using sputtering. Further, as compared with the case where the side surface of the groove is vertical, the electrode film is deposited by sputtering, and the film can be formed thicker immediately. As a result, the reliability of the wiring is improved.
  • [0056] 71 shows a case where irregularities are formed on the surface of the groove side surface by the Bosh process.
  • the Bosch process uses C F and SF as the reaction gas, and alternately switches and etches.
  • the groove side wall is provided with unevenness of one or more sub-z m orders. This unevenness improves the adhesion of SiN, which is the same material as the applied membrane, and the conductive thin film connected to the upper electrode. This also improves the adhesion of the ultrasonic attenuating material, which will be described later, leading to an improvement in strength when cutting by precision cutting or the like.
  • FIG. 8 shows an example in which the trench portion on the left side has a shape whose bottom is wider than the opening.
  • the shape of the groove may be any shape.
  • FIG. 9 shows an example (No. 2) of a groove-shaped noreduction in the present embodiment.
  • This figure shows a case where the bottom of the groove is dug down into the silicon substrate 76 from FIG.
  • a contact layer 73 is formed, and an electrode is formed using the contact layer 73 as a base. That is, after the contact layer is formed, SiN (the hole to be removed from the sacrificial layer is closed).
  • the electrode layer with strong corrosion resistance should be formed before forming the electrode 79 connected to the membrane so that the contact layer surface does not have resistance due to natural acid or the like.
  • Film is formed as a base electrode.
  • the distance between the contact electrode 72 (72a, 72b, 72c) and the contact electrode 74 is shortened, and electrical loss can be reduced, so that the reliability of the wiring is improved.
  • the configuration in which the silicon substrate has grooves also has an effect of reducing crosstalk. That is, ultrasonic waves are transmitted / received by bending vibration of the membrane, but the bending vibration causes crosstalk between adjacent elements due to vibrations such as Lamb waves or Stoneley single waves.
  • the bending vibration transmits the longitudinal vibration stress to the membrane support portion in a reactive manner. This vibration also causes the base force of the membrane support part to reach the surface of the silicon substrate, propagates along the surface of the silicon substrate, propagates back along the same path to the next element, and causes crosstalk. The occurrence of such crosstalk can be reduced.
  • FIG. 10 shows an example (part 3) of a groove-shaped noreduction in the present embodiment.
  • This figure shows the case where the contact layers on both sides of the silicon substrate 76 are joined.
  • contact layers 73 and 75 are formed and diffused, and the contact layer is formed. Thin contact layers can be connected together. In this way, a region with a low resistance value is formed between the contact electrode 72 and the contact electrode 74, so that electrical conduction can be achieved and electrical loss can be reduced immediately. Will improve.
  • FIG. 11 shows an example (part 1) of the nobility of the capacitive vibrator element according to the present embodiment.
  • Reference numeral 80 denotes a groove.
  • Reference numeral 86 denotes a silicon substrate.
  • Reference numeral 82 denotes a contact electrode on the upper surface side of the silicon substrate 86.
  • Reference numeral 83 denotes a contact layer formed around the contact electrode 82.
  • Reference numeral 84 denotes a contact electrode on the lower surface side of the silicon substrate 86.
  • Reference numeral 85 denotes a contact layer formed around the contact electrode 84.
  • Reference numeral 87 and 88 indicate SiN layers.
  • Reference numeral 89 denotes an electrode film.
  • Reference numeral 90 denotes an SiO film.
  • 81 is the bottom electrode
  • the one-hole electrode part is shown.
  • This figure shows a case where the vicinity of the contact electrode on the lower surface side of the silicon substrate 86 is also etched. This is because in Step 1 of FIG. 7, the lower surface of the silicon substrate is also masked with SiO.
  • the electrode contact portion is etched by wet etching so as to have a concave shape. By doing so, the distance between the contact electrodes (82, 84) on both sides becomes shorter and the electrical loss can be reduced, so that the reliability of the wiring is improved.
  • a wet oxide film of SiO may be used instead of forming the depletion layer. This is Wet
  • the contact layer (N +) may be formed by doping N + into the groove and performing diffusion treatment by heating.
  • the shape of the groove may be a shape in which a part of the groove bottom portion becomes deeper V, or a shape in which the hole reaches the lower surface of the silicon substrate.
  • FIG. 12 shows an example (No. 2) of the nomination of the capacitive vibrator element according to the present embodiment. This figure shows the case where the cavity 91 is formed by etching the silicon substrate 86. In this case, the silicon substrate 86 also functions as a membrane support portion.
  • TMAH Tetramethyl Ammonium Hydroxide
  • the through hole 81 is formed by ICP-RIE. Thereafter, an oxide film 90 is formed by wet oxidation (used as a depletion layer). Next, a lower electrode 92 (PtZTi) is formed, and a conductor is applied to the side wall of the through hole 81.
  • the dielectric 93 is formed on the upper surface of the lower electrode 92, and heat treatment is performed. Thereafter, a sacrificial layer is formed on the cavity 91, and a SiN membrane 87 is formed thereon. A hole 94 is made in the membrane, and the sacrificial layer is etched away. Thereafter, the hole 94 for removing the sacrificial layer is filled with SiN (88). An upper electrode (89) is deposited from above.
  • FIG. 13 shows an example (No. 3) of the nobility of the capacitive vibrator element according to this embodiment.
  • FIG. 14 shows an example (No. 4) of the capacitance type transducer element according to the present embodiment. 13 and 14 show the case where the groove 80 is filled with the resin 100.
  • FIG. 13 shows an example (No. 3) of the nobility of the capacitive vibrator element according to this embodiment.
  • FIG. 14 shows an example (No. 4) of the capacitance type transducer element according to the present embodiment. 13 and 14 show the case where the groove 80 is filled with the resin 100.
  • the difference between FIG. 13 and FIG. 14 is whether or not the contact electrode on the lower surface of the silicon substrate 86 has a concave shape. If the groove portion 80 is not filled with the resin 100, a transverse standing wave (unnecessary vibration) may be excited in the vibrator, and good ultrasonic characteristics cannot be obtained. Therefore, the groove portion 80 is filled with the resin 100.
  • a flexible composite resin in which powders such as tungsten fine powder and glass bubbles are mixed with silicone resin, epoxy resin, urethane resin, etc. is ultrasonic. Used as a damping material. In this way, unnecessary vibration can be suppressed.
  • grooves shown in FIGS. 3 to 6 are formed vertically and horizontally.
  • at least one side (for example, the upper surface side) is diced in a type in which the arrangement of the transducers has a curvature, such as convex and radial.
  • the filled resin is present, the stress is reduced, and electrode peeling and chipping are reduced.
  • the reliability of the wiring is improved and the chipping is reduced, so that the gap between the cavity and the groove can be shortened, so that the effective part increases in design and the sound pressure per unit area increases! ], Which leads to improved sensitivity and reduced size.
  • FIG. 15 shows an example of the capacitance type resonator element according to the present embodiment.
  • Part 5 (Part 5) is shown.
  • the figure shows a case where the vibrator element is bonded to an FPC (flexible printed circuit board) using the conductive resin 101.
  • ACF Anisotropic Conductive Film
  • ball bumps such as Au or solder may be used.
  • the gap 104 between the lower surface of the silicon substrate 86 and the FPC 102 may be filled with grease.
  • dicing grooves 105 by dicing without filling the groove 80 with grease, or forming dicing grooves 105 by filling the groove 80 with grease. It is also possible. After dicing and bending to form a transducer, it may be filled with a highly attenuated resin material. If the depth of the cutting groove is a type that bends the transducer element, such as a convex type or a radial type, the force that needs to be cut to the conductive grease 101. The substrate 86 may be diced. In addition, if the electrode part on the FPC side of silicon is concave or hole-shaped, a positioning function can be obtained, and the mechanical strength of the connection is improved by increasing the adhesive surface area, creating a highly reliable vibrator. it can.
  • a laser beam may be used when penetrating the silicon substrate.
  • grooving and cutting can be performed in any shape as in dry etching. Therefore, the effect of reducing crosstalk and the wavy shape increase the contact area of the electrode and improve the adhesion strength.
  • the element can have any shape, cell placement can be arbitrarily performed, and high density (such as a large cell area in the element) can be achieved. This is important for achieving high sensitivity in a limited space such as an endoscope.
  • the groove is linear as shown in FIG. It is possible to form a curved groove by using photolithography and etching. Examples of this are shown in FIGS. 16A, 16B, and 16C.
  • FIG. 16 (FIG. 16A, FIG. 16B, and FIG. 16C) is a diagram showing an example in which a curved groove is formed when the transducer element 3 in the present embodiment is viewed from the upper surface.
  • 16A shows an example in which the groove 111 surrounding the transducer element 3 (the horizontal groove 11 la and the vertical groove 11 lb are curved and danced linearly (dancing line 110). The entire circumference of the vibrator element has a wavy groove shape.
  • FIG. 16B shows an example in which the grooves 111a and 11 lb surrounding the transducer element are curved and danced in a curved shape (dancing line 110). If laser dicing is used, dicing can be performed along the curved groove.
  • FIG. 16C shows a case where, among the grooves surrounding the transducer element, the vertical groove 11 lb is linear, the horizontal groove 11 la is curved, and dancing is performed linearly (dancing line 110).
  • An example is shown.
  • 112 is a ground electrode. In this way, a partially wavy groove structure may be provided.
  • the shape of the groove and the shape of the dancing may of course be a rectangular wave, a saw wave, or any other irregular shape.
  • the capacitive ultrasonic transducer in which grooves are provided at both ends of the element, it is not necessary to reduce the area ratio of the cell region to the whole. Thereby, the output of the generated ultrasonic wave is not reduced.
  • FIG. 17 shows an outline of the intracorporeal ultrasound diagnostic system in the present embodiment.
  • the intracorporeal ultrasound diagnostic system 201 includes an ultrasonic endoscope scope unit 202, a signal processing unit 203, an image processing unit 205, and a display unit 204. Note that the force transmission signal system, which only shows the reception signal system in FIG. 17, is omitted from the figure.
  • the ultrasonic endoscope scope 202 is equipped with a capacitive ultrasonic transducer 202-1 at the tip thereof.
  • the main function of the capacitive ultrasonic transducer 202-1 is to first insert the distal end of the ultrasonic endoscope scope 202 into the body cavity, and then use the capacitive ultrasonic transducer 202-1 to generate ultrasonic waves.
  • the capacitive ultrasonic transducer 202-1 receives the ultrasonic wave reflected in the body cavity and converts the received ultrasonic wave into an electrical signal.
  • the signal processing unit 203 analyzes the electrical signal obtained by the ultrasonic endoscope scope 202 and performs a calculation.
  • the signal processing unit 203 includes storage control means 203-1, storage means 203-2, calculation means 203-3, and vibrator state determination means 203-5.
  • the vibrator state discriminating means 203-5 is, for example, whether the capacitive ultrasonic transducer 202-1 is external or not in contact with the inner wall of the body cavity or in contact with the inner wall of the body cavity. This is to discriminate the state of the capacitive ultrasonic transducer.
  • the vibrator state determination unit 203-5 includes a state detection unit 203-5a and a detection information determination unit 203-5b.
  • the state detection means 203-5a is for detecting the state of the capacitive ultrasonic transducer 202-1.
  • the detection information discriminating means 203-5b is for discriminating the state of the capacitive ultrasonic transducer 202-1 based on the information detected by the state detection means 203-5a.
  • the vibrator state determination means 203-5 is included in the ultrasonic endoscope scope 202! /, May! /, And included in the signal processing unit 203! / , Even! /, And included in both.
  • the storage means 203-2 is for storing sensing information (received reflected wave, standing wave, etc.) sensed by the capacitive ultrasonic transducer 202-1.
  • sensing information received reflected wave, standing wave, etc.
  • the storage control means 203-1 is based on the determination result of the transducer state determination means 203-5.
  • the sensing information sensed by the capacitive ultrasonic transducer 202-1 is stored in the storage means 203-2 corresponding to the discrimination result.
  • the computing means 203-3 is for performing an operation (difference, correlation function) based on the sensing information stored in each storage means 203-2. There are a plurality of combinations of operations, and operations can be performed according to individual purposes.
  • the image processing unit 205 includes image construction means 205-1. Based on the result calculated by the calculating means 203-3, the image constructing means 205-1 uses an ultrasonic diagnostic image (for example, a contour image of a body cavity inner wall image, a biological tissue tomographic image, or these images based on the calculated signal). A combined image).
  • an ultrasonic diagnostic image for example, a contour image of a body cavity inner wall image, a biological tissue tomographic image, or these images based on the calculated signal. A combined image).
  • the display means 204 is for displaying the ultrasonic diagnostic image generated by the image processing unit 205, and includes, for example, a monitor (display) 204-1.
  • the display unit 204 is not limited to a display, and may be an output device such as a printer.
  • FIG. 18 shows an external configuration of the ultrasonic endoscope scope 202 in the present embodiment.
  • the ultrasonic endoscope scope 202 includes an operation unit 209 at the base end of the elongated insertion unit 212 and a scope connector 211 at one end.
  • a universal cord 210 connected to a light source device (not shown) extends from the side of the operation unit 209. Further, the scope connector 211 is connected to the signal processing unit 203.
  • the insertion portion 212 includes a capacitive radial sector scanning array ultrasonic transducer 206, a bendable bending portion 207, and a flexible flexible tube portion 20 mounted on the tip portion in order from the tip side. Consists of 8 connected.
  • the operation portion 209 is provided with a bending operation knob 209a, and the bending portion 207 can be bent by operating the bending operation knob 209a.
  • an illumination lens cover that constitutes an illumination optical unit that irradiates illumination light to an observation site (not shown), an observation lens cover that constitutes an observation optical unit that captures an optical image of the observation site, and a treatment tool are provided at the distal end portion. Forceps outlet, etc., is an opening through which the
  • FIG. 19 shows a capacitive radial sector scanning array ultrasonic transducer 206 (hereinafter referred to as an ultrasonic transducer or transducer! Mounted on the tip of the ultrasonic endoscope scope 202 of FIG. (B) shows a conceptual diagram of the configuration.
  • the ultrasonic transducer 206 is a two-dimensional array transducer 220.
  • a path 221 and a coaxial cable bundle 222 are included.
  • the two-dimensional array transducer 220 is an array of a plurality of transducer elements.
  • the coaxial cable bundle 222 is a bundle of a plurality of cables connected to each vibrator element, and is located inside the insertion portion 212.
  • the transmission / reception circuit 221 is for controlling signals transmitted to and received from the transducer element. That is, the transmission / reception circuit 221 controls the scanning of the synthesized ultrasonic beam radiated from the ultrasonic transducer 206, and only the scanning 225 (radial scanning ultrasonic beam) along the circumference of the cylinder is used. Sector scanning 224 (in the longitudinal direction of the cylinder) 224 (ultrasonic sector scanning plane) can be performed. This makes it possible to construct a 3D ultrasound image. Since the details of the two-dimensional array transducer 220 have been described with reference to FIGS. 3 to 6 of the first embodiment, they are omitted here.
  • FIG. 20 shows an ultrasonic anechoic cell 270 in the present embodiment.
  • a cavity is formed inside the ultrasonic anechoic cell 270, and the ultrasonic vibrator 206 is inserted through the opening. After inserting the ultrasonic transducer 206, the ultrasonic wave is emitted.
  • the ultrasonic anechoic cell 270 is composed of a member that absorbs ultrasonic waves (for example, urethane fiber or foamed silicone resin), the ultrasonic waves do not reflect. Therefore, even if an ultrasonic wave is radiated by the ultrasonic vibrator in the ultrasonic anechoic cell 270, a reflected wave is not received.
  • FIG. 21 shows a state in which the ultrasonic transducer 206 is inserted into the body cavity.
  • Fig. 21A shows a state in which it is inserted into the mouth
  • Fig. 21B shows that the ultrasonic transducer 206 is in contact with the inner wall of the stomach to send and receive ultrasonic waves! / Indicates the state of speaking.
  • the living body where the acoustic impedance of the ultrasound transmission / reception surface is as small as air. Since the impedance is not large, an ultrasonic image can be obtained in the air (in a state where the body wall is not in contact). As a result, it is possible to easily receive the reflected wave on the inner wall surface of the body cavity, so that the contour of the lumen wall, that is, the uneven surface can be measured while inserting the ultrasonic transducer.
  • the MUT can transmit and receive high-frequency ultrasonic waves of several MHz, and can detect surface irregularities with high accuracy.
  • Fig. 22 shows an outline of the internal configuration of the intra-body-cavity ultrasound diagnostic system in the present embodiment.
  • the intracorporeal ultrasound diagnostic system includes an ultrasound endoscope scope 202 and an ultrasound endoscope observation apparatus 300.
  • the ultrasonic endoscope scope 202 includes a capacitive ultrasonic transducer 301, an optical sensor 302, a charge amplifier 303, and a pulser (pulse generation circuit) 304 force.
  • the ultrasonic endoscope observation apparatus 300 includes an optical sensor signal processing circuit 305, a switch circuit 306 (selection terminal SW1 (307), selection terminal SW2 (308), selection terminal SW3 (309),), AD converter 310, 311. , 312, storage devices 313, 314, 315, arithmetic processing circuits 316, 317, 318, switch circuit 319 (selection terminal Q1 (320), selection terminal Q2 (321), selection terminal Q3 (322)), operation unit 323 , Image transformation ⁇ (Digital scan converter) 324, Monitor 204-1.
  • the NORA 304 is a circuit for generating an electric signal for driving the capacitive ultrasonic transducer 301.
  • the charge amplifier 303 has a function of performing impedance conversion (converting from high impedance to low impedance), a function of detecting charges on the electrode surface of the capacitive ultrasonic transducer 301, and a function of an amplifier. ing. What is the function of detecting the charge? When the capacitive ultrasonic transducer 301 receives the reflected wave, the membrane vibrates in accordance with the received intensity of the reflected wave, and the charge on the upper electrode in response to the vibration. Change occurs The function to detect the charge. In the present embodiment, it is assumed that not only electric charges caused by reception of reflected waves but also electric charges caused by unnecessary vibrations such as standing waves are detected. Hereinafter, both of these are referred to as a received signal.
  • the optical sensor 302 detects the brightness around the capacitive ultrasonic transducer 301.
  • the optical sensor signal processing circuit 305 discriminates light and dark based on the signal output from the optical sensor 302. That is, a difference in brightness around the ultrasonic transducer 301 can be determined by analyzing a signal based on the amount of light detected by the optical sensor.
  • the ultrasonic transducer 301 Before the ultrasonic transducer 301 is inserted into the body cavity, that is, when it is transmitted and received in the ultrasonic anechoic cell 270 (state 1), the brightness can be detected most among the three states. Like that. Next, it becomes dark until the ultrasonic transducer 301 is inserted into the body cavity and reaches the observation site (state 2), so that it can be detected. In addition, when the ultrasonic vibrator reaches the observation site (state 3), the light emitted from the light guide (not shown) provided around the ultrasonic transducer is reflected on the inner wall of the body cavity, and the reflected light is reflected. Since light can be detected, brightness can be detected more than in state 2.
  • the ultrasound transducer 301 is not yet inserted into the body cavity (state 1) in the initial state. Then, until the ultrasound transducer 301 is inserted into the body cavity and reaches the observation site (state 2), it becomes dark, so if the signal of the optical sensor force falls below a certain threshold value, the state 2 state is assumed. to decide. After that, when the signal becomes bright again and the signal of the optical sensor power exceeds a certain threshold, it is determined that the ultrasonic transducer is in contact with the observation site (state 3).
  • the switch circuit 306 is for turning ON / OFF the selection terminals SW1, SW2, and SW3 according to the output of the optical sensor signal processing circuit 305.
  • the switch circuit 306 receives the signal and selects the selection terminal SW1 (307 ) Is turned ON.
  • the optical sensor signal processing circuit 305 determines that the optical sensor signal processing circuit 305 is inserted into the body cavity and is moving to the observation site (state 2), a signal to that effect is output, and the switch circuit 306 outputs the signal.
  • the selection terminal SW2 (308) turns ON in response to the signal. If the optical sensor signal processing circuit 305 determines that the observation site has been reached (state 3), it outputs a signal to that effect, and the switch circuit 306 receives the signal and selects the selection terminal SW3 (309). Turns ON.
  • the received signal based on the charge information detected by the charge amplifier 303 is manually driven by the AD / 310, 311, 312! / And the displacement force based on the switching destination of the switch circuit 306.
  • the AD converters 310, 311, and 312 convert the input analog signals into digital signals.
  • the converted signals are input to and stored in the storage devices 313, 314, 315 corresponding to the AD conversions 310, 311, 312.
  • the arithmetic processing circuits 316, 317, and 318 obtain the correlation function between the reception signals obtained in each state (signals stored in the storage devices 313, 314, and 315) and obtain the correlation function in state 1. Noise components such as standing waves can be removed from the received signals in states 2 and 3.
  • the correlation function includes a cross-correlation function and an autocorrelation function.
  • the cross-correlation function is a function of the shift amount ⁇ when one of the two signals is delayed by ⁇ , and is defined as follows.
  • the similarity between two signals can be obtained. If the two signals are completely different, the cross-correlation function R approaches 0 regardless of ⁇ . As a result, a component of unnecessary vibration such as a standing wave can be detected, and this component can be removed.
  • the cross-correlation function R can be obtained by inverse Fourier transform of the cross spectrum.
  • the autocorrelation function is a function of a shift amount ⁇ using a waveform x (t) and a waveform x (t + ⁇ ) obtained by shifting the waveform x (t) by ⁇ , and is defined as follows. [0116] [Equation 2] 1 ⁇ ⁇ ⁇ + /
  • the value is high when the fluctuation is slow, and if the fluctuation is small, the value is high when the fluctuation is small, and ⁇ is a time standard for the fluctuation.
  • the autocorrelation function can be obtained by inverse Fourier transform of the power vector.
  • unnecessary vibration components such as standing waves can be removed by obtaining the difference between the waveform based on the received signal in state m and the waveform based on the received signal in state ⁇ . You can remove it.
  • the arithmetic processing circuit 316 receives a signal stored in the storage device 313 (received signal in state 1) and a signal stored in the storage device 314 (received signal in state 2). In the arithmetic processing circuit 316, unnecessary vibration components are removed from the received signal in the state 2 by obtaining a force or a difference for obtaining a correlation between the two signals.
  • the arithmetic processing circuit 317 receives the signal stored in the storage device 314 (received signal in state 2) and the signal stored in the storage device 315 (received signal in state 3). Similarly, in the arithmetic processing circuit 317, the received signal in the state 2 can be removed by obtaining the correlation between the two signals or obtaining the difference. As a result, unnecessary vibration components can be removed at the same time.
  • the arithmetic processing circuit 318 calculates the sum of the signals obtained by the arithmetic processing circuits 316 and 317. As a result, a contour image of the lumen wall (luminal wall surface unevenness information) and a tomographic image (depth information) can be obtained simultaneously. Note that the correlation of the signals obtained by the arithmetic processing circuits 316 and 317 may be obtained using a correlation function.
  • the operation unit 323 is for operating switching of the switch circuit 319.
  • the switch of the switch circuit 319 is switched and An image can be selected. That is, when the selection terminal Q 1 (320) is selected, the signal processed by the processing circuit 316 can be output to the image transformation 324. In addition, when the selection terminal Q 2 (321) is selected, the signal processed by the processing circuit 318 can be output to the image transformation 324. In addition, when the selection terminal Q3 (322) is selected, a signal that has been subjected to arithmetic processing by the arithmetic processing circuit 317 can be output to the image transformation 324.
  • the signal before being input to the image transformation 324 is a time axis signal, but this signal is
  • the image signal obtained in this way is output to the monitor 204-1 and an ultrasonic diagnostic image is displayed on the monitor 204-1.
  • the ultrasonic transducer can transmit and receive ultrasonic waves in both a contact state and a non-contact state with respect to the inner wall of the body cavity, and By detecting this state, it is possible to transmit an ultrasonic reception signal received in each state to a corresponding channel.
  • Non-contact diagnosis provides information on the shape of the surface of the luminal wall even while passing through the body cavity. In other words, it is possible to perform ultrasonic diagnosis that was impossible with conventional ultrasonic diagnosis.
  • standing wave components that are unnecessary vibrations can be removed by performing signal processing for obtaining a correlation or difference between received signals obtained in each state. Therefore, a clearer ultrasonic diagnostic image than before can be obtained.
  • the ultrasonic transducer contacts the inner wall of the body cavity. Since it is possible to detect whether the force is applied or not, the state of the ultrasonic transducer can be detected.
  • the radial capacitive ultrasonic transducer is used to obtain the contour image of the inner wall of the body cavity and the tomographic image of the biological tissue.
  • the optical sensor is used to detect the state of the ultrasonic transducer.
  • a pressure sensor may be used for detecting whether or not the force is in contact with the inner wall of the body cavity.
  • the ultrasonic waves are radiated in the ultrasonic anechoic cell. Do not reflect ultrasound! ⁇ In an anechoic environment.
  • an optical sensor is used to detect whether the ultrasonic transducer is in contact with the inner wall of the body cavity.
  • the ultrasonic transducer is detected by the difference in the frequency of the received ultrasonic waves. A case where it is detected whether or not the body cavity inner wall is touched will be described.
  • FIG. 23 is a graph showing frequency characteristics in the case where the ultrasonic transducer in this embodiment is brought into contact with an object and in the case where it is not brought into contact.
  • the vertical axis of this graph represents the relative amplitude (value divided by the maximum value of the vertical axis), and the horizontal axis represents the frequency.
  • 330 indicates frequency characteristics in a state where the ultrasonic transducer is not in contact with the object.
  • Reference numeral 331 denotes a peak frequency (fc_non) in a state where the ultrasonic transducer is not in contact with the object (curve 330).
  • Reference numeral 332 denotes the frequency characteristics when the ultrasonic transducer is in contact with the object.
  • Reference numeral 333 denotes a peak frequency (fc_con) when the ultrasonic transducer is in contact with the object (curve 332).
  • FIG. 24 shows an outline of the internal configuration of the intra-body-cavity ultrasound diagnostic system in the present embodiment.
  • the optical sensor 302 and the optical sensor signal processing circuit 305 are removed from FIG. 22, and a low-pass filter 325 and a detector 326 are added instead.
  • a signal based on the charge information detected by the charge amplifier 303 is input to the low pass filter 325.
  • the low pass filter 325 passes a signal having a frequency lower than a preset threshold. Therefore, the signal passing through the Rhonos filter 325 is a received signal in a state where the ultrasonic vibrator is not in contact with the object, and the signal that cannot pass is in a state where the ultrasonic vibrator is in contact with the object. Can be determined.
  • the detector 326 detects the signal (AC signal) output from the low-pass filter 325 and converts it to a DC signal for driving the switch circuit 306.
  • the ultrasonic reception signal has a low frequency, it passes through the low-pass filter 325, and the ultrasonic reception signal is input to the detector 326 for ACZDC conversion.
  • the ultrasonic reception signal has a high frequency, it is cut by the low-pass filter 325, so that no ultrasonic reception signal is input to the detector 326 and therefore there is no output from the detector 326.
  • the output from the detector 326 is not in this case either.
  • the output from detector 326 is zero when a calibration signal is detected (Fig. 20), high level output when inserted into the lumen (Fig. 21A), and low level output when contact is fixed (Fig. 21B).
  • the switch of switch circuit 306 is switched from SW1 (307) ⁇ SW2 (308) ⁇ SW3 (309) according to the difference in the detection output, and the received signal in each of the above states is transmitted to AD converters 310, 311, 312.
  • the subsequent operation is the same as in the second embodiment.
  • FIG. 25 shows an arithmetic control circuit 350 that performs signal processing of a plurality of patterns in the present embodiment.
  • the arithmetic control circuit 350 is a circuit group corresponding to the arithmetic processing circuits (316, 317, 318) and the switch circuit 319 of FIG.
  • the arithmetic control circuit 350 is also configured with distributors 351, 352, 353, arithmetic processing circuits 354, 355, 356, 357, 358, 359, and a switch circuit 361.
  • the distributors 351, 352, and 353 distribute the signals output from the corresponding storage devices 313, 314, and 315 to each arithmetic processing circuit.
  • the arithmetic processing circuits 354 to 359 calculate the correlation, difference, or sum of the two input reception signals.
  • the signal based on the charge information detected by the charge amplifier 303 (received signal 14 0), the switch destination of the switch circuit 306 [this base! / That, AD change ⁇ 310, 311, 312 No! ⁇ Either input.
  • the AD converters 310, 311, 312 convert the input analog signals into digital signals.
  • the converted received signal 340 is input to and stored in the storage devices 313, 314, 315 corresponding to the converters 310, 311, 312.
  • the operator uses the operation unit 323 to select how the received signal is displayed. Then, a switch control signal 345 is output from the operation unit 323 and input to the switch circuit 361. In the switch circuit 361, based on the switch control signal 345, any of the selection terminals 361a, 361b, 361c, 361d, 361e, 361f, 361g, 361h, and 361i is turned on. Then, the arithmetic processing circuit connected to the selection terminal that is turned on operates.
  • storage device control signals 342, 343, and 344 are generated based on signals from the operation unit 323.
  • the storage device 313 stores it.
  • the received signal in state 1 (hereinafter referred to as S1) is output to distributor 351.
  • the storage device 314 outputs the stored reception signal of state 2 (hereinafter referred to as S2) to the distributor 352.
  • the storage device 315 outputs the stored state 3 reception signal (hereinafter referred to as S3) to 353 distributors.
  • the signal output from each of the storage devices 313 to 315 is processed by the processing circuit, passed through the switch circuit 361, output as the processing signal 346, and input to the image transformation 324. become.
  • the subsequent steps are the same as in the second embodiment.
  • selection terminal 361c When selection terminal 361c is turned ON, it is generated by arithmetic processing circuits 354 and 355.
  • the processed signals S4 and S5 are input to the arithmetic processing circuit 357.
  • S1 is, for example, measurement data from the ultrasonic anechoic cell 270 in FIG. 20 (state 1) (this is noise data related to vibrations (including drive signals) generated by ultrasonic transmission and noise data related to fluctuations).
  • this is noise data related to vibrations (including drive signals) generated by ultrasonic transmission and noise data related to fluctuations).
  • the crosstalk vibration wave related to the in-plane transverse wave propagation unique to the cMUT is included in the noise derived from the oscillator.
  • S2 is the received ultrasound data passing through the body cavity in Fig. 21A (state 2), and the surface reflection of the luminal wall force in the body cavity without contact using the aerial ultrasound. It corresponds to a signal.
  • S3 is data including deep diagnostic measurement information when the transducer in Fig. 21B (state 3) is fixed to the surface of the lumen wall, and corresponds to a deep reflection signal.
  • the This signal contains S1 and S2 signal components.
  • the operator may be interested in the power of what the original signal was, and the single signal Sl, S2, S3 can be selected and detected. This is possible by arrangement.
  • the signal processing subsequent to the arithmetic processing signal 343 is not described in detail in the present embodiment, it can be displayed in a separate window on a monitor screen as a display device, for example.
  • the arithmetic processing devices 354, 355, and 356 calculate the difference between the two input signals.
  • the correlation function cross-correlation, self-correlation
  • Correlation may be used.
  • a capacitive ultrasonic transducer can be used for Doppler signal control and harmonic imaging, and the ultrasonic diagnostic system according to the present invention can be applied.
  • various patterns of signal processing can be performed on the basis of the ultrasonic reception signals obtained in the respective states according to the selection of the operator.
  • the generated ultrasonic diagnostic image can also be provided with features corresponding to the signal processing, so that diagnosis can be performed from various aspects.
  • ultrasonic waves can be transmitted and received in a state where the ultrasonic transducer is in both contact and non-contact with the inner wall of the body cavity, and by detecting this state, , That The ultrasonic reception signal received in each state can be transmitted to the corresponding channel.
  • the ultrasound endoscope scope equipped with one type of capacitive ultrasonic transducer is inserted into the body cavity and the contour is concerned.
  • an ultrasound diagnostic image relating to the tomography can be constructed.
  • noise components due to standing waves have been removed from these constructed ultrasonic diagnostic images.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

 シリコン基板と、該シリコン基板の上面に配設された第1の電極と、該第1の電極と対向し所定の空隙を隔てて配設された第2の電極と、該第2の電極を支持するメンブレンとからなる振動子セルから構成された振動子エレメントとから構成される静電容量型超音波振動子において、隣接する前記振動子エレメント間に溝部を設け、該溝部に導電膜が形成されていることを特徴とする静電容量型超音波振動子。

Description

明 細 書
静電容量型超音波振動子及びその体腔内超音波診断システム 技術分野
[0001] 本発明は、シリコンマイクロマシーユング技術を用いてシリコン半導体基板を力卩ェし た静電容量型超音波振動子、及びこの静電容量型超音波振動子を搭載した体腔内 超音波診断システムに関する。
背景技術
[0002] 体腔内壁に向けて超音波を照射し、そのエコー信号力 体内の状態を画像ィ匕して 診断する超音波診断法が普及している。この超音波診断法に用いられる機材の 1つ に超音波内視鏡スコープがある。超音波内視鏡スコープは、体腔内へ挿入する挿入 部の先端に超音波振動子 (超音波トランスデューサ)が取り付けてあり、このトランス デューサは電気信号を超音波に変換し体腔内へ照射したり、また体腔内で反射した 超音波を受信して電気信号に変換したりするものである。
[0003] 従来、超音波トランスデューサでは、電気信号を超音波に変換させる圧電素子とし て、セラミック圧電材 PZT (ジルコン酸チタン酸鉛)が使用されてきた力 シリコンマイ クロマシ一-ング技術を用いてシリコン半導体基板を加工した静電容量型超音波トラ ンスァュ. ~~ ir (Capacitive Micromachmed Ultrasonic Transducer ( 下、 c MUTと称する))が注目を集めている。これは、マイクロマシン(MEMS : Micro Electro -Mechanical System 、超小型電気的'機械的複合体)と総称される素 子の 1つである。
[0004] MEMS素子は、シリコン基板、ガラス基板等の基板上に微細構造体として形成さ れており、機械的駆動力を出力する駆動体と、駆動体を駆動する駆動機構と、駆動 機構を制御する半導体集積回路等とを電気的に、更には機械的に結合させた素子 である。 MEMS素子の基本的な特徴は、機械的構造として構成されている駆動体が 素子の一部に組み込まれていることであって、駆動体の駆動は、電極間のクーロン B I力などを応用して電気的に行われる。
[0005] さて、非特許文献 1では、図 1に示すような c MUTが開示されている。図 1 (a)は 6 4個のエレメントからなる 1次元 c— MUTアレイの 2セットの上面を示しており、図 1 (b) はダミーネイバ一を設けた単離された 1個の c— MUTエレメントを示しており、図 1 (c )は並列に接続された 8X160個のセルで構成された c— MUTエレメントの拡大図を 示す。
[0006] c MUTエレメント 150は、複数のセル 151、各セルの上部に設けられた上部電極 152、接地電極 152、電極 153、ダミーネイバ一(Dummy Neighbor) 155、溝(ト レンチ) 156から構成されている。上部電極 152間も導通して、両端の電極 152, 15 3に接続されている。ダミーネイバ一 155は、隣接するエレメントとのクロストークを防 止するためのものである。電極 152, 153とダミーネイバ一の間には、溝 156が設け てある。
[0007] 上部電極は、メンブレンにより支持されている。また、不図示ではあるが、上部電極 152と対向する位置でセル内部に下部電極が設けられ、下部電極とメンブレン間に は空隙部(キヤビティ)がある。
[0008] エレメントの上部電極及び下部電極に電圧を印加すると、各セルが同時に駆動し て、同位相で一斉に振動する。これにより、超音波が放射される。
特許文献 1では、上記のエレメント 150を用いて、シリコン基板の Lamb波 (AOモー ド)及び固相—液相界面を伝達する Stoneley波 (境界波)がエレメント間のクロストー クに重大な影響を与えることを見出している。
[0009] 図 2は、図 1の c— MUTを用いて超音波を発生させた場合にメンブレン 160に生じ る振動波を示している。同図は、図 1のエレメントの断面図である。エレメント 150のよ うに、両端に溝 156を設けてはっきりとした端部 161を有すると、この端部 161を節と した定在波 162が生じることになる。
[0010] すなわち、定在波は一対の隔てた壁の間に、その距離と、その距離を埋めた材質( 図 2ではシリコン)の音速で決まる周波数をもって発生する。一対の隣あった溝を考え る場合、まず、メンブレン上に励起された振動波はラム波ゃストンレイ波としてメンブレ ン面に沿って伝達し、左側の溝の右側の壁と右側の溝の左側の壁との間を振動波で ある超音波が多重反射して、横波定在波となりうる。横波定在波は距離 Lが ΐΖ2 λ になる周波数成分を持つ基底とし、その高次定在波が重なる振動波となる。したがつ て、この様な一対の壁があることによって定在波が発生することになる。そして、この 定在波 162は、超音波の送受におけるノイズ成分と成り得る。
非特許文献 1 :Xuecheng Jin,外 3名、「Characterization of One— Dimensio nal Capacitive Micromachmed Ultrasonic Immersion Transducer Arr aysj , "IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTR ICS, AND FREQUENCY CONTROL", VOL. 48, NO. 3, P750— 760, MAY 2001
非特許文献 2 : A. G. Bashford,外 2名、「Micromachined Ultrasonic Capaci tance Transducers for Immersion ApplicationsJ , "IEEE Transaction ON Ultrasonics, Ferroelectrics, AND Frequency Control", Vol. 45, N o. 2, March (1996) , P367— P375
発明の開示
[0011] 本発明にかかる、シリコン基板と、該シリコン基板の上面に配設された第 1の電極と 、該第 1の電極と対向し所定の空隙を隔てて配設された第 2の電極と、該第 2の電極 を支持するメンブレンとからなる振動子セル力も構成された振動子エレメントとから構 成される静電容量型超音波振動子は、隣接する前記振動子エレメント間に溝部を設 け、該溝部に導電膜が形成されている。
[0012] 本発明にかかる、シリコン基板と、該シリコン基板の上面に配設された第 1の電極と 、該第 1の電極と対向し所定の空隙を隔てて配設された第 2の電極と、該第 2の電極 を支持するメンブレンとからなる振動子セル力 構成される振動子エレメントと、前記 シリコン基板の背面に電極パッドを介して接合されたフレキシブルプリント基板とから 構成される静電容量型超音波振動子の製造方法は、隣接する前記振動子エレメント 間に溝部を設ける溝形成工程と、前記溝部を導電化して該溝部の底部に第 3の電極 を形成する導電化工程と、からなる。
[0013] 本発明にかかる、体腔内超音波診断システムは、超音波を送受信する静電容量型 超音波振動子が設けられた超音波内視鏡スコープと、前記静電容量型超音波振動 子の状態を判別する振動子状態判別手段と、前記静電容量型超音波振動子により 感知された感知情報から、前記振動子状態判別手段により判別された前記状態に 応じた超音波診断画像を構築する画像構築手段と、を備える。
[0014] 本発明にカゝかる体腔内超音波診断システムは、超音波を送受信する静電容量型 超音波振動子が設けられた超音波内視鏡スコープと、前記静電容量型超音波振動 子の状態を判別する振動子状態判別手段と、前記静電容量型超音波振動子によつ て感知された感知情報を記憶する記憶手段と、前記振動子状態判別手段による判 別結果に基づいて、該判別結果に対応する前記記憶手段に、前記感知情報を記憶 させる記憶制御手段と、前記記憶手段に記憶された前記感知情報のうちの少なくとも 1つの該感知情報を用いて、演算処理を行う演算手段と、前記演算手段により演算 処理された演算結果から、超音波診断画像を構築する画像構築手段と、を備える。
[0015] 本発明にかかる、超音波を送受信する静電容量型超音波振動子が設けられた超 音波内視鏡スコープを備えた体腔内超音波診断システムに用いられる前記静電容 量型超音波振動子が感知した感知情報からノイズ成分を除去するノイズ除去装置は 、前記超音波の反射しない条件下で、前記静電容量型超音波振動子に超音波を放 射させることにより感知された第 1の前記感知情報を記憶する第 1の記憶手段と、前 記静電容量型超音波振動子が、体腔内であるが体腔内壁に非接触の状態で、前記 超音波を送受して感知した第 2の前記感知情報を記憶する第 2の記憶手段と、前記 第 2の感知情報と前記第 1の感知情報との相関または差分を算出する演算手段とを 備える。
図面の簡単な説明
[0016] [図 1]従来の c MUTを示す図である。
[図 2]図 1の c— MUTを用いた場合、メンブレンに定在波が発生した様子を示す図で ある。
[図 3]第 1 1の実施形態における静電容量型ラジアル走査アレイ超音波振動子を示 す図である。
[図 4]第 1— 1の実施形態における振動子ユニット 2単体の上面図を示す図である。
[図 5]第 1— 1の実施形態における振動子エレメント 3単体の上面図を示す図である。
[図 6]図 5の Aa— Abについての断面図である。
[図 7A]第 1 1の実施形態における静電容量型超音波振動子の製造工程を示す図 (その 1)である。
圆 7B]第 1 1の実施形態における静電容量型超音波振動子の製造工程を示す図( その 2)である。
圆 7C]第 1 1の実施形態における静電容量型超音波振動子の製造工程を示す図 (その 3)である。
圆 8]第 1— 2の実施形態における溝の形状のバリエーションの一例 (その 1)を示す 図である。
圆 9]第 1— 2の実施形態における溝の形状のバリエーションの一例 (その 2)を示す 図である。
圆 10]第 1— 2の実施形態における溝の形状のバリエーションの一例 (その 3)を示す 図である。
[図 11]第 1—3の実施形態における静電容量型振動子エレメントのノ リエーシヨンの 一例(その 1)を示す図である。
[図 12]第 1—3の実施形態における静電容量型振動子エレメントのノ リエーシヨンの 一例(その 2)を示す図である。
[図 13]第 1—3の実施形態における静電容量型振動子エレメントのノ リエーシヨンの 一例(その 3)を示す図である。
[図 14]第 1—3の実施形態における静電容量型振動子エレメントのノ リエーシヨンの 一例(その 4)を示す図である。
[図 15]第 1—3の実施形態における静電容量型振動子エレメントのノ リエーシヨンの 一例(その 5)を示す図である。
圆 16A]第 1—3の実施形態における振動子エレメント 3を上面力も見たときに曲線状 の溝を形成する場合の一例を示す図である。
圆 16B]第 1—3の実施形態における振動子エレメント 3を上面力も見たときに曲線状 の溝を形成する場合の一例を示す図である。
圆 16C]第 1—3の実施形態における振動子エレメント 3を上面力も見たときに曲線状 の溝を形成する場合の一例を示す図である。
圆 17]第 2の実施形態における体腔内超音波診断システムの概要を示す図である。 [図 18]第 2の実施形態における本実施形態における超音波内視鏡スコープ 2の外観 構成を示す図である。
[図 19]第 2の実施形態における静電容量型ラジアル走査アレイ超音波振動子の構成 を示す図である。
[図 20]第 2の実施形態における超音波無響セル 70を示す図である。
[図 21A]第 2の実施形態における超音波振動子 6を体腔内に挿入した場合(口内に 挿入した状態)を示す図である。
[図 21B]第 2の実施形態における超音波振動子 6を体腔内に挿入した場合(胃の内 壁に超音波振動子 206を接触させて超音波を送受している状態)を示す図である。
[図 22]第 2の実施形態における体腔内超音波診断システムの内部構成の概要を示 す図である。
[図 23]第 3の実施形態における超音波振動子を対象物に接触 Z非接触したときの周 波数特性を示す図である。
[図 24]第 3の実施形態における体腔内超音波診断システムの内部構成の概要を示 す図である。
[図 25]第 4の実施形態における複数パターンの信号処理を行う演算制御回路 150を 示す図である。
発明を実施するための最良の形態
[0017] し力しながら、振動子エレメント 150のように、溝部 156と、ダミーネイバ一領域 155 と、溝部 156と超音波を送受するセル領域の間に電極領域 153とを設けると、振動子 エレメント全体に占める振動子セル領域の比率が小さくなる。
[0018] この場合に、セル領域の面積をある程度の大きさに保持しょうとすると、振動子エレ メントを大きくする必要があり、この c MUTを使用した超音波振動子の小型化を図 ることができない。また、エレメントの大きさを従来と同程度に保持しょうとすると、セル 領域の面積を小さくする必要があり、発生させる超音波の出力低下を招くことになる。
[0019] 本発明の実施形態では、振動子エレメントの両端に溝部を設けた静電容量型超音 波振動子において、全体に占めるセル領域の面積比率を低下させず、かつ発生さ せる超音波の出力低下のな!ヽ静電容量型超音波振動子を提供する。 [0020] ところで、従来の圧電振動子は、空気中で動作させると、破壊したり急激な特性劣 化を起こすことがあり、空中での動作は避けられていた。そのため、従来超音波内視 鏡スコープは、体腔内壁に接触させた状態でしか動作させることができな力つた。ま た、同様に、空中で超音波を放射することができないため、振動子のみに由来するノ ィズ信号を検知することができな力つた。
[0021] また、従来においては、生体と空気とでは、音響インピーダンスに大きな差があった ために、体腔内壁に接触させるタイプの圧電振動子と同じ構造で、空中音波を検出 することは不可能であった。
[0022] このようなことから、従来、超音波振動子が体腔内壁に接触しているの力否かという 超音波振動子の状態に関する情報を検知する必要がな力つた。
し力しながら、超音波振動子が体腔内壁に非接触の状態で超音波の送受信が可 能 (以下、空中超音波という)となる超音波振動子を用いた場合、超音波振動子が体 腔内壁に接触しているの力否かという超音波振動子の状態に関する情報を検知する 必要性が生じる。
[0023] そこで、本発明の別の実施形態では、超音波振動子が体腔内壁に接触しているの か否かという超音波振動子の状態に関する情報を検知する体腔内超音波診断シス テムを提供する。
[0024] また、従来、超音波振動子を体腔内壁に接触させたときの超音波診断画像と、超 音波振動子を体腔内壁に非接触にしたときの超音波診断画像とを 1種類の超音波 振動子で取得する体腔内超音波診断システムは存在しな力つた。
[0025] 次に、上述の通り、非特許文献 1では、振動子エレメントの両端に溝を設けることに より、エレメント間のクロストークを抑止している。し力しながら、このような溝を設けるこ とにより、図 2で説明したように、両端に溝 156が設けてあるエレメントを用いると定在 波に起因するノイズが発生するという問題があった。
[0026] そこで、本発明の別の実施形態では、体腔内壁に接触している力否かにかかわら ず、 1種類の静電容量型超音波振動子を搭載した超音波内視鏡スコープを体腔内 に挿入しながら体腔内壁の輪郭に関する超音波診断画像を構築し、かつ、診断部位 に至り、そこで接触固定することによって、断層に関する超音波診断画像を構築し、 そしてこれらの構築された超音波診断画像にはノイズ成分が除去されている、体腔 内超音波診断システムを提供する。
[0027] それでは、以下に本発明の実施形態について説明する。
<第 1の実施形態 >
<第 1 1の実施形態 >
本実施形態では、溝部の底部に接地電極を設けた振動子エレメントの製造につい て説明する。
[0028] 図 3は、本実施形態における静電容量型ラジアル走査アレイ超音波振動子を示す 。静電容量型ラジアル走査アレイ超音波振動子 1は、複数の振動子エレメント 3から 構成される振動子ユニット 2、制御回路ユニット 4、配線用 FPC (フレキシブルプリント 基板) 5から構成される。
[0029] 複数の長方形状の振動子ユニット 2は短手方向に直列に結合し、それが円筒形を なしている。配線用 FPC5は、 FPC上に配線パターンや電極パッドが形成されている ものである。制御回路ユニット 4は FPC5に対し cMUTとは反対の面に振動子ュ-ッ ト 2と位置をあわせて、 1振動子ユニットに 1制御回路ユニットという配置になっている 。制御回路ユニット 4は、振動子ユニット 2の背面(円筒形の内側)に設けられており、 振動子ユニット 2へ電気信号を送受するのを制御するためのものである。 cMUTのェ レメントを単位として FPCを貫通するスルーホールが形成され、それを通して cMUT ユニットと制御回路ユニットが接続される様に配置される。制御回路ユニット 4はパル サー、チャージアンプ、マルチプレクサ等の集積回路等力 構成される。なお、振動 子ユニット 2の形状は長方形に限定されない。
[0030] 図 4は、本実施形態における振動子ユニット 2単体の上面図を示す。振動子ュ-ッ ト 2は、複数の正方形状の振動子エレメント 3から構成されている。同図では、振動子 ユニット 2は振動子エレメント 3を複数一次元に配列して構成されて 、る。隣接する振 動子ユニット間には振動子ユニット配列方向に垂直に FPC5まで貫通した溝 (振動子 ユニット配列方向溝) 7が設けられている。また、各振動子ユニット内において隣接す る振動子エレメント間にはシリコン基板 16の途中までの深さの振動子エレメント間溝 6 が設けられている。なお、振動子エレメントの形状は、正方形に限定されない。 [0031] 図 5は、本実施形態における振動子エレメント 3単体の上面図を示す。振動子エレ メント 3は、振動子ユニット配列方向溝 7、振動子エレメント間溝 6、振動子セル電極間 インターコネクト電極 8, 9, 10、振動子セル上部電極 11、犠牲層剤除去孔 13、下部 電極スルーホール電極部 14カゝら構成される。振動子セル上部電極 11の背面(図面 に対して垂直方向)には、キヤビティが形成されており、それをキヤビティ周縁部 12と して表している。
[0032] 振動子エレメント 3は、複数の振動子セルから構成されており、振動子セルはキヤビ ティの個数に等しぐ同図では 4つの振動子セル力も構成される。また、 15はユニット 間分離するためのダイシングラインを示して 、る。
[0033] 図 6は、図 5の Aa— Abについての断面図である。この断面において、振動子エレメ ント 3は、上述の通り、 30で示される構成単位を振動子セルという。メンブレンとはセ ル 30上部を覆っている膜のことをいい、図 6では上部電極 11、メンブレン上層 24、メ ンブレン下層 22で構成される膜のことをいう。このメンブレンは、各振動子セルの両 端のメンブレン支持部 20で固定された振動膜である。メンブレン支持部 20間におけ るシリコン基板 16の表面(凹部の底部分)に、上部電極 11と対向するように下部電極 19が構成され、その上に誘電体膜 27 (例えば、 SiO , Si N , Ta O , SrTiO , BaT
2 3 4 2 5 3 iO , A1N等の薄膜)が形成されている。
3
[0034] 下部電極 19には、下部電極 19とシリコン基板 16の底面に設けられた信号入出力 端子電極パッド 26とを電気的に導通させるための下部電極スルーホール電極部 14 が設けられている。具体的には、この下部電極スルーホール電極部 14のホール表面 に形成されたインターコネクト配線 28により下部電極 19と信号入出力端子電極パッ ド 26とは電気的に導通している。
[0035] シリコン基板 16の底面表面はシリコン酸ィ匕膜 17で被膜されている。上部電極 11及 び振動子セル電極間インターコネクト電極 10は、 Au, Al, Pt, Ta, Mo, W等の金属 膜で構成されている。また、この上部電極は、溝部 6, 7の側面及び底面に被膜され た金属膜に電気的に導通して 、る。
[0036] 接地電極パッド 25は、上部電極 11を GNDに接続するために、溝 6, 7の底面に形 成した電極をシリコン基板 16底面に電気的に導通させるためのノ¾ /ドである。 誘電体膜 27は、キヤビティを挟んだ上部電極 11と下部電極 19間の静電容量を増 幅させるためのものである。空乏層 18は、電子あるいは正孔がほとんど存在しない状 態になっている層であり、逆バイアス電圧を印加し、空乏層が有する静電容量、すな わち寄生容量を低減させる場合もある。
[0037] なお、キヤビティ(空隙部) 21は、メンブレンとメンブレン支持部 20と下部電極 19及 び誘電体膜 27とで囲まれた空間のことをいう。なお、キヤビティ 21を形成する場合に 、製造工程上、犠牲層をキヤビティ部分に形成するが、その犠牲層を除去するための 犠牲層剤除去孔 23をメンブレン下層 22 (Si N )設け、そこから犠牲層を除去する。
3 4
[0038] また、溝部 6, 7の底部に配設された電極と設置電極パッド 25との間の「接触抵抗」 が限りなく小さく(ォーミックコンタクト)なる構造となっている。
振動子セル 30の動作について説明すると、上部電極 11と下部電極 19の一対の電 極に電圧をかけることで電極間が引っ張りあい、電圧を 0にすると元に戻る。この振動 動作によってメンブレンが振動した結果、超音波が発生し、上部電極 11の上方向に 超音波が照射される。
[0039] 図 7 (図 7A,図 7B,図 7C)では、本実施形態における静電容量型超音波振動子の 製造工程につ!/、て説明する。
まず、 N型シリコン基板 40 (厚さ約 100〜500 /ζ πι)の上表面に酸化膜(SiO ) 41で
2
、マスクする(Stepl)。マスク形成は、 Wet酸化法により、例えば、厚さ約 3000〜40
00Aの酸化膜を形成する。そして、フォトリソグラフィー工程で下部電極スルーホー ル電極部 42を形成するためのパターンユングを行 、、エッチング工程でパターン- ングした酸化膜を除去する。
[0040] 次に、 ICP—RIE (Inductively Coupled PlasmaReactive Ion Etching :誘 導結合型プラズマ反応性イオンエッチング)を行うことにより、 Steplでマスクされてい ない部分に孔 42が開く(Step2)。
[0041] 次に、空乏層 43を形成する(Step3)。ここでは、まず N型シリコン基板 40の底面に ついても酸ィ匕膜 (SiO )でマスクし、フォトリソグラフィー工程で空乏層 43を形成する
2
ためのパターン-ングを N型シリコン基板 40の上下面について行い、エッチング工程 でパターンユングした酸ィ匕膜を除去する。それから、 P型のイオンを注入 (Dope (P + ) )して、熱処理を行うことにより、 P型の拡散層を形成する。
[0042] 次に、コンタクト層(N + ) 44を両面に形成する(Step4)。マスク形成工程、フォトリ ソグラフィー工程、エッチング工程により、コンタクト層 44を形成する部分以外を SiO
2 でマスクする。それからマスクされていない部分に対して、 N型のイオンを注入(Dop e (N + ) )して、熱処理を行うことにより、 N型の拡散層を形成する。これをシリコン基 板の両面のコンタクト層(N + ) 44について行う。
[0043] 次に、電極膜 (PtZTi) 45を両面に形成する(Step5)。まず、マスク 41を除去した 後、電極膜を形成する部分以外をレジスト材でマスクする。その後、スパッタにより電 極膜 45を形成し、リフトオフ工程でマスクしたレジスト材を除去する。なお、電極の材 質は PtZTiに限定されず、 Au/Cr、 Mo, W、リン青銅、 A1などでもよい。
[0044] 次に、誘電体膜を形成する(Step6)。マスク形成工程、スパッタエ程、リフトォフエ 程を経て誘電体膜 (例えば、 SrTiO ) 50を形成する。なお、誘電体膜 50は SrTiO
3 3 に限定されず、チタン酸バリウム BaTiO、チタン酸バリウム 'ストロンチウム、五酸化タ
3
ンタル、酸ィ匕ニオブ安定ィ匕五酸ィ匕タンタル、酸ィ匕アルミニウム、または酸ィ匕チタン Ti o等の高誘電率を有する材料を用いてもよい。
2
[0045] 次に、メンブレン支持層を形成する(Step7)。メンブレン支持部を形成する部分以 外をマスクした後、 CVDにより SiN層を形成して、マスクを除去する。そうすると、 SiN で形成されたメンブレン支持部が形成されて 、る。
[0046] 次に、 Step7で形成したメンブレン支持部間に犠牲層としてポリシリコン 52を充填 する(Step8)。なお、本実施形態では、犠牲層にポリシリコンを用いたが、例えば Si
O等エッチングできる部材であれば特に限定されな!、。
2
[0047] 次に、メンブレン下層 22を形成する(Step9)。まず、犠牲層エッチング用孔 54及 び溝 55となる部分をマスクする。そして、 CVDで SiN膜 53を形成する。それから、マ スクを除去する。そうすると、 SiNで形成されたメンブレン 53と、犠牲層エッチング用 孔 54と、溝 55と、が形成されている。
[0048] 次に、エッチングにより犠牲層 52を除去する(SteplO)。本実施形態ではポリ Siを 犠牲層に用いているので、エッチヤーとして XeFを用いてエッチングして、犠牲層(
2
ポリ Si)を犠牲層エッチング用孔 54から除去する。そうすると、キヤビティ 56及び溝 55 が形成されている。
[0049] 次に、犠牲層エッチング用孔 54を塞ぐ (Step 11)。まず、溝 55の底部分 (コンタクト 電極)をマスクし、 CVDを用いてエレメント上面全体に SiN膜を形成する。それから、 マスクを除去して、溝 55の底部分 (コンタクト電極)を露出させる。
[0050] 最後に、図 5に示したように、振動子セル電極間インターコネクト電極 8, 9, 10、振 動子セル上部電極 11、振動子ユニット配列方向溝 7の底部の電極、振動子エレメン ト間溝 6の底部の電極以外をマスクし、スパッタリング、リフトオフを経て、電極膜 (Pt /Ti) 61を振動子エレメント上面全体に形成する(Step 12)ことにより、振動子エレメ ント 3が完成する。
[0051] なお、本実施形態において、電極膜 (及びコンタクト層)の形成、すなわち溝内にあ る電極を形成する処理(導体化処理)では、イオン注入もしくは CVD (Chemical V apor Deposition :化学気相成長方法)と拡散処理、または PVD (Physical Vapo r Deposition :物理気相成長法)により行われる。
[0052] 以上より、溝部分に接地電極を形成することで、別途接地電極のための領域を振 動子エレメント内に設ける必要が無く、振動子エレメントに占める超音波出力領域の 面積比率を低下させることはない。また、溝部を設けているために隣接するエレメント 間のクロストークの影響を抑制することができる。
[0053] なお、本実施形態では一例としてラジアルタイプの静電容量型超音波振動子を用 いたが、これに限定されず、コンベックスタイプでもリニアタイプ、セクタ一タイプでもよ い。
<第 1 2の実施形態 >
本実施形態では、振動子エレメントに設けた溝の形状のノ リエーシヨンについて説 明する。
[0054] 図 8は、本実施形態における溝の形状のバリエーションの一例(その 1)を示す。 70 及び 71は溝部を示している。 76はシリコン基板を示している。 72 (72a, 72b, 72c) はシリコン基板 76上面側のコンタクト電極を示している。 73 (73a, 73b, 73c)はコン タクト電極 72 (72a, 72b, 72c)周辺に形成されたコンタクト層を示している。 74はシ リコン基板 76下面側のコンタクト電極を示している。 75はコンタクト電極 74周辺に形 成されたコンタクト層を示している。 77及び 78は SiN層を示している。 79は電極膜を 示している。
[0055] 70は、溝部をテーパー形状にして開口部を底部より広くした場合を示している。こ のようにすることにより、孔径がある大きさ以上の場合は、スパッタリングを用いて電極 を成膜することが可能となる。また、溝の側面が垂直な場合と比較して、スパッタで電 極膜が付着しやすぐより厚く成膜することができる。それにより、配線の信頼性が向 上する。
[0056] 71は、ボッシュ(Bosh)プロセスにより溝部側面の表面に凹凸を形成した場合を示 している。ボッシュプロセスとは、反応ガスに C Fと SFを用い、交互に切り替えエッチ
4 8 6
ングとバッシベーシヨン (化学反応を起こさな!/ヽように表面に保護膜を付与する)工程 を繰り返すプロセスのことである。高アスペクト比の加工が可能になる。ボッシュプロセ スで溝部を形成する場合、ノ ッシベーシヨンとエッチングのタイミングを変化させ、テ 一パーや凹凸を形成することが可能となる。
[0057] 通常のボッシュプロセスでできる波線状の凹凸は数〜数十 nmオーダーである。し 力しながら、本実施形態では、密着強度を上げるために、溝側壁にサブ; z mオーダ 一以上の凹凸を設けてある。この凹凸により、付与するメンブレンと同材質の SiNや 上部電極と繋がる導体薄膜の密着性が向上する。そして、後述する超音波減衰材料 の密着性も向上し、精密裁断などにより裁断する時の強度向上に繋がる。
[0058] このように、ボッシュプロセスを用いて溝部側面の表面に凹凸を形成することで、表 面積が大きくなり、その後の工程で付与される電極膜や SiN膜が剥離しに《なる。ま た、溝部の底部にあるコンタクト電極 72 (72a, 72b, 72c)の GNDは、シリコン基板 7 6を介してコンタクト電極 74から接続される。
[0059] 図 8の左側のトレンチ部分は開口部より底部の方が広い形状となっている場合の例 を示している。このように、溝の形状は、どのような形状でも構わない。
図 9は、本実施形態における溝の形状のノ リエーシヨンの一例(その 2)を示す。同 図は、図 8より溝の底部をシリコン基板 76内部まで掘り下げた場合を示す。シリコン基 板 76までエッチングした後に、コンタクト層 73を形成してそれを下地として電極を成 膜したものである。すなわち、コンタクト層形成後に、 SiN (犠牲層の除去する穴を塞 ぐ)の成膜を CVDで行 、、コンタクト層表面が自然酸ィ匕等で抵抗を持たな 、ように、 メンブレンと繋がっている電極 79を成膜する前に、耐蝕性の強い電極材を下地電極 として成膜する。
[0060] このように、コンタクト電極 72 (72a, 72b, 72c)とコンタクト電極 74との距離が短くな り、電気的損失を減少させることができるので、配線の信頼性が向上する。
[0061] また、ドライエッチングなので、機械的強度に問題がない限り、波線状にエッチング することも可能である。つまり、通常の溝形成 (裁断も同様)はダイシングソー (精密裁 断機)で行われる力 そのため、直線状にし力溝形成はできない。しかし、 ICP-RIE などのドライエッチングでは波線をはじめ任意の形状で溝形成が可能となる。
[0062] また、溝表面が不定形では、長さに差があるため一定の共振が起こりに《なるとい う観点から、クロストーク減少の効果がある。また、基板背面への接地電極の取り出し を容易にする効果もあり。
[0063] また、シリコン基板中にも溝がある構成にすることにより、クロストーク減少の効果が ある。すなわち、メンブレンの屈曲振動によって超音波を送受信するが、その屈曲振 動は、ラム波またはストンリ一波等による振動で隣接したエレメント間でクロストークが 発生する。また、屈曲振動はメンブレン支持部に反作用的に縦振動応力を伝達する 。この振動はメンブレン支持部の付け根力もシリコン基板表面に到達し、シリコン基板 表面に沿って伝播し、同じ経路を逆にたどって隣のエレメントに伝播しクロストークの 原因になる。このようなクロストークの発生を減少することができる。
[0064] 図 10は、本実施形態における溝の形状のノ リエーシヨンの一例(その 3)を示す。同 図は、シリコン基板 76の両面のコンタクト層を接合した場合を示す。同図のように、シ リコン基板 76の厚さが薄 、場合、または (GND用 )溝をシリコン基板にエッチングした 後、コンタクト層 73, 75を形成し、拡散させ、コンタクト層を形成すると、薄いコンタクト 層同士を接続することができる。このようにすることにより、抵抗値の低い領域がコンタ タト電極 72とコンタクト電極 74間で形成されるので電気的に導通しやすぐ電気的損 失を減少させることができるので、配線の信頼性が向上する。
[0065] <第 1 3の実施形態 >
本実施形態では、静電容量型振動子エレメントのノ リエーシヨンにっ 、て説明する 図 11は、本実施形態における静電容量型振動子エレメントのノ リエーシヨンの一例 (その 1)を示す。
[0066] 80は溝部を示している。 86はシリコン基板を示している。 82はシリコン基板 86上面 側のコンタクト電極を示している。 83はコンタクト電極 82周辺に形成されたコンタクト 層を示している。 84はシリコン基板 86下面側のコンタクト電極を示している。 85はコ ンタクト電極 84周辺に形成されたコンタクト層を示している。 87及び 88は SiN層を示 している。 89は電極膜を示している。 90は SiO膜を示している。 81は下部電極スル
2
一ホール電極部を示して 、る。
[0067] 同図は、シリコン基板 86の下面側のコンタクト電極付近もエッチングされている場合 を示す。これは、図 7の Steplの段階で、シリコン基板下面にも SiOでマスクし、ゥェ
2
ットエッチングにより、電極コンタクト部をエッチングして、凹部形状となるようにする。 このようにすることにより、両面のコンタクト電極 (82, 84)間の距離がより短くなり、電 気的損失を減少させることができるので、配線の信頼性が向上する。
[0068] また、図 9と同様に、シリコン基板 86に溝部が侵食した構成を採用することにより、ク ロストーク減少の効果がある。つまり、メンブレンの屈曲振動によって超音波を送受信 するが、その屈曲振動は、ラム波またはストンリ一波等による振動で隣接したエレメン ト間にクロストークが発生する。また、屈曲振動はメンブレン支持部に反作用的に縦 振動応力を伝達する。この振動はメンブレン支持部の付け根からシリコン基板表面に 到達し、シリコン基板表面に沿って伝播し、同じ経路を逆にたどって隣のエレメントに 伝播しクロストークの原因になる。シリコン基板 86に溝部が侵食した構成を採用する ことにより、このようなクロストークを減少させることができる。また、基板背面への接地 電極の取り出しを容易にする効果もある。
[0069] なお、空乏層の形成の変わりに、 SiOの Wet酸化膜を利用してもよい。これは Wet
2
酸化の方が、緻密な膜が得られるからである。また溝を形成後に、 N型シリコン基板 であれば溝内に N +をドープし、加熱により拡散処理を行うことにより、コンタクト層( N + )を形成してもよい。また、溝の形状は、溝底部のうち一部分がさらに深くなつて V、る形状でもよ 、し、またシリコン基板下面まで孔が到達して 、る形状でも良 、。 [0070] 図 12は、本実施形態における静電容量型振動子エレメントのノ リエーシヨンの一例 (その 2)を示す。同図は、シリコン基板 86をエッチングすることによりキヤビティ 91を 形成した場合を示す。この場合、シリコン基板 86がメンブレン支持部としても機能す る。
[0071] まず、 TMAH (Tetramethyl Ammonium Hydroxide)を使って、 Siの異方性 エッチングを実施する。これにより、シリコン基板 86の上面側に所定の深さのキヤビテ ィ 91及び溝 80を形成し、下面側に凹部 95を形成する。
[0072] 次に、 ICP— RIEで貫通孔 81を形成する。その後、酸化膜 90を Wet酸化で成膜す る(空乏層の代わりとして用いている)。次に、下部電極 92 (PtZTi)を成膜して、貫 通孔 81の側壁へ導体付与する。
[0073] 次に、誘電体 93を下部電極 92の上面に成膜し、熱処理を行う。その後、キヤビティ 91に犠牲層を形成し、その上から SiNメンブレン 87を成膜する。成膜したメンブレン に孔 94を開け、犠牲層をエッチングして除去する。その後、 SiNにて犠牲層除去用 の孔 94を埋める(88)。その上から上部電極 (89)を成膜する。
[0074] このようにすることで、メンブレン支持部を形成する工程を別途設ける必要が無ぐ 工程数を減らすことができる。
図 13は、本実施形態における静電容量型振動子エレメントのノ リエーシヨンの一例 (その 3)を示す。図 14は、本実施形態における静電容量型振動子エレメントのノ リエ ーシヨンの一例(その 4)を示す。図 13及び図 14は、溝部 80を榭脂 100で充填した 場合を示す。
[0075] 図 13と図 14の相違は、シリコン基板 86の下面のコンタクト電極が凹部形状になつ ているか否かである。溝部分 80に榭脂 100が充填されていないと、振動子内に横波 定在波 (不要振動)が励起されることがあり、良好な超音波特性が得ることができない 。そこで、溝部分 80に榭脂 100を充填する。材質としては、不要超音波による振動を 減衰させるために、タングステン微粉末やガラスバブルなどの粉末をシリコーン榭脂、 エポキシ榭脂、ウレタン榭脂などに混合した柔軟性がある複合榭脂を超音波減衰材 料として用いる。このようにすることにより、不要振動を抑制することができる。
[0076] なお、図 3〜図 6の溝部(上方力 振動子エレメントを見た場合に縦横に溝が形成さ れている)のうち、コンベックス、ラジアルのように振動子の配列が曲率を持つタイプは 少なくとも、片面側 (例えば、上面側)をダイシングする。この際に、充填樹脂が存在 すると、応力が低減され電極の剥離、チッビングなどが減少する。このように、配線の 信頼性が向上すると共に、チッビングが減少することで、キヤビティと溝との間を短く することができるので設計上有効部分が増加し、単位面積あたりの音圧増力!]、つまり は感度向上、サイズの縮小化に繋がる。
[0077] 図 15は、本実施形態における静電容量型振動子エレメントのノ リエーシヨンの一例
(その 5)を示す。同図は、振動子エレメントを FPC (フレキシブルプリント基板)に導電 性榭脂 101を用いて接合した場合を示す図である。なお、導電性榭脂 101の代わり に、 ACF ( Anisotropic Conductive Film:異方性導電シート)、または Auや半 田などのボールバンプを利用してもよい。また、シリコン基板 86の下面と FPC102の 間の空隙部 104は、榭脂を充填しても良い。
[0078] なお、溝部 80には榭脂を充填せずダイシングしてダイシング溝 105を形成すること も可能であるし、溝部 80に榭脂を充填してダイシングしてダイシング溝 105を形成す ることも可能である。ダイシング後、湾曲させてトランスデューサを形成した後、減衰の 大きな榭脂材料を充填しても良い。裁断溝の深度は、コンベックスタイプやラジアル タイプのように振動子エレメントを湾曲させるタイプのものであれば、導電性榭脂 101 まで裁断する必要がある力 リニアタイプなどの湾曲させないものは、少なくともシリコ ン基板 86がダイシングされていれば良い。また、シリコンの FPC側の電極部が凹状 や、穴状になっていると、位置決め機能が得られると共に、接着表面積の拡大による 接続の機械的強度が向上し、信頼性の高い振動子が作製できる。
[0079] なお、シリコン基板を貫通させる場合、レーザービームを用いても良い。レーザービ ームを用いることにより、ドライエッチング同様に、任意の形状で溝切り、裁断が可能 となる。そのため、クロストーク低減の効果や、波線状にすることで電極の接触面積が 増え密着強度が向上する。また、エレメントを任意の形状とできるため、セル配置を任 意に行え、高密度化 (エレメント内に占めるセル面積が多いなど)が達成できる。内視 鏡のように限られた空間内で、高感度化を実現するには重要となる。
[0080] なお、通常、振動子エレメント上方から見た場合、図 5に示すように溝は直線状であ る力 フォトリソと、エッチングを用いると曲線状の溝を形成することも可能である。この 例を図 16A、図 16B、及び図 16Cに示す。
[0081] 図 16 (図 16A、図 16B、及び図 16C)は、本実施形態における振動子エレメント 3を 上面から見たときに曲線状の溝を形成する場合の一例を示す図である。図 16Aは、 振動子エレメント 3を囲む溝 111 (横方向の溝 11 la,縦方向の溝 11 lbを曲線状にし 、直線状にダンシング (ダンシングライン 110)した場合の一例を示す。このように、振 動子エレメントの全周囲が波線状の溝形状をもってもょ 、。
[0082] 図 16Bは、振動子エレメントを囲む溝 111a, 11 lbを曲線状にし、曲線状にダンシ ング (ダンシングライン 110)した場合の一例を示す。レーザーダイシングを用いれば 、このように曲線状の溝に沿ってダイシングが可能となる。
[0083] 図 16Cは、振動子エレメントを囲む溝のうち、縦方向の溝 11 lbを直線状、横方向 の溝 11 laを曲線状にし、直線状にダンシング (ダンシングライン 110)した場合の一 例を示す。 112は接地電極である。このように、部分的に波線状の溝構造をもってい てもよい。
[0084] 図 16の例以外にも、溝の形状及びダンシングの形状は、当然、矩形波状や鋸波で あってもその他不定形なものであっても構わな 、。
直線状の溝では、共振が激しくなり、定在波も起こりやすくなるが、直線状でない場 合には不要振動は打ち消し合って弱まる。そのために、クロストークが減少し、そして 、 SZN比が向上、高画質な画像にすることができる。なお、ダイシング位置や、充填 する減衰榭脂も曲線状のものを採用することで、同様な機能'効果を持たせることが できる。
[0085] 以上より、第 1の実施形態によれば、エレメントの両端に溝を設けた静電容量型超 音波振動子において、全体に占めるセル領域の面積比率を低下させる必要がなくな る。それにより、発生させる超音波の出力が軽減することが無くなる。
[0086] <第 2の実施形態 >
本実施形態では、ラジアル走査タイプの静電容量型超音波振動子を用いて、従来 のような接触固定して断層像を得ることが出来るのに加え、非接触診断が可能になる 体腔内超音波診断システムについて説明する。 [0087] 図 17は、本実施形態における体腔内超音波診断システムの概要を示す。図 17に おいて、体腔内超音波診断システム 201は、超音波内視鏡スコープ部 202、信号処 理部 203、画像処理部 205、表示部 204から構成される。なお、図 17には受信信号 系のみ記載されている力 送信信号系は図から省略している。
[0088] 超音波内視鏡スコープ 202には、静電容量型超音波振動子 202— 1がその先端 部に搭載されている。静電容量型超音波振動子 202— 1の主な機能としては、まず 超音波内視鏡スコープ 202の先端部を体腔内に挿入して静電容量型超音波振動子 202— 1から超音波を送信し、体腔内で反射した超音波を静電容量型超音波振動 子 202— 1が受信して、その受信した超音波を電気信号に変換する。
[0089] 信号処理部 203は、超音波内視鏡スコープ 202により得られた電気信号を解析し て、演算を行う。信号処理部 203は、記憶制御手段 203— 1、記憶手段 203— 2、演 算手段 203— 3、振動子状態判別手段 203— 5から構成される。
[0090] 振動子状態判別手段 203— 5は、例えば、静電容量型超音波振動子 202— 1が体 外なのか体腔内で体腔内壁に非接触か、または体腔内壁に接しているのか等の静 電容量型超音波振動子の状態を判別するものである。振動子状態判別手段 203— 5は、状態検知手段 203— 5aと、検知情報判別手段 203— 5bから構成される。状態 検知手段 203— 5aは、静電容量型超音波振動子 202— 1の状態を検知するための ものである。検知情報判別手段 203— 5bは、状態検知手段 203— 5aが検知した情 報に基づいて、静電容量型超音波振動子 202— 1の状態を判別するためのものであ る。なお、振動子状態判別手段 203— 5は、その判別方法によっては、超音波内視 鏡スコープ 202に含まれて!/、てもよ!/、し、信号処理部 203に含まれて!/、てもよ!/、し、 その両方に渡って含まれて 、てもよ 、。
[0091] 記憶手段 203— 2は、静電容量型超音波振動子 202— 1が感知した感知情報 (受 信した反射波、定在波等)を記憶するためのものである。記憶手段 203— 2は複数存 在する。なお、記憶手段は、物理的に複数存在してもよいし、論理的に複数の領域( 1つの記憶装置内で記憶領域を論理的に複数確保し、各記憶領域を記憶手段とす る)として存在してもよい。
[0092] 記憶制御手段 203— 1は、振動子状態判別手段 203— 5の判別結果に基づいて、 静電容量型超音波振動子 202— 1が感知した感知情報を、判別結果に対応する記 憶手段 203— 2に記憶させるためのものである。
[0093] 演算手段 203— 3は、各記憶手段 203— 2に記憶された感知情報に基づいて、演 算 (差分、相関関数)を行うためのものである。演算の組み合わせは複数存在し、個 々の目的に応じて、演算を行うことができる。
[0094] 画像処理部 205は、画像構築手段 205— 1から構成されている。画像構築手段 20 5—1は、演算手段 203— 3で演算された結果に基づいて、演算された信号から超音 波診断画像 (例えば、体腔内壁の輪郭画像、生体組織断層画像、またはこれらを組 み合わせた画像等)を構築するものである。
[0095] 表示手段 204は、画像処理部 205で生成された超音波診断画像を表示するため のものであり、例えばモニタ(ディスプレイ) 204— 1がある。なお、表示手段 204は、 ディスプレイに限定されず、プリンタ等の出力機器であってもよい。
[0096] 図 18は、本実施形態における超音波内視鏡スコープ 202の外観構成を示す。超 音波内視鏡スコープ 202は、細長の挿入部 212の基端に操作部 209を備えて、一端 にスコープコネクタ 211を有する。この操作部 209の側部からは、図示しない光源装 置に接続されるユニバーサルコード 210が延出している。さらに、スコープコネクタ 21 1は信号処理部 203に接続される。
[0097] 挿入部 212は、先端側から順に先端部に搭載された静電容量型ラジアルセクタ走 查アレイ超音波振動子 206、湾曲自在な湾曲部 207、可撓性を有する可撓管部 20 8を連設して構成されている。操作部 209には湾曲操作ノブ 209aが設けられており、 この湾曲操作ノブ 209aを操作することによって湾曲部 207を湾曲させられるようにな つている。また、先端部には、不図示の観察部位に照明光を照射する照明光学部を 構成する照明レンズカバー、観察部位の光学像を捉える観察光学部を構成する観 察用レンズカバー、及び処置具が突出する開口である鉗子出口等が設けられている
[0098] 図 19は、図 18の超音波内視鏡スコープ 202の先端部に搭載された静電容量型ラ ジアルセクタ走査アレイ超音波振動子 206 (以下、超音波振動子または振動子と!/、う )の構成概念図を示す。超音波振動子 206は、 2次元アレイ振動子 220、送受信回 路 221、及び同軸ケーブルバンドル 222から構成される。 2次元アレイ振動子 220は 、複数の振動子エレメントを配列したものである。同軸ケーブルバンドル 222は、各振 動子エレメントに接続された複数のケーブルを束にしたものであり、挿入部 212の内 部にある。送受信回路 221は、振動子エレメントと送受される信号を制御するための ものである。すなわち、送受信回路 221は、超音波振動子 206から放射される合成 超音波ビームの走査を制御し、円筒の周に沿った走査 225 (ラジアル走査超音波ビ ーム)だけでなぐ 1つのエレメントの中(円筒長軸方向に)でのセクタ走査 224 (超音 波セクタ走査面)を行うことができる。これにより 3次元の超音波画像を構築することが できる。 2次元アレイ振動子 220の詳細は、第 1の実施形態の図 3〜図 6で説明した のでここでは省略する。
[0099] 次に、本実施形態における体腔内超音波診断システム 201の動作の一連の流れ について説明する。
図 20は、本実施形態における超音波無響セル 270を示す。図 20に示すように、超 音波無響セル 270の内部には空洞が形成されており、その開口部から超音波振動 子 206を挿入する。超音波振動子 206を挿入後、超音波を放射する。このとき、超音 波無響セル 270は、超音波を吸収する部材 (例えば、ウレタン繊維や発泡シリコーン 榭脂等)で構成されているため、超音波が反射しない。したがって、超音波無響セル 270内で超音波振動子により超音波を放射しても反射波を受信しない。そのため、 受信時においては、本来メンブレンが振動することがないため、上部電極の電荷が 変化することがない。だが、定在波等の不要振動が発生する場合には、その影響を 受けてメンブレン上の電荷が変化するので、ここでは、その電荷の変化を検出する。 すなわち、送信時のメンブレンの振動に伴って、送信超音波に変換されない不要振 動が定在波となって残存し、この振動が実際のエコー信号受信時にもノイズ信号とし て重畳し、 SZN低下につながる。
[0100] 図 21 (図 21A,図 21B)は、超音波振動子 206を体腔内に挿入した状態を示す。
図 21 Aは口内に挿入した状態であり、図 21Bは胃の内壁に超音波振動子 206を接 触させて超音波を送受して!/ヽる状態を示す。
[0101] 超音波の送受は、超音波無響セル 270内で送受する場合(図 20) (以下、「状態 1」 という)、体腔内に挿入してから観察部位に到達するまでの間での空中(体腔内壁に 非接触)で送受する場合 (図 21A) (以下、「状態 2」という)、体腔内壁に超音波振動 子を接触させて送受する場合(図 21B) (以下、「状態 3」という)の 3状態で行われる。
[0102] 従来圧電振動子を用いた場合、観察部位に接触させてのみしか超音波画像を得 ることができなかったが、 c MUTでは超音波送受面の音響インピーダンスが空気 程小さくなぐ生体程大きくないインピーダンスを有しているので、空中(体腔内壁に 非接触の状態)で超音波画像を得ることができる。これにより、体腔内壁表面での反 射波を受信することが容易にできるので、超音波振動子を挿通しながら、管腔壁の輪 郭、すなわち凹凸面を測定することができる。 c MUTでは、数 MHzの高周波超音 波を送受信可能であり、高精度の表面凹凸検出が可能となる。
[0103] 図 22は、本実施形態における体腔内超音波診断システムの内部構成の概要を示 す。体腔内超音波診断システムは、超音波内視鏡スコープ 202、超音波内視鏡観測 装置 300から構成される。
[0104] 超音波内視鏡スコープ 202は、静電容量型超音波振動子 301、光センサ 302、チ ヤージアンプ 303、パルサー(パルス発生回路) 304力ら構成されている。
超音波内視鏡観測装置 300は、光センサー信号処理回路 305、スィッチ回路 306 (選択端子 SW1 (307)、選択端子 SW2 (308)、選択端子 SW3 (309)、 )、 AD変換 器 310, 311, 312、記憶装置 313, 314, 315、演算処理回路 316, 317, 318、ス イッチ回路 319 (選択端子 Q1 (320)、選択端子 Q2 (321)、選択端子 Q3 (322) )、 操作部 323、画像変^ ^(デジタルスキャンコンバータ) 324、モニタ 204— 1から構 成される。
[0105] ノ レサ一 304は、静電容量型超音波振動子 301を駆動させるための電気信号を 発生させるための回路である。
チャージアンプ 303では、インピーダンス変換を行う機會 (高インピーダンス→低ィ ンピーダンスへ変換する)、静電容量型超音波振動子 301の電極表面の電荷の検 出を行う機能、及びアンプとしての機能を備えている。電荷の検出を行う機能とは、 静電容量型超音波振動子 301は反射波の受信を受信すると、反射波の受信強度に 応じてメンブレンが振動し、その振動に応じた上部電極上の電荷の変動が起こるの で、その電荷を検出する機能をいう。なお、本実施形態では、反射波の受信に起因 する電荷のみならず、定在波等の不要振動に起因する電荷も検出してしまう場合を 想定している。以下では、これら両者を含めて受信信号という。
[0106] 光センサ 302は、静電容量型超音波振動子 301周辺の明るさを検知するものであ る。
光センサー信号処理回路 305は、光センサ 302から出力された信号に基づいて、 明暗を判別するものである。すなわち、光センサで検知した光量に基づく信号を解析 して、超音波振動子 301周辺の明るさの違いを判別することができる。
[0107] 例えば、超音波振動子 301を体腔内に挿入する前、すなわち超音波無響セル 270 内で送受する場合 (状態 1)では、 3つの状態のうち最も明るさを検知することができる ようにする。次に、超音波振動子 301を体腔内に挿入して観察部位に到達する(状 態 2)までは、暗くなるので、それを検知することができるようにする。また、超音波振 動子は観察部位に到達した場合 (状態 3)には、超音波振動子周辺に設けられた不 図示のライトガイドより照射された光が体腔内壁に反射して、その反射光を検知する ことができるようにするので、状態 2の場合より明るさを検知することができる。
[0108] このことより、光センサー信号処理回路 305の判別情報の設定として、初期状態で は超音波振動子 301を体腔内に挿入する前 (状態 1)であると判断するようにしておく 。それから、超音波振動子 301を体腔内に挿入して観察部位に到達するまで (状態 2 )は暗くなるので、光センサ力もの信号がある閾値以下になった場合、状態 2の状態 であると判断する。その後、再び明るくなり、光センサ力もの信号がある閾値以上にな つた場合、超音波振動子は観察部位に接して 、る状態 (状態 3)であると判断するよう にする。
[0109] スィッチ回路 306は、光センサー信号処理回路 305の出力に応じて選択端子 SW1 , SW2, SW3を ONZOFFするためのものである。光センサー信号処理回路 305に おいて体腔内に挿入前 (状態 1)であると判断した場合には、その旨の信号を出力し 、スィッチ回路 306では、その信号を受けて選択端子 SW1 (307)が ONになる。また 、光センサー信号処理回路 305において体腔内に挿入して観察部位へ移動中であ る(状態 2)と判断した場合には、その旨の信号を出力し、スィッチ回路 306では、そ の信号を受けて選択端子 SW2 (308)が ONになる。また、光センサー信号処理回路 305において観察部位へ到達した (状態 3)と判断した場合には、その旨の信号を出 力し、スィッチ回路 306では、その信号を受けて選択端子 SW3 (309)が ONになる。
[0110] チャージアンプ 303で検出された電荷情報に基づく受信信号は、スィッチ回路 306 の切り替え先に基づ ヽて、 AD変 310, 311, 312の!/、ずれ力に人力される。 A D変換器 310, 311, 312では、入力されたアナログ信号をデジタル信号に変換する 。その変換された信号は、 AD変翻 310, 311, 312に対応する記憶装置 313, 31 4, 315に入力され、記憶される。
[0111] 演算処理回路 316, 317, 318では、各状態で得られた受信信号 (記憶装置 313, 314, 315に格納されている信号)間の相関関数を求めることにより、状態 1で得られ たノイズ成分である定在波等の不要振動波成分を、状態 2及び 3の受信信号から除 去することができる。
[0112] 相関関数には、相互相関関数と自己相関関数がある。相互相関関数を用いる場合 を説明すると、 2つの信号のうち一方の波形を τだけ遅延させたときのずらし量 τの 関数で、次式のように定義される。
[0113] [数 1]
Figure imgf000026_0001
[0114] [x (t):状態 m (mは任意)での受信信号に基づく波形、 y (t):状態 n (nは任意)での 受信信号に基づく波形]
相互相関関数 R を利用することで、 2信号間の類似度を求めることができる。もし、 2 信号が完全に異なっているならば、 τに関わらず相互相関関数 R は 0に近づく。こ れにより定在波等の不要振動の成分を検出することができるので、この成分を除去す ることができる。なお、相互相関関数 R は、クロススペクトルの逆フーリエ変換により 求めることができる。
[0115] また、自己相関関数を用いることもできる。自己相関関数は、波形 x (t)とそれを τ だけずらした波形 x (t+ τ )を用いたずらし量 τの関数で、次式のように定義される。 [0116] [数 2] 1π θ ί+ /
[0117] 自己相関関数 R はて =0すなわち自身の積をとつたときに最大値となり、波形が周 期的ならば、自己相関関数も同じ周期でピークを示す。また、不規則信号では、変動 がゆっくりならばてが大きいところで高い値となり、細かく変動するときはてが小さいと ころで高い値を示して、 τ は変動の時間的な目安となる。これにより定在波等の不要 振動の成分を検出することができるので、この成分を除去することができる。なお、パ ワースベクトルの逆フーリエ変換により自己相関関数を求めることができる。
[0118] なお、相関関数を用いる以外にも、状態 mでの受信信号に基づく波形と状態 ηでの 受信信号に基づく波形との差分を求めることにより、定在波等の不要振動成分を取り 除くようにしてもよ ヽ。
[0119] 演算処理回路 316には、記憶装置 313に格納された信号 (状態 1での受信信号)と 記憶装置 314に格納された信号 (状態 2での受信信号)とが入力される。演算処理回 路 316では、 2信号間の相関を求める力、または差分を求めることにより、不要振動 成分を状態 2での受信信号から取り除く。
[0120] 演算処理回路 317には、記憶装置 314に格納された信号 (状態 2での受信信号)と 記憶装置 315に格納された信号 (状態 3での受信信号)とが入力される。演算処理回 路 317でも同様に、 2信号間の相関を求めるか、または差分を求めることにより、状態 3での受信信号力 状態 2での受信信号を取り除くができる。これにより、同時に不要 振動成分も取り除くことができる。
[0121] 演算処理回路 318では、演算処理回路 316及び 317で得られた信号の和を算出 する。これにより管腔壁の輪郭画像 (管腔壁の表面凹凸情報)と断層画像 (深さ方向 の情報)が同時に得られる。なお、相関関数を用いて演算処理回路 316及び 317で 得られた信号の相関を求めても良い。
[0122] 操作部 323は、スィッチ回路 319の切り替えを操作するためのものである。操作部 3 23を操作することによりスィッチ回路 319のスィッチの切り替えて、出力したい状態の 画像を選択することができる。すなわち、選択端子 Q1 (320)が選択された場合には 、演算処理回路 316で演算処理された信号を画像変 324へ出力することができ る。また、選択端子 Q2 (321)が選択された場合には、演算処理回路 318で演算処 理された信号を画像変 324へ出力することができる。また、選択端子 Q3 (322) が選択された場合には、演算処理回路 317で演算処理された信号を画像変 32 4へ出力することができる。
[0123] 画像変翻 324に入力される前の信号は時間軸信号であるが、この信号は画像変
324を介することで、画像信号へ変換される。そして、このようにして得られた画 像信号がモニタ 204— 1に出力され、モニタ 204 - 1に超音波診断画像が表示され る。
[0124] 以上より、静電容量型超音波振動子を用いることにより、超音波振動子が体腔内壁 に対して接触及び非接触の両方の状態で、超音波の送受信が可能であり、かつ、こ の状態を検知することにより、それぞれの状態で受信した超音波の受信信号を対応 したチャンネルに伝送することができる。
[0125] 従来のような接触固定して断層像を得ることが出来るのに加え、「非接触診断」が可 能になる。「非接触診断」は体腔内を揷通している最中にも、管腔壁表面の組識形状 情報が得られる。つまり、従来の超音波診断では不可能だった超音波診断が可能に なる。
[0126] また、各状態で得られた受信信号間での相関または差分を求める信号処理を行う ことにより、不要な振動である定在波成分 (ノイズ成分)を除去することができる。した がって、従来よりも鮮明な超音波診断画像を得ることができる。
[0127] また、ノイズ成分である定在波等の不要振動成分を超音波診断画像より除去するこ とができるため、クリアな画像信号を得ることができる。それにより、体腔内壁に非接 触の状態で超音波診断画像を撮影した場合でも、はっきりとした体腔内壁の輪郭形 状が表された超音波診断画像を得ることができる。
[0128] また、各状態での受信信号を組み合わせて信号処理を行うことにより、体腔内壁の 輪郭画像及び生体組織断層画像を得ることができる。
また、光センサ等の検知手段を用いることにより、超音波振動子が体腔内壁に接触 している力否かの検知を行うことができるため、超音波振動子の状態を検知すること ができる。
[0129] なお、本実施形態では体腔内壁の輪郭画像及び生体組織断層画像を得るために ラジアルタイプの静電容量型超音波振動子を用いたが、定在波等の不要振動成分 の除去に関しては、コンベックスタイプでもリニアタイプ等でも採用することができる。 また、超音波振動子の状態を検知するのに本実施形態では光センサを用いたが、体 腔内壁に接触している力否かの検知に関しては、例えば、圧力センサを用いても良 い。また、本実施形態では、定在波等の不要振動成分のみを静電容量型振動子で 感知するために、超音波無響セル内で超音波を放射したが、これに限定されずに、 超音波の反射しな!ヽ無響環境であればょ 、。
[0130] <第 3の実施形態 >
第 2の実施形態では、光センサを用いて超音波振動子が体腔内壁に接触している か否かを検知したが、本実施形態では、受信した超音波の周波数の相違により音波 振動子が体腔内壁に接触しているか否かを検知する場合について説明する。
[0131] 図 23は、本実施形態における超音波振動子を対象物に接触させた場合と接触さ せな 、場合での周波数特性を示したグラフである。このグラフの縦軸は相対振幅 (縦 軸の値の最大値で除した (規格ィ匕した)ときの値)、横軸は周波数を示す。
[0132] 330は、超音波振動子を対象物に非接触にした状態での周波数特性を示す。 331 は、超音波振動子を対象物に非接触にした状態(曲線 330)でのピーク周波数 (fc_n on)を示す。 332は、超音波振動子を対象物に接触させた状態での周波数特性を示 す。 333は、超音波振動子を対象物に接触状態(曲線 332)でのピーク周波数 (fc_co n)を示す。
[0133] このグラフから対象物、すなわち体腔内の器官壁面に接触状態にあるか非接触状 態にあるかにより放射される超音波の周波数特性に大きな差がある。このような接触 Z非接触による周波数特性の変化について、例えば、非特許文献 2の図 20に記載 されている。この非特許文献 2によると、(1)メンブレン力も見た音響負荷 (水 Z空気) の音響インピーダンスの違い、(2)メンブレン背面にあるキヤビティの内圧が音響負 荷 (水 Z空気)によって異なる、(3)高周波超音波が空気中に放出されにくい、という 理由力 接触 z非接触による周波数特性の変化が生じる旨が記載されている。
[0134] したがって、 fc_conと fc_nonとの間に閾値を設けることで、その閾値を境にしていず れの状態(曲線 330または曲線 332)であるかということを判別することができる。 図 24は、本実施形態における体腔内超音波診断システムの内部構成の概要を示 す。同図は、図 22から光センサ 302と光センサー信号処理回路 305とを取り除いて、 その代わりにローパスフィルタ 325と検波器 326を追加したものである。
[0135] チャージアンプ 303で検出された電荷情報に基づく信号は、ローパスフィルタ 325 に入力される。ローパスフィルタ 325では、予め設定された閾値より低い周波数の信 号を通過させるものである。よって、ローノ スフィルタ 325を通過する信号は超音波振 動子を対象物に非接触にした状態での受信信号であり、通過できない信号は超音 波振動子を対象物に接触させた状態での受信信号であることを判別することができ る。
[0136] 検波器 326は、ローパスフィルタ 325から出力された信号 (交流信号)を検波して、 スィッチ回路 306を駆動させるための直流信号に変換するものである。超音波受信 信号が低周波数の場合にはローパスフィルタ 325を通過して、その超音波受信信号 が検波器 326に入力され、 ACZDC変換が行われる。超音波受信信号が高周波数 の時はローノ スフィルタ 325でカットされるので、検波器 326には超音波受信信号が 入力されず、したがって検波器 326からの出力もない。また、図 20で、超音波無響セ ル 270内での受信信号は低レベルのノイズ以外に観測されないので、検波器 326か らの出力はこの場合にもない。したがって、検波器 326からの出力は、キヤリブレーシ ヨン信号検出時 (図 20)はゼロ、管腔内挿入時 (図 21A)は、高レベル出力、接触固 定時(図 21B)は低レベル出力となる。この検波出力の差異によってスィッチ回路 30 6のスィッチを SW1 (307)→SW2 (308)→SW3 (309)と切り替え、上記各状態での 受信信号を AD変換器 310, 311, 312に伝送する。その後の動作は第 2の実施形 態と同様である。
[0137] 以上より、周波数特性の相違を判別することにより、体外か、または超音波振動子 が体腔内にあり内壁に接触しているか非接触かの検知を行うことができるため、超音 波振動子の状態を検知することができる。 [0138] <第 4の実施形態 >
本実施形態では、各状態で得られた超音波受信信号に基づく信号処理のバリエ一 シヨンについて説明する。
[0139] 図 25は、本実施形態における複数パターンの信号処理を行う演算制御回路 350を 示す。演算制御回路 350は、図 22の演算処理回路(316, 317, 318)及びスィッチ 回路 319に相当する回路群である。
[0140] 演算制御回路 350は、分配器 351, 352, 353、演算処理回路 354, 355, 356, 3 57, 358, 359、スィッチ回路 361力も構成される。分配器 351, 352, 353は、対応 する記憶装置 313, 314, 315から出力された信号を各演算処理回路へ分配するも のである。演算処理回路 354〜359では、入力された 2つの受信信号の相関、差、ま たは和を算出するものである。
[0141] 第 2または第 3の実施形態において、光センサー信号処理回路 305 (図 22)または 検波器(図 24)から出力されたスィッチ制御信号 341がスィッチ回路 306に入力され ると、上述の通り、そのスィッチ制御信号 341の情報に基づいてスィッチが切り替わる
[0142] そうすると、チャージアンプ 303で検出された電荷情報に基づく信号 (受信信号 14 0) ίま、スィッチ回路 306の切り替え先【こ基づ!/ヽて、 AD変^^ 310, 311, 312の!ヽ ずれかに入力される。 AD変換器 310, 311, 312では、入力されたアナログ信号を デジタル信号に変換する。その変換された受信信号 340は、変換器 310, 311, 31 2に対応する記憶装置 313, 314, 315に入力され、記憶される。
[0143] その後、操作者は、操作部 323を用いて、受信信号をどのような態様で表示させる かを選択する。そうすると、操作部 323からスィッチ制御信号 345が出力され、スイツ チ回路 361に入力される。スィッチ回路 361では、スィッチ制御信号 345に基づいて 、選択端子 361a, 361b, 361c, 361d, 361e, 361f, 361g, 361h, 361iのいず れカが ONになる。そうすると、 ONになった選択端子に接続された演算処理回路が 動作することになる。
[0144] また、操作部 323からの信号に基づいて、記憶装置制御信号 342, 343, 344が発 生する。記憶装置 313では、記憶装置制御信号 342を受信した場合、格納されてい る状態 1の受信信号 (以下、 S1という)を分配器 351に出力する。記憶装置 314では 、記憶装置制御信号 343を受信した場合、格納されている状態 2の受信信号 (以下、 S2という)を分配器 352に出力する。記憶装置 315では、記憶装置制御信号 344を 受信した場合、格納されている状態 3の受信信号 (以下、 S3という)を分配器 353〖こ 出力する。
[0145] そうすると、各記憶装置 313〜315から出力された信号が演算処理回路で演算処 理され、スィッチ回路 361を通って、演算処理信号 346として出力され、画像変翻 324へ入力されることになる。その後は、第 2の実施形態と同様である。
[0146] 次に各選択端子 361が ONになった場合の各演算処置について説明する。
(ケース 1)選択端子 361aが ONになった場合、分配器 351から出力された信号 S1 が演算処理信号 346として出力される。
[0147] (ケース 2)選択端子 361dが ONになった場合、分配器 352から出力された信号 S2 が演算処理信号 346として出力される。
(ケース 3)選択端子 361i力 SONになった場合、分配器 353から出力された信号 S3 が演算処理信号 346として出力される。
[0148] (ケース 4)選択端子 361bが ONになった場合、分配器 351, 352から出力された 信号 SI, S2が演算処理回路 154に入力される。演算処理回路 354では、信号 S4を 生成するため、 S4 = S2— S1の演算処理を行う。そして、生成された信号 S4が演算 処理信号 346として出力される。
[0149] (ケース 5)選択端子 361fが ONになった場合、分配器 351, 353から出力された信 号 S1, S3が演算処理回路 355に入力される。演算処理回路 355では、信号 S5を生 成するため、 S5 = S3— S1の演算処理を行う。そして、生成された信号 S5が演算処 理信号 346として出力される。
[0150] (ケース 6)選択端子 361hが ONになった場合、分配器 352, 353から出力された 信号 S2, S3が演算処理回路 356に入力される。演算処理回路 356では、信号 S6を 生成するため、 S6 = S3— S1の演算を行う。そして、生成された信号 S6が演算処理 信号 346として出力される。
[0151] (ケース 7)選択端子 361cが ONになった場合、演算処理回路 354, 355で生成さ れた信号 S4, S5が演算処理回路 357に入力される。演算処理回路 357では、信号 S7を生成するため、 S7 = S4 + S5の演算を行う。そして、生成された信号 S7が演算 処理信号 346として出力される。
[0152] (ケース 8)選択端子 361eが ONになった場合、演算処理回路 355, 356で生成さ れた信号 S5, S6が演算処理回路 358に入力される。演算処理回路 358では、信号 S8を生成するため、 S8 = S5 + S6の演算を行う。そして、生成された信号 S8が演算 処理信号 346として出力される。
[0153] (ケース 9)選択端子 361gが ONになった場合、演算処理回路 354, 356で生成さ れた信号 S4, S6が演算処理回路 359に入力される。演算処理回路 359では、信号 S9を生成するため、 S9 = S4 + S6の演算を行う。そして、生成された信号 S9が演算 処理信号 346として出力される。
[0154] ここで、各演算処理について詳述する。 S1は、例えば、図 20 (状態 1)における超 音波無響セル 270での測定データ (これは、超音波送信にともなって発生する振動 子 (駆動信号も含む)由来のノイズやゆらぎに関するノイズデータであって、振動子由 来のノイズの中には、 c MUT特有の面内横波伝播に関係するクロストーク振動波 ゃ定在波が含まれて ヽるものである。
[0155] S2は、図 21A (状態 2)における体腔内を揷通している最中の受信超音波データで あって、空中超音波を用いて非接触で体腔内の管腔壁力もの表面反射信号に相当 するものである。この信号の中にも、振動子 (駆動信号も含む)由来のノイズやゆらぎ に関するノイズ信号が含まれている。従って、「S4 = S2— Sl」という演算で、このノィ ズ信号を除去することが可能となる。
[0156] 次に、 S3は、図 21B (状態 3)における振動子を管腔壁表面に接触固定した場合に おける深部診断測定情報を含むデータであって、深部反射信号に相当するものであ る。この信号の中には、 S1と S2の信号成分が含まれている。この場合、 S1信号はノ ィズ信号なので、除去することが必要であるため、「S5 = S3— S1」という演算になる
[0157] 一方、 S2信号にもノイズ信号が含まれているので、「S6 = S3— S2」の演算でも良 い場合もあるが、同時に S3に含まれている管腔壁力もの表面反射信号をも除去する ことになつてしまう。この様な信号処理は、一方で生体の管腔壁表面の組識情報を失 うという欠点もあるが、他方で、管腔壁表面の組識情報を削除することによって、深部 診断像を見やすくするという長所もある。この様に、「S5 = S3— Sl」を使う力 「S6 = S3— S2」を使うかは操作者の裁量に委ねられる。このため、診断の自由度を向上さ せることにつながる。
[0158] なお、「S7 = S4 + S5」は、ノイズを除去した管腔壁力 の表面反射信号とノイズを 除去した深部診断信号とを加算したもので、これによつて、表面力 深部までムラなく 診断が出来る。また、「S8 = S5 + S6」及び「S9 = S4 + S6」についても各種の信号 の利点を備えた画像をえることができる。
[0159] ところで、操作者は元の信号はどうであった力、ということにも関心がある場合があり 、単独の信号 Sl、 S2, S3も選択して検知出来ることが、スィッチ回路 361の配設に よって可能となる。本実施形態には演算処理信号 343の以降の信号処理について 詳しくは述べていないが、例えば表示装置であるモニター画面に、別々のウィンドウ で表示することが可能となる。
[0160] また、本実施形態では、演算処理装置 354, 355, 356において、入力された 2信 号間の差を算出したが、第 2の実施形態と同様に、相関関数 (相互相関、自己相関) を用いても良い。
[0161] さらに、ドップラー信号制御、ハーモニックイメージングに静電容量型超音波振動 子は対応可能で、本発明による超音波診断システムを適用することが可能である。 以上より、操作者の選択により、各状態で得られた超音波受信信号に基づいて様 々なパターンの信号処理を行うことができる。これにより、生成される超音波診断画像 もその信号処理に対応した特徴を備えることができるので、多面的に診断を行うこと ができる。
[0162] 本発明によれば、エレメントの両端に溝を設けた静電容量型超音波振動子におい て、全体に占めるセル領域の面積比率を低下させる必要がなくなる。それにより、発 生させる超音波の出力が軽減することが無くなる。
[0163] また、本発明によれば、超音波振動子が体腔内壁に対して接触及び非接触の両 方の状態で、超音波の送受信が可能であり、かつ、この状態を検知することにより、そ れぞれの状態で受信した超音波の受信信号を対応したチャンネルに伝送することが できる。
また、本発明によれば、体腔内壁に接触しているか否かにかかわらず、 1種類の静 電容量型超音波振動子を搭載した超音波内視鏡スコープを体腔内に挿入しながら 輪郭に関する超音波診断画像を構築し、かつ、診断部位に至り、そこで接触固定す ることによって、断層に関する超音波診断画像を構築することができる。また、これら の構築された超音波診断画像には定在波に起因するノイズ成分が除去されている。

Claims

請求の範囲
[1] シリコン基板と、該シリコン基板の上面に配設された第 1の電極と、該第 1の電極と 対向し所定の空隙を隔てて配設された第 2の電極と、該第 2の電極を支持するメンブ レンとからなる振動子セルから構成された振動子エレメントとから構成される静電容量 型超音波振動子において、
隣接する前記振動子エレメント間に溝部を設け、該溝部に導電膜が形成されてい ることを特徴とする静電容量型超音波振動子。
[2] 前記静電容量型超音波振動子は、前記振動子エレメントと前記シリコン基板の背 面に電極パッドを介して接合されたフレキシブルプリント基板とから構成されることを 特徴とする請求項 1に記載の静電容量型超音波振動子。
[3] 一次元に複数配列された前記振動子エレメントから構成される振動子ユニット間に 設けられた前記溝部の底部は、前記シリコン基板と前記電極パッドを貫通して前記フ レキシブルプリント基板の表面に達していることを特徴とする請求項 2に記載の静電 容量型超音波振動子。
[4] 前記導電膜は、前記溝部の溝内壁部及び底部に形成され、かつ該底部に形成さ れた該導電膜は、前記シリコン基板表面に形成したォーミックコンタクト領域と接合し て 、ることを特徴とする請求項 1に記載の静電容量型超音波振動子。
[5] 前記溝部は、超音波減衰材料で充填されて 、ることを特徴とする請求項 1に記載の 静電容量型超音波振動子。
[6] 前記超音波減衰材料が、エポキシ榭脂、シリコーン榭脂、及びゥェタン樹脂のうち 少なくともいずれカゝ 1つを主成分とする樹脂にタングステン微粉末を混合した複合榭 脂であることを特徴とする請求項 5に記載の静電容量型超音波振動子。
[7] 前記溝部の断面形状は、該溝部の底部に向かうに従い溝幅が小さくなるテーパー 形状であることを特徴とする請求項 1に記載の静電容量型超音波振動子。
[8] 前記溝部の内壁にサブ/ z mオーダー以上の凹凸を設けたことを特徴とする請求項 1に記載の静電容量型超音波振動子。
[9] 前記貫通された溝表面は該表面を前記導電膜により被膜されており、該溝表面は 前記フレキシブルプリント基板に配設された接地配線に導電性接着剤、ボールバン プまたは異方性導電体シートを介して接続されていることを特徴とする請求項 3に記 載の静電容量型超音波振動子。
[10] 前記溝部は、前記振動子エレメントを上方から見た場合に、少なくとも直線形状以 外の、曲線形状、または鋸線形状を有することを特徴とする請求項 1に記載の静電容 量型超音波振動子。
[11] シリコン基板と、該シリコン基板の上面に配設された第 1の電極と、該第 1の電極と 対向し所定の空隙を隔てて配設された第 2の電極と、該第 2の電極を支持するメンブ レンとからなる振動子セル力も構成される振動子エレメントと、前記シリコン基板の背 面に電極パッドを介して接合されたフレキシブルプリント基板とから構成される静電容 量型超音波振動子の製造方法にお!、て、
隣接する前記振動子エレメント間に溝部を設ける溝形成工程と、
前記溝部を導電化して該溝部の底部に第 3の電極を形成する導電化工程と、 からなることを特徴とする静電容量型超音波振動子の製造方法。
[12] 前記導電化工程では、イオン注入または化学気相成長方法を行った後に、拡散処 理を行うことにより前記第 3の電極を形成することを特徴とする請求項 11に記載の静 電容量型超音波振動子の製造方法。
[13] 前記導電ィ匕工程では、物理気相生長法により前記第 3の電極を形成することを特 徴とする請求項 11に記載の静電容量型超音波振動子の製造方法。
[14] さらに、前記第 3の電極を形成した前記溝部に超音波減衰材料を充填する超音波 減衰材料充填工程を行うことを特徴とする請求項 11に記載の静電容量型超音波振 動子の製造方法。
[15] さらに、前記超音波減衰材料を充填した前記溝部を裁断する第 1の裁断工程を行 うことを特徴とする請求項 14に記載の静電容量型超音波振動子の製造方法。
[16] 前記シリコン基板と前記電極パッドを貫通して前記フレキシブルプリント基板の表面 に達するまで、前記溝部を裁断する第 2の裁断工程を行うことを特徴とする請求項 11 に記載の静電容量型超音波振動子の製造方法。
[17] 前記第 1の裁断工程は、レーザービームを用いて裁断することを特徴とする請求項
15に記載の静電容量型超音波振動子の製造方法。
[18] 前記第 2の裁断工程は、レーザービームを用いて裁断することを特徴とする請求項
16に記載の静電容量型超音波振動子の製造方法。
[19] 請求項 1に記載の静電容量型超音波振動子を備えることを特徴とする超音波内視 鏡。
[20] 超音波を送受信する静電容量型超音波振動子が設けられた超音波内視鏡スコー プと、
前記静電容量型超音波振動子の状態を判別する振動子状態判別手段と、 前記静電容量型超音波振動子により感知された感知情報から、前記振動子状態 判別手段により判別された前記状態に応じた超音波診断画像を構築する画像構築 手段と、
を備えることを特徴とする体腔内超音波診断システム。
[21] 前記振動子状態判別手段は、
前記静電容量型超音波振動子が、体外、及び体腔内の内壁に到達するまでの体 腔内移動中の状態、及び目標診断部位へ到達した状態のうち 、ずれかの状態であ ることを検知する状態検知手段と、
前記状態検知手段から得られた検知情報に基づ!、て、前記状態を判別する検知 情報判別手段と、
を備えることを特徴とする請求項 20に記載の体腔内超音波診断システム。
[22] 前記体腔内超音波診断システムは、さらに、
前記感知情報を記憶する記憶手段と、
前記振動子状態判別手段による判別結果に基づ!/、て、該判別結果に対応した前 記記憶手段に、前記感知情報を記憶させる記憶制御手段と、
を備えることを特徴とする請求項 20に記載の体腔内超音波診断システム。
[23] 前記状態検知手段は、前記静電容量型超音波振動子の略近傍に設けた光センサ であり、
前記検知情報判別手段は、前記光センサの出力に基づいて、前記静電容量型超 音波振動子が体外、体腔内であるが体腔内壁に非接触、及び体腔内壁に接触のう ち 、ずれかの状態であるかを判別する ことを特徴とする請求項 21に記載の体腔内超音波診断システム。
[24] 前記状態検知手段は、前記静電容量型超音波振動子の略近傍に設けた圧力セン サであり、
前記検知情報判別手段は、前記圧力センサの出力に基づいて、前記静電容量型 超音波振動子が体腔内であるが体腔内壁に非接触、及び体腔内壁に接触のうちい ずれかの状態であるかを判別する
ことを特徴とする請求項 21に記載の体腔内超音波診断システム。
[25] 前記状態検知手段は、前記感知情報を表している電気信号の周波数に対応した 前記検知情報を生成し、
前記検知情報判別手段は、前記状態検知情報に基づいて、前記静電容量型超音 波振動子が体外、体腔内であるが体腔内壁に非接触、及び体腔内壁に接触のうち Vヽずれかの状態であるかを判別する
ことを特徴とする請求項 21に記載の体腔内超音波診断システム。
[26] 前記状態検知手段は、前記電気信号の周波数が所定の閾値以下の場合には、該 電気信号を通過させるフィルタ回路であることを特徴とする請求項 25に記載の体腔 内超音波診断システム。
[27] 超音波を送受信する静電容量型超音波振動子が設けられた超音波内視鏡スコー プと、
前記静電容量型超音波振動子の状態を判別する振動子状態判別手段と、 前記静電容量型超音波振動子によって感知された感知情報を記憶する記憶手段 と、
前記振動子状態判別手段による判別結果に基づ!/、て、該判別結果に対応する前 記記憶手段に、前記感知情報を記憶させる記憶制御手段と、
前記記憶手段に記憶された前記感知情報のうちの少なくとも 1つの該感知情報を 用いて、演算処理を行う演算手段と、
前記演算手段により演算処理された演算結果から、超音波診断画像を構築する画 像構築手段と、
を備えることを特徴とする体腔内超音波診断システム。
[28] 前記静電容量型超音波振動子は、複数の静電容量型超音波振動子エレメントから 構成され、円筒外周面に該複数の静電容量型超音波振動子エレメントを配列した 1 次元または 2次元アレイ型静電容量型超音波振動子であることを特徴とする請求項 2
7に記載の体腔内超音波診断システム。
[29] 前記隣接する前記振動子エレメント間には、溝部が設けられていることを特徴とす る請求項 28に記載の体腔内超音波診断システム。
[30] 前記溝部に導電膜が形成されていることを特徴とする請求項 29に記載の体腔内超 音波診断システム。
[31] 前記体腔内超音波診断システムは、さらに、
前記静電容量型超音波振動子から放射される合成超音波ビームに、前記円筒の 周方向に沿ってラジアル走査させるラジアル走査制御手段
を備えることを特徴とする請求項 28に記載の体腔内超音波診断システム。
[32] 前記ラジアル走査制御手段は、さらに、前記合成超音波ビームに前記円筒長軸方 向にセクタ走査をさせることを特徴とする請求項 31に記載の体腔内超音波診断シス テム。
[33] 前記演算手段は、前記記憶手段に記憶された前記感知情報のうちの少なくとも 2つ の該感知情報の和、差、または相互相関を算出する演算を行うことを特徴とする請求 項 27に記載の体腔内超音波診断システム。
[34] 前記演算手段は、前記感知情報の 1つ力 自己相関を算出する演算を行うことを 特徴とする請求項 27に記載の体腔内超音波診断システム。
[35] 前記振動子状態判別手段は、
前記静電容量型超音波振動子が、体外、及び体腔内の内壁に到達している力否 かのうちいずれかの状態であることを検知する状態検知手段と、
前記状態検知手段から得られた検知情報に基づ!、て、前記状態を判別する検知 情報判別手段と、
を備えることを特徴とする請求項 27に記載の体腔内超音波診断システム。
[36] 前記状態検知手段は、前記静電容量型超音波振動子の略近傍に設けた光センサ であり、 前記検知情報判別手段は、前記光センサの出力に基づいて、前記静電容量型超 音波振動子が体外、体腔内であるが体腔内壁に非接触、及び体腔内壁非接触のう ち 、ずれかの状態であるかを判別する
ことを特徴とする請求項 35に記載の体腔内超音波診断システム。
[37] 前記状態検知手段は、前記静電容量型超音波振動子の略近傍に設けた圧力セン サであり、
前記検知情報判別手段は、前記圧力センサの出力に基づいて、前記静電容量型 超音波振動子が体腔内であるが体腔内壁に非接触、及び体腔内壁非接触のうちい ずれかの状態であるかを判別する
ことを特徴とする請求項 35に記載の体腔内超音波診断システム。
[38] 前記状態検知手段は、前記感知情報を表している電気信号の周波数に対応した 前記状態検知情報を生成し、
前記検知情報判別手段は、前記状態検知情報に基づいて、前記静電容量型超音 波振動子が体外、体腔内であるが体腔内壁に非接触、及び体腔内壁非接触のうち Vヽずれかの状態であるかを判別する
ことを特徴とする請求項 35に記載の体腔内超音波診断システム。
[39] 前記状態検知手段は、前記電気信号の周波数が所定の閾値以下の場合には、該 電気信号を通過させるフィルタ回路であることを特徴とする請求項 38に記載の体腔 内超音波診断システム。
[40] 前記記憶制御手段は、前記静電容量型超音波振動子が体外、体腔内であるが体 腔内壁に非接触、及び体腔内壁に接触の状態で感知した前記感知情報のうち少な くともいずれ力 1つ記憶させることを特徴とする請求項 27に記載の体腔内超音波診 断システム。
[41] 前記記憶手段のうちの第 1の記憶手段に記憶される前記感知情報は、前記超音波 の反射しない条件下で、前記静電容量型超音波振動子に超音波を放射させることに より感知された第 1の感知情報であることを特徴とする請求項 27に記載の体腔内超 音波診断システム。
[42] 前記記憶手段のうちの第 2の記憶手段に記憶される前記感知情報は、前記静電容 量型超音波振動子が体腔内であるが体腔内壁に非接触の状態で前記超音波を送 受して感知した第 2の感知情報であり、
前記演算手段は、前記第 2の感知情報と前記第 1の感知情報との相関または差分 を算出することを特徴とする請求項 41に記載の体腔内超音波診断システム。
[43] 前記記憶手段のうちの第 3の記憶手段に記憶される前記感知情報は、前記静電容 量型超音波振動子が体腔内壁に接触した状態で前記超音波を送受して感知した第 3の感知情報であり、
前記演算手段は、前記第 3の感知情報と前記第 1の感知情報との相関または差分 を算出することを特徴とする請求項 41に記載の体腔内超音波診断システム。
[44] 前記記憶手段のうちの第 2の記憶手段に記憶される前記感知情報は、前記静電容 量型超音波振動子が体腔内であるが体腔内壁に非接触の状態で前記超音波を送 受して感知した第 2の感知情報であり、
前記記憶手段のうちの第 3の記憶手段に記憶される前記感知情報は、前記静電容 量型超音波振動子が体腔内壁に接触した状態で前記超音波を送受して感知した第 3の感知情報であり、
前記演算手段は、前記第 2の感知情報と前記第 1の感知情報との相関または差分 を算出する第 1の演算処理を行い、前記第 3の感知情報と前記第 1の感知情報との 相関または差分を算出する第 2の演算を行い、第 1の演算処理の結果と第 2の演算 処理の結果を加算することを特徴とする請求項 41に記載の体腔内超音波診断シス テム。
[45] 前記超音波診断画像は、体腔内壁表面の輪郭を表す画像であることを特徴とする 請求項 42に記載の体腔内超音波診断システム。
[46] 前記超音波診断画像は、体腔内組織の断層を表す画像であることを特徴とする請 求項 43に記載の体腔内超音波診断システム。
[47] 前記超音波診断画像は、体腔内壁表面の輪郭を表す画像と体腔内組織の断層を 表す画像とであることを特徴とする請求項 44に記載の体腔内超音波診断システム。
[48] 超音波を送受信する静電容量型超音波振動子が設けられた超音波内視鏡スコー プを備えた体腔内超音波診断システムに用いられる前記静電容量型超音波振動子 が感知した感知情報力 ノイズ成分を除去するノイズ除去装置であって、 前記超音波の反射しな!、条件下で、前記静電容量型超音波振動子に超音波を放 射させることにより感知された第 1の前記感知情報を記憶する第 1の記憶手段と、 前記静電容量型超音波振動子が、体腔内であるが体腔内壁に非接触の状態で、 前記超音波を送受して感知した第 2の前記感知情報を記憶する第 2の記憶手段と、 前記第 2の感知情報と前記第 1の感知情報との相関または差分を算出する演算手 段とを備えることを特徴とするノイズ除去装置。
[49] 超音波を送受信する静電容量型超音波振動子が設けられた超音波内視鏡スコー プを備えた体腔内超音波診断システムに用いられる前記静電容量型超音波振動子 が感知した感知情報力 ノイズ成分を除去するノイズ除去装置であって、
前記超音波の反射しな!、条件下で、前記静電容量型超音波振動子に超音波を放 射させることにより感知された第 1の前記感知情報を記憶する第 1の記憶手段と、 前記静電容量型超音波振動子が体腔内壁に接触した状態で前記超音波を送受し て感知した第 3の前記感知情報を記憶する第 3の記憶手段と、
前記第 3の感知情報と前記第 1の感知情報との相関または差分を算出する演算手 段と、
を備えることを特徴とするノイズ除去装置。
[50] 超音波を送受信する静電容量型超音波振動子が設けられた超音波内視鏡スコー プを備えた体腔内超音波診断システムにおける前記静電容量型超音波振動子が感 知した感知情報力 ノイズ成分を除去するノイズ除去方法であって、
前記超音波の反射しな!、条件下で、前記静電容量型超音波振動子に超音波を放 射させることにより感知された第 1の前記感知情報を取得し、
前記静電容量型超音波振動子が、体腔内であるが体腔内壁に非接触の状態で、 前記超音波を送受して感知した第 2の前記感知情報を取得し、
前記第 2の感知情報と前記第 1の感知情報との相関または差分を算出する ことを特徴とするノイズ除去方法。
[51] 超音波を送受信する静電容量型超音波振動子が設けられた超音波内視鏡スコー プを備えた体腔内超音波診断システムにおける前記静電容量型超音波振動子が感 知した感知情報力 ノイズ成分を除去するノイズ除去方法であって、
前記超音波の反射しな!、条件下で、前記静電容量型超音波振動子に超音波を放 射させることにより感知された第 1の前記感知情報を取得し、
前記静電容量型超音波振動子が体腔内壁に接触した状態で前記超音波を送受し て感知した第 3の前記感知情報を取得し、
前記第 2の感知情報と前記第 1の感知情報との相関または差分を算出する ことを特徴とするノイズ除去方法。
PCT/JP2005/019336 2004-10-27 2005-10-20 静電容量型超音波振動子及びその体腔内超音波診断システム WO2006046471A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/666,372 US20070299345A1 (en) 2004-10-27 2005-10-20 Capacitive Ultrasonic Transducer and Endo Cavity Ultrasonic Diagnosis System Using the Same
EP05795888A EP1810619B1 (en) 2004-10-27 2005-10-20 Capacitive ultrasonic transducer and endo cavity ultrasonic diagnosis system using the same
US13/040,922 US8930169B2 (en) 2004-10-27 2011-03-04 Capacitive ultrasonic transducer and endo cavity ultrasonic diagnosis system using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004312172A JP4624763B2 (ja) 2004-10-27 2004-10-27 静電容量型超音波振動子、及びその製造方法
JP2004-312172 2004-10-27
JP2005-014415 2005-01-21
JP2005014415A JP4733988B2 (ja) 2005-01-21 2005-01-21 体腔内超音波診断システム
JP2005014414A JP2006198239A (ja) 2005-01-21 2005-01-21 体腔内超音波診断システム
JP2005-014414 2005-01-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/666,372 A-371-Of-International US20070299345A1 (en) 2004-10-27 2005-10-20 Capacitive Ultrasonic Transducer and Endo Cavity Ultrasonic Diagnosis System Using the Same
US13/040,922 Division US8930169B2 (en) 2004-10-27 2011-03-04 Capacitive ultrasonic transducer and endo cavity ultrasonic diagnosis system using the same

Publications (1)

Publication Number Publication Date
WO2006046471A1 true WO2006046471A1 (ja) 2006-05-04

Family

ID=36227711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019336 WO2006046471A1 (ja) 2004-10-27 2005-10-20 静電容量型超音波振動子及びその体腔内超音波診断システム

Country Status (3)

Country Link
US (2) US20070299345A1 (ja)
EP (2) EP1810619B1 (ja)
WO (1) WO2006046471A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918027A1 (en) * 2006-10-30 2008-05-07 Olympus Medical Systems Corp. Ultrasonic transducer, method for manufacturing ultrasonic transducer, and ultrasonic endoscope
US7995423B2 (en) 2006-10-12 2011-08-09 Olympus Medical Systems Corp. Ultrasound transducer and ultrasound diagnostic apparatus
EP1897498A4 (en) * 2005-05-31 2013-04-24 Olympus Medical Systems Corp CAPACITIVE MICRO-WORKED ULTRASONIC TRANSDUCER AND METHOD OF MANUFACTURING THEREOF
WO2013114968A1 (ja) * 2012-01-30 2013-08-08 オリンパスメディカルシステムズ株式会社 超音波振動子アレイ、超音波振動子アレイの製造方法、及び超音波内視鏡
CN104665871A (zh) * 2013-11-29 2015-06-03 精工爱普生株式会社 超声波装置、探测器、电子设备以及超声波图像装置
CN104954958A (zh) * 2014-03-27 2015-09-30 精工爱普生株式会社 压电元件、压电器件、探头、电子设备及超声波图像装置
CN110773408A (zh) * 2019-11-06 2020-02-11 中国科学院半导体研究所 电容式微纳超声换能器及其制备方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946175B2 (en) * 2006-06-09 2011-05-24 Hamilton Sundstrand Corporation In-situ monitoring device and method to determine accumulated printed wiring board vibration stress fatigue
JP2008132583A (ja) 2006-10-24 2008-06-12 Seiko Epson Corp Memsデバイス
WO2008088898A1 (en) * 2007-01-19 2008-07-24 Sierra Scientific Instruments, Inc. Micro-remote gastrointestinal physiological measurement device
US7944008B2 (en) * 2007-04-23 2011-05-17 Sierra Scientific Instruments, Llc Suspended membrane pressure sensing array
JP5611830B2 (ja) 2007-12-03 2014-10-22 コロ テクノロジーズ インコーポレイテッド 静電型変換器アレイのパッケージングおよび接続
CN101874287B (zh) * 2007-12-03 2012-08-29 科隆科技公司 静电换能器及阵列中的贯穿晶片互连
JP5578836B2 (ja) 2008-12-25 2014-08-27 キヤノン株式会社 電気機械変換装置及びその作製方法
JP5436013B2 (ja) * 2009-04-10 2014-03-05 キヤノン株式会社 機械電気変化素子
JP5495918B2 (ja) * 2009-07-24 2014-05-21 キヤノン株式会社 電気機械変換装置、及び電気機械変換装置の作製方法
WO2011111427A1 (ja) 2010-03-12 2011-09-15 株式会社 日立メディコ 超音波トランスデューサおよびそれを用いた超音波診断装置
US8624469B2 (en) * 2010-04-29 2014-01-07 Research Triangle Institute Micromachined ultrasonic transducer with air-backed cavity and electrical connection
US8299687B2 (en) 2010-07-21 2012-10-30 Transducerworks, Llc Ultrasonic array transducer, associated circuit and method of making the same
KR101630759B1 (ko) 2010-12-14 2016-06-16 삼성전자주식회사 초음파 변환기의 셀, 채널 및 이를 포함하는 초음파 변환기
JP5791294B2 (ja) * 2011-02-11 2015-10-07 キヤノン株式会社 静電容量型電気機械変換装置
KR101761819B1 (ko) 2011-08-24 2017-07-26 삼성전자주식회사 초음파 변환기 및 그 제조 방법
JP5990929B2 (ja) 2012-02-24 2016-09-14 セイコーエプソン株式会社 超音波トランスデューサー装置およびプローブ並びに電子機器および超音波診断装置
JP6102075B2 (ja) 2012-03-30 2017-03-29 セイコーエプソン株式会社 超音波トランスデューサー素子チップおよびプローブ並びに電子機器および超音波診断装置
CN104349722B (zh) * 2012-06-11 2016-08-31 奥林巴斯株式会社 超声波部件以及超声波内窥镜
KR101851568B1 (ko) * 2012-08-29 2018-04-24 삼성전자주식회사 초음파 변환기 및 그 제조방법
KR101909131B1 (ko) 2012-09-11 2018-12-18 삼성전자주식회사 초음파 변환기 및 그 제조방법
US9375850B2 (en) * 2013-02-07 2016-06-28 Fujifilm Dimatix, Inc. Micromachined ultrasonic transducer devices with metal-semiconductor contact for reduced capacitive cross-talk
US9351081B2 (en) * 2013-02-27 2016-05-24 Texas Instruments Incorporated Capacitive micromachined ultrasonic transducer (CMUT) with through-substrate via (TSV) substrate plug
US9520811B2 (en) * 2013-02-27 2016-12-13 Texas Instruments Incorporated Capacitive micromachined ultrasonic transducer (CMUT) device with through-substrate via (TSV)
US9024396B2 (en) * 2013-07-12 2015-05-05 Infineon Technologies Ag Device with MEMS structure and ventilation path in support structure
JP6273743B2 (ja) * 2013-09-30 2018-02-07 セイコーエプソン株式会社 超音波デバイスおよびプローブ並びに電子機器および超音波画像装置
US10586753B2 (en) 2014-03-31 2020-03-10 Koninklijke Philips N.V. IC die, ultrasound probe, ultrasonic diagnostic system and method
KR20160023154A (ko) * 2014-08-21 2016-03-03 삼성전자주식회사 초음파 변환기
WO2016097959A1 (en) * 2014-12-15 2016-06-23 Koninklijke Philips N.V. Compact ultrasound transducer with direct coax attachment
US9862592B2 (en) 2015-03-13 2018-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS transducer and method for manufacturing the same
JP6632431B2 (ja) * 2016-03-08 2020-01-22 キヤノン株式会社 超音波トランスデューサユニット及びそれを備える情報取得装置
FR3060844B1 (fr) * 2016-12-15 2018-12-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif microelectronique acoustique
KR101915255B1 (ko) * 2017-01-11 2018-11-05 삼성메디슨 주식회사 초음파 프로브의 제조 방법 및 그 초음파 프로브
EP3606094B1 (en) * 2017-03-29 2025-04-02 AGC Inc. Glass plate component
JP7024549B2 (ja) 2018-03-28 2022-02-24 セイコーエプソン株式会社 超音波センサー、及び超音波装置
JP7024550B2 (ja) 2018-03-28 2022-02-24 セイコーエプソン株式会社 超音波センサー、及び超音波装置
KR102525398B1 (ko) 2018-05-14 2023-04-24 엑소 이미징, 인크. 열압착 본딩, 공융 본딩, 및 솔더 본딩을 사용하는 마이크로머신 pMUT 어레이들 및 전자기기들을 위한 통합 기법들
WO2021102127A1 (en) 2019-11-22 2021-05-27 Exo Imaging, Inc. Ultrasound transducer with acoustic absorber structure
US11738369B2 (en) * 2020-02-17 2023-08-29 GE Precision Healthcare LLC Capactive micromachined transducer having a high contact resistance part
TWI738290B (zh) * 2020-04-10 2021-09-01 友達光電股份有限公司 換能裝置、換能結構及其製造方法
US12099150B2 (en) 2021-10-26 2024-09-24 Exo Imaging, Inc. Multi-transducer chip ultrasound device
US11998387B2 (en) 2022-01-12 2024-06-04 Exo Imaging, Inc. Multilayer housing seals for ultrasound transducers
JP2025509576A (ja) * 2022-03-23 2025-04-11 エコー イメージング,インク. 超音波トランスデューサデバイスの作製のための方法およびシステム
US20240023936A1 (en) * 2022-07-20 2024-01-25 Olympus Medical Systems Corp. Ultrasound endoscope
CN115921259B (zh) * 2023-01-03 2024-11-05 京东方科技集团股份有限公司 一种超声换能单元及其制备方法、超声换能器件

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701901A (en) * 1996-11-26 1997-12-30 Hewlett Packard Company Ultrasonic probe with back and forth sweeping ultrasonic source
US6645145B1 (en) * 1998-11-19 2003-11-11 Siemens Medical Solutions Usa, Inc. Diagnostic medical ultrasound systems and transducers utilizing micro-mechanical components
US6511427B1 (en) * 2000-03-10 2003-01-28 Acuson Corporation System and method for assessing body-tissue properties using a medical ultrasound transducer probe with a body-tissue parameter measurement mechanism
US6641540B2 (en) 2000-12-01 2003-11-04 The Cleveland Clinic Foundation Miniature ultrasound transducer
US6497667B1 (en) 2001-07-31 2002-12-24 Koninklijke Philips Electronics N.V. Ultrasonic probe using ribbon cable attachment system
US7275298B2 (en) * 2001-10-23 2007-10-02 Schindel David W Ultrasonic printed circuit board transducer
US6659954B2 (en) * 2001-12-19 2003-12-09 Koninklijke Philips Electronics Nv Micromachined ultrasound transducer and method for fabricating same
US6858008B2 (en) * 2002-02-21 2005-02-22 Acuson Corporation Automatic ultrasound transmit power setting method and system
GB0220986D0 (en) * 2002-09-10 2002-10-23 Univ Bristol Ultrasound probe
JP4468677B2 (ja) * 2003-05-19 2010-05-26 オリンパス株式会社 超音波画像生成方法及び超音波画像生成プログラム
ITRM20030318A1 (it) * 2003-06-25 2004-12-26 Esaote Spa Trasduttore ultracustico capacitivo microlavorato e
US7247141B2 (en) * 2004-03-08 2007-07-24 Ethicon Endo-Surgery, Inc. Intra-cavitary ultrasound medical system and method
JP5275565B2 (ja) * 2004-06-07 2013-08-28 オリンパス株式会社 静電容量型超音波トランスデューサ
US8309428B2 (en) * 2004-09-15 2012-11-13 Sonetics Ultrasound, Inc. Capacitive micromachined ultrasonic transducer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DEMIRCI U. ET AL: "Forward-Viewing CMUT Arrays for Medical Imaging", IEEE TRANS ULTRASON FERROELECTR FREQ CONTROL, vol. 51, no. 7, July 2004 (2004-07-01), pages 886 - 894, XP002994781 *
HUANG Y. ET AL: "Fabricating Capacitive Micromachined Ultrasonic Transducers With Wafer-Bonding Technology", J MICROELECTRONICAL SYST., vol. 12, no. 2, April 2003 (2003-04-01), pages 128 - 137, XP001191649 *
MILLS D.M. AND SMITH L.S.: "Real-time in-vivo imaging with capacitive micromachined ultrasound transducer (cMUT) linear arrays", PROC IEEE ULTRASON SYMP, vol. 1, no. 2, 2003, pages 568 - 571, XP010702813 *
See also references of EP1810619A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1897498A4 (en) * 2005-05-31 2013-04-24 Olympus Medical Systems Corp CAPACITIVE MICRO-WORKED ULTRASONIC TRANSDUCER AND METHOD OF MANUFACTURING THEREOF
US7995423B2 (en) 2006-10-12 2011-08-09 Olympus Medical Systems Corp. Ultrasound transducer and ultrasound diagnostic apparatus
EP1918027A1 (en) * 2006-10-30 2008-05-07 Olympus Medical Systems Corp. Ultrasonic transducer, method for manufacturing ultrasonic transducer, and ultrasonic endoscope
US8740800B2 (en) 2006-10-30 2014-06-03 Olympus Medical Systems Corp. Ultrasonic transducer, method for manufacturing ultrasonic transducer, and ultrasonic endoscope
WO2013114968A1 (ja) * 2012-01-30 2013-08-08 オリンパスメディカルシステムズ株式会社 超音波振動子アレイ、超音波振動子アレイの製造方法、及び超音波内視鏡
JP5315486B1 (ja) * 2012-01-30 2013-10-16 オリンパスメディカルシステムズ株式会社 超音波振動子アレイ、超音波振動子アレイの製造方法、及び超音波内視鏡
CN104665871A (zh) * 2013-11-29 2015-06-03 精工爱普生株式会社 超声波装置、探测器、电子设备以及超声波图像装置
CN104665871B (zh) * 2013-11-29 2019-08-16 精工爱普生株式会社 超声波装置、探测器、电子设备以及超声波图像装置
CN104954958A (zh) * 2014-03-27 2015-09-30 精工爱普生株式会社 压电元件、压电器件、探头、电子设备及超声波图像装置
CN104954958B (zh) * 2014-03-27 2019-07-09 精工爱普生株式会社 压电元件、压电器件、探头、电子设备及超声波图像装置
CN110773408A (zh) * 2019-11-06 2020-02-11 中国科学院半导体研究所 电容式微纳超声换能器及其制备方法

Also Published As

Publication number Publication date
EP2335595B1 (en) 2012-04-04
EP1810619B1 (en) 2011-09-14
EP1810619A4 (en) 2010-11-03
US8930169B2 (en) 2015-01-06
EP2335595A1 (en) 2011-06-22
EP1810619A1 (en) 2007-07-25
US20110213592A1 (en) 2011-09-01
US20070299345A1 (en) 2007-12-27

Similar Documents

Publication Publication Date Title
WO2006046471A1 (ja) 静電容量型超音波振動子及びその体腔内超音波診断システム
JP7190590B2 (ja) プログラム可能な生体構造及びフロー撮像を有する超音波撮像デバイス
JP7132915B2 (ja) 組織型分析器を備える超音波システム
JP6684817B2 (ja) 超音波システム及び方法
JP6553297B2 (ja) 干渉分析器を含むボリューム領域の超音波画像を可変周波数で提供するための超音波システム
JP6998379B2 (ja) 容量性高周波微小電気機械スイッチのシステム及び動作方法
CN110997165B (zh) 电容式微机械超声换能器(cmut)设备和控制方法
JP2019522925A (ja) 広帯域超音波トランスジューサ
WO2007046180A1 (ja) 超音波トランスデューサ、超音波探触子および超音波撮像装置
KR101915255B1 (ko) 초음파 프로브의 제조 방법 및 그 초음파 프로브
WO2008044727A1 (en) Ultrasonic transducer and ultrasonic diagnostic apparatus
JP2022105543A (ja) 増大された患者安全性を持つ容量性マイクロマシン超音波トランスデューサ
CN214390969U (zh) 超声成像装置以及超声成像系统
JP4733988B2 (ja) 体腔内超音波診断システム
CN112791926A (zh) 超声成像装置以及超声成像系统
US12097074B2 (en) Ultrasonic element and endoscope
JP2018519085A (ja) 超音波システム及び超音波パルス送信方法
US20220304659A1 (en) Trenches for the reduction of cross-talk in mut arrays
CN111107947B (zh) 超声换能器设备及其控制方法
JP2006198239A (ja) 体腔内超音波診断システム
Sadeghpour et al. Klik hier als u tekst wilt invoeren. Bendable Piezoele

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KM KP KZ LC LK LR LS LT LU LV LY MA MG MK MN MW MX MZ NA NG NI NZ OM PG PH PL PT RO RU SC SD SE SK SL SM SY TJ TM TN TR TT TZ UA US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005795888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11666372

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005795888

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11666372

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载