WO2005019404A2 - Procedes pour fabriquer des agents de lavage ou de nettoyage - Google Patents
Procedes pour fabriquer des agents de lavage ou de nettoyage Download PDFInfo
- Publication number
- WO2005019404A2 WO2005019404A2 PCT/EP2004/008939 EP2004008939W WO2005019404A2 WO 2005019404 A2 WO2005019404 A2 WO 2005019404A2 EP 2004008939 W EP2004008939 W EP 2004008939W WO 2005019404 A2 WO2005019404 A2 WO 2005019404A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- weight
- preferred
- cleaning
- washing
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000003599 detergent Substances 0.000 title abstract description 59
- 239000012459 cleaning agent Substances 0.000 title abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 97
- 238000002360 preparation method Methods 0.000 claims abstract description 45
- 239000013013 elastic material Substances 0.000 claims abstract description 40
- 238000000465 moulding Methods 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims description 85
- 229920000642 polymer Polymers 0.000 claims description 64
- 238000005406 washing Methods 0.000 claims description 60
- 238000004140 cleaning Methods 0.000 claims description 50
- 238000005266 casting Methods 0.000 claims description 25
- 239000013543 active substance Substances 0.000 claims description 15
- 239000002131 composite material Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- -1 polybudadiene Polymers 0.000 description 161
- 125000004432 carbon atom Chemical group C* 0.000 description 70
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 67
- 239000002736 nonionic surfactant Substances 0.000 description 57
- 239000000126 substance Substances 0.000 description 54
- 239000002253 acid Substances 0.000 description 50
- 235000002639 sodium chloride Nutrition 0.000 description 50
- 239000003795 chemical substances by application Substances 0.000 description 45
- 229920002678 cellulose Polymers 0.000 description 44
- 150000003839 salts Chemical class 0.000 description 44
- 235000010980 cellulose Nutrition 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 41
- 239000011734 sodium Substances 0.000 description 39
- 229920001971 elastomer Polymers 0.000 description 38
- 239000000463 material Substances 0.000 description 38
- 230000008569 process Effects 0.000 description 38
- 102000004190 Enzymes Human genes 0.000 description 36
- 108090000790 Enzymes Proteins 0.000 description 36
- 229940088598 enzyme Drugs 0.000 description 36
- 239000000178 monomer Substances 0.000 description 35
- 239000001913 cellulose Substances 0.000 description 31
- 229920002451 polyvinyl alcohol Polymers 0.000 description 29
- 229920001577 copolymer Polymers 0.000 description 28
- 239000005060 rubber Substances 0.000 description 28
- 150000007513 acids Chemical class 0.000 description 27
- 239000007844 bleaching agent Substances 0.000 description 26
- 150000001875 compounds Chemical class 0.000 description 26
- 150000003751 zinc Chemical class 0.000 description 26
- 150000001298 alcohols Chemical class 0.000 description 25
- 239000000047 product Substances 0.000 description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 24
- 239000006185 dispersion Substances 0.000 description 24
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 22
- 235000019832 sodium triphosphate Nutrition 0.000 description 22
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 21
- 239000002270 dispersing agent Substances 0.000 description 21
- 238000000576 coating method Methods 0.000 description 20
- 238000002844 melting Methods 0.000 description 20
- 229920006395 saturated elastomer Polymers 0.000 description 20
- 229910052708 sodium Inorganic materials 0.000 description 20
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 19
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 19
- 238000004851 dishwashing Methods 0.000 description 19
- 230000008018 melting Effects 0.000 description 19
- 229920002472 Starch Polymers 0.000 description 18
- 235000014113 dietary fatty acids Nutrition 0.000 description 18
- 239000000194 fatty acid Substances 0.000 description 18
- 229930195729 fatty acid Natural products 0.000 description 18
- 229930195733 hydrocarbon Natural products 0.000 description 18
- 239000003112 inhibitor Substances 0.000 description 18
- 125000006850 spacer group Chemical group 0.000 description 18
- 235000019698 starch Nutrition 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 229910052901 montmorillonite Inorganic materials 0.000 description 17
- 108090001060 Lipase Proteins 0.000 description 16
- 102000004882 Lipase Human genes 0.000 description 16
- 239000004367 Lipase Substances 0.000 description 16
- 150000002191 fatty alcohols Chemical class 0.000 description 16
- 235000019421 lipase Nutrition 0.000 description 16
- 239000002245 particle Substances 0.000 description 16
- 239000004094 surface-active agent Substances 0.000 description 16
- 239000004215 Carbon black (E152) Substances 0.000 description 15
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 15
- 230000007797 corrosion Effects 0.000 description 15
- 238000005260 corrosion Methods 0.000 description 15
- 150000003254 radicals Chemical class 0.000 description 15
- 239000007787 solid Substances 0.000 description 15
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 14
- 239000012190 activator Substances 0.000 description 14
- 125000000217 alkyl group Chemical group 0.000 description 14
- 235000012216 bentonite Nutrition 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 14
- 239000011572 manganese Substances 0.000 description 14
- 239000003921 oil Substances 0.000 description 14
- 235000019198 oils Nutrition 0.000 description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 13
- 125000001931 aliphatic group Chemical group 0.000 description 13
- 150000004665 fatty acids Chemical class 0.000 description 13
- 239000011521 glass Substances 0.000 description 13
- 230000007062 hydrolysis Effects 0.000 description 13
- 238000006460 hydrolysis reaction Methods 0.000 description 13
- 239000010410 layer Substances 0.000 description 13
- 239000011591 potassium Substances 0.000 description 13
- 150000004760 silicates Chemical class 0.000 description 13
- 125000000542 sulfonic acid group Chemical group 0.000 description 13
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 13
- 239000010457 zeolite Substances 0.000 description 13
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 12
- 229910019142 PO4 Inorganic materials 0.000 description 12
- 239000004952 Polyamide Substances 0.000 description 12
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 12
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 12
- 239000003513 alkali Substances 0.000 description 12
- 125000003118 aryl group Chemical group 0.000 description 12
- 150000001735 carboxylic acids Chemical class 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000002734 clay mineral Substances 0.000 description 12
- 239000007884 disintegrant Substances 0.000 description 12
- 239000003205 fragrance Substances 0.000 description 12
- 239000011777 magnesium Substances 0.000 description 12
- 235000021317 phosphate Nutrition 0.000 description 12
- 229920002647 polyamide Polymers 0.000 description 12
- 229910052700 potassium Inorganic materials 0.000 description 12
- 239000008107 starch Substances 0.000 description 12
- 108091005804 Peptidases Proteins 0.000 description 11
- 102000035195 Peptidases Human genes 0.000 description 11
- 239000004698 Polyethylene Substances 0.000 description 11
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 11
- 229910021536 Zeolite Inorganic materials 0.000 description 11
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 229910052749 magnesium Inorganic materials 0.000 description 11
- 229920000573 polyethylene Polymers 0.000 description 11
- 238000006116 polymerization reaction Methods 0.000 description 11
- 239000003381 stabilizer Substances 0.000 description 11
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 11
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 10
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 10
- 239000004372 Polyvinyl alcohol Substances 0.000 description 10
- 239000004365 Protease Substances 0.000 description 10
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 10
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 10
- 239000003945 anionic surfactant Substances 0.000 description 10
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 10
- 150000001768 cations Chemical class 0.000 description 10
- 239000000806 elastomer Substances 0.000 description 10
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 10
- 229920001155 polypropylene Polymers 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 238000007789 sealing Methods 0.000 description 10
- 229910052717 sulfur Inorganic materials 0.000 description 10
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 9
- 125000002091 cationic group Chemical group 0.000 description 9
- 150000002148 esters Chemical class 0.000 description 9
- 239000008103 glucose Substances 0.000 description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 9
- 239000011976 maleic acid Substances 0.000 description 9
- 229920001223 polyethylene glycol Polymers 0.000 description 9
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 9
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 9
- 238000007711 solidification Methods 0.000 description 9
- 230000008023 solidification Effects 0.000 description 9
- 239000003760 tallow Substances 0.000 description 9
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 8
- 239000004927 clay Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 229920001451 polypropylene glycol Polymers 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 239000011593 sulfur Substances 0.000 description 8
- 229920003051 synthetic elastomer Polymers 0.000 description 8
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical group [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 8
- 238000004073 vulcanization Methods 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 244000043261 Hevea brasiliensis Species 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 239000002535 acidifier Substances 0.000 description 7
- 229910052783 alkali metal Inorganic materials 0.000 description 7
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 7
- 235000010338 boric acid Nutrition 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 229920003086 cellulose ether Polymers 0.000 description 7
- 229910017052 cobalt Inorganic materials 0.000 description 7
- 239000010941 cobalt Substances 0.000 description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 7
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000000975 dye Substances 0.000 description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 229910052748 manganese Inorganic materials 0.000 description 7
- 229920005646 polycarboxylate Polymers 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- 239000005061 synthetic rubber Substances 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- ZGZHWIAQICBGKN-UHFFFAOYSA-N 1-nonanoylpyrrolidine-2,5-dione Chemical compound CCCCCCCCC(=O)N1C(=O)CCC1=O ZGZHWIAQICBGKN-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 6
- 244000060011 Cocos nucifera Species 0.000 description 6
- 235000013162 Cocos nucifera Nutrition 0.000 description 6
- 229920002245 Dextrose equivalent Polymers 0.000 description 6
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 6
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 6
- 108010010803 Gelatin Proteins 0.000 description 6
- 229920000459 Nitrile rubber Polymers 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 6
- 239000001361 adipic acid Substances 0.000 description 6
- 235000011037 adipic acid Nutrition 0.000 description 6
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 6
- 150000008041 alkali metal carbonates Chemical class 0.000 description 6
- 150000001450 anions Chemical group 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000004327 boric acid Substances 0.000 description 6
- 229920005549 butyl rubber Polymers 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 6
- 238000011049 filling Methods 0.000 description 6
- 239000008273 gelatin Substances 0.000 description 6
- 229920000159 gelatin Polymers 0.000 description 6
- 235000019322 gelatine Nutrition 0.000 description 6
- 235000011852 gelatine desserts Nutrition 0.000 description 6
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 6
- 229920003052 natural elastomer Polymers 0.000 description 6
- 229920001194 natural rubber Polymers 0.000 description 6
- 150000007524 organic acids Chemical class 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000004806 packaging method and process Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000001603 reducing effect Effects 0.000 description 6
- 239000000344 soap Substances 0.000 description 6
- 159000000000 sodium salts Chemical class 0.000 description 6
- 239000004753 textile Substances 0.000 description 6
- 239000001226 triphosphate Substances 0.000 description 6
- 108010065511 Amylases Proteins 0.000 description 5
- 102000013142 Amylases Human genes 0.000 description 5
- 229920001353 Dextrin Polymers 0.000 description 5
- 239000004375 Dextrin Substances 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- 108010056079 Subtilisins Proteins 0.000 description 5
- 102000005158 Subtilisins Human genes 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 5
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 5
- 108090000637 alpha-Amylases Proteins 0.000 description 5
- 235000019418 amylase Nutrition 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 235000019425 dextrin Nutrition 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 150000002170 ethers Chemical class 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 235000005985 organic acids Nutrition 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920000058 polyacrylate Polymers 0.000 description 5
- 229920005862 polyol Polymers 0.000 description 5
- 229920006324 polyoxymethylene Polymers 0.000 description 5
- 229920002635 polyurethane Polymers 0.000 description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 5
- 239000011814 protection agent Substances 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 229910021647 smectite Inorganic materials 0.000 description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 description 5
- 235000017550 sodium carbonate Nutrition 0.000 description 5
- 229910001415 sodium ion Inorganic materials 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052723 transition metal Inorganic materials 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- 239000001993 wax Substances 0.000 description 5
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 4
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 4
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 229920000881 Modified starch Polymers 0.000 description 4
- 108090000854 Oxidoreductases Proteins 0.000 description 4
- 102000004316 Oxidoreductases Human genes 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000010306 acid treatment Methods 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 102000004139 alpha-Amylases Human genes 0.000 description 4
- 229940024171 alpha-amylase Drugs 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 239000002280 amphoteric surfactant Substances 0.000 description 4
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 238000004061 bleaching Methods 0.000 description 4
- 239000003093 cationic surfactant Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 4
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 4
- 238000007720 emulsion polymerization reaction Methods 0.000 description 4
- 230000032050 esterification Effects 0.000 description 4
- 238000005886 esterification reaction Methods 0.000 description 4
- 238000007046 ethoxylation reaction Methods 0.000 description 4
- 239000003925 fat Substances 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 235000019426 modified starch Nutrition 0.000 description 4
- 239000002304 perfume Substances 0.000 description 4
- 235000011007 phosphoric acid Nutrition 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 235000019419 proteases Nutrition 0.000 description 4
- 239000011257 shell material Substances 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 3
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 3
- 125000004398 2-methyl-2-butyl group Chemical group CC(C)(CC)* 0.000 description 3
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000004435 Oxo alcohol Substances 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 3
- SWLWZVHQLWXZTQ-UHFFFAOYSA-N acetonitrile;4-methylmorpholin-4-ium;methyl sulfate Chemical compound CC#N.COS([O-])(=O)=O.C[NH+]1CCOCC1 SWLWZVHQLWXZTQ-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 3
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 3
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 3
- 125000005263 alkylenediamine group Chemical group 0.000 description 3
- 229940025131 amylases Drugs 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229920001400 block copolymer Polymers 0.000 description 3
- 229910021538 borax Inorganic materials 0.000 description 3
- 229920005557 bromobutyl Polymers 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 239000012876 carrier material Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 229920005556 chlorobutyl Polymers 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 108010005400 cutinase Proteins 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 description 3
- 238000006266 etherification reaction Methods 0.000 description 3
- 206010016256 fatigue Diseases 0.000 description 3
- 230000009969 flowable effect Effects 0.000 description 3
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 150000003951 lactams Chemical class 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 3
- 229940055577 oleyl alcohol Drugs 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 235000019831 pentapotassium triphosphate Nutrition 0.000 description 3
- ATGAWOHQWWULNK-UHFFFAOYSA-I pentapotassium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [K+].[K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O ATGAWOHQWWULNK-UHFFFAOYSA-I 0.000 description 3
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 3
- 150000004965 peroxy acids Chemical class 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 239000003495 polar organic solvent Substances 0.000 description 3
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920000131 polyvinylidene Polymers 0.000 description 3
- 235000011009 potassium phosphates Nutrition 0.000 description 3
- 150000003138 primary alcohols Chemical class 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 229920002545 silicone oil Polymers 0.000 description 3
- 239000001488 sodium phosphate Substances 0.000 description 3
- 235000019351 sodium silicates Nutrition 0.000 description 3
- 239000004328 sodium tetraborate Substances 0.000 description 3
- 235000010339 sodium tetraborate Nutrition 0.000 description 3
- 239000001384 succinic acid Substances 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- 238000006277 sulfonation reaction Methods 0.000 description 3
- 239000011975 tartaric acid Substances 0.000 description 3
- 235000002906 tartaric acid Nutrition 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical class [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 3
- LYPVKWMHGFMDPD-UHFFFAOYSA-N 1,5-diacetyl-1,3,5-triazinane-2,4-dione Chemical compound CC(=O)N1CN(C(C)=O)C(=O)NC1=O LYPVKWMHGFMDPD-UHFFFAOYSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- YNJSNEKCXVFDKW-UHFFFAOYSA-N 3-(5-amino-1h-indol-3-yl)-2-azaniumylpropanoate Chemical class C1=C(N)C=C2C(CC(N)C(O)=O)=CNC2=C1 YNJSNEKCXVFDKW-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 239000004382 Amylase Substances 0.000 description 2
- 229920000945 Amylopectin Polymers 0.000 description 2
- 229920000856 Amylose Polymers 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 2
- 241000193422 Bacillus lentus Species 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- 235000021357 Behenic acid Nutrition 0.000 description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N Benzylformate Chemical compound O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 2
- 102100032487 Beta-mannosidase Human genes 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 2
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 108010025880 Cyclomaltodextrin glucanotransferase Proteins 0.000 description 2
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 241000283070 Equus zebra Species 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 239000005639 Lauric acid Substances 0.000 description 2
- BTJXBZZBBNNTOV-UHFFFAOYSA-N Linalyl benzoate Chemical compound CC(C)=CCCC(C)(C=C)OC(=O)C1=CC=CC=C1 BTJXBZZBBNNTOV-UHFFFAOYSA-N 0.000 description 2
- 101500021084 Locusta migratoria 5 kDa peptide Proteins 0.000 description 2
- 229920002774 Maltodextrin Polymers 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 241000223258 Thermomyces lanuginosus Species 0.000 description 2
- 240000007313 Tilia cordata Species 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 229920006311 Urethane elastomer Polymers 0.000 description 2
- WHMDKBIGKVEYHS-IYEMJOQQSA-L Zinc gluconate Chemical compound [Zn+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O WHMDKBIGKVEYHS-IYEMJOQQSA-L 0.000 description 2
- CANRESZKMUPMAE-UHFFFAOYSA-L Zinc lactate Chemical compound [Zn+2].CC(O)C([O-])=O.CC(O)C([O-])=O CANRESZKMUPMAE-UHFFFAOYSA-L 0.000 description 2
- UAOKXEHOENRFMP-ZJIFWQFVSA-N [(2r,3r,4s,5r)-2,3,4,5-tetraacetyloxy-6-oxohexyl] acetate Chemical compound CC(=O)OC[C@@H](OC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)C=O UAOKXEHOENRFMP-ZJIFWQFVSA-N 0.000 description 2
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 229920000800 acrylic rubber Polymers 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 150000005840 aryl radicals Chemical class 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229940116226 behenic acid Drugs 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- 229940092782 bentonite Drugs 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical group O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- GGNQRNBDZQJCCN-UHFFFAOYSA-N benzene-1,2,4-triol Chemical compound OC1=CC=C(O)C(O)=C1 GGNQRNBDZQJCCN-UHFFFAOYSA-N 0.000 description 2
- 150000001565 benzotriazoles Chemical class 0.000 description 2
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- 108010055059 beta-Mannosidase Proteins 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 238000005341 cation exchange Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- NEHNMFOYXAPHSD-UHFFFAOYSA-N citronellal Chemical compound O=CCC(C)CCC=C(C)C NEHNMFOYXAPHSD-UHFFFAOYSA-N 0.000 description 2
- QMVPMAAFGQKVCJ-UHFFFAOYSA-N citronellol Chemical compound OCCC(C)CCC=C(C)C QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.000 description 2
- 150000001868 cobalt Chemical class 0.000 description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical class [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 150000004691 decahydrates Chemical class 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- ONCZQWJXONKSMM-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4].[Si+4].[Si+4].[Si+4] ONCZQWJXONKSMM-UHFFFAOYSA-N 0.000 description 2
- CEJLBZWIKQJOAT-UHFFFAOYSA-N dichloroisocyanuric acid Chemical compound ClN1C(=O)NC(=O)N(Cl)C1=O CEJLBZWIKQJOAT-UHFFFAOYSA-N 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 150000002009 diols Chemical group 0.000 description 2
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- PXJJSXABGXMUSU-UHFFFAOYSA-N disulfur dichloride Chemical compound ClSSCl PXJJSXABGXMUSU-UHFFFAOYSA-N 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000000174 gluconic acid Substances 0.000 description 2
- 235000012208 gluconic acid Nutrition 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 125000001046 glycoluril group Chemical group [H]C12N(*)C(=O)N(*)C1([H])N(*)C(=O)N2* 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 239000003752 hydrotrope Substances 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 2
- UWKAYLJWKGQEPM-LBPRGKRZSA-N linalyl acetate Chemical compound CC(C)=CCC[C@](C)(C=C)OC(C)=O UWKAYLJWKGQEPM-LBPRGKRZSA-N 0.000 description 2
- 229920000092 linear low density polyethylene Polymers 0.000 description 2
- 239000004707 linear low-density polyethylene Substances 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- PGOMUAXHEQEHJB-UHFFFAOYSA-N manganese;octadecanoic acid Chemical compound [Mn].CCCCCCCCCCCCCCCCCC(O)=O PGOMUAXHEQEHJB-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N n-hexadecyl alcohol Natural products CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- DYUWTXWIYMHBQS-UHFFFAOYSA-N n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCNCC=C DYUWTXWIYMHBQS-UHFFFAOYSA-N 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- MDHYEMXUFSJLGV-UHFFFAOYSA-N phenethyl acetate Chemical compound CC(=O)OCCC1=CC=CC=C1 MDHYEMXUFSJLGV-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- PATMLLNMTPIUSY-UHFFFAOYSA-N phenoxysulfonyl 7-methyloctanoate Chemical compound CC(C)CCCCCC(=O)OS(=O)(=O)OC1=CC=CC=C1 PATMLLNMTPIUSY-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229910052615 phyllosilicate Inorganic materials 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920001484 poly(alkylene) Polymers 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229910001414 potassium ion Inorganic materials 0.000 description 2
- 235000019828 potassium polyphosphate Nutrition 0.000 description 2
- 159000000001 potassium salts Chemical class 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 238000006268 reductive amination reaction Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 150000004671 saturated fatty acids Chemical class 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 229940080314 sodium bentonite Drugs 0.000 description 2
- 229910000280 sodium bentonite Inorganic materials 0.000 description 2
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 2
- AQMNWCRSESPIJM-UHFFFAOYSA-M sodium metaphosphate Chemical compound [Na+].[O-]P(=O)=O AQMNWCRSESPIJM-UHFFFAOYSA-M 0.000 description 2
- 235000011008 sodium phosphates Nutrition 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000007885 tablet disintegrant Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 108010075550 termamyl Proteins 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 2
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 150000003918 triazines Chemical class 0.000 description 2
- VZTGWJFIMGVKSN-UHFFFAOYSA-O trimethyl-[3-(2-methylprop-2-enoylamino)propyl]azanium Chemical class CC(=C)C(=O)NCCC[N+](C)(C)C VZTGWJFIMGVKSN-UHFFFAOYSA-O 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- WGIWBXUNRXCYRA-UHFFFAOYSA-H trizinc;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O WGIWBXUNRXCYRA-UHFFFAOYSA-H 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 239000004246 zinc acetate Substances 0.000 description 2
- 229960000314 zinc acetate Drugs 0.000 description 2
- 235000013904 zinc acetate Nutrition 0.000 description 2
- 239000011746 zinc citrate Substances 0.000 description 2
- 235000006076 zinc citrate Nutrition 0.000 description 2
- 229940068475 zinc citrate Drugs 0.000 description 2
- 150000003752 zinc compounds Chemical class 0.000 description 2
- 239000011670 zinc gluconate Substances 0.000 description 2
- 235000011478 zinc gluconate Nutrition 0.000 description 2
- 229960000306 zinc gluconate Drugs 0.000 description 2
- 239000011576 zinc lactate Substances 0.000 description 2
- 235000000193 zinc lactate Nutrition 0.000 description 2
- 229940050168 zinc lactate Drugs 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 235000014692 zinc oxide Nutrition 0.000 description 2
- LPEBYPDZMWMCLZ-CVBJKYQLSA-L zinc;(z)-octadec-9-enoate Chemical compound [Zn+2].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O LPEBYPDZMWMCLZ-CVBJKYQLSA-L 0.000 description 2
- ZPEJZWGMHAKWNL-UHFFFAOYSA-L zinc;oxalate Chemical compound [Zn+2].[O-]C(=O)C([O-])=O ZPEJZWGMHAKWNL-UHFFFAOYSA-L 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- SVZNRBAZGGBJOW-UHFFFAOYSA-N (2-methylprop-2-enoylamino)methanesulfonic acid Chemical compound CC(=C)C(=O)NCS(O)(=O)=O SVZNRBAZGGBJOW-UHFFFAOYSA-N 0.000 description 1
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 1
- ZQEOKONOFKQRIR-NUEKZKHPSA-N (5R,6R,7R)-3,5,6-triacetyl-3,5,6,7-tetrahydroxy-7-(hydroxymethyl)nonane-2,4,8-trione Chemical compound C(C)(=O)[C@@]([C@]([C@@](C(C(O)(C(C)=O)C(C)=O)=O)(O)C(C)=O)(O)C(C)=O)(O)CO ZQEOKONOFKQRIR-NUEKZKHPSA-N 0.000 description 1
- GRWFGVWFFZKLTI-YGPZHTELSA-N (5r)-4,6,6-trimethylbicyclo[3.1.1]hept-3-ene Chemical compound C1C2CC=C(C)[C@]1([H])C2(C)C GRWFGVWFFZKLTI-YGPZHTELSA-N 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- QMVPMAAFGQKVCJ-SNVBAGLBSA-N (R)-(+)-citronellol Natural products OCC[C@H](C)CCC=C(C)C QMVPMAAFGQKVCJ-SNVBAGLBSA-N 0.000 description 1
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- USVVENVKYJZFMW-ONEGZZNKSA-N (e)-carboxyiminocarbamic acid Chemical class OC(=O)\N=N\C(O)=O USVVENVKYJZFMW-ONEGZZNKSA-N 0.000 description 1
- YYMCVDNIIFNDJK-XFQWXJFMSA-N (z)-1-(3-fluorophenyl)-n-[(z)-(3-fluorophenyl)methylideneamino]methanimine Chemical compound FC1=CC=CC(\C=N/N=C\C=2C=C(F)C=CC=2)=C1 YYMCVDNIIFNDJK-XFQWXJFMSA-N 0.000 description 1
- KTZQTRPPVKQPFO-UHFFFAOYSA-N 1,2-benzoxazole Chemical compound C1=CC=C2C=NOC2=C1 KTZQTRPPVKQPFO-UHFFFAOYSA-N 0.000 description 1
- QLAJNZSPVITUCQ-UHFFFAOYSA-N 1,3,2-dioxathietane 2,2-dioxide Chemical compound O=S1(=O)OCO1 QLAJNZSPVITUCQ-UHFFFAOYSA-N 0.000 description 1
- YRIZYWQGELRKNT-UHFFFAOYSA-N 1,3,5-trichloro-1,3,5-triazinane-2,4,6-trione Chemical compound ClN1C(=O)N(Cl)C(=O)N(Cl)C1=O YRIZYWQGELRKNT-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- HHBCEKAWSILOOP-UHFFFAOYSA-N 1,3-dibromo-1,3,5-triazinane-2,4,6-trione Chemical compound BrN1C(=O)NC(=O)N(Br)C1=O HHBCEKAWSILOOP-UHFFFAOYSA-N 0.000 description 1
- NPMRPDRLIHYOBW-UHFFFAOYSA-N 1-(2-butoxyethoxy)propan-2-ol Chemical compound CCCCOCCOCC(C)O NPMRPDRLIHYOBW-UHFFFAOYSA-N 0.000 description 1
- IAUGBVWVWDTCJV-UHFFFAOYSA-N 1-(prop-2-enoylamino)propane-1-sulfonic acid Chemical compound CCC(S(O)(=O)=O)NC(=O)C=C IAUGBVWVWDTCJV-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 description 1
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N 1-Tetradecanol Natural products CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 1
- DMYOHQBLOZMDLP-UHFFFAOYSA-N 1-[2-(2-hydroxy-3-piperidin-1-ylpropoxy)phenyl]-3-phenylpropan-1-one Chemical compound C1CCCCN1CC(O)COC1=CC=CC=C1C(=O)CCC1=CC=CC=C1 DMYOHQBLOZMDLP-UHFFFAOYSA-N 0.000 description 1
- FEFQUIPMKBPKAR-UHFFFAOYSA-N 1-benzoylazepan-2-one Chemical compound C=1C=CC=CC=1C(=O)N1CCCCCC1=O FEFQUIPMKBPKAR-UHFFFAOYSA-N 0.000 description 1
- RMSGQZDGSZOJMU-UHFFFAOYSA-N 1-butyl-2-phenylbenzene Chemical group CCCCC1=CC=CC=C1C1=CC=CC=C1 RMSGQZDGSZOJMU-UHFFFAOYSA-N 0.000 description 1
- 239000001074 1-methoxy-4-[(E)-prop-1-enyl]benzene Substances 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- GQCZPFJGIXHZMB-UHFFFAOYSA-N 1-tert-Butoxy-2-propanol Chemical compound CC(O)COC(C)(C)C GQCZPFJGIXHZMB-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- VGVRPFIJEJYOFN-UHFFFAOYSA-N 2,3,4,6-tetrachlorophenol Chemical class OC1=C(Cl)C=C(Cl)C(Cl)=C1Cl VGVRPFIJEJYOFN-UHFFFAOYSA-N 0.000 description 1
- DGXAGETVRDOQFP-UHFFFAOYSA-N 2,6-dihydroxybenzaldehyde Chemical compound OC1=CC=CC(O)=C1C=O DGXAGETVRDOQFP-UHFFFAOYSA-N 0.000 description 1
- MPJQXAIKMSKXBI-UHFFFAOYSA-N 2,7,9,14-tetraoxa-1,8-diazabicyclo[6.6.2]hexadecane-3,6,10,13-tetrone Chemical compound C1CN2OC(=O)CCC(=O)ON1OC(=O)CCC(=O)O2 MPJQXAIKMSKXBI-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- CUDYYMUUJHLCGZ-UHFFFAOYSA-N 2-(2-methoxypropoxy)propan-1-ol Chemical group COC(C)COC(C)CO CUDYYMUUJHLCGZ-UHFFFAOYSA-N 0.000 description 1
- TWDUKWCXYKWSKZ-UHFFFAOYSA-N 2-(7-methyloctanoyloxy)benzenesulfonic acid Chemical compound CC(C)CCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O TWDUKWCXYKWSKZ-UHFFFAOYSA-N 0.000 description 1
- AIIITCMZOKMJIM-UHFFFAOYSA-N 2-(prop-2-enoylamino)propane-2-sulfonic acid Chemical compound OS(=O)(=O)C(C)(C)NC(=O)C=C AIIITCMZOKMJIM-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- FLUWAIIVLCVEKF-UHFFFAOYSA-N 2-Methyl-1-phenyl-2-propanyl acetate Chemical compound CC(=O)OC(C)(C)CC1=CC=CC=C1 FLUWAIIVLCVEKF-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- MJTPMXWJHPOWGH-UHFFFAOYSA-N 2-Phenoxyethyl isobutyrate Chemical compound CC(C)C(=O)OCCOC1=CC=CC=C1 MJTPMXWJHPOWGH-UHFFFAOYSA-N 0.000 description 1
- LSZBMXCYIZBZPD-UHFFFAOYSA-N 2-[(1-hydroperoxy-1-oxohexan-2-yl)carbamoyl]benzoic acid Chemical compound CCCCC(C(=O)OO)NC(=O)C1=CC=CC=C1C(O)=O LSZBMXCYIZBZPD-UHFFFAOYSA-N 0.000 description 1
- COBPKKZHLDDMTB-UHFFFAOYSA-N 2-[2-(2-butoxyethoxy)ethoxy]ethanol Chemical compound CCCCOCCOCCOCCO COBPKKZHLDDMTB-UHFFFAOYSA-N 0.000 description 1
- ZJVJPPNOQCMEPI-UHFFFAOYSA-N 2-[ethyl(methyl)amino]-2-phenylacetic acid Chemical compound CCN(C)C(C(O)=O)C1=CC=CC=C1 ZJVJPPNOQCMEPI-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- XMWLVXXYIYBETQ-UHFFFAOYSA-N 2-hydroxy-3-(2-methylprop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)NCC(O)CS(O)(=O)=O XMWLVXXYIYBETQ-UHFFFAOYSA-N 0.000 description 1
- KOQQKLZTINXBAS-UHFFFAOYSA-N 2-hydroxy-3-prop-2-enoxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CC(O)COCC=C KOQQKLZTINXBAS-UHFFFAOYSA-N 0.000 description 1
- VSSGDAWBDKMCMI-UHFFFAOYSA-N 2-methyl-2-(2-methylprop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)NC(C)(C)CS(O)(=O)=O VSSGDAWBDKMCMI-UHFFFAOYSA-N 0.000 description 1
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- VWFJDQUYCIWHTN-YFVJMOTDSA-N 2-trans,6-trans-farnesyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-YFVJMOTDSA-N 0.000 description 1
- JSIAIROWMJGMQZ-UHFFFAOYSA-N 2h-triazol-4-amine Chemical class NC1=CNN=N1 JSIAIROWMJGMQZ-UHFFFAOYSA-N 0.000 description 1
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical class O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 description 1
- KFNGWPXYNSJXOP-UHFFFAOYSA-N 3-(2-methylprop-2-enoyloxy)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)OCCCS(O)(=O)=O KFNGWPXYNSJXOP-UHFFFAOYSA-N 0.000 description 1
- RUACIFFMSHZUKZ-UHFFFAOYSA-O 3-Acrylamidopropyl trimethylammonium Chemical class C[N+](C)(C)CCCNC(=O)C=C RUACIFFMSHZUKZ-UHFFFAOYSA-O 0.000 description 1
- MFKRHJVUCZRDTF-UHFFFAOYSA-N 3-methoxy-3-methylbutan-1-ol Chemical compound COC(C)(C)CCO MFKRHJVUCZRDTF-UHFFFAOYSA-N 0.000 description 1
- NYUTUWAFOUJLKI-UHFFFAOYSA-N 3-prop-2-enoyloxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCOC(=O)C=C NYUTUWAFOUJLKI-UHFFFAOYSA-N 0.000 description 1
- UNDXPKDBFOOQFC-UHFFFAOYSA-N 4-[2-nitro-4-(trifluoromethyl)phenyl]morpholine Chemical compound [O-][N+](=O)C1=CC(C(F)(F)F)=CC=C1N1CCOCC1 UNDXPKDBFOOQFC-UHFFFAOYSA-N 0.000 description 1
- BNNMDMGPZUOOOE-UHFFFAOYSA-N 4-methylbenzenesulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1.CC1=CC=C(S(O)(=O)=O)C=C1 BNNMDMGPZUOOOE-UHFFFAOYSA-N 0.000 description 1
- BLFGQHDZMHMURV-UHFFFAOYSA-N 4-oxo-2-phenylchromene-3-carboxylic acid Chemical class O1C2=CC=CC=C2C(=O)C(C(=O)O)=C1C1=CC=CC=C1 BLFGQHDZMHMURV-UHFFFAOYSA-N 0.000 description 1
- MBZRJSQZCBXRGK-UHFFFAOYSA-N 4-tert-Butylcyclohexyl acetate Chemical compound CC(=O)OC1CCC(C(C)(C)C)CC1 MBZRJSQZCBXRGK-UHFFFAOYSA-N 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- REJHVSOVQBJEBF-UHFFFAOYSA-N 5-azaniumyl-2-[2-(4-azaniumyl-2-sulfonatophenyl)ethenyl]benzenesulfonate Chemical class OS(=O)(=O)C1=CC(N)=CC=C1C=CC1=CC=C(N)C=C1S(O)(=O)=O REJHVSOVQBJEBF-UHFFFAOYSA-N 0.000 description 1
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 241000612703 Augusta Species 0.000 description 1
- 241000304886 Bacilli Species 0.000 description 1
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 101000740449 Bacillus subtilis (strain 168) Biotin/lipoyl attachment protein Proteins 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- 241000717739 Boswellia sacra Species 0.000 description 1
- 108010073997 Bromide peroxidase Proteins 0.000 description 1
- QRWHFYSVKJJQLX-UHFFFAOYSA-N C(C)(=O)OC1=C(COC1)OC(C)=O Chemical compound C(C)(=O)OC1=C(COC1)OC(C)=O QRWHFYSVKJJQLX-UHFFFAOYSA-N 0.000 description 1
- WJSLZXMQHNTOBA-UHFFFAOYSA-N C(CCC(=O)O)(=O)O.C(CCC(=O)O)(=O)O.C(CCC(=O)O)(=O)O.OCC(O)CO Chemical class C(CCC(=O)O)(=O)O.C(CCC(=O)O)(=O)O.C(CCC(=O)O)(=O)O.OCC(O)CO WJSLZXMQHNTOBA-UHFFFAOYSA-N 0.000 description 1
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 1
- 240000007436 Cananga odorata Species 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 102000016938 Catalase Human genes 0.000 description 1
- 108010031396 Catechol oxidase Proteins 0.000 description 1
- 102000030523 Catechol oxidase Human genes 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 150000000703 Cerium Chemical class 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- 108010035722 Chloride peroxidase Proteins 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- WTEVQBCEXWBHNA-UHFFFAOYSA-N Citral Natural products CC(C)=CCCC(C)=CC=O WTEVQBCEXWBHNA-UHFFFAOYSA-N 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241000640882 Condea Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 102000016680 Dioxygenases Human genes 0.000 description 1
- 108010028143 Dioxygenases Proteins 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 108010083608 Durazym Proteins 0.000 description 1
- 239000004129 EU approved improving agent Substances 0.000 description 1
- 229920001875 Ebonite Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- 241000221017 Euphorbiaceae Species 0.000 description 1
- VWFJDQUYCIWHTN-UHFFFAOYSA-N Farnesyl pyrophosphate Natural products CC(C)=CCCC(C)=CCCC(C)=CCOP(O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-UHFFFAOYSA-N 0.000 description 1
- 239000004863 Frankincense Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 241000427940 Fusarium solani Species 0.000 description 1
- 102220644676 Galectin-related protein_D96L_mutation Human genes 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 241001480714 Humicola insolens Species 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- SHBUUTHKGIVMJT-UHFFFAOYSA-N Hydroxystearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OO SHBUUTHKGIVMJT-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- 241000256602 Isoptera Species 0.000 description 1
- 235000010254 Jasminum officinale Nutrition 0.000 description 1
- 240000005385 Jasminum sambac Species 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 108010029541 Laccase Proteins 0.000 description 1
- 229920006063 Lamide® Polymers 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 108010054320 Lignin peroxidase Proteins 0.000 description 1
- 241000234269 Liliales Species 0.000 description 1
- 101710098554 Lipase B Proteins 0.000 description 1
- 108010048733 Lipozyme Proteins 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- SPAGIJMPHSUYSE-UHFFFAOYSA-N Magnesium peroxide Chemical compound [Mg+2].[O-][O-] SPAGIJMPHSUYSE-UHFFFAOYSA-N 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 108010059896 Manganese peroxidase Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical class CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 241001460678 Napo <wasp> Species 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical group NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920000572 Nylon 6/12 Polymers 0.000 description 1
- 108010064983 Ovomucin Proteins 0.000 description 1
- 108090000417 Oxygenases Proteins 0.000 description 1
- 102000004020 Oxygenases Human genes 0.000 description 1
- 108010029182 Pectin lyase Proteins 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 1
- 240000008299 Pinus lambertiana Species 0.000 description 1
- 240000002505 Pogostemon cablin Species 0.000 description 1
- 235000011751 Pogostemon cablin Nutrition 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000589755 Pseudomonas mendocina Species 0.000 description 1
- 101000968491 Pseudomonas sp. (strain 109) Triacylglycerol lipase Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 229920001079 Thiokol (polymer) Polymers 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- ZZXDRXVIRVJQBT-UHFFFAOYSA-M Xylenesulfonate Chemical compound CC1=CC=CC(S([O-])(=O)=O)=C1C ZZXDRXVIRVJQBT-UHFFFAOYSA-M 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 239000004110 Zinc silicate Substances 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- LMETVDMCIJNNKH-UHFFFAOYSA-N [(3,7-Dimethyl-6-octenyl)oxy]acetaldehyde Chemical compound CC(C)=CCCC(C)CCOCC=O LMETVDMCIJNNKH-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000006359 acetalization reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- QUMXDOLUJCHOAY-UHFFFAOYSA-N alpha-methylbenzyl acetate Natural products CC(=O)OC(C)C1=CC=CC=C1 QUMXDOLUJCHOAY-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229920006187 aquazol Polymers 0.000 description 1
- 239000012861 aquazol Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 238000010936 aqueous wash Methods 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- LZCZIHQBSCVGRD-UHFFFAOYSA-N benzenecarboximidamide;hydron;chloride Chemical compound [Cl-].NC(=[NH2+])C1=CC=CC=C1 LZCZIHQBSCVGRD-UHFFFAOYSA-N 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical class [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- JGQFVRIQXUFPAH-UHFFFAOYSA-N beta-citronellol Natural products OCCC(C)CCCC(C)=C JGQFVRIQXUFPAH-UHFFFAOYSA-N 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 238000011138 biotechnological process Methods 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 125000005619 boric acid group Chemical class 0.000 description 1
- 125000005620 boronic acid group Chemical class 0.000 description 1
- FZJUFJKVIYFBSY-UHFFFAOYSA-N bourgeonal Chemical compound CC(C)(C)C1=CC=C(CCC=O)C=C1 FZJUFJKVIYFBSY-UHFFFAOYSA-N 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 230000031709 bromination Effects 0.000 description 1
- 238000005893 bromination reaction Methods 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- WQZQEUCNSUNRRW-UHFFFAOYSA-N butanedioic acid propane-1,2,3-triol Chemical class OCC(O)CO.OC(=O)CCC(O)=O.OC(=O)CCC(O)=O WQZQEUCNSUNRRW-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical class CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940065285 cadmium compound Drugs 0.000 description 1
- 150000001662 cadmium compounds Chemical class 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 239000004281 calcium formate Substances 0.000 description 1
- 235000019255 calcium formate Nutrition 0.000 description 1
- 229940044172 calcium formate Drugs 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical class NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 239000010628 chamomile oil Substances 0.000 description 1
- 235000019480 chamomile oil Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 239000001507 cistus ladaniferus l. oil Substances 0.000 description 1
- 229940043350 citral Drugs 0.000 description 1
- 229930003633 citronellal Natural products 0.000 description 1
- 235000000983 citronellal Nutrition 0.000 description 1
- 235000000484 citronellol Nutrition 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 239000010634 clove oil Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000013066 combination product Substances 0.000 description 1
- 229940127555 combination product Drugs 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229940019836 cyclamen aldehyde Drugs 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940079919 digestives enzyme preparation Drugs 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229940095104 dimethyl benzyl carbinyl acetate Drugs 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- YIOJGTBNHQAVBO-UHFFFAOYSA-N dimethyl-bis(prop-2-enyl)azanium Chemical class C=CC[N+](C)(C)CC=C YIOJGTBNHQAVBO-UHFFFAOYSA-N 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- CQAIPTBBCVQRMD-UHFFFAOYSA-L dipotassium;phosphono phosphate Chemical compound [K+].[K+].OP(O)(=O)OP([O-])([O-])=O CQAIPTBBCVQRMD-UHFFFAOYSA-L 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- ZOIVSVWBENBHNT-UHFFFAOYSA-N dizinc;silicate Chemical compound [Zn+2].[Zn+2].[O-][Si]([O-])([O-])[O-] ZOIVSVWBENBHNT-UHFFFAOYSA-N 0.000 description 1
- BRDYCNFHFWUBCZ-UHFFFAOYSA-N dodecaneperoxoic acid Chemical compound CCCCCCCCCCCC(=O)OO BRDYCNFHFWUBCZ-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229920005561 epichlorohydrin homopolymer Polymers 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical class CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 229940071087 ethylenediamine disuccinate Drugs 0.000 description 1
- 241001233957 eudicotyledons Species 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 1
- 239000001148 ferula galbaniflua oil terpeneless Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 229920005560 fluorosilicone rubber Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000001408 fungistatic effect Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 210000004051 gastric juice Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- WTEVQBCEXWBHNA-JXMROGBWSA-N geranial Chemical compound CC(C)=CCC\C(C)=C\C=O WTEVQBCEXWBHNA-JXMROGBWSA-N 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 108010061330 glucan 1,4-alpha-maltohydrolase Proteins 0.000 description 1
- 235000012209 glucono delta-lactone Nutrition 0.000 description 1
- 229960003681 gluconolactone Drugs 0.000 description 1
- 108010046301 glucose peroxidase Proteins 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PMYUVOOOQDGQNW-UHFFFAOYSA-N hexasodium;trioxido(trioxidosilyloxy)silane Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])O[Si]([O-])([O-])[O-] PMYUVOOOQDGQNW-UHFFFAOYSA-N 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 150000001469 hydantoins Chemical class 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910001412 inorganic anion Inorganic materials 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000000905 isomalt Substances 0.000 description 1
- 235000010439 isomalt Nutrition 0.000 description 1
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000001851 juniperus communis l. berry oil Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000004715 keto acids Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 150000002596 lactones Chemical group 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- SDQFDHOLCGWZPU-UHFFFAOYSA-N lilial Chemical compound O=CC(C)CC1=CC=C(C(C)(C)C)C=C1 SDQFDHOLCGWZPU-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 229930007744 linalool Natural products 0.000 description 1
- UWKAYLJWKGQEPM-UHFFFAOYSA-N linalool acetate Natural products CC(C)=CCCC(C)(C=C)OC(C)=O UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- FCCDDURTIIUXBY-UHFFFAOYSA-N lipoamide Chemical compound NC(=O)CCCCC1CCSS1 FCCDDURTIIUXBY-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 229960004995 magnesium peroxide Drugs 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000001098 melissa officinalis l. leaf oil Substances 0.000 description 1
- BRMYZIKAHFEUFJ-UHFFFAOYSA-L mercury diacetate Chemical compound CC(=O)O[Hg]OC(C)=O BRMYZIKAHFEUFJ-UHFFFAOYSA-L 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000005649 metathesis reaction Methods 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 108010020132 microbial serine proteinases Proteins 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 229910021527 natrosilite Inorganic materials 0.000 description 1
- 230000023837 negative regulation of proteolysis Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- XKLJHFLUAHKGGU-UHFFFAOYSA-N nitrous amide Chemical class ON=N XKLJHFLUAHKGGU-UHFFFAOYSA-N 0.000 description 1
- 239000011356 non-aqueous organic solvent Substances 0.000 description 1
- SXLLDUPXUVRMEE-UHFFFAOYSA-N nonanediperoxoic acid Chemical compound OOC(=O)CCCCCCCC(=O)OO SXLLDUPXUVRMEE-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 210000001331 nose Anatomy 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- GKWCCSUCDFFLBP-UHFFFAOYSA-N oxirane Chemical compound C1CO1.C1CO1 GKWCCSUCDFFLBP-UHFFFAOYSA-N 0.000 description 1
- 150000002924 oxiranes Chemical group 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- RUVINXPYWBROJD-UHFFFAOYSA-N para-methoxyphenyl Natural products COC1=CC=C(C=CC)C=C1 RUVINXPYWBROJD-UHFFFAOYSA-N 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 108010087558 pectate lyase Proteins 0.000 description 1
- 108020004410 pectinesterase Proteins 0.000 description 1
- UOURRHZRLGCVDA-UHFFFAOYSA-D pentazinc;dicarbonate;hexahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Zn+2].[Zn+2].[Zn+2].[Zn+2].[Zn+2].[O-]C([O-])=O.[O-]C([O-])=O UOURRHZRLGCVDA-UHFFFAOYSA-D 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- XCRBXWCUXJNEFX-UHFFFAOYSA-N peroxybenzoic acid Chemical compound OOC(=O)C1=CC=CC=C1 XCRBXWCUXJNEFX-UHFFFAOYSA-N 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- DGTNSSLYPYDJGL-UHFFFAOYSA-N phenyl isocyanate Chemical compound O=C=NC1=CC=CC=C1 DGTNSSLYPYDJGL-UHFFFAOYSA-N 0.000 description 1
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical class OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 1
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 1
- 229960001553 phloroglucinol Drugs 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 150000003109 potassium Chemical class 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- WSHYKIAQCMIPTB-UHFFFAOYSA-M potassium;2-oxo-3-(3-oxo-1-phenylbutyl)chromen-4-olate Chemical compound [K+].[O-]C=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 WSHYKIAQCMIPTB-UHFFFAOYSA-M 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 150000003220 pyrenes Chemical group 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003847 radiation curing Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012966 redox initiator Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010670 sage oil Substances 0.000 description 1
- 239000010671 sandalwood oil Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 229910000269 smectite group Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 235000019983 sodium metaphosphate Nutrition 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- 235000019830 sodium polyphosphate Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 229910000031 sodium sesquicarbonate Inorganic materials 0.000 description 1
- 235000018341 sodium sesquicarbonate Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- UGTZMIPZNRIWHX-UHFFFAOYSA-K sodium trimetaphosphate Chemical compound [Na+].[Na+].[Na+].[O-]P1(=O)OP([O-])(=O)OP([O-])(=O)O1 UGTZMIPZNRIWHX-UHFFFAOYSA-K 0.000 description 1
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 1
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 238000012721 stereospecific polymerization Methods 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical group OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003470 sulfuric acid monoesters Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229950009390 symclosene Drugs 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- KUCOHFSKRZZVRO-UHFFFAOYSA-N terephthalaldehyde Chemical compound O=CC1=CC=C(C=O)C=C1 KUCOHFSKRZZVRO-UHFFFAOYSA-N 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical class C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 108010031354 thermitase Proteins 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- RUVINXPYWBROJD-ONEGZZNKSA-N trans-anethole Chemical compound COC1=CC=C(\C=C\C)C=C1 RUVINXPYWBROJD-ONEGZZNKSA-N 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012250 transgenic expression Methods 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- ZKWDCFPLNQTHSH-UHFFFAOYSA-N tribromoisocyanuric acid Chemical compound BrN1C(=O)N(Br)C(=O)N(Br)C1=O ZKWDCFPLNQTHSH-UHFFFAOYSA-N 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical group OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 1
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 1
- 235000019798 tripotassium phosphate Nutrition 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000007666 vacuum forming Methods 0.000 description 1
- 239000010679 vetiver oil Substances 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 238000009463 water soluble packaging Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 108010068608 xanthan lyase Proteins 0.000 description 1
- ZFNVDHOSLNRHNN-UHFFFAOYSA-N xi-3-(4-Isopropylphenyl)-2-methylpropanal Chemical compound O=CC(C)CC1=CC=C(C(C)C)C=C1 ZFNVDHOSLNRHNN-UHFFFAOYSA-N 0.000 description 1
- 229940071104 xylenesulfonate Drugs 0.000 description 1
- 108010083879 xyloglucan endo(1-4)-beta-D-glucanase Proteins 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- SRWMQSFFRFWREA-UHFFFAOYSA-M zinc formate Chemical compound [Zn+2].[O-]C=O SRWMQSFFRFWREA-UHFFFAOYSA-M 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
- OMSYGYSPFZQFFP-UHFFFAOYSA-J zinc pyrophosphate Chemical compound [Zn+2].[Zn+2].[O-]P([O-])(=O)OP([O-])([O-])=O OMSYGYSPFZQFFP-UHFFFAOYSA-J 0.000 description 1
- GAWWVVGZMLGEIW-GNNYBVKZSA-L zinc ricinoleate Chemical compound [Zn+2].CCCCCC[C@@H](O)C\C=C/CCCCCCCC([O-])=O.CCCCCC[C@@H](O)C\C=C/CCCCCCCC([O-])=O GAWWVVGZMLGEIW-GNNYBVKZSA-L 0.000 description 1
- 229940100530 zinc ricinoleate Drugs 0.000 description 1
- 235000019352 zinc silicate Nutrition 0.000 description 1
- MXODCLTZTIFYDV-JHZYRPMRSA-L zinc;(1r,4ar,4br,10ar)-1,4a-dimethyl-7-propan-2-yl-2,3,4,4b,5,6,10,10a-octahydrophenanthrene-1-carboxylate Chemical compound [Zn+2].C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C([O-])=O.C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C([O-])=O MXODCLTZTIFYDV-JHZYRPMRSA-L 0.000 description 1
- LKCUKVWRIAZXDU-UHFFFAOYSA-L zinc;hydron;phosphate Chemical compound [Zn+2].OP([O-])([O-])=O LKCUKVWRIAZXDU-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0047—Detergents in the form of bars or tablets
- C11D17/0052—Cast detergent compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D13/00—Making of soap or soap solutions in general; Apparatus therefor
- C11D13/14—Shaping
- C11D13/16—Shaping in moulds
Definitions
- This application concerns detergents or cleaning agents.
- this application relates to a method for producing detergents or cleaning agents.
- Detergents or cleaning agents are now available to consumers in a wide variety of forms. In addition to washing powders and granules, this range also includes cleaning agent concentrates in the form of extruded or tableted compositions. These solid, concentrated or compacted offer forms are characterized by a reduced volume per dosing unit and thus lower the costs for packaging and transport. The detergent or cleaning agent tablets in particular also meet the consumer's desire for simple dosing. The corresponding agents are described in detail in the prior art.
- detergents or cleaning agents can also be packaged as gels or pastes.
- European patent EP 331 370 discloses a process for producing stable, viscous liquid compositions for use in automatic dishwashers.
- European patent EP 797 656 (Unilever) relates to non-aqueous liquid detergent compositions which contain polymeric hydrotropes.
- Water-soluble or water-dispersible films are also particularly suitable for packaging solid or liquid detergents or cleaning agents.
- the detergent packaged in this way to individual dosing units can be easily placed in the washing machine or dishwasher or in its dispenser or simply by inserting one or more pouches, or by throwing them into a predetermined amount of water, for example in a bucket or hand washing. Sink, can be dosed.
- Packaged detergents and cleaning agents of this type have been the subject of numerous publications.
- WO 02/16541 (Reckitt-Benckiser) are liquid detergent compositions with a water content of between 20 and 50% by weight, which are packaged in a water-soluble or water-dispersible material, have at least one polyphosphate builder and by a certain ratio of those in the Potassium and sodium ions contained in the agent are labeled.
- the object of the present application was to provide an optimized casting process for the production of hollow detergent or cleaning agent bodies, in which the cast bodies can be removed from the molds without breaking. It was surprisingly found that the above-mentioned object can be achieved by using elastic materials in the production of cast detergent or cleaning agent bodies.
- a first subject of the present application is therefore a method for producing a cast body from a washing or cleaning active preparation, comprising the steps: a) pouring a washing or cleaning active preparation into a mold, b) demoulding the cast body from the mold, characterized in that the molding tool is at least partially made of elastic material.
- the method according to the invention not only enables the molded bodies to be demolded without breaking.
- the elastic materials used are also characterized by reduced adhesion, especially in contact with formulations containing builders.
- a “mold” is a tool that has cavities that can be filled with castable substances.
- Such tools can be designed, for example, in the form of individual cavities, but also in the form of plates with several cavities.
- the individual cavities or cavity plates are preferably mounted on horizontally rotating conveyor belts, which continuously or discontinuously Enable transport of the cavities, for example, along a number of different workstations (e.g. pouring, cooling, filling, sealing, demolding etc.).
- the entire molding tool is not formed from elastic material. Rather, it is preferred that only the receiving trough of the molding tool, that is to say the cavity, is made of elastic material.
- An embodiment of this type in which a receiving trough / cavity made of elastic material is surrounded by a preferably rigid body or held by a rigid device, enables the molded body to be safely removed from the mold, but at the same time also provides the molding tool, particularly for an industrial production in high quantities necessary stiffness and robustness.
- the recesses of which are only partially made of an elastic material, that is to say of a composite material made of elastic and rigid units.
- the elastic units act as joints and thus allow simple and gentle shaping of the casting bodies from the receiving trough, while the rigid units guarantee the rigidity and robustness of the tools already required above.
- the receiving trough made of the composite material can be surrounded by a rigid body, but a ratio between the surface proportions of rigid and elastic materials is preferred so that such additional support can be dispensed with.
- the walls of the receiving trough are preferably made of alternately arranged units made of elastic and rigid material. It can be advantageous if the floor consists partly or completely of elastic material, while the walls of the receiving trough are made of rigid material. Here, the molding of the casting body is possible by turning the molds and a little pressure on the (partially) elastic floor.
- Another possibility in the arrangement of elastic and rigid elements is to manufacture the floor from rigid material and to produce the walls of the receiving trough partially or completely from elastic material.
- receiving troughs the bottom and walls of which partially consist of elastic material.
- wall is also understood here to mean boundary surfaces which are not perpendicular to the floor of the receiving chamber or which are curved.
- a hemispherical receiving chamber has only a wall surface, but no floor surface. It is also preferred that only one, two, three, four or five of the walls consist partially or completely of elastic material, while the remaining one, two, three, four or five walls are made of rigid material.
- the elastic materials are also characterized by reduced adhesion, especially in contact with formulations containing builders. Consequently, it is also possible to arrange rigid and elastic units in the receiving trough in such a way that the adhesion between the receiving trough and casting body on all contact surfaces is reduced, and thus a release of the casting bodies after turning the mold due to the action of gravity and optionally a low pressure on the floor and / or the walls of the receiving trough is possible.
- rigid and elastic units such as zebra stripes alternate in the floor and / or the walls of the trough. The strips are preferably up to 2 mm wide, particularly preferably up to 4 mm and in particular up to 6 mm wide. A patch-like alternation of the rigid and elastic units is also preferred.
- the use of less elastic materials is also possible and preferred.
- 10 to 95%, particularly preferably 25 to 80% and in particular 40 to 65% of the area of the receiving trough consists of elastic material.
- a high proportion of elastic material enables the easy shaping of castings, which due to their composition have great adhesion between surfaces made of rigid material and the surface of the casting.
- receiving troughs which are preferably made of 10 to 95%, particularly preferably 25 to 80% and in particular 40 to 65% of the area of the receiving trough from rigid material.
- the receiving troughs made of elastic material are inserted in the form of individual inserts into a plate provided with corresponding recesses.
- Such deposits can be exchanged or replaced in a simple manner, for example when the shape of the cast body changes or for repair.
- Interchangeable or permanent inserts made of elastic material in rigid receiving troughs are also preferred.
- the elasticity of the material is used less than the low adhesion between the casting and the elastic insert.
- the insert can cover the entire inner surface of the trough or only certain areas.
- an insert is preferred which completely or partially covers only the wall surfaces.
- a mesh-like insert that evenly reduces the adhesion between the casting body and the trough wall and / or floor, as well as an insert that completely, however, the walls are only covered in strips, similar to the zebra strips described above, and contain a continuous band at the upper edge of the depression, particularly preferred.
- the negative pattern of the insert can be seen on the surface of the demolded castings.
- an insert that covers the entire trough surface contains thicker and thinner areas. This can be used to apply aesthetic patterns or company logos to the castings.
- the thickness of the insert is preferably less than 0.5 mm, more preferably less than 0.3 mm and in particular 0.01 to 0.1 mm.
- inserts which have a thickness of preferably 0.2 mm to 6 mm, preferably 0.4 mm to 5 mm, particularly preferably 0.6 mm to 4 mm and in particular 0.8 mm to 3 mm.
- the inserts can consist of one, two or three parts per receiving trough, which have to be inserted separately into the trough. However, the use of a one-piece insert is preferred.
- This insert can be made from one, two, three or more materials of different or comparable elasticity, it being particularly preferred that, similar to the composite materials described above, rigid and elastic materials are combined.
- inserts which are made of such composite materials it is preferred that the insert covers the entire inner surface of the receiving trough. In order to save material, embossing the cast body, etc.
- the use of inserts made of composite materials may also be preferred, which only partially cover the inner surface of the receiving trough.
- a special form of permanent insert is the partial to complete coating of the receiving trough.
- an elastic material which also reduces the adhesive forces between the casting body and the mold, is introduced into the receiving trough.
- the rigid receiving trough is preferably sprayed with the elastic material, since thin layers can also be applied in this way and a uniform layer thickness can be achieved. If the trough is partially coated, the use of stencils when applying the coating materials is preferred.
- the thickness of the coating is preferably less than 0.5 mm, preferably less than 0.3 mm and in particular 0.01 to 0.1 mm. In other cases, however, coated receiving chambers, whose coating is preferably 0.2 mm to 4 mm, preferably 0.3 mm to 3 mm, particularly preferably 0.4 mm to 2 mm and in particular 0.5 mm to 2 mm thick.
- different areas of the receiving chambers can be lined with the elastic material (here coating material).
- the coatings are subject to fewer restrictions with regard to the possible “patterns” within the trough, since the surfaces which are made of elastic material do not have to be connected to one another. Consequently, stain or stripe patterns of the coating material are possible within the receiving troughs
- a distribution of the elastic material as a coating within the trough is preferred, as has already been described for the inserts and composite materials.
- Plastics characterizes materials whose essential constituents consist of such macromolecular organic compounds which are produced synthetically or by modifying natural products. In many cases, they can be melted and shaped under certain conditions (heat and pressure). In principle, plastics are organic polymers and can either be based on their physical properties (thermoplastics, thermosets and elastomers), on the type of reaction in their manufacture (polymers, polycondensates and polyadducts) or on their chemical nature (polyolefins, polyesters, polyamides, polyurethanes) etc.) are classified.
- Elastomers are particularly preferably used as elastic materials.
- “elastomers” are polymers with rubber-elastic behavior.
- Particularly preferred elastomers are characterized in that, due to their rubber-elastic behavior, they can be repeatedly stretched to at least twice their length at 20 ° C. and, after the constraint required for the stretching has been removed, immediately return to their original dimensions.
- the elastomers are widely cross-linked, highly polymeric materials that cannot flow viscously at the temperature of use due to the linkage of the individual polymer chains at the cross-linking points.
- Irreversible, ie elastomers cross-linked via covalent former bonds have a glass transition temperature T g (dyn) (for amorphous polymers) or melting temperature T m (dyn) (for partially crystalline polymers) generally below 0 ° C. Below this temperature, only energy-elastic u. Energy / entropy-elastic changes in shape are possible, while above this temperature up to the decomposition temperature rubber-elastic (entropy-elastic) changes in shape are permitted.
- Irreversibly cross-linked elastomers are generally made by vulcanizing natural and synthetic rubbers.
- elastic materials from the group of the elastomers in particular from the group of acrylate rubber, polyester-urethane rubber, brominated butyl rubber, polybudadiene, chlorinated butyl rubber, chlorinated polyethylene, epichlorohydrin ( Homopolymer), polychloroprene, sulfurized polyethylene, ethylene-acrylate rubber, epichlorohydrin (copolymers), ethylene-propylene terpolymer (sulfur-crosslinked), ethylene-propylene copolymer (peroxide-crosslinked), polyether-urethane rubber, ethylene-vinyl acetate copolymer, Fluorine rubber, fluorosilicone rubber, hydrogenated nitrile rubber, butyl rubber, dimethylpolysiloxane (containing vinyl), natural rubber, synthetic rubber (synthetic polyisoprene), thioplastics, polyfluorophosphazenes, polynorborn
- Acrylic rubber is a collective name for rubber-elastomeric, vulcanizable copolymers based on acrylic acid esters (especially ethyl and butyl acrylates), which contain small amounts of comonomers such as ethylene or methacrylic acid, which promote the rapid vulcanization of the acrylic rubber.
- Polybutadiene is the collective name for polymers of 1,3-butadiene.
- the polymerization of the monomer can be carried out using a 1,4 or 1,2 linkage.
- the basic units can also be present in the polymer chain in an ice or fran configuration.
- Polybutadienes can be prepared from 1,3-butadiene by radical, anionic, coordination or polymerizations triggered by alfin initiators (alfin polymerizations).
- Poly (2-chloro-1, 3-butadiene) e is the name for polymers of chloroprene (2-chloro-1, 3-butadiene), which are produced industrially by emulsion polymerization.
- Fluorororubbers are thermoplastic fluoropolymers that are converted into fluorine elastomers by vulcanization.
- the copolymers poly (vinylidene fluoride-co-hexafluoropropylene), poly (vinylidene fluoride-co-hexafluoropropylene-co-tetrafluoroethylene), poly (vinylidene fluoride-co-tetrafluoroethylene-co-perfluoromethyl vinyl ether), poly (tetrafluoroethylene-co-) are of particular technical importance.
- the preferred production process for fluororubbers is the polymerization of the monomers in aqueous emulsion in the temperature or pressure range from 80-125 ° C. or 2-10x10 6 Pa.
- Butyl rubbers are copolymers of isobutylene and »0.5-5% by weight of isoprene, which are produced by cationic polymerization at a temperature of approx. -40 ° C to -100 ° C in the solution (solvent: hexane) or precipitation process (Lsm .: methylene chloride).
- solvent hexane
- Lsm . methylene chloride
- butyl rubbers contain double bonds via the isoprene incorporated in the ans-1, 4 configuration, which are used for vulcanization or modification of the butyl rubbers by chlorination (chlorobutyl rubber, abbreviation CIIR) or bromination (bromobutyl rubber, abbreviation BIIR) ) can be used.
- Vulcanized butyl rubber is characterized by very low gas permeability, high resistance to oxygen, ozone, acids, Bases and polar organic solvents and can be used in the temperature range from approx.
- Nitrile rubber is the name for a synthetic rubber that is obtained by copolymerizing acrylonitrile and butadiene in mass ratios of approx. 52:48 to 82:18. It is produced almost exclusively in an aqueous emulsion. The resulting emulsions are used as such (NBR latex) or processed into solid rubber. The properties of the nitrile rubber depend on the ratio of the starting monomers and its molar mass.
- the vulcanizates, which are accessible from nitrile rubber, are highly resistant to fuels, oils, greases and the like. Compared to those made of natural rubber, hydrocarbons are characterized by more favorable aging behavior, lower abrasion and reduced gas permeability.
- Natural rubber is the name - hereinafter the short name NR (according to DIN ISO 1629: 1981-10, derived from natural rubber) is used - for rubber that occurs in the white milk juice (latex) of the milk tubes of numerous dicotyledons.
- NR is almost exclusively (almost 99%) obtained from the latex that flows out when the secondary bark of the trunks of rubber or para-rubber trees (Hevea brasiliensis, Wolfmilchsgewownse family, Euphorbiaceae) is cut.
- NR is a polyisoprene whose enzymatically catalyzed biosynthesis proceeds via isopentyl and farnesyl pyrophosphate as precursors.
- Raw NR suffers from adverse changes as a result of long-term storage under the influence of light and air as a result of crosslinking and oxidation reactions.
- NR only became a valuable technical product after the American Goodyear introduced hot air vulcanization in 1840, which is still the most important vulcanization process for NR today.
- the raw rubber is heated to 130-140 ° C (approx. 1 h) after kneading with sulfur.
- S or S x mono- or polyatomic
- This intermolecular crosslinking reaction ultimately leads to an insoluble and thermoplastic non-processable product called rubber.
- rubber Depending on the amount of sulfur used in the vulcanization, soft rubber (1-4 parts sulfur) or hard rubber (> 20 parts sulfur) is obtained.
- the sulfur can also be bound intramolecularly by the NR molecules, reducing the tensile strength and structural strength of the vulcanizate.
- processing rubber requires the addition of numerous other substances; In view of the many variables (sequence and duration of exposure, temperature, mutual influences of additives), a highly specialized rubber technology has inevitably developed.
- Such additives are mainly suitable for NR (also for synthetic rubbers): fillers (carbon black, inter alia, carbon black, silica gel, silicates such as kaolin, chalk, talc, etc.), Pigments (organic dyes, lithopones, titanium dioxide, iron oxides, chromium and cadmium compounds), plasticizers (mineral oils, Ethers and thioethers, esters, among others, elasticizers, factories), masticating agents (thiophenols, optionally chlorinated, and their zinc salts), anti-aging agents, which include the anti-oxidants, heat, ozone, light, fatigue and hydrolysis agents ( aromatic amines, phenols, phosphites, waxes and many others), blowing agents for porous articles (hydrazides, nitrosoamines, azodicarboxylic acid derivatives), flame retardants (ch
- the raw rubber goods are immersed for a few seconds to a few minutes in a solution of disulfur dichloride (S 2 CI 2 ) in carbon disulphide (CS 2 ), in gasoline or benzene and then brought into ammonia -Atmospheric to neutralize the hydrochloric acid formed and to decompose the excess disulfur dichloride.
- S 2 CI 2 disulfur dichloride
- CS 2 carbon disulphide
- the unsaturated character of the NR enables not only the production of vulcanizates, but also addition derivatives such as hydrochlorinated NR (addition of HCl), chlorinated rubber (addition of Cl 2 ), cyclo rubber (exposure to acids or metal halides), AC rubber.
- Thioplasts or polysulfide rubbers is the name for polycondensates made from organic dihalides and. Alkali polysulfides, which are marketed under the name Thiokol ® .
- Polynorbornene is the name for polymers belonging to the polyalkenamers and obtainable by metathesis polymerization of norbornene. Polynorbornenes are traded as amorphous white powders. They have molar masses of approx. 2000000 g / mol, a glass transition temperature of 35-45 ° C and a high proportion (approx. 80%) of double bonds in the frans position. They can be processed as rubber if they are plasticized into elastomers by adding mineral oils to lower the glass transition temperature.
- Styrene-butadiene rubber is the collective name for copolymers of styrene and butadiene, which usually contain the two monomers in a weight ratio of approx. 23.5: 76.5, in exceptional cases also 40:60. They are produced by the processes of emulsion polymerization or solution polymerization. The emulsion polymerization in water, which is started with redox initiators at low temperatures (cold rubber; cold rubber) or at higher temperatures (hot rubber; hot rubber) with persulfates, provides latexes which are used as such or worked up to give solid rubber , The molar masses of emulsion styrene butadiene rubber are in the range of approx.
- polyolefins, polyamides and polyurethanes are used as elastic materials. These are described below.
- PE Polyethylenes
- Polyethylenes are produced by polymerizing ethylene using two fundamentally different methods, the high-pressure and the low-pressure process.
- the resulting products are accordingly often referred to as high-pressure polyethylene or low-pressure polyethylene; they differ mainly in their degree of branching and, related to this, in their degree of crystallinity and density. Both processes can be carried out as solution polymerization, emulsion polymerization or gas phase polymerization.
- the high-pressure process produces branched polyethylenes with low density (approx. 0.915-0.935 g / cm 3 ) and degrees of crystallinity of approx. 40-50%, which are referred to as LDPE types.
- LDPE types low density
- HMW-LDPE high molecular weight
- the pronounced degree of branching of the polyethylenes produced by the high-pressure process can be reduced by copolymerization of the ethylene with longer-chain olefins, in particular with butene and octene; the copolymers have the code LLD-PE (linear low density polyethylene).
- the macromolecules of the polyethylenes from low-pressure processes are largely linear and unbranched. These polyethylenes (HDPE) have degrees of crystallinity of 60-80% and a density of approx. 0.94-0.965 g / cm 3 .
- PTFE polytetrafluoroethylene
- Teflon Teflon
- Polypropylenes are thermoplastic polymers of propylene with basic units of the type - [CH (CH 3 ) -CH 2 ] -
- Polypropylenes can be prepared by stereospecific polymerization of propylene in the gas phase or in suspension to give highly crystalline isotactic or less crystalline syndiotactic or amorphous atactic polypropylenes.
- Polypropylene is characterized by high hardness, resilience, rigidity and heat resistance and is therefore an ideal material for coatings, composite materials and inserts in the context of the present invention.
- the mechanical properties of the polypropylenes can be improved by reinforcing them with talc, chalk, wood flour or glass fibers, and the application of metallic coatings is also possible.
- Polyamides are also preferably usable materials in the context of the present invention.
- Polyamides are high-molecular compounds that consist of building blocks linked by peptide bonds.
- the synthetic polyamides (PA) are, with a few exceptions, thermoplastic, chain-like polymers with recurring acid amide groups in the main chain.
- the so-called Hömopolyamides can be divided into two groups: the aminocarboxylic acid types (AS) and the diamine dicarboxylic acid types (AA-SS); A denotes amino groups and S carboxy groups.
- the former are formed from one building block by polycondensation (amino acid) or polymerization ( ⁇ -lactam), the latter from two building blocks by polycondensation (diamine and dicarboxylic acid).
- the polyamides are encoded from unbranched aliphatic building blocks according to the number of carbon atoms.
- PA 6 is the polyamide and ⁇ -aminocaproic acid or ⁇ -caprolactam.
- PA 12 is a poly ( ⁇ -lauric lactam) made from ⁇ -lauric lactam.
- PA 66 polyhexamethylene adipamide
- PA 610 polyhexamethylene sebacinamide
- PA 612 polyhexamethylene dodecanamide
- the polyamide types mentioned are preferred materials in the context of the present invention.
- Polyurethanes are polymers (polyadducts) with groupings of the type that are accessible through polyaddition from dihydric and higher alcohols and isocyanates
- TDI 2,4- or 2,6-toluenediisocyanate
- MDI C 6 H 4 -CH 2 -C 6 H 4
- washing- or cleaning-active preparations are cast in the process according to the invention and subsequently solidify to a dimensionally stable body.
- solidification denotes any hardening mechanism which, from a deformable, preferably flowable mixture or such a substance or mass, provides a body which is solid at room temperature without the need for pressing or compacting forces.
- Solidification in the sense of the present invention is therefore, for example, the curing of melts of substances which are solid at room temperature by cooling.
- Solidification processes in the sense of the present application are also the hardening of deformable masses through time-delayed water binding, through evaporation of solvents, through chemical reaction, crystallization etc. as well as the reactive hardening of flowable powder mixtures to form stable hollow bodies.
- methods according to the invention are preferred in which the cast body is delayed by water binding, by cooling below the melting point, by evaporation of solvents, by crystallization, by chemical reaction (s), in particular polymerization, by changing the rheological properties, e.g. is produced by changing shear, by sintering or by means of radiation curing, in particular by UV, alpha-beta or gamma rays.
- s chemical reaction
- rheological properties e.g. is produced by changing shear, by sintering or by means of radiation curing, in particular by UV, alpha-beta or gamma rays.
- methods are preferred in which the solidification of the cast bodies takes place by cooling below the melting point.
- the cooling below the melting point can take place, for example, by giving off heat to the surroundings, in particular to the molding tool.
- Suitable cooling media are, for example, (dried) cold air, dry ice or liquid nitrogen. With particular preference, however, circulating, preferably liquid, coolants are used in the mold.
- the cooling of the mold is preferably carried out at temperatures below 20 C C, preferably below 17 ° C, particularly preferably below 14 ° C, most preferably below 11 ° C and in particular below 8 ° C.
- the cooling is carried out to temperatures between 5 and 20 ° C., particularly preferably to temperatures between 8 and 19 ° C., very particularly preferably to temperatures between 11 and 18 ° C. and in particular to temperatures between 14 and 17 ° C.
- the method according to the invention is used to produce castings. It was found that the fracture hardness can improve the surface appearance of the bodies produced by means of this casting process by vibrating the active washing or cleaning preparation after casting and before solidification. Another object of the present application is therefore a method according to the invention, in which the washing or cleaning active substance mixture is vibrated in the mold after casting.
- vibration or “oscillation” refers to a periodic process in which the molding tool is moved back and forth within certain limits.
- the vibration can take place both horizontally and vertically. Methods in which horizontal and vertical vibrations are superimposed are preferred. In preferred methods according to the invention, the vibration of the molding tool accordingly takes place in the horizontal and / or vertical spatial direction.
- the vibration movement is characterized by its amplitude and frequency.
- the "amplitude" is the maximum deflection of the mold from the rest position.
- the amplitude of the vibration movement in the horizontal direction is less than 10 cm, preferably less than 7 cm, particularly preferably less than 4 cm and in particular less than 2 cm.
- the amplitude of the vibration movement is preferably less than 4 cm, particularly preferably less than 2 cm and in particular less than 1 cm.
- the number of vibrations per unit of time determines the "frequency" of this vibration.
- the amplitude, frequency and duration of the vibration movement are among others in the method according to the invention. determined by the viscosity and composition (for example the solids content) of the processed active washing or cleaning preparations. Frequencies between 0.1 and 1000 Hz, preferably between 0.2 and 800 Hz, particularly preferably between 0.4 and 500 Hz and in particular between 0.8 and 300 Hz are preferably realized in the method according to the invention.
- the amplitude and / or frequency of the vibration used can be infinitely regulated.
- the vibration movement can be easily adapted to the requirements of the particular processed washing or cleaning preparation.
- the need for such adjustments may arise, for example, when the recipe changes or the process temperature changes (e.g. temperature of the poured active washing or cleaning preparation; outside temperature during production).
- the amplitude and the frequency of the vibration used are preferably constant. Nevertheless, it can also be advantageous to change the amplitude and / or the frequency of the vibration. Methods in which the amplitude and / or frequency of the vibration change are preferred according to the invention.
- the amplitude of the vibration increases or decreases at a constant frequency.
- methods can also be carried out in which the frequency of the vibration is increased or decreased with a constant amplitude. Methods in which the frequency of the vibration is increased in the course of degassing at constant amplitude are particularly preferred in the context of the present application.
- washing-active or cleaning-active preparations which can be processed by casting techniques are suitable for processing in the method according to the invention. Particular preference is given to using active washing or cleaning preparations in the form of dispersions in the process according to the invention.
- the wash-active or cleaning-active preparation poured into the receiving recess of the molding tool is a dispersion of solid particles in a dispersant, dispersions which, based on their total weight i), 10 to 85% by weight Dispersants and ii) contain 15 to 90 wt .-% dispersed substances, are particularly preferred.
- dispersion is a system consisting of several phases, one of which is continuous (dispersant) and at least one other is finely divided (dispersed substances).
- Particularly preferred washing or cleaning-active preparations according to the invention are characterized in that they contain the dispersant in amounts above 11% by weight, preferably above 13% by weight, particularly preferably above 15% by weight, very particularly preferably above 17% by weight. % and in particular above 19 wt .-%, each based on the total weight of the dispersion.
- Dispersions which have a dispersion with a proportion by weight of dispersant above 20% by weight, preferably above 21% by weight and in particular above 22% by weight, in each case based on the total weight of the dispersion, can furthermore preferably be used.
- the maximum dispersant content of preferred dispersions, based on the total weight of the dispersion, is preferably less than 63% by weight, preferably less than 57% by weight, particularly preferably less than 52% by weight, very particularly preferably less than 47% by weight .-% and in particular less than 37 wt .-%.
- washing or cleaning preparations which, based on their total weight, contain dispersing agents in amounts of 12 to 62% by weight, preferably 17 to 49% by weight and in particular 23 to 38% by weight. -% contain.
- the dispersants used are preferably water-soluble or water-dispersible. The solubility of these dispersants at 25 ° C.
- g / l is preferably more than 200 g / l, preferably more than 300 g / l, particularly preferably more than 400 g / l, very particularly preferably between 430 and 620 g / l and in particular between 470 and 580 g / l.
- suitable dispersants are preferably the water-soluble or water-dispersible polymers, in particular the water-soluble or water-dispersible nonionic polymers.
- the dispersant can be either a single polymer or a mixture of different water-soluble or water-dispersible polymers.
- the dispersant or at least 50% by weight of the polymer mixture consists of water-soluble or water-dispersible nonionic polymers from the group of polyvinylpyrrolidones, vinylpyrrolidone / vinyl ester copolymers, cellulose ethers, polyvinyl alcohols, polyalkylene glycols, in particular polyethylene glycol and / or polypropylene glycol.
- Dispersions are particularly preferably used which contain a nonionic polymer, preferably a poly (alkylene) glycol, preferably a poly (ethylene) glycol and / or a polypropylene) glycol, the proportion by weight of the poly (ethylene) glycol in the total weight of all dispersants is preferably between 10 and 90% by weight, particularly preferably between 30 and 80% by weight and in particular between 50 and 70% by weight.
- a nonionic polymer preferably a poly (alkylene) glycol, preferably a poly (ethylene) glycol and / or a polypropylene) glycol
- the proportion by weight of the poly (ethylene) glycol in the total weight of all dispersants is preferably between 10 and 90% by weight, particularly preferably between 30 and 80% by weight and in particular between 50 and 70% by weight.
- dispersions in which the dispersion medium is more than 92% by weight, preferably more than 94% by weight, particularly preferably more than 96% by weight, very particularly preferably more than 98% by weight and in particular 100% by weight consists of a poly (alkylene) glycol, preferably poly (ethylene) glycol and / or poly (propylene) glycol, but in particular poly (ethylene) glycol.
- Dispersing agents which, in addition to poly (ethylene) glycol, also contain poly (propylene) glycol, preferably have a ratio by weight of poly (ethylene) glycol to poly (propylene) glycol of between 40: 1 and 1: 2, preferably between 20: 1 and 1: 1, particularly preferably between 10: 1 and 1, 5: 1 and in particular between 7: 1 and 2: 1.
- nonionic surfactants which are used both alone, but particularly preferably in combination with a nonionic polymer. Detailed information on the nonionic surfactants that can be used can be found below in the description of detergent or cleaning substances.
- Dispersions which are preferably used are characterized in that at least one dispersant has a melting point above 25 ° C., preferably above 35 ° C. and in particular above 40 ° C.
- the use of dispersants with a melting point or melting range between 30 and 80 ° C., preferably between 35 and 75 ° C., particularly preferably between 40 and 70 ° C. and in particular between 45 and 65 ° C. is particularly preferred, these dispersants, based on the total weight of the dispersants used, have a weight fraction above 10% by weight, preferably above 40% by weight, particularly preferably above 70% by weight and in particular between 80 and 100% by weight.
- Suitable dispersed substances in the context of the present application are all substances which are active in washing or cleaning at room temperature, but in particular substances which are active in washing or cleaning from the group of builders (builders and cobuilders), active polymers for washing or cleaning, bleaching agents and bleach activators , the glass corrosion protection agent, the silver protection agent and / or the enzymes. A more detailed description of these ingredients can be found below in the text.
- the water content of the dispersions preferably used in the process according to the invention is, based on their total weight, preferably less than 30% by weight, preferably less than 23% by weight, preferably less than 19% by weight, particularly preferably less than 15 % By weight and in particular less than 12% by weight.
- Disperisons preferably used according to the invention are low in water or anhydrous.
- Dispersions used with particular preference are characterized in that, based on their total weight, their free water content is below 10% by weight, preferably below 7% by weight, particularly preferably below 3% by weight and in particular below 1% by weight. -% exhibit.
- the dispersions which are preferably used as washing or cleaning active preparations, are distinguished by a high density. Dispersions with a density above 1.040 g / cm 3 are particularly preferably used. Preferred methods according to the invention are characterized in that the washing and cleaning active preparation has a density above 1.040 g / cm 3 , preferably above 1.15 g / cm 3 , particularly preferably above 1.30 g / cm 3 and in particular above 1. 40 g / cm 3 . This high density not only reduces the total volume of a dosing unit cast body but also improves its mechanical stability.
- the dispersion has a density between 1,050 and 1,670 g / cm 3 , preferably between 1, 120 and 1, 610 g / cm 3 , particularly preferably between 1, 210 and 1, 570 g / cm 3 , very particularly preferably between 1, 290 and 1, 510 g / cm 3 , and in particular between 1, 340 and 1, 480 g / cm 3.
- the information on the density relates in each case to the densities of the compositions at 20 ° C.
- dispersing agents and dispersed substances preferably have densities which are less than 0.6 g / cm 3 , preferably less than 0.4 g / cm 3 and differ in particular by less than 0.3 g / cm 3 .
- Dispersions preferably used according to the invention as a detergent or cleaning preparation are distinguished in that they disperse in water (40 ° C.) in less than 9 minutes, preferably less than 7 minutes, preferably in less than 6 minutes, particularly preferably in less than 5 mini- grooves and in particular dissolve in less than 4 minutes.
- 20 g of the dispersion are introduced into the interior of a dishwasher (Miele G 646 PLUS).
- the main wash cycle of a standard wash program (45 ° C) is started.
- the solubility is determined by measuring the conductivity, which is recorded by a conductivity sensor.
- the dissolving process ends when the maximum conductivity is reached. In the conductivity diagram, this maximum corresponds to a plateau.
- the conductivity measurement begins with the insertion of the circulation pump in the main wash cycle.
- the amount of water used is 5 liters.
- Both compact casting bodies and cast hollow molds can be produced by the method according to the invention. If a cast, active washing or cleaning preparation is allowed to solidify in the mold cavity, simple, compact bodies are produced. More advantageous and preferred in the context of the present application, however, are those methods in which the first washing- or cleaning-active preparation is brought into shape before removal from the mold. In the context of the present application, methods for producing cast hollow bodies are particularly preferred.
- a preferred subject of the present application is therefore a method for producing a cast hollow body from a washing or cleaning active preparation, comprising the steps: a) pouring a washing or cleaning active preparation into a mold; b) shaping the active washing or cleaning preparation; c) demoulding the cast body from the molding tool, characterized in that the molding tool is at least partially made of elastic material.
- the cast hollow body in step a) of this preferred process variant can be produced using different techniques.
- a flowable mixture is poured into an appropriate mold, left to harden there and then removed from the mold.
- a disadvantage of this is the design of the shape, since the desired wall thicknesses of the hollow bodies formed do not allow complicated geometries to be filled quickly.
- the solidifying mixture can be filled into a mold that is designed only as a cavity. If you let the mixture solidify there, you would get a compact body, not a hollow shape. Appropriate process control can ensure that the mixture first solidifies on the wall of the mold. If the mold is turned over after a certain time t, the excess mixture flows off and leaves a lining of the mold, which itself is a hollow mold that can be removed from the mold after complete solidification. As already mentioned, the filling can also take place before demolding; filling during the solidification process is also possible.
- Another preferred subject of the present application is therefore a method for producing a cast hollow body from a preparation that is active in washing or cleaning, comprising the steps of: a) pouring a preparation that is active in washing or cleaning into the cavity of a mold; b) turning the cavity and pouring out the excess preparation; c) demoulding the cast body from the molding tool, characterized in that the molding tool is at least partially made of elastic material.
- the mold is preferably turned after a time t between 0 and 20 minutes, preferably after a time t between 1 and 17 minutes, particularly preferably after a time between 2 and 14 minutes, very particularly preferably between 3 and 11 minutes and especially between 4 and 8 minutes.
- the cavity can only be partially filled.
- the mixture is pressed against the wall of the cavity with a suitable stamp, where it solidifies to form the hollow body.
- This process variant represents an intermediate form between the "casting technique" and the casting technique in negative forms of the hollow body.
- Corresponding method for producing a cast hollow body from a wash or cleaning active preparation comprising the steps: a) pouring a wash or cleaning active preparation into the cavity of a mold; b) displacement of the active washing or cleaning preparation by means of a stamp; c) De-molding of the cast body from the molding tool, characterized in that the molding tool is at least partially made of elastic material, are particularly preferred in the context of the present application.
- a particularly advantageous feature of this method is the possibility of producing large numbers of items with a precisely defined wall thickness of the hollow body.
- the process is largely insensitive to fluctuating flow properties and can also be used with higher-viscosity mixtures.
- a cooled stamp is used.
- the temperature of this cooled stamp is preferably between 5 and 20 ° C., particularly preferably between 8 and 19 ° C., very particularly preferably between 11 and 18 ° C. and in particular between 14 and 17 ° C.
- the methods described above are particularly suitable for producing hollow bodies which have a shape without undercuts, that is to say have the shape of a "shell”, ie an opening area which corresponds to the largest horizontal cross-sectional area.
- These "trays” can be filled and optionally closed.
- the noses or edges of solidified washing or cleaning active preparation hanging out of the mold are cut or scraped off by knives and / or removed with a roller from the hollow bodies produced by turning or displacing.
- heated knives or scrapers or rollers are used for cutting or scraping or rolling.
- the temperature of these heated knives, scrapers or rollers is preferably at least 35 ° C., preferably at least 45 ° C. and in particular between 50 and 90 ° C.
- a further preferred embodiment of the present invention therefore provides a method for producing a cast hollow body from a washing or cleaning active preparation, comprising the steps: a) pouring a washing or cleaning active preparation into a closable double mold; b) moving the double mold for a time t between 0 and 20 minutes; c) De-molding of the cast body from the molding tool, characterized in that the molding tool is at least partially made of elastic material, are particularly preferred in the context of the present application.
- the cast hollow bodies produced by the process according to the invention can be filled with detergents or cleaning agents during or after production. All ready-made detergents or cleaning agents can be poured into the hollow form in liquid, pasty, gel-like, powdered, extruded, granulated, pelletized, flaky or tableted form. form. However, it is not necessary to fill in a finished detergent or cleaning agent, rather individual detergent or cleaning agent ingredients or precursors thereof can also be introduced into the hollow body.
- the cast hollow body is filled with at least one further preparation which is active in washing or cleaning.
- the hollow body After filling, the hollow body is preferably sealed or closed.
- a number of different procedures are suitable for sealing, which can differ depending on the desired appearance of the process product or its intended use.
- the preferred methods described below for sealing the cast hollow bodies can be combined with any of the manufacturing methods disclosed above for such hollow bodies.
- the filled, cast hollow body is closed with a water-soluble or water-dispersible polymer.
- the hollow body can be sealed by means of a water-soluble or water-dispersible polymer, for example by spraying the filled hollow body with a liquid polymer preparation.
- sealing processes are preferred in which the hollow body is sealed with a film of water-soluble or water-dispersible material. Suitable film materials are in particular (optionally acetalized) polyvinyl alcohol (PVAL), polyvinyl pyrrolidone, polyethylene oxide, gelatin, cellulose, and their derivatives, in particular methyl cellulose, and mixtures thereof.
- Polyvinyl alcohols (abbreviation PVAL, sometimes also PVOH) is the name for polymers of the general structure
- polyvinyl alcohols which are offered as white-yellowish powders or granules with degrees of polymerization in the range from approximately 100 to 2500 (molar masses from approximately 4000 to 100,000 g / mol), have degrees of hydrolysis of 98-99 or 87-89 mol%. , therefore still contain a residual content of acetyl groups.
- the polyvinyl alcohols are characterized by the manufacturers by stating the degree of polymerization of the starting polymer, the degree of hydrolysis, the saponification number and the solution viscosity.
- polyvinyl alcohols are soluble in water and a few strongly polar organic solvents (formamide, dimethylformamide, dimethyl sulfoxide); They are not attacked by (chlorinated) hydrocarbons, esters, fats and oils.
- Polyvinyl alcohols are classified as toxicologically safe and are at least partially biodegradable.
- the water solubility can be reduced by post-treatment with aldehydes (acetalization), by complexing with Ni or Cu salts or by treatment with dichromates, boric acid or borax.
- the polyvinyl alcohol coatings are largely impervious to gases such as oxygen, nitrogen, helium, hydrogen, carbon dioxide, but allow water vapor to pass through.
- the shell material used in the method according to the invention at least partially comprises a polyvinyl alcohol, the degree of hydrolysis of which is 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular Is 82 to 88 mol%.
- the envelope material used in the method according to the invention consists of at least 20% by weight, particularly preferably at least 40% by weight, very particularly preferably at least 60% by weight and in particular at least 80% by weight a polyvinyl alcohol whose degree of hydrolysis is 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%.
- Polyvinyl alcohols of a specific molecular weight range are preferably used as materials for the containers, it being preferred according to the invention that the shell material comprises a polyvinyl alcohol whose molecular weight is in the range from 10,000 to 100,000 gmol " , preferably from 11,000 to 90,000 gmol “ 1 , particularly preferably from 12,000 to 80,000 gmol “1 and in particular from 13,000 to 70,000 gmol " 1 .
- the degree of polymerization of such preferred polyvinyl alcohols is between approximately 200 to approximately 2100, preferably between approximately 220 to approximately 1890, particularly preferably between approximately 240 to approximately 1680 and in particular between approximately 260 to approximately 1500.
- polyvinyl alcohols described above are widely available commercially, for example under the trade name Mowiol ® 'particularly suitable in the context of the present invention, polyvinyl alcohols are, for example, Mowiol ® 3-83, Mowiol ® 4-88, Mowiol ® 5-88, Mowiol ® 8-88 and L648, L734, Mowiflex LPTC 221 ex KSE and the compounds from Texas Polymers such as Vinex 2034.
- ELVANOL ® 51-05, 52-22, 50-42, 85-82, 75- 15, T-25, T-66, 90-50 (trademark of Du Pont)
- ALCOTEX ® 72.5, 78, B72, F80 / 40, F88 / 4, F88 / 26, F88 / 40, F88 / 47 (trademark of Harlow Chemical Co.)
- Gohsenol ® NK-05, A-300, AH-22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11 Q, KZ-06 (trademark of Nippon Gohsei KK).
- Suitable water-soluble PVAL films are the PVAL films available from Syntana bottlesgesellschaft E. Harke GmbH & Co. under the name “SOLUBLON ® ". Their solubility in water can be adjusted to the degree, and foils from this product range are available that are soluble in the aqueous phase in all temperature ranges relevant to the application.
- PVP Polyvinylpyrrolidones
- PVPs are made by radical polymerization of 1-vinyl pyrrolidone. Commercial PVPs have molar masses in the range from approx. 2,500 to 750,000 g / mol and are offered as white, hygroscopic powders or as aqueous solutions. Polyethylene oxides, PEOX for short, are polyalkylene glycols of the general formula
- Gelatin is a polypeptide (molecular weight: approx. 15,000 to> 250,000 g / mol), which is obtained primarily by hydrolysis of the collagen contained in the skin and bones of animals under acidic or alkaline conditions.
- the amino acid composition of the gelatin largely corresponds to that of the collagen from which it was obtained and varies depending on its provenance.
- the use of gelatin as a water-soluble coating material is extremely widespread, particularly in pharmacy in the form of hard or soft gelatin capsules. In the form of films, gelatin is used only to a minor extent because of its high price in comparison to the abovementioned polymers.
- Starch is a homoglycan, with the glucose units linked ⁇ -glycosidically. Starch is made up of two components of different molecular weights: approx. 20 to 30% straight-chain amylose (MW. Approx. 50,000 to 150,000) and 70 to 80% branched-chain amylopectin (MW. Approx. 300,000 to 2,000,000). It also contains small amounts of lipids, phosphoric acid and cations. While the amylose forms long, helical, intertwined chains with about 300 to 1,200 glucose molecules due to the binding in the 1,4 position, the chain in the amylopectin branches after an average of 25 glucose units through 1,6 binding to form a knot-like structure with about 1,500 to 12,000 molecules of glucose.
- starch derivatives which are obtainable by polymer-analogous reactions from starch are also suitable for producing water-soluble coatings for the detergent, dishwashing detergent and cleaning agent portions.
- Such chemically modified starches include, for example, products from esterifications or etherifications in which hydroxy hydrogen atoms have been substituted. Starches in which the hydroxyl groups have been replaced by functional groups which are not bound via an oxygen atom can also be used as starch derivatives.
- the group of starch derivatives includes, for example, alkali starches, carboxymethyl starch (CMS), starch esters and starches and amino starches.
- Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and, from a formal point of view, is a ß-1, 4-polyacetal of cellobiose, which in turn is made up of two molecules of glucose. Suitable celluloses consist of approx. 500 to 5,000 glucose units and therefore have average molecular weights from 50,000 to 500,000.
- Cellulose-based disintegrants which can be used in the context of the present invention are also cellulose derivatives which can be obtained from cellulose by polymer-analogous reactions. Such chemically modified celluloses include, for example, products from esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
- celluloses in which the hydroxyl groups have been replaced by functional groups which are not bound via an oxygen atom can also be used as cellulose derivatives.
- the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethyl cellulose (CMC), cellulose esters and ethers and aminocelluloses.
- the filled, cast hollow body is closed with a substance that is active in washing or cleaning or a mixture of substances that is active in washing or cleaning.
- the washing or cleaning-active substance used for the sealing is, for example, another pourable washing or cleaning-active substance, for example one of the dispersions described above.
- preparations based on water-soluble or water-dispersible polymers can also be used as a wash- or cleaning-active substance mixture for sealing the filled hollow body.
- the seal is in particular preferably by casting of a sugar, preferably a saccharide selected from the group glucose, fructose, ribose, maltose, lactose, sucrose, maltodextrin, and isomalt ®.
- the filled, cast hollow body is closed with a prefabricated pouch.
- the prefabricated pouches used in this process variant can be produced by any technical process known to the person skilled in the art, in particular by thermoforming or vacuum forming, but also by vertical or horizontal tubular bag processes.
- the pouch is preferably attached to the hollow body by gluing or welding.
- the pouch preferably has water-soluble or water-dispersible wrapping materials, preferably in film form. For a detailed description of these wrapping materials, reference is made to the explanations above.
- the prefabricated pouch can be used for sealing purposes when empty. However, it is preferred to fill the pouch with one or more washing or cleaning substances.
- the method according to the invention is used to produce cast bodies from active washing or cleaning preparations.
- the cast bodies can, for example, have the shape of hollow bodies, which in turn are filled with substances that are active in washing or cleaning or mixtures of substances.
- all washing or cleaning-active substances known to the person skilled in the art can be used to produce the casting and / or Filling a cast hollow body can be used.
- the poured active washing or cleaning preparation and / or the washing or cleaning active substance / substance mixture used to fill the hollow body particularly preferably comprises at least one substance from the group consisting of builders, surfactants, polymers, bleaches, bleach activators, enzymes, dyes, fragrances , electrolytes, pH adjusting agents, perfume carriers, fluorescers, hydrotropes, foam inhibitors, silicone oils, antiredeposition agents, optical brighteners, graying inhibitors, shrink preventatives, anticrease agents, dye transfer inhibitors, antimicrobial active ingredients, germicides, fungicides, antioxidants, corrosion inhibitors, antistats, ironing aids, waterproofing and impregnating agents, Swelling and anti-slip agents, plasticizers and / or UV absorbers.
- these substances will be described in more detail below.
- the builders include, in particular, the zeolites, silicates, carbonates, organic cobuilders and, where there are no ecological prejudices against their use, also the phosphates.
- Suitable crystalline, layered sodium silicates have the general formula NaMSi x 0 2x + 1 'H 2 0, where M is sodium or hydrogen, x is a number from 1, 9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4.
- Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
- both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 0 5 "yH 2 0 are preferred.
- the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
- the term “amorphous” is also understood to mean “X-ray amorphous”.
- silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
- it can very well lead to particularly good builder properties if the silicate particles provide washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
- Such so-called X-ray amorphous silicates also have a delay in dissolution compared to conventional water glasses.
- Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
- these silicate (s) preferably alkali silicates, particularly preferably crystalline or amorphous alkali disilicates, in detergents or cleaning agents in amounts of 10 to 60% by weight, preferably 15 to 50% by weight. % and in particular from 20 to 40 wt .-%, each based on the weight of the detergent or cleaning agent, are included.
- these detergents preferably contain at least one crystalline layered silicate of the general formula NaMSi- x ⁇ 2 x + ⁇ ' y H 2 0, in which M represents sodium or hydrogen, x is a number from .9 to 22, preferably from 1.9 to 4, and y represents a number from 0 to 33.
- the crystalline layered silicates of the formula NaMSi x 0 2x + 1 ' y H 2 0 are sold, for example, by Clariant GmbH (Germany) under the trade name Na-SKS, for example Na-SKS-1 (Na 2 Si 22 0 45 - ⁇ H 2 0, Kenyait), Na-SKS-2
- Na-SKS-3 Na 2 Si 8 0 17 "xH 2 0
- Na-SKS-4 Na 2 Si 4 0g- ⁇ H 2 0, makatite
- crystalline sheet silicates of the formula (I) in which x is 2 are particularly suitable.
- Na-SKS-5 ⁇ -Na 2 Si 2 0g
- these detergents contain, in the context of the present application, a proportion by weight of the crystalline layered silicate of the formula NaMSi x 0 2x + 1 ' y H 2 0 of 0.1 to 20% by weight, preferably of 0.2 to 15 wt .-% and in particular from 0.4 to 10 wt .-%, each based on the total weight of these agents.
- Such automatic dishwashing detergents have a total silicate content below 7% by weight, preferably below 6% by weight, preferably below 5% by weight, particularly preferably below 4% by weight, very particularly preferably below 3% by weight .-% and in particular below 2.5 wt .-%, with this silicate, based on the total weight of the silicate contained, preferably at least 70 wt .-%, preferably at least 80 wt .-% and in particular at least 90 wt .-% is silicate of the general formula NaMSi- x 0 2x + ⁇ ' y H 2 0.
- the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
- zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
- zeolite X and mixtures of A, X and / or P are also suitable.
- zeolite X and zeolite A (about 80% by weight of zeolite X)
- VEGOBOND AX ® a co-crystallizate of zeolite X and zeolite A (about 80% by weight of zeolite X) ) by the company ma CONDEA Augusta SpA is sold under the brand name VEGOBOND AX ® and by the formula nNa 2 0 ⁇ (1-n) K 2 0 ⁇ Al 2 0 3 ' (2 - 2.5) Si0 2 ⁇ (3.5 - 5 , 5) H 2 0
- the zeolite can be used both as a builder in a granular compound and can also be used for a type of "powdering" of the entire mixture to be compressed, usually using both ways of incorporating the zeolite into the premix.
- Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
- the generally known phosphates as builder substances, provided that such use should not be avoided for ecological reasons.
- the alkali metal phosphates with particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), have the greatest importance in the detergent and cleaning agent industry.
- Alkali metal phosphates is the general term for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can distinguish between metaphosphoric acids (HP0 3 ) n and orthophosphoric acid H 3 P0 4 in addition to higher molecular weight representatives.
- the phosphates combine several advantages: They act as alkali carriers, prevent limescale deposits on machine parts and lime incrustations in fabrics and also contribute to cleaning performance.
- Suitable phosphates are, for example, sodium dihydrogen phosphate, NaH 2 PO 4 , in the form of the dihydrate (density 1, 91, preferably 3 , melting point 60 °) or in the form of the monohydrate (density 2.04, preferably 3 ), the disodium hydrogen phosphate (secondary sodium phosphate) , Na 2 HP0 4 , which is anhydrous or with 2 mol. (Density 2.066 like "3 , water loss at 95 °), 7 mol. (Density 1, 68 like " 3 , melting point 48 ° with loss of 5 H 2 0) and 12 mol.
- Water decahydrate (corresponding to 19 -20% P 2 0 5 ) and in anhydrous form (corresponding to 39-40% P 2 0 5 ) can be used.
- Another preferred phosphate is tripotassium phosphate (tertiary or triphase potassium phosphate), K 3 PO 4 .
- tetrasodium diphosphate sodium pyrophosphate
- Na 4 P 2 0 7 which is expressed in anhydrous form (density 2.534 '3 , melting point 988 °, also 880 ° ben) and as decahydrate (density 1, 815-1, 836 like "3 , melting point 94 ° with loss of water) exists, as well as the corresponding potassium salt potassium diphosphate (potassium pyrophosphate), K 4 P 2 0 7 .
- Condensation of NaH 2 P0 or KH 2 P0 4 produces higher molecular weight sodium and potassium phosphates, in which one can differentiate cyclic representatives, the sodium or potassium metaphosphates and chain-like types, the sodium or potassium polyphosphates.
- a large number of names are used in particular for the latter: melt or glow phosphates, Graham's salt, Kurrol's and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
- pentasodium triphosphate Na 5 P 3 O 10 (sodium tripolyphosphate)
- the corresponding potassium salt, pentapotassium triphosphate, K 5 P 3 O 10 (potassium tripolyphosphate) is commercially available, for example, in the form of a 50% strength by weight solution (> 23% P 2 0 5 , 25% K 2 0).
- the potassium polyphosphates are widely used in the detergent and cleaning agent industry.
- sodium potassium tripolyphosphates which can also be used in the context of the present invention. These occur, for example, when hydrolyzing sodium trimetaphosphate with KOH:
- these can be used just like sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two; Mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can also be used according to the invention.
- phosphates are used as washing or cleaning-active substances in washing or cleaning agents
- preferred agents contain these phosphates), preferably alkali metal phosphate (s), particularly preferably pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate) , in amounts of 5 to 80 wt .-%, preferably from 15 to 75 wt .-% and in particular from 20 to 70 wt .-%, each based on the weight of the detergent or cleaning agent.
- potassium tripolyphosphate and sodium tripolyphosphate in a weight ratio of more than 1: 1, preferably more than 2: 1, preferably more than 5: 1, particularly preferably more than 10: 1 and in particular more than 20: 1. It is particularly preferred to use exclusively potassium tripolyphosphate without admixtures of other phosphates.
- Other builders are the alkali carriers.
- alkali carriers include alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, alkali metal sesquicarbonates, the alkali silicates mentioned, alkali metal silicates, and mixtures of the abovementioned substances, the alkali metal carbonates, in particular sodium carbonate, sodium hydrogen carbonate or sodium sesquicarbonate, preferably being used for the purposes of this invention.
- a builder system containing a mixture of tripolyphosphate and sodium carbonate is particularly preferred.
- a builder system containing a mixture of tripolyphosphate and sodium carbonate and sodium disilicate is also particularly preferred.
- the alkali metal hydroxides are preferably used only in small amounts, preferably in amounts below 10% by weight, preferably below 6% by weight, particularly preferably below 4 wt .-% and in particular below 2 wt .-%, each based on the total weight of the detergent or cleaning agent used.
- Agents which, based on the weight of the washing or cleaning agent (ie the total weight of the combination product without packaging) are less than 20% by weight, preferably less than 17% by weight, preferably less than 13% by weight and contain in particular less than 9% by weight of carbonate (s) and / or hydrogen carbonate (s), preferably alkali carbonates, particularly preferably sodium carbonate.
- Organic cobuilders include, in particular, polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates. These classes of substances are described below.
- Usable organic builders are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids being understood to mean those carboxylic acids which carry more than one acid function.
- these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), as long as such use is not objectionable for ecological reasons, and mixtures of these.
- Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
- the acids themselves can also be used.
- the acids typically also have the property of an acidifying component and are therefore also used for adjusting lower and milder pH of detergents or cleaning agents.
- Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures thereof can be mentioned in particular.
- Polymeric polycarboxylates are also suitable as builders, for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 500 to 70,000 g / mol.
- the molecular weights given for polymeric polycarboxylates are weight-average molecular weights M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), using a UV detector. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship to the polymers investigated. This information differs significantly from the molecular weight information for which polystyrene sulfonic acids are used as standard. The molecular weights measured against polystyrene sulfonic acids are generally significantly higher than the molecular weights given in this document.
- Suitable polymers are, in particular, polyacrylates, which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates which have molar masses from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, can in turn be preferred from this group.
- copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
- Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
- Their relative molecular weight, based on free acids, is generally 2,000 to 70,000 g / mol, preferably 20,000 to 50,000 g / mol and in particular 30,000 to 40,000 g / mol.
- the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
- the (co) polymeric polycarboxylate content of washing or cleaning agents is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
- the polymers can also contain allylsulfonic acids, such as, for example, allyloxybenzenesulfonic acid and methallylsulfonic acid, as monomers.
- allylsulfonic acids such as, for example, allyloxybenzenesulfonic acid and methallylsulfonic acid, as monomers.
- Biodegradable polymers of more than two different monomer units are also particularly preferred, for example those which, as monomers, contain salts of acrylic acid and maleic acid. re as well as vinyl alcohol or vinyl alcohol derivatives or the salts of acrylic acid and 2-alkylallylsulfonic acid as monomers and sugar derivatives.
- copolymers are those which preferably have acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
- builder substances are polymeric aminodicarboxylic acids, their salts or their precursor substances. Polyaspartic acids or their salts and are particularly preferred.
- polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups.
- Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
- dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
- the hydrolysis can be carried out by customary, for example acid or enzyme-catalyzed, processes. They are preferably hydrolysis products with average molar masses in the range from 400 to 500,000 g / mol.
- DE dextrose equivalent
- oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
- Ethylene diamine N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
- Glycerol disuccinates and glycerol trisuccinates are also preferred in this context.
- Suitable amounts for use in formulations containing zeolite and / or silicate are 3 to 15% by weight.
- Other useful organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
- phosphonates are, in particular, hydroxyalkane or aminoalkane phosphonates.
- hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a cobuilder.
- HEDP 1-hydroxyethane-1,1-diphosphonate
- Preferred aminoalkane phosphonates are ethylenediaminetetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of the neutral sodium salts, e.g. B.
- HEDP is preferably used as the builder from the class of the phosphonates.
- the aminoalkanephosphonates also have a pronounced ability to bind heavy metals. Accordingly, it may be preferred, particularly if the agents also contain bleach, to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
- anionic, cationic and amphoteric surfactants are also included in the group of surfactants.
- the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical is branched linearly or preferably in the 2-position methyl may or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
- EO ethylene oxide
- alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
- the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9 .
- the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
- Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
- fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
- alkyl glycosides of the general formula RO (G) x can also be used as further nonionic surfactants, in which R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
- the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
- nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain.
- Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
- the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
- Suitable surfactants are polyhydroxy fatty acid amides of the formula (I),
- RCO stands for an aliphatic acyl radical with 6 to 22 carbon atoms
- R 1 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms
- [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
- the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
- the group of polyhydroxy fatty acid amides also includes compounds of the formula R 1 -0-R 2 I R-CO-N- [Z] in which R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R 2 represents a linear, branched or cyclic alkyl radical or an aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, C 1 -alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propylated, derivatives of this rest.
- [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
- a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
- the N-alkoxy- or N-aryloxy-substituted compounds can be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
- the cleaning agents according to the invention for machine dishwashing particularly preferably contain nonionic surfactants, in particular nonionic surfactants from the group of the alkoxylated alcohols.
- the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol residue can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
- EO ethylene oxide
- alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms for example from coconut, palm, tallow fat or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
- Preferred ethoxylated alcohols include, for example, 2- C ⁇ ⁇ 4 alcohols containing 3 EO or 4 EO, C 8-11 alcohol with 7 EO, C 13-15 alcohols containing 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12-14 alcohol with 3 EO and C 12-8 alcohol with 5 EO.
- the degrees of ethoxylation given are statistical averages, which can be an integer or a fraction for a specific product.
- Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
- fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
- Nonionic surfactants which have a melting point above room temperature are particularly preferred, nonionic surfactants having a melting point above 20 ° C., preferably above 25 ° C., particularly preferably between 25 and 60 ° C. and in particular between 26.6 and 43.3 ° C, are particularly preferred.
- Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which temperature fixed or highly viscous. If nonionic surfactants which are highly viscous at room temperature are used, it is preferred that they have a viscosity above 20 Pas, preferably above 35 Pas and in particular above 40 Pas. Nonionic surfactants that have a waxy consistency at room temperature are also preferred.
- Preferred nonionic surfactants to be used at room temperature originate from the groups of the alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols and mixtures of these surfactants with structurally more complicated surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene (PO / EO / PO) surfactants.
- Such (PO / EO / PO) nonionic surfactants are also characterized by good foam control.
- the nonionic surfactant with a melting point above room temperature is an ethoxylated nonionic surfactant which results from the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 carbon atoms with preferably at least 12 mol, particularly preferably at least 15 mol, in particular at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol has resulted.
- a particularly preferred nonionic surfactant which is solid at room temperature is obtained from a straight-chain fatty alcohol having 16 to 20 carbon atoms (C 16-20 alcohol), preferably a C 8 alcohol and at least 12 mol, preferably at least 15 mol and in particular at least 20 mol, of ethylene oxide , Among these, the so-called “narrow rank ethoxylates" (see above) are particularly preferred.
- ethoxylated nonionic surfactants which are derived from C 6 . 2 o-monohydroxyalkanols or C 6- 20 alkylphenols or C ⁇ 6 . 2 o-fatty alcohols and more than 12 moles, preferably more than 15 moles and in particular more than 20 moles of ethylene oxide were obtained per mole of alcohol.
- the nonionic surfactant which is solid at room temperature, preferably has additional propylene oxide units in the molecule.
- Such PO units preferably make up up to 25% by weight, particularly preferably up to 20% by weight and in particular up to 15% by weight of the total molar mass of the nonionic surfactant.
- Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols, which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
- the alcohol or alkylphenol part of such nonionic surfactant molecules preferably makes up more than 30% by weight, particularly preferably more than 50% by weight and in particular more than 70% by weight of the total molar mass of such nonionic surfactants.
- Preferred dishwashing detergents are characterized in that they contain ethoxylated and propoxylated nonionic surfactants in which the propylene oxide units in the molecule up to 25% by weight, preferably up to 20% by weight and in particular up to 15% by weight, of the total molecular weight of the nonionic Make up surfactants.
- Other nonionic surfactants with melting points above room temperature which are particularly preferably used contain 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend which contains 75% by weight of an inverted block copolymer of polyoxyethylene and polyoxypropylene with 17 mol of ethylene oxide and 44 mol of propylene oxide and 25% by weight.
- Nonionic surfactants that may be used with particular preference are available, for example under the name Poly Tergent ® SLF-18 from Olin Chemicals.
- the nonionic surfactant of the formula (II) In detergents or cleaning agents, preferably in dishwashing detergents, the nonionic surfactant of the formula (II)
- R 1 represents a linear or branched aliphatic hydrocarbon radical with 4 to 18 carbon atoms or mixtures thereof
- R 2 denotes a linear or branched hydrocarbon radical with 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1, 5 and y stands for a value of at least 15.
- nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula
- R 1 and R 2 represent linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
- R 3 represents H or a methyl, ethyl, n-propyl, isopropyl, n- Butyl, 2-butyl or 2-methyl-2-butyl radical
- x stands for values between 1 and 30, k and j stand for values between 1 and 12, preferably between 1 and 5. If the value x ⁇ 2, each R 3 in the above formula can be different.
- R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, radicals having 8 to 18 carbon atoms being particularly preferred.
- H, -CH 3 or -CH 2 CH 3 are particularly preferred for the radical R 3 .
- Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
- each R 3 in the above formula can be different if x ⁇ 2.
- the value 3 for x has been chosen here by way of example and may well be larger, the range of variation increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
- R 1 , R 2 and R 3 are as defined above and x represents numbers from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18. Particularly preferred are surfactants in which the radicals R 1 and R 2 has 9 to 14 C atoms, R 3 represents H and x assumes values from 6 to 15.
- R 1 and R 2 represent linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
- R 3 represents H or a methyl, ethyl, n-propyl, iso-propyl, n -Butyl, 2-butyl or 2-methyl-2-butyl radical
- x is preferably between 1 and 30,
- k and j are between 1 and 12, preferably between 1 and 5, preferably with surfactants of the type R 1 0 [CH 2 CH (R 3 ) 0] x CH 2 CH (OH) CH 2 OR 2
- x represents numbers from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18, are particularly preferred.
- nonionic surfactants which have alternating ethylene oxide and alkylene oxide units have proven to be particularly preferred nonionic surfactants.
- surfactants with EO-AO-EO-AO blocks are preferred, one to ten EO or AO groups being bonded to one another before a block follows from the other groups.
- automatic dishwashing agents according to the invention are preferred which contain surfactants of the general formula III as nonionic surfactant (s)
- R 1 is a straight-chain or branched, saturated or mono- or polyunsaturated C 6 - 2 alkyl or alkenyl radical; each group R 2 or R 3 is independently selected from -CH 3 ; -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 and the indices w, x, y, z independently represent integers from 1 to 6.
- the preferred nonionic surfactants of the formula III can be prepared by known methods from the corresponding alcohols R 1 -OH and ethylene or alkylene oxide.
- the radical R 1 in formula III above can vary depending on the origin of the alcohol. If native sources are used, the radical R 1 has an even number of carbon atoms and is generally not shown, the linear radicals being of alcohols of native origin with 12 to 18 carbon atoms, for example coconut, palm, tallow or Oleyl alcohol are preferred.
- Alcohols accessible from synthetic sources are, for example, Guerbet alcohols or residues which are methyl-branched in the 2-position or linear and methyl-branched residues in a mixture, as are usually present in oxo alcohol residues.
- preferred dishwasher detergents according to the invention are those in which R 1 in formula III for an alkyl radical having 6 to 24, preferably 8 to 20, particularly preferably 9 to 15 and in particular 9 is up to 11 carbon atoms.
- butylene oxide is particularly suitable as the alkylene oxide unit which is present in the preferred nonionic surfactants in alternation with the ethylene oxide unit.
- R 2 or R 3 are selected independently of one another from -CH 2 CH 2 -CH 3 or CH (CH 3 ) 2 are also suitable.
- Preferred automatic dishwashing detergents are characterized in that R 2 or R 3 for a radical -CH 3 , w and x independently of one another stand for values of 3 or 4 and y and z independently of one another for values of 1 or 2.
- nonionic surfactants are particularly preferred which have a C 9-15 -alkyl radical having 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units, followed by 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units.
- These surfactants have the required low viscosity in aqueous solution and can be used with particular preference according to the invention.
- nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula (IV)
- R 1 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
- R 2 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, which preferably have between 1 and 5 hydroxyl groups and are preferably further functionalized with an ether group
- R 3 is H or a methyl, ethyl, n-propyl, iso- Propyl, n-butyl, 2-butyl or 2-methyl-2-butyl radical
- x stands for values between 1 and 40.
- R 3 is H.
- R 1 is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms
- R 2 is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, which preferably have between 1 and 5 hydroxyl groups and x stands for values between 1 and 40.
- R 1 which represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms, a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical having 1 have up to 30 carbon atoms R 2 , which is adjacent to a monohydroxylated intermediate group -CH 2 CH (OH) -.
- x stands for values between 1 and 40.
- Such end-capped poly (oxyalkylated) nonionic surfactants can be obtained, for example, by reacting a terminal epoxide of the formula R 2 CH (0) CH 2 with an ethoxylated alcohol of the formula R 1 0 [CH 2 CH 2 0] x-1 CH 2 CH 2 OH obtained.
- the stated C chain lengths and degrees of ethoxylation or degrees of alkoxylation of the above-mentioned nonionic surfactants represent statistical averages, which can be an integer or a fraction for a specific product. Due to the manufacturing process, commercial products of the formulas mentioned usually do not consist of an individual representative, but of mixtures, which can result in mean values and fractional numbers both for the C chain lengths and for the degrees of ethoxylation or alkoxylation.
- Anionic surfactants used are, for example, those of the sulfonate and sulfate type.
- the surfactants of the sulfonate type are preferably C 9-13- alkylbenzenesulfonates, olefinsulfonates.
- te, ie mixtures of alkene and hydroxyalkane sulfonates and disulfonates as are obtained, for example, 12- ⁇ 8 monoolefins with terminal or internal double bond products of C by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation, into consideration.
- alkanesulfonates obtained from C 12-18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
- the esters of ⁇ -sulfofatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, are also suitable.
- sulfonated fatty acid glycerol esters are sulfonated fatty acid glycerol esters.
- Fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and their mixtures as obtained in the production by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol.
- Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
- alk (en) yl sulfates are the alkali and in particular the sodium salts of the sulfuric acid half esters of C 12 -C 8 fatty alcohols, for example from coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 0 -C 20 -Oxo alcohols and those half-esters of secondary alcohols of this chain length are preferred.
- alk (en) yl sulfates of the chain length mentioned which contain a synthetic, petrochemical-based straight-chain alkyl radical which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials.
- the C 12 -C 16 alkyl sulfates and C 12 are - C 15 alkyl sulfates and C 14 -C 15 alkyl sulfates of preferably.
- 2,3-alkyl sulfates which can be obtained as commercial products from Shell Oil Company under the name DAN ®, are suitable anionic surfactants.
- the sulfuric acid monoesters of the straight-chain or branched C 7-21 alcohols ethoxylated with 1 to 6 mol of ethylene oxide such as 2-methyl-branched C 9-11 alcohols with an average of 3.5 mol of ethylene oxide (EO) or C 12-18 - Fatty alcohols with 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in cleaning agents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
- Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
- alcohols preferably fatty alcohols and especially ethoxylated fatty alcohols.
- Preferred sulfosuccinates contain C 8-18 fatty alcohol residues or mixtures thereof.
- Particularly preferred sulfosuccinates contain a fatty alcohol residue, which is derived from ethoxylated fatty alcohols, which are nonionic surfactants in themselves (description of exercise see below).
- sulfosuccinates the fatty alcohol residues of which are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are particularly preferred. It is also possible to use alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alkyl (en) yl chain or salts thereof.
- Soaps are particularly suitable as further anionic surfactants.
- Saturated fatty acid soaps are suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular from natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
- the anionic surfactants can be in the form of their sodium, potassium or ammonium salts and also as soluble salts of organic bases, such as mono-, di- or triethanolamine.
- the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
- anionic surfactants are part of machine dishwashing detergents, their content, based on the total weight of the detergents, is preferably less than 4% by weight, preferably less than 2% by weight and very particularly preferably less than 1% by weight. Automatic dishwashing detergents that do not contain anionic surfactants are particularly preferred.
- cationic and / or amphoteric surfactants can also be used.
- cationic compounds of the formulas VII, VIII or IX can be used as cationic active substances:
- the content of cationic and / or amphoteric surfactants is preferably less than 6% by weight, preferably less than 4% by weight, very particularly preferably less than 2% by weight and in particular less than 1% by weight. %. Automatic dishwashing detergents that do not contain cationic or amphoteric surfactants are particularly preferred.
- the group of polymers includes in particular the wash- or cleaning-active polymers, for example the rinse aid polymers and / or polymers which act as softeners.
- the rinse aid polymers for example the rinse aid polymers and / or polymers which act as softeners.
- cationic, anionic and amphoteric polymers can also be used in washing or cleaning agents.
- Polymers effective as softeners are, for example, the polymers containing sulfonic acid groups, which are used with particular preference.
- Copolymers of unsaturated carboxylic acids, monomers containing sulfonic acid groups and optionally further ionic or nonionic monomers can be used particularly preferably as polymers containing sulphonic acid groups.
- R 1 to R 3 independently of one another are -H -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or -COOH substituted alkyl or alkenyl radicals as defined above or represents -COOH or -COOR 4 , where R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
- Preferred among these monomers are those of the formulas Xla, Xlb and / or Xlc,
- ionic or nonionic monomers are, in particular, ethylenically unsaturated compounds.
- the group iii) monomer content of the polymers used according to the invention is preferably less than 20% by weight, based on the polymer. Polymers to be used with particular preference consist only of monomers of groups i) and ii).
- copolymers are made of
- R 1 to R 3 independently of one another are -H -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or -COOH substituted alkyl or alkenyl radicals as defined above or represents -COOH or -COOR 4 , where R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms,
- copolymers consist of i) one or more unsaturated carboxylic acids from the group consisting of acrylic acid, methacrylic acid and / or maleic acid ii) one or more monomers of the formulas Xla, Xlb and / or Xlc containing sulfonic acid groups:
- the copolymers can contain the monomers from groups i) and ii) and, if appropriate, iii) in varying amounts, it being possible for all representatives from group i) to be combined with all representatives from group ii) and all representatives from group iii).
- Particularly preferred polymers have certain structural units, which are described below.
- copolymers which have structural units of the formula XII are preferred.
- These polymers are produced by copolymerization of acrylic acid with an acrylic acid derivative containing sulfonic acid groups. If the acrylic acid derivative containing sulfonic acid groups is copolymerized with methacrylic acid, another polymer is obtained, the use of which is also preferred.
- the corresponding copolymers contain the structural units of the formula XIII
- acrylic acid and / or methacrylic acid can also be copolymerized with methacrylic acid derivatives containing sulfonic acid groups, as a result of which the structural units in the molecule are changed.
- Copolymers are those which have structural units of the formula XIV
- those copolymers are preferred which have structural units of the formulas XII and / or XIII and / or XIV and / or XV and / or XVI and / or XVII
- the sulfonic acid groups in the polymers can be wholly or partly in neutralized form, ie the acidic hydrogen atom of the sulfonic acid group in some or all of the sulfonic acid groups can be replaced by metal ions, preferably alkali metal ions and in particular by sodium ions.
- metal ions preferably alkali metal ions and in particular by sodium ions.
- the use of partially or fully neutralized copolymers containing sulfonic acid groups is preferred according to the invention.
- the monomer distribution of the copolymers preferably used according to the invention is preferably 5 to 95% by weight of i) or ii), particularly preferably 50 to 90% by weight of monomer, in the case of copolymers which contain only monomers from groups i) and ii) from group i) and 10 to 50% by weight of monomer from group ii), in each case based on the polymer.
- terpolymers those which contain 20 to 85% by weight of monomer from group i), 10 to 60% by weight of monomer from group ii) and 5 to 30% by weight of monomer from group iii) are particularly preferred ,
- the molar mass of the sulfo copolymers preferably used according to the invention can be varied in order to adapt the properties of the polymers to the desired intended use.
- Preferred detergent or cleaning agent compositions are characterized in that the copolymers have molar masses from 2000 to 200,000 gmol "1 , preferably from 4000 to 25,000 gmol " 1 and in particular from 5000 to 15,000 gmol "1 .
- amphoteric or cationic polymers continue to be used. These particularly preferred polymers are characterized in that they have at least one positive charge. Such polymers are preferably water-soluble or water-dispersible, that is to say they have a solubility in water at 25 ° C. above 10 mg / ml.
- Cationic or amphoteric polymers particularly preferably contain at least one ethylenically unsaturated monomer unit of the general formula
- R 1 to R 4 independently of one another are -H -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or -COOH substituted alkyl or alkenyl radicals as defined above, a heteroatomic group with at least one positively ended group, a quaternized nitrogen atom or at least one amine group with a positive charge in the pH range between 2 and 11 or for -COOH or -COOR 5 , where R 5 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
- Unsaturated carboxylic acids of the general formula are particularly preferred as a constituent of the amphoteric polymers
- R 1 to R 3 independently of one another are -H -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or -COOH substituted alkyl or alkenyl radicals as defined above or represents -COOH or -COOR 4 , where R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
- amphoteric polymers contain, as monomer units, derivatives of diallylamine, in particular dimethyldiallylammonium salt and / or methacrylamidopropyl (trimethyl) ammonium salt, preferably in the form of the chloride, bromide, iodide, hydroxide, phosphate, sulfate, hydrosulfate, ethyl sulffast, methyl sulfate, mesylate, tosylate , Formates or acetates in combination with monomer units from the group of ethylenically unsaturated carboxylic acids.
- Sodium percarbonate is of particular importance among the compounds which serve as bleaching agents and supply H 2 0 2 in water.
- Further bleaching agents that can be used are, for example, sodium perborate tetrahydrate and sodium perborate monohydrate, peroxypyrophosphates, citrate perhydrates and H 2 0 2 -supplying peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperic acid or diperdodecanedioic acid.
- bleaching agents from the group of organic bleaching agents can also be used.
- Typical organic bleaching agents are the diacyl peroxides, such as dibenzoyl peroxide.
- organic bleaching agents are peroxy acids, examples of which include alkyl peroxy acids and aryl peroxy acids.
- Preferred representatives are (a) the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperoxyiminoperacid acid ( ⁇ -phthalimidoperthoxy acid), and )], o-carboxybenzamidoperoxycaproic acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinate, and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1, 12-diperoxycarboxylic acid, 1, 9-diperoxyazelaic acid, diperocyse
- Chlorine or bromine-releasing substances can also be used as bleaching agents.
- Suitable materials that release chlorine or bromine include, for example, heterocyclic N-bromo and N-chloramides, for example trichloroisocyanuric acid, tribromoisocyanuric acid,
- DICA dichloroisocyanuric acid
- Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydanthoin are also suitable.
- Bleach activators are used in detergents or cleaning agents, for example, to achieve an improved bleaching effect when cleaning at temperatures of 60 ° C and below.
- Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids with preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
- Substances which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups are suitable.
- Multi-acylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), are preferred.
- TAED tetraacetylethylenediamine
- DADHT 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine
- TAGU tetraacetylglycoluril
- N-acylimides especially N-nonanoylsuccinimide (NOSI), acylated phenol sulfonates, especially n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, especially phthalic anhydride, acylated polyhydric alcohols, especially triacetic alcohols, especially triac 5-diacetoxy-2,5-dihydrofuran.
- NOSI N-nonanoylsuccinimide
- acylated phenol sulfonates especially n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS)
- carboxylic acid anhydrides especially phthalic anhydride
- acylated polyhydric alcohols especially triacetic alcohols, especially triac 5-diacetoxy-2,5-dihydrofuran.
- bleach activators which are preferably used in the context of the present application are compounds from the group of the cationic nitriles, in particular cationic nitriles of the formula
- R 1 represents -H, -CH 3 , a C 2-2 alkyl or alkenyl radical, a substituted C 2 . 2 alkyl or alkenyl radical with at least one substituent from the group -Cl, -Br, -OH, -NH 2 , -CN, an alkyl or alkenylaryl radical with a C 1-2 alkyl group, or for a substituted alkyl or alkenylryl radical having a C 1-2 alkyl group and at least one further substituent on the aromatic ring
- R 2 and R 3 are independently selected from -CH 2 -CN, -CH 3 , -CH 2 -CH 3 , - CH 2 - CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH (OH) -CH 3 , -CH 2 -CH 2 - CH 2 -OH, -CH 2
- a cationic nitrile of the formula is particularly preferred R 4
- bleach activators it is also possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids with preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
- Substances are suitable which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
- polyacylated alkylenediamines in particular tetraacetylethylene diamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N-acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenol sulfonates, especially n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, especially phthalic anhydride, acylated polyhydric alcohols, especially triacetate, especially triacetine, Diacetoxy-2,5-dihydrofuran, n-methyl-morpholinium-acetonitrile-methyl sulf
- bleach catalysts can also be used.
- bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
- Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru amine complexes can be used as bleaching catalysts.
- bleach activators from the group of polyacylated alkylenediamines, in particular tetraacetylene-ethylenediamine (TAED), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or Isononanoyloxybenzenesulfonat (n- or iso-NOBS), n-methyl-morpholinium-acetonitrile-methyl sulfate (MMA), preferably in amounts of up to 10% by weight, in particular 0.1% by weight to 8% by weight, particularly 2 to 8 wt .-% and particularly preferably 2 to 6 wt .-%, each based on the total weight of the bleach activator-containing agents.
- TAED tetraacetylene-ethylenediamine
- NOSI N-nonanoylsuccinimide
- acylated phenolsulfonates in particular
- Bleach-enhancing transition metal complexes in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, preferably selected from the group consisting of manganese and / or cobalt salts and / or complexes, particularly preferably cobalt (ammin) - Complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes, the chlorides of cobalt or manganese, the manganese sulfate are used in conventional amounts, preferably in an amount of up to 5% by weight, in particular 0.0025% by weight .-% to 1 wt .-% and particularly preferably from 0.01 wt .-% to 0.25 wt .-%, each based on the total weight of the bleach activator-containing agents. But in special cases, more bleach activator can be used.
- Glass corrosion inhibitors prevent the appearance of cloudiness, streaks and scratches but also the iridescence of the glass surface of machine-cleaned glasses.
- Preferred glass corrosion inhibitors come from the group of magnesium and / or zinc salts and / or magnesium and / or zinc complexes.
- a preferred class of compounds that can be used to prevent glass corrosion are insoluble zinc salts.
- Insoluble zinc salts in the sense of this preferred embodiment are zinc salts which have a solubility of at most 10 grams of zinc salt per liter of water at 20 ° C.
- Examples of insoluble zinc salts which are particularly preferred according to the invention are zinc silicate, zinc carbonate, zinc oxide, basic zinc carbonate (Zn 2 (OH) 2 C0 3 ), zinc hydroxide, zinc oxalate, zinc monophosphate (Zn 3 (P0 4 ) 2 ), and zinc pyrophosphate (Zn 2 ( P 2 0 7 )).
- the zinc compounds mentioned are preferably used in amounts which have a zinc ion content of between 0.02 and 10% by weight, preferably between 0.1 and 5.0% by weight and in particular between 0.2 and 1.0 % By weight, in each case based on the total glass corrosion inhibitor-containing agent.
- the exact content of the agent in the zinc salt or zinc salts is naturally measured depending on the type of zinc salts - the less soluble the zinc salt used, the higher its concentration in the agents should be.
- the particle size of the salts is a criterion to be observed so that the salts do not adhere to glassware or machine parts. Means are preferred in which the insoluble zinc salts have a particle size below 1.7 millimeters.
- the insoluble zinc salt preferably has an average particle size which is significantly below this value in order to further minimize the risk of insoluble residues, for example an average particle size of less than 250 ⁇ m. This, in turn, is all the more the less the zinc salt is soluble. In addition, the glass corrosion inhibiting effectiveness increases with decreasing particle size.
- the average particle size is preferably below 100 ⁇ m. For even more poorly soluble salts, it can be even lower; For example, average particle sizes below 100 ⁇ m are preferred for the very poorly soluble zinc oxide.
- Another preferred class of compounds are magnesium and / or zinc salt (s) of at least one monomeric and / or polymeric organic acid. This means that even with repeated use, the surfaces of glassware do not change corrosively, in particular no clouding, streaks or scratches, but also no iridescence of the glass surfaces.
- magnesium and / or zinc salt (s) of monomeric and / or polymeric organic acids can be used, as described above, the magnesium and / or zinc salts of monomeric and / or polymeric organic acids from the groups of the unbranched saturated or unsaturated monocarboxylic acids, branched saturated or unsaturated monocarboxylic acids, saturated and unsaturated dicarboxylic acids, aromatic mono-, di- and tricarboxylic acids, sugar acids, hydroxy acids, oxo acids, amino acids and / or polymeric carboxylic acids are preferred.
- the spectrum of the zinc salts of organic acids, preferably organic carboxylic acids preferred according to the invention, extends from salts which are sparingly or not soluble in water, ie have a solubility below 100 mg / L, preferably below 10 mg / L, in particular no solubility, up to such Salts which have a solubility in water above 100 mg / L, preferably above 500 mg / L, particularly preferably above 1 g / L and in particular above 5 g / L (all solubilities at 20 ° C water temperature).
- the first group of zinc salts includes, for example, zinc citrate, zinc oleate and zinc stearate
- the group of soluble zinc salts includes, for example, zinc formate, zinc acetate, zinc lactate and zinc gluconate. It is particularly preferred to use at least one zinc salt of an organic carboxylic acid, particularly preferably a zinc salt from the group consisting of zinc stearate, zinc oleate, zinc gluconate, zinc acetate, zinc lactate and / or zinc citrate, as the glass corrosion inhibitor. Zinc ricinoleate, zinc abietate and zinc oxalate are also preferred.
- the zinc salt content of cleaning agents is preferably between 0.1 to 5% by weight, preferably between 0.2 to 4% by weight and in particular between 0.4 to 3% by weight, or the content of zinc in oxidized form (calculated as Zn 2+ ) between 0.01 to 1% by weight, preferably between 0.02 to 0.5% by weight and in particular between 0.04 to 0.2% by weight. -%, each based on the total weight of the agent containing glass corrosion inhibitor.
- Corrosion inhibitors serve to protect the items to be washed or the machine, silver protection agents in particular being particularly important in the area of automatic dishwashing.
- the known substances of the prior art can be used.
- silver protection agents selected from the group of the triazoles, the benzotriazoles, the bisbenzotriazoles, the aminotriazoles, the alkylaminotriazoles and the transition metal salts or complexes can be used in particular.
- Benzotriazole and / or alkylaminotriazole are particularly preferably to be used.
- 3-amino-5-alkyl-1,2,4-triazoles which are preferably to be used according to the invention: 5, -propyl, butyl, pentyl, heptyl, octyl, nonyl -, -Decyl-, -Undecyl-, -Dodecyl-, -Isononyl-, - Versatic-10-acid alkyl-, -Phenyl-, -p-Tolyl-, - (4-tert.butylphenyl) -, - (4- Methoxyphenyl) -, - (2-, -3-, -4- pyridyl) -, - (2-thienyl) -, - (5-methyl-2-furyl) -, - (5-oxo-2-pyrrolidinyl) -, -3-amino-1, 2,4-triazole.
- the alkylamino-1, 2,4-triazoles or their physiologically tolerable salts are used in a concentration of 0.001 to 10% by weight, preferably 0.0025 to 2% by weight, particularly preferably 0.01 to 0.04 wt .-% used.
- Preferred acids for the salt formation are hydrochloric acid, sulfuric acid, phosphoric acid, carbonic acid, sulfurous acid, organic carboxylic acids such as acetic, glycolic, citric, succinic acid.
- 5-Pentyl-, 5-heptyl-, 5-nonyl-, 5-undecyl-, 5-isononyl-, 5-versatic-10-acid-alkyl-3-amino-1, 2,4-triazoles and mixtures are very particularly effective of these substances.
- detergent formulations often contain agents containing active chlorine, which can significantly reduce the corroding of the silver surface.
- agents containing active chlorine which can significantly reduce the corroding of the silver surface.
- oxygen and nitrogen-containing organic redox-active compounds such as di- and trihydric phenols, e.g. B. hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucinol, pyrogallol or derivatives of these classes of compounds.
- Salt-like and complex-like inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce, are also frequently used.
- transition metal salts which are selected from the group of the manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammine) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes , the chlorides of cobalt or manganese and man- gansulfats.
- Zinc compounds can also be used to prevent corrosion on the wash ware.
- redox-active substances can be used. These substances are preferably inorganic redox-active substances from the group of the manganese, titanium, zirconium, hafnium, vanadium, cobalt and cerium salts and / or complexes, the metals preferably in one of the oxidation states II, III , IV, V or VI are present.
- the metal salts or metal complexes used are said to be at least partially soluble in water.
- the counterions suitable for salt formation include all customary one, two or three times negatively charged inorganic anions, e.g. B. oxide, sulfate, nitrate, fluoride, but also organic anions such. B. stearate.
- Metal complexes in the context of the invention are compounds which consist of a central atom and one or more ligands and, if appropriate, additionally one or more of the abovementioned.
- Anions exist.
- the central atom is one of the above Metals in one of the above Oxidation states.
- the ligands are neutral molecules or anions that are monodentate or multidentate; the term "ligand" in the sense of the invention is e.g. in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart / New York, 9th edition, 1990, page 2507" explained in more detail.
- Suitable complexing agents are e.g. Citrate, acetylacetonate or 1-hydroxyethane-1, 1-diphosphonate.
- metal salts and / or metal complexes are selected from the group MnSO 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [1-hydroxyethane-1, 1- diphosphonate]
- metal salts and / or metal complexes are selected from the group MnS0 4 , Mn (II) citrate,
- TiOS0 4 K 2 TiF 6 , K 2 ZrF 6 , CoS0 4 , Co (N0 3 ) 2 , Ce (N ⁇ 3 ) 3 .
- metal salts or metal complexes are generally commercially available substances which are used in the inventions for the purpose of protecting against silver corrosion without prior cleaning.
- Agents according to the invention can be used.
- the mixture of pentavalent and tetravalent vanadium (V 2 O s , V0 2 , V 2 0 4 ) known from S0 3 production (contact process) is suitable, as is that by diluting a Ti (S0 4 ) 2 - Solution resulting titanyl sulfate, TiOS0 4 .
- the inorganic redox-active substances are preferably coated, i.e. completely covered with a waterproof material that is easily soluble at cleaning temperatures to prevent their premature decomposition or oxidation during storage.
- a waterproof material that is easily soluble at cleaning temperatures to prevent their premature decomposition or oxidation during storage.
- Preferred coating materials which are applied by known processes are paraffins, micro-waxes, waxes of natural origin such as carnauba wax, candellila wax, beeswax, higher-melting alcohols such as hexadecanol, soaps or fatty acids.
- the coating material which is solid at room temperature, is applied in a molten state to the material to be coated, e.g.
- the melting point must be selected so that the coating material dissolves easily during the silver treatment or melts quickly.
- the melting point should ideally be in the range between 45 ° C and 65 ° C and preferably in the range 50 ° C to 60 ° C.
- the metal salts and / or metal complexes mentioned are contained in cleaning agents, preferably in an amount of 0.05 to 6% by weight, preferably 0.2 to 2.5% by weight, in each case based on the total agent containing corrosion inhibitor.
- Enzymes can be used to increase the washing or cleaning performance of washing or cleaning agents. These include in particular proteases, amylases, lipases, hemicellules, cellulases or oxidoreductases, and preferably their mixtures. In principle, these enzymes are of natural origin; Based on the natural molecules, improved variants are available for use in detergents and cleaning agents, which are accordingly preferred. Agents according to the invention preferably contain enzymes in total amounts of 1 ⁇ 10 "s to 5 percent by weight based on active protein. The protein concentration can be determined using known methods, for example the BCA method or the biuret method.
- subtilisin type those of the subtilisin type are preferred.
- subtilisins BPN 'and Carlsberg the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, Subtiiisin DY and the enzymes thermitase, proteinase K and the enzyme which can no longer be assigned to the subtilisins in the narrower sense Proteases TW3 and TW7.
- Subtiiisin Carlsberg in a developed form under the trade names Alcalase ® from Novozymes A / S, Bagsvasrd, Denmark.
- Subtilisins 147 and 309 are marketed under the Men Esperase ® , or Savinase ® sold by Novozymes.
- the variants listed under the name BLAP ® are derived from the protease from Bacillus lentus DSM 5483.
- proteases are, for example, under the trade names Durazym ®, relase ®, Everlase® ®, Nafizym, Natalase ®, Kannase® ® and Ovozymes ® from Novozymes, under the trade names Purafect ®, Purafect ® OxP and Properase.RTM ® by the company Genencor, which is sold under the trade name Protosol ® by Advanced Biochemicals Ltd., Thane, India, which is sold under the trade name Wuxi ® by Wuxi Snyder Bioproducts Ltd., China, and in the trade name Proleather ® and Protease P ® by the company Amano Pharmaceuticals Ltd., Nagoya, Japan, and the enzyme available under the name Proteinase K-16 from Kao Corp., Tokyo, Japan.
- amylases which can be used according to the invention are the amylases from Bacillus licheniformis, from B. amyloliquefaciens or from B. stearothermophilus and their further developments which are improved for use in detergents and cleaning agents.
- the enzyme from B. licheniformis is available from Novozymes under the name Termamyl ® and from Genencor under the name Pu rastar ® ST. Development products of this ⁇ -amylase are available from Novozymes under the trade names Duramyl ® and Termamyl ® ultra, from Genencor under the name Purastar® ® OxAm and from Daiwa Seiko Inc., Tokyo, Japan, as Keistase ®.
- the - amylase from B. amyloliquefaciens is sold by Novozymes under the name BAN ® , and derived variants from the ⁇ -amylase from ß. stearothermophilus under the names BSG ® and Novamyl ® , also from Novozymes.
- Lipases or cutinases can also be used according to the invention, in particular because of their triglyceride-cleaving activities, but also in order to generate peracids in situ from suitable precursors.
- these include, for example, the lipases originally obtainable from Humicola lanuginosa (Thermomyces lanuginosus) or further developed, in particular those with the amino acid exchange D96L. They are sold, for example, by Novozymes under the trade names Lipolase ® , Lipolase ® Ultra, LipoPrime ® , Lipozyme ® and Lipex ® .
- the cutinases can be used, which were originally isolated from Fusarium solani pisi and Humicola insolens.
- Lipases which can also be used are from Amano under the names Lipase CE ®, Lipase P ®, Lipase B ®, or lipase CES ®, Lipase AKG ®, Bacillis sp. Lipase ® , Lipase AP ® , Lipase M-AP ® and Lipase AML ® available.
- the Genencor company can use, for example, the lipases or cutinases whose starting enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii.
- Suitable mannanases are available, for example under the name Gamanase ® and Pektinex AR ® from Novozymes, under the name Rohapec ® B1 from AB Enzymes and under the name Pyrolase® ® from Diversa Corp., San Diego, CA, United States.
- the .beta.-glucanase obtained from B. subtilis is available under the name Cereflo ® from Novozymes.
- oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo-, chloro-, bromo-, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenoloxidases, polyphenol oxidases) can be used according to the invention.
- Suitable commercial products are Denilite ® 1 and 2 from Novozymes.
- organic, particularly preferably aromatic, compounds interacting with the enzymes are additionally added in order to increase the activity of the oxidoreductases in question (enhancers) or to ensure the flow of electrons (mediators) in the case of greatly different redox potentials between the oxidizing enzymes and the soiling.
- the enzymes originate, for example, either originally from microorganisms, for example of the genera Bacillus, Streptomyces, Humicola, or Pseudomonas, and / or are produced by biotechnological processes known per se by suitable microorganisms, for example by transgenic expression hosts of the genera Bacillus or filamentous fungi.
- the enzymes in question are preferably purified by methods which are established per se, for example by means of precipitation, sedimentation, concentration, filtration of the liquid phases, microfiltration, ultrafiltration, exposure to chemicals, deodorization or suitable combinations of these steps.
- the enzymes can be used in any form established according to the prior art. These include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, particularly in the case of liquid or gel-like agents, solutions of the enzymes, advantageously as concentrated as possible, low in water and / or with stabilizers.
- the enzymes can be encapsulated both for the solid and for the liquid administration form, for example by spray drying or extrusion of the enzyme solution together with a, preferably natural polymer, or in the form of capsules, for example those in which the enzymes are enclosed in a solidified gel are or in those of the core-shell type in which an enzyme-containing core is coated with a protective layer impermeable to water, air and / or chemicals.
- Additional active ingredients for example stabilizers, emulsifiers, pigments, bleaching agents or dyes, can additionally be applied in superimposed layers.
- Capsules of this type are applied by methods known per se, for example by shaking or roll granulation or in fluid-bed processes. Such granules are advantageously low in dust, for example by applying polymeric film formers, and are stable on storage due to the coating.
- a protein and / or enzyme can be protected against damage, such as inactivation, denaturation or decay, for example by physical influences, oxidation or proteolytic cleavage, especially during storage.
- damage such as inactivation, denaturation or decay, for example by physical influences, oxidation or proteolytic cleavage, especially during storage.
- the proteins and / or enzymes are obtained microbially, inhibition of proteolysis is particularly preferred, in particular if the agents also contain proteases.
- Agents according to the invention can contain stabilizers for this purpose; the provision of such agents is a preferred embodiment of the present invention.
- a group of stabilizers are reversible protease inhibitors.
- Benzamidine hydrochloride, borax, boric acids, boronic acids or their salts or esters are frequently used, including above all derivatives with aromatic groups, for example ortho-substituted, meta-substituted and para-substituted phenylboronic acids, or their salts or esters.
- Ovomucoid and leupeptin are to be mentioned as peptide protease inhibitors; an additional option is the formation of fusion proteins from proteases and peptide inhibitors.
- Further enzyme stabilizers are amino alcohols such as mono-, di-, triethanol- and -propanolamine and their mixtures, aliphatic carboxylic acids up to C 12 , such as succinic acid, other dicarboxylic acids or salts of the acids mentioned. End-capped fatty acid amide alkoxylates are also suitable. Certain organic acids used as builders can additionally stabilize an enzyme contained. Lower aliphatic alcohols, but above all polyols, such as, for example, glycerol, ethylene glycol, propylene glycol or sorbitol are further frequently used enzyme stabilizers. Calcium salts are also used, such as calcium acetate or calcium formate, and magnesium salts.
- Polyamide oligomers or polymeric compounds such as lignin, water-soluble vinyl copolymers or cellulose ethers, acrylic polymers and / or polyamides stabilize the enzyme preparation, among other things, against physical influences or pH fluctuations.
- Polymers containing polyamine N-oxide act as enzyme stabilizers.
- Other polymeric stabilizers are the linear C 8 -C 18 polyoxyalkylenes.
- Alkyl polyglycosides can stabilize the enzymatic components of the agent according to the invention and even increase their performance.
- Cross-linked N-containing compounds also act as enzyme stabilizers.
- a sulfur-containing reducing agent is, for example, sodium sulfite.
- Combinations of stabilizers are preferably used, for example made of polyols, boric acid and / or borax, the combination of boric acid or borate, reducing salts and succinic acid or other dicarboxylic acids or the combination of boric acid or borate with polyols or polyamino compounds and with reducing salts.
- the effect of peptide-aldehyde stabilizers is increased by the combination with boric acid and / or boric acid derivatives and polyols and is further enhanced by the additional use of divalent cations, such as calcium ions.
- One or more enzymes and / or enzyme preparations are preferred in amounts of 0.1 to 5% by weight, preferably of 0.2 to 4.5 and in particular of 0.4 to 4 wt .-%, each based on the total enzyme-containing agent used.
- disintegration aids so-called tablet disintegrants
- tablet disintegrants or disintegration accelerators are understood as auxiliary substances which are necessary for rapid disintegration of tablets in water or gastric juice and ensure the release of the pharmaceuticals in resorbable form.
- Disintegration aids are preferably used in amounts of 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 to 6% by weight, in each case based on the total weight of the agent containing disintegration aids.
- Disintegrants based on cellulose are used as preferred disintegrants in the context of the present invention, so that preferred washing and cleaning agent compositions contain such a disintegrant based on cellulose in amounts of 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 contain up to 6 wt .-%.
- Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and, from a formal point of view, is a ß-1, 4-polyacetal of cellobiose, which in turn is made up of two molecules of glucose. Suitable celluloses consist of approximately 500 to 5000 glucose units and consequently have average molecular weights of 50,000 to 500,000.
- Cellulose-based disintegrants which can be used in the context of the present invention are also cellulose derivatives which can be obtained from cellulose by polymer-analogous reactions.
- Such chemically modified celluloses include, for example, products from esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
- celluloses in which the hydroxyl groups have been replaced by functional groups which are not bound via an oxygen atom can also be used as cellulose derivatives.
- the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethyl cellulose (CMC), cellulose esters and ethers and aminocelluloses.
- the cellulose derivatives mentioned are preferably not used alone as a cellulose-based disintegrant, but are used in a mixture with cellulose.
- the content of cellulose derivatives in these mixtures is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrant. Pure cellulose which is free of cellulose derivatives is particularly preferably used as the cellulose-based disintegrant.
- the cellulose used as disintegration aid is preferably not used in finely divided form, but is converted into a coarser form, for example granulated or compacted, before being added to the premixes to be pressed.
- the particle sizes of such disintegrants are usually above 200 ⁇ m, preferably at least 90% by weight between 300 and 1600 ⁇ m and in particular at least 90% by weight between 400 and 1200 ⁇ m.
- the coarser disintegration aids based on cellulose that are mentioned above and described in more detail in the cited documents are preferred as disintegration aids in the context of the present invention used and commercially available, for example, under the name Arbocel TF-30-HG from Rettenmaier.
- Microcrystalline cellulose can be used as another cellulose-based disintegrant or as a component of this component.
- This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which only attack and completely dissolve the amorphous areas (approx. 30% of the total cellulose mass) of the celluloses, but leave the crystalline areas (approx. 70%) undamaged.
- Subsequent disaggregation of the microfine celluloses produced by the hydrolysis provides the microcrystalline celluloses, which have primary particle sizes of approximately 5 ⁇ m and can be compacted, for example, into granules with an average particle size of 200 ⁇ m.
- Disintegration aids preferred in the context of the present invention preferably a cellulose-based disintegration aid, preferably in granular, cogranulated or compacted form, are present in the disintegrant-containing agents in amounts of 0.5 to 10% by weight, preferably 3 to 7% by weight. -% and in particular from 4 to 6 wt .-%, each based on the total weight of the disintegrant-containing agent.
- gas-developing effervescent systems can also preferably be used as tablet disintegration aids.
- the gas-developing shower system can consist of a single substance which releases a gas when it comes into contact with water.
- magnesium peroxide should be mentioned in particular, which releases oxygen on contact with water.
- the gas-releasing bubble system itself consists of at least two components that react with one another to form gas. While a large number of systems which release nitrogen, oxygen or hydrogen, for example, are conceivable and executable here, the sprinkling system used in the detergent and cleaning agent compositions according to the invention can be selected on the basis of both economic and ecological aspects.
- Preferred effervescent systems consist of alkali metal carbonate and / or hydrogen carbonate and an acidifying agent which is suitable for releasing carbon dioxide from the alkali metal salts in aqueous solution.
- the alkali metal carbonates or bicarbonates the sodium and potassium salts are clearly preferred over the other salts for reasons of cost.
- the pure alkali metal carbonates or bicarbonates in question do not have to be used; rather, mixtures of different carbonates and hydrogen carbonates may be preferred.
- the preferred shower system is 2 to 20% by weight, preferably 3 to 15% by weight and in particular 5 to 10% by weight of an alkali metal carbonate or bicarbonate and 1 to 15, preferably example 2 to 12 and in particular 3 to 10 wt .-% of an acidifying agent, based in each case on the total weight of the agent.
- Acidifying agents which release carbon dioxide from the alkali salts in aqueous solution are, for example, boric acid and alkali metal bisulfates, alkali metal dihydrogen phosphates and other inorganic salts.
- organic acidifying agents are preferably used, citric acid being a particularly preferred acidifying agent.
- the other solid mono-, oligo- and polycarboxylic acids can also be used in particular. Tartaric acid, succinic acid, malonic acid, adipic acid, maleic acid, fumaric acid, oxalic acid and polyacrylic acid are preferred from this group.
- Organic sulfonic acids such as amidosulfonic acid can also be used.
- Sokalan ® DCS (trademark of BASF), a mixture of succinic acid (max. 31% by weight), glutaric acid (max. 50% by weight) and adipic acid (commercially available and also preferably used as an acidifying agent in the context of the present invention) max. 33% by weight).
- acidifying agents in the effervescent system preference is given to acidifying agents in the effervescent system from the group of the organic di-, tri- and oligocarboxylic acids or mixtures.
- fragrance compounds e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used.
- Fragrance compounds of the ester type are e.g. Benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalylbenzoate, benzyl formate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropional and benylate propylate.
- the ethers include, for example, benzyl ethyl ether, the aldehydes e.g. the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxyxitronellal, lilial and bourgeonal, to the ketones e.g.
- perfume oils may also contain natural fragrances such as are available from plant sources, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
- muscatel sage oil, chamomile oil, clove oil, melissa oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
- the fragrances can be processed directly, but it can also be advantageous to apply the fragrances to carriers which ensure a long-lasting fragrance due to a slower fragrance release.
- carrier materials have proven themselves, for example, cyclodextrins, and the cyclodextrin-perfume complexes can additionally be coated with further auxiliaries.
- Preferred dyes the selection of which is not difficult for the person skilled in the art, have a high storage stability and insensitivity to the other ingredients of the agents and to light, and no pronounced substantivity to the substrates to be treated with the dye-containing agents, such as, for example, glass, ceramics, plastic dishes or textiles not to stain them.
- the solvents include, in particular, the non-aqueous organic solvents, with particular preference given to using non-aqueous solvents from the group of mono- or polyhydric alcohols, alkanolamines or glycol ethers, provided that they are miscible with water in the concentration range indicated.
- the solvents are preferably selected from ethanol, n- or i-propanol, butanols, glycol, propane or butanediol, glycerin, diglycol, propyl or butyl diglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol , Di-ethylene glycol ethyl ether, propylene glycol methyl, ethyl or propyl ether, dipropylene glycol methyl or ethyl ether, methoxy, ethoxy or butoxytriglycol, 1-butoxyethoxy-2-propanol, 3-methyl-3-methoxybutanol, propylene glycol t-butyl ether and mixtures of these solvents.
- Suitable foam inhibitors are, for example, soaps, paraffins or silicone oils, which can, if appropriate, be applied to carrier materials.
- Suitable antiredeposition agents which are also referred to as soil repellents, are, for example, nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxy groups of 15 to 30% by weight and of hydroxypropyl groups of 1 to 15% by weight, based in each case on the nonionic cellulose ethers and the polymers of phthalic acid and / or terephthalic acid or of their derivatives known from the prior art, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives thereof.
- the sulfonated derivatives of the phthalic acid and terephthalic acid polymers are particularly preferred.
- Optical brighteners can be added to detergents or cleaning agents in order to eliminate graying and yellowing of textiles treated with these agents. These substances absorb on the fiber and bring about a brightening and fake bleaching effect by converting invisible ultraviolet radiation into visible longer-wave light, whereby the Ultraviolet light absorbed from the sunlight is emitted as a weak bluish fluorescence and gives the white of the grayed or yellowed laundry pure white.
- Suitable compounds originate, for example, from the substance classes of 4,4'-diamino-2,2 ' - stilbenedisulfonic acids (flavonic acids), 4,4'-distyryl-bi ⁇ henylene, methylumbelliferones, coumarins, dihydroquinolinones, 1,3-diarylpyrazolines, naphthalic acid imides, Benzoxazole, benzisoxazole and benzimidazole systems as well as the pyrene derivatives substituted by heterocycles.
- fluor acids 4,4'-diamino-2,2 ' - stilbenedisulfonic acids
- 4,4'-distyryl-bi ⁇ henylene 4,4'-distyryl-bi ⁇ henylene, methylumbelliferones, coumarins, dihydroquinolinones, 1,3-diarylpyrazolines, naphthalic acid imides, Benzoxazole, benz
- Graying inhibitors in textile cleaning agents have the task of keeping the dirt detached from the fibers suspended in the liquor and thus preventing the dirt from being re-absorbed.
- Water-soluble colloids of mostly organic nature are suitable for this, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
- Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, e.g. degraded starch, aldehyde starches, etc. Polyvinylpyrrolidone can also be used.
- Cellulose ethers such as carboxymethyl cellulose (Na salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof can also be used as graying inhibitors in the particulate compositions.
- Antimicrobial agents are used to combat microorganisms. Depending on the antimicrobial spectrum and mechanism of action, a distinction is made between bacteriostatics and bactericides, fungistatics and fungicides, etc. Important substances from these groups are, for example, benzalkonium chlorides, alkylarlylsulfonates, halogenophenols and phenol mercuric acetate, although the use of these agents can also be dispensed with entirely.
- the formulations can also have fabric-softening clay minerals, which can be selected from a large number of minerals, in particular the layered silicates.
- the smectite group has proven to be advantageous.
- the term smectite includes both clays in which aluminum oxide is present in a silicate grid and clays in which magnesium oxide occur in a silicate grid.
- Typical smectites have the following general formula: Al 2 (Si 2 0 5 ) 2 (0H) 2 * nH 2 0 and compounds with the following formula Mg 3 (Si 2 0 5 ) 2 (OH) 2 « nH 2 0. Smectites are usually in an extensive three-layer structure.
- suitable smectites include those selected from the class of montmorillonites, hectorites, volchonskites, nontronites, saponites and sauconites, especially those with alkali or alkaline earth metal ions in the crystal lattice structure.
- Preferred is a three-layer, expandable aluminum silicate, which is characterized by a dioctahedral crystal lattice, whereas the extensive three Layer-magnesium silicate structure has a trioctahedral crystal lattice.
- the clay minerals contain cationic counterions such as protons, sodium ions, potassium ions, calcium ions, magnesium ions and the like. The clay minerals are usually distinguished on the basis of the cations that are predominantly or exclusively absorbed.
- a sodium bentonot is such a clay mineral in which sodium is predominantly present as the absorbed cation.
- Such absorbed cations can carry out exchange reactions with other cations in aqueous solutions.
- a typical exchange reaction involving a smectite type is as follows:
- Smectites such as nontonite for example, have an ion exchange capacity of approximately 70 meq / 100 g, and montmorillonites, which have an exchange capacity of above 70 meq / 100 g, have proven to be extremely preferred in the context of the present invention, since they are particularly effective towards them pull on the treating textiles and give them the desired soft feel.
- Particularly preferred clay minerals in the context of the present invention are therefore expanded three-layer smectite types with an ion exchange capacity of at least 50 meq / 100 g.
- Organophilic clay minerals can also be used in the present invention. Such hydrophobically modified clay minerals in which inorganic metal ions are exchanged for organic ions by the previously described exchange process are also preferred.
- the modified clay minerals are very miscible with organic solvents and have the property of storing organic solvents between the layers.
- Suitable examples of organophilic clay minerals are Benton SD-1, SD-2 and SD-3 from Rheox.
- Bentonites have proven to be particularly preferred. Bentonites are contaminated clays that are formed by weathering volcanic tuffs. Due to their high montmorillonite content, bentonites have valuable properties such as swellability, ion exchange capacity and thixotropy. It is possible to modify the properties of the bentonites according to the intended use. Bentonites are a common clay component in tropical soils and are mined as sodium bentonite, for example in Wyoming / USA. Sodium bentonite has the most favorable application properties (swellability), so that its use is preferred in the context of the present invention. Naturally occurring Calcium bentonites originate, for example, from Mississippi / USA or Texas / USA or from Landshut / D. The naturally obtained Ca bentonites are artificially converted into the more swellable Na bentonites by exchanging Ca for Na.
- montmorillonites The main constituents of the bentonites are so-called montmorillonites, which can also be used in pure form in the context of the present invention.
- Montmorillonites belong to the phyllosilicates and here to the dioctahedral smectites clay minerals that crystallize monoclinic-pseudohexagonal. Montmorillonite predominantly form white, gray-white to yellowish, completely amorphous appearing, easily friable, swelling in the water, but not plastic, by the general formulas
- Montmorillonites have a three-layer structure, which consists of two tetrahedral layers that are electrostatically cross-linked via the cations of an intermediate octahedral layer.
- the layers are not rigidly connected, but can swell by reversible incorporation of water (in 2-7 times the amount) and other substances such as alcohols, glycols, pyridine, ammonium compounds, hydroxyaluminosilicate ions, etc.
- the above. Formulas are only approximate formulas since montmorillonites have a large ion exchange capacity. So AI can be exchanged for Mg, Fe 2+ , Fe 3+ , Zn, Cr, Cu and other ions. As a result of such a substitution, the layers are negatively charged, which is balanced by other cations, especially Na + and Ca 2+ .
- Calcium or magnesium bentonites are usually non-swellable and usually less effective plasticizers. However, it is advantageous to combine non-swellable bentonites with carrier materials, such as, for example, polyethylene glycol, in order to achieve a considerably improved soft feel of the textiles treated with them. Calcium or magnesium bentonites, which are used in the presence of a sodium source, such as NaOH or NaC0 3 , are also advantageous.
- the clay is a treated montmorillonite-containing clay which has the following properties:
- a clay containing montmorillonite is particularly preferred, which is obtained by the following process steps: a) drying the clay to a water content of 25-35% by weight, b) extruding the dried material into a paste; c) drying the paste to a moisture content of 10-14% by weight and d) calcining at a temperature between 120 and 250 ° C.
- the chemical composition of the bentonite to be used as the starting material is preferably the following:
- the crystalline structure of montmorillonite is more or less resistant to acid treatment.
- Acid treatment in the context of the invention means that a sample of the clay (for example 1 g / l) in a 1N HCl solution is exposed to a temperature of 80 ° C. for 15 hours. It must be mentioned that most clays can be destroyed by acid treatment with, for example, fluoride. In the context of the present invention, however, acid treatment means HCI treatment. Montmorillonites (magnesium saturated / air dried) usually have a maximum diffraction distance of 14-15 in the 001 plane when treated with X-rays. This maximum diffraction distance also usually does not change by treating the clay with HCI.
- acid-sensitive montmorillonites are preferred, for example montmorillonites, the crystalline structure of which is destroyed when they are treated with HCl.
- the use of such clay minerals has a softening effect and also ensures better dispersibility in the aqueous wash liquor or the aqueous textile treatment liquid.
- the destruction of the crystalline structure can be determined by measuring the diffraction distance, so that the maximum diffraction distance to be expected for crystalline montmorilonites in the 001 plane of 14-15 does not appear for the destroyed montmorillonites.
- acid sensitivity is related to an increased exchange of aluminum for magnesium in the octahedral layer of the montmorillonite clay.
- the above-mentioned acid-sensitive montmorillonites have the advantage that they enable a reduced tendency to gel and an improved dispersibility in the wash liquor. In addition, it has been observed that such clay minerals produce an improved soft feel.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Detergent Compositions (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003138044 DE10338044A1 (de) | 2003-08-19 | 2003-08-19 | Verfahren zur Herstellung von Wasch-oder Reinigungsmitteln |
DE10338044.2 | 2003-08-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005019404A2 true WO2005019404A2 (fr) | 2005-03-03 |
WO2005019404A3 WO2005019404A3 (fr) | 2006-10-19 |
Family
ID=34201681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/008939 WO2005019404A2 (fr) | 2003-08-19 | 2004-08-10 | Procedes pour fabriquer des agents de lavage ou de nettoyage |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE10338044A1 (fr) |
WO (1) | WO2005019404A2 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005025964A1 (de) * | 2005-06-03 | 2006-12-07 | Henkel Kgaa | Wasch- oder Reinigungsmittel |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2412819A (en) * | 1945-07-21 | 1946-12-17 | Mathieson Alkali Works Inc | Detergent briquette |
JPH0729312B2 (ja) * | 1987-06-13 | 1995-04-05 | 旭電化工業株式会社 | 充填成型品製造機 |
EP0503612A1 (fr) * | 1991-03-14 | 1992-09-16 | Akutagawa Confectionary Co., Ltd. | Moule élastique et procédé pour la réalisation des produits moulés utilisant ce moule |
ID24359A (id) * | 1997-05-16 | 2000-07-13 | Unilever Nv | Proses untuk memproduksi suatu komposisi detergen |
FR2790700B1 (fr) * | 1999-03-10 | 2001-06-01 | Le Moule Alimentaire Europ | Procede de moulage de produits a durcissement thermique, composition d'elastomere vulcanisable, moules et pince de moulage pour sa mise en oeuvre |
US6429763B1 (en) * | 2000-02-01 | 2002-08-06 | Compaq Information Technologies Group, L.P. | Apparatus and method for PCB winding planar magnetic devices |
DE10058647A1 (de) * | 2000-07-14 | 2002-05-29 | Henkel Kgaa | Kompartiment- Hohlkörper III |
KR20030021641A (ko) * | 2001-09-07 | 2003-03-15 | 안병로 | 투명비누 자가제조용 키트 및 상기 키트를 이용한투명비누 자가제조방법 |
-
2003
- 2003-08-19 DE DE2003138044 patent/DE10338044A1/de not_active Withdrawn
-
2004
- 2004-08-10 WO PCT/EP2004/008939 patent/WO2005019404A2/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
DE10338044A1 (de) | 2005-03-17 |
WO2005019404A3 (fr) | 2006-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102004020720A1 (de) | Verfahren zur Herstellung von Wasch- oder Reinigungsmitteln | |
EP1529101A1 (fr) | Composition detergente ou nettoyante en portions | |
WO2005105974A1 (fr) | Procedes pour la production de detergents et de nettoyants | |
WO2004085593A1 (fr) | Produit de lavage ou de nettoyage | |
WO2004085592A1 (fr) | Produits nettoyants ou detergents | |
EP1660623B1 (fr) | Detergent ou nettoyant | |
EP1922401B1 (fr) | Detergent ou nettoyant | |
EP1434848A1 (fr) | Produits de lavage, rin age ou nettoyage en portions dans des contenants souples solubles dans l'eau | |
EP1888736B1 (fr) | Unite de dosage de produit de lavage ou de nettoyage | |
DE102004062704B4 (de) | Verfahren zur Herstellung eines portionierten Wasch- oder Reinigungsmittels | |
WO2004085596A1 (fr) | Produit de lavage ou de nettoyage | |
WO2005019404A2 (fr) | Procedes pour fabriquer des agents de lavage ou de nettoyage | |
WO2005021384A1 (fr) | Procede d'emballage d'agents de lavage ou de nettoyage | |
WO2005019401A1 (fr) | Produits nettoyants ou detergents | |
WO2006063724A1 (fr) | Outil de coupe destine a des bandes de films | |
WO2005019402A1 (fr) | Procedes pour fabriquer des agents de lavage ou de nettoyage | |
WO2006066721A1 (fr) | Unite de dosage pour detergent ou nettoyant | |
DE10314441A1 (de) | Bleichaktivator-Compounds | |
DE10338368A1 (de) | Verfahren zur Herstellung von Wasch- oder Reinigungsmitteln | |
DE10313456A1 (de) | Formstabile Reinigungsmittelportion | |
WO2005019403A1 (fr) | Agents de lavage ou de nettoyage | |
WO2005021381A1 (fr) | Procede de production d'agents de lavage ou de nettoyage | |
DE10350931A1 (de) | Verpackungsverfahren | |
DE10350930A1 (de) | Verpackungsverfahren mit Tragplatte | |
EP1859018A1 (fr) | Corps moule de lavage ou de nettoyage multiphase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |