+

WO2006041300A1 - Reacteur a membrane catalytique pour l'oxydation de nh3 en no, et procede pour l'oxydation de nh3 en no - Google Patents

Reacteur a membrane catalytique pour l'oxydation de nh3 en no, et procede pour l'oxydation de nh3 en no Download PDF

Info

Publication number
WO2006041300A1
WO2006041300A1 PCT/NO2004/000309 NO2004000309W WO2006041300A1 WO 2006041300 A1 WO2006041300 A1 WO 2006041300A1 NO 2004000309 W NO2004000309 W NO 2004000309W WO 2006041300 A1 WO2006041300 A1 WO 2006041300A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
membrane
oxidation
oxygen
perovskite
Prior art date
Application number
PCT/NO2004/000309
Other languages
English (en)
Inventor
Javier PÉREZ-RAMÍREZ
Bent E. Vigeland
Stein Julsrud
Original Assignee
Yara International Asa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yara International Asa filed Critical Yara International Asa
Priority to PCT/NO2004/000309 priority Critical patent/WO2006041300A1/fr
Publication of WO2006041300A1 publication Critical patent/WO2006041300A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/24Nitric oxide (NO)
    • C01B21/26Preparation by catalytic or non-catalytic oxidation of ammonia
    • C01B21/265Preparation by catalytic or non-catalytic oxidation of ammonia characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00844Comprising porous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00905Separation
    • B01J2219/00907Separation using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00961Temperature

Definitions

  • the present invention relates to a catalytic membrane reactor for NH 3 oxidation in nitric acid manufacture, the membrane reactor comprising a membrane comprising a muliticomponent oxide having a perovskite or perovskite-related structure, and a method for the oxidation of NH 3 to NO.
  • Ammonia is oxidized over Pt-Rh alloy gauzes to form NO as the first step in the industrial production of nitric acid, a process that has been practically unchanged for over 80 years.
  • the reaction typically yields 94 - 96 % of NO and 4 - 6 % of by-products (N 2 O and N 2 ) at 1073 - 1223 K.
  • Major drawbacks associated with the platinum-based catalysts are: (i) high production cost, (ii) metal loss in the form of volatile oxides, necessitating efficient metal recovery (Pd catchment) and refining systems, and (iii) the production of N 2 O, an environmentally harmful gas.
  • Nitric acid production is the largest single source of N 2 O in the chemical industry (125 Mton CO 2 - eq. per year), and the development and implementation of abatement technology for this gas is being required.
  • the above aspects have stimulated research for replacing noble metals by oxide catalysts for NH 3 oxidation.
  • Oxides may offer the advantage of lower investment and simpler manufacture and a reduced N 2 O emission.
  • spinels or perovskites in the reaction, preferably containing Co, but also Fe, Mn, Bi, or Cr (see review paper V.A. Sadykov, L.A. Isupova, I .A. Zolotarskii, L.N. Bobrova, A.S. Noskov, V.N. Parmon, E.A.
  • US 5306411 relates to a solid, gas-impervious, electron-conductive, oxygen ion- conductive, single-phase membrane for use in an electrochemical reactor, said membrane being formed from a perbvskite represented by the formula A s A' t B u B' v B" w O x wherein A represents a lanthanide, Y, or mixture thereof; A' represents an alkaline earth metal or mixture thereof; B represents Fe; B' represents Cr 1 Ti, or mixture thereof; and B" represents Mn, Co, V, Ni 1 Cu, or mixture thereof and s, t, u, v, w, and x each represent a number such that s/t equals from about 0.01 to about 100; u equals from about 0.01 to about 1 ; v equals from about 0.01 to 1 ; w equals from zero to about 1 ; x equals a number that satisfies the valences of the A, A', B, B' and B" in the
  • WO 03/037490 relates to a solid multicomponent mixed proton and electron conducting membrane for use in a reactor, where the membrane comprises a mixed metal oxide having a structure represented by the formula A 1-x A' x (B 1-y B' y )w ⁇ 3-ci > wherein A is a lanthanide element or a mixture thereof, A' represents an alkaline earth metal or a mixture thereof, B is chromium, manganese, or iron, B' is titanium, aluminium, zirconium, or hafnium, and x, y, w, and d each represent a number such that 0 ⁇ x ⁇ 1 , 0 ⁇ y ⁇ 1 , 0.9 ⁇ w ⁇ 1.1 , and d equals a number that renders the compound charge neutral and is not less than zero and not greater than about 0.6.
  • A is a lanthanide element or a mixture thereof
  • A' represents an alkaline earth metal or a mixture thereof
  • B is chrom
  • the main object of the present invention was to arrive at a membrane reactor and a method for the oxidation of NH 3 , where oxygen would be separated from nitrogen by the use of a membrane and ammonia would be oxidized on the surface of the same membrane by the separated oxygen.
  • Another object was to arrive at a more cost effective method for NH 3 oxidation by using a membrane reactor.
  • a further object was to reduce the emission of N 2 O.
  • the inventors started a work to find suitable membranes. It was found that with a lanthanum ferrite-based perovskite membrane for ammonia oxidation, it could be possible to attain NO selectivities up to 98 % and no N 2 O formation during the oxidation.
  • the strategy was to integrate in a single reactor the separately reported properties of the above perovskites as oxygen conductors and catalysts for NH 3 oxidation. Accordingly, the applied configuration, combines (i) separation of O 2 from air in the feed side by transport through oxygen vacancies in the mixed conducting membrane and (ii) reaction of oxygen species with ammonia on the membrane surface at the permeate side to form NO. This achievement gave rise to a radically intensified process for nitric acid manufacture, since large amounts of inert N 2 (2/3 of the total flow in today's plants) are excluded.
  • perovskite membranes in ammonia oxidation include oxygen flux, catalytic performance (activity and selectivity), and chemical stability in reducing and oxidizing atmosphere at high temperature. These interrelated parameters could be tailored by tuning the degree of calcium and strontium substitution in lanthanum ferrite- based perovskites (La x (Sr 1 Ca) x FeO 3-2 ). A higher substitution level (x') increases the number of oxygen vacancies (z) and thus the oxygen flux, but at the expense of lower chemical stability.
  • La-substitution by alkaline-earth cations in the perovskite structure is also known to influence the catalytic properties of these mixed oxides. This can be caused by (i) variation in the charge and/or coordination of 3d cations, (ii) change of the surface chemical composition, and (iii) development of micro-heterogeneities at the catalyst surface.
  • the present invention will in its widest scope comprise a catalytic membrane reactor for the oxidation of NH 3 to NO, where the membrane reactor comprises a mixed electronic and ionic conducting membrane which is capable of transporting oxygen, comprising a multi-component oxide having a perovskite or perovskite-related structure represented by the formula
  • A represents a lanthanide element or a mixture thereof
  • A' represents an alkaline earth metal or a mixture thereof
  • B represents a transition metal or a mixture thereof
  • x and x' each represent numbers such that 0 ⁇ x ⁇ 1.1 , 0 ⁇ x' ⁇ 1.1 and 0.9 ⁇ (x+x 1 ) ⁇ 1.1
  • z represents a number rendering the compound charge neutral.
  • compositions according to the present invention are represented by said general formula wherein the element A of the enumerated formula substantially represents La. Even more suitable compositions according to the present invention are represented by said general formula wherein the element A of the enumerated formula substantially represents La and the element A' represents Sr or Ca or a mixture thereof. Even more suitable compositions according to the present invention are represented by said general formula wherein the element A of the enumerated formula substantially represents La, the element A' represents Sr or Ca or a mixture thereof, and the element B substantially represents Fe.
  • x and x' each represent numbers such that 0.5 ⁇ x ⁇ 0.98, 0.05 ⁇ x' ⁇ 0.5 and 0.97 ⁇ (x+x') ⁇ 1.03.
  • the invention further relates to a method for the oxidation of NH 3 to NO where an oxygen containing gas is fed to one side of a mixed electronic and ionic conducting membrane which is capable of transporting oxygen, and an NH3 containing gas is fed to the other side of said membrane, oxygen is dissolved into the membrane from the oxygen containing gas and transported through the membrane to the surface contacting the NH 3 containing gas, NH 3 adsorbs on the surface of the membrane and reacts with oxygen dissolved in the membrane to a reaction product mixture mainly consisting of NO and H 2 O, wherein said membrane comprises a multi-component oxide having a perovskite or perovskite-related structure represented by the formula
  • A represents a lanthanide element or a mixture thereof
  • A' represents an alkaline earth metal or a mixture thereof
  • B represents a transition metal or a mixture thereof
  • x and x' each represent numbers such that 0 ⁇ x ⁇ 1.1, 0 ⁇ x' ⁇ 1.1 and 0.9 ⁇ (x+x 1 ) ⁇ 1.1
  • z represents a number rendering the compound charge neutral.
  • compositions according to the present invention are represented by said general formula wherein the element A of the enumerated formula substantially represents La. Even more suitable compositions according to the present invention are represented by said general formula wherein the element A of the enumerated formula substantially represents La and the element A' represents Sr or Ca or a mixture thereof. Even more suitable compositions according to the present invention are represented by said general formula wherein the element A of the enumerated formula substantially represents La, the element A' represents Sr or Ca or a mixture thereof, and the element B substantially represents Fe.
  • x and x' each represent numbers such that 0.5 ⁇ x ⁇ 0.98, 0.05 ⁇ x' ⁇ 0.5 and 0.97 ⁇ (x+x') ⁇ 1.03.
  • the temperature during oxidation is 900 - 1500 K 1 preferably 970 - 1350 K.
  • Figure 1 shows the principle of separation of O 2 from air in the feed side of a mixed conducting membrane by transport through oxygen vacancies in said membrane and reaction of oxygen species with ammonia on the membrane surface at the permeate side to form NO.
  • Figure 2 shows quartz reactor used in the membrane tests.
  • Figure 3 shows NO selectivity and O 2 flux vs. inlet ammonia flow at different temperatures for a La o . 8 Sr o . 2 Fe0 3-2 membrane.
  • Figure 4 shows Maximum NO selectivity (solid symbols) and corresponding oxygen flux (open symbols) at 1200 K vs. the substitution level in ⁇ *,o) Ca and ( ⁇ . ⁇ >) Sr-substituted lanthanum ferrite perovskites.
  • Dense membrane disks (> 95 % of theoretical density) were made by uniaxial pressing and sintering at 1573 K. After final grinding and polishing, membrane disks with a diameter of 10 mm (ca. 80 mm 2 ) and a thickness of ca. 0.9 mm were obtained.
  • a membrane disk of composition La o . 8 Sr 0 . 2 Fe0 3-z was prepared as described in Example
  • Fig. 3 illustrates the dependence of the NO selectivity and O 2 flux on the inlet NH 3 flow at different temperatures.
  • NO selectivities in the range of 90 - 100 % could be obtained by adjusting the inlet NH 3 flow.
  • No N 2 O was formed ( ⁇ 10 ppm) in the experiment, N 2 being the only N-containing by-product.
  • the conversion of ammonia 80 - 95 %) increased with temperature and decreased at high ammonia flow rates.
  • the oxygen flux is expected to increase with temperature at a fixed oxygen potential gradient. Within our experimental conditions, however, the oxygen flux was almost exclusively controlled by the ammonia flow rate and thus independent of temperature. Consequently, at constant ammonia flow rate the oxygen potential gradient decreased with increasing temperature at a fixed oxygen flux.
  • the total flow reduction poses the potential for a drastic size reduction of key units of plants, including the absorption tower and the tail-gas train, as well as the obvious intensification in piping. Moreover, there are energy savings in compression of the NO x gas before the absorption step, which requires high pressure. In summary, a more efficient and sustainable process may be obtained, which is especially attractive for on- purpose nitric acid production, i.e. decentralized from large existing plants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

La présente invention concerne un réacteur à membrane catalytique pour l'oxydation de NH3 en NO pendant la fabrication d'acide nitrique, lequel réacteur à membrane comprend une membrane conductrice mixte électronique et ionique qui est susceptible de transporter de l'oxygène, comprenant un oxyde multicomposant ayant une structure perovskite ou de type perovskite représentée par la formule AXA'X,B03-Z, où A représente un élément lanthanide ou un mélange d'éléments lanthanides, A' représente un métal alcalino-terreux ou un mélange de métaux alcalino-terreux, B représente un métal de transition ou un mélange de métaux de transition, x et x' représentent chacun des nombres tels que 0 = X = 1,1, 0 = x' = 1,1 et 0,9 = (x+x') = 1,1, et z représente un nombre qui permet de neutraliser la charge du composé. L'invention concerne également un procédé pour l'oxydation de NH3 en NO. Le produit et le procédé selon l'invention conduisent à des sélectivités de NO allant jusqu'à 98 % et l'absence de formation de N20 lors de l'oxydation de NH3 à haute température, qui permettent d'obtenir un procédé intensifié et hautement efficace pour la fabrication d'acide nitrique.
PCT/NO2004/000309 2004-10-13 2004-10-13 Reacteur a membrane catalytique pour l'oxydation de nh3 en no, et procede pour l'oxydation de nh3 en no WO2006041300A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/NO2004/000309 WO2006041300A1 (fr) 2004-10-13 2004-10-13 Reacteur a membrane catalytique pour l'oxydation de nh3 en no, et procede pour l'oxydation de nh3 en no

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/NO2004/000309 WO2006041300A1 (fr) 2004-10-13 2004-10-13 Reacteur a membrane catalytique pour l'oxydation de nh3 en no, et procede pour l'oxydation de nh3 en no

Publications (1)

Publication Number Publication Date
WO2006041300A1 true WO2006041300A1 (fr) 2006-04-20

Family

ID=36148547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2004/000309 WO2006041300A1 (fr) 2004-10-13 2004-10-13 Reacteur a membrane catalytique pour l'oxydation de nh3 en no, et procede pour l'oxydation de nh3 en no

Country Status (1)

Country Link
WO (1) WO2006041300A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054728A1 (fr) * 2007-10-24 2009-04-30 Yara International Asa Catalyseur de production de monoxyde d'azote
CN107188139A (zh) * 2017-07-18 2017-09-22 华纳创新(北京)科技有限公司 一种一氧化氮发生装置及制备方法
WO2022058056A1 (fr) 2020-09-15 2022-03-24 Universidade De Aveiro Procédé de traitement d'oxyde nitreux et de formation d'oxyde nitrique simultanés

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812300A (en) * 1987-07-13 1989-03-14 Sri-International Selective perovskite catalysts to oxidize ammonia to nitric oxide
US5306411A (en) * 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
EP1095914A2 (fr) * 1999-10-25 2001-05-02 Nippon Steel Corporation Composition céramique, matériau composite, procéde de préparation d'un matériau composite, corps poreux, séparateur d'oxygène et réacteur chimique
US20020022568A1 (en) * 1993-12-08 2002-02-21 Richard Mackay Ceramic membranes for use in catalytic membrane reactors with high ionic conductivities and improved mechanical properties
US6395243B1 (en) * 1997-06-06 2002-05-28 Norsk Hydro Asa Catalytic or non-catalytic processes with enriched oxygen as a reactant
US6489264B1 (en) * 1997-03-12 2002-12-03 Institut Kataliza Imeni G.K. Ammonia oxidation catalyst
US6786952B1 (en) * 1999-09-28 2004-09-07 Norsk Hydro Asa Membrane and use thereof
US20040241071A1 (en) * 2001-10-31 2004-12-02 Stein Julsrud Solid multicomponent mixed proton and electron conducting membrane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812300A (en) * 1987-07-13 1989-03-14 Sri-International Selective perovskite catalysts to oxidize ammonia to nitric oxide
US5306411A (en) * 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US20020022568A1 (en) * 1993-12-08 2002-02-21 Richard Mackay Ceramic membranes for use in catalytic membrane reactors with high ionic conductivities and improved mechanical properties
US6489264B1 (en) * 1997-03-12 2002-12-03 Institut Kataliza Imeni G.K. Ammonia oxidation catalyst
US6395243B1 (en) * 1997-06-06 2002-05-28 Norsk Hydro Asa Catalytic or non-catalytic processes with enriched oxygen as a reactant
US6786952B1 (en) * 1999-09-28 2004-09-07 Norsk Hydro Asa Membrane and use thereof
EP1095914A2 (fr) * 1999-10-25 2001-05-02 Nippon Steel Corporation Composition céramique, matériau composite, procéde de préparation d'un matériau composite, corps poreux, séparateur d'oxygène et réacteur chimique
US20040241071A1 (en) * 2001-10-31 2004-12-02 Stein Julsrud Solid multicomponent mixed proton and electron conducting membrane

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SADYKOV ET AL: "Oxide catalysts for ammonia oxidation in nitric acid production: properties and perspectives", APPLIED CATALYSIS A: GENERAL, vol. 204, 2000, pages 59 - 87 *
XU S.J. ET AL: "Stability of La0.6Sr0.4C00.2Fe0.803-delta Perovskite Membranes in Reducing and Nonreducing Environments", IND.ENG.CHEM.RES., no. 37, 1998, pages 1290 - 1299, XP002986138 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054728A1 (fr) * 2007-10-24 2009-04-30 Yara International Asa Catalyseur de production de monoxyde d'azote
AU2008317569B2 (en) * 2007-10-24 2012-07-19 Yara International Asa Catalyst for production of nitric oxide
EA017572B1 (ru) * 2007-10-24 2013-01-30 Яра Интернэшнл Аса Катализатор для получения монооксида азота
US9616413B2 (en) 2007-10-24 2017-04-11 Yara International Asa Catalyst for production of nitric oxide
CN107188139A (zh) * 2017-07-18 2017-09-22 华纳创新(北京)科技有限公司 一种一氧化氮发生装置及制备方法
WO2022058056A1 (fr) 2020-09-15 2022-03-24 Universidade De Aveiro Procédé de traitement d'oxyde nitreux et de formation d'oxyde nitrique simultanés

Similar Documents

Publication Publication Date Title
US11820653B2 (en) Method for oxidizing ammonia and system suitable therefor
Yao The oxidation of hydrocarbons and CO over metal oxides: IV. Perovskite-type oxides
CN1931430B (zh) 化学循环燃烧法用的氧化还原活性物料
RU2185322C2 (ru) Способ окисления аммиака
Xia et al. Efficient stable catalysts for low temperature carbon monoxide oxidation
US7700519B2 (en) Catalyst for decomposing nitrous oxide and method for performing processes comprising formation of nitrous oxide
CN111889101B (zh) 用于VOCs和NO协同净化的改性复合氧化物催化剂及其制备方法
WO2019207303A2 (fr) Catalyseur
DK2933018T3 (en) Denitrification catalyst, process for denitrification of flue gases using such catalyst and process for producing such catalyst
JP2007307446A (ja) 排ガス浄化酸化触媒
EP2986374B1 (fr) Procédé de production d'un catalyseur monolithique pour suppression simultanée de nox et de particules de carbone, en particulier à partir de gaz de dégagement de centrales électriques au charbon
Lindstedt et al. High-temperature catalytic reduction of nitrogen monoxide by carbon monoxide and hydrogen over La1− xSrxMO3 perovskites (M= Fe, Co) during reducing and oxidising conditions
EP2948242B1 (fr) Catalyseur d'oxydation de l'ammoniac destiné à la production d'acide nitrique basé sur un ortho-cobaltate d'yttrium dopé en métal
Pérez-Ramírez et al. Lanthanum ferrite membranes in ammonia oxidation: opportunities for ‘pocket-sized’nitric acid plants
Gunasekaran et al. Catalytic decomposition of nitrous oxide over perovskite type solid oxide solutions and supported noble metal catalysts
US5562888A (en) Nitrous oxide decomposition using a solid oxide solution
WO2006041300A1 (fr) Reacteur a membrane catalytique pour l'oxydation de nh3 en no, et procede pour l'oxydation de nh3 en no
JP2005507308A (ja) 固体多成分混合のプロトンおよび電子伝導膜
JP2006116372A (ja) 一酸化炭素選択酸化触媒
KR101756881B1 (ko) 이트륨―가돌리늄 오르토 코발테이트를 기반으로 한 질산의 생산을 위한 암모니아 산화 촉매
RU2131398C1 (ru) Катализатор для окисления молекулярного азота
JP2024134195A (ja) 複合酸化物、排ガス浄化触媒、及び複合酸化物の製造方法
JP2015211960A (ja) 被処理ガス中の可燃成分の酸化触媒、被処理ガス中の可燃成分の酸化触媒の製造方法、被処理ガス中の可燃成分の酸化方法、及び、被処理ガス中の窒素酸化物の除去方法
Adamopoulos A study on nanosized certium oxides systems for environmental catalysis
Coronado et al. Assessing the Role of Oxygen Vacancies on N2o Catalytic Decomposition Over Camn1-Xfexo3-Δ Perovskites

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04793691

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载