WO2005083995A1 - Gestion des appels - Google Patents
Gestion des appels Download PDFInfo
- Publication number
- WO2005083995A1 WO2005083995A1 PCT/US2005/005307 US2005005307W WO2005083995A1 WO 2005083995 A1 WO2005083995 A1 WO 2005083995A1 US 2005005307 W US2005005307 W US 2005005307W WO 2005083995 A1 WO2005083995 A1 WO 2005083995A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user
- telephone
- call
- communication
- responsive
- Prior art date
Links
- 230000008859 change Effects 0.000 claims abstract description 9
- 238000004891 communication Methods 0.000 claims description 156
- 230000006854 communication Effects 0.000 claims description 156
- 238000007726 management method Methods 0.000 claims description 149
- 238000000034 method Methods 0.000 claims description 135
- 230000000694 effects Effects 0.000 claims description 85
- 230000004044 response Effects 0.000 claims description 16
- 238000013507 mapping Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 8
- 230000002452 interceptive effect Effects 0.000 claims description 8
- 230000000977 initiatory effect Effects 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 4
- 230000007613 environmental effect Effects 0.000 claims description 3
- 230000007257 malfunction Effects 0.000 claims 4
- 230000000007 visual effect Effects 0.000 claims 2
- 230000003213 activating effect Effects 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 32
- 238000010586 diagram Methods 0.000 description 13
- 230000011664 signaling Effects 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- 230000006399 behavior Effects 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000015654 memory Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000012913 prioritisation Methods 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- HRANPRDGABOKNQ-ORGXEYTDSA-N (1r,3r,3as,3br,7ar,8as,8bs,8cs,10as)-1-acetyl-5-chloro-3-hydroxy-8b,10a-dimethyl-7-oxo-1,2,3,3a,3b,7,7a,8,8a,8b,8c,9,10,10a-tetradecahydrocyclopenta[a]cyclopropa[g]phenanthren-1-yl acetate Chemical group C1=C(Cl)C2=CC(=O)[C@@H]3C[C@@H]3[C@]2(C)[C@@H]2[C@@H]1[C@@H]1[C@H](O)C[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 HRANPRDGABOKNQ-ORGXEYTDSA-N 0.000 description 1
- FDQGNLOWMMVRQL-UHFFFAOYSA-N Allobarbital Chemical compound C=CCC1(CC=C)C(=O)NC(=O)NC1=O FDQGNLOWMMVRQL-UHFFFAOYSA-N 0.000 description 1
- 241001122315 Polites Species 0.000 description 1
- 208000003028 Stuttering Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229940000425 combination drug Drugs 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004246 ligand exchange chromatography Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 235000013550 pizza Nutrition 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004578 scanning tunneling potentiometry Methods 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/436—Arrangements for screening incoming calls, i.e. evaluating the characteristics of a call before deciding whether to answer it
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2203/00—Aspects of automatic or semi-automatic exchanges
- H04M2203/20—Aspects of automatic or semi-automatic exchanges related to features of supplementary services
- H04M2203/2072—Schedules, e.g. personal calendars
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/42229—Personal communication services, i.e. services related to one subscriber independent of his terminal and/or location
- H04M3/42263—Personal communication services, i.e. services related to one subscriber independent of his terminal and/or location where the same subscriber uses different terminals, i.e. nomadism
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/50—Centralised arrangements for answering calls; Centralised arrangements for recording messages for absent or busy subscribers ; Centralised arrangements for recording messages
- H04M3/53—Centralised arrangements for recording incoming messages, i.e. mailbox systems
- H04M3/533—Voice mail systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/50—Centralised arrangements for answering calls; Centralised arrangements for recording messages for absent or busy subscribers ; Centralised arrangements for recording messages
- H04M3/53—Centralised arrangements for recording incoming messages, i.e. mailbox systems
- H04M3/533—Voice mail systems
- H04M3/53308—Message originator indirectly connected to the message centre, e.g. after detection of busy or absent state of a called party
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/54—Arrangements for diverting calls for one subscriber to another predetermined subscriber
Definitions
- This invention relates generally to management of communications such as telephone calls, and more specifically to techniques for handling, routing, and configuring incoming telephone calls.
- TNs telephone numbers
- this set of TNs includes home, office, and cell phone numbers. If the caller knows more than one TN for the callee, the caller selects the most likely number to reach the callee and often leaves a voicemail message before trying another number. The caller is burdened with determining the most likely sequence of calls to reach the callee. This often results in one or more voicemail messages (home, office, cell) even if the caller ultimately reaches the callee. This situation slows the process of establishing a connection, increases costs, and reduces the probability of making a live connection, due to the effort and time required of the caller. In addition, multiple voicemail messages are a burden for the callee.
- the callee is often in a much better position to know how they can be reached than the caller, since the callee often knows in advance where they will be physically located (home, office, or car), and how reachable they will be.
- the present invention provides techniques for allowing the callee to specify how incoming calls will be handled.
- the user can specify call management parameters according to various factors, including time of day, day of week, manual override, caller identity, caller input (for example specifying whether the call is urgent), called number, location of callee (for example using GPS, cell phone tower location, tower triangulation, Instant Messaging presence, Smart Tags, or other locating technology), location of caller, recent phone use, explicit selection (using web page, cell phone application, dial-in Interactive Voice Response (IVR), or other method), implicit system- learned (adaptive) understanding of the callee's call-receipt desires, or the like. In addition, any combination of the above factors may be used.
- Calls may also be sent to voicemail without ringing the user's phone, based upon filtering or explicit selection. Callees may configure their routing and filtering by behav- ior/ location/ activity mode.
- Example modes are: At Home, At Work, At Work in a Meeting, Commuting, and on Vacation.
- the selection of active mode can be made explicitly or implicitly.
- Explicit mode selection can include any combination of time-of-day and user input using cell phone, web, and/ or phone TYR.
- a cell phone may have a physical "mode" button or a mechanism for accessing an on-screen menu from which the user can select among a number of modes.
- Implicit mode selection can include location information (including velocity calculated from sequential position samples), computer calendaring information, past behavior of the user, and the location of other users ("suppress calls while I'm in the presence of the CEO").
- Global Positioning System (GPS) technology may be used to route calls (based on mode); the destination telephone need not be equipped with GPS detection technology. For example, if the user is carrying a cell phone (or other location-aware device) and walks into his or her office, the mode may change to "At Office" and calls will be routed to the office phone.
- GPS Global Positioning System
- Different ring types may be used based upon any combination of dialed TN, calling party, mode, caller location, callee location, and/ or the like.
- the specific ring of a user's home, office, or cell phone may be selected by the system based on whether the caller is a family member or business associate (filter based) or whether the caller originally called the home TN or office TN (dialed TN based).
- the callee configures the system with mode and filter preferences, in order to define how various calls should be handled. Configuration can take place via any type of user interface, including a web interface, phone-based IVR, or cell phone application. Configuration includes characterizing potential callers into groups and setting up filters for each group. Filters specify either to which phone to send the call, to send it to voicemail, or to give the caller a choice.
- the filter configuration for a group can change based on time of day, ex- plicit command from the user, and/ or location of the user. Configuration also includes defining various activity modes during which different call management rules should be applied. [0011]
- the system can learn (adapt and extrapolate from past user behavior) in order to select current mode or to place calling TN into filters. This configuration can take place automatically by the system or the system can present suggestions to the user for approval. The system can, for example, learn not to take calls from party A when the callee is in the presence of party B.
- a call to any one of a callee's existing phone numbers is automatically routed to the callee at his or her designated phone.
- certain callers will ring through and others will automatically go to a single voicemail box (or otherwise handled).
- location information from a cell phone carried by the callee can automatically change the user's filtering and/ or activity mode throughout the day. For example, if the callee is within 20 feet of his or her office phone, the office phone is the phone that will ring for any, or some selected subset, of people calling the callee.
- the system of the present invention provides any or all of the following features, alone or in any combination: • multiple TNs for a single callee: the callee can specify different handling proce- dures for each TN; • a mechanism, such as a web-based user interface, for specifying and implementing call handling procedures that depend on any or all of a number of factors; • callee (and/ or caller) location detection, for example using GPS or other techniques, for determining which call-handling mode to use; • time of day detection for determining which call-handling mode to use; • caller identification, for determining which call-handling mode to use; • adaptive techniques for learning callee preferences for call handling; • call forwarding to other phones or to voicemail or email; • call screening; • default modes for call-handling (for example, At Home, At Work, At Work in a Meeting, Commuting, On Vacation); • user interface for modifying and configuring call-handling modes; • automatic switching from one mode to another, for example when conditions, time
- FIG. 1 is a block diagram depicting an architecture for implementing the present invention according to one embodiment.
- Fig. 2 is a screen shot depicting a telephone setup screen according to one embodiment.
- Figs. 3, , and 5 are screen shots depicting call manager setup screens according to one embodiment.
- Fig. 6 is a screen shot depicting a VIP list management screen according to one embodiment.
- Fig. 7 is a screen shot depicting an example of a call management summary screen according to one embodiment.
- Fig. 8 is a screen shot depicting an example of a user interface for selecting among modes via a mobile phone handset.
- Fig. 9 is a screen shot depicting a call manager setup screen wherein some calls are converted to voicemails, according to one embodiment.
- Fig. 10 is a screen shot depicting a call manager setup screen wherein calls to different phone numbers are handled differently.
- Fig. 11 a screen shot depicting an example wherein a current activity mode for a callee is displayed on a caller's device.
- Fig. 12 is a block diagram depicting an architecture for implementing callee identification by means other itan NANP telephone numbers, according to one embodiment.
- Fig.13 is a block diagram depicting an example of a detailed architecture for implementing the present invention according to one embodiment.
- Fig. 14 is a block diagram depicting one architecture for implementing call management functionality according to the techniques of the present invention.
- Fig. 15 is a block diagram depicting an architecture for implementing the present invention by integrating with a wireless carrier using WIN or CAMEL.
- Fig. 16 is a block diagram depicting an architecture for implementing the present invention using DNP.
- Fig.17 is a table containing an example set of rules for a callee, including a set of op-codes.
- Fig.18 is a block diagram depicting an architecture for implementing a disaster- resilient DNP architecture according to one embodiment of the present invention.
- Fig. 19 is an example of a call routing matrix according to one embodiment.
- Fig. 20 is a block diagram depicting an architecture for in-network and out-of- network call routing using an implementation of the present invention.
- callee is used to refer to an individual or entity that is being called or that may be called at some point in the future.
- the term "user” is used interchangeably with “callee.”
- a "caller” is a person who places a call to a user, or attempts to place a call, or potentially could place a call.
- a "dialed telephone number (dialed TN)" is a number dialed by a caller. It may or may not be associated with an actual telephone device.
- a "delivery telephone device” is a device that can be used to receive calls.
- a "user profile” is a set of user configuration information specifying call management parameters.
- a “mode” is a callee's operational mode, such as "At Home,” “At Work,” etc.
- a mode can be selected explicitly by a user or implicitly according to the user's profile.
- a "filter” is a defined scheme for identifying a subset of a user's potential callers and to treat calls from them in a distinctive way. [0042] Additional terminology is defined herein within the context of the following description.
- a caller can specify a callee using any type of caller identifier, whether a dialed TN, a text string, a non-NANP digit sequence, or the like.
- the term User Address (UA) is used herein to denote any such mechanism for identifying a callee.
- Delivery TN refers to the telephone number (or UA) of the device or system that terminates a call for, or to, a user. Delivery TNs connect to delivery devices such as a telephone, a voicemail platform (traditional or e-mail delivery only), attendant Interactive Voice Response (IVR) system, or the like.
- a Dialed TN (the TN that the caller dialed) may or may not have the same number as one of the callee's Delivery TNs; a call to the Dialed TN may or may not be connected to the device addressed by the identical Delivery TN.
- a Dialed TN is virtual and is not the address of a physical delivery device.
- the present invention manages a callee's set of UAs and the real-time mapping of those UAs to delivery devices. Calls placed to a UA may be routed to one (or more) of the delivery devices corre- sponding to Delivery TNs.
- the system uses a combination of modes, filters, caller selection (attendant), busy state, and no-answer state to determine whether and how a call should be routed to an appropriate delivery TN.
- the present invention can be implemented in symmetric or asymmetric fashion.
- a symmetric implementation is one in which all delivery TNs are in the set of dialed TNs; otherwise the implementation is asymmetric.
- Fig. 1 there is shown a block diagram depicting an architecture for implementing the present invention according to one embodiment.
- Caller 101 places a call via a local phone switch 102 such as Central Office (CO),
- CO Central Office
- the call goes through public switched telephone network (PSTN) 103 to destination switch 104 such as CO 104A, MSC 104B, or PBX 104C.
- PSTN public switched telephone network
- destination switch 104 queries call management module 105 to determine where to route the call.
- Module 105 checks user profile database 105A to obtain call management settings for users.
- external input 120 (such as callee location, caller identifiers, and the like) is also used by module 105 to determine where to route the call.
- Module 105 sends a response to switch 104 indicating the desired routing for the call.
- the appropriate delivery device 108 (including for example home telephone 108A, wireless telephone 108B, office telephone 108C, voicemail platform 106, and/ or the like), is given the call, and the device handles the call as though it were received directly. Callee 109 then receives the call via the selected delivery device 108.
- voicemail platform 106 when voicemail platform 106 handles a call, it can query module 105 to determine whether a voicemail message should be delivered as an email at- tachment 110 to email reader 111 for receipt by callee 109. In another embodiment, when voicemail platform 106 handles a call, it can activate an alert (e.g. a flashing light, a tone, or an indicator on a display) on any or all of delivery devices 108, according to callee preferences as indicated in module 105. [0052] In one embodiment, each query from destination switch 104 includes, for exam- pie, the dialed TN and the caller TN (if known). One skilled in the art will recognize that other information may also be included in the query.
- module 105 in response to receiving a query, returns a destination TN which may represent a delivery device 108 corresponding to the dialed number, or another device 108, or voicemail platform 106.
- Voicemail platform 106 can be in the same network as destination switch 104, or it can be ac- cessible over PSTN 103.
- voicemail platform e-mail delivery query 107 includes the dialed TN and the caller TN (if known).
- module 105 provides a delivery flag (yes or no), and an e-mail address.
- the present invention can be implemented in connection with any type of tele- phone system, including home telephones, office telephones, and wireless telephones, regardless of telephone equipment and regardless of telephone service provider.
- Fig. 14 there is shown a block diagram depicting one architecture for implementing call management functionality according to the techniques of the present invention. When caller 101 places a call to callee 109, the call is routed to callee 109 based on rules stored in service database 105A.
- Caller 202 may call a landline TN or wireless TN of callee 109.
- Fig. 14 illustrates "post-ring" management of the call.
- Landline phone 1420 is rung by connected CO switch 102A1 in LEG 1401.
- PSTN Pub- he Switched Telephone Network
- MSC Mobile Switch
- SMSC Mobile Switch
- STP Signaling Transfer Points
- Application Processor 105B queries database 105A and returns a reply containing routing information that will be used by Mobile Switch 104B to route the call. Possible routing destinations include callee's 109 wireless phone and carrier's voicemail platform 106. [0058] In some implementations, queries from Mobile Switch 104B may pass through the Home Location Register (HLR) 1402. In a similar fashion, when caller 101 places a call to the callee's 109 wireless phone, rather than callee's wireline phone 1420, the call is routed from originating switch 102A2, through PSTN 103 to MSC 104B. MSC 104B manages these calls "pre-ring," before the mobile phone is rung.
- HLR Home Location Register
- caller 101 is connected to an automated attendant (Interactive Voice Response, or IVR; not shown in Fig. 14).
- IVR Interactive Voice Response
- MSC 104B can be instructed to temporarily connect caller 101 to voicemail platform 106 in a way that causes voicemail platform 106 to play prompts under the direction of an Application Processor (not shown) by way of Messaging gateway 1408.
- Calls may also be managed in an Enterprise 1413.
- PBX 1411 queries the service for routing information and voicemail 1412 may be used in the enterprise.
- signaling gateway 1407, database 105A, application processor 105B, and messaging gateway 1408 communicate with one another via Local Area Network (LAN) 1406.
- components of enterprise 1413 communicate with one another via Local Area Network (LAN) 1409.
- LANs 1406 and 1409 communicate with one another using Internet Protocol (IP)1202, and
- Gateway 1410 connects LAN 1409 to PSTN 103.
- STP 1404 communicates with signaling gateway 1407 via SS71405.
- user profile database 105A stores the following information in order to specify a callee's call management settings: • Set of dialed TNs (logical or physical) • Set of delivery TNs (addresses to delivery devices) • Set of modes (At work, At home, etc.) • Mapping of dialed TN to delivery TN for each dialed TN and mode combination. This mapping may include the creation and application of filters, which are sets of calling party TNs that control the mapping. Further description appears below. • Authentication of dialed TNs and delivery TNs to confirm they are under the control of the callee. Further description appears below. Call Management Configuration Interface
- call management settings described above are specified by the user via a user interface such as a website, via a cell phone or PDA, or by default initial setup. Configuration may be performed by a third-party using an API. Mode selection can also be made directly or through an API.
- the following is a description of a software-based call management system configurable by the callee to route incoming calls that are originally dialed to any of the callee's managed phone numbers, according to the callee's indicated preferences.
- the callee can specify that different incoming calls should be routed to any of a number of differ- ent delivery devices, based on any combination of factors including, for example, the number the caller dialed, the identity of the caller, the location of the caller, environmental conditions at the callee's location, and real-time callee and/ or callee input at the time the call is attempted.
- the callee specifies such configuration options via a web- based user interface that facilitates communication with call management module 105.
- a web- based user interface that facilitates communication with call management module 105.
- FIGs. 2-7 and 9-10 there are shown screen shots depicting an example of a web- based front-end that can be used for such call management configuration.
- screen shots are merely exemplary, and that many different arrangements and user interface elements can be used without departing from the essential characteristics of the present invention.
- the user interface need not be web-based, and that any other type of user interface for accepting callee configuration of the system can be used.
- a telephone setup screen 200 For purposes of the following description it is assumed that the user interacting with the screens is the callee; however, the user could be another individual who is configuring call management parameters on behalf of a callee.
- the user enters a home phone number in field 201A, mobile phone number in field 201B, and office phone number in field 201C.
- the user can enter any number of additional phone numbers in field 201D, and can specify descriptions for additional phone num- bers via pull-down menu 202.
- Other options can also be entered, including: • specifying, via check box 203, that callers without caller ID should be blocked; and • enabling a VIP list via check box 204.
- Callers on the VIP list get special treatment.
- the system can be configured to allow calls from VIP callers to get through even when normal calls would be routed to voice mail or screening. Calls from numbers (people) in the user's VIP list skip through any "Screen" settings as their calls are considered emergency calls in the context of screening. Such a technique is referred to herein as "filtering".
- Link 205 provides access to a VIP list management screen for adding, editing, and deleting names and numbers in the VIP list.
- FIG. 6 there is shown a VIP list management screen 600 according to one embodiment.
- List 601 shows current VIP entries.
- the user can edit entries by clicking on an Edit link 602, or delete entries by clicking on a Delete link 603.
- Modes in this example are "My Default", "At Work,” “At Home,” and “Commuting”.
- the user can select which mode to define from activity menu 301.
- field 302 he or she can specify the name for the mode (activity).
- Popup menus 303 A, 303B, 303C allow the user to specify how calls should be handled when they are received at the home number, mobile number, and office number, respectively.
- each popup menu 303 allows the user to select among routing the call to a particular destination device 108, to voicemail 106, or to screen the call, or the like.
- Check box 304 allows the user to enable a preset schedule for the mode. If check box 304 is checked, the mode will automatically be activated at the times specified in popup menus 305. [0075] Check box 306 allows the user to select whether text notification should be sent to the mobile phone when a voicemail message is received.
- Check box 207 allows the user to select whether an email message should be sent when a voicemail message is received.
- Apply button 308 applies the changes indicated by the user.
- Delete activity button 401 deletes the mode (activity) from menu 301.
- Navigation buttons 208, 209 allow the user to navigate to other call setup screens.
- the user has configured the "My De- fault" activity so that calls to home, mobile, or office are routed to the respective delivery devices.
- the user has configured the "Commuting" activity so that calls to home are screened to the mobile phone and calls to mobile or office are connected to the mobile phone. A message is played to the caller; "The person you are trying to contact is currently unavailable, if this is an emergency press 1, otherwise press 2 to leave a message.” If the caller presses 1, he or she is connected to the mobile device. If he or she presses 2, he or she is connected to the voicemail platform.
- a call management summary screen 700 there is shown an example of a call management summary screen 700 according to one embodiment.
- a summary 701 of settings is shown, with Edit buttons 702 allowing the user to return to a screen for changing settings.
- the user can select which mode is active by clicking on one of radio buttons 703.
- Apply button 704 applies the changes.
- the user can select among modes by other means as well.
- Fig.8 there is shown an example of a user interface for selecting among modes via a mobile phone handset 800.
- the system of the present invention activates different modes depending on any of: explicit selection, time of day (and/ or day of week), location of the callee (detected, for example by GPS positioning, or by noting that the user has used a particular phone recently, or by explicit user indication of location).
- scheduled modes are automatically active during scheduled times.
- scheduling can be turned on or off from the handset or from the website.
- a call routing matrix can be constructed. Referring now to Fig. 19, there is shown an example of a call rout- ing matrix 1900 according to one embodiment. Matrix 1900 summarizes call handling preferences according to callee mode and caller identity.
- matrix 1900 represents a mode, and each column represents a filter option (a particular caller or caller group). Current mode 1904 is also shown.
- matrix 1900 provides input fields for specifying additional call routing configuration options. For example, pull-down menus 1901 allow the user to schedule certain modes and/ or to specify how mode activation can be automatically handled based on location or other factors. Pull-down menus 1902 allow the user to switch manually to a desired mode. Link 1903 allows the user to access additional edit options. [0086] In one embodiment, any or all of the summary information and input fields of
- Fig. 19 can be shown in the context of other types of user interfaces, including for example an interface for a PDA or cell phone screen.
- module 105 directs the call based on any com- bination of the following factors: call routing rules as specified above, currently active mode, caller identification (or lack thereof), called telephone number, mode, and caller or callee input as described above.
- call routing may also be determined by the system based on routing decisions the user has made in the past.
- the present invention can use intelligent call management algorithms, including for example collaborative filtering based on the behavior of a set of users, to learn about users' preferences without requiring explicit selection.
- call handling is accomplished as follows. When a call is placed to one of a user's managed telephone numbers, a database query is made before the call is completed.
- the result of the database query causes the call to complete to the originally dialed device (device associated with the managed telephone number), to be redirected to another delivery device (which may, or may not, also be in the set of managed telephone numbers), or to be redirected to the system handling the user's voicemail.
- the call routing is thus performed in a manner that is seamless to both the caller and the callee.
- system of the present invention implements rule-based routing based on the data stored in database 105A.
- Rules are implemented in a manner that resembles operands. For any given call management situation, only one rule is executed, so as to definitively dispose of the call.
- the rules are created by program logic, on a web server and in database 105A, when callee 109 configures his or her account.
- a determination is made as to which single rule is to be executed by the switch. If more than one callee 109 shares the managed phone line (managed TN), a single rule is identified for each callee 109 and returned to the querying server ("telephone server," Signaling Application Processor, etc.). That server causes the caller to be asked which user they are calling.
- database 105A stores a representation of a chart for a particular callee 109; the chart sets forth a set of rules.
- Each rule is qualified by any or all of the following: • Which mode is the callee in? • What TN was called by the caller? • What group (i.e., set of caller TNs) does the caller belong to? • Does the caller have caller ID?
- database 105A includes a representation of a number of rules, each including any or all of the above.
- callee 109 modes can be based on explicit selection, or on location, or by a schedule, or by other predetermined conditions.
- cer- tain modes may expire automatically after a defined period of time; then, the callee 109 returns to a default mode or previous mode.
- the schema and indexing of the table is designed to facilitate rapid lookup during call-handling operation.
- the system of the present invention receives notification from a switch (LEC, MSC, PBX, etc.) that a call has been placed to an managed telephone number (managed TN)
- the system of the present invention does the following: • 1. Determine all callees 109 that are associated with that managed TN. This results in a set of user IDs.
- • 3. Determine what mode callee 109 is in. • 4.
- the "instruction" part of the selected rule is returned.
- This instruction part consists of an opcode and some operands. These are: opcodelD, deliveryDevicelDl, deliveryDeviceID2 and 2 notification options: callNoti- fyEmailOption and callNotifySMSOption.
- the deliverDevicelDs reference telephone numbers stored elsewhere in the database.
- the rule instruction is returned, by the database, to the querying server telephone numbers are returned instead of delivery DevicelDs.
- a table 1700 containing an example set of rules for a callee 109, including a set of op-codes.
- callNotifyEmailOption and callNoti- fySMSOption are notification options which, if set to 'Y', cause the system of the present invention to send a call notification to callee 109 using an address stored elsewhere.
- the following is an example of a set of op-codes for use by the system of the pre- sent invention.
- One skilled in the art will recognize that many other types of op-codes can also be used.
- the op-code “CONNECT_DIALED_DEVICE” is transformed to "CONNECT” by database logic before being returned to the querying server ("telephone server") using information available at call time (specifically the called number).
- the op-code "CONNECT_INTERNAL_VM” is transformed to "VOICEMAIL" if the voicemail access number stored in the database is handled by the same telephone server that is making the database query; this direct internal connection saves the resources required to place an additional call.
- voicemail platform 106 and other enhanced services can be provided by any provider and need not be associated with the provider of module 105.
- a user can have any number of voicemail repositories, though many users will find it conven- ient to direct all voicemail calls to a single voicemail repository.
- the user may select a voicemail service and repository provided by one of the carriers that the user is using for telephone service.
- the user may select voicemail service from a third-party provider that is not associated with any of the user's phones.
- the user when initially signing up for call management services such as those provided by the present invention, the user can select a voicemail service provider from a list of available providers.
- module 105 directs the call to the appropriate voicemail access phone number.
- unanswered calls busy or no answer after four rings are also routed to the appropriate voicemail access phone number.
- SMS message Stutter-Dial-Tone, and the like
- integrated call logging one list of incoming calls across all of a user's managed phones
- the system of the present invention performs real-time mapping and rule selection on call-by-call basis.
- inputs are evaluated at the time the call comes in, so as to select the rule based on the most up-to-date information.
- the pre- sent invention ensures that calls are correctly routed based on the most current sources of information and settings.
- the call management system of the present invention allows a user (callee) to control how they are reached by phone.
- the call is routed pursuant to the desire of the user.
- incoming calls may be routed, for example, to the phone at the callee's current location or to voicemail (if they consider themselves unavailable for phone calls).
- a caller can identify a callee to be called by some identifier other than the telephone number (in other words, an identifier that is not in conformity with the North American Numbering Plan (NANP) for telephone numbers).
- NANP North American Numbering Plan
- the caller attempts to call a person rather than a telephone number; in fact, the callee may not even be aware of the callee's telephone number.
- the caller may initiate a call via a web interface, PDA interface, cell phone interface or by some other means.
- the caller may select or enter the callee's name or email address, or may even click on a link on a web page to attempt to reach the callee.
- the caller's action causes module 105 to perform a database lookup and to initiate a telephone call to callee according to the current mode and callee preferences, as described above.
- calls are routed in a similar manner as above but the caller has identified the callee by means other than the telephone number.
- the callee can specify that calls initiated by identifying the callee by some mechanism other than telephone number are handled differently than calls initiated by dialing a telephone number.
- a call initiated by selecting a name from a web page might go to voicemail, while calls initiated by dialing a telephone number might be routed to the callee's wireless phone.
- Such a mechanism can be implemented for example by providing one or more additional pull-down menus in the screen shown in Fig. 3, allowing selection of actions to be taken if the callee is called using alternative identifying means.
- Fig. 12 there is shown a block diagram depicting an architec- ture for implementing callee identification by means other than telephone numbers, according to one embodiment.
- a caller places a call, for example via computer 1201 that is running a voice communication application.
- the caller identifies the callee by some means other than enter- ing a NANP telephone number, for example by entering the callee's e-mail address.
- the application running on computer 1201 contacts call management configuration storage and routing module 105 to determine how to route the call. Based on callee preferences, routing module 105 causes the call to be routed to another computer 1204 or to a NANP device such as telephone 108A connected to PSTN 103 via an IP/PSTN gateway 1203. In one embodiment, the call is routed from computer 1201 to gateway 1203 or to computer 1204 via the Internet 1202.
- non-NANP calls can be placed using Voice over Internet
- VoIP Session Initiation Protocol
- VoIP Session Initiation Protocol
- call management module 105 can be registered (with a network SoftSwitch) to handle the callee's VoIP telephone calls.
- the SoftSwitch sends an "Invite" message to call management module 105.
- Call management module 105 responds with a redirection message that causes the SoftSwitch to either complete the call as originally directed or to terminate the call on another device (VoIP/ SIP phone, PSTN phone, or voicemail platform).
- the present invention provides distinctive ring tones based on any of a number of factors, including which number was dialed, caller identification, or the like.
- Call management screen as described above in connection with Fig.3, can be enhanced in one embodiment by adding user interface elements that allow the user to specify different types of call notification depending on certain conditions.
- the notification can be, for example, a distinctive ring on the delivery device or a distinctive Instant Message notification on a computer.
- a user may specify that calls routed from his or her office phone ring to his or her home phone using an alternate short-ring-cycle distinctive ring, while other calls use the standard ring.
- the ring type can be controlled by routing the call to one of two phone numbers associated with the telephone line using a standard LEC (Local Exchange Carrier) "distinctive ring" feature.
- LEC Local Exchange Carrier
- the ring type on a mobile phone may be modified in real time immediately before the system routes a call to that phone by sending a Short Message Service (SMS) message (or other data message) to a software application running on the phone.
- SMS Short Message Service
- the software application changes the phone ring type according to instructions sent in the SMS message. Informing callee who is calling
- SMS Short Message Service
- the present invention uses an alternative communications path, such as short message service (SMS), email, instant messaging, or the like, to let the callee know who is calling.
- SMS short message service
- the message to the callee can include additional information about the call, including how it was routed, where the caller is located, caller's telephone number, caller's name (from the user's directory or from other sources such as a CNAM database), number dialed by the caller, and the time of the call and the like.
- the callee can specify which incoming calls should include such notification, and what type of communications path/ mechanism should be used. E- mail notification of calls may also be configured.
- the content of the notification may include the caller's telephone number, the caller's name (from the user's directory or from other sources such as a CNAM database), the number dialed by the caller, and the time of the call. In alternative embodiments, other types of information may be included.
- Call management module 105 when Call management module 105 receives a query from a telecom switch 102 or PBX 104C, it dips User profile database 105B to determine how to respond to the query. Information returned from database 105B includes a callee notification configuration. This information includes how to send notification to callee 109 and in what format to send it. hi the case of e-mail notification, Call management module 105 formats an e-mail message and sends that message over the Internet through an mail (SMTP) server.
- SMTP mail
- the present invention can convert telephone calls into email messages, SMS messages, instant messages, or other types of communications.
- call management screen 300 is enhanced in one embodiment by adding user interface elements that allow the user to specify that certain tele- phone calls (depending on any of the factors discussed above), should be converted to other types of communications.
- menu 303A includes a "send to voicemail" option that allows the callee to specify that while at work, calls to his or her home number should be sent to voicemail.
- the system can further be configured to convert the voicemail to an email message or to attach it to an email message and send it to the callee's work email address.
- Content of the communication can include additional information about the call, including how it was routed, where the caller is located, caller's telephone number, caller's name (from the user's directory or from other sources such as a CNAM database), number dialed by the caller, and the time of the call and the like.
- this information about the call and the caller is compiled from information passed in the query to the Call management module 105 combined with derived information (for example a directory lookup of the caller's name based on the calling telephone number) and independent information such as the time the call was processed by the system.
- voicemail platform 106 queries module 105 to determine whether to deliver a voicemail message using e-mail. Module 105 obtains profile information from database 105A. This determination is made based on user preference as a function of any or all of mode, callee, and dialed telephone number.
- the present invention facilitates mapping of different phone numbers to different modes. For a single callee, several telephone numbers can be established; for example, one for important calls, one for business calls, one (or more) disposable numbers, and the like. Such an arrangement allows the callee to better manage his or her calls by giving out the appropriate number from the set of telephone numbers, depending on the situation.
- the various telephone numbers need not have any correlation to actual physical locations or telephones.
- a disposable telephone number (valid for a limited time period) can be offered. Calls made to temporary (disposable) telephone numbers are routed to one of the user's delivery devices or to voicemail, depending on the user's stated preferences. The assignment of a temporary number can be made dynamically from a pool of available numbers. The number may remain valid for a single call, for a brief time period, or for a long time period.
- a temporary telephone number is as a contact number for people communicating using Internet Chat.
- a temporary number can be provided as a "public" number for a user allowing that user to give the telephone number to another person to make a single call.
- the user's actual delivery device telephone numbers remain pri- vate. After use, the telephone number is suspended for some period of time and then returned to the pool of available temporary telephone numbers.
- a temporary address number is given to the user along with a common access number.
- a common access number for example, a toll- free number
- the caller enters the temporary address number (a sequence of digits).
- the call is then routed to the appropriate user's delivery device or voicemail.
- the system generates a temporary address number, for example a unique digit string that is valid for a limited time.
- a caller calls the common access number, it is answered by a telephone server (not shown).
- the telephone server queries User profile database 105A.
- Database 105A treats the temporary address number as a managed address for purposes of determining the routing rule to pass to the telephone server.
- the telephone server executes the routing rule, which results in sending the call to a telephone, voicemail, or some other call handling device.
- the present invention can split off calls for those with other phones (wireless or office) as defined in the configuration profile.
- potential callers can see mode information for callees.
- callees can choose whether or not to make such information available to potential callers. Additionally, callees can choose to make such information available only to some potential callers, if desired.
- a potential caller can see mode information by keying in the phone number of the callee in a cell phone or other device, or by selecting the callee from a directory, or by some other means.
- the calling device queries the system of the present invention to obtain a description of the callee's current mode. A representation of that mode is displayed the potential caller, who can then decide whether or not to attempt to complete the call.
- a callee's mode information is a label that reflects the callee's desire, ability, or propensity to accept any, or certain types of, phone calls.
- User B's mode can be presented to User A before and/ or after User A places a call to User B.
- A can use knowledge of User B's mode in deciding whether or not to initiate a call to User B. If mode information is presented to User A after a call is placed to User B, User A can use that knowledge as context for discussion with User B if the call is picked up by User B or for understanding why the call was not picked up by User B.
- the displayed mode may be set explicitly by that callee or it may be a function of the callee's mode; in other words, the callee may specify that the displayed mode not be the same as the actual mode. All inputs used to determine mode can also be used to algo- rithmically determine the user's mode.
- User A may learn of User B's mode by viewing an address book entry on a client device (mobile phone or other device), by selecting a "show mode" soft-key on a client device, or by some other means on the client device. User A may also learn of User B's mode after calling User B.
- Callee mode information can be determined when another user queries for it or it can be determined periodically by the system.
- the mode can be stored and made available for query or it can be pushed to the client devices of all users who have access to the information.
- a current activity mode 1101 (Home) for a callee is displayed. This display would be shown, for example, after the user of the cell phone had keyed in the telephone number of the callee on keypad 1102 (or after he or she had selected the callee's name from an onscreen list or directory).
- the display of the mode indicates whether the callee is at home, at work, on vacation, or the like.
- additional information can be displayed, such as the callee's activity mode schedule, an indication of when the current mode will change and what the next mode will be, forwarding information (such as substitute telephone number), or any combination thereof.
- the callee can specify what kind of information is displayed, and can indicate that different kinds of information be made available to different callers or depending on other factors.
- the system of the present invention is implemented as follows. First a call being made is intercepted as follows: • Calls to a residential line are intercepted using Advanced Intelligent Network (AIN) at the destination switch in the LEC CO. • Calls to a wireless phone are intercepted using Wireless Intelligent Network (WIN) or Customized Applications for Mobile network Enhanced Logic (CAMEL) at the destination switch in the MSC. • Calls to a PBX extension, placed from outside the PBX, are intercepted using AIN in the LEC CO connected to the PBX. • Calls to a PBX extension, placed from another PBX extension, are intercepted in the PBX.
- AIN Advanced Intelligent Network
- WIN Wireless Intelligent Network
- CAMEL Customized Applications for Mobile network Enhanced Logic
- a database dip is performed to determine how to dispose of the call. Disposition options are: let it complete, forward it elsewhere, or send it to voicemail.
- the database dip is performed on a specialized database or mirror. Interfaces to the database include AIN / WIN / CAMEL to an SCP via SS7 or XML via the Internet.
- Database dips may be made directly or through a partner that runs the SS7 net- work as a front-end to the database, either by contacting the database in real-time (pull) or hosting a mirror of the database (push).
- SS7 Network 1301 provides the SS7 connectivity between service platform 1304 and Wireless Carrier Network 1303.
- Such a network may be provided, for example, by a wireless telephone company such as Verizon.
- a wireless telephone company such as Verizon.
- One skilled in the art will recognize that other mechanisms for connecting components 1304 and 1303 can be used.
- Enterprise Network 1305 connects to the service platform 1304 using Internet protocol (IP).
- IP Internet protocol
- ILEC SS7 Network 1302 is used to turn message waiting on and off on landline phones.
- Elements in 1301 and 1302 are optional components that need not be included in order to practice the present invention.
- MSC 1321 when a call addressed to a managed telephone number is received by MSC 1321, MSC 1321 sends a query containing the called TN and calling TN to Application Processor-SCP 1330 using a TCAP message over the Signaling System 7 (SS7). This message travels over one or more Service Transfer Points (STP) 1315,
- STP Service Transfer Points
- the query can travel over Internet Pro- tocol (IP) network 1325 from MSC 1321 through Edge SS7 Gateway 1316 to Application Processor - SCP 1330 using the SIGTRAN protocol.
- IP Internet Pro- tocol
- the Application Processor acts as an Intelligent Networking Service Control
- SCP 1330 queries the Database 1329 to determine how to handle the call. In some cases, for example if the managed TN is shared among multiple users, caller 101 is prompted to enter a digit to select the desired callee (or to select the callee by other means). To do this, SCP 1330 establishes a session and responds to MSC 1321, instructing it to temporarily connect the call to Application Processor - Intelligent Peripheral (IP) 1332 through VoiceXML gateway 1328 over PSTN or using VoIP.
- the response from SCP 1330 is used to select and retrieve the voice prompt from Prompt store 1333. That prompt is played to caller 101.
- Caller's 101 selection made for example with the Dual Tone Multi-Frequency (DTMF) signal from a key press on a conventional telephone, is detected and forwarded to SCP 1330.
- Apphcation processor - SCP 1330 uses the caller's selection to determine how to dispose of the call. Instructions for call disposition are sent to MSC 1321.
- MSC 1321 disconnects the call to Application processor - IP 1332 and forwards the call to the desired delivery TN.
- Callee 109 can be notified of unanswered call events by the system. Desired call event information is sent from database 1329 to Notification Server 1334, which can notify callee 109 in various ways including sending an Short Message Service (SMS) message to callee's 109 mobile phone via SMS Gateway.
- SMS Short Message Service
- PBX Private Branch Exchange
- PBX 1336 can be managed by the system.
- PBX 1336 sends a query to Application Processor - SCP 1330 over Application Programming Interface (API) 1337.
- API Application Programming Interface
- the response from the query instructs PBX 1336 as to how to dispose of the call.
- Voicemail messages may be interchanged between Wireless Carrier Voicemail platform 1320 and Enterprise Voicemail platform 1335 using VPIM Gateway 1340.
- call routing also referred to as vectoring
- destination switches 104 connected to the originally dialed TN in a Central Office (CO) 104A or Mobile Switching Center (MSC) 104B or by forwarding from Private Branch Exchanges (PBX) 104C controlling dialed office telephones.
- CO Central Office
- MSC Mobile Switching Center
- PBX Private Branch Exchanges
- AIN Advanced Intelligent Network
- CO104A Advanced Intelligent Network
- AIN Advanced Intelligent Network
- WIN Wireless Intelligent Network
- CAMEL Customized Applications for Mobile network Enhanced Logic
- MSC 104B MSC 104B to implement the call management functionality described herein.
- FIG. 15 there is shown an example of an architecture for im- plementing the present invention by integrating with a wireless carrier using WIN or CAMEL.
- Fig. 15 The implementation shown in Fig. 15 manages landline, wireless, and office telephones using the wireless carrier Mobile Switching Center switch (MSC) 104B. Calls placed to Home phone 108A of callee 109 are initiated by any phone 101A, 101B, 101C and are routed over PSTN 103 to Central Office (CO) 104A associated with called home phone 108A. If Home phone 108A is busy or not answered, the call is forwarded to MSC 104B where the call is managed.
- MSC Mobile Switching Center switch
- calls placed directly to the callee's Wireless phone 108B are managed at MSC 104B.
- Calls placed to the user's office phone 108C are managed by MSC 104B if the callee's public TN (published TN) is forwarded by PBX 104C to MSC 104B and Office phone 108C is associated with a hidden TN. In this fashion, calls destined to the callee's Office phone 108C arrive at MSC 104B where they can be managed and potentially forwarded to the actual office phone using the private TN.
- MSC 104B Upon receipt of a call for a managed TN, MSC 104B queries SCP 1501 inside Call
- SCP 1501 in this figure includes a service database and database logic 102, which determines how the call should be handled by MSC 104B.
- a prompt is played to caller 101 so that caller 101 can select the callee he or she is trying to reach.
- the spoken name of each user is originally stored in the Master copy of prompts 1503 and periodically copied to a mirror data-store at MSC 104B.
- MSC 104B uses the local copy of the prompts to ask caller 101 to select a callee 109 (for example, "Press 1 for Joe. Press 2 for Mary," and the like).
- the selection is sent to SCP 1501, which replies to MSC 104B with instructions for completing the call.
- MSC 104B may forward the call to the callee's Wireless phone 108B, Office phone 108C, or to a voicemail platform (not shown in Fig. 15), or the like.
- the call would not be forwarded to Home phone 108A because phone 108A is al- ready known to be busy or not answered.
- the service database can be configured with a computer 1506 through a Website 1504 or through telephone Interactive Voice Response (IVR) system 1505.
- IVR Interactive Voice Response
- FIG. 15 The architecture of Fig. 15 is set up to provide the functionality of the present invention using one or more of the following steps: [0158] Home phone 108A is provisioned to forward to cell phone TN on Busy or No-
- the wireless carrier can port, using wireline-to-wireless Local Number Portability (LNP), the existing home phone TN to itself, acting as a competitive local exchange carrier (CLEC), and then re-number the existing home phone line with a hidden physical TN.
- LNP Long Term Evolution
- CLEC competitive local exchange carrier
- IVR Interactive Voice Response
- An option of "anyone” rings the home phone.
- the wireless carrier can provide a new, virtual, TN on its network to be assigned as a proxy home TN for the callee's family. This TN works as in #1 above. Callees are then encouraged to give it out as their "home number.”
- Office phone 108C is provisioned in PBX 104C to forward to cell phone TN on
- Busy or No-Answer, or office phone forwarding can be dynamically con- figured based upon mode and/ or filter.
- a switch in MSC 104B connects to cell phone 108B or redirects to another phone
- the call is unanswered, it is forwarded to the cell phone switch, hi the case of fixed forwarding or ported home number, all calls go to MSC 102B before ringing home phone 108A.
- MSC 102B If home phone 108A is shared, a switch in MSC 102B can play attendant prompts to allow caller to select one of multiple users via IVR.
- the switch in MSC 104B can connect to cell phone 108B or redirect to another phone 108A, 108C or voicemail 106 based upon mode and filters.
- a switch in MSC 104B connects to cell phone 108B or redirect to another phone
- Attendant prompts 1503, especially personalized greetings and names, may be recorded at a central site and distributed to each of the MSCs 102B through data mirroring.
- An SSP 1705 at MSC 104B can use an Intelligent Peripheral, located at MSC 104B or centrally, to play attendant prompts.
- Advanced Intelligent Network (AIN) functionality at desti- nation switch 104 can be used to perform filtering and/ or play attendant prompts before ringing home phone 108A.
- the call can be forwarded to home phone 108A (possibly using distinctive ringing to identify the desired user), the call can be sent to another phone (including a cell phone 108B or office phone 108C), the call can be routed to a voicemail platform 106, or the call can be routed to another service.
- callee 109 can specify filters that allow certain callers 101 skip the attendant or to be handled differently than other callers.
- Adding a caller 101 to a filter list can take place at any time, including after a call is completed, or before or during a conversation, or at any time using a configuration tool such as described above.
- the web-based user interface displays a log of incoming callers, call times, the user the caller selected, along with the controls necessary to add/ remove callers to/from filters.
- Fig. 16 there is shown another embodiment of the present invention, wherein the functionality described above is implemented using Dynamic Number Portability (DNP), substituting the Alternate TN at the Origin and /or Gateway switch.
- DNP Dynamic Number Portability
- Caller 101 places a call on any of the following: a residential, inter-company or inter-carrier wireless phone 101A; an atra-carrier wireless phone 101B; or an intra-company phone lOlC.
- is Central office (CO) switch 102A is associated with phone 101A.
- Mobile switching center switch 102B is associated with phone 101B.
- CO Central office
- PSTN Public Switch Telephone Network
- SS7 network 1405 carries Non Call path Associated Signaling (NCAS) between switch 102A or 102B and call management module 105.
- NCAS Non Call path Associated Signaling
- Voicemail (VM) platform 106 is a potential destination for calls that is capable of recording caller's 101 voice message.
- CO switch 104A is a land-line central office switch associated with home (residential) telephone delivery device 108A.
- Mobile switching center (MSC) switch 104B is connected to wireless (mobile) telephone delivery device 108B.
- Private branch exchange (PBX) 104C is connected to an office telephone (station) 108C.
- callee 109 configures the service of the present invention, for example using a computer or wireless phone software application 1506. Examples of screen shots of such an application 1506 are shown in Figs. 2-7 and 9-10.
- Call Management Module 105 includes Service Control
- SCP 1501 that accepts queries from switches 102A, 102B, 104A, and PBX104C, and returns call routing information.
- PCM Mode, Filter and Redirect logic 1502 and PCM Attendant logic 1502A are software programs associated with SCP 1501.
- Data store 1503 contains master copies of user spoken names for use in prompt- ing caller 101 to select from multiple users who share a managed home telephone.
- web configuration interface 1504 generates the website with which callee 109 configures the service.
- callee 109 can use telephone Interactive Voice Response
- call management is performed by doing a lookup at origin switch 102A or 102B (associated With caller's 101 telephone line 101A or 101B) or PBX 104C, for example using Dynamic Number Portability (DNP).
- DNP Dynamic Number Portability
- An advantage of such an implementation is that it reduces system-wide telecom costs and eliminates potential calling loops that may take place if different systems (such as PBXs) control redirection for overlapping subsets of a user's phones.
- DNP need not be implemented in all networks to be effective at reducing costs associated with re-routing calls to alternate telephone numbers.
- DNP is implemented using universal switch (CO and MSC) participation and/ or PBX participation to redirect intra-company calls to a user's office phone.
- DNP is also implemented at international gateway switches so that calls can be routed (vectored) when entering a particular service area.
- DNP is implemented at the call-originating device, for example when calls are transported without going thought telecom switches.
- Such a tech- nique can also be used for devices that use PSTN 103.
- Such devices include a computer that places calls using IP telephony, a wireless carrier's cell phone, or a peer-to-peer switch-less cell phone.
- the call-originating device performs a DNP database dip to receive the substitute TN and other call control information, such as TN to call if the substitute TN is not answered.
- switch 102A or 102B determines the dialed TN is a user TN (optional step). If so, then a DNP dip is performed passing Dialed TN and Calling Party TN, Calling Party Blocked CID Flag, and a switch identifier (for location determination used in some cases for substitute TN selection). Returned from the dip is Substitute Telephone Number (STN), Busy Telephone Number (BTN) No Answer Telephone Number (NATN), No-Answer Ring Count (or time delay), and billing entity number (which may be a switch ID of user).
- STN Substitute Telephone Number
- BTN Busy Telephone Number
- NTN No Answer Telephone Number
- No-Answer Ring Count or time delay
- billing entity number which may be a switch ID of user.
- Switch 102A or 102B calls the STN. If it is busy, the call is connected to BTN. If it is not answered after "No- Answer Ring Count" rings, the call is connected to NATN.
- the STN can be a delivery device (wireline or wireless phone) or another device such as an attendant IVR service.
- destination switch 104A, 104B, or another destination switch for the delivery device may act as an attendant service.
- An attendant service can redirect the call, present caller 101 with options (such as attempt connection or go to voicemail, or allow caller 101 to select which callee he or she is calling from a list of options), or provide screening choices to callee 109. For example an attendant can call callee 109 and let him or her know who is on the phone, and present callee 109 with call completion options.
- BTN and NATN also allows LECs to pull back a call destined to a wireless carrier. In this way, they can allow their customers to have a single voicemail box, possibly on the LEC network. This scheme enables a "leave a message for a person, not for each of their places" service.
- DNP also enables a wireline carrier to allow its customer to hide a wireless TN behind a wireline TN.
- BTN and NATN in the returned DNP information also allows the owner of origin switch 102A, 102B to provide a voice messaging option to their customers, the callers.
- a service could be implemented, for example, by dialing *11 or other prefix code or access TN before a 10-digit number. If callee 109 is a DNP user and has a BTN and NATN, then caller 101 is connected to voicemail directly. If BTN and NATN is not present, then the *11 service can connect the call directly or inform caller 101 that the voice messaging option is not available. This scheme enables a "leave a message for a person, without the risk of talking to them" service.
- a BTN and NATN returned in a DNP dip may differ depending on the switch making the dip.
- the DNP dip includes switch ID that can be mapped to location inside the DNP system.
- DNP can dynamically substitute local access numbers. This can be done, for example, to minimize the access charges in a voicemail network.
- the BTN and NATN are not typically configured directly by the user. Instead, the user selects a third-party VM provider, and that provider supplies access numbers.
- attendant greetings are a function of filters and modes. For example, when caller 101 dials callee's 109 home TN, caller 101 might receive a different personalized greeting based upon callee's 109 current mode: "I'm commuting right now, please leave a message and I'll return your call when I reach my destination," or "I'm at work today, please press 1 to connect to my office phone.”
- modes and/ or filters can be used to select ringing modes (loud, soft, vibrate, etc.) and/ or ring tones ("Ring-ring, 'you have a call', etc.) on a cell phone or other phone, as described in more detail above.
- ringing modes lad, soft, vibrate, etc.
- ring tones Ring-ring, 'you have a call', etc.
- Case 1 Caller dials a PSTN TNfrom landline phone (connected to CO switch) or wireless phone (connected to MSC switch)
- Origin switch determines if the TN is managed by DNP. In one embodiment, this information is pushed from a database (not shown) within SCP 1501 to the carrier periodically. In one embodiment, if this data is pushed to the carrier, the carrier uses an in-network SCP with an affiliated database (mirror of the data within SCP 1501) to query for call routing information. This step minimizes out-of-network SS7 traffic. This check to see if a user has DNP can be performed on an in-network LEC or wireless carrier database that is anticipated periodically, for example every 15 minutes. In one embodiment, if the user has DNP service, a DNP dip to a DNP database is done to get current data.
- a DNP dip is performed, typically using Transaction Capabilities Application Part (TCAP) messaging carried on Signaling System 7 (SS7) 1405.
- TCAP Transaction Capabilities Application Part
- SS7 Signaling System 7
- the following information is passed to DNP database, for example via TCAP message from switch 102A or 102B to Service Control Point (SCP) 1501: • Dialed TN • Calling Party TN • Calling Party Blocked CID Flag (to suppress number display during notifications) • Switch ID
- the following information is returned from DNP database, for example via TCAP message from SCP 1501 to SSP: • Substitute TN (may be same as Dialed TN) • Optional: BTN • Optional NATN, NA Ring Count or time delay • User Billing Proxy ID (May be user carrier or switch information)
- the following information is returned from DNP database: • Substitute TN/Extension (may be same as Dialed TN/Extension) • Optional: BTN/ Extension • Optional: NATN/ Extension, NA Ring Count or time delay • Local Call flag (Used to create usage bill) • Department Billing ID
- DNP is implemented with a master database and a distributed network of mirrored databases in multiple geographically disparate locations.
- GTT Global Title Translation
- SCP 1501 the active or best database
- SS7 network 1405 may be provided by a third party.
- DNP dips are only performed for dialed TNs of users of the
- a pre-qualification database may be hosted by the LEC within its own network. Such an implementation causes DNP dip traffic to grow gracefully over time. In the event of a system failure, the default action is to complete the call to the original dialed number, if pos- sible.
- the pre-qualification database may be updated at a frequency much lower than the update of the active DNP databases.
- the present invention can be implemented in many different architectures, and can operate regardless of whether call routing takes place at the origin switch or the destina- tion switch, or at a gateway switch.
- call routing takes place at an origin switch.
- call routing can take place at any other switch along the call path.
- multiple routings can take place at different points along the call path.
- a DNP dip can be made at any point in order to obtain information for the call routing operation.
- multiple DNP dips may occur, as requested by multiple switches.
- a flag may be set to indicate that a DNP dip has already occurred for the call, so that additional unnecessary dips can be avoided.
- gateway switch 2001 dials callee 109 at dialed TN 108A, gateway switch 2001 re-routes the call to Alternate TN 108B via switch 104AC.
- origin switch 102 forwards calls on behalf of caller 101.
- Callee 109 is not necessarily a customer of the owner of origin switch 102.
- the present invention uses DNP and includes a charge transfer sub-system.
- billing records are moved from origin switch 102 to an entity, which can bill the customer.
- the billing record can be forwarded to the switch of the dialed number. Callee should be charged the cost as if the call was forwarded from the switch associated with the originally dialed TN to the forwarded number.
- the present invention provides automatic and/ or precon- figured redirection of telephone calls in case of emergency or disaster.
- a disaster such as an earthquake, destroys one or more of the user's delivery devices or makes them unavailable to the user
- the user may use screen 300 to cause their calls to be routed to an out-of-area delivery device (telephone).
- an "Emergency" mode may be predefined for this purpose.
- the "Emergency" mode is automatically selected if the system of the present invention detects, or is informed, that a set of telephone numbers is no longer reachable.
- queries are performed by the origin switch, rather than the destination switch.
- origin switch - based redirection is performed at all times, rather than just during unusual situations.
- the system detects switch failure for a set of managed telephone numbers attached to a switch by monitoring the health of the switch, for example by querying the switch on a regular basis. If there is no response, the switch is presumed to be unavailable and all users with managed telephone numbers attached to that switch are auto- matically placed into the "Emergency" mode.
- DNP can be used to creating a disaster resilient phone network.
- phone service is lost in a region (from one phone line, to a building, to a city), calls destined into that region can be rapidly rerouted to alternate locations.
- a disaster recovery service can be pre-configured according to the techniques of the present invention that when the cus- tomer signals that a disaster occurred (or when such a condition is detected by other means), all managed TNs are routed (vectored) to the corresponding substitute TNs.
- Fig. 18 there is shown a block diagram depicting an architecture for implementing a disaster-resilient DNP architecture according to one embodiment of the present invention.
- Mirror copies 1801 of Master DNP Database 1802 are provided.
- a backup set is provided.
- Switches 102A and 102B can either contain a mirror copy 1801 of DNP database 1802 to be dipped locally, or they can dip a DNP database outside the carrier's network using TCAP messages over SS7 network 1405. [0212] These queries and the responses typically travel through one or more Service
- STPs 1807 are implemented in cross-connected pairs for high reliability paired with SS7 Interfaces 1804.
- Service Control Point 1501 dips locally mirrored copy 1803 of DNP database 1802. This database dip can be performed on primary Call Management module 105 or on a backup set of Call Management servers, referred to as mirror 1806. Any number of mirrors 1806 can be provided.
- PBX 104C dips DNP database 1802, or mirror database 1803, using HTTP over IP through HTTP Interface 1805.
- Traffic analyzer 1808 collects usage information from each DNP database 1802,
- Configuration Interface Server 1504 is implemented, for example, as a web server that hosts a website that allows callee 109 to configure his or her service using computer 1506.
- DNP can be used to facilitate traffic analysis in order to identify terrorist human-networks through calling patterns of known or suspected terrorist or other enemies of the state. With the addition of location information on a per-call basis (or periodic update) coordinated attacks can be detected in real-time by looking for suspicious, predefined usage pattern.
- a traffic analysis component 1808 could look for suspicious patterns of telephone usage. For example, component 1808 could look for multiple calls to multiple airport gates (2 linked calls from 3 airport gates) within a given time period. If this event is detected, an alert can be forwarded to the appropriate governmental agency.
- caller 101 calls a callee's 109 shared home phone 108A
- caller 101 is presented with a choice of which resident they would like to contact. This choice may be given before the phone rings or alternatively, only if the phone is unanswered (busy or no-answer).
- the call may be redirected (per filters, profile parameters, settings, and mode) after caller 101 makes a selection.
- each user who shares a home phone line has his or her own personal telephone number (PTN).
- PTN personal telephone number
- This PTN may be a permanent TN given to a callee 109, or it can be temporary.
- a set of such PTNs is configured to all point to the same home phone line 108A.
- each of these aliased TNs rings the same phone line.
- Such a personal TN can be used by a person wherever they reside, within the DNP service area.
- callee 109 can decide if calls to his or her personal TN ring the common home line 108A or another phone line (cell phone 108B, office phone 108C, dorm phone, vacation home phone, or the like).
- callee 109 may have a lifetime TN that will always reach them as long as they are within the area served by DNP (for example, the area served by the North American Numbering Plan).
- An additional TN may be dedicated to the location of a phone line.
- caller 101 could dial PTN-1 for a user X, PTN-2 for user Y, or TN-3 for the residential phone line (home) of X and Y.
- This location TN would typically be given out for location-based services such as pizza delivery.
- Information for filters based on calling TN can be extracted (batch or real-time) from the callee's 109 address book. This address book may be stored on the user's computer, a different server (such as a Microsoft Exchange server), or a web-based address book.
- DNP allows third-party companies to offer application services to customers involving the control of common-carrier voice devices.
- Substitute TNs (STN) (Delivery TNs) are authenticated be- fore they can be selected for use, so as to minimize the risk of someone hijacking the calls of a user 109.
- this authentication process consists of the user logging in using web browser or phone IVR and entering the new number to be added to his or her palette of substitute telephone numbers (STN).
- the user is given an authentication key (such as a numeric sequence); the user then calls a special access number (such as a toll-free number).
- the user must make this call from the STN to be added, so that the user's ownership of (or access to) the STN can be verified via caller ID.
- the STN or BTN or NATN returned from a DNP dip can be in turn used to dip an Electronic Numbering (ENUM) database to determine further user contact options including e-mail address for voicemail / voice message delivery.
- ENUM Electronic Numbering
- a Dialed TN is dipped through the DNP database, a notification message may be sent to the owner of the TN.
- This message can be delivered via SMS, e-mail, Instant Message (IM), or the like.
- This message can contain any or all of: the number called (Dialed TN), the caller's TN, the caller's name [using Caller Name (CNAM) service], location from which the call was placed or other caller mode information, and the Hke.
- CNAM Caller Name
- a notification can be sent even if the call is not completed.
- Notification may be sent to any device, even if it is not associated with the call management system of the present invention.
- Notification may also be sent to a Delivery Device, whether or not the Dialed TN or STN addresses the Delivery Device. If the "Calling Party Blocked CID Flag" indicates the Calling Party TN is blocked, in one embodiment it is not sent in the notification (pursuant to applicable regulation).
- calls are routed based on various types of information, parameters, and preferences.
- One such parameter is "filters”; in other words, calls from some callers are allowed through, while calls from other callers are routed to voicemail (or the like).
- filters are also used for prioritization of calls. For example, while in a commuting mode, a filter that determines a caller is "Friends and Family" might cause the call to connect to the user's cell phone; other calls might be routed to voice- mail.
- a "Telemarketer” filter may cause calls to be terminated with a polite, personaHzed, "no thank you” message.
- the "Telemarketer" filter would be looking for calls with masked caller ID or with suppressed Automatic Number Identification (ANI).
- ANI Automatic Number Identification
- a blocked caller ID call may be from a caller the user desires to talk to. That call can be marked, ex post facto, as being in an "allowed" filter even if the caller ID is never revealed to the user.
- the system knows the Calling Party TN and can match it up with user characterizations without revealing the Calling Party TN to the User.
- aUowing filtering in such cases is to use a trap-door encryption algorithm as a hash function for matching. In this way, any information stored could not be converted back to the TN of a caller with a blocked caller ID and would therefore comply with legal restrictions. Only one-way encrypted data would be stored and matched.
- An alternate "Telemarketer" filter would filter out caHers with caUer IDs of toU free TN (800, 866, etc), which are commonly used by telemarketers.
- the system may also determine if a call is a telemarketing call by looking at the pattern of calls placed by the caller.
- a caller could be deemed a telemarketer.
- Another way to classify a caller as a telemarketer is by accepting input from users. If multiple users report telemarketing calls from a caller, then the system would record that fact to maintain a blacklist. Input from users could be received from a cell phone. A cumulative database of telemarketers' TN or names can be used as a blacklist or "spam list.”
- a client device such as ceU phone
- the device records the voicemail message and forwards it to the callee's voicemail platform or directly to the callee's client device.
- Voicemail messages can be sent peer-to-peer and eHminate any (or most) voice- mail infrastructure in the network.
- a cHent device detects a busy or no-answer condition
- a voicemail-control-exchange database can be queried for the spoken name and greeting of the callee and for the store-and-forward addressing information necessary to deliver the message to the callee's cHent.
- Voicemail messages recorded by the client can optionally be delivered to the user via email, IM, or MMS.
- Voicemail stores can be distributed in the network in a fashion similar to architecture conventionally used for e-mail message stores.
- the present invention also relates to an apparatus for performing the operations herein.
- This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer.
- a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
- a component of the present invention is implemented as software
- the component can be implemented as a standalone program, as part of a larger program, as a pluraHty of separate programs, as a statically or dynamically linked Hbrary, as a kernel loadable module, as a device driver, and/ or in every and any other way known now or in the future to those of skill in the art of computer programming.
- the present invention is in no way limited to implementation in any specific operating system or environment.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Telephonic Communication Services (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05723332A EP1721445A4 (fr) | 2004-02-20 | 2005-02-17 | Gestion des appels |
CA2556892A CA2556892C (fr) | 2004-02-20 | 2005-02-17 | Gestion des appels |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US54640904P | 2004-02-20 | 2004-02-20 | |
US60/546,409 | 2004-02-20 | ||
US11/060,085 US7542558B2 (en) | 2004-02-20 | 2005-02-16 | Informing caller of callee activity mode |
US11/060,642 US20050195802A1 (en) | 2004-02-20 | 2005-02-16 | Dynamically routing telephone calls |
US11/060,232 | 2005-02-16 | ||
US11/060,085 | 2005-02-16 | ||
US11/060,232 US8594298B2 (en) | 2004-02-20 | 2005-02-16 | Call management |
US11/060,642 | 2005-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005083995A1 true WO2005083995A1 (fr) | 2005-09-09 |
Family
ID=34916473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/005307 WO2005083995A1 (fr) | 2004-02-20 | 2005-02-17 | Gestion des appels |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1721445A4 (fr) |
CA (1) | CA2556892C (fr) |
WO (1) | WO2005083995A1 (fr) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7593515B2 (en) | 2007-05-16 | 2009-09-22 | Unison Technologies, Inc. | Systems and methods for providing unified collaboration systems with combined communication log |
US7596217B2 (en) | 2007-05-01 | 2009-09-29 | Unison Technologies, Inc. | Systems and methods for phone call management |
US7738650B2 (en) | 2007-05-01 | 2010-06-15 | Unison Technologies, Inc. | Systems and methods for scalable hunt-group management |
WO2010111477A1 (fr) * | 2009-03-27 | 2010-09-30 | Qualcomm Incorporated | Autorisations de session de communication dans des systèmes de communication sans fil |
WO2011062956A3 (fr) * | 2009-11-17 | 2011-09-22 | Tip Solutions, Inc. | Fonctionnalités de gestion de communications |
WO2011141217A1 (fr) * | 2010-05-10 | 2011-11-17 | Nokia Siemens Networks Oy | Application de messagerie vocale mobile |
US8526919B2 (en) | 2010-11-17 | 2013-09-03 | Tip Solutions, Inc. | Message injection system and method |
EP2127350A4 (fr) * | 2007-02-23 | 2013-10-23 | Tekelec Global Inc | Fourniture d'information d'acheminement de messagerie vocale dans un réseau qui propose des services personnalisés de messagerie vocale |
US9088815B2 (en) | 2011-11-17 | 2015-07-21 | Tip Solutions, Inc. | Message injection system and method |
US9219677B2 (en) | 2009-01-16 | 2015-12-22 | Tekelec Global, Inc. | Methods, systems, and computer readable media for centralized routing and call instance code management for bearer independent call control (BICC) signaling messages |
WO2016075396A1 (fr) * | 2014-11-13 | 2016-05-19 | Orange | Procédé et dispositif de communication |
EP2005681A4 (fr) * | 2006-04-10 | 2017-02-22 | Microsoft Technology Licensing, LLC | Informations de client voip |
US9900431B1 (en) | 2017-08-04 | 2018-02-20 | At&T Intellectual Property I, L.P. | Communications handler for screening incoming calls |
CN114827361A (zh) * | 2022-04-08 | 2022-07-29 | 马上消费金融股份有限公司 | 外呼的处理方法及装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5329578A (en) * | 1992-05-26 | 1994-07-12 | Northern Telecom Limited | Personal communication service with mobility manager |
US5793859A (en) * | 1995-05-11 | 1998-08-11 | Matthews Communications Management, Inc. | Adaptive telephone number selection method and system |
US5802160A (en) * | 1996-01-19 | 1998-09-01 | Pilgrim Telephone, Inc. | Multi-ring telephone method and system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7801290B1 (en) * | 2001-11-28 | 2010-09-21 | At&T Corp. | Consolidated access and administration of customized telephone calling service |
-
2005
- 2005-02-17 EP EP05723332A patent/EP1721445A4/fr not_active Withdrawn
- 2005-02-17 CA CA2556892A patent/CA2556892C/fr not_active Expired - Fee Related
- 2005-02-17 WO PCT/US2005/005307 patent/WO2005083995A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5329578A (en) * | 1992-05-26 | 1994-07-12 | Northern Telecom Limited | Personal communication service with mobility manager |
US5793859A (en) * | 1995-05-11 | 1998-08-11 | Matthews Communications Management, Inc. | Adaptive telephone number selection method and system |
US5802160A (en) * | 1996-01-19 | 1998-09-01 | Pilgrim Telephone, Inc. | Multi-ring telephone method and system |
Non-Patent Citations (1)
Title |
---|
See also references of EP1721445A4 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2005681A4 (fr) * | 2006-04-10 | 2017-02-22 | Microsoft Technology Licensing, LLC | Informations de client voip |
EP2127350A4 (fr) * | 2007-02-23 | 2013-10-23 | Tekelec Global Inc | Fourniture d'information d'acheminement de messagerie vocale dans un réseau qui propose des services personnalisés de messagerie vocale |
US8730970B2 (en) | 2007-02-23 | 2014-05-20 | Tekelec Global, Inc. | Methods systems, and computer program products for providing voicemail routing information in a network that provides customized voicemail services |
US7596217B2 (en) | 2007-05-01 | 2009-09-29 | Unison Technologies, Inc. | Systems and methods for phone call management |
US7738650B2 (en) | 2007-05-01 | 2010-06-15 | Unison Technologies, Inc. | Systems and methods for scalable hunt-group management |
US7593515B2 (en) | 2007-05-16 | 2009-09-22 | Unison Technologies, Inc. | Systems and methods for providing unified collaboration systems with combined communication log |
US9219677B2 (en) | 2009-01-16 | 2015-12-22 | Tekelec Global, Inc. | Methods, systems, and computer readable media for centralized routing and call instance code management for bearer independent call control (BICC) signaling messages |
KR101353835B1 (ko) | 2009-03-27 | 2014-01-20 | 퀄컴 인코포레이티드 | 무선 통신 시스템들에서 통신 세션 허가 |
WO2010111477A1 (fr) * | 2009-03-27 | 2010-09-30 | Qualcomm Incorporated | Autorisations de session de communication dans des systèmes de communication sans fil |
US8565727B2 (en) | 2009-03-27 | 2013-10-22 | Qualcomm Incorporated | Communication session permissions in wireless communication systems |
CN102365879A (zh) * | 2009-03-27 | 2012-02-29 | 高通股份有限公司 | 无线通信系统中的通信会话许可 |
CN102365879B (zh) * | 2009-03-27 | 2016-03-02 | 高通股份有限公司 | 无线通信系统中的通信会话许可 |
US8385528B2 (en) | 2009-11-17 | 2013-02-26 | Tip Solutions, Inc. | Communication management feature |
US8948364B2 (en) | 2009-11-17 | 2015-02-03 | Tip Solutions, Inc. | Communication management feature |
WO2011062956A3 (fr) * | 2009-11-17 | 2011-09-22 | Tip Solutions, Inc. | Fonctionnalités de gestion de communications |
WO2011141217A1 (fr) * | 2010-05-10 | 2011-11-17 | Nokia Siemens Networks Oy | Application de messagerie vocale mobile |
GB2494083B (en) * | 2010-05-10 | 2014-09-17 | Nokia Solutions & Networks Oy | Mobile voicemail application |
GB2494083A (en) * | 2010-05-10 | 2013-02-27 | Nokia Siemens Networks Oy | Mobile voicemail application |
US8526919B2 (en) | 2010-11-17 | 2013-09-03 | Tip Solutions, Inc. | Message injection system and method |
US9088815B2 (en) | 2011-11-17 | 2015-07-21 | Tip Solutions, Inc. | Message injection system and method |
FR3028699A1 (fr) * | 2014-11-13 | 2016-05-20 | Orange | Procede et dispositif de communication |
WO2016075396A1 (fr) * | 2014-11-13 | 2016-05-19 | Orange | Procédé et dispositif de communication |
US9900431B1 (en) | 2017-08-04 | 2018-02-20 | At&T Intellectual Property I, L.P. | Communications handler for screening incoming calls |
US10165115B1 (en) | 2017-08-04 | 2018-12-25 | At&T Intellectual Property I, L.P. | Communications handler for screening incoming calls |
CN114827361A (zh) * | 2022-04-08 | 2022-07-29 | 马上消费金融股份有限公司 | 外呼的处理方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CA2556892A1 (fr) | 2005-09-09 |
CA2556892C (fr) | 2013-04-16 |
EP1721445A1 (fr) | 2006-11-15 |
EP1721445A4 (fr) | 2011-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7542558B2 (en) | Informing caller of callee activity mode | |
US8594298B2 (en) | Call management | |
CA2580942C (fr) | Dispositif sans fil permettant de gerer des services de telecommunication inter-reseaux | |
US20050195802A1 (en) | Dynamically routing telephone calls | |
US6668049B1 (en) | Systems and methods for intelligent third-party redirection of an incoming call via a display-based communication center | |
US6985561B2 (en) | System and method for customized telephone greeting announcements | |
US6430289B1 (en) | System and method for computerized status monitor and use in a telephone network | |
US8144843B2 (en) | System and method for accessing a messaging service using a short dialing sequence | |
US7158619B2 (en) | Remote call monitoring | |
WO2009076739A1 (fr) | Procédé et système de routage d'appels passés vers un identifiant téléphonique associé à un groupe d'identités | |
CA2556892C (fr) | Gestion des appels | |
EP1692852B1 (fr) | Systeme de communication a boite aux lettres en acces direct | |
KR20060044612A (ko) | 호출자 발신 다수 호출 | |
EP2151982A2 (fr) | Services de téléphonie | |
EP1558012A1 (fr) | Traitement d'appels en fonction de la disponibilité de l'abonnant et du numéro de l'appelant | |
EP1111875A2 (fr) | Contrôle d'un terminal de destination par un terminal d'origine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2556892 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005723332 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005723332 Country of ref document: EP |