WO2005001849A1 - Procede de prise en charge du combustible nucleaire epuise - Google Patents
Procede de prise en charge du combustible nucleaire epuise Download PDFInfo
- Publication number
- WO2005001849A1 WO2005001849A1 PCT/RU2003/000283 RU0300283W WO2005001849A1 WO 2005001849 A1 WO2005001849 A1 WO 2005001849A1 RU 0300283 W RU0300283 W RU 0300283W WO 2005001849 A1 WO2005001849 A1 WO 2005001849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiation
- eleκτροnοv
- fuel
- target
- actinides
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/42—Reprocessing of irradiated fuel
- G21C19/44—Reprocessing of irradiated fuel of irradiated solid fuel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Definitions
- Izves ⁇ en s ⁇ s ⁇ b unich ⁇ zheniya ⁇ ansu ⁇ an ⁇ vy ⁇ a ⁇ inid ⁇ v ⁇ s ⁇ eds ⁇ v ⁇ m dividing i ⁇ yade ⁇ ney ⁇ nami, ⁇ ye ⁇ luchayu ⁇ , dezin ⁇ eg ⁇ i ⁇ uya yad ⁇ a ⁇ yazhol ⁇ y target ⁇ - contact vys ⁇ y ene ⁇ gii - "ele ⁇ yade ⁇ ny” s ⁇ s ⁇ b (118 5160696, ⁇ l. ⁇ P ⁇ S21S 02/01, 03.11.92).
- ⁇ as ⁇ y ⁇ ie iz ⁇ b ⁇ e ⁇ eniya ⁇ e ⁇ niches ⁇ y task ⁇ eshaem ⁇ y with ⁇ m ⁇ schyu zayavlyaem ⁇ g ⁇ s ⁇ s ⁇ ba, yavlyae ⁇ sya u ⁇ i- tion of ⁇ sn ⁇ vny ⁇ ⁇ du ⁇ v ⁇ adi ⁇ imiches ⁇ y ⁇ e ⁇ e ⁇ ab ⁇ i ⁇ YA ⁇ and s ⁇ zdanie on e ⁇ y ⁇ sn ⁇ ve zam ⁇ nu ⁇ g ⁇ ⁇ livn ⁇ g ⁇ tsi ⁇ la ⁇ ES, za ⁇ y ⁇ g ⁇ ⁇ naib ⁇ lee ⁇ asnym ⁇ adi ⁇ - nu ⁇ lidam and ⁇ i.
- the posed problem is solved in that, in the process of regeneration of the process, the most harmful radiative exciters emit from the process of the process use fraudulent nuclides as raw materials for the production of neutrals, and regenerated raw materials for the production of fissile fuels; ⁇ e ⁇ b ⁇ azuyu ⁇ ⁇ in ⁇ imiches ⁇ e s ⁇ edinenie and ⁇ idayu ⁇ it ⁇ mu bl ⁇ v, ade ⁇ va ⁇ ny ⁇ usl ⁇ viyam ⁇ sle- duyuscheg ⁇ ⁇ imeneniya in ⁇ ea ⁇ a ⁇ ⁇ ES, ⁇ azmeschayu ⁇ ⁇ s ⁇ l ⁇ chnye nu ⁇ lidy in mishenya ⁇ a ⁇ sialn ⁇ y simme ⁇ ii, ⁇ azhduyu target ⁇ uzhayu ⁇ blan ⁇ e ⁇ m in tsen ⁇ aln ⁇ y z ⁇ ne ⁇ g ⁇ ⁇ azmeschayu ⁇ ⁇ ans
- the long-term fragment of the ⁇ c-99 division distinguishes ⁇ ⁇ places in the moderator of the blank ⁇ only in case if the neutral switching of ⁇ c-99 does not interfere with the property 1.3.
- ⁇ a ⁇ ie ⁇ du ⁇ y division ⁇ a ⁇ ⁇ g, ⁇ s ⁇ , 8 ⁇ and ⁇ ed ⁇ zemelnye elemen ⁇ y, ⁇ i ⁇ adi ⁇ imiches ⁇ y ⁇ e ⁇ e ⁇ ab ⁇ e ⁇ YA ⁇ not ⁇ a ⁇ tsi ⁇ ni ⁇ uyu ⁇ and ⁇ ansmu ⁇ atsi ⁇ nny tsi ⁇ l not na ⁇ avlyayu ⁇ , ⁇ s ⁇ l ⁇ u ⁇ ni s ⁇ de ⁇ zha ⁇ d ⁇ lg ⁇ zhivuschie ⁇ adi ⁇ nu ⁇ lidy ( ⁇ g-93, ⁇ - 107, 8 ⁇ -126 and d ⁇ .)
- a ⁇ ivn ⁇ s ⁇ It is small,
- nuclides are categorized as being of average activity, which must be protected. 2.
- ⁇ al ⁇ s ⁇ sections ⁇ yade ⁇ ny ⁇ ⁇ tsess ⁇ v ⁇ m ⁇ ensi ⁇ uyu ⁇ , vy ⁇ d ⁇ du ⁇ v and e ⁇ e ⁇ ivn ⁇ s ⁇ ⁇ ansmu ⁇ atsii ⁇ gamma ⁇ analu uvelichivayu ⁇ ⁇ em, ch ⁇ is ⁇ lzuyu ⁇ v ⁇ ichn ⁇ e 7-radiation in the target v ⁇ zni ⁇ ayuschee vsleds ⁇ vie ⁇ m ⁇ n ⁇ vs ⁇ g ⁇ ⁇ asseya- Nia ⁇ e ⁇ vichny ⁇ 7 ⁇ van ⁇ v, ⁇ adayuschi ⁇ on the target, radiation ⁇ m ⁇ zn ⁇ g ⁇ ⁇ zhdayuschi ⁇ - Xia ⁇ m ⁇ n ⁇ vs ⁇ i ⁇ elec- trons and elec- tronic devices.
- ned ⁇ s ⁇ izheniya value ⁇ 1 ⁇ itsi ⁇ ney ⁇ n ⁇ v in blan ⁇ e ⁇ a ⁇ uvelichivayu ⁇ for scho ⁇ d ⁇ bavleniya in i ⁇ tsen ⁇ alnuyu z ⁇ nu d ⁇ lni ⁇ eln ⁇ g ⁇ ⁇ liche- s ⁇ va ma ⁇ e ⁇ ial ⁇ v, delyaschi ⁇ sya on bys ⁇ y ⁇ ney ⁇ na ⁇ , na ⁇ ime ⁇ , es ⁇ es ⁇ venn ⁇ g ⁇ or ⁇ bednonn ⁇ g ⁇ ⁇ , ⁇ anyascheg ⁇ sya as " ⁇ vala" on zav ⁇ da ⁇ ⁇ ⁇ azdeleniyu iz ⁇ v ⁇ .
- ⁇ ⁇ 1 6, 24 • Yu -2 - U - ⁇ - ⁇ (2)
- ⁇ 0 and _ ⁇ 0 are the length of the transition in cm and the number of transitions of the wiggle. If you select a wiggle for the target, choose a cartridge that has a 7-quantum beam that falls on the target and fade the system. However, in this mode of generation of 7-radiation, the elec- trons are experiencing strong synchronized vibrations. They arise due to quantum fluctuations of the radiated energy, reduce the lifetime of the beam on the site and the effective use of it. The influence of synchronized vibrations minimizes or excludes all of the following. 5.1.1.
- ⁇ in the case of the use of a cyclic accelerator-drive its elementary drive is formed from two direct-coupled parts connected to a magnetic system; in each case, they use two identical radiating structures and two arrays with equal parameters of the accelerating field; ⁇ azmeschayu ⁇ ⁇ e ⁇ vy of ⁇ ez ⁇ na ⁇ v in ⁇ ntse ⁇ e ⁇ v ⁇ g ⁇ ⁇ yam ⁇ lineyn ⁇ g ⁇ uchas ⁇ a ⁇ sle ⁇ e ⁇ v ⁇ y emitting s ⁇ u ⁇ u ⁇ y and ⁇ e ⁇ ed magni ⁇ n ⁇ y sis ⁇ em ⁇ y ⁇ v ⁇ a and v ⁇ y - at the beginning of v ⁇ g ⁇ uchas ⁇ a ⁇ sle sis ⁇ emy ⁇ v ⁇ a and ⁇ e ⁇ ed v ⁇ y emitting s ⁇ u ⁇ u ⁇ y; choose a group of accelerating fields so that, using dis ⁇ e ⁇ siyu ⁇ d ⁇ lny ⁇ ⁇ dina ⁇
- accelerated elec- trons in the market are used by hand in a bundle of portable electromagnet (laser) radiation and are emitted by the user. In this case, it implements the "end-to-end" 7-radiation generation mode, which, however, is characterized by a low intensity. 5.2.1.
- laser undulation When ⁇ ⁇ ⁇ 1, where ⁇ is the frequency of emission of the radiation pulses, _ ⁇ ⁇ is the time of their life in the laser, the laser is suppressing the intensity of the generation of magnesium. 5.2.2.
- E ⁇ e ⁇ ivn ⁇ s ⁇ gene ⁇ atsii ⁇ ndulya ⁇ n ⁇ g ⁇ 7 radiation ⁇ vyshayu ⁇ is ⁇ l- Zuy ⁇ din ⁇ chny im ⁇ uls radiation laze ⁇ n ⁇ g ⁇ in ⁇ aches ⁇ ve ⁇ lya na ⁇ ach ⁇ i on vse ⁇ ⁇ ⁇ yam ⁇ lineyny ⁇ uchas ⁇ a ⁇ ⁇ ae ⁇ ii ele ⁇ n ⁇ v for cheg ⁇ ⁇ usi ⁇ uyuschie ze ⁇ ala us ⁇ anavlivayu ⁇ in ⁇ ch ⁇ a ⁇ ⁇ e ⁇ esecheniya ⁇ iches ⁇ i ⁇ ⁇ sey uchas ⁇ v ⁇ d ugl ⁇ m ⁇ / ⁇ ⁇ ⁇ azh- d ⁇ y of ni ⁇ , Saving a ring-shaped optical partition with a closed axial contact; ⁇ bes ⁇ echivayu ⁇ ⁇ usi ⁇ v ⁇ y ⁇ e ⁇ e ⁇
- the angle ⁇ ⁇ is optimal.
- the maximum length of the interaction between the electric beam bundle and the maximum value of the local energy ⁇ ⁇ 0 is realized, the maximum length is realized .
- Ene ⁇ giya izluchaemy ⁇ 7 ⁇ van ⁇ v zavisi ⁇ ⁇ angle i ⁇ is ⁇ us ⁇ aniya ⁇ n ⁇ si ⁇ eln ⁇ ⁇ si ⁇ yam ⁇ liney- n ⁇ g ⁇ uchas ⁇ a ⁇ bi ⁇ y ele ⁇ n ⁇ v, ⁇ ichom 7 ⁇ van ⁇ y with ene ⁇ giey ⁇ ⁇ 0 izluchayu ⁇ sya ⁇ d zero ugl ⁇ m vd ⁇ l ⁇ si ⁇ uch ⁇ a in na ⁇ avlenii ele ⁇ n ⁇ v motion.
- Tables 3 and 4 are given the special and total outputs of the gamma and neutral channels, calculated for a single falling ⁇ -quantum: in table 3, it is only a small ⁇ ).
- the cross sections for 8g-90 are not measured, and the calculations are performed for 8g-88, as it takes the maximum of the possible division of the process of dividing 1g 10 eV and minimal cross sections.
- ⁇ -237 was selected from the actinides, the values of the threshold and the cross sections of the nuclear reactions are typical for the transient excisions.
- the cross-sections are averaged for the incident ⁇ -quanta, kakak and cross-sections of the electromagnets, which are 8-speed and 8-in.
- ⁇ a ⁇ ime ⁇ on is ⁇ chni ⁇ a ⁇ syn- ⁇ nn ⁇ g ⁇ radiation ⁇ liches ⁇ v ⁇ ⁇ yam ⁇ lineyny ⁇ uchas ⁇ v ⁇ leble ⁇ sya ⁇ 10 d ⁇ 40.
- tseles ⁇ b ⁇ azn ⁇ is ⁇ lz ⁇ va ⁇ us ⁇ i ⁇ el- ⁇ ansmu ⁇ a ⁇ with ⁇ e c_ 80 GeV, and ⁇ - ⁇ aches ⁇ e gene ⁇ a ⁇ v ⁇ van ⁇ v - sve ⁇ - ⁇ v ⁇ dyaschie viggle ⁇ y with na ⁇ yazhonn ⁇ s ⁇ yu magni ⁇ n ⁇ g ⁇ ⁇ lya ⁇ l ⁇ 4 ⁇ l.
- the target irradiated by gamma radiation and the blanking side of it in FIG. 3 are not illustrated. They are shown in FIG. 6.
- Figure 4. The gamma and neutral disturbances are most radically divisible - 8g-90 and Sz-137, and also -129 are stable; For each product, a negative content in the non-core fraction of the KYE-1000 type reactor is indicated. Values: ® - a permissible radionuclide, Verizon - a component that is stable to it, ⁇ - an active 5-active product, ⁇ - a product that is compatible with it. ⁇ The center means the transmissive nuclear reactions.
- product nuclides are fragment fragments. They are subject to fragmentation, and most of all, the most toxic of them are the recycle in the target and the coupling in connection with the schemes of Fig. 4.
- Figure 6. The scheme of the target-blank system of cylindrical geometry. The location of the nuclides is shown: small radionuclides ( ⁇ ) are placed in the target, the transcendental actinides ( ⁇ ) are in the central area of the blank, and the blocks are in the middle of the window.
- ⁇ ⁇ is the total number ⁇ ney ⁇ n ⁇ v, ⁇ zhdonny ⁇ in the target and tsen ⁇ aln ⁇ y z ⁇ ne blan ⁇ e ⁇ a, ⁇ c> ⁇ + 8, ⁇ /> ⁇ + 8 and ⁇ (> ⁇ + 8 - sectional za ⁇ va ⁇ , Division and ⁇ ln ⁇ e section for bys ⁇ y ⁇ ney ⁇ n ⁇ v, us ⁇ ednonnye ⁇ s ⁇ e ⁇ u and ⁇ ⁇ ntsen ⁇ atsii nu ⁇ li- d ⁇ v, v ⁇ lyuchaya ⁇ -238 Chisl ⁇ yade ⁇ ⁇ -238 ⁇ 8;., ⁇ azdelivshi ⁇ sya ⁇ d deys ⁇ viem 7 ⁇ van ⁇ v ⁇ i gene ⁇ atsii ney ⁇ n ⁇ v
- ⁇ ⁇ + ⁇ ⁇ / ___ l ⁇ ⁇ °> / ⁇ ⁇ / 7 ⁇ 7 ⁇ ⁇ /> ⁇ + 8 + ⁇ till > ⁇ + 8 + ⁇ > ⁇ + * ⁇
- ⁇ is the number of degrees that caused the division
- ⁇ ION>>> ⁇ + 8 _ is the cross section for removing fast neutrons to the energy region, below the division pitch ⁇ ⁇ 238 and the transcendence of the nucleus, averaged division of the mediation.
- excess power may be connected to the optional ECU unit.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma & Fusion (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
Abstract
Actuellement, à l'étape finale du cycle de combustible d'une centrale nucléaire, le combustible nucléaire épuisé est soumis à un retraitement, au cours duquel les déchets hautement radioactifs et le plutonium sont isolés. Les procédés actuels n'offrent pas de garantie contre la dissémination des radionucléides. Les substances les plus dangereuses sont Sr-90, Cs-37 et les actinides transuraniens. Le but de l'invention est d'utiliser les principaux composants du retraitement radiochimique du combustible épuisé comme matière première, et de générer à partir desdits composants un cycle de combustible fermé dans une centrale nucléaire, qui bloque les radionucléides les plus dangereux et le plutonium. A cette fin, le procédé selon l'invention consiste à transmuter Sr-90 et Cs-37 en isotopes stables par l'intermédiaire de réactions photonucléaires, lesquelles sont produites par un rayonnement de freinage magnétique η, et à utiliser les photoneutrons ainsi formés pour provoquer la fission des actinides et régénérer les noyaux fissiles dans l'uranium épuisé. Il a été démontré qu'une telle approche permet d'obtenir un coefficient de régénération égal à 1, une vitesse de transmutation et de régénération égale à la vitesse de combustion du combustible dans les réacteurs nucléaires, et une compensation, par l'énergie de fission des noyaux des actinides, des pertes d'énergie occasionnées. Grâce à cette technique, la radioactivité des déchets nucléaires stockés peut être réduite de 5 unités, la circulation de l'uranium dans le cycle de combustible peut être multipliée par 30, et le combustible fissile peut être régénéré sans utiliser de plutonium. La transmutation de Sr-90 et de Cs-37 et l'élimination des actinides à l'étape finale du cycle de combustible représentent une économie à laquelle vient s'ajouter la valeur du combustible régénéré. Lorsque le coefficient de régénération est égal à 1, la somme de ladite économie et de la valeur du combustible régénéré peut sensiblement dépasser les dépenses d'exploitation. De cette façon, les qualité écologiques du procédé selon l'invention assurent la rentabilité du retraitement du combustible épuisé.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/RU2003/000283 WO2005001849A1 (fr) | 2003-06-27 | 2003-06-27 | Procede de prise en charge du combustible nucleaire epuise |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/RU2003/000283 WO2005001849A1 (fr) | 2003-06-27 | 2003-06-27 | Procede de prise en charge du combustible nucleaire epuise |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005001849A1 true WO2005001849A1 (fr) | 2005-01-06 |
Family
ID=33550544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2003/000283 WO2005001849A1 (fr) | 2003-06-27 | 2003-06-27 | Procede de prise en charge du combustible nucleaire epuise |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2005001849A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7405225B2 (en) | 2002-06-06 | 2008-07-29 | Boehringer Ingelheim Pharmaceuticals, Inc. | Substituted 3-amino-thieno[2,3-b]pyridine-2-carboxylic acid amide compounds and processes for preparing and their uses |
CN102376376A (zh) * | 2010-08-26 | 2012-03-14 | 中国核动力研究设计院 | 提高乏燃料溶液嬗变堆反应性和嬗变效果的堆芯设计方法 |
RU2634476C1 (ru) * | 2016-10-13 | 2017-10-31 | Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") | Способ эксплуатации ядерного реактора в ториевом топливном цикле с наработкой изотопа урана 233u |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB858094A (en) * | 1956-05-05 | 1961-01-04 | Kurt Diebner | Method of separating fissile material |
US4721596A (en) * | 1979-12-05 | 1988-01-26 | Perm, Inc. | Method for net decrease of hazardous radioactive nuclear waste materials |
FR2702591A1 (fr) * | 1993-01-18 | 1994-09-16 | Eremeev Igor P | Un procédé de transmutation des isotopes. |
EP1128394A2 (fr) * | 2000-02-24 | 2001-08-29 | General Atomics | Transmutateur transuranien à refroidissement gazeux, commandé par un accélérateur |
WO2003025951A1 (fr) * | 2001-09-20 | 2003-03-27 | Budapesti Műszaki és Gazdaságtudományi Egyetem | Procede et appareil de transmutation de dechets radioactifs |
-
2003
- 2003-06-27 WO PCT/RU2003/000283 patent/WO2005001849A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB858094A (en) * | 1956-05-05 | 1961-01-04 | Kurt Diebner | Method of separating fissile material |
US4721596A (en) * | 1979-12-05 | 1988-01-26 | Perm, Inc. | Method for net decrease of hazardous radioactive nuclear waste materials |
FR2702591A1 (fr) * | 1993-01-18 | 1994-09-16 | Eremeev Igor P | Un procédé de transmutation des isotopes. |
EP1128394A2 (fr) * | 2000-02-24 | 2001-08-29 | General Atomics | Transmutateur transuranien à refroidissement gazeux, commandé par un accélérateur |
WO2003025951A1 (fr) * | 2001-09-20 | 2003-03-27 | Budapesti Műszaki és Gazdaságtudományi Egyetem | Procede et appareil de transmutation de dechets radioactifs |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7405225B2 (en) | 2002-06-06 | 2008-07-29 | Boehringer Ingelheim Pharmaceuticals, Inc. | Substituted 3-amino-thieno[2,3-b]pyridine-2-carboxylic acid amide compounds and processes for preparing and their uses |
CN102376376A (zh) * | 2010-08-26 | 2012-03-14 | 中国核动力研究设计院 | 提高乏燃料溶液嬗变堆反应性和嬗变效果的堆芯设计方法 |
CN102376376B (zh) * | 2010-08-26 | 2014-03-19 | 中国核动力研究设计院 | 提高乏燃料溶液嬗变堆反应性和嬗变效果的堆芯设计方法 |
RU2634476C1 (ru) * | 2016-10-13 | 2017-10-31 | Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") | Способ эксплуатации ядерного реактора в ториевом топливном цикле с наработкой изотопа урана 233u |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Martorana et al. | Radioactive ion beam opportunities at the new FRAISE facility of INFN-LNS | |
CN112309590A (zh) | 一种低温可控核聚变装置及其实现方式 | |
RU2003191C1 (ru) | Способ трансмутации изотопов | |
WO2005001849A1 (fr) | Procede de prise en charge du combustible nucleaire epuise | |
Russell et al. | Introduction to spallation physics and spallation‐target design | |
KR101885495B1 (ko) | 방사성 폐기물의 처리 방법 | |
SK16862001A3 (sk) | Energia zo štiepenia spotrebovaného nukleárneho odpadu | |
RU2169405C1 (ru) | Способ трансмутации долгоживущих радиоактивных изотопов в короткоживущие или стабильные | |
Zhu et al. | Higher spin states in neutron rich nuclei | |
Anderson et al. | Efficient, radiation-hardened, 400 and 800-keV neutral beam injection systems | |
Nigg et al. | Experimental investigation of filtered epithermal-photoneutron beams for BNCT | |
Karol | The periodic table of the elements: A review of the future | |
Saei | Gamma-decay spectroscopy of sodium-26 | |
Landsberg | On some low energy experiments on hadron spectroscopy | |
Ursu et al. | New developments in direct nuclear fission energy conversion devices | |
Takai et al. | Nuclear Transmutation of Long-Lived Nuclides with Laser Compton Scattering: Quantitative Analysis by Theoretical Approach | |
Hajima et al. | Design of a multi-turn ERL for hybrid K-edge densitometer | |
Richardson | Industrial Radiography Manual. | |
Casten | Nuclear structure at extremes of stability: Prospects for radioactive beam experiments and facilities | |
Ridikas et al. | From RIB production to the applications for accelerator driven hybrid systems | |
Byon | Central production of charged particles at CDF | |
Anderson et al. | m Lawrence Berkeley Laboratory | |
Grand et al. | Accelerator breeders: will they replace liquid metal fast breeders | |
Lebois et al. | Rapid onset of collectivity in the vicinity of 78Ni | |
D'haeseleer | Neutronic, thermal and radiation shielding design of the beam dump of the Myrrha High Power Proton Accelerator (HPPA): 600 MeV* 4 mA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CH CN CZ DE DK ES FI GB IL IN JP KR RU SE US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |