WO2006041300A1 - Reacteur a membrane catalytique pour l'oxydation de nh3 en no, et procede pour l'oxydation de nh3 en no - Google Patents
Reacteur a membrane catalytique pour l'oxydation de nh3 en no, et procede pour l'oxydation de nh3 en no Download PDFInfo
- Publication number
- WO2006041300A1 WO2006041300A1 PCT/NO2004/000309 NO2004000309W WO2006041300A1 WO 2006041300 A1 WO2006041300 A1 WO 2006041300A1 NO 2004000309 W NO2004000309 W NO 2004000309W WO 2006041300 A1 WO2006041300 A1 WO 2006041300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mixture
- membrane
- oxidation
- oxygen
- perovskite
- Prior art date
Links
- 230000003647 oxidation Effects 0.000 title claims abstract description 26
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 13
- 239000012528 membrane Substances 0.000 claims abstract description 63
- 239000000203 mixture Substances 0.000 claims abstract description 46
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000001301 oxygen Substances 0.000 claims abstract description 38
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 38
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 7
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 7
- 229910052747 lanthanoid Inorganic materials 0.000 claims abstract description 7
- 150000002602 lanthanoids Chemical class 0.000 claims abstract description 7
- 150000001875 compounds Chemical class 0.000 claims abstract description 6
- 230000007935 neutral effect Effects 0.000 claims abstract description 6
- 238000009877 rendering Methods 0.000 claims abstract description 5
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 5
- 150000003624 transition metals Chemical group 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 14
- 229910052791 calcium Inorganic materials 0.000 claims description 13
- 229910052712 strontium Inorganic materials 0.000 claims description 13
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 abstract description 8
- 229910017604 nitric acid Inorganic materials 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 57
- 229910021529 ammonia Inorganic materials 0.000 description 19
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 18
- 230000004907 flux Effects 0.000 description 13
- 239000011575 calcium Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000006467 substitution reaction Methods 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 229910052746 lanthanum Inorganic materials 0.000 description 5
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910018967 Pt—Rh Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 150000002603 lanthanum Chemical class 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical group [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 229910052566 spinel group Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical group [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000003826 uniaxial pressing Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/0271—Perovskites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J12/00—Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
- B01J12/007—Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2475—Membrane reactors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/20—Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
- C01B21/24—Nitric oxide (NO)
- C01B21/26—Preparation by catalytic or non-catalytic oxidation of ammonia
- C01B21/265—Preparation by catalytic or non-catalytic oxidation of ammonia characterised by the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00054—Controlling or regulating the heat exchange system
- B01J2219/00056—Controlling or regulating the heat exchange system involving measured parameters
- B01J2219/00058—Temperature measurement
- B01J2219/00063—Temperature measurement of the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00788—Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00835—Comprising catalytically active material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00844—Comprising porous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00891—Feeding or evacuation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00905—Separation
- B01J2219/00907—Separation using membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/0095—Control aspects
- B01J2219/00952—Sensing operations
- B01J2219/00954—Measured properties
- B01J2219/00961—Temperature
Definitions
- the present invention relates to a catalytic membrane reactor for NH 3 oxidation in nitric acid manufacture, the membrane reactor comprising a membrane comprising a muliticomponent oxide having a perovskite or perovskite-related structure, and a method for the oxidation of NH 3 to NO.
- Ammonia is oxidized over Pt-Rh alloy gauzes to form NO as the first step in the industrial production of nitric acid, a process that has been practically unchanged for over 80 years.
- the reaction typically yields 94 - 96 % of NO and 4 - 6 % of by-products (N 2 O and N 2 ) at 1073 - 1223 K.
- Major drawbacks associated with the platinum-based catalysts are: (i) high production cost, (ii) metal loss in the form of volatile oxides, necessitating efficient metal recovery (Pd catchment) and refining systems, and (iii) the production of N 2 O, an environmentally harmful gas.
- Nitric acid production is the largest single source of N 2 O in the chemical industry (125 Mton CO 2 - eq. per year), and the development and implementation of abatement technology for this gas is being required.
- the above aspects have stimulated research for replacing noble metals by oxide catalysts for NH 3 oxidation.
- Oxides may offer the advantage of lower investment and simpler manufacture and a reduced N 2 O emission.
- spinels or perovskites in the reaction, preferably containing Co, but also Fe, Mn, Bi, or Cr (see review paper V.A. Sadykov, L.A. Isupova, I .A. Zolotarskii, L.N. Bobrova, A.S. Noskov, V.N. Parmon, E.A.
- US 5306411 relates to a solid, gas-impervious, electron-conductive, oxygen ion- conductive, single-phase membrane for use in an electrochemical reactor, said membrane being formed from a perbvskite represented by the formula A s A' t B u B' v B" w O x wherein A represents a lanthanide, Y, or mixture thereof; A' represents an alkaline earth metal or mixture thereof; B represents Fe; B' represents Cr 1 Ti, or mixture thereof; and B" represents Mn, Co, V, Ni 1 Cu, or mixture thereof and s, t, u, v, w, and x each represent a number such that s/t equals from about 0.01 to about 100; u equals from about 0.01 to about 1 ; v equals from about 0.01 to 1 ; w equals from zero to about 1 ; x equals a number that satisfies the valences of the A, A', B, B' and B" in the
- WO 03/037490 relates to a solid multicomponent mixed proton and electron conducting membrane for use in a reactor, where the membrane comprises a mixed metal oxide having a structure represented by the formula A 1-x A' x (B 1-y B' y )w ⁇ 3-ci > wherein A is a lanthanide element or a mixture thereof, A' represents an alkaline earth metal or a mixture thereof, B is chromium, manganese, or iron, B' is titanium, aluminium, zirconium, or hafnium, and x, y, w, and d each represent a number such that 0 ⁇ x ⁇ 1 , 0 ⁇ y ⁇ 1 , 0.9 ⁇ w ⁇ 1.1 , and d equals a number that renders the compound charge neutral and is not less than zero and not greater than about 0.6.
- A is a lanthanide element or a mixture thereof
- A' represents an alkaline earth metal or a mixture thereof
- B is chrom
- the main object of the present invention was to arrive at a membrane reactor and a method for the oxidation of NH 3 , where oxygen would be separated from nitrogen by the use of a membrane and ammonia would be oxidized on the surface of the same membrane by the separated oxygen.
- Another object was to arrive at a more cost effective method for NH 3 oxidation by using a membrane reactor.
- a further object was to reduce the emission of N 2 O.
- the inventors started a work to find suitable membranes. It was found that with a lanthanum ferrite-based perovskite membrane for ammonia oxidation, it could be possible to attain NO selectivities up to 98 % and no N 2 O formation during the oxidation.
- the strategy was to integrate in a single reactor the separately reported properties of the above perovskites as oxygen conductors and catalysts for NH 3 oxidation. Accordingly, the applied configuration, combines (i) separation of O 2 from air in the feed side by transport through oxygen vacancies in the mixed conducting membrane and (ii) reaction of oxygen species with ammonia on the membrane surface at the permeate side to form NO. This achievement gave rise to a radically intensified process for nitric acid manufacture, since large amounts of inert N 2 (2/3 of the total flow in today's plants) are excluded.
- perovskite membranes in ammonia oxidation include oxygen flux, catalytic performance (activity and selectivity), and chemical stability in reducing and oxidizing atmosphere at high temperature. These interrelated parameters could be tailored by tuning the degree of calcium and strontium substitution in lanthanum ferrite- based perovskites (La x (Sr 1 Ca) x FeO 3-2 ). A higher substitution level (x') increases the number of oxygen vacancies (z) and thus the oxygen flux, but at the expense of lower chemical stability.
- La-substitution by alkaline-earth cations in the perovskite structure is also known to influence the catalytic properties of these mixed oxides. This can be caused by (i) variation in the charge and/or coordination of 3d cations, (ii) change of the surface chemical composition, and (iii) development of micro-heterogeneities at the catalyst surface.
- the present invention will in its widest scope comprise a catalytic membrane reactor for the oxidation of NH 3 to NO, where the membrane reactor comprises a mixed electronic and ionic conducting membrane which is capable of transporting oxygen, comprising a multi-component oxide having a perovskite or perovskite-related structure represented by the formula
- A represents a lanthanide element or a mixture thereof
- A' represents an alkaline earth metal or a mixture thereof
- B represents a transition metal or a mixture thereof
- x and x' each represent numbers such that 0 ⁇ x ⁇ 1.1 , 0 ⁇ x' ⁇ 1.1 and 0.9 ⁇ (x+x 1 ) ⁇ 1.1
- z represents a number rendering the compound charge neutral.
- compositions according to the present invention are represented by said general formula wherein the element A of the enumerated formula substantially represents La. Even more suitable compositions according to the present invention are represented by said general formula wherein the element A of the enumerated formula substantially represents La and the element A' represents Sr or Ca or a mixture thereof. Even more suitable compositions according to the present invention are represented by said general formula wherein the element A of the enumerated formula substantially represents La, the element A' represents Sr or Ca or a mixture thereof, and the element B substantially represents Fe.
- x and x' each represent numbers such that 0.5 ⁇ x ⁇ 0.98, 0.05 ⁇ x' ⁇ 0.5 and 0.97 ⁇ (x+x') ⁇ 1.03.
- the invention further relates to a method for the oxidation of NH 3 to NO where an oxygen containing gas is fed to one side of a mixed electronic and ionic conducting membrane which is capable of transporting oxygen, and an NH3 containing gas is fed to the other side of said membrane, oxygen is dissolved into the membrane from the oxygen containing gas and transported through the membrane to the surface contacting the NH 3 containing gas, NH 3 adsorbs on the surface of the membrane and reacts with oxygen dissolved in the membrane to a reaction product mixture mainly consisting of NO and H 2 O, wherein said membrane comprises a multi-component oxide having a perovskite or perovskite-related structure represented by the formula
- A represents a lanthanide element or a mixture thereof
- A' represents an alkaline earth metal or a mixture thereof
- B represents a transition metal or a mixture thereof
- x and x' each represent numbers such that 0 ⁇ x ⁇ 1.1, 0 ⁇ x' ⁇ 1.1 and 0.9 ⁇ (x+x 1 ) ⁇ 1.1
- z represents a number rendering the compound charge neutral.
- compositions according to the present invention are represented by said general formula wherein the element A of the enumerated formula substantially represents La. Even more suitable compositions according to the present invention are represented by said general formula wherein the element A of the enumerated formula substantially represents La and the element A' represents Sr or Ca or a mixture thereof. Even more suitable compositions according to the present invention are represented by said general formula wherein the element A of the enumerated formula substantially represents La, the element A' represents Sr or Ca or a mixture thereof, and the element B substantially represents Fe.
- x and x' each represent numbers such that 0.5 ⁇ x ⁇ 0.98, 0.05 ⁇ x' ⁇ 0.5 and 0.97 ⁇ (x+x') ⁇ 1.03.
- the temperature during oxidation is 900 - 1500 K 1 preferably 970 - 1350 K.
- Figure 1 shows the principle of separation of O 2 from air in the feed side of a mixed conducting membrane by transport through oxygen vacancies in said membrane and reaction of oxygen species with ammonia on the membrane surface at the permeate side to form NO.
- Figure 2 shows quartz reactor used in the membrane tests.
- Figure 3 shows NO selectivity and O 2 flux vs. inlet ammonia flow at different temperatures for a La o . 8 Sr o . 2 Fe0 3-2 membrane.
- Figure 4 shows Maximum NO selectivity (solid symbols) and corresponding oxygen flux (open symbols) at 1200 K vs. the substitution level in ⁇ *,o) Ca and ( ⁇ . ⁇ >) Sr-substituted lanthanum ferrite perovskites.
- Dense membrane disks (> 95 % of theoretical density) were made by uniaxial pressing and sintering at 1573 K. After final grinding and polishing, membrane disks with a diameter of 10 mm (ca. 80 mm 2 ) and a thickness of ca. 0.9 mm were obtained.
- a membrane disk of composition La o . 8 Sr 0 . 2 Fe0 3-z was prepared as described in Example
- Fig. 3 illustrates the dependence of the NO selectivity and O 2 flux on the inlet NH 3 flow at different temperatures.
- NO selectivities in the range of 90 - 100 % could be obtained by adjusting the inlet NH 3 flow.
- No N 2 O was formed ( ⁇ 10 ppm) in the experiment, N 2 being the only N-containing by-product.
- the conversion of ammonia 80 - 95 %) increased with temperature and decreased at high ammonia flow rates.
- the oxygen flux is expected to increase with temperature at a fixed oxygen potential gradient. Within our experimental conditions, however, the oxygen flux was almost exclusively controlled by the ammonia flow rate and thus independent of temperature. Consequently, at constant ammonia flow rate the oxygen potential gradient decreased with increasing temperature at a fixed oxygen flux.
- the total flow reduction poses the potential for a drastic size reduction of key units of plants, including the absorption tower and the tail-gas train, as well as the obvious intensification in piping. Moreover, there are energy savings in compression of the NO x gas before the absorption step, which requires high pressure. In summary, a more efficient and sustainable process may be obtained, which is especially attractive for on- purpose nitric acid production, i.e. decentralized from large existing plants.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/NO2004/000309 WO2006041300A1 (fr) | 2004-10-13 | 2004-10-13 | Reacteur a membrane catalytique pour l'oxydation de nh3 en no, et procede pour l'oxydation de nh3 en no |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/NO2004/000309 WO2006041300A1 (fr) | 2004-10-13 | 2004-10-13 | Reacteur a membrane catalytique pour l'oxydation de nh3 en no, et procede pour l'oxydation de nh3 en no |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006041300A1 true WO2006041300A1 (fr) | 2006-04-20 |
Family
ID=36148547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NO2004/000309 WO2006041300A1 (fr) | 2004-10-13 | 2004-10-13 | Reacteur a membrane catalytique pour l'oxydation de nh3 en no, et procede pour l'oxydation de nh3 en no |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2006041300A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009054728A1 (fr) * | 2007-10-24 | 2009-04-30 | Yara International Asa | Catalyseur de production de monoxyde d'azote |
CN107188139A (zh) * | 2017-07-18 | 2017-09-22 | 华纳创新(北京)科技有限公司 | 一种一氧化氮发生装置及制备方法 |
WO2022058056A1 (fr) | 2020-09-15 | 2022-03-24 | Universidade De Aveiro | Procédé de traitement d'oxyde nitreux et de formation d'oxyde nitrique simultanés |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4812300A (en) * | 1987-07-13 | 1989-03-14 | Sri-International | Selective perovskite catalysts to oxidize ammonia to nitric oxide |
US5306411A (en) * | 1989-05-25 | 1994-04-26 | The Standard Oil Company | Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions |
EP1095914A2 (fr) * | 1999-10-25 | 2001-05-02 | Nippon Steel Corporation | Composition céramique, matériau composite, procéde de préparation d'un matériau composite, corps poreux, séparateur d'oxygène et réacteur chimique |
US20020022568A1 (en) * | 1993-12-08 | 2002-02-21 | Richard Mackay | Ceramic membranes for use in catalytic membrane reactors with high ionic conductivities and improved mechanical properties |
US6395243B1 (en) * | 1997-06-06 | 2002-05-28 | Norsk Hydro Asa | Catalytic or non-catalytic processes with enriched oxygen as a reactant |
US6489264B1 (en) * | 1997-03-12 | 2002-12-03 | Institut Kataliza Imeni G.K. | Ammonia oxidation catalyst |
US6786952B1 (en) * | 1999-09-28 | 2004-09-07 | Norsk Hydro Asa | Membrane and use thereof |
US20040241071A1 (en) * | 2001-10-31 | 2004-12-02 | Stein Julsrud | Solid multicomponent mixed proton and electron conducting membrane |
-
2004
- 2004-10-13 WO PCT/NO2004/000309 patent/WO2006041300A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4812300A (en) * | 1987-07-13 | 1989-03-14 | Sri-International | Selective perovskite catalysts to oxidize ammonia to nitric oxide |
US5306411A (en) * | 1989-05-25 | 1994-04-26 | The Standard Oil Company | Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions |
US20020022568A1 (en) * | 1993-12-08 | 2002-02-21 | Richard Mackay | Ceramic membranes for use in catalytic membrane reactors with high ionic conductivities and improved mechanical properties |
US6489264B1 (en) * | 1997-03-12 | 2002-12-03 | Institut Kataliza Imeni G.K. | Ammonia oxidation catalyst |
US6395243B1 (en) * | 1997-06-06 | 2002-05-28 | Norsk Hydro Asa | Catalytic or non-catalytic processes with enriched oxygen as a reactant |
US6786952B1 (en) * | 1999-09-28 | 2004-09-07 | Norsk Hydro Asa | Membrane and use thereof |
EP1095914A2 (fr) * | 1999-10-25 | 2001-05-02 | Nippon Steel Corporation | Composition céramique, matériau composite, procéde de préparation d'un matériau composite, corps poreux, séparateur d'oxygène et réacteur chimique |
US20040241071A1 (en) * | 2001-10-31 | 2004-12-02 | Stein Julsrud | Solid multicomponent mixed proton and electron conducting membrane |
Non-Patent Citations (2)
Title |
---|
SADYKOV ET AL: "Oxide catalysts for ammonia oxidation in nitric acid production: properties and perspectives", APPLIED CATALYSIS A: GENERAL, vol. 204, 2000, pages 59 - 87 * |
XU S.J. ET AL: "Stability of La0.6Sr0.4C00.2Fe0.803-delta Perovskite Membranes in Reducing and Nonreducing Environments", IND.ENG.CHEM.RES., no. 37, 1998, pages 1290 - 1299, XP002986138 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009054728A1 (fr) * | 2007-10-24 | 2009-04-30 | Yara International Asa | Catalyseur de production de monoxyde d'azote |
AU2008317569B2 (en) * | 2007-10-24 | 2012-07-19 | Yara International Asa | Catalyst for production of nitric oxide |
EA017572B1 (ru) * | 2007-10-24 | 2013-01-30 | Яра Интернэшнл Аса | Катализатор для получения монооксида азота |
US9616413B2 (en) | 2007-10-24 | 2017-04-11 | Yara International Asa | Catalyst for production of nitric oxide |
CN107188139A (zh) * | 2017-07-18 | 2017-09-22 | 华纳创新(北京)科技有限公司 | 一种一氧化氮发生装置及制备方法 |
WO2022058056A1 (fr) | 2020-09-15 | 2022-03-24 | Universidade De Aveiro | Procédé de traitement d'oxyde nitreux et de formation d'oxyde nitrique simultanés |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11820653B2 (en) | Method for oxidizing ammonia and system suitable therefor | |
Yao | The oxidation of hydrocarbons and CO over metal oxides: IV. Perovskite-type oxides | |
CN1931430B (zh) | 化学循环燃烧法用的氧化还原活性物料 | |
RU2185322C2 (ru) | Способ окисления аммиака | |
Xia et al. | Efficient stable catalysts for low temperature carbon monoxide oxidation | |
US7700519B2 (en) | Catalyst for decomposing nitrous oxide and method for performing processes comprising formation of nitrous oxide | |
CN111889101B (zh) | 用于VOCs和NO协同净化的改性复合氧化物催化剂及其制备方法 | |
WO2019207303A2 (fr) | Catalyseur | |
DK2933018T3 (en) | Denitrification catalyst, process for denitrification of flue gases using such catalyst and process for producing such catalyst | |
JP2007307446A (ja) | 排ガス浄化酸化触媒 | |
EP2986374B1 (fr) | Procédé de production d'un catalyseur monolithique pour suppression simultanée de nox et de particules de carbone, en particulier à partir de gaz de dégagement de centrales électriques au charbon | |
Lindstedt et al. | High-temperature catalytic reduction of nitrogen monoxide by carbon monoxide and hydrogen over La1− xSrxMO3 perovskites (M= Fe, Co) during reducing and oxidising conditions | |
EP2948242B1 (fr) | Catalyseur d'oxydation de l'ammoniac destiné à la production d'acide nitrique basé sur un ortho-cobaltate d'yttrium dopé en métal | |
Pérez-Ramírez et al. | Lanthanum ferrite membranes in ammonia oxidation: opportunities for ‘pocket-sized’nitric acid plants | |
Gunasekaran et al. | Catalytic decomposition of nitrous oxide over perovskite type solid oxide solutions and supported noble metal catalysts | |
US5562888A (en) | Nitrous oxide decomposition using a solid oxide solution | |
WO2006041300A1 (fr) | Reacteur a membrane catalytique pour l'oxydation de nh3 en no, et procede pour l'oxydation de nh3 en no | |
JP2005507308A (ja) | 固体多成分混合のプロトンおよび電子伝導膜 | |
JP2006116372A (ja) | 一酸化炭素選択酸化触媒 | |
KR101756881B1 (ko) | 이트륨―가돌리늄 오르토 코발테이트를 기반으로 한 질산의 생산을 위한 암모니아 산화 촉매 | |
RU2131398C1 (ru) | Катализатор для окисления молекулярного азота | |
JP2024134195A (ja) | 複合酸化物、排ガス浄化触媒、及び複合酸化物の製造方法 | |
JP2015211960A (ja) | 被処理ガス中の可燃成分の酸化触媒、被処理ガス中の可燃成分の酸化触媒の製造方法、被処理ガス中の可燃成分の酸化方法、及び、被処理ガス中の窒素酸化物の除去方法 | |
Adamopoulos | A study on nanosized certium oxides systems for environmental catalysis | |
Coronado et al. | Assessing the Role of Oxygen Vacancies on N2o Catalytic Decomposition Over Camn1-Xfexo3-Δ Perovskites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 04793691 Country of ref document: EP Kind code of ref document: A1 |