+

WO2005117045A1 - コンデンサ及びその製造方法 - Google Patents

コンデンサ及びその製造方法 Download PDF

Info

Publication number
WO2005117045A1
WO2005117045A1 PCT/JP2005/009641 JP2005009641W WO2005117045A1 WO 2005117045 A1 WO2005117045 A1 WO 2005117045A1 JP 2005009641 W JP2005009641 W JP 2005009641W WO 2005117045 A1 WO2005117045 A1 WO 2005117045A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
capacitor element
metal case
terminal plate
terminal
Prior art date
Application number
PCT/JP2005/009641
Other languages
English (en)
French (fr)
Inventor
Teruhisa Miura
Hideki Simamoto
Tatehiko Inoue
Tsuyoshi Yoshino
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004159140A external-priority patent/JP2005340609A/ja
Priority claimed from JP2004365690A external-priority patent/JP4600028B2/ja
Priority claimed from JP2005019412A external-priority patent/JP4982949B2/ja
Priority claimed from JP2005038812A external-priority patent/JP2006228858A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN200580000805.5A priority Critical patent/CN1842882B/zh
Priority to US10/595,043 priority patent/US7457102B2/en
Priority to DE112005001007T priority patent/DE112005001007T5/de
Publication of WO2005117045A1 publication Critical patent/WO2005117045A1/ja
Priority to US12/256,694 priority patent/US7843680B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires

Definitions

  • the present invention relates to a capacitor used for regeneration of a hybrid car or a fuel cell vehicle, or for storage of electric power, and a method of manufacturing the same.
  • FIG. 23 is a cross-sectional view showing the configuration of a conventional capacitor of this type.
  • the ends of the pair of electrodes are in a state in which the electrode having the polarizable electrode layer formed on the current collector made of an aluminum foil and the separator interposed between the pair of electrodes.
  • the reverse direction so as to project in the reverse direction. That is, one end of the pair of electrodes projecting in the opposite direction in FIG. 23 is in contact with the inner bottom surface of the metal case 21, and the other end of the electrode is in contact with the surface of the aluminum lid 22. ing.
  • the anode and the cathode are respectively taken out in the vertical direction, that is, from both end surfaces of the capacitor element 20.
  • Capacitor element 20 and a driving electrolyte are accommodated in a metal case 21 made of aluminum.
  • a cathode terminal 21 a for external connection is provided on the bottom side of the metal case 21. Further, the end face on the cathode side of the capacitor element 20 is joined to the inner bottom surface of the metal case 21 by laser welding or the like, and mechanically and electrically connected.
  • the conventional capacitor is provided with a lid 22 made of aluminum, and the lid 22 is provided with an anode terminal 22 a for external connection. Further, the end face on the anode side of the capacitor element 20 is joined to the inner surface of the lid 22 by laser welding or the like, and mechanically and electrically connected. In addition, the peripheral edge of the lid 22 and the opening 23 of the metal case 21 are subjected to a so-called curling force processing in which an insulating member (not shown) is interposed between them and they are processed together. Sealed.
  • the conventional capacitor is provided with the anode terminal 22a and the cathode terminal 21a for external connection in the central axis direction of the metal case 21 (vertical direction when looking straight at FIG. 23).
  • a connecting member 24 called a bus bar (shown in FIG. 24 described later) and connecting the anode terminal 22a and the cathode terminal 21a (shown in FIG. It was used for electric power supply etc.
  • the anode terminal and the cathode terminal are drawn from the same direction.
  • lead members for external drawing are respectively connected to a pair of electrodes in which a polarizable electrode layer is formed on a current collector made of aluminum foil, and the pair of electrodes to which this lead member is connected are wound.
  • the positive and negative terminals can be pulled out in the same direction.
  • the entire end face force of the capacitor element 20 is also resistance compared to that of a configuration called end face current collection in which the entire end face force of the capacitor element 20 is drawn in order to pull out the electrode from one point (a plurality of places) of the strip-like long electrodes.
  • the problem is that the ingredients get bigger. Therefore, it can not be said that it is necessarily suitable for the system which connects a some capacitor
  • FIG. 25 is a cross-sectional view showing another configuration of the conventional capacitor.
  • 26A, 26B, 26C and 26D are respectively a perspective view of the surface side, a perspective view of the inner side, an A-A sectional view and a B-B sectional view showing the configuration of the terminal plate used in the same capacitor. It is.
  • a hollow portion 40a is provided substantially at the center of the capacitor element 40.
  • the capacitor element 40 is not shown, a pair of positive and negative electrodes in which a polarizable electrode layer is formed on a current collector which is also an aluminum foil are displaced in opposite directions from each other, and a separator is interposed therebetween. It is configured to rotate (not shown).
  • the anode and the cathode are respectively taken out from the both end faces of the capacitor element 40 (in the vertical direction when looking straight at FIG. 25).
  • Both the capacitor element 40 and the driving electrolyte are bottomed cylinders made of aluminum.
  • a metal case 41 of A protrusion 41a integrally provided on the inner bottom surface is provided to be fitted into the hollow portion 40a of the capacitor element 40.
  • the projection 41a is fitted in the hollow portion 40a, and the end face on the cathode side of the capacitor element 40 inserted in the metal case 41 is mechanically and electrically joined to the inner bottom surface of the metal case 41 by laser welding or the like.
  • An anode terminal 42 a for external connection is integrally formed on the surface side of the terminal plate 42 made of aluminum.
  • a junction 42 b is formed on the end face of the capacitor 40 on the anode side.
  • a projection 42c to be fitted into the hollow portion 40a of the capacitor element 40 and a safety valve mounting hole 42d also serving as an electrolyte injection portion are respectively provided.
  • the end face on the anode side of the capacitor element 40 and the joint portion 42b are mechanically and electrically connected by joining them by laser welding or the like.
  • the opening of the metal case 41 is interposed between the insulating sealing rubbers 43 so as to be wound. A so-called curling process is applied and sealed.
  • the conventional capacitor thus configured is configured to take out the anode terminal 42 a for external connection provided on the terminal plate 42 and take out the cathode terminal from the metal case 41. By connecting and connecting a plurality of these capacitors, it is used as a capacitor unit as a backup power supply for vehicles.
  • FIG. 27 is a cross-sectional view showing still another example of this type of conventional capacitor.
  • a strip plate cathode terminal 44 a for external connection is integrally formed on the bottom of the metal case 44.
  • the anode terminal 45a for external connection is extended to the outer periphery of the terminal plate 45 provided on the front side, and the peripheral portion of the terminal plate 45 and the opening of the metal case 44 are interposed between them. It is sealed and structured by processing (generally called double-winding) so as to be wound together. The rest of the configuration is the same as the capacitor shown in Figure 25.
  • the conventional terminal plate 42 is exposed to the outer surface, and the open end of the metal case 41 is drawn on the outer periphery thereof via the sealing rubber 43.
  • a plurality of bonding portions 42b to which the end surface of the capacitor element 40 on the anode side is bonded are radially provided so that the reference surface force is also recessed on the inner surface side.
  • the anode of capacitor element 40 The end face force on the side is also the dimension from the reference plane to the joint portion 42b (equivalent to the depressed dimension) from the reference surface to the dimension of the processed portion of the rubber 13 and the metal case 41 after curling
  • the ratio of the overall height of the capacitor to the total size can not be ignored.
  • the present invention solves such conventional problems, and provides a capacitor capable of achieving downsizing and a large capacity of the capacitor, and further realizing low resistance of the capacitor, and a method of manufacturing the same. Disclosure of the invention
  • the present invention is a capacitor in which a capacitor element is housed in a metal case together with a driving electrolyte, and the opening of the metal case is sealed with a terminal plate.
  • the terminal plate is formed by insert molding, with an insulating resin, a terminal piece provided with a rib joined to one of the electrodes of the capacitor element opposite to each other and a terminal for external connection. Further, one of the oppositely located electrodes of the capacitor element is joined to the rib of the terminal piece provided on the terminal plate, and the other of the electrodes is joined to the inner bottom surface of the metal case.
  • the positive electrode or the negative electrode is taken out by the terminal for external connection provided on the terminal plate, and the other takeout electrode is performed by the metal case.
  • a low resistance can be achieved because the anode and the cathode can be taken out of the capacitor element directly from the end face of the element without using a lead member or the like.
  • the positive terminal and external terminal of the negative electrode can be taken out from the terminal provided on the terminal plate and the metal case, when connecting a plurality of capacitors to form a capacitor unit, the connection space between each capacitor Can be halved, which makes it easy to miniaturize.
  • another capacitor of the present invention is a capacitor element in which positive and negative electrodes are arranged in opposite directions to each other, and an electrode on one side of this capacitor element. It has the metal case which joined to the inner bottom.
  • the terminal plate is a capacitor that functions as a terminal plate that seals the opening of the metal case by bonding the other electrode of the capacitor element to the inner surface. is there.
  • the terminal plate has an inner surface to which the other electrode of the capacitor element is joined as a reference surface, and the reference surface is used as an outer peripheral portion and a plurality of band-like junctions directed toward the center from the outer peripheral portion. It has a configuration in which it is raised on the surface side and a terminal for external connection is provided at the center of the surface side.
  • the terminal plate as an inner surface to which the electrodes of the capacitor element are joined as a reference surface, a plurality of band-like junctions are formed to move the reference surface toward the outer peripheral portion and the outer peripheral portion. It is possible to make the other part rise on the surface side except for. Since the reference plane of the terminal plate is a junction with the capacitor element, the dimension from the end face on the anode side of the capacitor element to the upper end of the metal case after processing can be made extremely small. It becomes possible to increase the height of the capacitor element in the capacitor. As a result, the effect of simultaneously achieving capacity increase and low resistance can be obtained.
  • Still another capacitor of the present invention contains a capacitor element together with a driving electrolyte, and bonds one of the electrodes of the capacitor element opposite to each other to the inner bottom surface.
  • the bottomed cylindrical metal case having a ring-shaped drawing process with a V-shaped cross section so that the other end face peripheral edge of the electrode of the capacitor element also suppresses outward force, and the capacitor element A terminal plate is provided, in which the other of the oppositely located electrodes is joined to the inner surface to seal the opening of the metal case.
  • a first insulating ring formed between the outer peripheral surface of the terminal plate and the inner surface of the metal case and connected to a part of the inner peripheral edge of the terminal plate and disposed at the upper end of the drawn portion of the metal case.
  • a rubber sealing ring force capacitor disposed on the periphery of the surface of the terminal plate to seal the open end of the metal case by curling the open end, from the periphery of the end face of the capacitor element on the terminal plate side.
  • a ring-shaped insulating sheet is disposed to abut on a part of the peripheral surface connected to this.
  • the insulating treatment is applied to the inner peripheral surface of the metal case where at least the end surface peripheral edge of the capacitor element on the terminal plate side and the part of the peripheral surface connected thereto are close.
  • another capacitor according to the present invention is characterized in that a pair of positive and negative electrodes having a polarizable electrode layer formed on a current collector made of metal foil is wound with a separator interposed therebetween, The capacitor element is configured such that the electrodes are located in opposite directions to each other.
  • the capacitor element is accommodated together with the driving electrolyte, and a cylindrical metal case with a bottom is formed by joining one of the electrodes of the capacitor element opposite to each other to the inner bottom surface. Also, a terminal plate is provided in which the other of the oppositely located electrodes of the capacitor element is joined to the inner surface to seal the opening of the metal case.
  • This is a capacitor in which one electrode of the capacitor element is taken out from the metal case and the other electrode is taken out from the terminal portion for external connection provided on the terminal plate.
  • this capacitor has a configuration in which two sets of two capacitors having different polarities are connected electrically and mechanically via a connection plate.
  • the capacitor used in the present invention is low in cost because it is taken out directly from the end face of the element without using a lead member or the like for taking out the anode and the cathode from the capacitor element. Resistance can be achieved. In addition, it is possible to take out the metal case force and the terminal provided on the terminal plate with the anode and the cathode being taken out from the outside. Therefore, when a plurality of capacitors are connected to form a capacitor unit, the connection space between the capacitors can be halved, and the effect of facilitating downsizing can be obtained.
  • FIG. 1 is a cross-sectional view showing a configuration of a capacitor according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of a terminal plate used for the same capacitor.
  • FIG. 3 is a cross-sectional view of a terminal plate used for the same capacitor.
  • FIG. 4 is a plan view of a terminal strip which is insert-molded on the same terminal plate.
  • FIG. 5 is a front view showing a configuration of a capacitor according to a second embodiment of the present invention.
  • FIG. 6A is a cross-sectional view of essential parts before bonding, showing a configuration of a capacitor according to Embodiment 3 of the present invention.
  • FIG. 6B is a cross-sectional view of main parts of the capacitor according to the third embodiment after bonding.
  • FIG. 7 is a cross-sectional view of an essential part showing a configuration of a terminal strip according to Embodiment 3 of the present invention.
  • FIG. 8 is a cross sectional view showing a configuration of a capacitor in accordance with a sixth preferred embodiment of the present invention.
  • FIG. 9A is a perspective view of the surface side showing the configuration of a terminal plate used for the same capacitor.
  • FIG. 9B is a perspective view of the inner surface side.
  • FIG. 9C is a sectional view taken along the line AA.
  • FIG. 9D is a cross-sectional view taken along the line BB.
  • Figure 10 is a cross-sectional view comparing the same capacitor with a conventional capacitor.
  • FIG. 11 is a cross-sectional view showing a configuration of a capacitor according to a seventh embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing the configuration of a terminal plate used for the same capacitor.
  • FIG. 13 is a cross-sectional view comparing the same capacitor with a conventional capacitor.
  • FIG. 14A is a cross-sectional view of a state where a plurality of capacitors according to Embodiment 8 of the present invention are connected.
  • FIG. 14B is an enlarged sectional view of the main part of FIG. 14A.
  • FIG. 15 is a cross-sectional view showing the configuration of a capacitor according to a ninth embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of the relevant part.
  • FIG. 17 is a cross-sectional view of essential parts showing the configuration of a capacitor according to a tenth embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of essential parts showing a configuration of a capacitor of an eleventh embodiment of the present invention.
  • FIG. 19 is a cross-sectional view of essential parts showing the configuration of a capacitor in accordance with a twelfth embodiment of the present invention.
  • FIG. 20A is a front sectional view showing a configuration of a capacitor according to a thirteenth embodiment of the present invention.
  • FIG. 20B is a bottom view of a capacitor according to a thirteenth embodiment of the present invention.
  • FIG. 21 shows a structure of a connection plate used for a capacitor according to a fourteenth embodiment of the present invention. It is the top view which showed formation.
  • FIG. 22 is a front sectional view showing the configuration of a capacitor according to a fifteenth embodiment of the present invention.
  • FIG. 23 is a cross-sectional view showing the configuration of a conventional capacitor.
  • FIG. 24 is a front view of a capacitor unit in which a plurality of conventional capacitors are connected.
  • FIG. 25 is a cross-sectional view showing another configuration of the conventional capacitor.
  • FIG. 26A is a perspective view on the front side showing the configuration of a terminal plate used in the conventional capacitor.
  • FIG. 26B is a perspective view of the conventional inner surface side.
  • FIG. 26C is a cross-sectional view of a conventional AA.
  • FIG. 26D is a cross-sectional view of the conventional BB.
  • FIG. 27 is a cross-sectional view showing still another example of the conventional capacitor.
  • FIG. 1 is a cross-sectional view showing the configuration of a capacitor according to a first embodiment of the present invention
  • FIG. FIG. 3 is a plan view of a terminal plate used in a capacitor
  • FIG. 3 is a cross-sectional view of the same terminal plate
  • FIG. 4 is a plan view of a terminal strip insert-molded on the same terminal plate.
  • the capacitor 1 comprises a capacitor element 2.
  • the capacitor element 2 has a pair of electrodes (not shown) in which a depolarizing electrode layer mainly composed of activated carbon and a binder is formed so that an exposed portion of the current collector is formed on one end side on the current collector which is also an aluminum foil. ).
  • the pair of electrodes is constructed by winding the exposed portions of the current collector in opposite directions with a separator (not shown) interposed therebetween. Also, when FIG. 1 is viewed orthographically, it is configured such that the upper surface side is an anode and the lower surface side is a cathode.
  • the capacitor 1 is provided with a bottomed cylindrical metal case 3 which also has an aluminum force, and the metal case 3 accommodates the capacitor element 2 and a driving electrolyte (not shown). Further, the projection 3a provided at the center of the inner bottom surface of the metal case 3 is inserted into the hollow portion (approximately the center portion) which is a trace of the core of the capacitor element 2 to position and fix the capacitor element 2. Also, the rib 3b provided so as to project partially from the inner bottom surface of the metal case 3 and the end face on the cathode side of the capacitor element 2 are joined by joining means such as laser welding, metal spraying or brazing. Connect mechanically and electrically.
  • FIG. 2 shows a plan view of the terminal board 4.
  • the terminal plate 4 is formed by using an insulating resin (phenol or PPS is suitable) for forming an aluminum-made terminal piece 5 having a terminal 5a for external connection. Furthermore, the terminal plate 4 is provided with a safety valve mounting hole 4b (a safety valve is mounted after injecting the driving electrolyte), which also serves as a hole for injecting the V ⁇ driving electrolyte into the metal case 3 (not shown). . Further, as shown in FIG. 3, a protrusion 4 a for being inserted into the hollow portion which is a trace of the core of the capacitor element 2 is provided at the lower part of the terminal plate 4 and in the center thereof.
  • groove-like ribs 5b are provided radially on the terminal piece 5 so as to partially project downward.
  • the distal end portion of the rib 5b is brought into contact with the end face of the anode side of the capacitor element 2 and mechanically and electrically connected by laser welding. As a result, the anode of the capacitor element 2 can be taken out of the terminal 5a side.
  • the annular sealing rubber 6 (see FIG. 1) is disposed on the periphery of the upper surface of the terminal plate 4 and fitted into the opening of the metal case 3 together with the terminal plate 4. Drawing When the open end is curled and sealed, the open end of the metal case 3 bites into the sealing rubber 6 to provide a reliable seal.
  • the driving electrolyte (not shown) creeps up by the capillary phenomenon and reacts with the sealing rubber 6 to deteriorate the sealing rubber 6. It is provided for the purpose of preventing
  • Capacitor 1 according to Embodiment 1 configured in this way is joined to rib 5b of terminal piece 5 provided on terminal plate 4 with the end face on the positive electrode side of capacitor element 2 (generally called end face current collection) can do.
  • the end face on the anode side is connected to the terminal 5a for external connection provided on the terminal plate 4, and the end face on the cathode side is joined to the inner bottom face of the metal case 3 (generally called end face current collection).
  • the anode and the cathode of the capacitor element 2 can be taken out by end face current collection. Since the anode side is connected to the terminal 5a at the shortest distance through the terminal strip 5, the capacitor 1 with low resistance component in which unnecessary resistance component is reduced can be realized.
  • the anode and the cathode can be taken out from the terminal 5 a provided on the terminal plate 4 and the metal case 3. For this reason, when connecting a plurality of capacitors and using them as a capacitor unit, it is difficult to perform connection work because the respective terminals are drawn in opposite directions, and connection spaces are required at both ends. As a result, a large installation space is required and the system can not be miniaturized, and the problem can be solved at once.
  • the anode side of capacitor element 2 is joined to terminal 5 a through terminal piece 5 provided on terminal plate 4, and the cathode side is joined to metal case 3. explained.
  • the present invention is not limited thereto, and the anode and the cathode may be arranged in the reverse arrangement.
  • the capacitor 1 is illustrated as having a cylindrical shape.
  • the present invention Without limiting to this, it is also possible to configure in an oval or a square.
  • the second embodiment shows an example in which a plurality of capacitors according to the first embodiment are connected and used as a capacitor set.
  • the same parts as in Embodiment 1 are assigned the same reference numerals and detailed explanations thereof will be omitted, and only different parts will be described below with reference to the drawings.
  • FIG. 5 is a front view showing a configuration of a capacitor according to Embodiment 2 of the present invention.
  • the capacitor 1 is a capacitor configured as in the first embodiment.
  • the capacitor 1 is provided with a terminal 5a to which the anode of a capacitor element (not shown) is connected.
  • a capacitor 8 is disposed next to the capacitor 1, and the capacitor 8 is provided with a terminal 9a to which the cathode of the capacitor element is connected.
  • the anode is taken out from the terminal 5a and the cathode is taken out from the metal case
  • the anode is taken out from the metal case
  • the cathode is taken out from the terminal 9a.
  • the metal cases of the two capacitors 1 and 8 are connected in series by the connecting member 10.
  • the terminals 9a and 5a of the two types of capacitors 1 and 8 are connected in series by the connecting member 11.
  • the connection member 10 is preferably connected by means such as welding or a conductive adhesive
  • the connection member 11 is preferably connected by means such as screwing.
  • capacitors 1 and 8 in which the method for taking out the anode and the cathode of the capacitor element are different are manufactured, and the connection members 10 and 11 are used easily.
  • Capacitance can be doubled by connecting various capacitors in series. Since the anode and the cathode of two series-connected capacitors are connected to terminals 5a and 9a, they can be extracted from the same direction, so a plurality of capacitors 1, 8 are connected to form a capacitor unit. When configuring, it is possible to reduce the connection space between capacitors by half.
  • the third embodiment shows an example in which a part of the bonding method of the anode and the cathode of the capacitor element according to the first embodiment is different.
  • the other parts of the configuration are the same as those of the first embodiment.
  • the same reference numerals are given to the same parts, and the detailed description thereof is omitted. Only different parts will be described below with reference to the drawings.
  • FIG. 6A and FIG. 6B are principal part cross-sectional views showing the configuration of a capacitor according to Embodiment 3 of the present invention.
  • the capacitor element 12 has an anode electrode 15 having a polarizable electrode layer 14a formed on the surface of a current collector 13a which is also an aluminum foil, and a polarizable electrode layer 14b formed on the surface of a current collector 13b also having an aluminum foil curl.
  • the cathode electrodes 16 are displaced in opposite directions from each other, and a separator 17 is interposed between the cathode electrode 15 and the cathode electrode 16 and wound.
  • the end face portion on the anode side is enlarged and seen.
  • a groove-shaped rib 5 b is provided on the terminal piece 5 insert-molded on the terminal plate 4.
  • a brazing material 18 is provided on the outer surface of the rib 5b.
  • aluminum solder having a main composition of aluminum and silicon and having a melting point of 586 ⁇ 6 ° C. is selected and used as the brazing material 18).
  • the end face on the anode side of the capacitor element 12 is brought into contact with the brazing material 18 provided on the rib 5b, and laser welding is performed in this state. The anode is joined to the rib 5b.
  • the laser welding is performed with the brazing material 18 interposed.
  • the brazing material 18 having a melting point lower than that of aluminum is melted at an early stage, the melted brazing material 18 wraps around the current collector 13a as shown in FIG. 6B.
  • the end face portion on the anode side of the capacitor element 12 is in close contact with and closely joined, the joint strength is enhanced, and in particular, a great effect is exerted on the vibration resistance.
  • a method for interposing the brazing material 18 a method such as dipping the brazing material 18 on the end face of the capacitor element 12 on the anode side or fixing it on the outer surface of the rib 5 b provided on the terminal piece 5.
  • a method for example as shown in FIG. 7, it is possible to use a clad structure in which an aluminum solder 19 is formed on the outer surface of the rib 5b provided on the terminal piece 5. This By adopting such a clad structure, it becomes possible to interpose aluminum solder 19 only in the necessary parts and perform laser welding, so that the bonding accuracy, reliability and workability can be greatly improved.
  • brazing material 18 or aluminum solder 19 interposed between the anode side end face of capacitor element 12 and rib 5b provided on terminal piece 5.
  • the bonding has been described as an example. However, the present invention is also applicable to the bonding of the cathode side end face of the capacitor element 12 and the inner bottom face of the metal case 3 which is not limited thereto.
  • the fourth embodiment is different from the first embodiment in the configuration of the capacitor element. Since the other configuration is the same as that of the first embodiment, the detailed description of the same portion is omitted, and only the different portion will be described below.
  • the polarizable electrode layer constituting the electrode is formed on the entire surface so that the exposed portion of the current collector does not remain on the current collector.
  • a pair of electrodes on which this polarizable electrode layer is formed is configured by interposing a separator between them so that their respective end portions project in opposite directions, and wound.
  • the capacitor element thus configured has the entire surface of the polarizable electrode layer on the current collector as compared to that of Embodiment 1 in which the exposed portion of the current collector, ie, the portion which does not contribute to the capacitance remains at one end. Because of this, it is possible to realize miniaturization of capacitors and large capacity.
  • the exposed portion of the current collector is left on one end on the current collector.
  • the exposed portion that is, the uncoated portion of the polarizable electrode layer
  • the polarizable electrode layer is formed on the entire surface of the current collector as in the fourth embodiment, the workability and the dimensional accuracy can be greatly improved.
  • Embodiment 5 is one in which the configuration of the capacitor element according to the first embodiment is different. Since the other configuration is the same as that of the first embodiment, the detailed description of the same portion is omitted, and the different portion will be described below.
  • the capacitor element according to the fifth embodiment is configured to remove the polarizable electrode layers formed on both end surfaces of the capacitor element.
  • the polarizable electrode layers formed on both end surfaces of the capacitor element are mechanically removed.
  • the binder composed of CMC is thermally decomposed to reduce the retention of the activated carbon, thereby removing the activated carbon very easily. be able to.
  • the active carbon can be exposed mechanically by removing the active carbon with a brush or a stone or the like.
  • At least one of the terminal plate of the polarizable electrode layer and the portion in contact with the metal case is mechanically There is a way to remove it.
  • cutting is performed using a rotary grindstone or the like, and the same effect as described above can be obtained by this method.
  • the capacitor according to the present invention described in the first to fifth embodiments is low in order to be able to directly take out the anode and the cathode from the capacitor element from the end face of the element without using a lead member or the like. Resistance can be achieved.
  • the connection space between the capacitors is It is possible to halve it, and it is possible to obtain a remarkable effect of facilitating miniaturization.
  • FIG. 8 is a cross-sectional view showing a configuration of a capacitor according to a sixth embodiment of the present invention
  • FIG. 9A, FIG. Figures 9B, 9C, and 9D are a perspective view of the surface side showing the configuration of the terminal plate used in the same capacitor, a perspective view of the inner surface side, an A-A sectional view, and a B-B sectional view, respectively.
  • capacitor element 31 includes hollow portion 31a.
  • the capacitor element 31 is configured by winding a pair of positive and negative electrodes in which polarizable electrode layers are formed on a current collector which is also an aluminum foil, with positions being shifted in opposite directions with a separator interposed therebetween (see FIG. Not shown).
  • the upper and lower directions of the capacitor element 31, that is, the surface forces of both ends of the capacitor element 31 also take out the anode and the cathode, respectively.
  • Capacitor element 31 and a driving electrolyte are accommodated in a bottomed cylindrical metal case 32 made of aluminum.
  • a protrusion 32 a is provided integrally with the inner bottom surface of the metal case 32 so as to be fitted into the hollow portion 31 a of the capacitor element 31.
  • the cathode end face of the capacitor element 31 is mechanically and electrically joined to the inner bottom surface of the metal case 32 by laser welding or the like.
  • the terminal plate 33 made of aluminum is joined to the end face of the capacitor element 31 on the anode side, and is disposed in the opening of the metal case 32 to perform sealing.
  • the terminal plate 33 has an inner surface to which the end face on the anode side of the capacitor element 31 is bonded as a reference surface.
  • the reference surface is configured such that the other portion is raised to the surface side while leaving a plurality of strip-like joint portions 33b directed from the outer peripheral portion 33a and the outer peripheral portion 33a to the center.
  • the end face on the anode side of the capacitor element 31 is mechanically and electrically joined to the joint 33b by laser welding or the like.
  • a projection 33 c fitted in the hollow portion 31 a of the capacitor element 31 is provided at the center of the inner surface of the terminal plate 33.
  • an anode terminal 33d for external connection having a female screw is provided on the surface side of the terminal plate 33.
  • a step 33e for inserting a sealing rubber to be described later and a protrusion 33f are provided in an annular shape substantially at the center of the step 33e.
  • a rotation preventing portion 33g and a safety valve mounting hole 33h which also serves as an electrolyte injection portion are provided.
  • a recess is formed in the end face of the capacitor element 31 on the anode side, in which a safety valve (not shown) mounted in the safety valve mounting hole 33 h fits in a non-contact state.
  • a protrusion 33 c provided on the inner surface of terminal plate 33 is a hollow portion 3 of capacitor element 31.
  • the end face of the capacitor element 31 on the anode side is mechanically and electrically joined to the joint 33b by laser welding or the like.
  • the terminal plate 33 is disposed in the opening of the metal case 31 with the insulating member 34 interposed, and the sealing rubber 35 is pressure-contacted in a state where the sealing rubber 35 is disposed on the surface peripheral edge of the terminal plate 33. In this case, sealing is performed by curling the open end of the metal case 31.
  • the reference surface of the terminal plate 33 is a junction with the end face of the capacitor element 31 on the anode side. Therefore, the dimension from the end face on the anode side of the capacitor element 31 to the upper end of the metal case 32 after caulking can be extremely reduced. As a result, the height of the capacitor element can be increased in the capacitor of the same height, and the capacity can be increased and the resistance can be reduced.
  • FIG. 10 is a drawing prepared to briefly explain the effect of the invention according to the sixth embodiment.
  • the capacitor according to the present invention and the conventional capacitor are shown side by side.
  • the capacitor which works on the invention (right side in FIG. 10) has the effect of the terminal plate 33 on the anode side end face of the capacitor element 31 and the dimension to the upper end of the metal case 32 after processing. Can be reduced to HI.
  • the capacitor according to the sixth embodiment has a capacity which is calculated by comparing the ratio of the conventional capacitor and the capacitor according to the seventh embodiment described later to the resistance of 100.
  • the DCR (DC Resistance) ratio is reduced by 25%, and it can be seen that significant improvement effects can be obtained.
  • anti-rotation portion 33g provided on the surface side of terminal plate 33 is a terminal plate when tightening an external screw (not shown) on a female screw provided on anode terminal 33d for external connection.
  • the rotation prevention part 33g may be formed in the concave shape which is not limited to this in this invention.
  • the external connection anode terminal 33d provided on the surface side of the terminal plate 33 has been described as a convex configuration having a female screw.
  • the present invention can be considered as one of the design matters in all shapes other than those limited to this.
  • capacitor element 31 according to the sixth embodiment has a pair of positive and negative electrodes in which a polarizable electrode layer is formed on a current collector which is also an aluminum foil, and their positions are shifted in opposite directions.
  • a separator was interposed between and wound.
  • the present invention is not limited to this.
  • a polarizable electrode layer constituting an electrode is formed such that an exposed portion of the current collector remains on one end side of the current collector, and a pair of positive and negative electrodes on which the polarizable electrode layer is formed are exposed to the current collector.
  • a configuration may be adopted in which the parts are wound in opposite directions with a separator interposed therebetween.
  • the polarizable electrode layer constituting the electrode is formed on the entire surface of the current collector so that the exposed portion of the current collector does not remain, and this polarizable electrode layer is formed. It is also possible to use a capacitor element in which a pair of positive and negative electrodes are displaced in opposite directions so that their respective ends project in opposite directions with a separator interposed therebetween and wound.
  • the anode of capacitor element 31 is taken out of terminal plate 33 and the cathode is taken out of metal case 32.
  • the present invention is not limited to this, and the removal of these may be reversed.
  • Embodiment 7 In the seventh embodiment, the configurations of the terminal plate and the metal case of the capacitor according to the sixth embodiment are changed, and the external extraction structure of the anode and the cathode is different.
  • the other configuration is the same as that of the sixth embodiment, so the same reference numerals are given to the same parts, detailed description thereof will be omitted, and only different parts will be described in detail with reference to the drawings.
  • FIG. 11 is a cross-sectional view showing the configuration of a capacitor according to a seventh embodiment of the present invention
  • FIG. 12 is a cross-sectional view showing the configuration of a terminal plate used for the capacitor.
  • the capacitor element 31 and the driving electrolyte are accommodated in a cylindrical metal case 36 with a bottom made of aluminum and having a bottom.
  • a strip-plate-like cathode terminal 36a for external connection formed integrally with the outer bottom surface of the metal case 36 is provided.
  • an aluminum terminal plate 37 is provided which is joined to the end face of the capacitor element 31 on the anode side and disposed in the opening of the metal case 36 for sealing.
  • the terminal plate 37 has an inner surface to which the end face on the anode side of the capacitor element 31 is joined as a reference surface, and the reference surface is a plurality of strip-like junctions 37b directed from the outer peripheral portion 37a and the outer peripheral portion 37a to the center.
  • the end face on the anode side of the capacitor element 31 is mechanically and electrically joined to the joint portion 37b by laser welding or the like. Further, at the center of the inner surface of the terminal plate 37, a protrusion 37c to be fitted into the hollow portion 31a of the capacitor element 31 is provided.
  • a strip plate-like anode terminal 37d for external connection is provided on the surface side of the terminal plate 37. Further, on the surface side of the terminal plate 37, an annular rising portion 37e rising from the outer periphery, and an upper end force of the rising force S ridge portion 37e are integrally formed with a crimped portion 37f extending in the outer diameter direction. Further, a projection 37c provided on the inner surface side of the terminal plate 37 is fitted into the hollow portion 31a of the capacitor element 31, and the end face of the capacitor element 31 on the anode side is mechanically and electrically Join.
  • a terminal plate 37 is disposed in the opening of the metal case 36, and the periphery of the crimped portion 37f provided on the terminal plate 37 and the opening of the metal case 36 are interposed with a V, an insulating member (not shown). Seal by double winding so as to be rolled together.
  • the capacitor according to Embodiment 7 configured in this manner has a metal case after covering from the end face on the anode side of capacitor element 31.
  • the dimension to the upper end of can be reduced. This makes it possible to increase the height of the capacitor element at the same height capacitor. This can increase the capacity and lower the resistance of the capacitor.
  • FIG. 13 shows the capacitor according to the seventh embodiment in comparison with the conventional capacitor (see FIG. 27) in order to explain the effects of the seventh embodiment.
  • the dimension from the end face on the anode side of capacitor element 31 to the upper end of metal case 36 after processing is H11 by the effect of terminal plate 37 in the invention (right side in FIG. 13).
  • the same dimensions of the conventional product are indicated by H12.
  • H12 ⁇ H11 H13.
  • the capacitor working in the present invention can make the dimension of capacitor element 31 larger (longer) by the size difference H13. Therefore, the capacity can be increased and resistance can be simultaneously reduced.
  • This characteristic improvement effect is shown in Table 1 together with the capacitor according to the above-mentioned sixth embodiment.
  • the capacitor according to the seventh embodiment has a 10% increase in capacity and a 9% decrease in resistance component when compared with the ratio of the conventional product's capacity to the resistance of 100. In addition, it can be seen that significant improvement effects can be obtained.
  • the configuration of the anode terminal provided on the terminal plate of the capacitor according to the sixth embodiment is partially different.
  • the other configuration is the same as that of the sixth embodiment, so the same reference numerals are given to the same parts and the detailed description thereof is omitted, and only different parts will be described in detail using the drawings below.
  • FIG. 14A and FIG. 14B are cross-sectional views showing a plurality of capacitors according to Embodiment 8 of the present invention connected together, and a cross-sectional view enlarging the relevant parts.
  • a force shimming portion 38e and a connection bar are provided by narrowing a part of the tip of the terminal plate 38, the joint 38b, the projection 38c, the anode terminal 38d for external connection, and the anode terminal 38d. 39 is shown.
  • the capacitor of the present invention described in the sixth to ninth embodiments can extremely reduce the dimension from the end face on the positive electrode side of the capacitor element to the upper end of the metal case after processing. For this reason, it becomes possible to increase the height of the capacitor element in the capacitor having the same height, and it is possible to achieve the capacity increase and the low resistance simultaneously. It is useful as a capacitor in the field where miniaturization of the capacitor and large capacity are required.
  • FIG. 15 is a cross-sectional view showing the configuration of a capacitor according to a ninth preferred embodiment of the present invention
  • FIG. 16 is a cross-sectional view of the relevant part.
  • the unit 51b is provided.
  • the capacitor element 51 is configured by winding a pair of positive and negative electrodes in which a depolarizing electrode layer is formed on a current collector which is also an aluminum foil, with positions mutually offset in opposite directions with a separator interposed therebetween ( Not shown). Both end faces of the capacitor element 51, that is, the upper and lower side forces taken from the perspective of FIG. 15 take out the anode and the cathode respectively.
  • Capacitor element 51 and a driving electrolyte are accommodated in a bottomed cylindrical metal case 52 made of aluminum.
  • a protrusion 52 a integrally formed on the inner bottom surface of the metal case 52 is fitted into the hollow portion 51 a of the capacitor element 51.
  • the processed portion 52 b is configured so as to restrain the end face peripheral edge on the upper side in the drawing of the capacitor element 51 from the outer side.
  • An anode terminal 53a for external connection is provided on the surface side of the terminal plate 53 made of aluminum.
  • the protrusion 53 b is fitted into the hollow portion 51 a of the capacitor element 51. Further, the end face on the anode side of the capacitor element 51 is mechanically and electrically connected by joining the inner surface of the terminal plate 53 by laser welding or the like.
  • a first insulation ring 54 is disposed on the upper end of the drawn portion 52 b formed in a ring shape and provided to the metal case 52. The first insulating ring 54 is formed so as to be connected to a part of the inner peripheral edge of the terminal plate 53 from between the inner surface of the metal case 52 and the outer peripheral surface of the terminal plate 53. Thus, the insulation between the terminal plate 53 and the metal case 52 is maintained.
  • Insulating sheet 55 is formed so as to abut on a part of the peripheral surface connected from the peripheral edge of the end face of capacitor element 51 on the terminal plate 53 side. It is configured to prevent the end face peripheral edge on the anode side of the capacitor element 51 from coming into contact with the inner peripheral surface of the metal case 52 to cause a short circuit.
  • a ring-shaped sealing ring 56 which also has an insulating rubber force is disposed on the periphery of the surface of the terminal plate 53. Sealing is performed by processing (generally referred to as curling force) so that the opening of the metal case 52 is rolled up with the sealing ring 56 interposed.
  • the capacitor according to the ninth embodiment is an insulating sheet so as to abut on a part of the peripheral surface connected from the end edge of the capacitor element 51 on the anode side. Arrange 50. Since the insulation sheet 55 intervenes between the end face of the anode side of the capacitor element 51 and the inner surface of the metal case 52, an undesirable short circuit is eliminated, and a highly reliable capacitor having excellent electric characteristics is obtained. It can be realized.
  • the first insulating ring 54 can be made of rubber or resin (PP, PPS, etc.). In the case of using resin, in order to maintain the repulsive force of the sealing ring 56 properly, it is preferable to set the bending elastic modulus of the resin to 500 Mpa or more.
  • Embodiment 9 exemplifies a configuration in which insulating sheet 5 is disposed so as to abut over part of the peripheral surface connected from the end face edge of capacitor element 51 on the anode side.
  • the present invention is not limited to this. The same effect can be obtained even when the insulation treatment is applied to at least the end face peripheral edge on the positive electrode side of the capacitor element 51 and the inner peripheral surface of the metal case 52 in which a part of the peripheral surface connected thereto is close.
  • capacitor element 51 a pair of positive and negative electrodes in which a polarizable electrode layer is formed on a current collector made of aluminum foil are mutually shifted in opposite directions. What was constituted by interposing and winding a separator between them was illustrated. In such a capacitor element, the polarizable electrode layer constituting the electrode is formed such that the exposed portion of the current collector remains on one end side of the current collector, and this polarizable electrode layer is formed.
  • the pair of positive and negative electrodes may be formed by winding a separator so as to make the exposed parts of the current collectors in opposite directions.
  • the polarizable electrode layer constituting the electrode is formed on the entire surface of the current collector so that the exposed portion of the current collector does not remain, and the positive and negative electrodes on which this polarizable electrode layer is formed are respectively formed.
  • the end portions may protrude in opposite directions, and a separator may be interposed therebetween for winding.
  • the insulation structure between the periphery of the end face on the anode side of the capacitor element and the inner surface of the metal case in the capacitor described in the ninth embodiment is different.
  • the remaining structure is similar to that of the ninth embodiment, and the same reference numerals are given to the same parts, and the detailed description thereof is omitted. Only different parts will be described below with reference to the drawings.
  • FIG. 17 is a cross-sectional view of essential parts showing the configuration of a capacitor according to a tenth embodiment of the present invention.
  • the second insulating ring 57 is provided between the bottom surface of the first insulating ring 54 and the periphery of the end face on the anode side of the capacitor element 51, and the outer periphery of the second insulating ring 57 Arrange in close proximity.
  • the second insulating ring 57 is interposed between the periphery of the end face of the capacitor element 51 on the anode side and the inner surface of the metal case 52.
  • This configuration can eliminate unintended electrical shorts.
  • it is possible to realize a capacitor with excellent reliability which can not be provided with the insulating sheet 5 described in the ninth embodiment or in which the metal case 52 is insulated. become able to.
  • the insulation structure between the periphery of the end face on the anode side of the capacitor element acting on the capacitor described in the ninth embodiment and the inner surface of the metal case is different.
  • the remaining structure is similar to that of the ninth embodiment, and the same reference numerals are given to the same parts, and the detailed description thereof will be omitted. Only different parts will be described below with reference to the drawings.
  • FIG. 18 is a cross-sectional view of essential parts showing the configuration of a capacitor of the eleventh preferred embodiment of the present invention.
  • the metal case 58 is provided with a drawn portion 58a in an annular shape. .
  • the shape of the drawn portion 58a is processed into a U-shape or a V-shape.
  • the second insulating ring 59 is formed in a convex shape so that the upper surface thereof abuts on the bottom surface of the first insulating ring 54 and the lower surface thereof abuts on the edge of the end face of the capacitor element 51 on the anode side.
  • at least one of the bottom and the side of the U-shaped portion forming the drawn portion 58a is disposed in contact with or close to the second insulating ring 59.
  • the second insulating ring 59 is interposed between the periphery of the end face of the positive electrode of the capacitor element 51 and the inner surface of the metal case 52. Since the unintended electrical short circuit accident can be eliminated, the reliability of the insulation can be further improved as compared with the capacitor described in the ninth embodiment.
  • the insulation structure between the periphery of the anode side end face of the capacitor element in the capacitor described in the ninth embodiment and the inner surface of the metal case is different.
  • the other parts of the configuration are substantially the same as those of the ninth embodiment, and the same reference numerals are given to the same parts, and the detailed description thereof will be omitted. Only different parts will be described below with reference to the drawings.
  • FIG. 19 is a cross-sectional view of essential parts showing a configuration of a capacitor according to a twelfth embodiment of the present invention.
  • the sealing ring 60 made of rubber is formed into a U-shaped (or V-shaped) cross-sectional shape so as to abut on the outer peripheral surface of the terminal plate 53 and a part of the outer peripheral surface. Further, the sealing ring 60 is disposed so as to be mounted on the upper end of the drawn portion 58 a provided on the metal case 52.
  • the capacitor according to Embodiment 12 obtained in this manner does not require the first insulating ring 54 prepared in Embodiment 9 to L 1. Highly reliable insulation can be achieved with only the insulating ring 59 of 2.
  • the anode and the cathode are taken out of the capacitor element directly from the end face of the element without using a lead member or the like.
  • Low resistance can be achieved because of this.
  • FIGS. 20A and 20B are a front sectional view and a bottom view showing a configuration of a capacitor to which the thirteenth embodiment of the present invention is applied.
  • capacitors 81A and 81B are configured to have different positive and negative polarities, respectively.
  • the capacitor element 82 includes a hollow portion 82a.
  • the capacitor element 82 is configured by winding a pair of positive and negative electrodes, in which polarizable electrode layers are formed on a current collector that is also an aluminum foil, with positions offset in opposite directions with a separator interposed therebetween (not shown) ).
  • the anode and the cathode are taken out from both end faces (vertical direction in the figure) of the capacitor element 82 respectively.
  • Capacitor element 82 and a driving electrolyte are accommodated in a bottomed cylindrical metal case 83 made of aluminum.
  • a protrusion 83 a is provided integrally with the inner bottom surface so as to be fitted into the hollow portion 82 a of the capacitor element 82.
  • the end face of the capacitor element 82 inserted in the metal case 83 by fitting the projection 83a into the hollow portion 82a of the capacitor element 82 is mechanically and electrically joined to the inner bottom surface of the metal case 83 by laser welding or the like.
  • the terminal plate 84 made of aluminum is joined to the end face of the capacitor element 82 on the anode side and is disposed and sealed in the opening of the metal case 83.
  • a terminal 84a for external connection is provided on the surface (upper side in the figure) of the terminal plate 84, and a projection 84b fitted in the hollow portion 82a of the capacitor element 82 on the back side (lower side in the figure).
  • a terminal plate 84 is disposed in the opening of the metal case 83 with an insulating member 85 interposed, and a sealing rubber 86 is disposed on the peripheral edge of the surface of the terminal plate 84. In this state, the open end of the metal case 83 is curled and sealed so as to press the sealing rubber 86.
  • Capacitor 81 A configured in this way is configured to take out the anode of capacitor element 82 from terminal 84 a provided on terminal plate 84 and take out the cathode electrode from metal case 83. .
  • capacitor 81 B is configured to be reverse in polarity to capacitor 81 A.
  • the terminals are provided from the terminals 84a provided on the terminal plate 84, respectively.
  • connection plate 87 made of aluminum is joined by laser welding across the outer bottom surface of the metal case 83 of the capacitor 81A and the outer bottom surface of the metal case 83 of the capacitor 81B.
  • the two capacitors are mechanically and electrically joined and connected, and the two capacitors are connected in series.
  • connection plate 87 is formed in a substantially hexagonal shape, and the area force of the connection plate 87 in contact with the outer bottom surface of the metal case 83 is less than 50% of the area of the outer bottom surface of the metal case 83. I have to. In this way, sufficient bond strength is ensured, and even if an abnormal phenomenon occurs such that the pressure in the metal case 83 rises and the bottom surface of the metal case 83 swells due to any environmental change or condition change. The adverse effect of this swelling phenomenon can be prevented. Furthermore, by forming the connection plate 87 in a substantially hexagonal shape, the connection plate 87 can be taken in a zigzag form during material removal, so waste of material can be eliminated and used effectively.
  • FIG. 20B shows a large number of weld marks 87a in which the connection plate 87 and the metal case 83 are joined by laser welding. Laser welding is performed so that these many welding marks 87a are arranged approximately in a straight line. In this way, after the metal case 83 expands due to heating at the time of welding, it is possible to minimize the influence of distortion on contraction when returning to normal temperature.
  • the three-leaf recess 83 b in FIG. 20B is a joining rib provided for joining one end face of the capacitor element 82 to the inner bottom surface of the metal case 83 by laser welding.
  • connection plate 87 can secure the allowable current value of capacitors 81 A and 81 B with a margin, and it is preferable that the thickness be as thin as possible within the range in which connection plate strength and welding strength can be guaranteed.
  • a range of 1 to 0.8 mm is preferred.
  • a further preferred range is 0.2 to 0.5 mm.
  • the capacitor thus configured does not need to use a lead member or the like for taking out the anode and the cathode from the capacitor element 82, it can be taken out directly from the end face of the capacitor element 82. Thereby, low resistance of the capacitor can be realized.
  • the anode and the cathode can be taken out from the terminal 84 a provided on the terminal plate 84 and the metal case 83 from the outside. Connect multiple capacitors to create a capacitor unit At the time of configuration, the connection space between the capacitors can be halved, and miniaturization of the capacitors can be realized.
  • connection plate of the capacitor described in the thirteenth embodiment is different.
  • the remaining configuration is similar to that of the thirteenth embodiment, and the same reference numerals are given to the same parts, and the detailed description thereof will be omitted. Only different parts will be described below with reference to the drawings.
  • FIG. 21 is a plan view showing a configuration of a connection plate used in a capacitor according to Embodiment 14 of the present invention.
  • a notch 88a is provided at a portion excluding a central portion 88c which is a part of the hexagonal connection plate 88 and which is a boundary between the capacitor and the capacitor.
  • a straight portion 88 b is provided at the tip of the notch 88 a, that is, at a position near the central portion 88 c of the connection plate 88.
  • connection plate 88 configured in this way, in addition to the effects obtained by the capacitor according to the thirteenth embodiment, the parallelism and height of the outer bottom surface of metal case 83 of capacitor 81A and capacitor 81B are obtained. In such a case, even if a slight variation occurs between the two, these can be absorbed by the notches 88a, and a more accurate coupling can be performed.
  • the straight portions 88b are provided at the tip of the notches 88a and near the central portion 88c of the connection plate 88. This alleviates stress concentration and makes it possible to obtain a more reliable capacitor.
  • the fifteenth embodiment shows a configuration in which the capacitor described in the thirteenth embodiment is subjected to an exterior treatment.
  • the other configuration is the same as that of the thirteenth embodiment, and the same symbols are given to the same parts and the detailed description thereof is omitted, and only the different parts will be described using the drawings below.
  • FIG. 22 is a front cross-sectional view showing a configuration of a capacitor according to Embodiment 15 of the present invention.
  • the heat-shrinkable resin film 89 is attached so as to cover the outer periphery of the two capacitors 81A and 81B, thereby enabling the connection of the two capacitors 81A and 81B It is something that can be stabilized.
  • the capacitors according to Embodiments 13 to 15 can reduce the connection space between the capacitors by half when configuring a capacitor unit in which a plurality of capacitors are connected. , The overall size of the capacitor can be realized. For this reason, it is particularly useful as a capacitor used for regeneration of a hybrid car or a fuel cell vehicle, or for storage of electric power.
  • any of the embodiments it is common to provide a capacitor and a method of manufacturing the same for achieving the miniaturization and the large capacity of the capacitor and further realizing the low resistance of the capacitor.
  • the capacitor of the present invention takes out the anode and the cathode from the capacitor element directly from the end face of the element without using a lead member or the like, the resistance can be reduced. Also, the anode and the cathode can be taken out from the terminal provided on the terminal plate and the metal case. Therefore, when connecting a plurality of capacitors to form a capacitor unit, the connection space between the capacitors can be halved. In particular, since it is useful for regeneration of fuel cells, fuel cell vehicles, or for storing electric power, etc., its industrial applicability is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 コンデンサを複数連結する際に陽極,陰極が相反する側に引き出されているために接続スペースが大きくなり小型化が困難という問題点を克服し、電気的及び機械的接続が容易で、かつ、接続スペースを低減し、不要抵抗が低減できるコンデンサを提供する。コンデンサ素子(2)を収容した金属ケース(3)の開口部を封止する端子板(4)が、コンデンサ素子(2)の電極の一方に接合されるリブ(5b)と端子(5a)を備えた端子片(5)をインサート成形する。コンデンサ素子(2)の電極の一方を端子片(5)のリブ(5b)に接合し、電極の他方を金属ケース(3)の内底面に接合する。陽極,陰極のいずれかの取り出しを端子板(4)に設けた端子(5a)によって、他方の取り出しを金属ケース(3)で行うことができるために低抵抗化が図れる。また複数のコンデンサ(1)を連結する際に接続スペースの半減によって小型化が図れる。

Description

明 細 書
コンデンサ及びその製造方法
技術分野
[0001] 本発明はハイブリッドカーや燃料電池車の回生用、あるいは電力貯蔵用に使用さ れるコンデンサ及びその製造方法に関するものである。
背景技術
[0002] 図 23はこの種の従来のコンデンサの構成を示した断面図である。コンデンサ素子 2 0はアルミニウム箔カゝらなる集電体上に分極性電極層を形成した電極と、その一対の 電極の間にセパレータ を介在させた状態で前記一対の電極の端部が互 ヽに逆方 向に突出するように卷回し構成されたものである。すなわち、図 23において逆方向に 突出した前記一対の電極の端部は、一方が金属ケース 21の内底面と接触し、もう一 方の電極の端部はアルミニウム製の蓋 22の面部と接触している。
[0003] 図 23を正視して、その上下方向、すなわち、コンデンサ素子 20の両端面から陽極 と陰極を夫々取り出す。
[0004] コンデンサ素子 20及び駆動用電解液(図示せず)はアルミニウム製の金属ケース 2 1に収容する。金属ケース 21の底面側には外部接続用の陰極端子 21aを設ける。ま た、コンデンサ素子 20の陰極側の端面は、金属ケース 21の内底面にレーザー溶接 等によって接合し、機械的,電気的に接続する。
[0005] また、従来のコンデンサはアルミニウム製の蓋 22を備え、蓋 22には外部接続用の 陽極端子 22aを設ける。また、コンデンサ素子 20の陽極側の端面を蓋 22の内面にレ 一ザ一溶接等によって接合し、機械的,電気的に接続する。また、蓋 22の周縁と金 属ケース 21の開口部 23は、それらの間に絶縁部材(図示せず)を介在して、共に卷 き込むように加工する、いわゆる、カーリング力卩ェを施して封止している。
[0006] このように従来のコンデンサは、金属ケース 21の中心軸方向(図 23を正視して上下 方向)に外部接続用の陽極端子 22aと陰極端子 21aを設ける。陽極端子 22aと陰極 端子 21aを (後述の図 24に図示)バスバーと呼ばれる接続部材 24を用いて複数のコ ンデンサを接続して連結することにより、コンデンサユニットとして車載用のノックアツ プ電源等に使用されているものであった。
[0007] なお、この出願の発明に関連する先行技術は、例えば、特開 2000— 315632号 公報に紹介されている。
[0008] し力しながら従来のコンデンサでは、図 24に示すように複数のコンデンサを連結し てコンデンサユニットとして使用する場合に、陽極端子 22a及び陰極端子 21aを接続 する際に、各端子が夫々相反する方向に引き出す。また、前に述べたように、陽極端 子 22aと陰極端子 21aをバスバーと呼ばれる接続部材 24で接続する。このため、接 続作業が複雑であるば力りでなぐ接続スペース hiと h2が両端に夫々必要なため、 結果的に大きな取り付けスペースを必要として小型化できないという問題点があった
[0009] こうした問題点を克服するために陽極端子と陰極端子を同一方向から引き出す方 法が考えられる。たとえば、アルミニウム箔カゝらなる集電体上に分極性電極層が形成 された一対の電極に、外部引き出し用のリード部材を夫々接続し、このリード部材が 接続された一対の電極を卷回する。これによつて、陽極端子と陰極端子を同一方向 力も引き出すことができる。しかし、この方法においては帯状に長い電極の 1箇所 (あ るいは複数箇所)から電極引き出しを行うために、コンデンサ素子 20の端面全体力も 引き出しを行う端面集電と呼ばれる構成のものに比べて抵抗成分が大きくなつてしま うという問題点を抱えることになる。したがって、複数のコンデンサを連結してコンデン サユニットとして使用する方式には必ずしも好適であるとはいえない。
[0010] 図 25は従来のコンデンサのもう 1つの構成を示す断面図である。図 26A,図 26B, 図 26C及び図 26Dは、同コンデンサに使用される端子板の構成をそれぞれ示した 表面側の斜視図,内面側の斜視図, A— A断面図及び B— B断面図である。図 25及 び図 26A〜図 26Dにおいて、コンデンサ素子 40のほぼ中央部には中空部 40aを設 ける。コンデンサ素子 40は図示しないが、アルミニウム箔カもなる集電体上に分極性 電極層を形成した正負一対の電極が互いに逆方向に位置がずらされて、それらの間 にセパレータが介在されて卷回して構成されている(図示せず)。コンデンサ素子 40 の両端面(図 25を正視して上下方向)から陽極と陰極を夫々取り出す。
[0011] コンデンサ素子 40及び駆動用電解液(図示せず)を共にアルミニウム製の有底筒 状の金属ケース 41に収容する。コンデンサ素子 40の中空部 40a内に嵌まり込むよう に内底面に一体で設けられた突起 41aを設ける。この突起 41aを中空部 40aに嵌め 込んで金属ケース 41内に挿入されたコンデンサ素子 40の陰極側の端面を金属ケー ス 41の内底面にレーザー溶接等によって機械的,電気的に接合する。
[0012] アルミニウム製の端子板 42の表面側には外部接続用の陽極端子 42aを一体形成 する。コンデンサ 40の陽極側の端面には接合部 42bを形成する。また、コンデンサ 素子 40の中空部 40a内に嵌まり込む突起 42c、電解液注入部を兼ねた安全弁取り 付け孔 42dをそれぞれ設ける。コンデンサ素子 40の陽極側の端面と接合部 42bとを レーザー溶接等によって接合することにより、機械的,電気的に接続する。また、端 子板 42の周縁上で金属ケース 41の開口部をその間に絶縁性の封止用ゴム 43を介 在させて巻き込むようにカ卩ェする。いわゆる、カーリング加工を施して封止する。
[0013] このように構成された従来のコンデンサは、端子板 42に設けた外部接続用の陽極 端子 42aを取り出すと共に、金属ケース 41から陰極端子を取り出すように構成して ヽ る。これらのコンデンサを複数個接続して連結することにより、コンデンサユニットとし て車載用のバックアップ電源等に使用する。
[0014] また、図 27はこの種の従来のコンデンサのさらに他の例を示した断面図である。こ の種のコンデンサは金属ケース 44の底面に外部接続用の帯板状の陰極端子 44aを 一体形成する。また、外部接続用の陽極端子 45aを表面側に設けた端子板 45の外 周まで延長させ、この端子板 45の周縁と金属ケース 44の開口部とをその間に図示し な 、絶縁部材を介在させて共に巻き込むように加工 (一般に、二重巻き締め加工と 呼ばれる)することによって封止して構成されている。なお、これ以外の構成は図 25 に示したコンデンサと同様である。
[0015] し力しながら従来のコンデンサでは、端子板 42 (端子板 45も同様)の構造による要 因から小型化が難しいという問題点があった。即ち、図 26Dにその詳細を示すように 、従来の端子板 42では外表面に露呈してその外周に封止用ゴム 43を介して金属ケ ース 41の開放端を絞り加工する。これにより封口される表面側を基準面とし、コンデ ンサ素子 40の陽極側の端面が接合される接合部 42bを前記基準面力も内面側に陥 没するように放射状に複数設けた構成である。このため、コンデンサ素子 40の陽極 側の端面力もカーリング加工後の金属ケース 41上端までの寸法は、前記基準面から 接合部 42bまでの寸法(陥没させた寸法に相当)に封止用ゴム 13と金属ケース 41の 加工部の寸法を合わせた寸法になり、コンデンサ全体の高さ寸法に占める割合も無 視できない大きさになってしまう。
[0016] 従って、小型化,大容量ィ匕が求められる昨今においては、コンデンサの背高が制 限された中では、コンデンサ素子 40の背高を高くすることができないため、コンデン サの容量アップ及びその低抵抗ィ匕を図ることが極めて困難である。
[0017] 本発明はこのような従来の問題点を解決し、コンデンサの小型化及び大容量ィ匕を 図り、さらにその低抵抗ィ匕が実現できるコンデンサ及びその製造方法を提供する。 発明の開示
[0018] 本発明は、コンデンサ素子を駆動用電解液と共に金属ケース内に収容し、この金 属ケースの開口部を端子板で封止したコンデンサである。端子板は、コンデンサ素 子の互いに逆方向に位置する電極の一方に接合されるリブ及び外部接続用の端子 を備えた端子片を絶縁性の樹脂でインサート成形することによって構成されている。 また、コンデンサ素子の互いに逆方向に位置する電極の一方を端子板に設けた端 子片のリブに接合し、電極の他方を金属ケースの内底面に接合する。これにより、陽 極,陰極のいずれかの取り出しを端子板に設けた外部接続用の端子で行ない、他方 の取り出し電極を金属ケースで行うようにする。
[0019] こうした構成によれば、コンデンサ素子からの陽極,陰極の取り出しをリード部材等 を用いることなぐ素子の端面から直接取り出せるために低抵抗ィ匕が図れる。また、陽 極,陰極の外部取り出しを端子板に設けた端子と金属ケース力 取り出すことができ るようになるため、コンデンサを複数個連結してコンデンサユニットを構成する際に各 コンデンサ間の接続スペースを半減することができるようになり、小型化が図り易くな るという格別の効果が得られる。
[0020] また、上記問題点を解決するために本発明の他のコンデンサは、正負の電極が互 いに逆方向に位置するように構成されたコンデンサ素子と、このコンデンサ素子の一 方の電極を内底面に接合した金属ケースを備える。また、コンデンサ素子の他方の 電極を内面に接合して金属ケースの開口部を封止した端子板力 なるコンデンサで ある。端子板はコンデンサ素子の他方の電極が接合される内面を基準面とし、この基 準面を、外周部とこの外周部から中心に向力う複数の帯状の接合部を残してその他 の部分を表面側に隆起させ、かつ、表面側の中心に外部接続用の端子部を設けた 構成にしたものである。
[0021] これによれば、端子板を、コンデンサ素子の電極が接合される内面を基準面とし、こ の基準面を、外周部とこの外周部力 中心に向力う複数の帯状の接合部を残してそ の他の部分を表面側に隆起させた構成することができる。端子板の基準面がコンデ ンサ素子との接合部となるために、コンデンサ素子の陽極側端面から加工後の金属 ケース上端までの寸法を極めて小さくすることができるようになり、同一の背高のコン デンサにおいてコンデンサ素子の背高を大きくすることができるようになる。これにより 、容量アップと低抵抗ィ匕を同時に図ることができるという効果が得られる。
[0022] また、本発明のさらに他のコンデンサは、コンデンサ素子を駆動用電解液と共に収 容し、かつ、コンデンサ素子の互いに逆方向に位置する電極の一方を内底面に接合 する。また、コンデンサ素子の電極の他方の端面周縁を外方力も抑さえ込むようにそ の断面形状が V字形の絞り加工を円環状に施した有底筒状の金属ケースと、コンデ ンサ素子の互いに逆方向に位置する電極の他方を内面に接合し金属ケースの開口 部を封止した端子板を備える。また、この端子板の外周面と金属ケースの内面との間 力 端子板の内面周縁の一部に繋がるように形成されて金属ケースの絞り加工部上 端に配設された第 1の絶縁リングと、端子板の表面周縁に配設されて金属ケースの 開放端をカーリング加工することにより封止を行うゴム製の封止用リング力 なるコン デンサにおいて、端子板側のコンデンサ素子の端面周縁からこれに繋がる周面の一 部に亘つて当接するリング状の絶縁シートを配設する。または、少なくとも端子板側の コンデンサ素子の端面周縁及びこれに繋がる周面の一部が近接する金属ケースの 内周面に絶縁処理を施すものである。
[0023] 以上のように本発明によるコンデンサは、コンデンサ素子の陽極側の端面の周縁と 金属ケースの内面間に絶縁体が介在するようになるために電気的な短絡を防止する ことができる。これにより、電気的性能が優れたコンデンサを実現することができる(図 示せず)と!、う効果が得られるものである。 [0024] また、本発明のさらにカ卩えた他のコンデンサは、金属箔からなる集電体上に分極性 電極層を形成した正負一対の電極をその間にセパレータを介在させて卷回し、正負 の電極が互いに逆方向に位置するように構成されたコンデンサ素子を備える。このコ ンデンサ素子を駆動用電解液と共に収容し、かつ、コンデンサ素子の互いに逆方向 に位置する電極の一方を内底面に接合した有底筒状の金属ケースを備える。また、 コンデンサ素子の互いに逆方向に位置する電極の他方を内面に接合して金属ケー スの開口部を封止した端子板を備える。コンデンサ素子の一方の電極を金属ケース から、他方の電極を端子板に設けた外部接続用の端子部から取り出すようにしたコン デンサである。また、このコンデンサを互いに極性が異なるように構成した 2個 1組を 接続板を介して電気的及び機械的に接合した構成のものである。
[0025] 以上のように本発明に力かるコンデンサは、コンデンサ素子からの陽極,陰極の取 り出しにリード部材等を用いることなく、素子の端面から直接取り出すようにして 、るた めに低抵抗ィ匕が図れる。また、陽極,陰極の外部取り出しを端子板に設けた端子と 金属ケース力も取り出すことができるようになる。このため、このコンデンサを複数個連 結してコンデンサユニットを構成する際に、各コンデンサ間の接続スペースを半減す ることができるようになり、小型化を図り易くなるという効果が得られる。
図面の簡単な説明
[0026] [図 1]図 1は本発明の実施の形態 1にかかるコンデンサの構成を示す断面図である。
[図 2]図 2は同コンデンサに使用される端子板の平面図である。
[図 3]図 3は同コンデンサに使用される端子板の断面図である。
[図 4]図 4は同端子板にインサート成形される端子片の平面図である。
[図 5]図 5は本発明の実施の形態 2にかかるコンデンサの構成を示した正面図である
[図 6A]図 6Aは本発明の実施の形態 3にかかるコンデンサの構成を示した接合前の 要部断面図である。
[図 6B]図 6Bは実施の形態 3にかかるコンデンサの接合後の要部断面図である。
[図 7]図 7は本発明の実施の形態 3にかかる端子片の構成を示した要部断面図であ る。 [図 8]図 8は本発明の実施の形態 6にかかるコンデンサの構成を示した断面図である
[図 9A]図 9Aは同コンデンサに使用される端子板の構成を示した表面側の斜視図で ある。
[図 9B]図 9Bは同内面側の斜視図である。
[図 9C]図 9Cは同 A— A断面図である。
[図 9D]図 9Dは同 B— B断面図である。
[図 10]図 10は同コンデンサと従来のコンデンサを比較した断面図である。
[図 11]図 11は本発明の実施の形態 7にかかるコンデンサの構成を示した断面図であ る。
[図 12]図 12は同コンデンサに使用される端子板の構成を示した断面図である。
[図 13]図 13は同コンデンサと従来のコンデンサを比較した断面図である。
圆 14A]図 14Aは本発明の実施の形態 8にかかるコンデンサを複数個連結した状態 の断面図である。
[図 14B]図 14Bは図 14Aの要部を拡大した断面図である。
[図 15]図 15は本発明の実施の形態 9にかかるコンデンサの構成を示した断面図であ る。
[図 16]図 16は同要部断面図である。
[図 17]図 17は本発明の実施の形態 10にかかるコンデンサの構成を示した要部断面 図である。
[図 18]図 18は本発明の実施の形態 11に力かるコンデンサの構成を示した要部断面 図である。
[図 19]図 19は本発明の実施の形態 12に力かるコンデンサの構成を示した要部断面 図である。
[図 20A]図 20Aは本発明の実施の形態 13にかかるコンデンサの構成を示した正面 断面図である。
[図 20B]図 20Bは本発明の実施の形態 13にかかるコンデンサの底面図である。
[図 21]図 21は本発明の実施の形態 14にかかるコンデンサに使用される接続板の構 成を示した平面図である。
[図 22]図 22は本発明の実施の形態 15にかかるコンデンサの構成を示した正面断面 図である。
[図 23]図 23は従来のコンデンサの構成を示した断面図である。
[図 24]図 24は従来のコンデンサを複数個連結したコンデンサユニットの正面図であ る。
[図 25]図 25は従来のコンデンサのもう 1つの構成を示した断面図である。
[図 26A]図 26Aは従来の同コンデンサに使用される端子板の構成を示した表面側の 斜視図である。
[図 26B]図 26Bは従来の同内面側の斜視図である。
[図 26C]図 26Cは従来の同 A—A断面図である。
[図 26D]図 26Dは従来の同 B— B断面図である。
[図 27]図 27は従来のコンデンサのさらに他の例を示す断面図である。
符号の説明
1 , 8, 81A, 81B コンデンサ
2, 12, 31 , 51 , 82 コンデンサ素子
3, 32, 36, 52, 58, 83 金属ケース
3a, 4a, 32a, 33c, 33f, 37c, 38c, 52a, 53b, 83a, 84b 突起
3b, 5b ジブ
4, 33, 37, 38, 53, 84 端子板
4b, 33h 安全弁取り付け孔
5 端子片
5a, 9a, 84a 端子
6, 35, 86 封止用ゴム
7 絶縁層
10, 11 接続部材
13a, 13b 集電体
14a, 14b 分極性電極層 15
16
17 セノ レータ
18 ろう材
19 アルミニウム半田
21a 36a, 44a 陰極端子
22a 42a, 45a, 53a, 33d, 37d, 38d 陽極端子
31a 51a, 82a 中空部
33a 37a 外周部
33b 37b, 38b 接合部
33e 段部
33g 回り止め部
34, 85 絶縁部材
37e 立ち上がり部
52b, 58a 絞り加工部
54 第 1の絶縁リング
55 絶縁シート
56, 60 封止用リング
57, 59 第 2の絶縁リング
83b 窪み
87, 88 接続板
87a 溶接痕
88a 切り欠き
88b 直線部
89 熱収縮性榭脂フィルム
発明を実施するための最良の形態
(実施の形態 1)
図 1は本発明の実施の形態 1にかかるコンデンサの構成を示した断面図、図 2は同 コンデンサに使用される端子板の平面図、図 3は同端子板の断面図、図 4は同端子 板にインサート成形される端子片の平面図である。図 1〜図 4において、コンデンサ 1 はコンデンサ素子 2を備える。コンデンサ素子 2はアルミニウム箔カもなる集電体上の 一端側に集電体の露出部分が形成されるように活性炭とバインダーを主体とした分 極性電極層を形成した一対の電極(図示せず)を備える。上記一対の電極は上記集 電体の露出部分が互!ヽに逆方向になるようにしてその間にセパレータ(図示せず)を 介在させて卷回することにより構成する。また、図 1を正視して、上面側が陽極、下面 側が陰極となるように構成する。
[0029] また、コンデンサ 1はアルミニウム力もなる有底筒状の金属ケース 3を備え、金属ケ ース 3は、コンデンサ素子 2及び駆動用電解液(図示せず)を収容している。また、金 属ケース 3の内底面中央に設けた突起 3aをコンデンサ素子 2の卷芯跡である空洞部 内(ほぼ中央部)に挿入してコンデンサ素子 2の位置決め固定を行う。また金属ケー ス 3の内底面に部分的に突出するように設けたリブ 3bとコンデンサ素子 2の陰極側の 端面とをレーザー溶接,金属溶射またはろう付け等の接合手段により接合することに より、機械的,電気的に接続する。
[0030] 図 2は端子板 4の平面図を示す。端子板 4は外部接続用の端子 5aを備えたアルミ -ゥム製の端子片 5を絶縁性の榭脂(フエノールまたは PPSが適して 、る)を用いてィ ンサート成形することにより構成する。さらに端子板 4には金属ケース 3内に図示しな Vヽ駆動用電解液を注入するための孔を兼ねた安全弁取り付け孔 4b (駆動用電解液 を注入した後に安全弁が装着される)を設ける。また、図 3に示すように、端子板 4の 下部であってその中央にはコンデンサ素子 2の卷芯跡である空洞部内に挿入するた めの突起 4aが設けられて!/、る。
[0031] また、端子片 5にはその下方に向かって部分的に突出する溝状のリブ 5bが放射状 に設けられている。リブ 5bの先端部分をコンデンサ素子 2の陽極側の端面に当接さ せてレーザー溶接することによって機械的,電気的に接続する。これによりコンデン サ素子 2の陽極の取り出しが端子 5a側力 行えるようになる。
[0032] 環状の封止用ゴム 6 (図 1参照)は端子板 4の上面周縁に配設された状態で端子板 4と共に金属ケース 3の開口部に嵌め込み、金属ケース 3の開口部近傍を絞り加工す ると共に開口端をカーリング加工して封止する際に、金属ケース 3の開口端が封止用 ゴム 6に食い込むことによって確実な封止が行われる。
[0033] なお、金属ケース 3の開口部近傍を絞り加工すると共に開口部をカーリング力卩ェし て封止する際に、金属ケース 3の周面を中心方向に押し付ける。これによつて端子板 4と金属ケース 3が密着した状態で加工されることになり、駆動用電解液(図示せず) が外部に漏れることを防止し、高 、気密性を得ることができる。
[0034] 金属ケース 3の開口端の内面に施された絶縁層 7は図示しない駆動用電解液が毛 細管現象によって這い上がり、封止用ゴム 6と反応して封止用ゴム 6が劣化するのを 防止する目的で設けている。
[0035] このように構成された実施の形態 1にかかるコンデンサ 1は、コンデンサ素子 2の陽 極側端面を端子板 4に設けた端子片 5のリブ 5bに接合 (一般に端面集電と呼ばれる) することができる。これによつて陽極側端面を端子板 4に設けられた外部接続用の端 子 5aと接続し、陰極側端面を金属ケース 3の内底面に接合 (一般に端面集電と呼ば れる)することができる。コンデンサ素子 2の陽極,陰極の取り出しを端面集電により 取り出すことができる。陽極側は端子片 5を介して最短距離で端子 5aに接続されるた め、不要な抵抗成分が低減された低抵抗成分のコンデンサ 1を実現することができる
[0036] さらに、陽極,陰極の取り出しを端子板 4に設けた端子 5aと金属ケース 3から行うこ とができるようになる。このため、複数のコンデンサを連結してコンデンサユニットとし て使用する際に、各端子が夫々相反する方向に引き出されているために接続作業が 大変であること、また、接続スペースが両端に夫々必要なため、結果的に大きな取り 付けスペースを必要として小型化できな 、と 、つた不具合を一挙に解決することがで きる。
[0037] なお、実施の形態 1にお 、ては、コンデンサ素子 2の陽極側を端子板 4に設けた端 子片 5を介して端子 5aに、陰極側を金属ケース 3に接合する構成として説明した。し かし、本発明はこれに限定されるものではなぐ陽極と陰極が逆の配置の構成であつ ても良い。
[0038] また、実施の形態 1においては、コンデンサ 1が円筒形のものを例示した。本発明は これに限定されるものではなぐ楕円形や角形で構成することも可能である。
[0039] また、コンデンサ素子 2の陽極側端面に端子板 4の陽極端子片 5をレーザー溶接す るためのリブ 5bを複数箇所設ける例を示した。本発明はこれに限定されるものではな く、リブ 5bが 1本でも良いし、あるいはリブ 5bが無くても良い。
[0040] (実施の形態 2)
実施の形態 2は実施の形態 1にかかるコンデンサを複数個連結してコンデンサュ- ットとして使用する場合の一例を示す。実施の形態 1と同一部分には同一の符号を付 与してその詳細な説明は省略し、異なる部分についてのみ以下に図面を用いて説 明する。
[0041] 図 5は本発明の実施の形態 2にかかるコンデンサの構成を示した正面図である。コ ンデンサ 1は実施の形態 1と同様に構成されたコンデンサである。コンデンサ 1は図示 しないコンデンサ素子の陽極が接続された端子 5aを備えている。また、コンデンサ 1 の隣にはコンデンサ 8を配置し、コンデンサ 8にはコンデンサ素子の陰極が接続され た端子 9aが備えられている。
[0042] 従って、コンデンサ 1においては陽極の取り出しを端子 5aから行い、陰極の取り出 しを金属ケースから行うように構成し、またコンデンサ 8にお ヽては陽極の取り出しを 金属ケース力 行い、陰極の取り出しを端子 9aから行うように構成している。このよう に 2種類のコンデンサ 1, 8の金属ケース同士を接続部材 10によって直列接続する。 また、 2種類のコンデンサ 1, 8の端子 9aと 5aは接続部材 11によって直列接続される 。なお、接続部材 10は溶接や導電性接着剤等の手段で接続し、接続部材 11はネジ 止め等の手段で接続するのが好ましい。
[0043] このように実施の形態 2によれば、コンデンサ素子の陽極,陰極の取り出し方法を 異ならせた 2種類のコンデンサ 1と 8を作製し、接続部材 10と 11を用いることによって 容易に 2種類のコンデンサを直列接続して容量の倍増を図ることができるようになる。 し力もこの直列接続された 2種類のコンデンサの陽極と陰極の取り出しは端子 5aと 9a で行うために同一方向から取り出すことができるようになり、コンデンサ 1, 8を複数個 連結してコンデンサユニットを構成する際に各コンデンサ間の接続スペースを半減す ることがでさるよう〖こなる。 [0044] (実施の形態 3)
実施の形態 3は実施の形態 1にかかるコンデンサ素子の陽極,陰極の接合方法の 一部を異ならせる一例を示す。これ以外の構成は実施の形態 1と同様であるために 同一部分には同一の符号を付与してその詳細な説明は省略し、異なる部分につい てのみ以下に図面を用いて説明する。
[0045] 図 6A,図 6Bは本発明の実施の形態 3にかかるコンデンサの構成を示す要部断面 図である。コンデンサ素子 12はアルミニウム箔カもなる集電体 13aの表面に分極性 電極層 14aを形成した陽極電極 15、同じくアルミニウム箔カゝらなる集電体 13bの表面 に分極性電極層 14bを形成した陰極電極 16を互いに逆方向に位置をずらして、陽 極電極 15と陰極電極 16との間にセパレータ 17を介在させて卷回して構成する。これ らの図面においては陽極側端面部分を拡大して見たものである。
[0046] 端子板 4にインサート成形された端子片 5には溝状のリブ 5bを設ける。リブ 5bの外 表面にはろう材 18を設ける。なお、実施の形態 3においては、ろう材 18としてアルミ- ゥム半田(アルミニウムとシリコンを主体構成とし、融点が 586 ±6°Cのものを選択して 用いた。しかし、本発明はこれに限定されるものではない。図 6Aに示すように、コン デンサ素子 12の陽極側端面をリブ 5b上に設けられたろう材 18に当接させ、この状態 でレーザー溶接を行うことによりコンデンサ素子 12の陽極をリブ 5bに接合するように したものである。
[0047] 従って、リブ 5bが設けられた端子片 5を構成するアルミニウムと集電体 13aを構成 するアルミニウムとをレーザー溶接する際に、ろう材 18を介在させてレーザー溶接を 行う。これにより、アルミニウムよりも融点が低いろう材 18が早い段階で溶融するので 、図 6Bに示すように溶融したろう材 18が集電体 13aを包み込むようになる。また、コ ンデンサ素子 12の陽極側の端面部分と密着して緻密に接合されるようになるため、 接合強度が高まり、特に耐振動性に大きな効果を発揮するようになる。
[0048] また、ろう材 18を介在させる手段としては、コンデンサ素子 12の陽極側端面にろう 材 18をディップしたり、あるいは端子片 5に設けたリブ 5bの外表面に固着する等の方 法がある。これ以外の方法として、例えば図 7に示すように、端子片 5に設けたリブ 5b の外表面にアルミニウム半田 19が形成されたクラッド構造にすることも可能である。こ のようなクラッド構造を採用することにより必要部分のみにアルミニウム半田 19を介在 させてレーザー溶接することが可能になるため、接合精度及び信頼性並びに作業性 を大幅に向上させることができる。
[0049] なお、実施の形態 3は、ろう材 18 (またはアルミニウム半田 19)を介在させてレーザ 一溶接を行うことを、コンデンサ素子 12の陽極側端面と端子片 5に設けたリブ 5bとの 接合を例にして説明した。しかし、本発明はこれに限定されるものではなぐコンデン サ素子 12の陰極側端面と金属ケース 3の内底面との接合においても同様に適用す ることが可能である。
[0050] (実施の形態 4)
実施の形態 4は実施の形態 1にかかるコンデンサ素子の構成を異なるようにしたも のである。これ以外の構成は実施の形態 1と同様であるために同一部分の詳細な説 明は省略し、異なる部分についてのみ以下に説明する。
[0051] 実施の形態 4にかかるコンデンサ素子は、電極を構成する分極性電極層を集電体 上に集電体の露出部分が残らないように全面に形成する。この分極性電極層が形成 された一対の電極を夫々の端部が互いに逆方向に突出するようにしてその間にセパ レータを介在させ卷回して構成する。このように構成されたコンデンサ素子は、集電 体の露出部分、すなわち、容量に寄与しない部分が、その一端に残る実施の形態 1 のものに比べて集電体上に分極性電極層が全面に形成されているために、コンデン サの小型化,大容量ィ匕が実現できる。
[0052] なお、既に述べた実施の形態 1において、複数の電極を一度に生産するような量 産を想定した場合に、集電体の露出部分を一端に残すように集電体上に分極性電 極層を形成するためには上記露出部分 (即ち、分極性電極層の未塗工部分)が長尺 状の集電体にストライプ状に形成されるようにしなければならな力つた。このため、集 電体の表裏面に位置を合わせて形成しなければならな 、ために作業性と寸法精度 面で課題があった。これに対し、実施の形態 4のように集電体の全面に分極性電極 層を形成する構成にすれば、作業性と寸法精度面において大きな改善を図ることが でさるよう〖こなる。
[0053] (実施の形態 5) 実施の形態 5は実施の形態 1にかかるコンデンサ素子の構成を異なるようにしたも のである。これ以外の構成は実施の形態 1と同様であるために同一部分の詳細な説 明は省略し、異なる部分について以下に説明する。
[0054] 実施の形態 5にかかるコンデンサ素子は、コンデンサ素子の両端面に形成された 分極性電極層を除去するようにしたものである。その具体的な手段としては、コンデ ンサ素子の両端面を 180°C以上に加熱した後、このコンデンサ素子の両端面に形成 された分極性電極層を機械的に除去するようにする。この方法によれば、分極性電 極層を構成する活性炭とバインダーの内、 CMC (カルボキシメチルセルロース)から なるバインダーが熱分解することによって活性炭の保持力が低下するために極めて 容易に活性炭を除去することができる。例えばブラシや砲石等を用いて機械的に活 性炭を除去することによりアルミニウム箔カもなる集電体を露出させることができる。こ れによりレーザー溶接時に端子板や金属ケースの接合部分に穴があくという、不具 合を排除することができるので、溶接強度を向上させて接合の信頼性を向上させるこ とができる。なおバインダーがガス化して内圧が上昇することによって穴が発生する 現象は一般にブローホールと呼ばれて 、る。本発明ではこのブローホールを排除す ることがでさる。
[0055] また、上記コンデンサ素子の両端面に形成された分極性電極層を除去する別の手 段として、分極性電極層の少なくとも端子板及び金属ケースの少なくとも一方の当接 する部分を機械的に除去する方法がある。この方法は、回転型の砥石等を用いて切 削するようにしたものであり、この方法によっても上記と同様の効果が得られる。
[0056] 以上、実施の形態 1〜5で述べた本発明に力かるコンデンサは、コンデンサ素子か らの陽極,陰極の取り出しをリード部材等を用いることなぐ素子の端面から直接取り 出せるために低抵抗ィ匕が図れる。また、陽極,陰極の外部取り出しを端子板に設け た端子と金属ケースから取り出すことができるようになるため、このコンデンサを複数 個連結してコンデンサユニットを構成する際に各コンデンサ間の接続スペースを半減 することができるようになり、小型化が図り易くなるという格別の効果が得られる。
[0057] (実施の形態 6)
図 8は本発明の実施の形態 6にかかるコンデンサの構成を示した断面図、図 9A, 図 9B,図 9C及び図 9Dはそれぞれ同コンデンサに使用される端子板の構成を示し た表面側の斜視図,内面側の斜視図, A— A断面図及び B— B断面図である。
[0058] 図 8及び図 9A〜図 9Dにおいて、コンデンサ素子 31は、中空部 31aを備える。コン デンサ素子 31はアルミニウム箔カもなる集電体上に分極性電極層を形成した正負 一対の電極を互いに逆方向に位置をずらしてその間にセパレータを介在させて卷回 して構成する(図示せず)。また、図 8を正視して、その上下方向、すなわち、コンデン サ素子 31の両端面力も陽極と陰極を夫々取り出す。
[0059] コンデンサ素子 31及び駆動用電解液(図示せず)はアルミニウム製の有底筒状の 金属ケース 32に収容する。コンデンサ素子 31の中空部 31a内に嵌まり込むように金 属ケース 32の内底面と一体させて突起 32aを設ける。コンデンサ素子 31の陰極側の 端面を金属ケース 32の内底面にレーザー溶接等によって機械的,電気的に接合す る。
[0060] アルミニウム製の端子板 33はコンデンサ素子 31の陽極側の端面に接合されると共 に金属ケース 32の開口部に配設されて封止を行う。端子板 33はコンデンサ素子 31 の陽極側の端面が接合される内面を基準面とする。この基準面を、外周部 33aとこの 外周部 33aから中心に向力 複数の帯状の接合部 33bを残してその他の部分を表面 側に隆起させた構成とする。接合部 33bにコンデンサ素子 31の陽極側の端面をレー ザ一溶接等により、機械的,電気的に接合する。
[0061] また、端子板 33の内面中央部にはコンデンサ素子 31の中空部 31a内に嵌まり込 む突起 33cを設ける。さらに、端子板 33の表面側には雌ネジを有した外部接続用の 陽極端子 33dを設ける。端子板 33の表面側の外周には、後述する封止用ゴムを嵌 め込むための段部 33eと、段部 33eの略中央部に突起 33fを夫々円環状に設ける。 また、端子板 33の表面側には回り止め部 33g、電解液注入部を兼ねた安全弁取り付 け孔 33hをそれぞれ設ける。さらに安全弁取り付け孔 33hに装着する安全弁(図示せ ず)が非接触状態で嵌まり込む凹部をコンデンサ素子 31の陽極側の端面に設ける。 こうした構成によって不本意な電気的短絡を排除し、かつ、コンデンサ素子 31の小 型化が図れる。
[0062] 図 8において、端子板 33の内面に設けた突起 33cをコンデンサ素子 31の中空部 3 laに嵌め込んで接合部 33bにコンデンサ素子 31の陽極側の端面をレーザー溶接 等によって機械的,電気的に接合する。端子板 33を絶縁部材 34を介在させて金属 ケース 31の開口部に配設し、端子板 33の表面周縁に封止用ゴム 35を配置した状態 で、この封止用ゴム 35を圧接するように金属ケース 31の開放端をカーリング力卩ェす ることにより封止を行う。
[0063] このように構成された実施の形態 6にかかるコンデンサは、端子板 33の基準面をコ ンデンサ素子 31の陽極側の端面との接合部としている。このため、コンデンサ素子 3 1の陽極側の端面からカ卩ェ後の金属ケース 32上端までの寸法を極めて小さくするこ とができる。この結果、同一高さのコンデンサにおいてコンデンサ素子の背高を高く することができ、容量アップ及び低抵抗ィ匕が図れる。
[0064] 図 10は実施の形態 6にかかる発明の効果を端的に説明するために用意した図面 である。本発明に力かるコンデンサと従来のコンデンサを並べて図示した。図 10にお いて、発明品(図 10を正視して右側)に力かるコンデンサは端子板 33の効果によつ て、コンデンサ素子 31の陽極側端面力も加工後の金属ケース 32上端までの寸法は HIと小さくすることができる。これに対して従来品(図 10を正視して左側)の同寸法 は H2と大きくなり、この寸法差は同図に示すように、 H2— H1 =H3となる。
[0065] 従って、コンデンサ全体の背高寸法を同一高さにした場合に、寸法差 H3の分だけ コンデンサ素子 31の寸法を長くすることができるようになるため、容量アップを図るこ とができる。また、コンデンサの低抵抗化も同時に達成することができるようになる。こ うした特性向上効果を後述する実施の形態 7にかかるコンデンサの特性と共に表 1に 示す。
[0066] [表 1] 実施の形態 6 実施の形態 7
発明品 «品 発明品 従来品
容量比 (%) 1 2 5 1 1 4 1 1 0 1 0 0
D C R比 ) 8 0 8 8 9 1 1 0 0 [0067] 表 1から明らかなように、実施の形態 6にかかるコンデンサは、後述する実施の形態 7にかかるコンデンサの従来品の容量と抵抗を 100とした時の比率で比較すると、容 量は 25%アップ、 DCR (DC Resistance)比は 20%ダウンとなり、大きな改善効果が 得られることが分かる。
[0068] なお、実施の形態 6においては、端子板 33の表面側に設けた回り止め部 33gは、 外部接続用の陽極端子 33dに設けられた雌ねじに図示しない雄ねじを締め付ける際 の端子板 33の回り止めを行うためである。なお、ここで、回り止め部 33gを凸部形状 のものを例示したが、本発明はこれに限定されるものではなぐ凹部形状に形成して も良い。
[0069] また、実施の形態 6においては、端子板 33の表面側に設けた外部接続用の陽極 端子 33dは雌ねじを有した凸状の構成として説明した。しかし、本発明はこれに限定 されるものではなぐあらゆる形状のものが設計的事項の 1つとして考えられる。
[0070] また、実施の形態 6にかかるコンデンサ素子 31は、アルミニウム箔カもなる集電体 上に分極性電極層を形成した正負一対の電極を互!、に逆方向に位置をずらしてそ の間にセパレータを介在させ卷回して構成した例を説明した。本発明はこれに限定 されるものではな ヽ。電極を構成する分極性電極層を集電体上の一端側に集電体 の露出部分が残るように形成し、この分極性電極層が形成された正負一対の電極を 上記集電体の露出部分が互 、に逆方向になるようにしてその間にセパレータを介在 させて卷回する構成でも良い。
[0071] また、他の構成としては、電極を構成する分極性電極層を集電体上に集電体の露 出部分が残らないように全面に形成し、この分極性電極層が形成された正負一対の 電極を互いに逆方向に位置をずらして夫々の端部が互いに逆方向に突出するように してその間にセパレータを介在させ卷回して構成したコンデンサ素子を用いても良い
[0072] また、実施の形態 6においては、コンデンサ素子 31の陽極の取り出しを端子板 33 から、陰極の取り出しを金属ケース 32から行うようにした。本発明はこれに限定される ものではなぐこれらの取り出しを逆にしても良い。
[0073] (実施の形態 7) 実施の形態 7は、実施の形態 6にかかるコンデンサの端子板及び金属ケースの構 成を変えて陽極,陰極の外部取り出し構造を異ならせたものである。これ以外の構成 は実施の形態 6と同様であるので同一部分には同一の符号を付与し、その詳細な説 明は省略し、異なる部分についてのみ以下に図面を用いて詳細に説明する。
[0074] 図 11は本発明の実施の形態 7にかかるコンデンサの構成を示した断面図、図 12は 同コンデンサに使用される端子板の構成を示した断面図である。
[0075] 図 11と図 12において、コンデンサ素子 31及び駆動用電解液(図示せず)をアルミ -ゥム製の有底筒状の金属ケース 36に収容する。また、金属ケース 36の外底面に 一体形成した帯板状の外部接続用の陰極端子 36aを設ける。また、コンデンサ素子 31の陽極側の端面に接合し、金属ケース 36の開口部に配設されて封止を行うアル ミニゥム製の端子板 37を設ける。端子板 37は、コンデンサ素子 31の陽極側の端面 が接合される内面を基準面とし、この基準面を、外周部 37aとこの外周部 37aから中 心に向力う複数の帯状の接合部 37bを残してその他の部分を表面側に隆起させた 構成としている。さらに、接合部 37bにコンデンサ素子 31の陽極側の端面をレーザー 溶接等により、機械的,電気的に接合する。さらに、端子板 37の内面中央にはコン デンサ素子 31の中空部 31a内に嵌まり込む突起 37cを設ける。これらの構成は実施 の形態 6と同様である。
[0076] また、端子板 37の表面側には外部接続用の帯板状の陽極端子 37dを設ける。また 、端子板 37の表面側には外周から立ち上がる円環状の立ち上がり部 37eと、立ち上 力 Sり部 37eの上端力 外径方向に鍔状に延びる巻き締め加工部 37fを一体形成する 。また、端子板 37の内面側に設けた突起 37cをコンデンサ素子 31の中空部 31aに 嵌め込んで接合部 37bにコンデンサ素子 31の陽極側の端面をレーザー溶接等によ つて機械的,電気的に接合する。端子板 37を金属ケース 36の開口部に配設し、端 子板 37に設けた巻き締め加工部 37fの周縁と金属ケース 36の開口部とを、図示しな V、絶縁部材を介在させて共に巻き込むように二重巻き締め加工することによって封 止を行う。
[0077] このように構成された実施の形態 7にかかるコンデンサは、実施の形態 6にかかるコ ンデンサと同様に、コンデンサ素子 31の陽極側の端面からカ卩ェ後の金属ケース 36 の上端までの寸法を小さくすることができる。これにより、同一高さのコンデンサにお いてコンデンサ素子の背高を高くすることができるようになる。これによつて、コンデン サの容量アップ及び低抵抗ィ匕を図ることができる。
[0078] 図 13は実施の形態 7にかかる効果を端的に説明するために、実施の形態 7にかか るコンデンサと従来のコンデンサ(図 27参照)を比較して示したものである。図 13に おいて、発明品(図 13を正視して右側)においては端子板 37の効果によりコンデン サ素子 31の陽極側端面から加工後の金属ケース 36上端までの寸法は H11である。 これに対して従来品(図 13を正視して左側)の同寸法は H12で示している。これらの 寸法差は同図に示すように、 H12—H11 =H13となる。
[0079] 従って、コンデンサ全体の高さ寸法を同一高さにした場合に、本発明に力かるコン デンサは、寸法差 H13の分だけコンデンサ素子 31の寸法を大きく(長く)することが できるようになるため、容量アップを図ると共に低抵抗化も同時に達成することができ る。この特性向上効果を前述の実施の形態 6にかかるコンデンサと共に表 1に示す。
[0080] 表 1から明らかなように、実施の形態 7にかかるコンデンサは、従来品の容量と抵抗 を 100とした時の比率で比較すると、容量は 10%アップ、抵抗成分は 9%ダウンとな り、大きな改善効果が得られることが分かる。
[0081] (実施の形態 8)
実施の形態 8は、実施の形態 6にかかるコンデンサの端子板に設けた陽極端子の 構成を一部異ならせるようにしたものである。これ以外の構成は実施の形態 6と同様 であるので同一部分には同一の符号を付与してその詳細な説明は省略し、異なる部 分についてのみ以下に図面を用いて詳細に説明する。
[0082] 図 14A,図 14Bは本発明の実施の形態 8にかかるコンデンサをそれぞれ複数個連 結した状態を示した断面図、同要部を拡大した断面図である。図 14Aには、端子板 3 8、接合部 38b,突起 38c,外部接続用の陽極端子 38d、陽極端子 38dの先端の一 部を細径にすることにより設けられた力シメ部 38e及び接続バー 39を示す。
[0083] このように構成された実施の形態 8にかかるコンデンサは、複数個連結して使用す る場合に、図 14Bにその拡大図を示すように、端子板 38の陽極端子 38dに設けられ た力シメ部 38eに接続バー 39を嵌め込んで力シメ部 38eをカシメ固定することにより 結合する。また、力シメ部 38eの近傍をレーザー溶接を施すことで、より信頼性の高い 結合を行うようにしたものである。こうした構成は既に述べた実施の形態 6に示した雌 ネジを有した陽極端子 33dに比べて、コンデンサの背高を、より低く抑えることができ る。
[0084] 以上実施の形態 6〜9で述べた本発明に力かるコンデンサは、コンデンサ素子の陽 極側の端面から加工後の金属ケース上端までの寸法を極めて小さくすることができる 。このため、同一高さのコンデンサにおいてコンデンサ素子の背高を高くすることがで きるようになり、容量アップと低抵抗ィ匕を同時に図ることができるという効果を奏する。 コンデンサの小型化,大容量ィ匕が要求される分野のコンデンサとして有用である。
[0085] (実施の形態 9)
図 15は本発明の実施の形態 9にかかるコンデンサの構成を示した断面図、図 16は 同要部の断面図であり、図 15,図 16において、コンデンサ素子 51は中空部 51a及 び端面部 51bを備える。コンデンサ素子 51はアルミニウム箔カもなる集電体上に分 極性電極層を形成した正負一対の電極を互!ヽに逆方向に位置をずらしてその間に セパレータを介在させて卷回して構成する(図示せず)。コンデンサ素子 51の両端面 、すなわち、図 15を正視してその上下側力も陽極及び陰極を夫々取り出す。
[0086] コンデンサ素子 51及び駆動用電解液(図示せず)はアルミニウム製の有底円筒状 の金属ケース 52に収容する。金属ケース 52の内底面に一体形成した突起 52aはコ ンデンサ素子 51の中空部 51a内に嵌まり込むようにしている。突起 52aをコンデンサ 素子 51の中空部 51aに嵌め込んで金属ケース 52内に挿入されたコンデンサ素子 5 1の陰極側の端面を金属ケース 52の内底面にレーザー溶接等の手段によって機械 的,電気的に接合する。また、金属ケース 52に断面形状が V字形の絞り加工部 52b を設ける。加工部 52bは、コンデンサ素子 51の図中における上部側の端面周縁を外 方から抑さえ込むよう構成する。
[0087] アルミニウム製の端子板 53の表面側には、外部接続用の陽極端子 53aを設ける。
コンデンサ素子 51の中空部 51a内に突起 53bを嵌め込む。また、コンデンサ素子 51 の陽極側の端面を端子板 53の内面にレーザー溶接等によって接合することにより、 機械的,電気的に接続する。 [0088] リング状に形成され、金属ケース 52に施された絞り加工部 52bの上端には第 1の絶 縁リング 54を配設する。第 1の絶縁リング 54は金属ケース 52の内面と端子板 53の外 周面との間から端子板 53の内面周縁の一部に繋がるように形成する。これにより、端 子板 53と金属ケース 52間の絶縁を保つようにして 、る。
[0089] 絶縁シート 55は端子板 53側のコンデンサ素子 51の端面周縁からこれに繋がる周 面の一部に亘つて当接するように形成する。コンデンサ素子 51の陽極側の端面周縁 が金属ケース 52の内周面に当接して短絡するのを防止するように構成する。
[0090] 絶縁性ゴム力もなるリング状の封止用リング 56を端子板 53の表面周縁に配設する 。封止用リング 56を介在させて金属ケース 52の開口部を巻き込むように加工(一般 に、カーリング力卩ェと呼ばれている)することによって封止する。
[0091] 以上の説明から明らかなように、実施の形態 9にかかるコンデンサは、コンデンサ素 子 51の陽極側の端面周縁からこれに繋がる周面の一部に亘つて当接するように絶 縁シート 50を配設する。コンデンサ素子 51の陽極側の端面周縁と金属ケース 52の 内面間に絶縁シート 55が介在するようになるために不本意な電気的短絡を排除し、 電気的特性が優れた信頼性の高いコンデンサを実現することができる。
[0092] なお、第 1の絶縁リング 54は、ゴムまたは榭脂(PP、 PPS等)により構成することが 可能である。榭脂により構成した場合には、封止用リング 56の反発力を適正に保つ 目的で、榭脂の曲げ弾性率を 500Mpa以上にすることが好ましい。
[0093] また、実施の形態 9においては、コンデンサ素子 51の陽極側の端面周縁からこれ に繋がる周面の一部に亘つて当接するように絶縁シート 5を配設した構成を例示した 。しかし、本発明はこれに限定されるものではない。少なくともコンデンサ素子 51の陽 極側の端面周縁及びこれに繋がる周面の一部が近接する金属ケース 52の内周面に 絶縁処理を施した構成にしても同様の効果が得られる。
[0094] また、実施の形態 9においては、コンデンサ素子 51として、アルミニウム箔カもなる 集電体上に分極性電極層を形成した正負一対の電極を互!ヽに逆方向に位置をずら してその間にセパレータを介在させて卷回することにより構成するものを例示した。こ のように構成されるコンデンサ素子としては、電極を構成する分極性電極層を集電体 上の一端側に集電体の露出部分が残るように形成し、この分極性電極層が形成され た正負一対の電極を上記集電体の露出部分が互いに逆方向になるようにしてその 間にセパレータを介在させて卷回することにより構成しても良い。また、電極を構成す る分極性電極層を集電体上に集電体の露出部分が残らないように全面に形成し、こ の分極性電極層が形成された正負一対の電極を夫々の端部が互いに逆方向に突 出するようにしてその間にセパレータを介在させて卷回した構成であっても良い。
[0095] (実施の形態 10)
実施の形態 10は、実施の形態 9で説明したコンデンサにおけるコンデンサ素子の 陽極側端面の周縁と金属ケース内面間の絶縁構造が異なるようにしたものである。こ れ以外の構成は実施の形態 9と同様であるために同一部分には同一の符号を付与 し、その詳細な説明は省略し、異なる部分についてのみ以下に図面を用いて説明す る。
[0096] 図 17は本発明の実施の形態 10にかかるコンデンサの構成を示した要部断面図で ある。図 17において、第 2の絶縁リング 57は第 1の絶縁リング 54の底面とコンデンサ 素子 51の陽極側端面周縁との間で、かつ、外周が金属ケース 52に施された絞り加 ェ部 52bに近接するように配設する。
[0097] このように構成したコンデンサは、コンデンサ素子 51の陽極側端面の周縁と金属ケ ース 52の内面間に第 2の絶縁リング 57を介在する。この構成によって不本意な電気 的短絡事故を排除することができる。なお、実施の形態 10においては、実施の形態 9で説明した絶縁シート 5を配設したり、あるいは金属ケース 52への絶縁処理を施し たりすることなぐ優れた信頼性のコンデンサを実現することができるようになる。
[0098] (実施の形態 11)
実施の形態 11は、実施の形態 9で説明したコンデンサに力かるコンデンサ素子の 陽極側端面の周縁と金属ケース内面間の絶縁構造が異なるようにしたものである。こ れ以外の構成は実施の形態 9と同様であるために同一部分には同一の符号を付与 してその詳細な説明は省略し、異なる部分についてのみ以下に図面を用いて説明 する。
[0099] 図 18は本発明の実施の形態 11に力かるコンデンサの構成を示した要部断面図で あり、図 18において、金属ケース 58には円環状に施された絞り加工部 58aを設ける 。絞り加工部 58aの形状は U字形または V字形に加工されている。第 2の絶縁リング 5 9は凸形に形成されることにより、その上面が第 1の絶縁リング 54の底面と当接し、そ の下面がコンデンサ素子 51の陽極側の端面周縁と当接する。かつ、絞り加工部 58a を構成する U字形の底面及び側面の少なくとも一方が第 2の絶縁リング 59に当接ま たは近接して配設する。
[0100] このように構成された実施の形態 11にかかるコンデンサは、コンデンサ素子 51の陽 極側端面の周縁と金属ケース 52の内面間に第 2の絶縁リング 59が介在するようにな るために不本意な電気的短絡事故を排除することができるので、実施の形態 9で説 明したコンデンサよりも更に絶縁の信頼性を向上させることができるようになる。
[0101] (実施の形態 12)
実施の形態 12は、実施の形態 9で説明したコンデンサにおけるコンデンサ素子の 陽極側端面の周縁と金属ケース内面間の絶縁構造が異なるようにしたものである。こ れ以外の構成は実施の形態 9とほぼ同様であるために同一部分には同一の符号を 付与し、その詳細な説明は省略し、異なる部分についてのみ以下に図面を用いて説 明する。
[0102] 図 19は本発明の実施の形態 12にかかるコンデンサの構成を示した要部断面図で ある。図 19において、ゴム製の封止用リング 60は端子板 53の外周面及び表裏面周 縁の一部と当接するように、その断面形状を U字形 (または V字形)に成形する。また 、封止用リング 60は、金属ケース 52に施された絞り加工部 58aの上端に載置される ように配設する。
[0103] このようにして得られた実施の形態 12にかかるコンデンサは、実施の形態 9〜: L 1で 用意した、第 1の絶縁リング 54が不要になるので、封止用リング 60と第 2の絶縁リング 59のみで信頼性の高 、絶縁を行うことができる。
[0104] 以上説明したように、実施の形態 9〜12で述べた本発明にかかるコンデンサは、コ ンデンサ素子からの陽極,陰極の取り出しをリード部材等を用いることなぐ素子の端 面から直接取り出すようにしているために低抵抗ィ匕が図れる。また、陽極,陰極の外 部取り出しを端子板に設けた端子と金属ケース力 取り出すことができるようになる。 これにより、コンデンサを複数個連結してコンデンサユニットを構成する際に、各コン デンサ間の接続スペースを半減することができる。こうした構成と効果によって、ハイ ブリツドカーや燃料電池車の回生用、あるいは電力貯蔵用等として特に有用である。
[0105] (実施の形態 13)
図 20A,図 20Bは本発明の実施の形態 13に力かるコンデンサの構成をそれぞれ 示した正面断面図と底面図である。これらの図面においてコンデンサ 81Aと 81Bは、 夫々正負の極性が異なるように構成されて 、る。
[0106] まずコンデンサ 81 Aについて説明する。コンデンサ 81Aにおいて、コンデンサ素子 82は中空部 82aを備える。コンデンサ素子 82はアルミニウム箔カもなる集電体上に 分極性電極層を形成した正負一対の電極を互いに逆方向に位置をずらしてその間 にセパレータを介在させて卷回して構成する(図示せず)。コンデンサ素子 82の両端 面(図中の上下方向)から陽極と陰極を夫々取り出す。
[0107] コンデンサ素子 82及び駆動用電解液(図示せず)はアルミニウム製の有底筒状の 金属ケース 83の中に収容する。コンデンサ素子 82の中空部 82a内に嵌まり込むよう に内底面に一体させて突起 83aを設ける。突起 83aをコンデンサ素子 82の中空部 8 2aに嵌め込んで金属ケース 83内に挿入されたコンデンサ素子 82の陰極側の端面を 金属ケース 83の内底面にレーザー溶接等によって機械的,電気的に接合する。
[0108] アルミニウム製の端子板 84はコンデンサ素子 82の陽極側の端面に接合されると共 に金属ケース 83の開口部に配設して封止する。端子板 84の表面(図中の上側)に は外部接続用の端子 84aが設けられ、またその裏面(図中の下側)にはコンデンサ素 子 82の中空部 82a内に嵌まり込む突起 84bが夫々一体で設ける。端子板 84を絶縁 部材 85を介在させて金属ケース 83の開口部に配設し、端子板 84の表面周縁に封 止用ゴム 86を配置する。この状態で、封止用ゴム 86を圧接するように金属ケース 83 の開放端をカーリング加工して封止する。
[0109] このように構成されたコンデンサ 81Aは、コンデンサ素子 82の陽極の取り出しを端 子板 84に設けた端子 84aから、陰極電極の取り出しを金属ケース 83から行うように 構成されたものである。
[0110] 一方、コンデンサ 81Bは、コンデンサ 81Aとは逆極性となるように構成されている。
すなわち、コンデンサ素子 82の陽極の取り出しを金属ケース 83から、陰極の取り出 しを端子板 84に設けた端子 84aからそれぞれ行う。
[0111] アルミニウム製の接続板 87はコンデンサ 81Aの金属ケース 83の外底面とコンデン サ 81Bの金属ケース 83の外底面とに跨ってレーザー溶接により接合する。これにより 、 2個のコンデンサを機械的,電気的に接合して連結し、 2個のコンデンサを直列接 続している。
[0112] さて、接続板 87の形状は略六角形に形成され、かつ、接続板 87が金属ケース 83 の外底面と接触する面積力 金属ケース 83の外底面の面積の 50%未満になるよう にしている。このようにすることによって十分な結合強度を確保すると共に、何らかの 環境変化、条件変化によって金属ケース 83内の圧力が上昇して金属ケース 83の底 面が膨らむような異常現象が発生したとしても、この膨れ現象による悪影響を防止す ることができる。さらに、接続板 87を略六角形に形成することにより、材料取りの際に 千鳥状に接続板 87を取ることができるため、材料の無駄を省き有効に利用すること ができる。
[0113] また、図 20Bには接続板 87と金属ケース 83をレーザー溶接により結合した多数の 溶接痕 87aを示して ヽる。これら多数の溶接痕 87aはほぼ直線状に配置されるように レーザ溶接を行う。このようにすることによって溶接時の加熱により金属ケース 83が膨 張した後、常温に戻る際の収縮に対する歪みの影響を最小限に抑えることができるよ うになる。なお、図 20Bにおける三つ葉状の窪み 83bは、コンデンサ素子 82の一方 の端面を金属ケース 83の内底面にレーザー溶接により接合するために設けた接合 用リブである。
[0114] 接続板 87の厚みは、コンデンサ 81 A, 81Bの許容電流値を余裕をもって確保する ことができ、かつ接続板強度と溶接強度が保証できる範囲内で薄い方が良いことから 、 0. 1〜0. 8mmの範囲が好ましい。さらに好ましい範囲は、 0. 2〜0. 5mmである。
[0115] このように構成されたコンデンサは、コンデンサ素子 82からの陽極,陰極の取り出し にリード部材等を用いる必要がなくなるので、コンデンサ素子 82の端面から直接取り 出すことができる。これによりコンデンサの低抵抗ィ匕が図れる。
[0116] また、陽極,陰極の外部取り出しを端子板 84に設けた端子 84aと金属ケース 83か ら取り出すことができるようになる。コンデンサを複数個連結してコンデンサユニットを 構成する際に、各コンデンサ間の接続スペースを半減することができるようになり、コ ンデンサの小型化が実現できる。
[0117] (実施の形態 14)
実施の形態 14は、実施の形態 13で説明したコンデンサの接続板の構成が異なる ようにしたものである。これ以外の構成は実施の形態 13と同様であるために同一部 分には同一の符号を付与してその詳細な説明は省略し、異なる部分についてのみ 以下に図面を用いて説明する。
[0118] 図 21は本発明の実施の形態 14にかかるコンデンサに使用される接続板の構成を 示した平面図である。図 21において、六角形の接続板 88の一部であって、コンデン サとコンデンサとの境界部にあたる中心部 88cを除いた箇所に、切り欠き 88aを設け る。かつ、この切り欠き 88aの先端部、すなわち、接続版 88の中心部 88cに近い箇所 には直線部 88bを設ける。
[0119] このように構成された接続板 88を用いることにより、実施の形態 13にかかるコンデ ンサにより得られる効果に加え、コンデンサ 81Aとコンデンサ 81Bの金属ケース 83の 外底面の平行度や高さ等において、両者間に微妙なばらつきが発生した場合にお いても、切り欠き 88aでこれらを吸収することができるようになり、より精度の高い結合 を行うことができる。
[0120] また、切り欠き 88aでこのようなばらつきを吸収する際に、切り欠き 88aの先端部で あって、接続版 88の中心部 88cに近い箇所に直線部 88bを設ける。これによつて応 力集中を緩和し、より信頼性の高いコンデンサを得ることができるものである。
[0121] (実施の形態 15)
実施の形態 15は、実施の形態 13で説明したコンデンサに外装処理を施した構成 を示すものである。これ以外の構成は実施の形態 13と同様であるために同一部分に は同一の符号を付与してその詳細な説明は省略し、異なる部分についてのみ以下 に図面を用いて説明する。
[0122] 図 22は本発明の実施の形態 15にかかるコンデンサの構成を示した正面断面図で ある。図 22において熱収縮性榭脂フィルム 89は 2個のコンデンサ 81A, 81Bの外周 を被覆するように装着されることにより、 2個のコンデンサ 81A, 81Bの連結状態をより 安定させることができるようになるものである。
[0123] 以上説明したように、実施の形態 13〜15にかかるコンデンサは、コンデンサを複数 個連結したコンデンサユニットを構成する際に、各コンデンサ間の接続スペースを半 減することができるようになり、コンデンサ全体の小型化が実現できる。このため、特 にハイブリッドカーや燃料電池車の回生用、あるいは電力貯蔵用等に使用されるコン デンサ等として有用である。
[0124] 以上、実施の形態 1〜15を用いて、本発明の構成,作用及び効果について説明し た。いずれの実施の形態においても、コンデンサの小型化及び大容量ィ匕を図り、さら にその低抵抗ィ匕が実現できるコンデンサ及びその製造方法を提供することで共通す る。
産業上の利用可能性
[0125] 本発明に力かるコンデンサは、コンデンサ素子からの陽極,陰極の取り出しをリード 部材等を用いることなく、素子の端面から直接取り出すようにして 、るために低抵抗 化が図れる。また、陽極,陰極の外部取り出しを端子板に設けた端子と金属ケースか ら取り出すことができるようになる。このため、コンデンサを複数個連結してコンデンサ ユニットを構成する際に、各コンデンサ間の接続スペースを半減することができるよう になる。特に、ノ、イブリツドカーや燃料電池車の回生用、あるいは電力貯蔵用等とし て有用であるので、その産業上の利用可能性は高い。

Claims

請求の範囲
[1] 金属箔カゝらなる集電体上に分極性電極層を形成した一対の電極を互いに逆方向に 位置をずらしてその間にセパレータを介在させて卷回することにより構成されたコン デンサ素子と、前記コンデンサ素子を駆動用電解液と共に収容した有底筒状の金属 ケースと、前記金属ケースの開口部を封止した端子板力もなるコンデンサであって、 前記端子板が、コンデンサ素子の互!、に逆方向に位置する電極の一方に接合され るリブ及び外部接続用の端子を備えた端子片を絶縁性の樹脂でインサート成形して 構成し、コンデンサ素子の互いに逆方向に位置する電極の一方を前記端子板に設 けた端子片のリブに接合し、電極の他方を金属ケースの内底面に接合することにより 、陽極,陰極のいずれかの電極取り出しを端子板に設けた外部接続用の端子とし、 他方の電極の取り出しを金属ケースで行うようにしたコンデンサ。
[2] 金属ケースの内底面とコンデンサ素子との接合面に、部分的に突出するリブを設け た請求項 1に記載のコンデンサ。
[3] 端子板にインサート成形された端子片のリブとコンデンサ素子との接合部及び金属 ケースの内底面とコンデンサ素子との接合部の少なくとも一方にろう材を介在させた 請求項 1に記載のコンデンサ。
[4] 端子板にインサート成形された端子片のリブのコンデンサ素子との接合面及び金属 ケースの内底面のコンデンサ素子との接合面の少なくとも一方を、基材上にアルミ- ゥム半田が形成されたクラッド構造にした請求項 1に記載のコンデンサ。
[5] 端子板に電解液注入部を兼ねた安全弁取り付け孔を設けた請求項 1に記載のコン デンサ。
[6] 電極を構成する分極性電極層を集電体上の一端側に集電体の露出部分が残るよう に形成し、前記分極性電極層が形成された一対の電極を前記集電体の露出部分が 互いに逆方向になるようにしてその間にセパレータを介在させて卷回することにより 構成したコンデンサ素子を備えた請求項 1に記載のコンデンサ。
[7] 電極を構成する分極性電極層を集電体上の全面に形成し、この分極性電極層が形 成された一対の電極を夫々の端部が互いに逆方向に突出させ、その間にセパレータ を介在し、卷回することにより構成したコンデンサ素子を備えた請求項 1に記載のコン デンサ。
[8] 端子板の上面周縁に配設されて封止される封止用ゴムと接する部分の金属ケースに 絶縁処理を施した請求項 1に記載のコンデンサ。
[9] コンデンサ素子の互いに逆方向に位置する電極の陽極の取り出しを端子板に設け た外部接続用の端子で、陰極の取り出しを金属ケースでそれぞれ行う第 1のコンデン サと、陰極の取り出しを端子板に設けた外部接続用の端子で、陽極の取り出しを金 属ケースでそれぞれ行う第 2のコンデンサの金属ケース同士を接続することにより直 列接続した請求項 1に記載のコンデンサ。
[10] 第 1のコンデンサと第 2のコンデンサを直列接続したものを 1組とし、これを複数組直 列接続した請求項 9に記載のコンデンサ。
[11] コンデンサ素子の両端面を 180°C以上に加熱した後、前記コンデンサ素子の両端面 に形成された分極性電極層を機械的に除去する請求項 1〜8のいずれか 1項に記載 のコンデンサの製造方法。
[12] コンデンサ素子の両端面に形成された分極性電極層の少なくとも端子板及び金属ケ 一スと当接する部分の少なくとも一方を機械的に除去する請求項 1〜8のいずれか 1 項に記載のコンデンサの製造方法。
[13] 金属箔カゝらなる集電体上に分極性電極層を形成した正負一対の電極をその間にセ パレータを介在させて卷回し、正負の電極が互いに逆方向に配置された中空部を有 するコンデンサ素子と、前記コンデンサ素子を駆動用電解液と共に収容し、かつ、コ ンデンサ素子の一方の電極を内底面に接合した有底筒状の金属ケースと、前記コン デンサ素子の他方の電極を内面に接合して前記金属ケースの開口部を封止した端 子板力 なるコンデンサであって、前記端子板は前記コンデンサ素子の他方の電極 が接合される内面を基準面とし、前記基準面を、外周部と前記外周部から中心に向 力う複数の帯状の接合部を残してその他の部分を表面側に隆起させると共に中心に 前記コンデンサ素子の中空部に嵌まり込む突部を設け、かつ、表面側の中心に外部 接続用の端子部を設けた構成とすることにより、コンデンサ素子の一方の電極を金属 ケースから、同他方の電極を端子板に設けた端子部力 取り出すコンデンサ。
[14] 端子板の表面中心に設けた外部接続用の端子部を雌ねじで構成した請求項 13に 記載のコンデンサ。
[15] 端子板の表面外周に封止用ゴムを嵌め込むための段部を設けた請求項 13に記載 のコンデンサ。
[16] 端子板の表面外周に設けた円環状の段部の略中央に突起を円環状に設けた請求 項 15に記載のコンデンサ。
[17] 端子板の表面に凹部及び凸部の少なくとも一方力 なる回り止め部を設けた請求項 13に記載のコンデンサ。
[18] 端子板に駆動用電解液注入部を兼ねた安全弁取り付け孔を設け、前記安全弁取り 付け孔に装着される安全弁が非接触状態で嵌まり込む凹部をコンデンサ素子の電 極に設けた請求項 13に記載のコンデンサ。
[19] 端子板の表面側に外周から立ち上がる円環状の立ち上がり部と、前記立ち上がり部 の上端から外径方向に鍔状に延びる巻き締め加工部を一体で設け、前記巻き締め 加工部を金属ケースの開口部と共に巻き込んで封止すると共に、金属ケースの外底 面に外部接続用の端子部を設けた請求項 13に記載のコンデンサ。
[20] 端子板の表面側の中心に設けた外部接続部の端子部の先端を細径にして力シメ接 合部を設けた請求項 13に記載のコンデンサ。
[21] 電極を構成する分極性電極層を集電体上の一端側に集電体の露出部分が残るよう に形成し、前記分極性電極層が形成された正負一対の電極を前記集電体の露出部 分が互いに逆方向になるようにしてその間にセパレータを介在させて卷回することに より構成したコンデンサ素子を用 V、た請求項 13または 19に記載のコンデンサ。
[22] 電極を構成する分極性電極層を集電体上に集電体の露出部分が残らな!/ヽように全 面に形成し、前記分極性電極層が形成された正負一対の電極を互!ヽに逆方向に位 置をずらして夫々の端部が互いに逆方向に突出させ、その間にセパレータを介在さ せて卷回して構成したコンデンサ素子を備えた請求項 13または 19に記載のコンデ ンサ。
[23] 金属箔カゝらなる集電体上に分極性電極層を形成した正負一対の電極をその間にセ パレータを介在させて卷回し、正負の電極が互いに逆方向に配置されたコンデンサ 素子と、前記コンデンサ素子を駆動用電解液と共に収容し、かつ、コンデンサ素子の 互いに逆方向に位置する電極の一方を内底面に接合すると共に、コンデンサ素子の 電極の他方の端面周縁を外方力 抑さえ込むように断面形状力 字形の絞り加工を 円環状に施した有底筒状の金属ケースと、前記コンデンサ素子の互いに逆方向に位 置する電極の他方を内面に接合して前記金属ケースの開口部を封止した端子板と、 前記端子板の外周面と金属ケースの内面との間から端子板の内面周縁の一部に繋 力 ¾ように形成されて金属ケースの絞り加工部上端に配設された第 1の絶縁リングと、 前記端子板の表面周縁に配設されて金属ケースの開放端をカーリング加工すること により封止を行うゴム製の封止用リング力もなるコンデンサであって、前記端子板側の コンデンサ素子の端面周縁からこれに繋がる周面の一部に亘つて当接するリング状 の絶縁シートを配設するか、または、少なくとも端子板側のコンデンサ素子の端面周 縁及びこれに繋がる周面の一部が近接する金属ケースの内周面に絶縁処理を施し たコンデンサ。
[24] 端子板側のコンデンサ素子の端面周縁からこれに繋がる周面の一部に亘つて当接し て配設されたリング状の絶縁シート、または、少なくとも端子板側のコンデンサ素子の 端面周縁及びこれに繋がる周面の一部が近接する金属ケースの内周面に施された 絶縁処理に代えて、第 1の絶縁リングとコンデンサ素子の端面との間に第 2の絶縁リ ングを配設した請求項 23に記載のコンデンサ。
[25] 金属ケースに施す絞り加工部を U字形または V字形に形成し、前記絞り加工部の側 面及び底面の少なくとも一方が第 2の絶縁リングに当接する請求項 24に記載のコン デンサ。
[26] 第 1の絶縁リング及び封止用リングに代えて、端子板の外周面及び表裏面周縁の一 部と当接して形成される封止用リングを用いた請求項 25に記載のコンデンサ。
[27] 第 1及び第 2の絶縁リングの少なくとも一方をゴムで構成した請求項 23〜26のいず れカ 1項に記載のコンデンサ。
[28] 第 1及び第 2の絶縁リングの少なくとも一方を榭脂により構成し、かつ、前記樹脂の曲 げ弾性率を 500Mpa以上とした請求項 23〜26のいずれ力 1項に記載のコンデンサ
[29] 電極を構成する分極性電極層を集電体上の一端側に集電体の露出部分が残るよう に形成し、前記分極性電極層が形成された正負一対の電極を前記集電体の露出部 分が互いに逆方向になるようにしてその間にセパレータを介在させて卷回することに より構成したコンデンサ素子を用いた請求項 23〜26のいずれか 1項に記載のコンデ ンサ。
[30] 電極を構成する分極性電極層を集電体上に集電体の露出部分が残らな!/ヽように全 面に形成し、前記分極性電極層が形成された正負一対の電極を夫々の端部が互い に逆方向に突出させ、その間にセパレータを介在させて卷回することにより構成した コンデンサ素子を用いた請求項 23〜26のいずれか 1項に記載のコンデンサ。
[31] 金属箔カゝらなる集電体上に分極性電極層を形成した正負一対の電極をその間にセ パレータを介在させて卷回し、正負の電極が互いに逆方向に配置されたコンデンサ 素子と、このコンデンサ素子を駆動用電解液と共に収容し、かつ、コンデンサ素子の 互いに逆方向に位置する電極の一方を内底面に接合した有底筒状の金属ケースと 、前記コンデンサ素子の互いに逆方向に位置する電極の他方を内面に接合して前 記金属ケースの開口部を封止した端子板力 なり、コンデンサ素子の一方の電極を 金属ケースから、他方の電極を端子板に設けた外部接続用の端子部力 取り出すよ うにしたコンデンサであって、前記コンデンサを互いに極性が異なるように構成した 2 個 1組を接続板を介して電気的及び機械的に接合したコンデンサ。
[32] 接続板を六角形とし、前記接続板を金属ケースの底面に配設してレーザー溶接によ り 2個のコンデンサを接合した請求項 31に記載のコンデンサ。
[33] 接続板が金属ケースの底面と接触する面積は、金属ケース底面面積の 50%未満と した請求項 32に記載のコンデンサ。
[34] 接続板と金属ケースの溶接痕は直線により形成された請求項 32に記載のコンデンサ
[35] 接続板の一部であって、前記接続板で結合されるコンデンサとコンデンサとの境界部 を除いた箇所に切り欠きを設けた請求項 32に記載のコンデンサ。
[36] 2個のコンデンサの外周を熱収縮性榭脂フィルムで一体に被覆した請求項 31に記 載のコンデンサ。
[37] コンデンサ素子を、電極を構成する分極性電極層を集電体上の一端側に集電体の 露出部分が残るように形成し、前記分極性電極層が形成された正負一対の電極を前 記集電体の露出部分が互 、に逆方向になるようにしてその間にセパレータを介在さ せ卷回して構成した請求項 31に記載のコンデンサ。
コンデンサ素子を、電極を構成する分極性電極層を集電体上に集電体の露出部分 が残らないように全面に形成し、前記分極性電極層が形成された正負一対の電極を 互いに逆方向に位置をずらして夫々の端部が互いに逆方向に突出させ、その間に セパレータを介在させて卷回することにより構成されたものである請求項 31に記載の コンデンサ。
PCT/JP2005/009641 2004-05-28 2005-05-26 コンデンサ及びその製造方法 WO2005117045A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200580000805.5A CN1842882B (zh) 2004-05-28 2005-05-26 电容器和制造电容器的方法
US10/595,043 US7457102B2 (en) 2004-05-28 2005-05-26 Capacitor and method for making the same
DE112005001007T DE112005001007T5 (de) 2004-05-28 2005-05-26 Kondensator und Verfahren zu dessen Herstellung
US12/256,694 US7843680B2 (en) 2004-05-28 2008-10-23 Capacitor and method of manufacturing the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004-159140 2004-05-28
JP2004159140A JP2005340609A (ja) 2004-05-28 2004-05-28 コンデンサ及びその製造方法
JP2004365690A JP4600028B2 (ja) 2004-12-17 2004-12-17 コンデンサ
JP2004-365690 2004-12-17
JP2005-019412 2005-01-27
JP2005019412A JP4982949B2 (ja) 2005-01-27 2005-01-27 コンデンサ
JP2005038812A JP2006228858A (ja) 2005-02-16 2005-02-16 コンデンサ
JP2005-038812 2005-02-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/595,043 A-371-Of-International US7457102B2 (en) 2004-05-28 2005-05-26 Capacitor and method for making the same
US12/256,694 Division US7843680B2 (en) 2004-05-28 2008-10-23 Capacitor and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2005117045A1 true WO2005117045A1 (ja) 2005-12-08

Family

ID=35451121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009641 WO2005117045A1 (ja) 2004-05-28 2005-05-26 コンデンサ及びその製造方法

Country Status (4)

Country Link
US (2) US7457102B2 (ja)
KR (2) KR100905851B1 (ja)
DE (1) DE112005001007T5 (ja)
WO (1) WO2005117045A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871615B1 (fr) * 2004-06-11 2006-09-08 Batscap Sa Couvercle de supercondensateur avec borne centrale integree
FR2894381B1 (fr) * 2005-12-05 2008-02-15 Batscap Sa Systeme de stockage d'energie electrique
JP4952123B2 (ja) * 2005-12-13 2012-06-13 パナソニック株式会社 コンデンサユニット
US7995328B2 (en) 2006-12-07 2011-08-09 Panasonic Corporation Capacitor
JP5040698B2 (ja) * 2007-02-14 2012-10-03 パナソニック株式会社 キャパシタ
US8081419B2 (en) * 2007-10-17 2011-12-20 Greatbatch Ltd. Interconnections for multiple capacitor anode leads
JP5380985B2 (ja) 2008-09-30 2014-01-08 パナソニック株式会社 キャパシタの製造方法及びキャパシタ
KR101049282B1 (ko) * 2009-03-03 2011-07-13 주식회사 네스캡 전기에너지 저장장치
KR101767107B1 (ko) * 2011-01-31 2017-08-10 삼성전자주식회사 반도체 장치의 캐패시터
US8611997B1 (en) * 2012-08-24 2013-12-17 Pacesetter, Inc. System and method for forming a charge storage assembly
KR102177485B1 (ko) * 2015-01-14 2020-11-11 엘에스엠트론 주식회사 내부 터미널의 결합 구조가 개선된 전기에너지 저장장치
KR102096430B1 (ko) * 2015-01-15 2020-04-02 엘에스엠트론 주식회사 전해질의 누액 방지구조를 갖는 전기에너지 저장장치의 외부 터미널
US10128044B2 (en) * 2015-11-17 2018-11-13 General Electric Company Film capacitor and the method of forming the same
WO2017147451A1 (en) * 2016-02-25 2017-08-31 Gridtential Energy, Inc. Bipolar battery electrical termination
CN110136995A (zh) * 2019-06-11 2019-08-16 成都凹克新能源科技有限公司 一种电化学储能器件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275751A (ja) * 1997-03-31 1998-10-13 Elna Co Ltd 電気二重層コンデンサおよびその製造方法
JP2000269099A (ja) * 1999-03-12 2000-09-29 Elna Co Ltd 電気二重層コンデンサ

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208699A (en) * 1975-09-02 1980-06-17 Sangamo Weston, Inc. Capacitor with molded header including strengthening material
JPS5610915A (en) 1979-07-05 1981-02-03 Nippon Electric Co Selffstanding electric double layer capacitor
JPH084061B2 (ja) 1987-02-27 1996-01-17 三菱樹脂株式会社 電子部品用外装容器
JPH0462825A (ja) 1990-06-25 1992-02-27 Matsushita Electric Works Ltd コンデンサ用封口板
JPH08203560A (ja) 1995-01-31 1996-08-09 Sony Corp 非水電解液二次電池
JPH1064767A (ja) 1996-08-21 1998-03-06 Nippon Chemicon Corp 電解コンデンサ
DE10006839A1 (de) * 1999-02-17 2000-08-24 Hitachi Maxell Elektrode für einen Kondensator, Verfahren zur deren Herstellung und ein Kondensator
JP2000243670A (ja) * 1999-02-17 2000-09-08 Matsushita Electric Ind Co Ltd 電気二重層コンデンサおよびその製造方法
JP2000315632A (ja) 1999-03-02 2000-11-14 Matsushita Electric Ind Co Ltd コンデンサ
US6456484B1 (en) * 1999-08-23 2002-09-24 Honda Giken Kogyo Kabushiki Kaisha Electric double layer capacitor
JP4375690B2 (ja) 1999-09-22 2009-12-02 本田技研工業株式会社 蓄電素子の電極接合方法
JP4681181B2 (ja) 1999-09-30 2011-05-11 旭硝子株式会社 蓄電素子
JP2001230160A (ja) * 2000-02-16 2001-08-24 Nippon Chemicon Corp 電解コンデンサ
JP2002083739A (ja) 2000-09-07 2002-03-22 Honda Motor Co Ltd 電気二重層キャパシタ
JP2002110481A (ja) 2000-09-29 2002-04-12 Nippon Chemicon Corp コンデンサ
JP4786830B2 (ja) 2001-07-25 2011-10-05 株式会社カネカ 強化ポリエステル樹脂組成物
JP2003059783A (ja) 2001-08-21 2003-02-28 Matsushita Electric Ind Co Ltd 電気二重層コンデンサ
JP4302338B2 (ja) * 2001-10-10 2009-07-22 日産ディーゼル工業株式会社 電気二重層キャパシタ
US6643119B2 (en) 2001-11-02 2003-11-04 Maxwell Technologies, Inc. Electrochemical double layer capacitor having carbon powder electrodes
DE20204027U1 (de) * 2002-03-13 2002-06-06 EPCOS AG, 81669 München Becherförmiges Gehäuse und Kondensator mit dem Gehäuse
JP4200353B2 (ja) 2002-07-12 2008-12-24 Nok株式会社 封口板の製造方法
US7365962B2 (en) * 2003-03-19 2008-04-29 Matsushita Electric Industrial Co., Ltd. Capacitor and method of connecting the same
JP2004296520A (ja) 2003-03-25 2004-10-21 Tdk Corp 電気化学キャパシタ
JP4527366B2 (ja) * 2003-05-30 2010-08-18 セイコーインスツル株式会社 電気化学セルの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275751A (ja) * 1997-03-31 1998-10-13 Elna Co Ltd 電気二重層コンデンサおよびその製造方法
JP2000269099A (ja) * 1999-03-12 2000-09-29 Elna Co Ltd 電気二重層コンデンサ

Also Published As

Publication number Publication date
KR20080044357A (ko) 2008-05-20
DE112005001007T5 (de) 2007-06-28
US20060156521A1 (en) 2006-07-20
US20090052115A1 (en) 2009-02-26
KR20060135596A (ko) 2006-12-29
KR101023277B1 (ko) 2011-03-18
US7457102B2 (en) 2008-11-25
US7843680B2 (en) 2010-11-30
KR100905851B1 (ko) 2009-07-02

Similar Documents

Publication Publication Date Title
WO2005117045A1 (ja) コンデンサ及びその製造方法
US9287059B2 (en) Electric storage device and method of manufacture thereof
CN114747083B (zh) 蓄电装置
JP2005520344A (ja) コップ形ケーシング及びケーシングを有するコンデンサ
JP7332999B2 (ja) 密閉型電池
CN101652823B (zh) 电容器
JP2007258414A (ja) 電気二重層コンデンサ
JP4904618B2 (ja) 電池
JP2003249419A (ja) 蓄電素子およびその製造方法
JP4432580B2 (ja) コンデンサ
JP2019061740A (ja) 蓄電素子
CN114747080A (zh) 端子结构及蓄电装置
US20220263140A1 (en) Battery
CN1842882B (zh) 电容器和制造电容器的方法
WO2007069559A1 (ja) コンデンサ
JP2005340610A (ja) コンデンサ及びその製造方法
JP2019179734A (ja) 蓄電素子及び蓄電素子の製造方法
JP4600028B2 (ja) コンデンサ
JP2022164957A (ja) 蓄電素子
JP7236422B2 (ja) 電池およびその製造方法
CN119923757A (zh) 电池
JP7039913B2 (ja) 蓄電素子
CN120019543A (zh) 蓄电装置
JP4982949B2 (ja) コンデンサ
JP2025009343A (ja) 蓄電装置用の端子およびこれを備えた蓄電装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000805.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2006156521

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10595043

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067002264

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10595043

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120050010074

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067002264

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112005001007

Country of ref document: DE

Date of ref document: 20070628

Kind code of ref document: P

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载