WO2005116066A1 - Peptides derived from decorin leucine rich repeats and uses thereof - Google Patents
Peptides derived from decorin leucine rich repeats and uses thereof Download PDFInfo
- Publication number
- WO2005116066A1 WO2005116066A1 PCT/SG2005/000171 SG2005000171W WO2005116066A1 WO 2005116066 A1 WO2005116066 A1 WO 2005116066A1 SG 2005000171 W SG2005000171 W SG 2005000171W WO 2005116066 A1 WO2005116066 A1 WO 2005116066A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- peptide
- variant
- decorin
- peptides
- lrr5
- Prior art date
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 299
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 133
- 102000004237 Decorin Human genes 0.000 title claims abstract description 113
- 108090000738 Decorin Proteins 0.000 title claims abstract description 113
- 210000004901 leucine-rich repeat Anatomy 0.000 title claims abstract description 37
- 230000033115 angiogenesis Effects 0.000 claims abstract description 55
- 150000001413 amino acids Chemical class 0.000 claims abstract description 41
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 38
- 125000000539 amino acid group Chemical group 0.000 claims abstract description 22
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 16
- 201000011510 cancer Diseases 0.000 claims abstract description 13
- 210000004027 cell Anatomy 0.000 claims description 78
- 238000000034 method Methods 0.000 claims description 25
- 108091033319 polynucleotide Proteins 0.000 claims description 16
- 239000002157 polynucleotide Substances 0.000 claims description 16
- 102000040430 polynucleotide Human genes 0.000 claims description 16
- 239000013604 expression vector Substances 0.000 claims description 15
- 239000003814 drug Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 206010012689 Diabetic retinopathy Diseases 0.000 claims description 7
- 201000004681 Psoriasis Diseases 0.000 claims description 7
- 208000002780 macular degeneration Diseases 0.000 claims description 6
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 6
- 201000009273 Endometriosis Diseases 0.000 claims description 5
- 208000025865 Ulcer Diseases 0.000 claims description 5
- 231100000397 ulcer Toxicity 0.000 claims description 5
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 2
- 102000001189 Cyclic Peptides Human genes 0.000 claims 1
- 108010069514 Cyclic Peptides Proteins 0.000 claims 1
- 238000011282 treatment Methods 0.000 abstract description 9
- 230000015572 biosynthetic process Effects 0.000 description 92
- 238000005755 formation reaction Methods 0.000 description 89
- 238000013508 migration Methods 0.000 description 45
- 230000005012 migration Effects 0.000 description 42
- 108010067715 Focal Adhesion Protein-Tyrosine Kinases Proteins 0.000 description 41
- 102000016621 Focal Adhesion Protein-Tyrosine Kinases Human genes 0.000 description 41
- 230000006907 apoptotic process Effects 0.000 description 39
- 102000016359 Fibronectins Human genes 0.000 description 32
- 108010067306 Fibronectins Proteins 0.000 description 32
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 29
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 29
- 230000000694 effects Effects 0.000 description 28
- 108010082117 matrigel Proteins 0.000 description 26
- 210000001650 focal adhesion Anatomy 0.000 description 24
- 230000001772 anti-angiogenic effect Effects 0.000 description 23
- 239000003102 growth factor Substances 0.000 description 22
- 230000005764 inhibitory process Effects 0.000 description 22
- 230000035755 proliferation Effects 0.000 description 21
- 235000018102 proteins Nutrition 0.000 description 21
- 102000004169 proteins and genes Human genes 0.000 description 21
- 108090000623 proteins and genes Proteins 0.000 description 21
- 235000001014 amino acid Nutrition 0.000 description 20
- 229940024606 amino acid Drugs 0.000 description 20
- 230000006870 function Effects 0.000 description 20
- 102000007469 Actins Human genes 0.000 description 18
- 108010085238 Actins Proteins 0.000 description 18
- 238000003556 assay Methods 0.000 description 18
- 230000003389 potentiating effect Effects 0.000 description 18
- 108010006444 Leucine-Rich Repeat Proteins Proteins 0.000 description 16
- 238000002474 experimental method Methods 0.000 description 16
- 239000000203 mixture Substances 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 15
- 230000026731 phosphorylation Effects 0.000 description 15
- 238000006366 phosphorylation reaction Methods 0.000 description 15
- 210000003518 stress fiber Anatomy 0.000 description 15
- 230000012292 cell migration Effects 0.000 description 14
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 13
- 101710132601 Capsid protein Proteins 0.000 description 13
- 102000012422 Collagen Type I Human genes 0.000 description 13
- 108010022452 Collagen Type I Proteins 0.000 description 13
- 241000282414 Homo sapiens Species 0.000 description 13
- 239000004037 angiogenesis inhibitor Substances 0.000 description 13
- 210000002889 endothelial cell Anatomy 0.000 description 13
- 102000008186 Collagen Human genes 0.000 description 12
- 108010035532 Collagen Proteins 0.000 description 12
- 101001000206 Homo sapiens Decorin Proteins 0.000 description 12
- 229920001436 collagen Polymers 0.000 description 12
- 102000045840 human DCN Human genes 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 12
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 11
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 11
- 230000004913 activation Effects 0.000 description 11
- 210000004899 c-terminal region Anatomy 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 238000009472 formulation Methods 0.000 description 11
- 102000018546 Paxillin Human genes 0.000 description 10
- ACNHBCIZLNNLRS-UHFFFAOYSA-N Paxilline 1 Natural products N1C2=CC=CC=C2C2=C1C1(C)C3(C)CCC4OC(C(C)(O)C)C(=O)C=C4C3(O)CCC1C2 ACNHBCIZLNNLRS-UHFFFAOYSA-N 0.000 description 10
- 108700031954 Tgfb1i1/Leupaxin/TGFB1I1 Proteins 0.000 description 10
- 239000004480 active ingredient Substances 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- ACNHBCIZLNNLRS-UBGQALKQSA-N paxilline Chemical compound N1C2=CC=CC=C2C2=C1[C@]1(C)[C@@]3(C)CC[C@@H]4O[C@H](C(C)(O)C)C(=O)C=C4[C@]3(O)CC[C@H]1C2 ACNHBCIZLNNLRS-UBGQALKQSA-N 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 108010010803 Gelatin Proteins 0.000 description 9
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 9
- 238000004113 cell culture Methods 0.000 description 9
- 230000001419 dependent effect Effects 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 239000008273 gelatin Substances 0.000 description 9
- 229920000159 gelatin Polymers 0.000 description 9
- 235000019322 gelatine Nutrition 0.000 description 9
- 235000011852 gelatine desserts Nutrition 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 201000010099 disease Diseases 0.000 description 8
- 231100000673 dose–response relationship Toxicity 0.000 description 8
- 230000001939 inductive effect Effects 0.000 description 8
- 241000283690 Bos taurus Species 0.000 description 7
- 102000011727 Caspases Human genes 0.000 description 7
- 108010076667 Caspases Proteins 0.000 description 7
- 229920002683 Glycosaminoglycan Polymers 0.000 description 7
- 238000002983 circular dichroism Methods 0.000 description 7
- 239000012091 fetal bovine serum Substances 0.000 description 7
- 230000006698 induction Effects 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- 238000010232 migration assay Methods 0.000 description 7
- 230000037361 pathway Effects 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 230000019491 signal transduction Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- KPKZJLCSROULON-QKGLWVMZSA-N Phalloidin Chemical compound N1C(=O)[C@@H]([C@@H](O)C)NC(=O)[C@H](C)NC(=O)[C@H](C[C@@](C)(O)CO)NC(=O)[C@H](C2)NC(=O)[C@H](C)NC(=O)[C@@H]3C[C@H](O)CN3C(=O)[C@@H]1CSC1=C2C2=CC=CC=C2N1 KPKZJLCSROULON-QKGLWVMZSA-N 0.000 description 6
- 102000016611 Proteoglycans Human genes 0.000 description 6
- 108010067787 Proteoglycans Proteins 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 229940098773 bovine serum albumin Drugs 0.000 description 6
- 238000001142 circular dichroism spectrum Methods 0.000 description 6
- 231100000135 cytotoxicity Toxicity 0.000 description 6
- 230000003013 cytotoxicity Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 6
- 210000004881 tumor cell Anatomy 0.000 description 6
- VEEGZPWAAPPXRB-BJMVGYQFSA-N (3e)-3-(1h-imidazol-5-ylmethylidene)-1h-indol-2-one Chemical compound O=C1NC2=CC=CC=C2\C1=C/C1=CN=CN1 VEEGZPWAAPPXRB-BJMVGYQFSA-N 0.000 description 5
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 5
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 5
- 102100020944 Integrin-linked protein kinase Human genes 0.000 description 5
- 230000001640 apoptogenic effect Effects 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- SMNPLAKEGAEPJD-UHFFFAOYSA-N chembl34922 Chemical compound Cl.Cl.Cl.C1CN(C)CCN1C1=CC=C(NC(=N2)C=3C=C4N=C(NC4=CC=3)C=3C=CC(O)=CC=3)C2=C1 SMNPLAKEGAEPJD-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000003399 chemotactic effect Effects 0.000 description 5
- 210000002744 extracellular matrix Anatomy 0.000 description 5
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 5
- 238000013467 fragmentation Methods 0.000 description 5
- 238000006062 fragmentation reaction Methods 0.000 description 5
- 108010059517 integrin-linked kinase Proteins 0.000 description 5
- 210000003632 microfilament Anatomy 0.000 description 5
- 229940127255 pan-caspase inhibitor Drugs 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- -1 within the groups A Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 102000001301 EGF receptor Human genes 0.000 description 4
- 108060006698 EGF receptor Proteins 0.000 description 4
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000030833 cell death Effects 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 102000006495 integrins Human genes 0.000 description 4
- 108010044426 integrins Proteins 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 210000004897 n-terminal region Anatomy 0.000 description 4
- 238000010647 peptide synthesis reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 108010077544 Chromatin Proteins 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 102400001047 Endostatin Human genes 0.000 description 3
- 108010079505 Endostatins Proteins 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000272184 Falconiformes Species 0.000 description 3
- 108060003393 Granulin Proteins 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 108010009711 Phalloidine Proteins 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 108060008245 Thrombospondin Proteins 0.000 description 3
- 102000002938 Thrombospondin Human genes 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000002491 angiogenic effect Effects 0.000 description 3
- 238000003782 apoptosis assay Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 210000003483 chromatin Anatomy 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 238000009509 drug development Methods 0.000 description 3
- 230000010595 endothelial cell migration Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000006882 induction of apoptosis Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 108091005601 modified peptides Proteins 0.000 description 3
- 230000000877 morphologic effect Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000000159 protein binding assay Methods 0.000 description 3
- 230000008707 rearrangement Effects 0.000 description 3
- 238000007634 remodeling Methods 0.000 description 3
- 238000004007 reversed phase HPLC Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000013042 tunel staining Methods 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 2
- 102400000068 Angiostatin Human genes 0.000 description 2
- 108010079709 Angiostatins Proteins 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 101001000223 Bos taurus Decorin Proteins 0.000 description 2
- 102000000844 Cell Surface Receptors Human genes 0.000 description 2
- 108010001857 Cell Surface Receptors Proteins 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 150000008574 D-amino acids Chemical class 0.000 description 2
- 102100033215 DNA nucleotidylexotransferase Human genes 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 102000008946 Fibrinogen Human genes 0.000 description 2
- 108010049003 Fibrinogen Proteins 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 101000659879 Homo sapiens Thrombospondin-1 Proteins 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 230000004988 N-glycosylation Effects 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 108010043958 Peptoids Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 102100036034 Thrombospondin-1 Human genes 0.000 description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 210000001188 articular cartilage Anatomy 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000021164 cell adhesion Effects 0.000 description 2
- 230000017455 cell-cell adhesion Effects 0.000 description 2
- 230000005754 cellular signaling Effects 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 210000004292 cytoskeleton Anatomy 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000030609 dephosphorylation Effects 0.000 description 2
- 238000006209 dephosphorylation reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 229940012952 fibrinogen Drugs 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 210000004877 mucosa Anatomy 0.000 description 2
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical class N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229940069328 povidone Drugs 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 230000004850 protein–protein interaction Effects 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000007115 recruitment Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- JGVWCANSWKRBCS-UHFFFAOYSA-N tetramethylrhodamine thiocyanate Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=C(SC#N)C=C1C(O)=O JGVWCANSWKRBCS-UHFFFAOYSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 102000003390 tumor necrosis factor Human genes 0.000 description 2
- 230000006711 vascular endothelial growth factor production Effects 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- YUXKOWPNKJSTPQ-AXWWPMSFSA-N (2s,3r)-2-amino-3-hydroxybutanoic acid;(2s)-2-amino-3-hydroxypropanoic acid Chemical compound OC[C@H](N)C(O)=O.C[C@@H](O)[C@H](N)C(O)=O YUXKOWPNKJSTPQ-AXWWPMSFSA-N 0.000 description 1
- DHBXNPKRAUYBTH-UHFFFAOYSA-N 1,1-ethanedithiol Chemical compound CC(S)S DHBXNPKRAUYBTH-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical class CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- VUCNQOPCYRJCGQ-UHFFFAOYSA-N 2-[4-(hydroxymethyl)phenoxy]acetic acid Chemical class OCC1=CC=C(OCC(O)=O)C=C1 VUCNQOPCYRJCGQ-UHFFFAOYSA-N 0.000 description 1
- 208000010543 22q11.2 deletion syndrome Diseases 0.000 description 1
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical group OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- 102100026802 72 kDa type IV collagenase Human genes 0.000 description 1
- 101710151806 72 kDa type IV collagenase Proteins 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 101100455506 Arabidopsis thaliana LRR2 gene Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 200000000007 Arterial disease Diseases 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102000004954 Biglycan Human genes 0.000 description 1
- 108090001138 Biglycan Proteins 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 210000003771 C cell Anatomy 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 208000003163 Cavernous Hemangioma Diseases 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 206010060823 Choroidal neovascularisation Diseases 0.000 description 1
- 101100007328 Cocos nucifera COS-1 gene Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- AHCYMLUZIRLXAA-SHYZEUOFSA-N Deoxyuridine 5'-triphosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C=C1 AHCYMLUZIRLXAA-SHYZEUOFSA-N 0.000 description 1
- 229920000045 Dermatan sulfate Polymers 0.000 description 1
- 206010012434 Dermatitis allergic Diseases 0.000 description 1
- 208000000398 DiGeorge Syndrome Diseases 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 208000004248 Familial Primary Pulmonary Hypertension Diseases 0.000 description 1
- 102000017177 Fibromodulin Human genes 0.000 description 1
- 108010013996 Fibromodulin Proteins 0.000 description 1
- 108010091824 Focal Adhesion Kinase 1 Proteins 0.000 description 1
- 102100037813 Focal adhesion kinase 1 Human genes 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 208000031953 Hereditary hemorrhagic telangiectasia Diseases 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 101000657350 Homo sapiens RNA-splicing ligase RtcB homolog Proteins 0.000 description 1
- 101000851018 Homo sapiens Vascular endothelial growth factor receptor 1 Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 208000002260 Keloid Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 102000011681 Lumican Human genes 0.000 description 1
- 108010076371 Lumican Proteins 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 101000657370 Mus musculus RNA-splicing ligase RtcB homolog Proteins 0.000 description 1
- 208000000592 Nasal Polyps Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 206010031252 Osteomyelitis Diseases 0.000 description 1
- 208000008558 Osteophyte Diseases 0.000 description 1
- 206010033266 Ovarian Hyperstimulation Syndrome Diseases 0.000 description 1
- 102000038030 PI3Ks Human genes 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 206010034650 Peritoneal adhesions Diseases 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 1
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 1
- 102000013566 Plasminogen Human genes 0.000 description 1
- 108010051456 Plasminogen Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 206010064911 Pulmonary arterial hypertension Diseases 0.000 description 1
- 206010037649 Pyogenic granuloma Diseases 0.000 description 1
- 102100034776 RNA-splicing ligase RtcB homolog Human genes 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 206010038933 Retinopathy of prematurity Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- UATJOMSPNYCXIX-UHFFFAOYSA-N Trinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 UATJOMSPNYCXIX-UHFFFAOYSA-N 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 206010046788 Uterine haemorrhage Diseases 0.000 description 1
- 208000009443 Vascular Malformations Diseases 0.000 description 1
- 102100033178 Vascular endothelial growth factor receptor 1 Human genes 0.000 description 1
- 208000000260 Warts Diseases 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- YVNQAIFQFWTPLQ-UHFFFAOYSA-O [4-[[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfophenyl)methyl]amino]-2-methylphenyl]methylidene]-3-methylcyclohexa-2,5-dien-1-ylidene]-ethyl-[(3-sulfophenyl)methyl]azanium Chemical compound C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C(=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S(O)(=O)=O)C)C=2C(=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S(O)(=O)=O)C)C=C1 YVNQAIFQFWTPLQ-UHFFFAOYSA-O 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 230000006229 amino acid addition Effects 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 230000019552 anatomical structure morphogenesis Effects 0.000 description 1
- 108010024952 anginex peptide Proteins 0.000 description 1
- 239000002870 angiogenesis inducing agent Substances 0.000 description 1
- 230000006427 angiogenic response Effects 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000003527 anti-angiogenesis Effects 0.000 description 1
- 230000003172 anti-dna Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000005775 apoptotic pathway Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 108010016422 benzyloxycarbonyl-valyl-alanyl-aspartic acid Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 208000002352 blister Diseases 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000005178 buccal mucosa Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- 210000004900 c-terminal fragment Anatomy 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000004709 cell invasion Effects 0.000 description 1
- 239000008004 cell lysis buffer Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 230000035289 cell-matrix adhesion Effects 0.000 description 1
- 210000003570 cell-matrix junction Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- AVJBPWGFOQAPRH-FWMKGIEWSA-L dermatan sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS([O-])(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C([O-])=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-L 0.000 description 1
- 229940051593 dermatan sulfate Drugs 0.000 description 1
- 108010040063 dermatan sulfate proteoglycan Proteins 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001378 electrochemiluminescence detection Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 201000010934 exostosis Diseases 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010265 fast atom bombardment Methods 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000003328 fibroblastic effect Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 230000002390 hyperplastic effect Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 208000000509 infertility Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 231100000535 infertility Toxicity 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- JXDYKVIHCLTXOP-UHFFFAOYSA-N isatin Chemical compound C1=CC=C2C(=O)C(=O)NC2=C1 JXDYKVIHCLTXOP-UHFFFAOYSA-N 0.000 description 1
- 210000001117 keloid Anatomy 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000001679 laser desorption electrospray ionisation Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 150000002680 magnesium Chemical class 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 235000020938 metabolic status Nutrition 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- NIQQIJXGUZVEBB-UHFFFAOYSA-N methanol;propan-2-one Chemical compound OC.CC(C)=O NIQQIJXGUZVEBB-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 210000002200 mouth mucosa Anatomy 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- CMWYAOXYQATXSI-UHFFFAOYSA-N n,n-dimethylformamide;piperidine Chemical compound CN(C)C=O.C1CCNCC1 CMWYAOXYQATXSI-UHFFFAOYSA-N 0.000 description 1
- 238000001426 native polyacrylamide gel electrophoresis Methods 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 231100001083 no cytotoxicity Toxicity 0.000 description 1
- 102000037979 non-receptor tyrosine kinases Human genes 0.000 description 1
- 108091008046 non-receptor tyrosine kinases Proteins 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 208000025661 ovarian cyst Diseases 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 208000028169 periodontal disease Diseases 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 201000008312 primary pulmonary hypertension Diseases 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000003118 sandwich ELISA Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 201000010153 skin papilloma Diseases 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 208000035736 spondylodysplastic type Ehlers-Danlos syndrome Diseases 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 201000004595 synovitis Diseases 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 230000007998 vessel formation Effects 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4725—Proteoglycans, e.g. aggreccan
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to compounds and uses thereof and, in particular, it relates to peptides and variants thereof and their use in inhibiting angiogenesis.
- the peptides and variants thereof may be used for treating cancer.
- Angiogenesis the formation of new blood vessels, is associated with many human diseases including cancer, diabetic retinopathy, age-related macular degeneration, rheumatoid arthritis and psoriasis. Both tumour growth and metastasis depend on angiogenesis stimulated by various angiogenic growth factors released by tumour cells.
- anti-angiogenesis is a promising alternative approach in anti-cancer drug development with several advantages over traditional cancer treatments including lower toxicity and less likelihood that the cancer will become resistant to treatment, and the potential for treating a wide range of tumours.
- Decorin is a matrix proteoglycan belonging to the small leucine rich repeat (LRR) proteoglycans family. It contains ten LRR repeats at the C-terminal. It is mainly secreted by fibroblasts. Its normal physiological function is to fine tune the collagen fibrinogenesis. It has several binding domains for other matrix molecules such as fibronectin, thrombospondin, collagen, and growth factor TGF-beta, EGF receptor, as well as several metal ions.
- LRR small leucine rich repeat
- Decorin binds to collagens Type I, II and IV and promotes the formation of fibres with increased stability. It has been found to have anti-angiogenic properties. It suppresses tumour cell mediated angiogenesis by inhibiting VEGF production by tumour cells (see, for example, Schonherr et al (1999) Eur J Cell Biol 78, 44-55; Stander et al (1999) Cell Tissue Res 296, 221- 227; Merle et al (1999) J Cell Biochem 75, 538-546; Nelimarkka et al (2001) Am J Pathol 158, 345-353; Davies et al (2001) Microvasc. Res 62, 26-42; and Grant et al (2002) Oncogene 21, 4765-4777).
- WO 90/00194 reports that decorin can suppress cell proliferation.
- US Patent No 5,705,609 relates to the binding of decorin to TGF beta and describes peptides from the N-terminal region of decorin which inhibit the binding of decorin to TGF beta; it also describes fusions between maltose binding protein (MBP) and portions of decorin, some of which inhibit binding of decorin to TGF beta.
- MBP maltose binding protein
- US Patent No 6,277,812 Bl relates to the prevention or reduction of scarring by administering decorin to a wound.
- none of these publications describe the use of portions of decorin to inhibit angiogenesis, and none of them describe free peptides derived from the central or C-terminal portions of decorin.
- vz ' tr ⁇ angiogenesis assays we have used various in vz ' tr ⁇ angiogenesis assays to analyze the function of the decorin peptides. These assays include an endothehal cell migration assay, a matrigel tube formation assay and an apoptosis assay, relevant to the major events taking place during angiogenesis.
- An object of the invention is the provision of anti-angiogenic peptides and variants thereof for use in the treatment of angiogenesis related diseases.
- a number of anti-angiogenic proteins are in clinical trials.
- the major limitations for use of proteins as pharmaceuticals are their lower bioavailability and biostability, difficulty to produce them in large quantity, immune responses from host, and the need to administer to patients by injection. These problems can be circumvented using small peptides and/or peptide mimetics.
- Peptides are also easily soluble in water and can potentially penetrate cell membrane and have the potential to be further developed into orally active or nasal-spray-type agents for therapeutic applications.
- the peptides may be used as drugs in any diseases related to inbalanced angiogenesis including cancer, rheumatoid arthritis, psoriasis, infertility, delayed wound healing, ulcer, macular degeneration, diabetic retinopathy, and the like.
- a first aspect of the invention provides a peptide consisting of from 5 to 40 amino acids from the portion of decorin which contains the leucine- rich repeats (LRRs), or a variant of said peptide.
- LRRs leucine- rich repeats
- the amino acid sequence of human decorin is shown in Figure 18, and the said portion in human decorin corresponds to amino acid residues 82 to 316. Equivalent portions from decorins from other species may also be used for the design and synthesis of peptides of the invention, and variants thereof.
- GenBank accession number of human decorin is M98263 and for Swiss-Prot is P07585.
- the peptide may be from 5 to 35 residues, 5 to 30 residues, for example, from 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 or 29 residues.
- Peptides of from 10 to 30 residues are preferred, such as peptides of 12, 13, 21, 24 and 26 residues.
- the peptides have amino acid sequence from the leucine rich repeats, LRRl, LRR2, LRR3, LRR4, LRR5, LRR6, LRR7, LRR8, LRR9 or LRR10.
- LRRs of human decorin are shown in Figure 4 and, in particular, the amino acid residues of each in turn occupy residues: (1) 82 to 105; (2) 106 to 129; (3) 130 to 150; (4) 151 to 174; (5) 175 to 200; (6) 201 to 221; (7) 222 to 245; (8) 246 to 269; (9) 270 to 292; and (10) 293 to 316.
- the peptide consists of from 5 to 26 amino acids from LRR5 of decorin, or a variant of such a peptide.
- Suitable such peptides include QMIVIELGTNPLKSSGIENGAFQGMK (SEQ ID No 2); QMIVIELGTNPLK (SEQ ID No 4); SSGIENGAFQGMK (SEQ ID No 5); or LGTNPLKSSGIE (SEQ ID No 6) or smaller portions thereof, or a variant of said peptide.
- the peptide has from 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 amino acid residues from LRR5, or a variant of such a peptide.
- the peptide consists of from 5 to 24 amino acids from LRR4 of decorin, or a variant of said peptide.
- a peptide includes TLQELRAHENEITKVRKVTFNGLN (SEQ ID No 8), or a portion thereof, or a variant thereof.
- the peptide has from 6, 1, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 or 23 amino acid residues from LRR4, or a variant of such a peptide.
- the peptide consists of from 5 to 21 amino acids from LRR3 of decorin, or a variant thereof.
- a peptide includes KLERLYLSKNQLKELPEKMPK (SEQ ID No 7), or a portion thereof, or a variant thereof.
- the peptide has from 6, 7, 8, 9, 10, 11, 12, 13,
- the invention also provides a peptide consisting of no more than 250 amino acid residues comprising two or more peptides as defined above, or one or more peptides as defined above and additional peptide sequence not derived from decorin, or a variant of said peptide of no more than 250 amino acid residues. It is particularly preferred that the additional peptide sequence is not that of bacterial maltose binding protein (MBP).
- MBP bacterial maltose binding protein
- the same or different peptides as defined above may be joined to form a larger peptide, provided that the peptide does not exceed 250 (and preferably does not exceed 200, 150, 100, 90, 80, 70, 60, or 50) amino acid residues.
- the same peptide is repeated two or more times in tandem.
- the decorin peptide portion comprises no more than 100 amino acid residues (when peptides of the first aspect of the invention are present in tandem) and preferably the decorin peptide portion contains no more than 80 or 70 or 60 or 50 or 40 or 30 or 20 or 10 amino acid residues.
- a preferred embodiment of this aspect of the invention is a peptide comprising two human LRR5 peptides in tandem joined by a linker of between 1 and 20 amino acid residues, preferably between 1 and 10.
- the peptide of this embodiment may comprise additional amino acid residues whose sequence is not based on decorin.
- the additional sequence may be based on other known protein sequences such as another anti-angiogenic peptide or a scaffold peptide or a peptide to target the peptide to tumour blood vessels such as one containing the amino acid sequence RDG or may be based on non-natural sequences.
- the additional amino acid residues may be N-terminal to the decorin-based peptide, or may be C-terminal to the decorin-based peptide, or both such that the additional sequence flanks the decorin-based peptide.
- the total size of the peptide does not exceed 80, or 70, or 60, or 50, or 40, or 30, or 20 or 15 amino acid residues. Variants of the peptides of this embodiment are also included within the scope of the invention.
- the peptides of the invention typically and preferably comprise amino acids in the L-configuration, but see below.
- the peptides of the invention, or variants thereof, may be cyclised (ie do not have a free N- or C-terminal), or they may be linear or branched chain.
- Variants of the abovementioned peptides of the invention include, but are not limited to, ones in which up to 40% of the decorin amino acid sequence of the decorin-containing portion are replaced with other amino acids, for example 30%, 20% or 10%. Typically, one or two or three or four or five or six or seven amino acids from the decorin sequence are replaced with another amino acid. The replacement may be with another naturally- occurring amino acid, or it may be with a non-naturally-occurring amino acid.
- Typical replacements include the replacement of an L-amino acid with a corresponding D-amino acid, or the replacement of one amino acid with a conservative amino acid, such as within the groups A,V; F, Y, W; T, S; I, L, V; D, E; and Q, N, H, although non-conservative substitutions are also contemplated.
- a variant of a peptide also included those which contain one or more non- peptide linkages in place of a peptide bond.
- Variants also include peptides in which the N- or C-termini, or both, are blocked in order to confer resistance to hydrolysis. Similarly, one or more side chains of the amino acid residues may be modified to confer such resistance or other desirable properties.
- Strategies to improve the stability and bioavailability of peptides, and make them more useful as drugs, are well known in the art. In particular, reference is made to Adessi & Soto (2002) Current Medicinal Chemistry 9, 963-978, incorporated herein by reference, which describes such strategies in detail.
- variants of peptides fall into several classes which may conveniently be termed “modified peptides”, “pseudopeptides” and “peptide mimetics”.
- modified peptides are where the N- and/or C-terminal ends are modified, for example by amino acylation or carboxy amidation or by the inclusion of a pyroglutamate group at the N-terminus.
- Other modified peptides are cyclisation of the peptide (ie where the -NH 2 and -COOH termini are condensed to form a peptide bond), amide nitrogen alkylation, D-amino acid substitution and side chain modifications.
- the peptides and variants of the invention typically have anti-angiogenic activity which may be assessed either in vitro or in vivo.
- the peptide or variant has anti-angiogenic activity both in vitro and in vivo.
- Anti-angiogenic activity may be assessed in vivo using model systems where new blood vessel formation is assessed such as in xenograft tumour models.
- Anti-angiogenic activity may be assessed in vitro using, for example, a VEGF -induced endothehal cell migration assay such as the HUVEC assay described in the Example below.
- the peptide or variant of the invention may bind any one or more of collagen, gelatin or fibronectin and tests for determining binding to these molecules are known in the art.
- the peptide M-hdLRR5 (SEQ ID No 6; also termed LRR5M) is able to inhibit tube formation.
- the peptide C-hdLRR5 (SEQ ID No 5; also termed LRR5C) is able to inhibit endothehal cell migration. Both are believed to be useful for inhibiting angiogenesis.
- preferred peptide of the invention are these peptides and peptides of up to 40 amino acid residues containing these amino acid sequences, or variants of the peptides.
- the peptides and variants of the invention include those which have substantially the same activity in the in vitro assays as the dLRR5 peptide (SEQ ID No 2), for example in the HUVEC migration assay of the Example.
- the peptide mimic comprises a moiety which has substantially the same charge distribution and/or spatial configuration as any one of the specific peptides discussed above, in particular QMIVIELGTNPLKSSGIENGAFQGMK (SEQ ID No).
- variants may be non-peptide mimics of the peptides and include molecules which have the same charge distribution and/or spatial configuration as any one of the peptides specific peptides discussed above, in particular QMIVIELGTNPLKSSGIENGAFQGMK (SEQ ID No 2).
- the peptides and variants of the invention typically have a molecular mass of from around 800 to 10000, typically around 2000 to 5000.
- the compound of the invention is a peptide it may be synthesised using well known methods in the art.
- peptides may be synthesised by the Fmoc-polyamide mode of solid-phase peptide synthesis as disclosed by Lu et al (1981) J. Org. Chem. 46, 3433 and references therein.
- Temporary N-amino group protection is afforded by the 9- fluorenylmethyloxycarbonyl (Fmoc) group. Repetitive cleavage of this highly base-labile protecting group is effected using 20% piperidine in N,N- dimethylformamide.
- Side-chain functionalities may be protected as their butyl ethers (in the case of serine threonine and tyrosine), butyl esters (in the case of glutamic acid and aspartic acid), butyloxycarbonyl derivative (in the case of lysine and histidine), trityl derivative (in the case of cysteine) and 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative (in the case of arginine).
- glutamine or asparagine are C-terminal residues, use is made of the 4,4'-dimethoxybenzhydryl group for protection of the side chain amido functionalities.
- the solid-phase support is based on a polydimethyl-acrylamide polymer constituted from the three monomers dimethylacrylamide (backbone-monomer), bisacryloylethylene diamine (cross linker) and acryloylsarcosine methyl .ester (functionalising agent).
- the peptide-to-resin cleavable linked agent used is the acid-labile 4- hydroxymethyl-phenoxy acetic acid derivative. All amino acid derivatives are added as their preformed symmetrical anhydride derivatives with the exception of asparagine and glutamine, which are added using a reversed N,N-dicyclohexyl-carbodiimide/ 1 -hydroxybenzotriazole mediated coupling procedure.
- scavengers present are removed by a simple extraction procedure which on lyophilisation of the aqueous phase affords the crude peptide free of scavengers.
- Reagents for peptide synthesis are generally available from Calbiochem-Novabiochem (UK) Ltd, Nottingham NG7 2QJ, UK. Purification may be effected by any one, or a combination of, techniques such as size exclusion chromatography, ion-exchange chromatography and (principally) reverse-phase high performance liquid chromatography.
- Analysis of peptides may be carried out using thin layer chromatography, reverse-phase high performance liquid chromatography, amino-acid analysis after acid hydrolysis and by fast atom bombardment (FAB), electrospray or matrix-assisted laser desorption ionization mass spectrometric analysis.
- FAB fast atom bombardment
- electrospray electrospray or matrix-assisted laser desorption ionization mass spectrometric analysis.
- a further aspect of the invention provides a method of making a peptide the method comprising expressing the said peptide from a polynucleotide or an expression vector or in a host cell as discussed in more detail below.
- the peptides of the invention may be encoded by a suitable polynucleotide which may be obtained or synthesised by methods well known in the art, for example as described in Sambrook & Russell (2001) "Molecular cloning, a laboratory manual", Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
- the polynucleotide typically DNA
- the DNA encoding the peptide constituting the compound of the invention may be used in accordance with known techniques, appropriately modified in view of the teachings contained herein, to construct an expression vector, which is then used to transform an appropriate host cell for the expression and production of the peptide of the invention.
- the DNA encoding the peptide constituting the compound of the invention may be joined to a wide variety of other DNA sequences for introduction into an appropriate host.
- the companion DNA will depend upon the nature of the host, the manner of the introduction of the DNA into the host, and whether episomal maintenance or integration is desired. Generally, the ! 12
- DNA is inserted into an expression vector, such as a plasmid, in proper orientation and correct reading frame for expression. If necessary, the DNA may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences recognised by the desired host, although such controls are generally available in the expression vector.
- the vector is then introduced into the host through standard techniques. Host cells that have been transformed by the recombinant DNA of the invention are then cultured for a sufficient time and under appropriate conditions known to those skilled in the art in view of the teachings disclosed herein to permit the expression of the peptide, which can then be recovered.
- bacteria for example E. coli and Bacillus subtilis
- yeasts for example Saccharomyces cerevisiae
- filamentous fungi for example Aspergillus
- plant cells animal cells and insect cells.
- the present invention also relates to a host cell transformed with a polynucleotide vector construct of the present invention.
- the host cell can be either prokaryotic or eukaryotic.
- Bacterial cells are preferred prokaryotic host cells and typically are a strain of E. coli such as, for example, the E. coli strains DH5 available from Bethesda Research Laboratories Inc., Bethesda, MD, USA, and RRl available from the American Type Culture Collection (ATCC) of Rockville, MD, USA (No ATCC 31343).
- Preferred eukaryotic host cells include yeast and mammalian cells, preferably vertebrate cells such as those from a mouse, rat, monkey or human fibroblastic cell line.
- Yeast host cells include YPH499, YPH500 and YPH501 which are generally available from Stratagene Cloning Systems, La Jolla, CA 92037, USA.
- Preferred mammalian host cells include Chinese hamster ovary (CHO) cells available from the ATCC as CCL61, NIH Swiss mouse embryo cells NIH/3T3 available from the ATCC as CRL 1658, and monkey kidney-derived COS-1 cells available from the ATCC as CRL 1650.
- the present invention also contemplates a culture of those cells, preferably a monoclonal (clonally homogeneous) culture, or a culture derived from a monoclonal culture, in a nutrient medium.
- the peptides of the invention are useful in inhibiting angiogenesis, for example in a human or animal patient.
- a further aspect of the invention provides the peptide or variants of the invention for use as a medicament.
- the invention also provides pharmaceutical compositions comprising the peptide or variant of the invention and a pharmaceutically acceptable carrier.
- compositions or formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient (peptide or variant of the invention) with the carrier which constitutes one or more accessory ingredients.
- the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
- Formulations in accordance with the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets, each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in- oil liquid emulsion.
- the active ingredient may also be presented as a bolus, electuary or paste.
- a tablet may be made by compression or moulding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder (eg povidone, gelatin, hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (eg sodium starch glycolate, cross-linked povidone, cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent.
- Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- the tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethylcellulose in varying proportions to provide desired release profile.
- Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavoured basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouth-washes comprising the active ingredient in a suitable liquid carrier.
- Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
- Preferred unit dosage formulations are those containing a daily dose or unit, daily sub-dose or an appropriate fraction thereof, of an active ingredient.
- formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavouring agents.
- Salts which may be conveniently used in therapy include physiologically acceptable base salts, for example, derived from an appropriate base, such as an alkali metal (eg sodium), alkaline earth metal (eg magnesium) salts, ammonium and NX + (wherein X is C ⁇ alkyl) salts.
- physiologically acceptable acid salts include hydrochloride, sulphate, mesylate, besylate, phosphate and glutamate.
- Salts according to the invention may be prepared in conventional manner, for example by reaction of the parent compound with an appropriate base to form the corresponding base salt, or with an appropriate acid to form the corresponding acid salt.
- the aforementioned compounds of the invention or a formulation thereof may be administered by any conventional method including oral and parenteral (eg subcutaneous or intramuscular) injection.
- the treatment may consist of a single dose or a plurality of doses over a period of time.
- a compound of the invention Whilst it is possible for a compound of the invention to be administered alone, it is preferable to present it as a pharmaceutical formulation, together with one or more acceptable carriers.
- the carrier(s) must be acceptable in the sense of being compatible with the compound of the invention and not deleterious to the recipients thereof.
- the carriers will be water or saline which will be sterile and pyrogen free.
- the peptides or variants thereof are delivered across the oral mucosa (including buccal mucosa, sub-lingual mucosa or gingival mucosa) or administered by intravenous or subcutaneous or intramuscular injection in liquid form (eg in an aqueous solution).
- the dose or doses of the peptide or variants thereof of the invention may be determined by the physician and may vary depending on the condition to be treated. Typically the dose is effective to ameliorate the symptoms of the disease or condition to a useful extent.
- a further aspect of the invention provides a method of inhibiting angiogenesis in a patient, the method comprising administering a peptide or variant of the invention, or a polynucleotide or an expression vector encoding said peptide.
- the patient has or is susceptible to a condition in which there is undesirable angiogenesis, or in which it is desirable to inhibit angiogenesis.
- Undesirable angiogenesis is associated with a variety of diseases and medical conditions.
- cancer certain infectious diseases, certain autoimmune disorders, vascular malformations, DiGeorge Syndrome, HHT, cavernous hemangioma, atherosclerosis, transplant arteriopathy, obesity, psoriasis, warts, allergic dermatitis, scar keloids, pyogenic granulomas, blistering disease, Kaposi sarcoma in AIDS patients, persistent hyperplastic vitreous syndrome, diabetic retinopathy, retinopathy of prematurity, choroidal neovascularisation, primary pulmonary hypertension, asthma, nasal polyps, inflammatory bowel and periodontal disease, ascites, peritoneal adhesions, endometriosis, uterine bleeding, ovarian cysts, ovarian hyperstimulation, arthritis, synovitis, osteomyelitis and osteophyte formation (see, for example, Carmeliet (2003 Nature Medicine 9, 653-660, incorporated herein by reference).
- a further aspect of the invention includes a method of treating a patient who has or is susceptible to any of these diseases or conditions, particularly cancer, diabetic retinopathy, macular degeneration, rheumatoid arthritis, ulcers, endometriosis and psoriasis, the method comprising administering to the patient an effective amount of a peptide or variant of the invention or a polynucleotide or expression vector encoding the same.
- Still further aspects of the invention include the use of a peptide or variant of the invention or a polynucleotide or expression vector encoding the same in the manufacture of a medicament for treating undesirable angiogenesis in a patient; and the use of a peptide or variant of the invention or a polynucleotide or expression vector encoding the same in the manufacture of a medicament for treating a patient who has or is susceptible to any of cancer, diabetic retinopathy, macular degeneration, rheumatoid arthritis, ulcers, endometriosis and psoriasis.
- FIG. 1A Representative photos showing the inhibitory effect of two types of decorin: the native proteoglycan from bovine cartilage (DCN) and the recombinant human decorin (rhDCN) in the EC tube formation assay in the presence of 15 ng/ml VEGF, 15 ng/ml bFGF or 10% FBS. The assay was done using growth factor reduced matrigel.
- IB Bar diagram showing the quantification of the inhibitory effect.
- FIG. 1 LRR5 domain in decorin core protein potently inhibits EC tube formation on matrigel.
- 2 A List of peptides used in this study.
- 2B Representative photographs of tube formation assay using growth factor reduced matrigel. Each sample was incubated in media containing 0.5% FBS plus 100 ⁇ M peptide in the presence of 15 ng/ml VEGF.
- 2C Quantitation of tube formation inhibition by LRR peptides. LRR5 dose dependently inhibited VEGF induced tube formation.
- LRR5 inhibits both VEGF and bFGF induced HUVEC migration.
- the % migration in Y axis is the mean value from three sets of experiments.
- LRR5 does not inhibit EC proliferation.
- 4A EC proliferation induced by 10 ng/ml VEGF.
- LRR5 does not inhibit proliferation up to 10 ⁇ M concentration while at 100 ⁇ M there was a mild inhibition.
- 4B EC proliferation induced by 10 ng/ml bFGF.
- LRR5 does not have any effect on bFGF stimulated EC proliferation.
- FIG. 5A Observation of fragmented chromosomes under microscope by staining DNA with Hoechst dye 33258. White arrows indicate apoptotic cells with fragmented chromosomes.
- 5B Quantitation of apoptosis using the cell death ELISA assay. The experiment is done in the presence or absence of 10 ng/ml VEGF and/or 10 ⁇ M z-VAD-fmk, a pan caspase inhibitor. LRR5 induced apoptosis even in the presence of VEGF, but this effect is almost completely inhibited by z-VAD-fmk.
- FIG. 6A Middle region of LRR5 potently inhibits EC tube formation.
- 6A Representative photographs of anti-tube formation activity of LRR5N, LRR5M and LRR5C.
- Peptide LRR5M potently inhibits VEGF stimulated EC tube formation on growth factor reduced matrigel in a dose dependent manner.
- 6B Quantitation of tubes formed in the presence of 15 ng/ml VEGF.
- 6C Quantitation of tubes formed in the presence of 15 ng/ml bFGF. The values are mean tube lengths from two repeated experiments.
- FIG. 7A Effect of LRR5 shorter peptides on HUVEC migration.
- 7A The anti-migration effect of LRR5N, LRR5M and LRR5C peptides when stimulated with 10 ng/ml VEGF.
- LRR5C dose dependently inhibits VEGF stimulated EC migration.
- 7B The anti-migration effect of LRR5N, LRR5M and LRR5C peptides when stimulated with 10 ng/ml bFGF.
- LRR5C does not inhibit bFGF stimulated EC migration while peptide LRR5M is effective.
- the results are mean values from three different experiments.
- Figure 8. LRR5 shorter peptides do not inhibit EC proliferation. 8A.
- EC proliferation stimulated by VEGF at 10 ng/ml Peptide LRR5N and LRR5C at concentrations 10 ⁇ M and above have mild inhibition in VEGF stimulated EC proliferation. 8B. EC proliferation stimulated by bFGF at 10 ng/ml. None of the peptides had any significant effect on bFGF stimulated EC proliferation. The results are mean values from three experiments.
- FIG. 9A Representative photographs of apoptotic cells after TUTSEEL staining. The photos shown here are the effect of peptides in the presence of 10 ng/ml VEGF. LRR5, LRR5N and LRR5M are effective while LRR5C is not very effective.
- 9B Quantitation of apoptosis using the cell death ELISA assay measuring fragmented DNA. The experiment is done in the presence or absence of 10 ng/ml VEGF and/or 10 ⁇ M z-VAD-fmk, a pan caspase inhibitor. LRR5, LRR5N and LRR5M induce apoptosis even in the presence of VEGF, but this effect is almost completely inhibited by z-VAD-fmk.
- FIG. 10 Effect of LRR5 and its related peptides in inhibiting EC attachment to fibronectin. EC attachment to fibronectin is inhibited by DCN, LRR5 and all three shorter peptides. LRR5 and LRR5N are more potent when compared to LRR5M and LRR5C. The values presented here are the mean of three repeated experiments.
- FIG. 11 LRR5 and LRR5M effectively inhibited VEGF stimulated FAK Y397 phosphorylation in HUVECs. IP: immunoprecipitation; WB: Western blot.
- Figure 12. Peptides LRR5 and LRR5M effectively inhibited VEGF induced paxillin relocation to focal adhesions. HUVECs were fixed, permeabilized and stained for paxillin. The concentration of peptides was 100 ⁇ M and recombinant DCN 100 nM. Peptide treated samples were all in the presence of 10 ng/ml VEGF. Experiment was repeated for three times and representative pictures are shown. Focal adhesions are indicated by white arrowheads. Images were obtained using Olympus 1x70 confocal microscope.
- FIG. 13 LRR5 and LRR5M effectively inhibited VEGF induced actin stress fiber formation.
- HUVEC cells were fixed and stained for filamentous actin with phalloidin TRITC conjugate.
- Peptide treated samples were all in the presence of 10 ng/ml VEGF. Experiment was repeated for three times. Pictures are representatives of 20 different microscopy locations in each sample. Nucleus is counter stained blue with Hoechst dye 33258. Actin stress fibers are indicated by white arrowheads. Images were obtained using a Zeiss fluorescent microscope with 63 OX magnification.
- Figure 15 shows that peptide hdLRR5 (SEQ ID No 2; also termed LRR5) inhibits VEGF induced HUVEC migration.
- Figure 16 shows that peptide hdLRR5 inhibits tube formation in matrigel.
- Figure 17 shows that decorin peptide dLRR5 induce EC apoptosis as determined by TUNEL labeling. Green fluorescences (which cannot be seen in the black and white picture) indicate apoptotic cells.
- Figure 18 shows the human decorin protein sequence (SEQ ID No 1) and annotation.
- the signal peptide (residues 1 to 16) is underlined.
- the pro- peptide (residues 17-30) is shown in italic.
- Mature decorin is residues 31- 359.
- the LRRs are shown in alternative upper case and lower case starting at position 82.
- LRRS is in bold and underlined (residues 175 to 200).
- the glycosaminoglycan (GAG) binding site is at S34 shown in bold upper case and underlined.
- Residues N211, N262 and N303 are three sites for binding to oligosaccharide carbohydrates (N-linked glycosylation) and are underlined.
- N-terminal collagen I binding domain is at residues 48 to 72.
- LRR6 binds EGFR.
- LRR3 binds fibronectin and thrombospondin.
- C-terminal domain (residues 309-359) also binds fibronectin.
- the N-terminal domain also binds fibrinogen in the presence ofZn ++ .
- Figure 19 shows that hdLRR5 (SEQ ID No 2) induces endothehal cell apoptosis at high concentration (100 TM). Apoptotic cells are indicated by arrows.
- Figure 20 shows the results of tube formation assays.
- Decorin peptides inhibit tube formation in matrigel dLRR5 is SEQ ID No 2; sd LRR5 is SEQ ID No 3; dLRR5 M is SEQ ID No 6; dLRR5 N is SEQ ID No 4; dLRR5C is SEQ ID No 5; decorin is SEQ ID No 2.
- Figure 21 shows the results of the effect of decorin peptides on HUVEC migration.
- Example 1 Peptides derived from human decorin core protein leucine Rich Repeat 5 potently inhibit angiogenesis by multiple mechanisms
- DCN decorin
- LRR Leucine Rich Repeat
- VEGF Vascular Endothehal Growth Factor
- bFGF basic Fibroblast Growth Factor
- TGF Transforming Growth Factor
- TNF Tumor Necrosis Factor
- FBS Fetal Bovine Serum
- BSA Bovine Serum Albumin
- GAG glycosamino glycan
- PG proteoglycan
- PBS Phosphate-Buffered Saline
- FITC Fluorescein Isothiocyanate
- TUNEL Terminal Deoxynucleotidyl Transferase-Mediated dUTP nick-end-labeling
- HUVECs Human Umbilical Vascular Endothehal Cells
- FAK Focal Adhesion Kinase
- EC endothehal cell
- CD Circular Dichroism.
- Peptide LRR5 inhibited multiple aspects of angiogenesis including Vascular Endothehal Growth Factor (VEGF) stimulated endothehal cell (EC) migration, tube formation on matrigel, cell attachment to fibronectin, as well as induction of EC apoptosis without significantly affecting their proliferation.
- VEGF Vascular Endothehal Growth Factor
- EC endothehal cell
- LRR5M middle region
- LRR5C C-terminal region
- LRR5N N-terminal region
- LRR5 and LRR5M are therefore novel angiogenesis inhibitors that may serve as prototypes for further development into antiangiogenic drugs.
- Proteins carry out their functions by interacting with other molecules through their functional domains. These domains vary in size, composition and structure. In recent years, a lot of efforts have been made to develop proteins for therapeutic applications. However, use of proteins as drugs, has limitations due to their poor bioavailability, antigenicity, unfavorable pharmacokinetics and inconsistency in bioactivity from batch to batch productions (1). In contrast, small peptides have the advantage of easy antigenicity, high solubility in water and improved bioavailability with potential oral delivery (2). Such peptides can represent a complete or partial protein functional modules as well as possible protein-protein interaction sites (3-6).
- Angiogenesis the formation of new blood vessels from existing vasculature, is a multistep process involving degradation of extracellular matrix, endothelial cell proliferation and migration, capillary tube formation and matrix remodeling (7, 8). Many proteins including growth factors and their cell surface receptors, extracellular matrix molecules, integrins, matrix metalloproteases and their inhibitors are involved in this process. Several endogenous proteins such as endostatin and angiostatin, fragments of collagen and plasminogen respectively, are potent inhibitors of angiogenesis (9, 10). As excessive angiogenesis is involved in many human diseases, developing angiogenesis inhibitors is an important area of drug development.
- Decorin a small dermatan sulfate proteoglycan (PG), is a ubiquitous component of extracellular matrix, where it is preferentially found in association with collagen fibrils. Its major functions include regulation of collagen fibrinogenesis, maintenance of tissue integrity via binding with fibronectin and thrombospondin as well as serving as a reservoir of Transforming Growth Factor ⁇ (TGF ⁇ l) (11-14). Decorin inhibits cell adhesion and spreading on fibronectin (15).
- TGF ⁇ l Transforming Growth Factor ⁇
- Structurally decorin belongs to a growing family of the small leucine rich repeat PGs. It contains a core protein of 359 amino acids linked to a single chondroitin sulfate or dermatan sulfate glycosamino glycans (GAGs) (11). The mature protein is highly conserved across species and consists of a central domain harboring ten Leucine Rich Repeats (LRRs) flanked by disulfide bonded terminal sequences. The amino terminus contains a single attachment site for GAG, whereas the central domain contains three potentially N-linked glycosylation sites. LRRs are involved in protein- protein interactions and have been found in a large number of proteins including PGs such as biglycan, fibromodulin and lumican (22).
- LRRs Leucine Rich Repeats
- Decorin binds to collagen mainly through LRR 4 and 5 of the core protein (23).
- a high-affinity binding site for TGF ⁇ is located between LRR3 and 5 (24).
- Decorin binding to TGF ⁇ prevents the binding of TGF ⁇ to its receptor and regulates TGF ⁇ mediated cellular signaling (25).
- biologically active decorin is a monomer in solution and, proteins, growth factors, and cell surface receptors (26).
- crystal structure analysis of decorin indicated that it is a stable dimer with large interfaces (27).
- LRR5 inhibits angiogenesis through multiple mechanisms including inhibition of VEGF induced EC tube formation on matrigel, EC migration as well as EC attachment to fibronectin. In addition, it also induced EC apoptosis through a caspase dependent pathway.
- LRR5M central 12 residue
- LRR5C C-terminal 13 residue
- LRR5N N-terminal 13 residue
- Reagents and Antibodies - Recombinant human VEGF ⁇ 65 an d recombinant human decorin (rhDCN) were purchased from R&D Systems Inc.
- ⁇ fl « n on « n i ; n T TC ⁇ ⁇ ⁇ -> _ —- - ⁇ -> - ⁇ -> r- ⁇
- DCN Purified decorin
- bovine articular cartilage, gelatin and Giemsa solution were from Sigma.
- Falcon cell culture inserts (8.0 ⁇ m pore size) and matrigel were from BD Biosciences (Bedford, MA, USA).
- Human plasma fibronectin was from Invitrogen.
- Endothelial culture media CSC were from Cell Systems (California, USA).
- Pan-caspase inhibitor z-VAD- fmk was from Merck.
- Peptide Synthesis - Peptides were synthesized by solid phase synthesis using Perseptive Biosystems automated peptide synthesizer adopting FMOC (Fluorenyl methoxy carbonyl) chemistry in-house or procured from commercial source (SynPep, California, USA). Peptides were purified by reversed phase HPLC, freeze dried and stored at -20°C until used.
- FMOC Fluorenyl methoxy carbonyl
- VECs Human umbilical vein endothelial cells
- Cell Migration Assay was performed using Falcon cell culture inserts as described previously with modifications (28). Briefly, HUVECs were starved overnight, trypsinized and suspended at a final concentration of 3 ⁇ l0 5 cells/ml. Various concentrations of peptides were pre-incubated with the 2-3x 10 cells cells for 30 min at 37°C before seeding onto the gelatin coated cell culture inserts. VEGF (10 ng/ml) was placed into the lower chamber. The assembled cell culture insert chamber was then incubated at 37°C for 10-12h.
- migrated cells on the lower surface of the culture inserts were fixed, stained with 0.4% Giemsa and photographed under a light microscope ( 200). Five random fields were chosen in each insert and the cell number was quantified using the NIH ImageJ 1.32 software.
- Proliferation and Cytotoxicity Analyses were determined using the non-radioactive EZ4U cell proliferation and cytotoxicity assay kit according to manufacturer's instructions (Biomedica, Vienna, Austria). The method was based on the fact that living cells are capable of reducing less coloured tetrazolium salts into intensely coloured Formazan derivatives. This reduction process requires functional mitochondria, which are inactivated within a few minutes after cell death. In a typical 96 well plate assay, we used around 3000 HUVECs/well and the absorbance of Formazan at 460 nm was represented as mitochondrial activity.
- the cells were incubated in CSC medium plus 2% FBS with or without 10 ng/ml VEGF or bFGF and various concentrations of peptides (1 nM to 100 ⁇ M) for 48 h.
- HUVECs were incubated with peptides for 6 h while 48 h peptide incubation was used to measure proliferation.
- Cell Attachment Assay - HUVECs were pretreated with different peptides for 20 min before plated onto fibronectin coated 24-well plate and incubated for 30 min at 37°C. Attached cells were then fixed and stained with Giemsa. The number of cells attached were quantified in 5 random fields per well. The assay was done in duplicate and repeated three times on separate days.
- Apoptosis Assay was analyzed by morphological detection of chromatin fragmentation as described before (29). HUVECs grown to 60-70%o confluence in 4-well-chamber slides were incubated with peptides for 48 h in 0.5% FBS in presence or absence of 10 ng/ml VEGF.. Cells were fixed, stained with Hoechst dye 33258 and observed under a fluorescent microscope ( ⁇ 630). Alternatively, TUNEL staining was performed using the ApoAlert DNA fragmentation assay kit (Clontech, USA). Apoptosis was quantified using a cell death detection ELISA kit (Roche Applied Sciences, Germany).
- HUVECs/well were seeded onto 0.2% gelatin coated 24 well plates for 24 h prior to treatment with peptides.
- Cells were treated with different concentrations of peptides, with or without 10 ng/ml VEGF for 24 h before harvested using trypsin.
- DNA fragmentation was measured by quantitation of cytosolic oligonucleosome bound DNA according to the manufacturer's instructions.
- the cytosolic fraction (13,000 x g) of HUVECs treated with peptides in the presence and absence of 10 ng/ml VEGF was used as antigen source in the Sandwich ELISA with anti- human histone antibody coated to the plate and a secondary anti-DNA antibody coupled to peroxidase for detection.
- VEGF vascular endothelial growth factor
- peptides 100 ⁇ M were added into the wells and incubated for 90 min at 37°C.
- Cells were fixed, permeabilized and stained with a mouse monoclonal antibody against paxillin (Upstate technology, USA) and FITC- labeled anti-mouse IgG (Santa Cruz Biotechnology, USA). Slides were observed under confocal microscope (Olympus 1X70).
- TRITC-co ⁇ jugated phalloidin (Sigma) was used to stain the actin cytoskeleton and Hoechst dye 33258 was used to counter stain the nucleus.
- Circular Dichroism Spectral Analysis - Circular Dichroism (CD) spectra of all peptides were recorded on a JASCO J-810 spectropolarimeter using a 1 mm path length quartz cell at room temperature in 10 mM phosphate buffer pH 7.0 at 1 mM concentration. The spectra were recorded between 190 - 260 nm with a scan speed of 50 nm/min and were the average of 3 scans. Base line was subtracted for final representation.
- LRR5 effectively inhibited EC tube formation dose dependently while LRR3 and LRR4 at lOO ⁇ M only had marginal effect (Fig. 2B and 2C).
- LRR5 amino acid sequence was scrambled (LRR5S)
- LRR5S LRR5 amino acid sequence was scrambled
- These peptides were not cytotoxic to ECs when tested up to 100 ⁇ M as shown in Table 1. Therefore, LRR5 can specifically inhibits VEGF induced EC tube fo ⁇ nation on matrigel in a sequence dependent manner and functions as an angiogenic inhibitor.
- angiogenesis involves multiple steps, we tested the LRR peptides for their ability to inhibit EC proliferation and migration.
- peptide LRR5 potently inhibited VEGF stimulated EC migration in a dose- dependent as well as sequence-dependent manner with an estimated ED 5 o between 100 nM and 1 ⁇ M while LRR5S had no such activity.
- Purified bovine decorin also potently inhibited EC migration at nM concentration (Fig. 3A). Both decorin and LRR5 also inhibited bFGF induced EC migration (Fig. 3B), but much less effectively when compared to VEGF stimulation.
- Induction of apoptosis in endothelial cells is one of the mechanisms utilized by antiangiogenic molecules to inhibit angiogenesis.
- LRR5 has the ability to induce apoptosis in HUVECs
- apoptosis was analyzed by morphological detection of chromatin fragmentation, TUNEL staining as well as quantitative ELISA measurement of fragmented DNA in peptide treated cells.
- FIG. 5A LRR5 specifically induced apoptosis in HUVECs in a concentration dependent manner. At 100 ⁇ M, many cells with fragmented chromatins were observed. TUNEL staining also confirmed the morphological observation (Fig. 5B).
- LRR5 peptide inhibits angiogenesis through multiple mechanisms including inhibition of EC tube formation, chemotactic migration, and induction of apoptosis.
- the antiangiogenic activity of LRR5 is both sequence and dose dependent.
- LRR5 inhibited tube formation in a dose dependent manner with ED 50 at around 100 nM
- LRR5M completely inhibited tube fo ⁇ nation at 10 nM concentration and its ED 50 is estimated to be 100 pM which is up to 1000 times more potent comparing to LRR5 (Fig. 6B).
- peptides LRR5N and LRR5C cannot inhibit VEGF induced EC tube formation effectively.
- the LRR5 peptides also inhibited bFGF induced tube formation in a dose dependent manner, with the exception of LRR5C which is inactive (Fig. 6C). Consistent results were observed when experiments were repeated with different batches of HUVECs (data not shown).
- LRR5C 13 residue LRR5C peptide was as potent as LRR5 (Fig. 7A). Both LRR5 and LRR5C inhibited VEGF induced EC migration in a dose dependent manner with ED 50 between 100 nM and 1 ⁇ M. Although some inhibitions were observed with LRR5N, the effects were not dose dependent while LRR5M is inactive. In comparison, LRR5C is ineffective in inhibiting bFGF induced EC migration while LRR5M has only mild inhibitive effect at high concentrations (Fig. 7B).
- LRR5N and LRR5C are only mildly inhibitive to VEGF stimulated EC proliferation at high concentrations while none of the shorter peptides inhibited bFGF stimulated EC proliferation (Fig. 8A and 8B).
- LRR5M is as active as LRR5 while LRR5N is less active (Figs. 5B; 9A and 9B). Similar to LRR5, both shorter peptides induced EC apoptosis in a caspase-dependent manner. In contrast, LRR5C lacks the apoptosis induction function.
- LRR5 inhibits different aspects of angiogenesis. While the middle region inhibits EC tube formation, the C-terminal region is responsible for inhibiting EC migration towards VEGF. Both the N-terminal region (LRR5N) and the middle region (LRR5M) are involved in inducing EC apoptosis through the caspase mediated apoptosis pathway.
- Decorin is known to bind many ECM proteins including fibronectin and collagen as well as growth factors such as TGF ⁇ (11-15).
- various matrix proteins including gelatin, collagen I, fibronectin, growth factors (TGF ⁇ l, TGF ⁇ 2, VEGF and bFGF), fibrinogen and BSA were immobilized onto nitrocellulose membranes and probed with FITC-labeled peptides. All peptides could bind directly to the matrix proteins gelatin, collagen I and fibronectin, but not the other proteins tested (data not shown). Their binding affinities to fibronectin and collagen I were then determined using a solid phase binding assay. Peptide LRR5 and all the three shorter peptides have slightly higher binding affinity for collagen I compared with fibronectin, but the binding affinities are generally quite low with Kd in ⁇ M or even lower mM range (Table 2).
- EC attachment and adhesion to ECM are critical for the progression of angiogenesis. Both migration and tube formation are initiated by attachment, and if the peptide acts as an anti-attachment factor, then both cell migration and tube formation could be inhibited. Since LRR5 and its related peptides all bind fibronectin and collagen I, they could interfere with EC's attachment to ECM and therefore inhibit angiogenesis. Indeed, when cells were pre-incubated with the peptides for 30 min before seeded onto fibronectin coated 96-wells, the number of cells attached were significantly reduced (Fig. 10). Significant inhibitions were observed with LRR5 and LRR5N even at concentration as low as 10 nM which was comparable with that of purified decorin.
- FAK is an important component of the focal adhesion complex which attaches cells to the extracellular matrix and is essential for cell migration, adhesion, survival and cell cycle control (30). It is a non-receptor tyrosine kinase, which integrates growth factor and integrin signals to promote cell migration. Proper migration of cells depends on both actin filament dynamics and adhesion complex remodeling. It has been reported that one of the mechanisms of VEGF stimulated EC migration is by stimulating FAK phosphorylation which activates FAK and initiates the assembly and rearrangements of focal adhesions (31).
- FAK Activated FAK then phosphorylate and activate other focal adhesion associated proteins including paxillin which is immediately recruited into focal adhesion complexes. This is followed by an accumulation of actin stress fibers associated with new actin polymerization that interact with focal adhesion-associated paxillins (32). FAK is then inactivated by dephosphorylation and cleaved by cellular proteases, leading to the disassembly of focal adhesions as well as actin filament. During apoptosis, FAK is cleaved by caspases, generating FRNK, a C-terminal fragment of FAK that inhibits FAK function (33).
- both LRR5 and LRR5M suppressed VEGF stimulated FAK phosphorylation.
- LRR5M was more effective in inhibiting FAK phosphorylation compared with LRR5, consistent with its more potent activity in inhibiting EC tube formation and apoptosis induction.
- LRR5C which is very effective at inhibiting EC migration, but not active in inhibiting tube formation and induction of apoptosis did not show any inhibitory effect on FAK phosphorylation. Rather, there is a mild stimulation of FAK phosphorylation by this peptide.
- VEGF induced paxillin recruitment into focal adhesions an indication of the formation and rearrangement of focal adhesions, was also effectively blocked by both LRR5 and LRR5M.
- the large number of VEGF induced patched paxillin staining (indicated by arrows) was almost completely abolished upon treatment with LRR5 and LRR5M, with LRR5M being more effective.
- Purified decorin also inhibited focal adhesion formation at 100 nM. While peptide LRR5N reduced the formation of focal adhesions to a much lesser extent, LRR5C and LRR5S were inactive (Fig. 12).
- LRR5 and LRR5M potently suppressed VEGF induced actin stress fiber formation as shown by immunofluorescent staining of actin filaments by TRITC-conjugated phalloidin (Fig. 13). While LRR5N was less effective, LRR5C was essentially ineffective in this function.
- CD Spectral Studies Revealed a Stable Structure for LRR5 in Solution To study the structural basis of the peptide' s function, CD analyses of the peptides were carried out.
- the CD spectra of peptide LRR5 at 1 mM concentration showed a negative maximum around 212 nm and a negative shoulder around 222 nm indicating the possibility of a 3 10 helical structure (Fig. 14).
- Addition of trifluroethanol (TFE) at different ratios from 5 to 80 percent of TFE/water did not reveal any difference in LRR5 CD spectra, indicating LRR5 peptide has a stable helical structure (34).
- decorin has been reported to have antiangiogenic activity under certain circumstances, we showed here for the first time that purified decorin can inhibit VEGF, bFGF as well as serum induced HUVEC tube formation on matrigel.
- Purified bovine articular decorin inhibited EC tube formation more potently than recombinant human decorin expressed in insect cells (Fig. 1).
- a peptide representing LRR5 domain of the core protein functions as a potent angiogenesis inhibitor by inhibiting multiple aspects of angiogenesis including EC tube formation on matrigel, VEGF or bFGF stimulated migration, attachment to fibronectin as well as inducing EC apoptosis.
- LRR5M middle region
- LRR5C C-terminal region
- Both the N-terminal and middle regions are involved in inducing EC apoptosis.
- the N-terminal region (LRR5N) is more effective in inhibiting EC attachment to fibronectin.
- VEGF is the most important angiogenic factor which induces EC proliferation, migration, focal adhesion complex formation and reorganization, remodeling of the actin cytoskeleton into stress fibers as well as tube formation, all necessary components of an angiogenic response. Except proliferation, LRR5 inhibited all aspects of VEGF induced angiogenesis.
- the correlation of potent anti-tube formation activity of LRR5 and LRR5M with their ability to inhibit VEGF induced FAK activation, recruitment of paxillin into focal adhesions and actin stress fiber formation strongly suggests that the FAK signaling pathways play an important role in VEGF induced EC tube formation on matrigel.
- the more potent anti-tube formation activity of LRR5M correlated with its more potent inhibition of FAK activation.
- LRR5 integrin- linked kinase
- ILK integrin- linked kinase
- LRR5C did not inhibit VEGF induced focal adhesion assembly and actin stress fiber formation, whether it interferes with the disassembly or dynamic changes of them still need to be investigated. Furthermore, the dynamic cycles of FAK phosphorylation and dephosphorylation are essential of the dynamic changes of focal adhesions. As LRR5C slightly stimulated FAK phosphorylation, whether this peptide affects the dynamic changes of FAK phosphorylation/dephophorylation need further investigation.
- Cell migration can be triggered not only through matrix mediated integrin- clustering and FAK activation, but also through growth factor/receptor activated multiple intracellular signaling pathways.
- FAK pathway many other pathways such as PI3 kinase activation, p38- MAPK activation, Akt activation, induction of NO release, etc have also been linked with VEGF induced EC migration (32). It is possible that LRR5C inhibited VEGF induced EC migration through interfering with one of these pathways.
- LRR5 and LRR5N efficiently interfered with HUVEC attachment to fibronectin at low concentration, it seems that inhibition of EC attachment to matrix is not a critical mechanism by which LRR5 inhibited EC tube formation. This is because LRR5M potently inhibited EC tube formation at concentrations in which it is not very efficient in inhibiting HUVEC attachment to fibronectin (Figs. 6 and 10).
- the binding affinities of the peptides to collagen I and fibronectin are low in the range of low mM to ⁇ M.
- LRR5 and its related peptides do not enter cells or bind to cell surface (data not shown), indicating that they most likely function in the extracellular matrix.
- LRR3-5 region of decorin core protein has been reported to bind TGF ⁇ , a growth factor involved in angiogenesis, LRR5 did not bind this growth factor when tested in binding conditions described in this work (data not shown). Most likely, the antiangiogenic activity of LRR5 is independent of decorin's ability to bind TGF ⁇ .
- Peptide therapeutics is increasingly making their way into clinical application.
- the advantage for peptides are their small sizes, simple to synthesis, lack of toxicity and immune reaction to host system, viable for chemical modifications (2).
- Several antiangiogenic peptides have been obtained from various domains of endogenous proteins including the Pex domain of MMP-2, lg domains of VEGFR1, TSR domains of TSP1 as well as endostatin (5, 28, 38, 39). This work represents the first report of antiangiogenic peptides derived from LRR domains.
- LRR5 is at the center of the bananashaped decorin monomer molecule with the 3 J0 helix exposed to the external surface and the ⁇ -sheet at the dimerization interfaces. Amongst all the LRRs in decorin core protein, only LRR5 has the 3 10 helix structure (27). In addition, in many bioactive peptides, the presence of ⁇ -turn is critical for its function (43). All peptides described here also have ⁇ -turn structure which may be important for their biological activities.
- LRR5 domain of decorin core protein shows potent antiangiogenic effect through inhibiting EC tube formation, migration, attachment to matrix as well as inducing EC apoptosis.
- LRR5M inhibits tube formation
- LRR5C inhibits migration
- LRR5N is most effective in inhibiting EC attachment to matrix.
- Both LRR5N and LRR5M are involved in inducing EC apoptosis.
- the anti-tube formation activities of LRR5 and LRR5M are linked with their ability to suppress VEGF stimulated FAK phosphorylation at Y3 . 97 as well as focal adhesion and actin stress fiber formation.
- LRR5M is much more potent in inhibiting tube formation than LRR5 and the parent molecule decorin.
- LGTNPLKSSGIE (M-hdLRR5) (12-mer) (SEQ ID No 6)
- HUVECs were pre-starved in culture medium + 2% serum for 3-5h before the experiment.
- Cell culture inserts were pre-coated with 0.2% gelatin or fibronectin (50ug/ml) on both sides and dried. Starved HUVECs were then incubated with all the various peptides individually for 30 mins at 37°C, 5%o C0 2 incubator.
- the cells (3.0 x lO 4 cells/insert) were then plated onto the top surface of cell culture insert in 24-well culture plate.
- Chemoattractant (VEGF or bFGF) containing medium was added to the bottom well and cells incubated for 6-14h. Cells at the upper surface of the inserts were gently removed with cotton bar. Cells at the bottom side of the inserts were fixed with 70% ethanol for 10-15 mins and the inserts were then dried. Cells were stained with 0.04%) Giemsa solution for 10 mins for analyses under microscope. Migrated cells were counted using the NIH Image Software.
- Matrigel from Chemicon or BD was pre-coated onto the well surfaces of 96-well plate.
- HUVECs (, 1.5-2X10 4 /well, passages ⁇ 6) were harvested and resuspended in medium (Ml 99 or CSC medium without growth factor) with 1% fetal bovine serum. Cells were then incubated with all the various peptides individually at various concentrations at 37°C cell culture incubator for 30 minutes before plating onto the 96-well and incubated for 12-16 hours. Tube formations were observed from 7-8h after cell plating. Angiogenesis were measured by taking 5 random field and the tube length and area were determined using the NIH Imager software.
- TUNEL Apoptosis Assay was performed using the ApoAlert kit from Clontech. Briefly, HUVECs were seed into 4 well chamber slide with and treated with the peptides for 24 hrs. After fixing the cells with 4% paraformaldehyde, cells were incubated with nucleotide mix containing FITC-labelled UTP and TdT. Cells were counter-stained with propidium iodide (PI).
- PI propidium iodide
- apoptosis was analyzed by directly DNA staining with Hoechst dye 33258 (500 ng/ml) after incubating with the peptides at various concentrations and fix the cells with acetone methanol (1 : 1) for 10 mins. Apoptotic cells were counted in random fields under a microscope (630 x magnification, 5 fields per sample).
- Figure 15 shows that Peptide hdLRR5 (SEQ ID No 2) inhibits VEGF induced HUVEC migration.
- Figure 16 shows that peptide hdLRR5 (SEQ ID No 2) inhibits tube formation in matrigel.
- Figure 17 shows that decorin peptide hdLRR5 induce EC apoptosis as determined by TUNEL labeling.
- a 26 amino acids peptide corresponding to LRR5 of human decorin can inhibit tube formation in in vitro matrigel angiogenesis assay and inhibit endothelial cell migration (HUVECs) in response to VEGF.
- LRR5 was picked due to its unique L (leucine) organization comparing to all other LRRs in decorin, longer sequence with extra amino acids, potential ability to bind collagen and TGF-beta.
- the decorin peptides tested are not cytotoxic to endothelial cells. Concentration ranges between lOpM to 1 mM were tested for its effect on metabolic status of the endothelial cell. No cytotoxicity was observed on cultured endothelial cells even at the concentration of 1 mM. The cytotoxicity levels are at par with other known angiogenesis inhibitors such as angiostatin and endostatin.
- hdLRR5 (SEQ ID No 2) binds nitrocellulose- bound collagen (data not shown).
- IVIELGTNPLKSSGIENGAFQGMK (SEQ ID No 9) lELGTNPLKSSGIENGAFQGMK (SEQ ID No 10) LGTNPLKSSGIENGAFQGMK (SEQ ID No 11) TNPLKSSGIENGAFQGMK (SEQ ID No 12) PLKSSGIENGAFQGMK (SEQ ID No 13) LKSSGIENGAFQGMK (SEQ ID No 14) GIENGAFQGMK (SEQ ID No 15) ENGAFQGMK (SEQ ID No 16)
- LGTNPLKSSGIE (12-mer) (SEQ ID No 17) LATNPLKSSGIE (12-mer) (SEQ ID No 18) LGANPLKSSGIE (12-mer) (SEQ ID No 19) LGTAPLKSSGIE (12-mer) (SEQ ID No 20) LGTNALKSSGIE (12-mer) (SEQ ID No 21) LGTNPAKSSGIE (12-mer) (SEQ ID No 22) LGTNPLASSGIE (12-mer) (SEQ ID No 23) LGTNPLKASGIE (12-mer) (SEQ ID No 24) LGTNPLKSAGIE (12-mer) (SEQ ID No 25) LGTNPLKSSAIE (12-mer) (SEQ ID No 26) LGTNPLKSSGAE (12-mer) (SEQ ID No 27) LGTNPLKSSGIA (12-mer) (SEQ ID No 28)
- ASGIENGAFQGMK (13-mer) (SEQ ID No 29) SAGIENGAFQGMK (SEQ ID No 30) SSAIENGAFQGMK (SEQ ID No -31) SSGAENGAFQGMK (SEQ ID No 32) SSGIANGAFQGMK (SEQ ID No 33) SSGIEAGAFQGMK (SEQ ID No 34) SSGIENAAFQGMK (SEQ ID No 35) SSGIENGAAQGMK (SEQ ID No 36) SSGIENGAFAGMK (SEQ ID No 37) SSGIENGAFQAMK (SEQ ID No 38) SSGIENGAFQGAK (SEQ ID No 39) SSGIENGAFQGMA (SEQ ID No 40)
- NVLVIELGGNPLKNSGIENGAFQGLK (mouse LRR5) (SEQ ID No 42)
- NVIVMELGSNPLSSSGVDNGAFADLK zebrafish LRR5
- a patient suffering from cancer is administered intravenously the peptide QMIVIELGTNPLKSSGIENGAFQGMK (SEQ ID No 2).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Rheumatology (AREA)
- Immunology (AREA)
- Ophthalmology & Optometry (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Dermatology (AREA)
- Endocrinology (AREA)
- Reproductive Health (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Pain & Pain Management (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007515003A JP2008503205A (en) | 2004-05-31 | 2005-05-31 | Peptide derived from decorin leucine rich repeat and use thereof |
EP05743238A EP1758931A1 (en) | 2004-05-31 | 2005-05-31 | Peptides derived from decorin leucine rich repeats and uses thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG200403034 | 2004-05-31 | ||
SG200403034-2 | 2004-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005116066A1 true WO2005116066A1 (en) | 2005-12-08 |
Family
ID=35450840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SG2005/000171 WO2005116066A1 (en) | 2004-05-31 | 2005-05-31 | Peptides derived from decorin leucine rich repeats and uses thereof |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1758931A1 (en) |
JP (1) | JP2008503205A (en) |
WO (1) | WO2005116066A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009535297A (en) * | 2006-03-31 | 2009-10-01 | リポテック,エス.アー. | Synthetic peptides useful in skin treatment and their use in cosmetic or dermopharmaceutical compositions |
US20130045926A1 (en) * | 2009-12-04 | 2013-02-21 | Dale P. DeVore | Composition and methods for the prevention and treatment of macular degeneration, diabetic retinopathy, and diabetic macular edema |
US9200039B2 (en) | 2013-03-15 | 2015-12-01 | Symic Ip, Llc | Extracellular matrix-binding synthetic peptidoglycans |
US9217016B2 (en) | 2011-05-24 | 2015-12-22 | Symic Ip, Llc | Hyaluronic acid-binding synthetic peptidoglycans, preparation, and methods of use |
US9512192B2 (en) | 2008-03-27 | 2016-12-06 | Purdue Research Foundation | Collagen-binding synthetic peptidoglycans, preparation, and methods of use |
WO2019229116A1 (en) | 2018-05-31 | 2019-12-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Intravitreal delivery of a decorin polypeptide for the treatment of choroidal neovascularisation |
US10772931B2 (en) | 2014-04-25 | 2020-09-15 | Purdue Research Foundation | Collagen binding synthetic peptidoglycans for treatment of endothelial dysfunction |
US11529424B2 (en) | 2017-07-07 | 2022-12-20 | Symic Holdings, Inc. | Synthetic bioconjugates |
WO2024218311A1 (en) | 2023-04-21 | 2024-10-24 | Pulsesight Therapeutics | Decorin-based compositions for repair and regeneration of retinal pigment epithelium |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100747646B1 (en) * | 2005-02-25 | 2007-08-08 | 연세대학교 산학협력단 | Gene delivery system comprising decorin gene and pharmaceutical anti-tumor composition comprising same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993020202A1 (en) * | 1992-04-03 | 1993-10-14 | La Jolla Cancer Research Foundation | Decorin fragments and methods of inhibiting cell regulatory factors |
-
2005
- 2005-05-31 WO PCT/SG2005/000171 patent/WO2005116066A1/en not_active Application Discontinuation
- 2005-05-31 JP JP2007515003A patent/JP2008503205A/en active Pending
- 2005-05-31 EP EP05743238A patent/EP1758931A1/en not_active Ceased
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993020202A1 (en) * | 1992-04-03 | 1993-10-14 | La Jolla Cancer Research Foundation | Decorin fragments and methods of inhibiting cell regulatory factors |
Non-Patent Citations (2)
Title |
---|
BOURDON M.A. ET AL: "Identification and Synthesis of a Recognition Signal for the Attachment of Glycosaminoglycans to Proteins", PROC.NATL.ACAD.SCI., vol. 84, 1987, pages 3194 - 3198, XP002979712, DOI: doi:10.1073/pnas.84.10.3194 * |
SULOCHANA K.N. ET AL: "Peptides derived from human decorin leucine rich repeat 5 inhibit angiogenesis", JOURNAL OF BIOLOGICAL CHEMISTRY, PAPERS IN PRESS, MANUSCRIPT M414320200, 27 May 2005 (2005-05-27) * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009535297A (en) * | 2006-03-31 | 2009-10-01 | リポテック,エス.アー. | Synthetic peptides useful in skin treatment and their use in cosmetic or dermopharmaceutical compositions |
US9512192B2 (en) | 2008-03-27 | 2016-12-06 | Purdue Research Foundation | Collagen-binding synthetic peptidoglycans, preparation, and methods of use |
US10689425B2 (en) | 2008-03-27 | 2020-06-23 | Purdue Research Foundation | Collagen-binding synthetic peptidoglycans, preparation, and methods of use |
US20130045926A1 (en) * | 2009-12-04 | 2013-02-21 | Dale P. DeVore | Composition and methods for the prevention and treatment of macular degeneration, diabetic retinopathy, and diabetic macular edema |
EP2506862A4 (en) * | 2009-12-04 | 2013-05-29 | Euclid Systems Corp | COMPOSITION AND METHODS FOR THE PREVENTION AND TREATMENT OF MACULAR DEGENERATION, DIABETIC RETINOPATHY AND DIABETIC MACULAR DHEA |
US9217016B2 (en) | 2011-05-24 | 2015-12-22 | Symic Ip, Llc | Hyaluronic acid-binding synthetic peptidoglycans, preparation, and methods of use |
US9200039B2 (en) | 2013-03-15 | 2015-12-01 | Symic Ip, Llc | Extracellular matrix-binding synthetic peptidoglycans |
US9872887B2 (en) | 2013-03-15 | 2018-01-23 | Purdue Research Foundation | Extracellular matrix-binding synthetic peptidoglycans |
US10772931B2 (en) | 2014-04-25 | 2020-09-15 | Purdue Research Foundation | Collagen binding synthetic peptidoglycans for treatment of endothelial dysfunction |
US11529424B2 (en) | 2017-07-07 | 2022-12-20 | Symic Holdings, Inc. | Synthetic bioconjugates |
WO2019229116A1 (en) | 2018-05-31 | 2019-12-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Intravitreal delivery of a decorin polypeptide for the treatment of choroidal neovascularisation |
WO2024218311A1 (en) | 2023-04-21 | 2024-10-24 | Pulsesight Therapeutics | Decorin-based compositions for repair and regeneration of retinal pigment epithelium |
Also Published As
Publication number | Publication date |
---|---|
JP2008503205A (en) | 2008-02-07 |
EP1758931A1 (en) | 2007-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8642728B2 (en) | Modulation of the activity and differentiation of cells expressing the osteoclast-associated receptor | |
US8158589B2 (en) | Peptides with the capacity to bind to transforming growth factor β1 (TGF-β1) | |
US7964556B1 (en) | Antimicrobial peptides and use thereof | |
US20060147945A1 (en) | Novel secreted proteins and their uses | |
JP5749659B2 (en) | Bone morphogenetic protein 2 (BMP2) variant with reduced BMP antagonist sensitivity | |
AU2843900A (en) | Proteins that bind angiogenesis-inhibiting proteins, compositions and methods of use thereof | |
JP2008540339A (en) | Nogo receptor functional motif and peptidomimetics related thereto, and methods of using them | |
WO2005116066A1 (en) | Peptides derived from decorin leucine rich repeats and uses thereof | |
WO2002008277A2 (en) | Nucleic acids, vectors, host cells, polypeptides, and uses thereof | |
JP5716018B2 (en) | Lacritin partial peptide | |
JP2012196210A (en) | Modified chaperonin 10 | |
WO2001097785A2 (en) | Basic copolymers for the treatment of prion-related-disease | |
WO2022215946A1 (en) | Cell-penetrating peptide variant and use thereof | |
US20040142333A1 (en) | Novel secreted proteins and their uses | |
US7109160B1 (en) | Peptides containing the motif IGD and their use as cell migration modulators | |
WO2006041205A1 (en) | Angiogenesis promoter | |
US11369662B2 (en) | Methods of treating inflammation with monomeric CXCL12 peptide | |
WO2011060349A1 (en) | Methods of modulating mesenchymal stem cells | |
US11155578B2 (en) | Peptide agonists and antagonists of TLR4 activation | |
KR101219512B1 (en) | Human Laminin α2 Chain LG3 Domain and Active Peptides Promoting Cell Adhesion, Spreading, Migration,and Neurite Outgrowth | |
KR20230068866A (en) | Peptide for treating sepsis derived from rv3364c protein of mycobacterium tuberculosis | |
US20060142558A1 (en) | Novel proteins and their uses | |
SCHULTZ-CHERRY et al. | AND JOANNE E. MURPHY-ULLRICH | |
EP1492558A2 (en) | Novel secreted proteins and their uses | |
EP1529843A2 (en) | Novel secreted proteins and their uses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005743238 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007515003 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005743238 Country of ref document: EP |
|
WWR | Wipo information: refused in national office |
Ref document number: 2005743238 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2005743238 Country of ref document: EP |