+

WO2005121059A1 - Method for producing ethers - Google Patents

Method for producing ethers Download PDF

Info

Publication number
WO2005121059A1
WO2005121059A1 PCT/JP2005/010504 JP2005010504W WO2005121059A1 WO 2005121059 A1 WO2005121059 A1 WO 2005121059A1 JP 2005010504 W JP2005010504 W JP 2005010504W WO 2005121059 A1 WO2005121059 A1 WO 2005121059A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
octadiene
group
palladium
reaction
Prior art date
Application number
PCT/JP2005/010504
Other languages
French (fr)
Japanese (ja)
Inventor
Jin Tokuyasu
Taketoshi Okuno
Takashi Hori
Hideharu Iwasaki
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to US11/628,865 priority Critical patent/US7728180B2/en
Priority to CA002569017A priority patent/CA2569017C/en
Priority to EP05748587A priority patent/EP1760061A4/en
Priority to JP2006514548A priority patent/JPWO2005121059A1/en
Publication of WO2005121059A1 publication Critical patent/WO2005121059A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/05Preparation of ethers by addition of compounds to unsaturated compounds
    • C07C41/06Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Definitions

  • the present invention relates to a method for producing ethers by a telomerization reaction of a conjugated diene compound.
  • the ethers produced by the present invention are useful as raw materials for various polymers and intermediates such as fragrances.
  • the telomerization reaction of a conjugated gen compound is a reaction in which the conjugated gen compound is oligomerized by incorporating a nucleophilic reactant such as an alcohol.
  • a reaction in which two molecules of 1,3 butadiene reacts with one molecule of a compound containing active hydrogen such as acetic acid to produce 1-acetoxy 2,7 octadiene is exemplified.
  • a palladium compound particularly a palladium compound coordinated with a phosphine compound, exhibits excellent activity as a catalyst for S-telomerization reaction (see Non-Patent Documents 1 and 2).
  • a telomerization reaction using a catalyst comprising a tertiary phosphine compound or an isocyanide compound and a nickel compound has been reported (see Patent Document 1). Further, a telomerization reaction using a palladium carbene complex in the presence of a basic substance has been reported (see Patent Document 2). Furthermore, a telomerization reaction using a catalyst comprising a primary isocyanide compound and tetrakis (triphenylphosphine) palladium (see Patent Document 3) and a telomerization reaction using a catalyst comprising a tertiary isocyanide compound and a palladium compound (see Patent Reference 4) has been reported.
  • Non-Patent Document 1 Niro Tsuji, "Palladium Reagents and Catalysts", published by John Wiley & Sons, p. 423-441 (1995)
  • Non-Patent Document 2 Angevante Chemie International Edition (Angew. Chem. Int. Ed.), Vol. 41, p. 1290-1309 (2002)
  • Patent Document 1 US Patent No. 3670029
  • Patent Document 2 Japanese Patent Publication No. 2004-534059
  • Patent Document 3 Japanese Patent Publication No. 48-43327 (Example 9)
  • Patent Document 4 JP 2005-95850 A
  • Non-Patent Document 1 and Non-Patent Document 2 disclose a method of evaporating and separating a product and a catalyst after completion of a reaction in which a palladium catalyst coordinated with a phosphine compound has poor thermal stability. Since the catalyst decomposes to precipitate palladium black, there is a problem that it is difficult to reuse the palladium catalyst and the production cost increases.
  • Patent Document 1 requires high selectivity for by-products (about 10 to 30%) and low catalytic activity, and thus requires a large amount of catalyst. It is not an efficient method for producing ethers.
  • Patent Document 3 uses a palladium compound to which a phosphine conjugate has already been coordinated. In this case, the coordination of the isocyanide compound to the palladium atom is suppressed, and the reaction is remarkably slowed down. The selectivity of the target product is lowered, and the yield is as low as about 17%. Not a way.
  • the present inventors have, in the method described in Patent Document 4, can be obtained inexpensively by industrially, low purity (1, 3-butadiene content of about 40 weight 0/0) of "such as crude butadiene (isobutylene Butenes, methinorea acetylene, acetylenes such as 1-butyne, and 1,3-butadiene containing impurities such as 1,2-butadiene) were used as raw materials, and it was confirmed that the reaction rate was reduced. did. That is, there is still room for improvement as a method for industrially producing ethers at low cost and with high productivity.
  • low purity (1, 3-butadiene content of about 40 weight 0/0) of "such as crude butadiene (isobutylene Butenes, methinorea acetylene, acetylenes such as 1-butyne, and 1,3-butadiene containing impurities such as 1,2-butadiene) were used as raw materials, and it was confirmed that the
  • an object of the present invention is to provide an industrially advantageous method for producing ethers, which can provide a high conversion and a high selectivity even from a low-purity and inexpensive conjugated gen compound. There is to be.
  • R 1 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted realyl group.
  • hydroxyl aldehyde compound (I) a hydroxy compound represented by the general formula (II)
  • R 2 represents a tertiary alkyl group which may have a substituent.
  • R 3 , R 4 and R 5 each independently represent an alkyl group having from! To 10 carbon atoms.
  • this is referred to as a phosphine compound (III) )
  • a subsequent reaction followsed by a subsequent reaction, to provide a process for producing ethers.
  • a telomerization reaction of a conjugated diene compound is started in the presence of a hydroxy compound (1), a palladium compound, an isocyanide compound (II) and a basic substance, and then a phosphine compound (III) Is carried out.
  • conjugated diene compound used in the present invention include, for example, 1,3-butadiene, isoprene, piperylene, 2,3-dimethinole-1,3-butadiene, 1,3,7-butadiene, Examples thereof include 1,3-cyclohexadiene and 1,3-cyclooctadiene. Further, the conjugated diene compound may have a low purity.
  • crude butadiene (butenes such as isobutylene, butenes such as isobutylene, methyl acetylene, 1-butyne, etc.) Contains impurities such as acetylenes and 1,2-butadiene 1,3-butadiene) can be used. It is well known to those skilled in the art that such crude butadiene is obtained as a C4 cut by the thermal decomposition of naphtha.
  • the crude butadiene thus obtained can be obtained inexpensively because the step of isolating 1,3-butadiene is omitted, and when a powerful crude butadiene is used as a raw material, it is industrially very advantageous from the viewpoint of production cost. It is.
  • the present invention is a method for producing ethers that can maintain high conversion and selectivity even when a low-purity conjugated conjugate such as crude butadiene is used as a raw material.
  • the alkyl group represented by R 1 is preferably an alkyl group having 1 to 8 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group.
  • alkyl group having 1 to 8 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group.
  • Examples include a tinole group, an s-butyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • substituents may have a substituent.
  • substituents include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; an aryl group such as a phenyl group, a tolyl group and a xylyl group.
  • An alkoxyl group such as a methoxy group, an ethoxy group and an isopropoxy group; a 2-methoxyethyloxy group, a 2-ethoxyxyloxy group; a hydroxyl group.
  • the aryl group represented by R 1 is preferably an aryl group having 6 to 14 carbon atoms, for example, a phenyl group, a naphthyl group, a phenanthryl group, an anthracenyl group and the like. These groups may have a substituent and may be, for example, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methyl group, an ethyl group, a propyl group and an isopropyl group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
  • a methyl group an ethyl group, a propyl group and an isopropyl group.
  • hydroxyl compound (I) examples include, for example, methanol, ethanol, 1-propanol, 2-propanol, 2-methinol_1-propanol, 1-butanol, 2-butanol, pentano-fold.
  • Isopentinoleanolone cyclopentanol, hexanol, 2_hexanol, cyclohexanol, heptanol, octanol, 2-octanol, 3-octanol, benzyl alcohol, phenethyl alcohol, phenol, ethyl
  • ren glycol diethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether.
  • the amount of the hydroxyl compound (I) to be used is preferably in the range of 0.1 to 10 times mol, more preferably in the range of 0.5 to 5 times mol, based on the conjugated diene compound.
  • Examples of the ethers obtained in the present invention include 1-methoxy-1,2,7-octadiene, 1-ethoxy-1,2,7-octadiene, 1_propoxy_2,7-octadiene, 1_butoxy-2,7-octadiene, 1_Isopentyloxy-1,2,7-octadiene, 1-cyclohexylnoroxy_2,7-octadiene, 1_phenoxy_2,7-octadiene, 1_benzinoleoxy_2,7-octadiene, 1-methoxy-1,2,7 —Dimethyl_2,7-octadiene, 1—Ethoxy-1,2,7-dimethinolee 2,7-octadiene, 1_Propoxy_2,7—dimethinole 2,7-octadiene, 1-butoxy 2,7-dimethyl-2,7-octadiene, 1-iso Pentoxy 2,7 di
  • the palladium compound used in the present invention is not particularly limited as long as it does not contain a compound having a phosphorus atom.
  • the amount of the palladium compound used is preferably in the range of 0.1 ppm to 100 ppm, more preferably 1 ppm to 50 ppm, per mole of the conjugated diene compound, in terms of palladium atom.
  • examples of the tertiary alkyl group which may have a substituent represented by R 2 include a t-butyl group, a 1,1-dimethylhexyl group, a trityl group, and a 1-methylcycloalkyl group. Hexinole group and the like.
  • isocyanide compound (II) used in the present invention include t-butyl isocyanide, t-octyl isocyanide, trityl isocyanide, 1-methylcyclohexyl isocyanide and the like. Of these, t-butyl isocyanide and t-octyl isocyanide are preferred in view of availability and economy. In the present invention, a tertiary isocyanide compound is used, and a primary isocyanide compound or a secondary isocyanide compound is not used.
  • the use amount of the isocyanide compound (II) is preferably in the range of 1 to 50 mol per 1 mol of palladium atoms in the palladium compound: more preferably in the range of! To 20 mol.
  • the basic substance used in the present invention has the general formula (IV)
  • M represents an alkali metal or an alkaline earth metal
  • R 6 represents a hydrogen atom, a group having a substituent, a group having an alkyl group or a substituent, or a group having a substituent.
  • n represents 1 when M represents an alkali metal, and represents 2 when M represents an alkaline earth metal.
  • R 7 , R 8 , R 9 , R 10 and R 11 are each independently a hydrogen atom, may have a substituent, or have an alkyl group or a substituent.
  • R 12 , R 13 , R M , R 15 and R 16 each independently have a hydrogen atom, a substituent, an alkyl group or a substituent. And a aryl group.)).
  • alkyl group represented by 16 include a methyl group, an ethyl group, a propyl group, Isopropyl, butyl, isobutyl, S-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, etc.
  • Examples of the group include a phenyl group and a naphthyl group. These groups may have a substituent, and examples of such a substituent include a phenyl group such as a phenyl group, a tolyl group and a xylyl group.
  • alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; calcium hydroxide, magnesium hydroxide, and barium hydroxide.
  • Alkaline earth metal hydroxides such as lithium methoxide, sodium methoxide, sodium isopropoxide, sodium s-butoxide, sodium phenoxide, sodium benzyloxide, potassium methoxide, potassium ethoxide, potassium isopropoxide , Potassium s-butoxide, potassium t-butoxide, potassium phenoxide, potassium benzyloxide, magnesium methoxide, magnesium ethoxide, magnesium isopropoxide, magnesium s-butoxide, magnesium t-butoxide, mag Nesium phenoxide, magnesium benzyl oxide, calcium methoxide, calcium methoxide, calcium isopropoxide, calcium s butoxide, calcium t butoxide, calcium phenoxide,
  • Specific examples of the compound represented by the general formula (V) include, for example, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, triisopropylammonium hydroxide, and tetra-n-ammonium hydroxide.
  • Specific examples of the compound represented by the general formula (VI) include, for example, tetramethylphosphonium hydroxide, tetraethylphosphonium hydroxide, tetra-n-propylphosphonium hydroxide, triisopropylphosphonium hydroxide, I-n-butylphosphonium hydroxide, benzinoletrimethinolephosphonium hydroxide, tetraphenylphosphonium methoxide, tetramethylphosphonium methoxide, tetraethylphosphonium methoxide, tetra_n-propylphosphonium methoxide, Triisopropylphosphonium methoxide, tetra-n_butylphosphonium methoxide, tetra-n_butylphosphonium methoxide, tetra-n_butylphosphonium phenoxide, benzyltrimethylphosphonium methoxide ⁇ The Sid
  • the amount of the basic substance used is preferably in the range of 0 :! to 10000 mol per 1 mol of palladium atom in the palladium compound: in the range of! To 3000 mol. Is more preferred.
  • the present invention can be carried out in the presence or absence of a solvent.
  • strong solvents include hydrocarbons such as butane, isobutane, butene, isobutene, pentane, hexane, cyclohexane, benzene, toluene, and xylene; halogens such as dichloromethane, 1,2-dichloroethane, and chloroform.
  • Hydrocarbons such as tetrahydrofuran, dipentyl ether, dihexyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethylene ether, and tetraethylene glycol dimethyl ether; formamide, acetoamide, N, N dimethylformamide, 1-methyl 2-pyrrolidinone Amides and the like.
  • One type of solvent may be used alone, or two or more types may be used in combination.
  • the amount of the solvent used is not particularly limited, but is usually in the range of 0.01 to 10 times the mass of the conjugated diene compound.
  • the reaction temperature is preferably in the range of 0 to: 150 ° C, more preferably in the range of 20 to: 110 ° C.
  • the reaction rate tends to be extremely slow, and when the temperature exceeds 150 ° C, by-products tend to increase.
  • the reaction pressure is preferably in the range from 0 :! to 3 MPa.
  • the reaction is preferably performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the phosphine compound (II I) Is added As a result, it is possible to suppress a decrease in the reaction rate due to a decrease in the concentration of the remaining conjugated conjugate, or to increase the reaction rate, thereby increasing the conversion of the conjugated gen compound in the reaction system. .
  • the method of the present invention is excellent in that such effects can be obtained when a low-purity conjugated diene compound is used, for example, when “crude butadiene” is used.
  • the conversion and selectivity can be improved by adding the phosphine compound (III) during the telomerization reaction, as described above, without adding the phosphine compound (III) from the beginning. At the same time.
  • the reaction may proceed more smoothly by increasing the reaction temperature by 1 to 10 ° C. before the addition.
  • the conversion of the conjugated diene compound can be measured by extracting a part of the reaction mixture and conducting gas chromatography analysis described later.
  • R 3 The number of carbon atoms represented by R 5. 1 to: The 10 alkyl group such as methyl group, Echiru radical, n-propyl group, an isopropyl radical, n-butyl group, Isobuchi Le group, t-butyl radical, n-heptyl group, n- Octyl, n-nonyl, n-decyl and the like.
  • phosphine compound (III) include, for example, trimethylphosphine, triethylphosphine, tripropylphosphine, triisopropylphosphine, tributylphosphine, triisobutylphosphine, triisopentylphosphine, trihexylphosphine, tricyclohexylphosphine. , Trioctylphosphine, tridecylphosphine and the like.
  • the amount of the phosphine compound (III) to be used is preferably 0.01 to 100 mol per mol of palladium atom in the palladium compound, and is preferably in the range of 0.05 to 10 mol. 0.:! More preferably in the range of 5 moles. If the amount is less than 0.01 mol, the reaction rate will not be improved. On the other hand, if it exceeds 100 mol, the effect corresponding thereto will be weak and the burden on the economy will increase, which is not preferable.
  • water may be added simultaneously with the addition of the phosphine compound (III). .
  • water By adding water, it is possible to suppress a decrease in selectivity due to coordination of the phosphine compound (III) and the isocyanide compound (II).
  • the amount of addition is preferably in the range of 10 to 10,000 mol per 1 mol of palladium atoms in the palladium compound, and is preferably in the range of 20 to 5000 mol. From the point of view of speed, it is more preferred that the range be 50 to 2000 mol.
  • the reaction time depends on the type and amount of the hydroxyl hydride compound (I), the conjugated diene compound, the isocyanide compound (II), the palladium compound, the basic substance and the phosphine compound (III), the reaction temperature and the reaction pressure, and the like. Different forces Usually, the range of 0.5 to 10 hours before addition of the phosphine compound (III) and the range of 0.5 to 10 hours after addition of the phosphine compound (III).
  • the method of carrying out the present invention can be carried out either in a batch system or a continuous system.
  • the reaction can be performed even if the piston flow type reactor or the complete mixing tank type reactor is shifted, or a combination thereof can be performed.
  • a hydroxynole compound (I), a basic substance, a palladium compound, an isocyanide ligated compound (II) and, if necessary, a solvent are mixed, A conjugated gen compound is added to the obtained mixture, and the mixture is reacted at a predetermined temperature and a predetermined pressure for a predetermined time. Then, the phosphine compound (III) and, if necessary, water are added to the reaction system.
  • the reaction can be carried out.
  • a hydroxyl conjugate (1) for example, under a nitrogen atmosphere, a hydroxyl conjugate (1), a basic substance, a palladium compound, an isocyanide compound (II) and, if necessary, a solvent are mixed. Is added.
  • the resulting mixture is continuously or intermittently transferred to the first tank and reacted for a predetermined time.
  • the reaction liquid is continuously or intermittently withdrawn, and the phosphine compound (III) and, if necessary,
  • the water can be transferred to the second tank continuously or intermittently after the addition of water, and further reacted for a predetermined time.
  • ethers can be separated and purified from the reaction mixture obtained by a conventional method for separating and purifying organic compounds.
  • the catalyst component is separated from the residue by thin-film distillation, decantation, extraction, adsorption, etc. as necessary, and the resulting residue is obtained.
  • the product By purifying the product by distillation, recrystallization or column chromatography, ethers with high purity can be obtained.
  • Acetylenes 0.04 mass%, Other: 5.26 mass 0/0
  • a part of the obtained reaction mixture was extracted and analyzed by gas chromatography.
  • the conversion of 1,3-butadiene was 98%, and the selectivity of 1-methoxy-1,2,7-octadiene was 1%.
  • the selectivity for 3-methoxy-1,7-octadiene was 5.9%, and the selectivity for bürsik-mouth hexene and 1,3,7-otatatriene was less than 3% in total.
  • reaction mixture A part of the obtained reaction mixture was sampled and analyzed by gas chromatography.
  • the conversion of 1,3-butadiene in the crude butadiene was 98%, and the selectivity for 1-methoxy 2,7-otatagene was 89%.
  • the selectivity for 1%, 3-methoxy 1,7 octadiene is 6.1%, and the selectivity for vinylcyclohexene and 1,3,7-otatatriene is less than 3% in total.
  • the conversion of 1,3-butadiene was 98%, and the selectivity of 1-methoxy-1,2,7-octadiene was 59.4%, 3
  • the selectivity for methoxy-1,7-octadiene was 34.7%, and the selectivity for bulcyclohexene and 1,3,7-otatatriene was less than 3% in total.
  • a part of the obtained reaction mixture was extracted and subjected to gas chromatography analysis.
  • the conversion of 1,3-butadiene in the crude butadiene was 48%, and the selection of 1-methoxy-1,2,7-otatagene was performed.
  • the selectivity was 90.1%
  • the selectivity for 3-methoxy-1,7-octadiene was 3.1%
  • the selectivity for bulcyclohexene and 1,3,7-otatatriene was less than 3% in total.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Disclosed is a method for producing ethers which is characterized in that a telomerization reaction of a conjugated diene compound in the presence of a hydroxyl compound represented by the following general formula (I): R1OH, is firstly performed in the presence of a palladium compound, a tertiary isocyanide compound represented by the following general formula (II): R2NC and a basic substance, and then continuously performed after being added with a tertiary phosphine compound represented by the following general formula (III): PR3R4R5. (In the formulae, the symbols are as defined in the description.)

Description

明 細 書  Specification
エーテル類の製造方法  Method for producing ethers
技術分野  Technical field
[0001] 本発明は、共役ジェン化合物のテロメリ化反応によるエーテル類の製造方法に関 する。本発明により製造されるエーテル類は、各種ポリマーの原料、香料などの中間 体として有用である。  The present invention relates to a method for producing ethers by a telomerization reaction of a conjugated diene compound. The ethers produced by the present invention are useful as raw materials for various polymers and intermediates such as fragrances.
背景技術  Background art
[0002] 共役ジェン化合物のテロメリ化反応とは、共役ジェン化合物がアルコールなどの求 核性反応剤を取り込むことによりオリゴメリ化する反応である。例えば、 2分子の 1 , 3 ブタジエンが、例えば酢酸などの 1分子の活性水素を含有する化合物と反応して 1 ーァセトキシ 2, 7 ォクタジェンを生じる反応などが挙げられる。かかるテロメリィ匕 反応では、パラジウム化合物、特に、ホスフィン化合物が配位したパラジウム化合物 力 Sテロメリ化反応用の触媒として優れた活性を示すことが知られている(非特許文献 1 および非特許文献 2参照)。  [0002] The telomerization reaction of a conjugated gen compound is a reaction in which the conjugated gen compound is oligomerized by incorporating a nucleophilic reactant such as an alcohol. For example, a reaction in which two molecules of 1,3 butadiene reacts with one molecule of a compound containing active hydrogen such as acetic acid to produce 1-acetoxy 2,7 octadiene is exemplified. In the telomery-dani reaction, it is known that a palladium compound, particularly a palladium compound coordinated with a phosphine compound, exhibits excellent activity as a catalyst for S-telomerization reaction (see Non-Patent Documents 1 and 2). ).
一方、第 3級ホスフィン化合物もしくはイソシアニド化合物およびニッケル化合物か らなる触媒を用いたテロメリ化反応が報告されている(特許文献 1参照)。また、塩基 性物質の存在下にパラジウムカルベン錯体を用いたテロメリ化反応が報告されている (特許文献 2参照)。さらに、第 1級イソシアニド化合物とテトラキス(トリフヱニルホスフ イン)パラジウムからなる触媒によるテロメリ化反応(特許文献 3参照)、および第 3級ィ ソシアニド化合物とパラジウム化合物からなる触媒によるテロメリ化反応(特許文献 4 参照)が報告されている。  On the other hand, a telomerization reaction using a catalyst comprising a tertiary phosphine compound or an isocyanide compound and a nickel compound has been reported (see Patent Document 1). Further, a telomerization reaction using a palladium carbene complex in the presence of a basic substance has been reported (see Patent Document 2). Furthermore, a telomerization reaction using a catalyst comprising a primary isocyanide compound and tetrakis (triphenylphosphine) palladium (see Patent Document 3) and a telomerization reaction using a catalyst comprising a tertiary isocyanide compound and a palladium compound (see Patent Reference 4) has been reported.
[0003] 非特許文献 1 :辻ニ郎著「パラジウム リエージヱンッ アンド キヤタリスッ(Palladiu m Reagents and Catalysts)」、ジョン ワイリー アンド サンズ (John Wiley & Sons)出版、 p. 423〜441 (1995年) [0003] Non-Patent Document 1: Niro Tsuji, "Palladium Reagents and Catalysts", published by John Wiley & Sons, p. 423-441 (1995)
非特許文献 2 :アンゲバンテ ケミー インターナショナル エディション (Angew. Ch em. Int. Ed. )、第 41卷、 p. 1290〜1309 (2002年)  Non-Patent Document 2: Angevante Chemie International Edition (Angew. Chem. Int. Ed.), Vol. 41, p. 1290-1309 (2002)
特許文献 1:米国特許第 3670029号明細書 特許文献 2:特表 2004— 534059号公報 Patent Document 1: US Patent No. 3670029 Patent Document 2: Japanese Patent Publication No. 2004-534059
特許文献 3:特公昭 48— 43327号公報 (実施例 9)  Patent Document 3: Japanese Patent Publication No. 48-43327 (Example 9)
特許文献 4 :特開 2005— 95850号公報  Patent Document 4: JP 2005-95850 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 非特許文献 1および非特許文献 2に記載された方法は、ホスフィン化合物が配位し たパラジウム触媒の熱安定性が悪ぐ反応終了後に生成物と触媒とを蒸発分離させ る際、該触媒が分解してパラジウムブラックが析出するため、パラジウム触媒の再使 用が困難であり、製造費が高くなるという問題がある。 [0004] The methods described in Non-Patent Document 1 and Non-Patent Document 2 disclose a method of evaporating and separating a product and a catalyst after completion of a reaction in which a palladium catalyst coordinated with a phosphine compound has poor thermal stability. Since the catalyst decomposes to precipitate palladium black, there is a problem that it is difficult to reuse the palladium catalyst and the production cost increases.
[0005] 特許文献 1に記載された方法は、副生成物の選択率が高レ、(約 10〜30%)こと、ま た触媒活性が低レ、ため多量な触媒を必要とすることから、効率的なエーテル類の製 造方法ではない。 [0005] The method described in Patent Document 1 requires high selectivity for by-products (about 10 to 30%) and low catalytic activity, and thus requires a large amount of catalyst. It is not an efficient method for producing ethers.
[0006] 特許文献 2に記載された方法は、反応効率を高めるために、含窒素複素環式カル ベンがパラジウム化合物に配位した触媒に対して、大過剰の塩基性物質を加える必 要がある。しかし、大過剰の塩基性物質を加えると、反応装置の腐食や配管の閉塞 の原因となり、さらに触媒の安定性を維持することが困難になるという問題がある。  [0006] In the method described in Patent Document 2, it is necessary to add a large excess of a basic substance to a catalyst in which a nitrogen-containing heterocyclic carbene is coordinated with a palladium compound in order to increase the reaction efficiency. is there. However, the addition of a large excess of a basic substance causes corrosion of the reactor and blockage of the piping, and furthermore makes it difficult to maintain the stability of the catalyst.
[0007] 特許文献 3に記載された方法は、既にホスフィンィ匕合物が配位しているパラジウム 化合物を使用している。この場合、イソシアニド化合物のパラジウム原子への配位が 抑制され、反応が著しく遅くなるだけでなぐ 目的生成物の選択率が低くなり、収率も 17%程度と低ぐ工業的なエーテル類の製造方法ではない。また、本発明者等は、 特許文献 4に記載された方法において、工業的により安価に入手できる、低純度(1 、 3—ブタジエン含量約 40質量0 /0)の「粗ブタジエン (イソブチレンなどのブテン類、メ チノレアセチレン、 1ーブチンなどのアセチレン類、 1, 2—ブタジエンなどの不純物を 含有した 1 , 3—ブタジエン)」を原料として使用したところ、反応速度が低下してしまう ことを確認した。すなわち、工業的に安価に生産性良くエーテル類を製造する方法と しては、なお改良の余地がある。 [0007] The method described in Patent Document 3 uses a palladium compound to which a phosphine conjugate has already been coordinated. In this case, the coordination of the isocyanide compound to the palladium atom is suppressed, and the reaction is remarkably slowed down.The selectivity of the target product is lowered, and the yield is as low as about 17%. Not a way. Further, the present inventors have, in the method described in Patent Document 4, can be obtained inexpensively by industrially, low purity (1, 3-butadiene content of about 40 weight 0/0) of "such as crude butadiene (isobutylene Butenes, methinorea acetylene, acetylenes such as 1-butyne, and 1,3-butadiene containing impurities such as 1,2-butadiene) were used as raw materials, and it was confirmed that the reaction rate was reduced. did. That is, there is still room for improvement as a method for industrially producing ethers at low cost and with high productivity.
[0008] しかして、本発明の目的は、低純度で安価な共役ジェン化合物からでも高い転化 率および高い選択率が得られる、工業的に有利なエーテル類の製造方法を提供す ることにある。 [0008] Thus, an object of the present invention is to provide an industrially advantageous method for producing ethers, which can provide a high conversion and a high selectivity even from a low-purity and inexpensive conjugated gen compound. There is to be.
課題を解決するための手段  Means for solving the problem
[0009] 本発明によれば、上記目的は、一般式 (I)  According to the present invention, the above object has the following general formula (I)
[化 1] R'OH (I)  [Formula 1] R'OH (I)
(式中、 R1は置換基を有してレ、てもよレ、アルキル基または置換基を有してレ、てもよレヽ ァリール基を表す。 ) (In the formula, R 1 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted realyl group.)
で示されるヒドロキシノレ化合物 [以下、これをヒドロキシルイヒ合物(I)と称する]の存在 下における共役ジェン化合物のテロメリ化反応において、まず、パラジウム化合物、 一般式 (II)  In the telomerization reaction of a conjugated gen compound in the presence of a hydroxy compound (hereinafter referred to as hydroxyl aldehyde compound (I)), a palladium compound represented by the general formula (II)
[化 2] R2NC (II) [Formula 2] R 2 NC (II)
(式中、 R2は置換基を有していてもよい第 3級アルキル基を表す。) (In the formula, R 2 represents a tertiary alkyl group which may have a substituent.)
で示される第 3級イソシアニドィ匕合物 [以下、これをイソシアニドィ匕合物 (II)と称する] および塩基性物質の存在下に前記反応を行い、次に一般式 (III)  The above reaction is carried out in the presence of a tertiary isocyanidide conjugate [hereinafter referred to as an isocyanide conjugate (II)] and a basic substance, and then represented by the general formula (III)
[化 3] PR3R4R° (III) [Chemical Formula 3] PR 3 R 4 R ° (III)
(式中、 R3、 R4および R5は、それぞれ独立して炭素数:!〜 10のアルキル基を表す。 ) で示される第 3級ホスフィン化合物 [以下、これをホスフィンィ匕合物(III)と称する]を添 カロして、引き続き反応を行うことを特徴とするエーテル類の製造方法を提供すること により達成される。 (Wherein, R 3 , R 4 and R 5 each independently represent an alkyl group having from! To 10 carbon atoms.) [Hereinafter, this is referred to as a phosphine compound (III) )], Followed by a subsequent reaction, to provide a process for producing ethers.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明は、まず、ヒドロキシノレ化合物(1)、パラジウム化合物、イソシアニド化合物(II )および塩基性物質の存在下に共役ジェン化合物のテロメリ化反応を開始し、続いて ホスフィン化合物 (III)を添加することにより実施する。  According to the present invention, first, a telomerization reaction of a conjugated diene compound is started in the presence of a hydroxy compound (1), a palladium compound, an isocyanide compound (II) and a basic substance, and then a phosphine compound (III) Is carried out.
[0011] 本発明で使用する共役ジェン化合物の具体例としては、例えば 1 , 3—ブタジエン 、イソプレン、ピペリレン、 2, 3—ジメチノレ一 1, 3—ブタジエン、 1 , 3, 7—才クタトリエ ン、 1 , 3—シクロへキサジェン、 1, 3—シクロォクタジェンなどが挙げられる。さらに、 共役ジェン化合物は純度が低くてもよぐ例えば 1, 3—ブタジエンの場合、前記した 様に工業的に安価に入手できる粗ブタジエン (イソブチレンなどのブテン類、メチル アセチレン、 1—ブチンなどのアセチレン類、 1, 2 _ブタジエンなどの不純物を含有 した 1 , 3—ブタジエン)を使用することができる。かかる粗ブタジエンがナフサの熱分 解により C4留分として得られることは、当業者にとって周知の事項である。こうして得 られる粗ブタジエンは、 1, 3—ブタジエンを単離する工程が省略されるため、安価に 入手でき、力かる粗ブタジエンを原料に用いると、製造費用の観点から、工業的に非 常に有利である。本発明は、力、かる粗ブタジエンのように低純度の共役ジェンィ匕合物 を原料に用いた場合にも、転化率および選択率を高く維持できるエーテル類の製造 方法である。 [0011] Specific examples of the conjugated diene compound used in the present invention include, for example, 1,3-butadiene, isoprene, piperylene, 2,3-dimethinole-1,3-butadiene, 1,3,7-butadiene, Examples thereof include 1,3-cyclohexadiene and 1,3-cyclooctadiene. Further, the conjugated diene compound may have a low purity. For example, in the case of 1,3-butadiene, as described above, crude butadiene (butenes such as isobutylene, butenes such as isobutylene, methyl acetylene, 1-butyne, etc.) Contains impurities such as acetylenes and 1,2-butadiene 1,3-butadiene) can be used. It is well known to those skilled in the art that such crude butadiene is obtained as a C4 cut by the thermal decomposition of naphtha. The crude butadiene thus obtained can be obtained inexpensively because the step of isolating 1,3-butadiene is omitted, and when a powerful crude butadiene is used as a raw material, it is industrially very advantageous from the viewpoint of production cost. It is. The present invention is a method for producing ethers that can maintain high conversion and selectivity even when a low-purity conjugated conjugate such as crude butadiene is used as a raw material.
[0012] 前記の一般式(I)中、 R1が表すアルキル基としては、炭素数 1〜8のアルキル基が 好ましぐ例えばメチル基、ェチル基、プロピル基、イソプロピル基、ブチル基、イソブ チノレ基、 s—ブチル基、 t一ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチ ル基、シクロペンチル基、シクロへキシル基、シクロへプチル基、シクロォクチル基な どが挙げられる。これらは置換基を有していてもよぐ力、かる置換基としては、例えば フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;フエニル基、トリ ル基、キシリル基などのァリール基;メトキシ基、エトキシ基、イソプロポキシ基などのァ ルコキシル基; 2—メトキシェチルォキシ基、 2—エトキシェチルォキシ基;ヒドロキシル 基などが挙げられる。 R1が表すァリール基としては、炭素数 6〜: 14のァリール基が好 ましぐ例えばフエニル基、ナフチル基、フエナントリル基、アントラセニル基などが挙 げられる。これらの基は置換基を有していてもよぐ力かる置換基としては、例えばフ ッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、ェチル 基、プロピル基、イソプロピル基、ブチル基、イソブチル基、 s ブチル基、 t ブチル 基、ペンチル基、へキシル基、ヘプチル基、ォクチル基などのアルキル基;メトキシ基 、エトキシ基、イソプロポキシ基などのアルコキシル基;ヒドロキシル基などが挙げられ る。 In the above general formula (I), the alkyl group represented by R 1 is preferably an alkyl group having 1 to 8 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group. Examples include a tinole group, an s-butyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group. These substituents may have a substituent. Examples of the substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; an aryl group such as a phenyl group, a tolyl group and a xylyl group. An alkoxyl group such as a methoxy group, an ethoxy group and an isopropoxy group; a 2-methoxyethyloxy group, a 2-ethoxyxyloxy group; a hydroxyl group. The aryl group represented by R 1 is preferably an aryl group having 6 to 14 carbon atoms, for example, a phenyl group, a naphthyl group, a phenanthryl group, an anthracenyl group and the like. These groups may have a substituent and may be, for example, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methyl group, an ethyl group, a propyl group and an isopropyl group. Groups, butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, heptyl, octyl and other alkyl groups; methoxy, ethoxy, isopropoxy and other alkoxyl groups; hydroxyl groups, etc. Are mentioned.
[0013] ヒドロキシル化合物(I)の具体例としては、例えばメタノール、エタノール、 1 _プロ パノーノレ、 2_プロパノーノレ、 2—メチノレ _ 1 _プロパノーノレ、 1—ブタノ一ノレ、 2—ブタ ノーノレ、ペンタノ一ノレ、イソペンチノレアノレコーノレ、シクロペンタノ一ノレ、へキサノーノレ、 2_へキサノール、シクロへキサノール、ヘプタノール、ォクタノーノレ、 2—ォクタノー ノレ、 3—ォクタノール、ベンジルアルコール、フエネチルアルコール、フエノール、ェチ レングリコール、ジエチレングリコール、プロピレングリコール、エチレングリコールモノ メチルエーテル、エチレングリコールモノェチルエーテル、ジエチレングリコールモノ メチルエーテル、ジエチレングリコールモノェチルエーテル、プロピレングリコールモ ノメチルエーテル、プロピレングリコールモノェチルエーテルなどが挙げられる。 [0013] Specific examples of the hydroxyl compound (I) include, for example, methanol, ethanol, 1-propanol, 2-propanol, 2-methinol_1-propanol, 1-butanol, 2-butanol, pentano-fold. , Isopentinoleanolone, cyclopentanol, hexanol, 2_hexanol, cyclohexanol, heptanol, octanol, 2-octanol, 3-octanol, benzyl alcohol, phenethyl alcohol, phenol, ethyl Examples include ren glycol, diethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether.
ヒドロキシル化合物(I)の使用量は、共役ジェン化合物に対して 0. 1〜: 10倍モルの 範囲であるのが好ましぐ 0. 5〜5倍モルの範囲であるのがより好ましい。  The amount of the hydroxyl compound (I) to be used is preferably in the range of 0.1 to 10 times mol, more preferably in the range of 0.5 to 5 times mol, based on the conjugated diene compound.
本発明で得られるエーテル類としては、例えば 1—メトキシ一 2, 7—ォクタジェン、 1 —エトキシ一 2, 7—ォクタジェン、 1_プロポキシ _2, 7—ォクタジェン、 1_ブトキシ -2, 7—ォクタジェン、 1_イソペンチロキシ一2, 7—ォクタジェン、 1—シクロへキシ ノレォキシ _2, 7—ォクタジェン、 1_フエノキシ _2, 7—ォクタジェン、 1_ベンジノレ ォキシ _2, 7—ォクタジェン、 1—メトキシ一 2, 7—ジメチル _2, 7—ォクタジェン、 1 —エトキシ一 2, 7—ジメチノレー 2, 7—ォクタジェン、 1_プロポキシ _2, 7—ジメチ ノレ 2, 7 ォクタジェン、 1 ブトキシ 2, 7 ジメチルー 2, 7 ォクタジェン、 1 イソペンチロキシ 2, 7 ジメチルー 2, 7 ォクタジェン、 1ーシクロへキシルォキシ -2, 7 ジメチノレー 2, 7—ォクタジェン、 1 フエノキシ 2, 7 ジメチルー 2, 7— ォクタジェン、 1一べンジルォキシ 2, 7 ジメチノレー 2, 7—ォクタジェン、 1ーメトキ シ 2, 6 ジメチルー 2, 7—ォクタジェン、 1 エトキシ 2, 6 ジメチノレー 2, 7— ォクタジェン、 1 プロポキシ 2, 6 ジメチルー 2, 7—ォクタジェン、 1 ブトキシ —2, 6 ジメチノレ一 2, 7—ォクタジェン、 1—イソペンチ口キシ一 2, 6 ジメチル一 2 , 7 ォクタジェン、 1ーシクロへキシルォキシ 2, 6 ジメチノレー 2, 7—ォクタジェ ン、 1—フエノキシ 2, 6 ジメチル一 2, 7—ォクタジェン、 1—ベンジルォキシ一 2, 6—ジメチノレー 2, 7—ォクタジェン、 1—メトキシ一 3, 7—ジメチル _2, 7—ォクタジ ェン、 1_エトキシ _3, 7—ジメチル _2, 7—ォクタジェン、 1_プロポキシ一3, 7- ジメチノレー 2, 7—ォクタジェン、 1_ブトキシ一 3, 7_ジメチノレ一 2, 7—ォクタジェン 、 1_イソペンチロキシ _3, 7—ジメチノレー 2, 7—ォクタジェン、 1—シクロへキシル ォキシ _3, 7—ジメチル _2, 7—ォクタジェン、 1—フエノキシ一3, 7—ジメチル _2 , 7—ォクタジェン、 1_ベンジルォキシ一 3, 7—ジメチル一 2, 7—ォクタジェン、 1 —メトキシ一 3, 6_ジメチノレ一 2, 7—ォクタジェン、 1_エトキシ一3, 6—ジメチノレ一 2, 7 ォクタジェン、 1 プロポキシ 3, 6 ジメチルー 2, 7 ォクタジェン、 1ーブ トキシ 3, 6 ジメチノレー 2, 7—ォクタジェン、 1 イソペンチロキシ 3, 6 ジメチ ノレ 2, 7 ォクタジェン、 1ーシクロへキシルォキシ 3, 6 ジメチノレー 2, 7—オタ タジェン、 1—フエノキシ _3, 6—ジメチル _2, 7—ォクタジェン、 1_ベンジルォキ シ一 3, 6—ジメチル _2, 7—ォクタジェン、 3—メトキシ一 2, 7—ォクタジェン、 3_ エトキシ一 2, 7—ォクタジェン、 3_プロポキシ _2, 7—ォクタジェン、 3_ブトキシ一 2, 7—ォクタジェン、 3_イソペンチ口キシ一 2, 7—ォクタジェン、 3—シクロへキシロ キシ _2, 7—ォクタジェン、 3_フエノキシ _2, 7—ォクタジェン、 3_ベンジルォキ シ一 2, 7—ォクタジェン、 3—メトキシ一 2, 7—ジメチル _2, 7—ォクタジェン、 3_ エトキシ一 2, 7—ジメチノレー 2, 7—ォクタジェン、 3_プロポキシ _2, 7—ジメチノレ -2, 7—ォクタジェン、 3_ブトキシ _2, 7—ジメチル一2, 7—ォクタジェン、 3—ィ ソペンチロキシ _2, 7—ジメチノレー 2, 7—ォクタジェン、 3—シクロへキシルォキシ一 2, 7 ジメチノレー 2, 7—ォクタジェン、 3 フエノキシ 2, 7 ジメチルー 2, 7—オタ タジェン、 3 べンジルォキシ 2, 7 ジメチルー 2, 7 ォクタジェン、 3 メトキシ -2, 6 ジメチノレー 2, 7—ォクタジェン、 3 エトキシ 2, 6 ジメチノレー 2, 7 ォ クタジェン、 3 プロポキシ 2, 6 ジメチノレー 2, 7—ォクタジェン、 3 ブトキシー 2 , 6 ジメチノレー 2, 7—ォクタジェン、 3—イソペンチ口キシ一 2, 6 ジメチルー 2, 7 ーォクタジェン、 3 シクロへキシルォキシ 2, 6 ジメチノレー 2, 7 ォクタジェン、 3 フエノキシ 2, 6 ジメチノレー 2, 7 ォクタジェン、 3 ベンジルォキシ一 2, 6— ジメチノレー 2, 7 ォクタジェン、 3—メトキシー 3, 7 ジメチルー 2, 7—ォクタジェン 、 3 エトキシ 3, 7 ジメチルー 2, 7—ォクタジェン、 3 プロポキシ 3, 7 ジメ チノレ一2, 7—ォクタジェン、 3_ブトキシ一 3, 7_ジメチノレ一 2, 7—ォクタジェン、 3 —イソペンチロキシ _3, 7—ジメチル _2, 7—ォクタジェン、 3—シクロへキシルォキ シ一 3, 7—ジメチル _2, 7—ォクタジェン、 3—フエノキシ _3, 7—ジメチル一2, 7 —ォクタジェン、 3 _ベンジルォキシ _ 3, 7—ジメチノレー 2, 7—ォクタジェン、 3—メ トキシ一 3, 6—ジメチノレー 2, 7—ォクタジェン、 3_エトキシ _3, 6—ジメチル _2, 7 —ォクタジェン、 3_プロポキシ _3, 6—ジメチル一 2, 7—ォクタジェン、 3—ブトキ シ一 3, 6—ジメチル _2, 7—ォクタジェン、 3_イソペンチロキシ _3, 6—ジメチル - 2, 7 ォクタジェン、 3 シクロへキシルォキシ 3, 6 ジメチノレー 2, 7—ォクタ ジェン、 3 フエノキシ 3, 6 ジメチルー 2, 7—ォクタジェン、 3 べンジルォキシ —3, 6 ジメチル一 2, 7—ォクタジェンなどが挙げられる。 Examples of the ethers obtained in the present invention include 1-methoxy-1,2,7-octadiene, 1-ethoxy-1,2,7-octadiene, 1_propoxy_2,7-octadiene, 1_butoxy-2,7-octadiene, 1_Isopentyloxy-1,2,7-octadiene, 1-cyclohexylnoroxy_2,7-octadiene, 1_phenoxy_2,7-octadiene, 1_benzinoleoxy_2,7-octadiene, 1-methoxy-1,2,7 —Dimethyl_2,7-octadiene, 1—Ethoxy-1,2,7-dimethinolee 2,7-octadiene, 1_Propoxy_2,7—dimethinole 2,7-octadiene, 1-butoxy 2,7-dimethyl-2,7-octadiene, 1-iso Pentoxy 2,7 dimethyl-2,7-octadiene, 1-cyclohexyloxy-2,7 dimethinole 2,7-octadiene, 1 phenoxy 2,7 dimethyl-2,7-octa Gen, 1 Benzyloxy 2,7 Dimethinolate 2,7-Octadien, 1-Methoxy 2,6 Dimethyl 2,7-Octadien, 1 Ethoxy 2,6 Dimethinole 2,7-Octadien, 1 Propoxy 2,6 Dimethyl 2,7 —Octactogen, 1-butoxy —2,6 Dimethinole 1,7—Octagene, 1—Isopentyxoxy 1,2,6 Dimethyl-1,2,7 Octactene, 1-Cyclohexyloxy 2,6 Dimethinole 2,7—Octogen, 1— Phenoxy 2,6 dimethyl-1,2,7-octadiene, 1-benzyloxy-1,2,6-dimethinolae 2,7-octadiene, 1-methoxy-1,3,7-dimethyl_2,7-octadiene, 1_ethoxy_3,7 —Dimethyl_2,7-octadiene, 1_propoxy-1,3,7-dimethinolee 2,7-octadiene, 1_butoxy-1,3,7_dimethinole-1,2,7-octadiene, 1_isopen Roxy _3,7-dimethinolee 2,7-octadiene, 1-cyclohexyloxy_3,7-dimethyl_2,7-octadiene, 1-phenoxy-1,3,7-dimethyl_2,7-octadiene, 1_benzyloxy-1,3 7-Dimethyl-1,2,7-octadiene, 1-Methoxy-1,3,6_dimethinole-1,2,7-Octagene, 1_Ethoxy-1,3,6-dimethinole 2,7-octadiene, 1 propoxy 3,6 dimethyl-2,7-octadiene, 1-butoxy 3,6 dimethinolee 2,7-octadiene, 1 isopentyloxy 3,6 dimethinole 2,7-octadiene, 1-cyclohexyloxy 3, 6 Dimethinolee 2,7-Otatagene, 1-Phenoxy_3, 6-Dimethyl_2,7-Octadien, 1_Benzyloxy-1,3,6-Dimethyl_2,7-Octadien, 3-Methoxy-1-2,7-Octadien, 3_ Ethoxy 1,2,7-octadiene, 3_propoxy_2,7-octadiene, 3_butoxy-1,2,7-octadiene, 3_isopenticone xy-1,2,7-octadiene, 3-cyclohexyloxy_2,7-octadiene , 3_phenoxy_2,7-octadiene, 3_benzyloxy-1,2,7-octadiene, 3-methoxy-1,2,7-dimethyl_2,7-octadiene, 3_ethoxy 2,7-Dimethinolee 2,7-Octadogen, 3_Propoxy_2,7-Dimethinole-2,7-Octadene, 3_Butoxy_2,7-Dimethyl-1,2,7-Octadene, 3-Disopentyloxy_2,7-Dimethinolee 2,7-octadiene, 3-cyclohexoxyloxy 2,7 dimethinole 2,7-octadiene, 3 phenoxy 2,7 dimethyl 2,7-otatagene, 3 benzyloxy 2,7 dimethyl 2,7 octadiene, 3 methoxy- 2,6 dimethinolee 2,7-octadiene, 3 ethoxy 2,6 dimethinolee 2,7 octadiene, 3 propoxy 2,6 dimethinolee 2,7-octadiene, 3 butoxy 2,6 dimethinolee 2,7-octadiene, 3 isopench mouth 1,6-dimethyl-2,7-octadiene, 3 cyclohexyloxy 2,6 dimethinolate 2,7-octadiene, 3 phenoxy 2,6 dimethino -2,7 octadiene, 3 benzyloxy-1,2,6-dimethinolane 2,7 octadiene, 3-methoxy-3,7 dimethyl-2,7-octadiene, 3 ethoxy 3,7 dimethyl-2,7-octadiene, 3 propoxy 3,7 dime 2,7-octanol, 3,7-butoxy 3,7-dimethinole 2,7-octadiene, 3-isopentyloxy_3,7-dimethyl_2,7-octadiene, 3-cyclohexyloxy-1,3,7 —Dimethyl_2,7-octadiene, 3-phenoxy_3,7-dimethyl-1,2,7-octadiene, 3 _benzyloxy_3,7-dimethinole 2,7-octadiene, 3-methoxy-1 3,6-dimethinole 2, 7-octadiene, 3_ethoxy_3, 6-dimethyl_2, 7-octadiene, 3_propoxy_3,6-dimethyl-1,2,7-octadiene, 3-butoxy-1,3,6-dimethyl_2,7— Octactogen, 3_isopentyloxy_3,6-dimethyl -2,7-octadiene, 3 cyclohexyloxy 3,6 dimethinole 2,7-octadiene, 3 phenoxy 3,6 dimethyl 2,7-octadiene, 3 benzyloxy-3,6 dimethyl-1,2,7-octadiene Can be
[0015] 本発明で使用するパラジウム化合物としては、リン原子を有する化合物が含有され ていなければ特に制限はなぐ例えばギ酸パラジウム、酢酸パラジウム、塩化パラジ ゥム、臭化パラジウム、炭酸パラジウム、硫酸パラジウム、硝酸パラジウム、塩化パラジ ゥム酸ナトリウム、塩化パラジウム酸カリウム、パラジウムァセチルァセトナート、ビス( ベンゾニトリル)パラジウムジクロリド、ビス(t—ブチルイソシアニド)パラジウムジクロリ ド、ビス(ジベンジリデンアセトン)パラジウム、トリス(ジベンジリデンアセトン)二パラジ ゥム、ビス(1 , 5—シクロォクタジェン)パラジウムなどが挙げられる。これらの中でも、 入手の容易性および経済性を考慮すると、酢酸パラジウム、パラジウムァセチルァセ トナートを使用するのが好ましい。力かるパラジウム化合物の使用量は、パラジウム原 子換算で、共役ジェン化合物 1モルに対して 0. lppm〜100ppmの範囲であるのが 好ましぐ lppm〜50ppmの範囲であるのがより好ましい。  The palladium compound used in the present invention is not particularly limited as long as it does not contain a compound having a phosphorus atom. For example, palladium formate, palladium acetate, palladium chloride, palladium bromide, palladium carbonate, palladium sulfate, Palladium nitrate, sodium palladium chloride, potassium chloropalladate, palladium acetyl acetonate, bis (benzonitrile) palladium dichloride, bis (t-butyl isocyanide) palladium dichloride, bis (dibenzylideneacetone) palladium, Tris (dibenzylideneacetone) dipalladium, bis (1,5-cyclooctadiene) palladium and the like can be mentioned. Among these, it is preferable to use palladium acetate and palladium acetyl acetate in consideration of availability and economy. The amount of the palladium compound used is preferably in the range of 0.1 ppm to 100 ppm, more preferably 1 ppm to 50 ppm, per mole of the conjugated diene compound, in terms of palladium atom.
[0016] 前記一般式 (II)中、 R2が表す置換基を有していてもよい第 3級アルキル基としては 、例えば t ブチル基、 1, 1ージメチルへキシル基、トリチル基、 1ーメチルシクロへキ シノレ基などが挙げられる。 In the general formula (II), examples of the tertiary alkyl group which may have a substituent represented by R 2 include a t-butyl group, a 1,1-dimethylhexyl group, a trityl group, and a 1-methylcycloalkyl group. Hexinole group and the like.
[0017] 本発明で使用するイソシアニド化合物(II)の具体例としては、例えば t ブチルイソ シアニド、 tーォクチルイソシアニド、トリチルイソシアニド、 1ーメチルシクロへキシルイ ソシアニドなどが挙げられる。これらの中でも、入手の容易性、経済性を考慮すると、 t ーブチルイソシアニド、 tーォクチルイソシアニドを使用するのが好ましレ、。本発明で は、第 3級イソシアニド化合物を使用し、第 1級イソシアニド化合物または第 2級イソシ アニド化合物は使用しない。これは、イソシアニド化合物のひ位の炭素上に水素原子 が存在すると、本発明で使用する塩基性物質によって力かる水素原子が引き抜かれ てイソシアニド化合物が分解し、反応が進行しなくなるためである。  [0017] Specific examples of the isocyanide compound (II) used in the present invention include t-butyl isocyanide, t-octyl isocyanide, trityl isocyanide, 1-methylcyclohexyl isocyanide and the like. Of these, t-butyl isocyanide and t-octyl isocyanide are preferred in view of availability and economy. In the present invention, a tertiary isocyanide compound is used, and a primary isocyanide compound or a secondary isocyanide compound is not used. This is because, if a hydrogen atom is present on the carbon at the position higher than the isocyanide compound, a strong hydrogen atom is extracted by the basic substance used in the present invention, and the isocyanide compound is decomposed, so that the reaction does not proceed.
イソシアニド化合物(Π)の使用量は、パラジウム化合物中のパラジウム原子 1モルに 対して 1〜50モルの範囲であるのが好ましぐ:!〜 20モルの範囲であるのがより好ま しい。 [0018] 本発明で使用する塩基性物質としては、一般式 (IV) The use amount of the isocyanide compound (II) is preferably in the range of 1 to 50 mol per 1 mol of palladium atoms in the palladium compound: more preferably in the range of! To 20 mol. The basic substance used in the present invention has the general formula (IV)
[化 4] M (OR6) (IV) [Formula 4] M (OR 6 ) (IV)
(式中、 Mはアルカリ金属またはアルカリ土類金属を表し、 R6は水素原子、置換基を 有してレ、てもよレ、アルキル基または置換基を有してレ、てもよレ、ァリール基を表し、 nは Mがアルカリ金属を表す場合は 1を表し、 Mがアルカリ土類金属を表す場合は 2を表 す。) (In the formula, M represents an alkali metal or an alkaline earth metal, and R 6 represents a hydrogen atom, a group having a substituent, a group having an alkyl group or a substituent, or a group having a substituent. , Represents an aryl group, and n represents 1 when M represents an alkali metal, and represents 2 when M represents an alkaline earth metal.)
で示される化合物、一般式 (V)  A compound represented by the general formula (V)
[0019] [化 5]  [0019] [Formula 5]
OR, (V)
Figure imgf000009_0001
OR, (V)
Figure imgf000009_0001
[0020] (式中、 R7、 R8、 R9、 R10および R11はそれぞれ独立して水素原子、置換基を有してい てもよレ、アルキル基または置換基を有してレ、てもよレ、ァリール基を表す。 )で示される 化合物、一般式 (VI) (Wherein, R 7 , R 8 , R 9 , R 10 and R 11 are each independently a hydrogen atom, may have a substituent, or have an alkyl group or a substituent. A compound represented by the general formula (VI)
[0021] [化 6]  [0021] [Formula 6]
Figure imgf000009_0002
Figure imgf000009_0002
[0022] (式中、 R12、 R13、 RM、 R15および R16はそれぞれ独立して水素原子、置換基を有して レ、てもよレ、アルキル基または置換基を有してレ、てもよレ、ァリール基を表す。 )で示され る化合物が挙げられる。 (Wherein, R 12 , R 13 , R M , R 15 and R 16 each independently have a hydrogen atom, a substituent, an alkyl group or a substituent. And a aryl group.)).
[0023] 前記一般式 (IV)、 (V)および (VI)中、 R6、 R7、 R8、 R9、 R10、 R"、 R12、 R13、 R"、 R15および R16が表すアルキル基としては、例えばメチル基、ェチル基、プロピル基、 イソプロピル基、ブチル基、イソブチル基、 S ブチル基、 t ブチル基、ペンチル基、 へキシル基、ヘプチル基、ォクチル基、シクロペンチル基、シクロへキシル基、シクロ ヘプチル基、シクロォクチル基などが挙げられ、ァリール基としては、フエニル基、ナ フチル基などが挙げられる。これらの基は置換基を有していてもよぐかかる置換基と しては、例えばフヱニル基、トリル基、キシリル基などのフヱニル基などが挙げられる。 In the general formulas (IV), (V) and (VI), R 6 , R 7 , R 8 , R 9 , R 10 , R ", R 12 , R 13 , R", R 15 and R Examples of the alkyl group represented by 16 include a methyl group, an ethyl group, a propyl group, Isopropyl, butyl, isobutyl, S-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, etc. Examples of the group include a phenyl group and a naphthyl group. These groups may have a substituent, and examples of such a substituent include a phenyl group such as a phenyl group, a tolyl group and a xylyl group.
[0024] 前記一般式 (IV)で示される化合物の具体例としては、例えば水酸化リチウム、水 酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;水酸化カルシウム、水 酸化マグネシウム、水酸化バリウムなどのアルカリ土類金属水酸化物;リチウムメトキ シド、ナトリウムメトキシド、ナトリウムイソプロポキシド、ナトリウム s—ブトキシド、ナトリウ ムフエノキシド、ナトリウムベンジルォキシド、カリウムメトキシド、カリウムエトキシド、カリ ゥムイソプロポキシド、カリウム s—ブトキシド、カリウム t—ブトキシド、カリウムフエノキシ ド、カリウムベンジルォキシド、マグネシウムメトキシド、マグネシウムエトキシド、マグネ シゥムイソプロポキシド、マグネシウム s ブトキシド、マグネシウム tーブトキシド、マグ ネシゥムフエノキシド、マグネシウムベンジルォキシド、カルシウムメトキシド、カルシゥ ムェトキシド、カルシウムイソプロポキシド、カルシウム s ブトキシド、カルシウム tーブ トキシド、カルシウムフエノキシド、カルシウムベンジルォキシドなどが挙げられる。  Specific examples of the compound represented by the general formula (IV) include, for example, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; calcium hydroxide, magnesium hydroxide, and barium hydroxide. Alkaline earth metal hydroxides such as lithium methoxide, sodium methoxide, sodium isopropoxide, sodium s-butoxide, sodium phenoxide, sodium benzyloxide, potassium methoxide, potassium ethoxide, potassium isopropoxide , Potassium s-butoxide, potassium t-butoxide, potassium phenoxide, potassium benzyloxide, magnesium methoxide, magnesium ethoxide, magnesium isopropoxide, magnesium s-butoxide, magnesium t-butoxide, mag Nesium phenoxide, magnesium benzyl oxide, calcium methoxide, calcium methoxide, calcium isopropoxide, calcium s butoxide, calcium t butoxide, calcium phenoxide, calcium benzyl oxide and the like.
[0025] 前記一般式 (V)で示される化合物の具体例としては、例えばテトラメチルアンモニ ゥムヒドロキシド、テトラエチルアンモニゥムヒドロキシド、テトラー n—プロピルアンモニ ゥムヒドロキシド、トリイソプロピルアンモニゥムヒドロキシド、テトラ一 n—ブチルアンモ 二ゥムヒドロキシド、ベンジルトリメチルアンモニゥムヒドロキシド、テトラメチルアンモニ ゥムメトキシド、テトラメチルアンモニゥムェトキシド、テトラメチルアンモニゥム n—プロ ポキシド、テトラメチルアンモニゥムフエノキシド、テトラェチルアンモニゥムメトキシド、 テトラエチルアンモニゥムェトキシド、テトラエチルアンモニゥムプロポキシド、テトラエ チルアンモニゥムフエノキシド、テトラ _n—プロピルアンモニゥムメトキシド、テトラ一 n —プロピルアンモニゥムェトキシド、トリイソプロピルアンモニゥムメトキシド、トリイソプロ ピルアンモニゥムェトキシド、テトラ一 n—ブチルアンモニゥムメトキシド、テトラ _n_ ブチルアンモニゥムェトキシド、テトラ _n—ブチルアンモニゥムフヱノキシド、ベンジ ルトリメチルアンモニゥムメトキシド、ベンジルトリメチルアンモニゥムェトキシド、ベンジ ルトリメチルアンモニゥムフエノキシドなどが挙げられる。 [0025] Specific examples of the compound represented by the general formula (V) include, for example, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, triisopropylammonium hydroxide, and tetra-n-ammonium hydroxide. —Butylammonium hydroxide, benzyltrimethylammonium hydroxide, tetramethylammonium methoxide, tetramethylammonium methoxide, tetramethylammonium n-propoxide, tetramethylammonium phenoxide, tetraethylammonium Methoxide, tetraethylammonium methoxide, tetraethylammonium propoxide, tetraethylammonium phenoxide, tetra_n-propylammonium methoxide, tetra-n- Propylammonium methoxide, triisopropylammonium methoxide, triisopropylammonium methoxide, tetra-n-butylammonium methoxide, tetra_n_butylammonium methoxide, tetra_n-butylammonium Mphenoxide, benzyltrimethylammonium methoxide, benzyltrimethylammonium methoxide, benzyl Rutrimethylammonium phenoxide and the like.
[0026] 前記一般式 (VI)で示される化合物の具体例としては、例えばテトラメチルホスホニ ゥムヒドロキシド、テトラエチルホスホニゥムヒドロキシド、テトラー n—プロピルホスホニ ゥムヒドロキシド、トリイソプロピルホスホニゥムヒドロキシド、テトラ一 n_ブチルホスホ 二ゥムヒドロキシド、ベンジノレトリメチノレホスホニゥムヒドロキシド、テトラフエ二ノレホスホ ユウムヒドロキシド、テトラメチルホスホニゥムメトキシド、テトラエチルホスホニゥムメトキ シド、テトラ _n—プロピルホスホニゥムメトキシド、トリイソプロピルホスホニゥムメトキシ ド、テトラ一 n_ブチルホスホニゥムメトキシド、テトラ一 n_ブチルホスホニゥムエトキシ ド、テトラ一 n_ブチルホスホニゥムフヱノキシド、ベンジルトリメチルホスホニゥムェトキ シド、テトラフェニルホスホニゥムメトキシド、テトラフェニルホスホニゥムェトキシド、テト ラフェニルホスホニゥムフエノキシドなどが挙げられる。  Specific examples of the compound represented by the general formula (VI) include, for example, tetramethylphosphonium hydroxide, tetraethylphosphonium hydroxide, tetra-n-propylphosphonium hydroxide, triisopropylphosphonium hydroxide, I-n-butylphosphonium hydroxide, benzinoletrimethinolephosphonium hydroxide, tetraphenylphosphonium methoxide, tetramethylphosphonium methoxide, tetraethylphosphonium methoxide, tetra_n-propylphosphonium methoxide, Triisopropylphosphonium methoxide, tetra-n_butylphosphonium methoxide, tetra-n_butylphosphonium methoxide, tetra-n_butylphosphonium phenoxide, benzyltrimethylphosphonium methoxide · The Sid, tetraphenyl phosphonyl © beam methoxide, tetraphenyl phosphonyl © Mue butoxide, etc. tetra- phenyl phosphonyl © Muhu enoki Sid and the like.
[0027] 力、かる塩基性物質の使用量は、パラジウム化合物中のパラジウム原子 1モルに対し て 0.:!〜 10000モルの範囲であるのが好ましぐ:!〜 3000モルの範囲であるのがよ り好ましい。  [0027] The amount of the basic substance used is preferably in the range of 0 :! to 10000 mol per 1 mol of palladium atom in the palladium compound: in the range of! To 3000 mol. Is more preferred.
[0028] 本発明は、溶媒の存在下または不存在下に実施できる。力かる溶媒としては、例え ばブタン、イソブタン、ブテン、イソブテン、ペンタン、へキサン、シクロへキサン、ベン ゼン、トルエン、キシレンなどの炭化水素;ジクロロメタン、 1, 2—ジクロロェタン、クロ 口ホルムなどのハロゲン化炭化水素;テトラヒドロフラン、ジペンチルエーテル、ジへキ シルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチ ノレエーテル、テトラエチレングリコールジメチルエーテルなどのエーテノレ;ホルムアミド 、ァセトアミド、 N, N ジメチルホルムアミド、 1—メチル 2—ピロリジノンなどのアミド などが挙げられる。溶媒は 1種を単独で使用してもよいし、 2種以上を併用してもよい 。溶媒の存在下に実施する場合、溶媒の使用量に特に制限はないが、通常、共役ジ ェン化合物に対して 0. 01〜 10倍質量の範囲である。  [0028] The present invention can be carried out in the presence or absence of a solvent. Examples of strong solvents include hydrocarbons such as butane, isobutane, butene, isobutene, pentane, hexane, cyclohexane, benzene, toluene, and xylene; halogens such as dichloromethane, 1,2-dichloroethane, and chloroform. Hydrocarbons; ethers such as tetrahydrofuran, dipentyl ether, dihexyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethylene ether, and tetraethylene glycol dimethyl ether; formamide, acetoamide, N, N dimethylformamide, 1-methyl 2-pyrrolidinone Amides and the like. One type of solvent may be used alone, or two or more types may be used in combination. When the reaction is carried out in the presence of a solvent, the amount of the solvent used is not particularly limited, but is usually in the range of 0.01 to 10 times the mass of the conjugated diene compound.
[0029] 反応温度は 0〜: 150°Cの範囲であるのが好ましぐ 20〜: 110°Cの範囲であるのがよ り好ましい。 0°C未満の場合には反応速度が極めて遅くなる傾向となり、また 150°Cを 超える場合には副生物が増加する傾向にある。  [0029] The reaction temperature is preferably in the range of 0 to: 150 ° C, more preferably in the range of 20 to: 110 ° C. When the temperature is lower than 0 ° C, the reaction rate tends to be extremely slow, and when the temperature exceeds 150 ° C, by-products tend to increase.
反応圧力は、 0.:!〜 3MPaの範囲であるのが好ましい。 また、反応は窒素、アルゴンなどの不活性ガス雰囲気下に実施するのが好ましい。 The reaction pressure is preferably in the range from 0 :! to 3 MPa. The reaction is preferably performed in an atmosphere of an inert gas such as nitrogen or argon.
[0030] 本発明では、テロメリ化反応の途中、具体的には共役ジェン化合物の転化率が 35 %、より好ましくは 50%、さらに好ましくは 70%を越えた時点で、ホスフィン化合物(II I)を添加する。これにより、残留している共役ジェンィ匕合物の濃度の低下に伴なう反 応速度の低下を抑制、または反応速度を向上させ、反応系内の共役ジェン化合物 の転化率を高めることができる。特に本発明の方法は、低純度の共役ジェン化合物 を使用する場合、例えば「粗ブタジエン」を使用するときにもかかる効果が得られる点 で優れている。本発明は、最初からホスフィンィ匕合物(III)を添カ卩するのではなぐ前 記のように、テロメリ化反応の途中でホスフィン化合物(III)を添加することにより、転 化率および選択率を同時に高めることに成功したものである。  In the present invention, during the telomerization reaction, specifically, when the conversion of the conjugated diene compound exceeds 35%, more preferably 50%, and even more preferably 70%, the phosphine compound (II I) Is added. As a result, it is possible to suppress a decrease in the reaction rate due to a decrease in the concentration of the remaining conjugated conjugate, or to increase the reaction rate, thereby increasing the conversion of the conjugated gen compound in the reaction system. . In particular, the method of the present invention is excellent in that such effects can be obtained when a low-purity conjugated diene compound is used, for example, when “crude butadiene” is used. According to the present invention, the conversion and selectivity can be improved by adding the phosphine compound (III) during the telomerization reaction, as described above, without adding the phosphine compound (III) from the beginning. At the same time.
なお、ホスフィン化合物(III)の添加後は、添加前より反応温度を 1〜: 10°C上昇させ ることにより、反応がより円滑に進行することがある。  After the addition of the phosphine compound (III), the reaction may proceed more smoothly by increasing the reaction temperature by 1 to 10 ° C. before the addition.
また、共役ジェン化合物の転化率は、反応混合液の一部を抜き取り、後述のガスク 口マトグラフィー分析をすることにより測定できる。  The conversion of the conjugated diene compound can be measured by extracting a part of the reaction mixture and conducting gas chromatography analysis described later.
[0031] 前記一般式 (III)中、 R3
Figure imgf000012_0001
R5で表される炭素数 1〜: 10のアルキル基としては、 例えばメチル基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、イソブチ ル基、 t ブチル基、 n プチル基、 n—ォクチル基、 n ノニル基、 n デシル基な どが挙げられる。
In the above general formula (III), R 3
Figure imgf000012_0001
The number of carbon atoms represented by R 5. 1 to: The 10 alkyl group such as methyl group, Echiru radical, n-propyl group, an isopropyl radical, n-butyl group, Isobuchi Le group, t-butyl radical, n-heptyl group, n- Octyl, n-nonyl, n-decyl and the like.
[0032] ホスフィン化合物 (III)の具体例としては、例えばトリメチルホスフィン、トリェチルホ スフイン、トリプロピルホスフィン、トリイソプロピルホスフィン、トリブチルホスフィン、トリ イソブチルホスフィン、トリイソペンチルホスフィン、トリへキシルホスフィン、トリシクロへ キシルホスフィン、トリオクチルホスフィン、トリデシルホスフィンなどが挙げられる。ホス フィンィ匕合物(III)の使用量としては、パラジウム化合物中のパラジウム原子 1モルに 対して 0. 01 100モルの範囲であるのが好ましぐ 0. 05〜: 10モルの範囲であるの 力はり好ましぐ 0. :! 5モルの範囲であるのがさらに好ましレ、。 0. 01モル未満では 反応速度の改善に至らず、一方、 100モルを超えてもそれに見合う効果が薄ぐ経済 的に負担が大きくなるので好ましくない。  [0032] Specific examples of the phosphine compound (III) include, for example, trimethylphosphine, triethylphosphine, tripropylphosphine, triisopropylphosphine, tributylphosphine, triisobutylphosphine, triisopentylphosphine, trihexylphosphine, tricyclohexylphosphine. , Trioctylphosphine, tridecylphosphine and the like. The amount of the phosphine compound (III) to be used is preferably 0.01 to 100 mol per mol of palladium atom in the palladium compound, and is preferably in the range of 0.05 to 10 mol. 0.:! More preferably in the range of 5 moles. If the amount is less than 0.01 mol, the reaction rate will not be improved. On the other hand, if it exceeds 100 mol, the effect corresponding thereto will be weak and the burden on the economy will increase, which is not preferable.
[0033] また、本発明では、ホスフィン化合物(III)の添加時に、同時に水を添カ卩してもよい 。水の添加により、ホスフィン化合物(III)とイソシアニド化合物(II)の共存配位による 選択率の低下を抑制することができる。 In the present invention, water may be added simultaneously with the addition of the phosphine compound (III). . By adding water, it is possible to suppress a decrease in selectivity due to coordination of the phosphine compound (III) and the isocyanide compound (II).
水を添加する場合、その添加量は、パラジウム化合物中のパラジウム原子 1モルに 対して 10〜10000モルの範囲であるのが好ましぐ 20〜5000モルの範囲であるの 力はり好ましぐ反応速度の観点からは、 50〜2000モルの範囲であるのがさらに好 ましい。  When water is added, the amount of addition is preferably in the range of 10 to 10,000 mol per 1 mol of palladium atoms in the palladium compound, and is preferably in the range of 20 to 5000 mol. From the point of view of speed, it is more preferred that the range be 50 to 2000 mol.
本発明において、ホスフィン化合物(III)および水の添加方法に特に制限は無ぐ それぞれそのまま添加してもよレ、し、反応に使用するヒドロキシル化合物(I)および/ または前述の溶媒に希釈してから添加してもよい。  In the present invention, there is no particular limitation on the method of adding the phosphine compound (III) and water. May be added.
[0034] 反応時間は、ヒドロキシルイヒ合物(I)、共役ジェン化合物、イソシアニド化合物(II)、 パラジウム化合物、塩基性物質、ホスフィン化合物 (III)の種類や使用量、反応温度 および反応圧力などにより異なる力 通常、ホスフィン化合物(III)の添力卩前は 0. 5〜 10時間の範囲であり、ホスフィン化合物(III)の添加後は、 0. 5〜: 10時間の範囲で ある。  [0034] The reaction time depends on the type and amount of the hydroxyl hydride compound (I), the conjugated diene compound, the isocyanide compound (II), the palladium compound, the basic substance and the phosphine compound (III), the reaction temperature and the reaction pressure, and the like. Different forces Usually, the range of 0.5 to 10 hours before addition of the phosphine compound (III) and the range of 0.5 to 10 hours after addition of the phosphine compound (III).
[0035] 本発明の実施方法に特に制限はなぐ例えばバッチ式または連続式のいずれでも 実施できる。連続式の場合には、ピストンフロー型反応器または完全混合槽型反応 器のレ、ずれでも行うことができ、またこれらを組み合わせて行うこともできる。  There is no particular limitation on the method of carrying out the present invention, and for example, it can be carried out either in a batch system or a continuous system. In the case of the continuous type, the reaction can be performed even if the piston flow type reactor or the complete mixing tank type reactor is shifted, or a combination thereof can be performed.
具体的な反応方法としては、バッチ式では、例えば、窒素雰囲気下、ヒドロキシノレ 化合物 (I)、塩基性物質、パラジウム化合物、イソシアニドィ匕合物 (II)および必要に 応じて溶媒を混合し、得られた混合液に共役ジェン化合物を添加し、所定温度、所 定圧力で、所定時間反応させ、次いで反応系にホスフィン化合物(III)および必要に 応じて水を添加してから、さらに所定時間反応させることにより実施できる。  As a specific reaction method, in a batch method, for example, under a nitrogen atmosphere, a hydroxynole compound (I), a basic substance, a palladium compound, an isocyanide ligated compound (II) and, if necessary, a solvent are mixed, A conjugated gen compound is added to the obtained mixture, and the mixture is reacted at a predetermined temperature and a predetermined pressure for a predetermined time. Then, the phosphine compound (III) and, if necessary, water are added to the reaction system. The reaction can be carried out.
また、連続式では、例えば、窒素雰囲気下、ヒドロキシルイ匕合物 (1)、塩基性物質、 パラジウム化合物、イソシアニド化合物(II)および必要に応じて溶媒を混合し、さらに 所定量の共役ジェン化合物を添加する。得られた混合液を連続的または断続的に 第一槽に移送し、所定時間反応させた後、第一槽力 連続的または断続的に反応 液を抜き出し、ホスフィン化合物(III)および必要に応じて水を添加してから連続的ま たは断続的に第 2槽に移送し、さらに所定時間反応させることにより実施できる。 [0036] 反応終了後、得られた反応混合液からのエーテル類の分離精製は、通常の有機 化合物の分離精製方法を用いることができる。例えば、未反応原料や必要に応じて 添加した溶媒を留去した後、その残留物から必要に応じて薄膜蒸留、デカンテーショ ン、抽出、吸着法などにより触媒成分を分離し、得られた残留物を蒸留、再結晶また はカラムクロマトグラフィーなどで精製することにより、純度の高いエーテル類を得るこ とができる。 In the continuous method, for example, under a nitrogen atmosphere, a hydroxyl conjugate (1), a basic substance, a palladium compound, an isocyanide compound (II) and, if necessary, a solvent are mixed. Is added. The resulting mixture is continuously or intermittently transferred to the first tank and reacted for a predetermined time. After the reaction in the first tank, the reaction liquid is continuously or intermittently withdrawn, and the phosphine compound (III) and, if necessary, The water can be transferred to the second tank continuously or intermittently after the addition of water, and further reacted for a predetermined time. [0036] After completion of the reaction, ethers can be separated and purified from the reaction mixture obtained by a conventional method for separating and purifying organic compounds. For example, after distilling off the unreacted raw materials and the solvent added as necessary, the catalyst component is separated from the residue by thin-film distillation, decantation, extraction, adsorption, etc. as necessary, and the resulting residue is obtained. By purifying the product by distillation, recrystallization or column chromatography, ethers with high purity can be obtained.
実施例  Example
[0037] 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に より何ら限定されるものではない。なお、各実施例および比較例におけるガスクロマト グラフィー分析は以下の手順で実施した。  Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. The gas chromatographic analysis in each example and comparative example was performed according to the following procedure.
[0038] [ガスクロマトグラフィー分析]  [Gas chromatography analysis]
装置: GC— 14B (島津製作所製)  Equipment: GC-14B (manufactured by Shimadzu Corporation)
使用カラム: DB— WAX (lOm) (アジレントテクノロジーズ社製)  Column used: DB—WAX (lOm) (Agilent Technologies)
分析条件: injection temp.220°C、 detection temp.250°C、昇温条件; 40°Cで 8分 保持→15°C/分で昇温→240°Cで 30分保持  Analysis conditions: injection temp. 220 ° C, detection temp. 250 ° C, temperature rise condition; hold at 40 ° C for 8 minutes → heat up at 15 ° C / min → hold at 240 ° C for 30 minutes
また、実施例および比較例で使用した「粗ブタジエン」の成分分布を以下に示す。  The component distribution of “crude butadiene” used in Examples and Comparative Examples is shown below.
[粗ブタジエン中の成分]  [Components in crude butadiene]
1 , 3 _ブタジエン: 41. 1質量0 /0、 1 , 2 _ブタジエン: 0. 3質量0 /01, 3 _ butadiene: 41.1 mass 0/0, 1, 2 _ Butadiene: 0.3 mass 0/0,
ブテン類: 43. 0質量%、ブタン類: 10. 3質量%、  Butenes: 43.0% by mass, butanes: 10.3% by mass,
アセチレン類: 0. 04質量%、その他: 5. 26質量0 /0 Acetylenes: 0.04 mass%, Other: 5.26 mass 0/0
[0039] ぐ実施例 1 > Example 1
窒素雰囲気下、内容積 100mlの三口フラスコにメタノール 23. 7g (0. 74mol)、ナ トリウムメトキシド 12. 8mg (0. 24mmol)、 t—ブチノレイソシアニド 0. 98mg (0. 012 mmol)、パラジウムァセチルァセトナート 0. 72mg (0. 0024mmol)を溶解させて混 合液を得た。得られた混合液を、窒素雰囲気下、撹拌装置を備えた内容積 lOOmL のオートクレーブに仕込み、次いで液状の 1 , 3—ブタジエン 30mL (18. 9g、 0. 35 mol)を圧送して仕込んだ。この混合液を撹拌しながら加熱し、 100°Cに到達した後、 同温度で 3時間攪拌した。ガスクロマトグラフィー分析により、この時点で 1 , 3—ブタ ジェンの転化率が 74%であることを確認した。その後、トリェチルホスフィン 0. 56g ( 0. 0047mmol)、 7^42. 6mg (2. 4mmol)およびメタノーノレ 2. 37g (0. 074mol)を 添加し、 100°Cのまま、さらに 3時間攪拌した。 In a nitrogen atmosphere, 23.7 g (0.74 mol) of methanol, 12.8 mg (0.24 mmol) of sodium methoxide, 0.98 mg (0.012 mmol) of t-butynoleisocyanide, palladium in a 100 ml three-necked flask under a nitrogen atmosphere 0.72 mg (0.0024 mmol) of acetyl acetonate was dissolved to obtain a mixed solution. The obtained mixture was charged in a 100 mL autoclave equipped with a stirrer under a nitrogen atmosphere, and then 30 mL (18.9 g, 0.35 mol) of liquid 1,3-butadiene was charged by pressure. The mixture was heated with stirring, and after reaching 100 ° C., was stirred at the same temperature for 3 hours. Gas chromatography analysis shows that at this point 1,3-pig Gen conversion was confirmed to be 74%. Thereafter, 0.56 g (0.0047 mmol) of triethylphosphine, 7 ^ 42.6 mg (2.4 mmol) and 2.37 g (0.074 mol) of methanol were added, and the mixture was further stirred at 100 ° C for 3 hours.
得られた反応混合液の一部を抜き取り、ガスクロマトグラフィー分析をしたところ、 1 , 3_ブタジエンの転化率は 98%であり、 1—メトキシ一2, 7—ォクタジェンの選択率 力 1%、 3—メトキシ一 1, 7—ォクタジェンの選択率が 5. 9%であり、ビュルシク 口へキセンと 1 , 3, 7—オタタトリエンの選択率は合計 3%以下であった。  A part of the obtained reaction mixture was extracted and analyzed by gas chromatography. The conversion of 1,3-butadiene was 98%, and the selectivity of 1-methoxy-1,2,7-octadiene was 1%. The selectivity for 3-methoxy-1,7-octadiene was 5.9%, and the selectivity for bürsik-mouth hexene and 1,3,7-otatatriene was less than 3% in total.
[0040] ぐ実施例 2 > Example 2>
実施 ί列: Uこおレヽて、トリェチノレホスフィン 0. 56g (0. 0047mmol)の代わり ίこトリブ チルホスフィン 0. 95g (0. 0047mmol)を用いた以外は、実施例 1と同様にして反応 および分析を行った。 1 , 3 _ブタジエンの転化率は 98%であり、生成物のうち 1—メ トキシ一 2, 7—ォクタジェンの選択率は 87. 8%、 3—メトキシ一 1 , 7—ォクタジェン の選択率は 6. 3%であり、ビニルシクロへキセンと 1 , 3, 7—オタタトリエンの選択率 は合計 3%以下であった。  Sequence of execution: U was prepared in the same manner as in Example 1 except that 0.95 g (0.0047 mmol) of tributyl phosphine was used instead of 0.56 g (0.0047 mmol) of triethynolephosphine. Reaction and analysis were performed. The conversion of 1,3-butadiene is 98%, the selectivity for 1-methoxy-1,2,7-octadiene is 87.8%, and the selectivity for 3-methoxy-1,1,7-octadiene is 98%. The selectivity of vinylcyclohexene and 1,3,7-otatatriene was less than 3% in total.
[0041] <実施例 3 > <Example 3>
実施 f列: Uこおレヽて、トリェチノレホスフィン 0. 56g (0. 0047mmol)、水 42. 6mg (2. 4mmol)およびメタノーノレ 3. 0mL (2. 37g)の代わりに、トリェチノレホスフィン 0. 56g (0. 0047mmolおよびメタノール 3· 0mL (2. 37g)のみを添加した以外は、実施例 1と同様にして反応および分析を行った。 1, 3 ブタジエンの転化率は 98%であり、 1ーメトキシー 2, 7 ォクタジェンの選択率は 87· 5%、 3—メトキシ 1, 7 ォクタジ ェンの選択率は 10. 5%であり、ビニルシクロへキセンと 1, 3, 7—オタタトリエンの選 択率は合計 2%以下であった。  Row f: U-core, 0.56 g (0.0047 mmol) of triethynolephosphine, 42.6 mg (2.4 mmol) of water and 3.0 mL (2.37 g) of methanol The reaction and analysis were carried out as in Example 1 except that only 0.56 g (0.0047 mmol and 3.0 mL (2.37 g) of methanol were added. The conversion of 1,3 butadiene was 98%. The selectivity of 1-methoxy-2,7-octadiene was 87.5%, the selectivity of 3-methoxy1,7-octadiene was 10.5%, and the selectivity of vinylcyclohexene and 1,3,7-otatatriene The rate was less than 2% in total.
[0042] ぐ実施例 4 > Example 4>
実施 ί列: Uこおレヽて、水 42. 6mg (2. 4mmol)を水 85. 2mg (4. 8mmol) (こ曽量し て添加した以外は実施例 1と同様にして反応および分析を行った。 1, 3 _ブタジエン の転化率は 99%であり、 1—メトキシ一 2, 7—ォクタジェンと 3—メトキシ一 1 , 7—ォ クタジェンの選択率が 90. 3%、 5. 1%であり、ビュルシクロへキセンと 1, 3, 7—オタ タトリエンの選択率は合計 3%以下であった。 [0043] <実施例 5 > Execution sequence: The reaction and analysis were performed in the same manner as in Example 1 except that 42.6 mg (2.4 mmol) of water and 85.2 mg (4.8 mmol) of water were added. The conversion of 1,3-butadiene was 99%, and the selectivities of 1-methoxy-1,2,7-octadiene and 3-methoxy-1,7,7-octadiene were 90.3% and 5.1%. The selectivity for bulcyclohexene and 1,3,7-otatatriene was less than 3% in total. <Example 5>
窒素雰囲気下、内容積 100mlの三口フラスコにメタノール 23. 7g (0. 74mol)、ナ トリウムメトキシド 12· 8mg (0. 24mmol)、 t ブチルイソシアニド 0· 98mg (0. 012 mmol)、パラジウムァセチルァセトナート 0. 72mg (0. 0024mmol)を溶解させて混 合液を得た。得られた混合液を、窒素雰囲気下、撹拌装置を備えた内容積 lOOmL のオートクレーブに仕込み、次いで液状の「粗ブタジエン」 77mL (l , 3—ブタジエン 18. 9g、 0. 35molに相当する)を圧送して仕込んだ。この混合液を撹拌しながら加 熱し、 100°Cに到達した後、同温度で 3時間攪拌した。ガスクロマトグラフィー分析に より、この時点で 1, 3 _ブタジエンの転化率が 52%であることを確認した。その後、ト リエチノレホスフィン 0. 56g (0. 0047mmol)、水 42. 6mg (2. 4mmol)およびメタノ 一ノレ 2. 37g (0. 074mol)を添カロし、 100°Cのまま、さらに 3時間攪拌した。  Under a nitrogen atmosphere, 33.7 g (0.74 mol) of methanol, 12.8 mg (0.24 mmol) of sodium methoxide, 0.98 mg (0.012 mmol) of t-butyl isocyanide, palladium acetyl 0.72 mg (0.20024 mmol) of acetonato was dissolved to obtain a mixed solution. The obtained mixture is charged in an autoclave having an internal volume of 100 mL equipped with a stirrer under a nitrogen atmosphere, and then 77 mL of liquid "crude butadiene" (18.9 g of 1,3-butadiene, equivalent to 0.35 mol) is added. It was pumped and charged. The mixture was heated with stirring, and after reaching 100 ° C, the mixture was stirred at the same temperature for 3 hours. Gas chromatography analysis confirmed that the conversion of 1,3-butadiene was 52% at this time. Thereafter, 0.56 g (0.0047 mmol) of triethynolephosphine, 42.6 mg (2.4 mmol) of water and 2.37 g (0.074 mol) of methanol were added to the mixture, and the mixture was kept at 100 ° C for 3 more minutes. Stirred for hours.
得られた反応混合液の一部を抜き取り、ガスクロマトグラフィー分析をしたところ、粗 ブタジエン中の 1 , 3 ブタジエンの転化率は 98%であり、 1ーメトキシ 2, 7—オタ タジェンの選択率が 89. 1%、 3—メトキシ 1, 7 ォクタジェンの選択率が 6. 1 % であり、ビニルシクロへキセンと 1 , 3, 7—オタタトリエンの選択率は合計 3%以下であ つに。  A part of the obtained reaction mixture was sampled and analyzed by gas chromatography. The conversion of 1,3-butadiene in the crude butadiene was 98%, and the selectivity for 1-methoxy 2,7-otatagene was 89%. The selectivity for 1%, 3-methoxy 1,7 octadiene is 6.1%, and the selectivity for vinylcyclohexene and 1,3,7-otatatriene is less than 3% in total.
[0044] <比較例 1 >  <Comparative Example 1>
窒素雰囲気下、内容積 lOOmLのオートクレーブにメタノール 23. 7g (0. 74mol)、 ナトリウムメトキシド 12· 8mg (0. 24mmol)、 t ブチルイソシアニド 0· 98mg (0. 01 2mmol)、パラジウムァセチルァセトナート 0· 72mg (0. 0024mmol)、トリェチルホ スフイン 0. 56g (0. 0047mmol)を混合し、 1 , 3 ブタジエン 30mL (18. 9g、 0. 35 mol)を圧送して仕込んだ。撹拌しながら加熱し、 100°Cに到達した後、同温度で 3時 間攪拌した。反応混合液の一部を抜き取り、ガスクロマトグラフィー分析をしたところ、 1 , 3_ブタジエンの転化率は 98%であり、 1—メトキシ一 2, 7—ォクタジェンの選択 率は 59. 4%、 3 メトキシ一 1, 7—ォクタジェンの選択率は 34. 7%であり、ビュル シクロへキセンと 1, 3, 7—オタタトリエンの選択率は合計 3%以下であった。  Under a nitrogen atmosphere, 23.7 g (0.74 mol) of methanol, 12.8 mg (0.24 mmol) of sodium methoxide, 0.98 mg (0.02 mmol) of t-butyl isocyanide, palladium acetyl acetate 0.72 mg (0.0024 mmol) of nate and 0.56 g (0.0047 mmol) of triethylphosphine were mixed, and 30 mL (18.9 g, 0.35 mol) of 1,3-butadiene was charged under pressure. The mixture was heated with stirring, and after reaching 100 ° C, the mixture was stirred at the same temperature for 3 hours. A part of the reaction mixture was sampled and analyzed by gas chromatography. The conversion of 1,3-butadiene was 98%, and the selectivity of 1-methoxy-1,2,7-octadiene was 59.4%, 3 The selectivity for methoxy-1,7-octadiene was 34.7%, and the selectivity for bulcyclohexene and 1,3,7-otatatriene was less than 3% in total.
[0045] <比較例 2 >  <Comparative Example 2>
窒素雰囲気下、内容積 100mlの三口フラスコにメタノール 23. 7g (0. 74mol)、ナ トリウムメトキシド 12· 8mg (0. 24mmol)、 t—ブチルイソシアニド 0· 98mg (0. 012 mmol)、パラジウムァセチルァセトナート 0· 72mg (0. 0024mmol)を溶解させて混 合液を得た。得られた混合液を、窒素雰囲気下、撹拌装置を備えた内容積 lOOmL のオートクレーブに仕込み、次いで液状の「粗ブタジエン」 77mL (l , 3—ブタジエン 18. 9g、 0. 35molに相当する)を圧送して仕込んだ。この混合液を撹拌しながら加 熱し、 100°Cに到達した後、同温度で 6時間攪拌した。 Under a nitrogen atmosphere, 23.7 g (0.74 mol) of methanol was placed in a 100 ml three-necked flask. 12.8 mg (0.24 mmol) of thorium methoxide, 0.98 mg (0.012 mmol) of t-butyl isocyanide, 0.72 mg (0.20024 mmol) of palladium acetyl acetonate were dissolved to obtain a mixed solution. . The obtained mixture is charged in an autoclave having an internal volume of 100 mL equipped with a stirrer under a nitrogen atmosphere, and then 77 mL of liquid "crude butadiene" (18.9 g of 1,3-butadiene, equivalent to 0.35 mol) is added. It was pumped and charged. The mixture was heated with stirring, and after reaching 100 ° C., the mixture was stirred at the same temperature for 6 hours.
得られた反応混合液の一部を抜き取り、ガスクロマトグラフィー分析をしたところ、粗 ブタジエン中の 1 , 3 _ブタジエンの転化率は 48%であり、 1—メトキシ一 2, 7—オタ タジェンの選択率が 90. 1%、 3—メトキシ一 1, 7—ォクタジェンの選択率が 3. 1 % であり、ビュルシクロへキセンと 1 , 3, 7—オタタトリエンの選択率は合計 3%以下であ つた。  A part of the obtained reaction mixture was extracted and subjected to gas chromatography analysis. The conversion of 1,3-butadiene in the crude butadiene was 48%, and the selection of 1-methoxy-1,2,7-otatagene was performed. The selectivity was 90.1%, the selectivity for 3-methoxy-1,7-octadiene was 3.1%, and the selectivity for bulcyclohexene and 1,3,7-otatatriene was less than 3% in total.
実施例 1〜4および比較例 1より、イソシアニド化合物(II)とホスフィン化合物 (III)を 最初から併せて添加した場合には目的化合物の選択率が低くなり、本発明の方法に 従った場合には、 目的化合物の選択率を非常に高められることがわかった。また、実 施例 5および比較例 2より、「粗ブタジエン」を原料に用いた場合、テロメリ化反応の途 中でホスフィンィ匕合物(III)を反応系に添加することにより(実施例 5)、添加しなかつ た場合 (比較例 2)に比べ、転化率が大幅に向上し、反応速度が向上したことがわか る。  From Examples 1 to 4 and Comparative Example 1, when the isocyanide compound (II) and the phosphine compound (III) were added together from the beginning, the selectivity of the target compound was low, and when the method of the present invention was followed. Was found to greatly increase the selectivity of the target compound. Also, from Example 5 and Comparative Example 2, when “crude butadiene” was used as a raw material, the phosphine conjugate (III) was added to the reaction system during the telomerization reaction (Example 5). It can be seen that the conversion was greatly improved and the reaction rate was improved as compared with the case where no addition was made (Comparative Example 2).

Claims

請求の範囲 [1] 一般式 (I) Claims [1] General formula (I)
[化 1] R'OH (I)  [Formula 1] R'OH (I)
(式中、 R1は置換基を有してレ、てもよレ、アルキル基または置換基を有してレ、てもよレヽ ァリール基を表す。 ) (In the formula, R 1 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted realyl group.)
で示されるヒドロキシノレ化合物の存在下における共役ジェンィ匕合物のテロメリ化反応 において、まず、パラジウム化合物、一般式 (II)  In the telomerization reaction of the conjugated conjugate in the presence of the hydroxy compound represented by the formula, first, a palladium compound, a general formula (II)
[化 2] R2NC (II) [Formula 2] R 2 NC (II)
(式中、 R2は置換基を有していてもよい第 3級アルキル基を表す。) (In the formula, R 2 represents a tertiary alkyl group which may have a substituent.)
で示される第 3級イソシアニド化合物および塩基性物質の存在下に前記反応を行い The above reaction is carried out in the presence of a tertiary isocyanide compound represented by
、次に一般式 (III) And then general formula (III)
[化 3] PR3R4R5 (III) [Chemical Formula 3] PR 3 R 4 R 5 (III)
(式中、 R3、 R4および R5は、それぞれ独立して炭素数:!〜 10のアルキル基を表す。 ) で示される第 3級ホスフィン化合物を添加して、引き続き反応を行うことを特徴とする エーテル類の製造方法。 (Wherein, R 3 , R 4 and R 5 each independently represent an alkyl group having from! To 10 carbon atoms.) A tertiary phosphine compound represented by the formula: A method for producing ethers.
[2] 共役ジェン化合物の転化率が 35%以上になつてから第 3級ホスフィン化合物を添 加する、請求項 1に記載のエーテル類の製造方法。  [2] The method for producing ethers according to claim 1, wherein the tertiary phosphine compound is added after the conversion of the conjugated diene compound reaches 35% or more.
[3] 共役ジェン化合物が 1 , 3_ブタジエンまたはイソプレンである、請求項 1または請 求項 2に記載のエーテル類の製造方法。 [3] The method for producing ethers according to claim 1 or claim 2, wherein the conjugated diene compound is 1,3-butadiene or isoprene.
[4] 共役ジェン化合物が粗ブタジエンである、請求項 1または請求項 2に記載のエーテ ル類の製造方法。 [4] The method for producing ethers according to claim 1 or 2, wherein the conjugated diene compound is crude butadiene.
[5] 第 3級ホスフィン化合物の添加と同時に水を添加する請求項:!〜 4のいずれか 1項 に記載のエーテル類の製造方法。  [5] The method for producing ethers according to any one of [1] to [4], wherein water is added simultaneously with the addition of the tertiary phosphine compound.
PCT/JP2005/010504 2004-06-11 2005-06-08 Method for producing ethers WO2005121059A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/628,865 US7728180B2 (en) 2004-06-11 2005-06-08 Method for producing ethers
CA002569017A CA2569017C (en) 2004-06-11 2005-06-08 Method for producing ethers
EP05748587A EP1760061A4 (en) 2004-06-11 2005-06-08 METHOD FOR THE PRODUCTION OF ETHERS
JP2006514548A JPWO2005121059A1 (en) 2004-06-11 2005-06-08 Method for producing ethers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-174208 2004-06-11
JP2004174208 2004-06-11

Publications (1)

Publication Number Publication Date
WO2005121059A1 true WO2005121059A1 (en) 2005-12-22

Family

ID=35502986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010504 WO2005121059A1 (en) 2004-06-11 2005-06-08 Method for producing ethers

Country Status (6)

Country Link
US (1) US7728180B2 (en)
EP (1) EP1760061A4 (en)
JP (1) JPWO2005121059A1 (en)
CN (1) CN1972888A (en)
CA (1) CA2569017C (en)
WO (1) WO2005121059A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153738A (en) 2005-11-30 2007-06-21 Kuraray Co Ltd Mixture containing 1,3-butadiene and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843327B1 (en) * 1969-03-19 1973-12-18
JP2003334450A (en) * 2002-05-21 2003-11-25 Kuraray Co Ltd Telomerization reaction catalyst
JP2004137237A (en) * 2002-10-21 2004-05-13 Kuraray Co Ltd Method for producing ethers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887627A (en) 1969-03-19 1975-06-03 Exxon Research Engineering Co Preparation of unsaturated alcohols and ethers
US3670029A (en) 1969-03-19 1972-06-13 Exxon Research Engineering Co Preparation of unsaturated ethers
JPS4843327A (en) 1971-09-30 1973-06-22
DE10128144A1 (en) 2001-06-09 2002-12-12 Oxeno Olefinchemie Gmbh Process for the telomerization of non cyclic olefins having at least two conjugated double bonds or mixtures containing olefins, with nucleophiles comprises use of palladium carbene complexes.
EP1591162A4 (en) * 2003-01-21 2009-08-05 Kuraray Co PROCESS FOR PRODUCING ETHERS
JP4421310B2 (en) 2003-01-21 2010-02-24 株式会社クラレ Method for producing ethers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843327B1 (en) * 1969-03-19 1973-12-18
JP2003334450A (en) * 2002-05-21 2003-11-25 Kuraray Co Ltd Telomerization reaction catalyst
JP2004137237A (en) * 2002-10-21 2004-05-13 Kuraray Co Ltd Method for producing ethers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1760061A4 *

Also Published As

Publication number Publication date
CA2569017A1 (en) 2005-12-22
EP1760061A1 (en) 2007-03-07
JPWO2005121059A1 (en) 2008-04-10
US7728180B2 (en) 2010-06-01
CN1972888A (en) 2007-05-30
CA2569017C (en) 2009-08-18
US20080262272A1 (en) 2008-10-23
EP1760061A4 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
EP3142992B2 (en) Process for preparing an unsaturated carboxylic acid salt
CN106458824B (en) Method for preparing unsaturated carboxylic acid salt using aryl oxide
Kaneda et al. Selective telomerization of butadiene with various nucleophiles catalyzed by polymer-bound palladium (0) complexes
CN101270113B (en) Preparation of multi-chiral catalyst, and application of the catalyst in preparation of cyclic carbonates with high optical activity
JP4223085B2 (en) Method for producing tricyclodecanedialdehyde
WO2005121059A1 (en) Method for producing ethers
CN107438630B (en) Butadiene short-chain polymerization catalyst and preparation thereof
US20130123516A1 (en) Novel phosphine-based catalysts useful for the telomerization of butadiene
JP4421310B2 (en) Method for producing ethers
CN113651665B (en) Preparation method of myrcene
US7314961B2 (en) Process for production of ethers
JP2008247836A (en) Method for producing alcohols
JP2008179596A (en) Method for producing ethers
WO2006009167A1 (en) Method for producing ethers
Smedley et al. Alkylations of alkynols with organoaluminum reagents promoted by bis (. eta. 5-cyclopentadienyl) titanium dichloride
JP4494092B2 (en) Method for producing ethers
CN114644559A (en) Method for preparing flurbiprofen or flurbiprofen axetil
JP4233838B2 (en) Method for producing ethers
JP2009137843A (en) Method for producing non-conjugated diene compound
TWI423956B (en) Allyl compound isomerization method and manufacturing method thereof
JP4162968B2 (en) Method for producing ethers
KR101175203B1 (en) Manufacturing Method of Silylferrocene-HTPB Complex
JP2004123626A (en) Method for producing ethers
by Sml et al. Ri OAc R4/4R5 Pd (0)-Sml2 R^^ R3,^ чЛж
JPS6240342B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514548

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2569017

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580018932.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005748587

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005748587

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11628865

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载