WO2005082994A1 - Composites constitues de thermoplastiques dans lesquels des charges sont reparties de façon monodispersee - Google Patents
Composites constitues de thermoplastiques dans lesquels des charges sont reparties de façon monodispersee Download PDFInfo
- Publication number
- WO2005082994A1 WO2005082994A1 PCT/EP2005/001545 EP2005001545W WO2005082994A1 WO 2005082994 A1 WO2005082994 A1 WO 2005082994A1 EP 2005001545 W EP2005001545 W EP 2005001545W WO 2005082994 A1 WO2005082994 A1 WO 2005082994A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molding compositions
- weight
- compositions according
- component
- thermoplastic molding
- Prior art date
Links
- 239000000945 filler Substances 0.000 title claims description 12
- 239000002131 composite material Substances 0.000 title description 7
- 239000012815 thermoplastic material Substances 0.000 title description 2
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 20
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 15
- 239000000654 additive Substances 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 80
- -1 amino, carboxyl Chemical group 0.000 claims description 53
- 125000004432 carbon atom Chemical group C* 0.000 claims description 25
- 238000004519 manufacturing process Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 23
- 238000000465 moulding Methods 0.000 claims description 21
- 239000004417 polycarbonate Substances 0.000 claims description 20
- 229920000515 polycarbonate Polymers 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 19
- 238000009757 thermoplastic moulding Methods 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 16
- 125000003118 aryl group Chemical group 0.000 claims description 14
- 239000004952 Polyamide Substances 0.000 claims description 11
- 229920002647 polyamide Polymers 0.000 claims description 11
- 239000006185 dispersion Substances 0.000 claims description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical group [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 5
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 claims description 5
- 239000005046 Chlorosilane Substances 0.000 claims description 4
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- 239000004593 Epoxy Substances 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000003573 thiols Chemical group 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 2
- OWIKHYCFFJSOEH-UHFFFAOYSA-N Isocyanic acid Chemical group N=C=O OWIKHYCFFJSOEH-UHFFFAOYSA-N 0.000 claims 1
- 239000003607 modifier Substances 0.000 claims 1
- 150000004767 nitrides Chemical class 0.000 claims 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 claims 1
- 239000000470 constituent Substances 0.000 abstract 2
- 239000000178 monomer Substances 0.000 description 42
- 229920000642 polymer Polymers 0.000 description 37
- 229920001971 elastomer Polymers 0.000 description 33
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 30
- 229920000728 polyester Polymers 0.000 description 20
- 239000005060 rubber Substances 0.000 description 17
- 239000000806 elastomer Substances 0.000 description 16
- 150000002148 esters Chemical class 0.000 description 16
- 229920001577 copolymer Polymers 0.000 description 15
- 238000012986 modification Methods 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 11
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 10
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 10
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 10
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 10
- 239000012071 phase Substances 0.000 description 10
- 229920000139 polyethylene terephthalate Polymers 0.000 description 10
- 239000005020 polyethylene terephthalate Substances 0.000 description 10
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 9
- 229920000578 graft copolymer Polymers 0.000 description 9
- 239000002114 nanocomposite Substances 0.000 description 9
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 8
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 8
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 239000000975 dye Substances 0.000 description 8
- 125000003700 epoxy group Chemical group 0.000 description 8
- 229910021485 fumed silica Inorganic materials 0.000 description 8
- 229920001707 polybutylene terephthalate Polymers 0.000 description 8
- 150000004756 silanes Chemical class 0.000 description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 125000001424 substituent group Chemical group 0.000 description 7
- 229920002554 vinyl polymer Polymers 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 6
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 6
- 150000001991 dicarboxylic acids Chemical class 0.000 description 6
- 150000001993 dienes Chemical class 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000000126 substance Chemical group 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229920002943 EPDM rubber Polymers 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 5
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 5
- 125000005396 acrylic acid ester group Chemical group 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 229910000077 silane Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 150000003440 styrenes Chemical class 0.000 description 5
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 239000004908 Emulsion polymer Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 4
- 229920002292 Nylon 6 Polymers 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000007334 copolymerization reaction Methods 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 239000012764 mineral filler Substances 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 4
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 4
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 3
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 3
- 239000005995 Aluminium silicate Substances 0.000 description 3
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 239000001361 adipic acid Substances 0.000 description 3
- 235000011037 adipic acid Nutrition 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 125000000732 arylene group Chemical group 0.000 description 3
- ISRJTGUYHVPAOR-UHFFFAOYSA-N dihydrodicyclopentadienyl acrylate Chemical compound C1CC2C3C(OC(=O)C=C)C=CC3C1C2 ISRJTGUYHVPAOR-UHFFFAOYSA-N 0.000 description 3
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical class OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 3
- 238000007720 emulsion polymerization reaction Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 3
- 239000012948 isocyanate Chemical group 0.000 description 3
- 150000002513 isocyanates Chemical group 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 3
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 2
- MEBONNVPKOBPEA-UHFFFAOYSA-N 1,1,2-trimethylcyclohexane Chemical compound CC1CCCCC1(C)C MEBONNVPKOBPEA-UHFFFAOYSA-N 0.000 description 2
- QHZLMUACJMDIAE-UHFFFAOYSA-N 1-monopalmitoylglycerol Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)CO QHZLMUACJMDIAE-UHFFFAOYSA-N 0.000 description 2
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- SWDDLRSGGCWDPH-UHFFFAOYSA-N 4-triethoxysilylbutan-1-amine Chemical compound CCO[Si](OCC)(OCC)CCCCN SWDDLRSGGCWDPH-UHFFFAOYSA-N 0.000 description 2
- RBVMDQYCJXEJCJ-UHFFFAOYSA-N 4-trimethoxysilylbutan-1-amine Chemical compound CO[Si](OC)(OC)CCCCN RBVMDQYCJXEJCJ-UHFFFAOYSA-N 0.000 description 2
- 235000021357 Behenic acid Nutrition 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000004641 Diallyl-phthalate Substances 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IPRJXAGUEGOFGG-UHFFFAOYSA-N N-butylbenzenesulfonamide Chemical compound CCCCNS(=O)(=O)C1=CC=CC=C1 IPRJXAGUEGOFGG-UHFFFAOYSA-N 0.000 description 2
- 239000006057 Non-nutritive feed additive Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- OCKWAZCWKSMKNC-UHFFFAOYSA-N [3-octadecanoyloxy-2,2-bis(octadecanoyloxymethyl)propyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(COC(=O)CCCCCCCCCCCCCCCCC)(COC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC OCKWAZCWKSMKNC-UHFFFAOYSA-N 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229940116226 behenic acid Drugs 0.000 description 2
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 2
- ZPOLOEWJWXZUSP-AATRIKPKSA-N bis(prop-2-enyl) (e)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C\C(=O)OCC=C ZPOLOEWJWXZUSP-AATRIKPKSA-N 0.000 description 2
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 2
- 238000004061 bleaching Methods 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- 235000012241 calcium silicate Nutrition 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000012765 fibrous filler Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- KEMQGTRYUADPNZ-UHFFFAOYSA-N heptadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)=O KEMQGTRYUADPNZ-UHFFFAOYSA-N 0.000 description 2
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical compound C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 229920006024 semi-aromatic copolyamide Polymers 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 125000005504 styryl group Chemical group 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- VMPHSYLJUKZBJJ-UHFFFAOYSA-N trilaurin Chemical compound CCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC)COC(=O)CCCCCCCCCCC VMPHSYLJUKZBJJ-UHFFFAOYSA-N 0.000 description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 1
- RRKODOZNUZCUBN-CCAGOZQPSA-N (1z,3z)-cycloocta-1,3-diene Chemical class C1CC\C=C/C=C\C1 RRKODOZNUZCUBN-CCAGOZQPSA-N 0.000 description 1
- UXUFTKZYJYGMGO-CMCWBKRRSA-N (2s,3s,4r,5r)-5-[6-amino-2-[2-[4-[3-(2-aminoethylamino)-3-oxopropyl]phenyl]ethylamino]purin-9-yl]-n-ethyl-3,4-dihydroxyoxolane-2-carboxamide Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NCC)O[C@H]1N1C2=NC(NCCC=3C=CC(CCC(=O)NCCN)=CC=3)=NC(N)=C2N=C1 UXUFTKZYJYGMGO-CMCWBKRRSA-N 0.000 description 1
- LJQVLJXQHTULEP-UHFFFAOYSA-N (3-hydroxyphenyl)-(4-hydroxyphenyl)methanone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=CC(O)=C1 LJQVLJXQHTULEP-UHFFFAOYSA-N 0.000 description 1
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- 150000005207 1,3-dihydroxybenzenes Chemical class 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 1
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N 1-behenoylglycerol Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 description 1
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 1
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 description 1
- YIYBRXKMQFDHSM-UHFFFAOYSA-N 2,2'-Dihydroxybenzophenone Chemical compound OC1=CC=CC=C1C(=O)C1=CC=CC=C1O YIYBRXKMQFDHSM-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- DSAYAFZWRDYBQY-UHFFFAOYSA-N 2,5-dimethylhexa-1,5-diene Chemical compound CC(=C)CCC(C)=C DSAYAFZWRDYBQY-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- VXHYVVAUHMGCEX-UHFFFAOYSA-N 2-(2-hydroxyphenoxy)phenol Chemical compound OC1=CC=CC=C1OC1=CC=CC=C1O VXHYVVAUHMGCEX-UHFFFAOYSA-N 0.000 description 1
- BLDLRWQLBOJPEB-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfanylphenol Chemical compound OC1=CC=CC=C1SC1=CC=CC=C1O BLDLRWQLBOJPEB-UHFFFAOYSA-N 0.000 description 1
- XSVZEASGNTZBRQ-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfinylphenol Chemical compound OC1=CC=CC=C1S(=O)C1=CC=CC=C1O XSVZEASGNTZBRQ-UHFFFAOYSA-N 0.000 description 1
- QUWAJPZDCZDTJS-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfonylphenol Chemical compound OC1=CC=CC=C1S(=O)(=O)C1=CC=CC=C1O QUWAJPZDCZDTJS-UHFFFAOYSA-N 0.000 description 1
- KAIRTVANLJFYQS-UHFFFAOYSA-N 2-(3,5-dimethylheptyl)phenol Chemical compound CCC(C)CC(C)CCC1=CC=CC=C1O KAIRTVANLJFYQS-UHFFFAOYSA-N 0.000 description 1
- JJRUAPNVLBABCN-UHFFFAOYSA-N 2-(ethenoxymethyl)oxirane Chemical compound C=COCC1CO1 JJRUAPNVLBABCN-UHFFFAOYSA-N 0.000 description 1
- XBQRPFBBTWXIFI-UHFFFAOYSA-N 2-chloro-4-[2-(3-chloro-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound C=1C=C(O)C(Cl)=CC=1C(C)(C)C1=CC=C(O)C(Cl)=C1 XBQRPFBBTWXIFI-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- AAAWJUMVTPNRDT-UHFFFAOYSA-N 2-methylpentane-1,5-diol Chemical compound OCC(C)CCCO AAAWJUMVTPNRDT-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- ZDWSNKPLZUXBPE-UHFFFAOYSA-N 3,5-ditert-butylphenol Chemical compound CC(C)(C)C1=CC(O)=CC(C(C)(C)C)=C1 ZDWSNKPLZUXBPE-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- CUAUDSWILJWDOD-UHFFFAOYSA-N 4-(3,5-dimethylheptyl)phenol Chemical compound CCC(C)CC(C)CCC1=CC=C(O)C=C1 CUAUDSWILJWDOD-UHFFFAOYSA-N 0.000 description 1
- KJWMCPYEODZESQ-UHFFFAOYSA-N 4-Dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=C(O)C=C1 KJWMCPYEODZESQ-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- UMPGNGRIGSEMTC-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl]phenol Chemical compound C1C(C)CC(C)(C)CC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 UMPGNGRIGSEMTC-UHFFFAOYSA-N 0.000 description 1
- BDBZTOMUANOKRT-UHFFFAOYSA-N 4-[2-(4-aminocyclohexyl)propan-2-yl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1C(C)(C)C1CCC(N)CC1 BDBZTOMUANOKRT-UHFFFAOYSA-N 0.000 description 1
- NIRYBKWMEWFDPM-UHFFFAOYSA-N 4-[3-(4-hydroxyphenyl)-3-methylbutyl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(C)CCC1=CC=C(O)C=C1 NIRYBKWMEWFDPM-UHFFFAOYSA-N 0.000 description 1
- BPVVTRJJQZINNG-UHFFFAOYSA-N 4-chloro-1-ethenyl-2-methylbenzene Chemical compound CC1=CC(Cl)=CC=C1C=C BPVVTRJJQZINNG-UHFFFAOYSA-N 0.000 description 1
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NWPQAENAYWENSD-UHFFFAOYSA-N 5-butylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=CCCC)CC1C=C2 NWPQAENAYWENSD-UHFFFAOYSA-N 0.000 description 1
- DMGCMUYMJFRQSK-UHFFFAOYSA-N 5-prop-1-en-2-ylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C(=C)C)CC1C=C2 DMGCMUYMJFRQSK-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- NXYVHOSMFFQYKB-UHFFFAOYSA-N ClC=1C(=C(C(=C(C1)Cl)O)C(C)(C)C1=C(C(=CC(=C1O)Cl)Cl)O)O.OC1=CC=C(C=C1)C(C)(C)C1=CC=C(C=C1)O Chemical compound ClC=1C(=C(C(=C(C1)Cl)O)C(C)(C)C1=C(C(=CC(=C1O)Cl)Cl)O)O.OC1=CC=C(C=C1)C(C)(C)C1=CC=C(C=C1)O NXYVHOSMFFQYKB-UHFFFAOYSA-N 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical group O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 239000004609 Impact Modifier Substances 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229920000393 Nylon 6/6T Polymers 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000005643 Pelargonic acid Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- VXTCGLOHVOYPOD-UHFFFAOYSA-N [2-(2-hydroxybenzoyl)phenyl]-(2-hydroxyphenyl)methanone Chemical compound OC1=CC=CC=C1C(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1O VXTCGLOHVOYPOD-UHFFFAOYSA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 125000004018 acid anhydride group Chemical group 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Chemical class 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 239000006085 branching agent Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 125000002993 cycloalkylene group Chemical group 0.000 description 1
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical class C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical class OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- UKJLNMAFNRKWGR-UHFFFAOYSA-N cyclohexatrienamine Chemical group NC1=CC=C=C[CH]1 UKJLNMAFNRKWGR-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- UCVPKAZCQPRWAY-UHFFFAOYSA-N dibenzyl benzene-1,2-dicarboxylate Chemical compound C=1C=CC=C(C(=O)OCC=2C=CC=CC=2)C=1C(=O)OCC1=CC=CC=C1 UCVPKAZCQPRWAY-UHFFFAOYSA-N 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- VVYDVQWJZWRVPE-UHFFFAOYSA-L dimethyltin(2+);diiodide Chemical compound C[Sn](C)(I)I VVYDVQWJZWRVPE-UHFFFAOYSA-L 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000012674 dispersion polymerization Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical group O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 1
- KCWGHIAGIBAKFB-UHFFFAOYSA-N ethane-1,2-diamine;octadecanoic acid Chemical compound NCCN.CCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O KCWGHIAGIBAKFB-UHFFFAOYSA-N 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 238000001825 field-flow fractionation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- UHUSDOQQWJGJQS-UHFFFAOYSA-N glycerol 1,2-dioctadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCCCCCCCCCCCC UHUSDOQQWJGJQS-UHFFFAOYSA-N 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- QVTWBMUAJHVAIJ-UHFFFAOYSA-N hexane-1,4-diol Chemical compound CCC(O)CCCO QVTWBMUAJHVAIJ-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 229940094522 laponite Drugs 0.000 description 1
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- HYBLFDUGSBOMPI-UHFFFAOYSA-N octa-1,4-diene Chemical compound CCCC=CCC=C HYBLFDUGSBOMPI-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- QYZLKGVUSQXAMU-UHFFFAOYSA-N penta-1,4-diene Chemical compound C=CCC=C QYZLKGVUSQXAMU-UHFFFAOYSA-N 0.000 description 1
- 150000002979 perylenes Chemical class 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000003880 polar aprotic solvent Substances 0.000 description 1
- 229920006139 poly(hexamethylene adipamide-co-hexamethylene terephthalamide) Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000004313 potentiometry Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002444 silanisation Methods 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- HHJJPFYGIRKQOM-UHFFFAOYSA-N sodium;oxido-oxo-phenylphosphanium Chemical compound [Na+].[O-][P+](=O)C1=CC=CC=C1 HHJJPFYGIRKQOM-UHFFFAOYSA-N 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 229910052717 sulfur Chemical group 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- 150000003509 tertiary alcohols Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/005—Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/3081—Treatment with organo-silicon compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/12—Treatment with organosilicon compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/02—Polyamides derived from omega-amino carboxylic acids or from lactams thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
Definitions
- the invention relates to thermoplastic molding compositions containing as essential components
- thermoplastic polymer B 0.01 to 50% by weight of a spherical, organically modified nano-filler and in addition C) 0 to 70% by weight of other additives, the Weight percentages of components A) to C) always give 100%.
- the invention further relates to processes for the production and the use of the molding compositions according to the invention for the production of moldings of any type and the moldings obtainable here.
- Fillers such as glass fibers, minerals or glass balls are often used to improve the properties of polymers. With all these fillers, the dimensions are in Glass fibers are used, for example, to increase the stiffness of the polymers. On the other hand, these types of fillers usually lead to a significant deterioration in other mechanical properties of the polymers, such as elongation at break.
- a new class of composites are materials that consist of polymers and nanoparticles. While there are numerous examples in the literature of such composites consisting of polyester and high aspect ratio particles, e.g. Layered silicates (JP-A 03/62856), is little known about nanocomposites with spherical particles.
- WO 01/72881 discloses polycondensation in the presence of finely divided mineral particles with a size of less than 200 nm.
- the composites produced in this way have improved thermal-mechanical properties.
- a disadvantage of these compositions is the complex preparation by addition during the polymerization.
- processes for the production of spherical, organically modified nanoparticles are proposed, as well as their incorporation into organic binding materials.
- the object of the present invention was therefore to provide thermoplastic molding compositions which have a significant improvement in the dispersion of nanofillers in the thermoplastic matrix, mechanical properties such as elongation at break and modulus of elasticity being greatly improved.
- the molding compositions according to the invention contain 1 to 99.9, preferably 20 to 99 and in particular 30 to 80% by weight of a thermoplastic polymer.
- thermoplastics of all kinds.
- suitable thermoplastics can be found, for example, in the plastic paperback (ed. Saechtling), edition 1989, where sources of supply are also mentioned. Methods for producing such thermoplastic materials are known per se to the person skilled in the art. Some preferred types of plastic are explained in more detail below.
- Polyesters A) based on aromatic dicarboxylic acids and an aliphatic or aromatic dihydroxy compound are generally used.
- a first group of preferred polyesters are polyalkylene terephthalates, which in particular have 2 to 10 carbon atoms in the alcohol part.
- Such polyalkylene terephthalates are known per se and are described in the literature. They contain an aromatic ring in the main chain, which comes from the aromatic dicarboxylic acid.
- the aromatic ring can also be substituted, e.g. by halogen such as chlorine and bromine or by CrC-palkyl groups such as methyl, ethyl, i- or n-propyl and n-, i- or t-butyl groups.
- polyalkylene terephthalates can be prepared in a manner known per se by reacting aromatic dicarboxylic acids, their esters or other ester-forming derivatives with aliphatic dihydroxy compounds.
- Preferred dicarboxylic acids are 2,6-naphthalenedicarboxylic acid, terephthalic acid and isophthalic acid or mixtures thereof.
- Up to 30 mol%, preferably not more than 10 mol%, of the aromatic dicarboxylic acids can be replaced by aliphatic or cycloaliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acids and cyclohexanedicarboxylic acids.
- the aliphatic dihydroxy compounds are diols with 2 to 8 carbon atoms, in particular 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,4-hexanediol, 1,4-cyclohexanediol, 1 , 4-Cyclohexanedimethanol and neopentyl glycol or mixtures thereof are preferred.
- polyesters (A) are polyalkylene terephthalates which are derived from alkanediols having 2 to 6 carbon atoms. Of these, particularly preferred are polyethylene terephthalate, polypropylene terephthalate and polybutylene terephthalate or mixtures thereof. PET and / or PBT which contain up to 1% by weight, preferably up to 0.75% by weight 1,6-hexanediol and / or 2-methyl-1,5-pentanediol as further monomer units are further preferred.
- the viscosity number of the polyesters (A) is generally in the range from 50 to 220, preferably from 80 to 160 (measured in a 0.5% strength by weight solution in a phenol / o-dichlorobenzene mixture (weight ratio 1: 1 at 25 ° C) according to ISO 1628.
- polyesters whose carboxyl end group content is up to 100 meq / kg, preferably up to 50 meq / kg and in particular up to 40 meq / kg polyester.
- Such polyesters can for example by the method of
- DE-A 44 01 055 can be produced.
- the carboxyl end group content is usually determined by titration methods (e.g. potentiometry).
- Particularly preferred molding compositions contain, as component A), a mixture of polyesters other than PBT, such as, for example, polyethylene terephthalate (PET) and / or polycarbonate.
- PBT polyethylene terephthalate
- the proportion e.g. The polyethylene terephthalate and / or the polycarbonate in the mixture is preferably up to 50, in particular 10 to 30,% by weight, based on 100% by weight of A).
- PET recyclates also called scrap PET
- PBT polyalkylene terephthalates
- So-called post industrial recyclate this is production waste in the case of polycondensation or in processing, e.g. sprues in injection molding processing, commodity goods in injection molding processing or extrusion or the edge portions of extruded sheets or foils.
- Post consumer recyclate these are plastic items that are collected and processed by the end consumer after use.
- the most dominant item in terms of quantity are blow-molded PET bottles for mineral water, soft drinks and juices.
- Both types of recyclate can either be in the form of regrind or in the form of granules. In the latter case, the pipe cyclates are melted and granulated in an extruder after separation and cleaning. This usually facilitates handling, flowability and meterability for further processing steps.
- Recyclates both granulated and in the form of regrind, can be used, the maximum edge length being 6 mm, preferably less than 5 mm.
- the residual moisture content after drying is preferably 0.01 to 0.7, in particular 0.2 to 0.6%.
- Aromatic dicarboxylic acids which are suitable are the compounds already described for the polyalkylene terephthalates. Mixtures of 5 to 100 mol% isophthalic acid and 0 to 95 mol% terephthalic acid, in particular mixtures of approximately 80% terephthalic acid with 20% isophthalic acid to approximately equivalent mixtures of these two acids, are used.
- the aromatic dihydroxy compounds preferably have the general formula
- Z represents an alkylene or cycloalkylene group with up to 8 C atoms, an arylene group with up to 12 C atoms, a carbonyl group, a sulfonyl group, an oxygen or sulfur atom or a chemical bond and in which m is the value Has 0 to 2.
- the compounds on the phenylene groups can also be C r C 6 alkyl or ⁇
- Resorcinol and hydroquinone and their kemalkylated or kemhalogenated derivatives are mentioned.
- 2,2-di- (4'-hydroxyphenyl) propane 2,2-di (3 ', 5-dichlorodihydroxyphenyl) propane, 1, 1 -di (4'-hydroxyphenyl) cyclohexane, 3,4'-dihydroxybenzophenone, 4 , 4'-dihydroxydiphenyl sulfone and 2,2-di (3 ' I 5'-dimethyl-4'-hydroxyphenyl) propane
- polyalkylene terephthalates and fully aromatic polyesters and / or polycarbonates can also be used. These generally contain 20 to 98% by weight, preferably 50 to 96% by weight of the polyalkylene terephthalate and 2 to 80% by weight, preferably 4 to 50% by weight of the fully aromatic polyester and / or Polycarbonates.
- polyester block copolymers such as copolyether esters can also be used. Products of this type are known per se and are described in the literature, for example in US Pat. No. 3,651,014. Corresponding products are also commercially available, for example Hytrel ® (DuPont).
- Halogen-free polycarbonates are also preferably used as component A). Suitable halogen-free polycarbonates are, for example, those based on diphenols of the general formula
- Q is a single bond, a C to C 8 alkylene, a C 2 - to C 3 alkylidene, a C 3 - to C ⁇ -cycloalkylidene group, a C 6 - to C 2 -arylene group and -O-, -S - or - SO - and m is an integer from 0 to 2.
- the diphenols can also have substituents on the phenylene radicals, such as C to C 6 alkyl or C r to C 6 alkoxy.
- Preferred diphenols of the formula are, for example, hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1 bis (4-hydroxyphenyl) -cyclohexane.
- 2,2-bis (4-hydroxyphenyl) propane and 1,1-bis (4-hydroxyphenyl) cyclohexane and 1,1-bis (4-hydroxyphenyl) -3,3,5- are particularly preferred. trimethylcyclohexane.
- both homopolycarbonates and copolycarbonates are suitable as component A; in addition to the bisphenol A homopolymer, the copolycarbonates of bisphenol A are preferred.
- the suitable polycarbonates can be branched in a known manner, preferably by incorporating 0.05 to 2.0 mol%, based on the sum of the diphenols used, of at least trifunctional compounds, for example those having three or more than three phenolic compounds OH groups.
- Polycarbonates which have relative viscosities ⁇ - e i of 1.10 to 1.50, in particular of 1.25 to 1.40, have proven particularly suitable. This corresponds to average molecular weights M w (weight average) of 10,000 to 200,000, preferably 20,000 to 80,000.
- M w weight average
- the diphenols of the general formula are known per se or can be prepared by known processes.
- the polycarbonates can be produced, for example, by reacting the diphenols with phosgene using the phase boundary process or with phosgene using the homogeneous phase process (the so-called pyridine process), the molecular weight to be adjusted in each case being achieved in a known manner by a corresponding amount of known chain terminators , (Regarding polydiorganosiloxane-containing polycarbonates, see for example DE-OS 33 34782).
- Suitable chain terminators are, for example, phenol, pt-butylphenol but also long-chain alkylphenols such as 4- (1,3-tetramethylbutyl) phenol, according to DE-OS 2842 005 or monoalkylphenols or dialkylphenols with a total of 8 to 20 carbon atoms in the alkyl substituents according to DE-A 35 06472, such as p-nonylphenyl, 3,5-di-t-butylphenol, pt-octylphenol, p-dodecylphenol, 2- (3,5-dimethyl-heptyl) -phenol and 4- (3,5- dimethylheptyl) phenol.
- alkylphenols such as 4- (1,3-tetramethylbutyl) phenol, according to DE-OS 2842 005 or monoalkylphenols or dialkylphenols with a total of 8 to 20 carbon atoms in the alkyl substituents according to DE-A
- Halogen-free polycarbonates in the sense of the present invention means that the polycarbonates are composed of halogen-free diphenols, halogen-free chain terminators and optionally halogen-free branching agents, the content of minor ppm amounts of saponifiable chlorine resulting, for example, from the production of the polycarbonates with phosgene by the phase boundary process, is not to be regarded as containing halogen in the sense of the invention.
- Such polycarbonates with ppm contents of saponifiable chlorine are halogen-free polycarbonates in the sense of the present invention.
- Amorphous polyester carbonates may be mentioned as further suitable components A), phosgene being replaced by aromatic dicarboxylic acid units such as isophthalic acid and / or terephthalic acid units during the preparation.
- aromatic dicarboxylic acid units such as isophthalic acid and / or terephthalic acid units during the preparation.
- Bisphenol A can also be replaced by Bisphenol TMC.
- Such polycarbonates are available under the trademark APEC HT ® from Bayer.
- the molecular weight of these known and commercially available polymers is generally in the range from 1,500 to 2,000,000, preferably in the range from 70,000 to 1,000,000.
- Vinyl aromatic polymers made from styrene, chlorostyrene, a-methylstyrene and p-methylstyrene are only representative here; In minor proportions (preferably not more than 20, in particular not more than 8% by weight), comonomers such as (meth) acrylonitrile or (meth) acrylic acid esters can also be involved in the structure.
- Particularly preferred vinyl aromatic polymers are polystyrene and impact modified polystyrene. It goes without saying that mixtures of these polymers can also be used.
- the production is preferably carried out according to the method described in EP-A-302485.
- Preferred ASA polymers are made up of a soft or rubber phase made of a graft polymer made of:
- A32 10 to 50 preferably 10 to 45 and in particular 15 to 35% by weight of acrylonitrile and / or methacrylonitrile.
- Component A 1 is an elastomer which has a glass transition temperature of below -20, in particular below -30 ° C.
- the main monomers used for the production of the elastomer are an) esters of acrylic acid with 2 to 10 C atoms, in particular 4 to 8 C atoms.
- Particularly preferred monomers here are tert-, iso- and n-butyl acrylate and 2-ethylhexyl called acrylate, of which the latter two are particularly preferred.
- esters of acrylic acid 0.1 to 5, in particular 1 to 4,% by weight, based on the total weight of An + A 12, of a polyfunctional monomer with at least two olefinic, non-conjugated double bonds are used.
- difunctional compounds ie with two non-conjugated double bonds, are preferably used. Examples include divinylbenzene, diallyl fumarate, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, tricyclodecenyl acrylate and dihydrodicyclopentadienyl acrylate, the latter two being particularly preferred.
- Methods for producing the graft base A ⁇ are known per se and e.g. described in DE-B 1 260 135. Corresponding products are also commercially available.
- the exact polymerization conditions are preferably selected so that the latex of the acrylic acid ester, which is at least partially crosslinked, has an average particle size (weight average d 50 ) in the range from about 200 to 700, in particular from 250 up to 600 nm.
- the latex preferably has a narrow particle size distribution, ie the quotient
- the proportion of the graft base Ai in the graft polymer A ⁇ + A 2 is 50 to 90, preferably 55 to 85 and in particular 60 to 80% by weight, based on the total weight of A ⁇ + A 2 .
- a graft cover A 2 is grafted onto the graft base Ai, which is obtained by copolymerization of
- R 1 represents alkyl radicals with 1 to 8 carbon atoms or halogen atoms and n has the value 0.1,
- a 22 10 to 80, preferably 10 to 70 and in particular 20 to 70% by weight of acrylonitrile, methacrylonitrile, acrylic acid esters or methacrylic acid esters or mixtures thereof can be obtained.
- substituted styrenes are a-methylstyrene, p-methylstyrene, p-chlorostyrene and p-chloro-a-methylstyrene, of which styrene and a-methylstyrene are preferred.
- Preferred acrylic or methacrylic acid esters are those whose homopolymers or copolymers with the other monomers of component A 2 ) have glass transition temperatures of more than 20 ° C .; in principle, however, other acrylic acid esters can also be used, preferably in amounts such that overall a glass transition temperature T g of above 20 ° C. results for component A 2 .
- Esters of acrylic or methacrylic acid with C r C 8 alcohols and esters containing epoxy groups are particularly preferred.
- Methyl methacrylate, t-butyl methacrylate, glycidyl methacrylate and n-butyl acrylate may be mentioned as very particularly preferred examples, the latter being preferably used in a not too high proportion owing to its property of forming polymers with a very low T g .
- the graft shell A 2 can be produced in one or more, for example two or three, process steps, the gross composition remains unaffected.
- the graft shell is made in emulsion as e.g. is described in DE-PS 1260 135, DE-OS 3227555, DE-OS 31 49 357 and DE-OS 34 14 118.
- the graft copolymer Ai + A 2 generally has an average particle size of 100 to 1,000 nm, in particular from 200 to 700 nm, (d 50 weight average).
- the conditions in the production of the elastomer Di) and in the grafting are therefore preferably chosen such that particle sizes result in this range. Measures for this are known and are described, for example, in DE-PS 1 260 135 and DE-OS 2826 925 and in Journal of Applied Polymer Science, Vol. 9 (1965), pp. 2929 to 2938.
- the particle enlargement of the latex of the elastomer can be accomplished, for example, by means of agglomeration.
- the graft polymer (A- ⁇ + A 2 ) also includes the free, non-grafted homopolymers and copolymers formed in the graft copolymerization for the preparation of component A 2 ).
- graft base A made of An 98% by weight n-butyl acrylate and A 12 2% by weight dihydrodicyclopentadienyl acrylate and 40% by weight graft cover A 2 made of A 2 ⁇ 75% by weight styrene and A 2 25% by weight acrylonitrile
- the products contained as component A 3 can be produced, for example, by the process described in DE-AS 10 01 001 and DE-AS 1003436. Such copolymers are also commercially available.
- the weight average molecular weight determined by light scattering is preferably in the range from 50,000 to 500,000, in particular from 100,000 to 250,000.
- the weight ratio of i + A 2 ): A3 is in the range from 1: 2.5 to 2.5: 1, preferably from 1: 2 to 2: 1 and in particular from 1: 1.5 to 1.5: 1.
- Suitable SAN polymers as component A) are described above (see A 31 and A 32 ).
- the viscosity number of the SAN polymers measured in accordance with DIN 53 727 as a 0.5% by weight solution in dimethylformamide at 23 ° C., is generally in the range from 40 to 100, preferably 50 to 80 ml / g.
- ABS polymers as polymer (A) in the multiphase polymer mixtures according to the invention have the same structure as described above for ASA polymers.
- conjugated dienes are usually used, so that the following composition preferably results for the graft base A 4 :
- composition of graft A and the hard matrix of SAN copolymer A3) remain unchanged.
- Such products are commercially available.
- the manufacturing processes are known to the person skilled in the art, so that further information on this is unnecessary.
- the weight ratio of (A 4 + A 2 ): A 3 is in the range from 3: 1 to 1: 3, preferably from 2: 1 to 1: 2.
- compositions of the molding compositions according to the invention contain as component A) a mixture of:
- a 2 0 to 40% by weight of a polyethylene terephthalate AA 3 3)) 11 to 4400 GWeeww ..-- %% of an ASA or ABS polymer or mixtures thereof
- Ultradur ® S (formerly Ultrablend ® S) from BASF Aktiengesellschaft.
- a 2 0 to 40% by weight of a polyester, preferably polybutylene terephthalate,
- a 3 1 to 40 wt .-% of an ASA or ABS polymer or mixtures thereof.
- the polyamides of the molding compositions according to the invention generally have a viscosity number of 90 to 350, preferably 110 to 240 ml / g, determined in a 0.5% strength by weight solution in 96% strength by weight sulfuric acid at 25.degree ISO 307.
- Semi-crystalline or amorphous resins with a molecular weight (weight average) of at least 5,000 e.g. U.S. Patents 2,071,250, 2,071,251, 2,130,523, 2,130,948, 2,241,322, 2,312,966, 2,512,606, and 3,393,210 are preferred.
- Examples include polyamides derived from lactams with 7 to 13 ring members, such as polycaprolactam, polycapryllactam and polylaurinlactam, and polyamides obtained by reacting dicarboxylic acids with diamines.
- Alkanedicarboxylic acids having 6 to 12, in particular 6 to 10, carbon atoms and aromatic dicarboxylic acids can be used as dicarboxylic acids. Only adipic acid, azelaic acid, sebacic acid, dodecanedioic acid and terephthalic and / or isophthalic acid may be mentioned here as acids.
- Particularly suitable diamines are alkane diamines with 6 to 12, in particular 6 to 8, carbon atoms and m-xylylenediamine, di- (4-aminophenyl) methane, di- (4-aminocyclohexyl) methane, 2,2-di- (4-aminophenyl) ) propane or 2,2-di- (4-aminocyclohexyl) propane.
- Preferred polyamides are polyhexamethylene adipic acid amide, polyhexamethylene sebacic acid amide and polycaprolactam and copolyamides 6/66, in particular with a proportion of 5 to 95% by weight of caprolactam units.
- Polyamides may also be mentioned, e.g. can be obtained by condensation of 1,4-diaminobutane with adipic acid at elevated temperature (polyamide-4,6). Manufacturing processes for polyamides of this structure are e.g. in EP-A 38 094, EP-A 38582 and EP-A 39 524.
- Polyamides obtainable by copolymerizing two or more of the aforementioned monomers or mixtures of two or more polyamides are also suitable, the mixing ratio being arbitrary.
- those partially aromatic copolyamides such as PA 6 / 6T and PA 66 / 6T have proven to be particularly advantageous whose triamine content is less than 0.5, preferably is less than 0.3% by weight (see EP-A 299444).
- the preferred partially aromatic copolyamides with a low triamine content can be prepared by the processes described in EP-A 129 195 and 129 196.
- thermoplastic polyurethanes TPU
- TPU thermoplastic polyurethanes
- polystyrene resin examples include polyphenyl ethers, polyolefins such as polyethylene and / or polypropylene homo- or copolymers, and also polyketones, polyylene ethers (so-called HT thermoplastics), in particular polyether sulfones, polyvinyl chlorides, poly (meth) acrylates and mixtures (blends) all thermoplastics listed above.
- the molding compositions according to the invention contain 0.01 to 50, preferably 0.05 to 20 and in particular 1 to 10% by weight of a spherical, organically modified nanofiller.
- a “spherical” filler means (a difference to the layered silicates) fillers with a hollow volume, which is at best in the form of an ideal sphere (i.e. particles with a three-dimensional structure).
- the average particle size (d 50 value) is advantageously from 2 to 250, in particular from 10 to 200 nm and very particularly preferably from 15 to 170 nm.
- the particle size determination and distribution is usually carried out by dynamic light scattering, ultracentrifuge or field flow fractionation, and the aspect ratio by combining the above methods with transmission or scanning electron microscopy.
- the agglomerated nanopowders to be used as the starting material are, in particular, oxidic or nitridic compounds which have been produced by flame pyrolytic means or by precipitation. But also agglomerated nanofillers other bases, such as barium sulfate or barium titanate, are suitable. Oxides are preferably used, and particularly preferably flame-pyrolytically produced silicon dioxide.
- the organic modification of the surface is preferably carried out in a solvent by treatment with a siloxane, chlorosilane, silazane, titanate or zirconate or mixtures thereof.
- a siloxane preferably have the general formulas Si (OR ') n R 4 - n , SiClnRn-4, (R m R " m -3Si) 2 NH, T OR'JnR-n, and Zr (OR , )" R 4 - n,
- R'.R identical or different hydrocarbon radicals with 1 to 8, preferably 1 to 4, carbon atoms
- R is an unsaturated or saturated hydrocarbon radical with 1 to 150, preferably 1 to 50, carbon atoms which contains at least one epoxy, hydroxyl , Amino, carboxyl, (meth) acrylate, isocyanate, thiol, glycidyl or aromatic group with 5 to 20 C atoms, preferably 6 to 10 C atoms, m 1, 2 or 3 and n 1, 2 or 3
- the group R 'bonded via the oxygen, like R ", is any organic group, preferably an alkyl group and particularly preferably methyl, ethyl or isopropyl. These groups are split off in the form of the alcohol during the organic modification. In the case After the modification with the silazane, ammonia is split off and, in the case of chlororsiole, hydrochloric acid. The alcohol, hydrochloric acid or ammonia formed is no longer contained in the nanocomposite produced in the subsequent steps.
- the functional group R is preferably any organic group and is bonded directly to the silicon, titanium or zirconium via a hydrocarbon atom.
- the groups R may be the same or different.
- R is selected so that the group can react chemically with the monomers or polymers used to produce the nanocomposite or has a high affinity for this.
- Suitable silane compounds in particular for polyamides, polyesters and polycarbonates, are those of the general formula
- silane compounds are aminopropyltrimethoxysilane, aminobutyltrimethoxysilane, aminopropyltriethoxysilane, aminobutyltriethoxysilane and the corresponding silanes, which contain a glycidyl group as substituent X, and also phenyltriethoxysilane and phenyltrimethoxysalanized polymers, as well as, for example, silystyrene-PMMA, as well as (e.g., silane-functionalized PMMA) as well as polystyrene-functionalized silane (as well as polystyrene-silane) as well as (e.g., silane-PMMA) and also (e.g.
- R preferably contains an epoxy group or an amino, carboxylic acid, thiol or alcohol group which can react with an epoxy group.
- R is particularly preferably 2- (3,4-epoxycyclohexyl) ethyl, 3-glycidoxypropyl, 3-aminopropyl and 3-mercaptopropyl.
- R preferably contains a reactive double bond.
- R is particularly preferably vinyl or styryl or contains a vinyl or styryl group.
- R preferably contains an isocyanate, amino, alcohol, thiol or carboxylic acid group.
- R is particularly preferably 3-isocyanatopropyl, 3-aminopropyl and 3-mercaptopropyl.
- the organically modified nanofillers according to the invention can be used in the manufacture of the nanocomposites on their own or as a combination of different nanofillers or different particle size distributions. In order to be able to achieve particularly high filling levels, it is advisable to combine nanofillers with different particle size distributions and, if necessary, even to add micro-fillers.
- the solvent in which the modification of the nanofillers is preferably carried out is preferably a polar aprotic solvent and particularly preferably acetone, butanone, ethyl acetate, methyl isobutyl ketone, tetrahydrofuran and diisopropyl ether.
- an acid e.g. Hydrochloric acid
- a catalyst e.g. Hydrochloric acid
- catalytic amounts of water preferably between 0.1% and 5%, must be present in order to carry out the modification. This water is often already present as an adsorbate on the surfaces of the agglomerated nanofillers used as the starting material. Additional water, e.g. can also be added in the form of a dilute acid.
- the modification of the surface of the nanofillers with dyes is the modification of the surface of the nanofillers with dyes.
- the group R of the siloxane, titanate or zirconate used for the modification is a dye or can react with a dye.
- the dye can be bound to the surface of the nanofiller via a covalent bond or via an ionic bond.
- an additional mechanical energy input can take place using the usual methods before or during the modification. This can e.g. by ultrasound, a high-speed stirrer, a dissolver, a bead mill or a rotor-stator mixer.
- the organically modified nanofiller is preferably freed from the solvent and further processed as a dry powder.
- polymer dispersions modified with nanofillers can be produced. This is done by incorporating the surface-modified nanofillers according to the invention into the monomer on which the polymer dispersions are based, then dispersing this monomer / nanofiller mixture in water with the addition of a surfactant and, if appropriate, subsequent dispersion or emulsion polymerization.
- the molding compositions according to the invention can contain 0 to 60, in particular up to 50% by weight of further additives and processing aids which are different from B).
- the molding compositions according to the invention can contain 0 to 5, preferably 0.05 to 3 and in particular 0.1 to 2% by weight of at least one ester or amide of saturated or unsaturated aliphatic carboxylic acids with 10 to 40, preferably 16 to 22, C. Contain atoms with aliphatic saturated alcohols or amines with 2 to 40, preferably 2 to 6 carbon atoms.
- the carboxylic acids can be 1- or 2-valent. Examples include pelargonic acid, palmitic acid, lauric acid, margaric acid, dodecanedioic acid, behenic acid and particularly preferably stearic acid, capric acid and montanic acid (mixture of fatty acids with 30 to 40 carbon atoms).
- the aliphatic alcohols can be 1- to 4-valent.
- examples of alcohols are n-butanol, n-octanol, stearyl alcohol, ethylene glycol, propylene glycol, neopentyl glycol, pentaerythritol, with glycerol and pentaerythritol being preferred.
- the aliphatic amines can be 1- to 3-valent. Examples include stearylamine, ethylenediamine, propylenediamine, hexamethylenediamine, di (6-aminohexyl) amine, ethylenediamine and hexamethylenediamine being particularly preferred.
- Preferred esters or amides are correspondingly glycerol distearate, glycerol tristearate, ethylenediamine distearate, glycerol monopalmitate, glycerol trilaurate, glycerol monobehenate and pentaerythritol tetrastearate.
- Mixtures of different esters or amides or esters with amides can also be used in combination, the mixing ratio being arbitrary.
- Other common additives C) are, for example, in amounts up to 40, preferably up to 30% by weight of rubber-elastic polymers (often also referred to as impact modifiers, elastomers or rubbers).
- these are copolymers which are preferably composed of at least two of the following monomers: ethylene, propylene, butadiene, isobutene, isoprene, chloroprene, vinyl acetate, styrene, acrylonitrile and acrylic or methacrylic acid esters with 1 to 18 C atoms in the alcohol component.
- EPM ethylene-propylene
- EPDM ethylene-propylene-diene
- EPM rubbers generally have practically no more double bonds, while EPDM rubbers can have 1 to 20 double bonds / 100 carbon atoms.
- diene monomers for EPDM rubbers are conjugated dienes such as isoprene and butadiene, non-conjugated dienes having 5 to 25 carbon atoms such as penta-1,4-diene, hexa-1,4-diene, hexa-1,5 -diene, 2,5-dimethylhexa-1,5-diene and octa-1,4-diene, cyclic dienes such as cyclopentadiene, cyclohexadienes, cyclooctadienes and dicyclopentadiene and alkenylnorbornenes such as 5-ethylidene-2-norbornene, 5-butylidene- 2-norbornene, 2-methallyl-5-norbornene, 2-isopropenyl-5-norbornene and tricyclodienes such as 3-methyl-tricyclo (5.2.1.0.2.6) -3,8-decadiene or mixtures thereof.
- the diene content of the EPDM rubbers is preferably 0.5 to 50, in particular 1 to 8% by weight, based on the total weight of the rubber.
- EPM or EPDM rubbers can preferably also be grafted with reactive carboxylic acids or their derivatives.
- reactive carboxylic acids or their derivatives e.g. Acrylic acid, methacrylic acid and their derivatives, e.g. Glycidyl (meth) acrylate, as well as maleic anhydride.
- Another group of preferred rubbers are copolymers of ethylene with acrylic acid and / or methacrylic acid and / or the esters of these acids.
- the rubbers can also contain dicarboxylic acids such as maleic acid and fumaric acid or derivatives of these acids, e.g. Contain esters and anhydrides, and / or monomers containing epoxy groups.
- dicarboxylic acid derivatives or monomers containing epoxy groups are preferably incorporated into the rubber by adding monomers of general formulas I or II or III or IV containing dicarboxylic acid or epoxy groups to the monomer mixture
- R 1 to R 9 represent hydrogen or alkyl groups having 1 to 6 carbon atoms and m is an integer from 0 to 20, g is an integer from 0 to 10 and p is an integer from 0 to 5
- the radicals R 1 to R 9 are preferably hydrogen, where m is 0 or 1 and g is 1.
- the corresponding compounds are maleic acid, fumaric acid, maleic anhydride, allyl glycidyl ether and vinyl glycidyl ether.
- Preferred compounds of the formulas I, II and IV are maleic acid, maleic anhydride and epoxy group-containing esters of acrylic acid and / or methacrylic acid, such as glycidyl acrylate, glycidyl methacrylate and the esters with tertiary alcohols, such as t-butyl acrylate. Although the latter have no free carboxyl groups, their behavior comes close to that of the free acids and is therefore referred to as monomers with latent carboxyl groups.
- the copolymers advantageously consist of 50 to 98% by weight of ethylene, 0.1 to 20% by weight of monomers containing epoxy groups and / or monomers containing methacrylic acid and / or monomers containing acid anhydride groups and the remaining amount of (meth) acrylic acid esters.
- Copolymers of are particularly preferred
- n-butyl acrylate 1 to 45, in particular 10 to 40% by weight of n-butyl acrylate and / or 2-ethylhexyl acrylate.
- esters of acrylic and / or methacrylic acid are the methyl, ethyl, propyl and i- or t-butyl esters.
- vinyl esters and vinyl ethers can also be used as comonomers.
- the ethylene copolymers described above can be prepared by processes known per se, preferably by random copolymerization under high pressure and elevated temperature. Appropriate methods are generally known.
- Preferred elastomers are also emulsion polymers, the production of which e.g. is described in Blackley in the monograph "Emulsion Polymerization".
- the emulsifiers and catalysts that can be used are known per se.
- homogeneous elastomers or those with a shell structure can be used.
- the shell-like structure is determined by the order of addition of the individual monomers;
- the morphology of the polymers is also influenced by this order of addition.
- acrylates n-Butyl acrylate and 2-ethylhexyl acrylate, corresponding methacrylates, butadiene and isoprene and mixtures thereof.
- monomers for the production of the rubber part of the elastomers such as acrylates. n-Butyl acrylate and 2-ethylhexyl acrylate, corresponding methacrylates, butadiene and isoprene and mixtures thereof.
- monomers can be combined with other monomers such as e.g. Styrene, acrylonitrile, vinyl ethers and other acrylates or methacrylates such as methyl methacrylate, methyl acrylate, ethyl acrylate and propyl acrylate can be copolymerized.
- the soft or rubber phase (with a glass transition temperature of below 0 ° C) of the elastomers can represent the core, the outer shell or a middle shell (in the case of elastomers with more than two-shell structure); in the case of multi-layer elastomers, several shells can also consist of a rubber phase.
- one or more hard components are involved in the construction of the elastomer, they are generally polymerized by styrene, acrylonitrile, methacrylonitrile, ⁇ -methylstyrene, p-methylstyrene, acrylic acid esters and methacrylic acid esters such as methyl acrylate, ethyl acrylate and methyl methacrylate as main monomers.
- styrene acrylonitrile
- methacrylonitrile ⁇ -methylstyrene
- p-methylstyrene acrylic acid esters and methacrylic acid esters such as methyl acrylate, ethyl acrylate and methyl methacrylate as main monomers.
- acrylic acid esters and methacrylic acid esters such as methyl acrylate, ethyl acrylate and methyl methacrylate as main monomers.
- further comonomers can also be used here.
- emulsion polymers which have reactive groups on the surface.
- groups are, for example, epoxy, carboxyl, latent carboxyl, amino or amide groups as well as functional groups which are obtained by using monomers of the general formula R 10 R 11
- R 10 is hydrogen or a C to C 4 alkyl group
- R 11 is hydrogen, a C to C 8 alkyl group or an aryl group, in particular phenyl,
- R 12 is hydrogen, a C to C 0 alkyl, a C 6 to C 2 aryl group or -OR 13
- R 13 is a C to C 8 alkyl or C 6 to C 12 aryl group which can optionally be substituted by O- or N-containing groups,
- X is a chemical bond, a C to 0 C ⁇ alkylene or C 6 -C 12 arylene group or O
- Z is a C to C 10 alkylene or C 6 to C 12 arylene group.
- the graft monomers described in EP-A 208 187 are also suitable for introducing reactive groups on the surface.
- acrylamide, methacrylamide and substituted esters of acrylic acid or methacrylic acid such as (Nt-butylamino) ethyl methacrylate, (N, N-dimethylamino) ethyl acrylate, (N, N-dimethylamino) methyl acrylate and (N, N-diethylamino) called ethyl acrylate.
- the particles of the rubber phase can also be crosslinked.
- Monomers acting as crosslinking agents are, for example, buta-1,3-diene, divinylbenzene, diallyl phthalate and dihydrodicyclopentadienyl acrylate, and the compounds described in EP-A 50 265.
- So-called graft-linking monomers can also be used, ie monomers with two or more polymerizable double bonds which react at different rates during the polymerization.
- Compounds are preferably used in which at least one reactive group polymerizes at approximately the same rate as the other monomers, while the other reactive group (or reactive groups) polymerizes (polymerizes), for example, significantly more slowly.
- the different polymerization rates result in a certain proportion of unsaturated double bonds in the rubber. If a further phase is subsequently grafted onto such a rubber, the double bonds present in the rubber react at least partially with the graft monomers to form chemical bonds, ie the grafted phase is at least partially linked to the graft base via chemical bonds.
- graft-crosslinking monomers examples include monomers containing allyl groups, in particular allyl esters of ethylenically unsaturated carboxylic acids such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding monoallyl compounds of these dicarboxylic acids.
- allyl groups in particular allyl esters of ethylenically unsaturated carboxylic acids such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding monoallyl compounds of these dicarboxylic acids.
- graft-crosslinking monomers for further details, reference is made here, for example, to US Pat. No. 4,148,846.
- the proportion of these crosslinking monomers in the impact-modifying polymer is up to 5% by weight, preferably not more than 3% by weight, based on the impact-modifying polymer.
- graft polymers with a core and at least one outer shell that have the following structure:
- graft polymers in particular ABS and / or ASA polymers in amounts of up to 40% by weight, are preferably used for impact modification of PBT, optionally in a mixture with up to 40% by weight of polyethylene terephthalate.
- Corresponding blend products are available under the trademark Ultradur ⁇ S (formerly UltrablendOS from BASF AG).
- graft polymers with a multi-layer structure instead of graft polymers with a multi-layer structure, homogeneous, i.e. single-shell elastomers of buta-1, 3-diene, isoprene and n-butyl acrylate or their copolymers are used. These products can also be produced by using crosslinking monomers or monomers with reactive groups.
- emulsion polymers examples include n-butyl acrylate / (meth) acrylic acid copolymers, n-butyl acrylate / glycidyl acrylate or n-butyl acrylate / glycidyl methacrylate copolymers, graft polymers with an inner core of n-butyl acrylate or based on a butadiene and an outer shell from the above mentioned copolymers and copolymers of ethylene with comonomers which provide reactive groups.
- the elastomers described can also be made by other conventional methods, e.g. by suspension polymerization.
- Silicone rubbers as described in DE-A 3725 576, EP-A 235690, DE-A 38 00 603 and EP-A 319290 are also preferred.
- Fibers or particulate fillers C) include carbon fibers, glass fibers, glass spheres, amorphous silica, asbestos, calcium silicate, calcium metasilicate, magnesium carbonate, kaolin, chalk, powdered quartz, mica, barium sulfate and feldspar, in quantities of up to 50 % By weight, in particular up to 40%.
- Carbon fibers, aramid fibers and potassium titanate fibers are mentioned as preferred fibrous fillers, with glass fibers being particularly preferred as E-glass. These can be used as rovings or cut glass in the commercially available forms.
- the fibrous fillers can be pretreated on the surface with a silane compound for better compatibility with the thermoplastic.
- Suitable silane compounds are those of the general formula
- X NH 2 -, CH 2 -CH-, HO-, ⁇ / O n is an integer from 2 to 10, preferably 3 to 4 m is an integer from 1 to 5, preferably 1 to 2 k is an integer from 1 to 3, preferably 1
- Preferred silane compounds are aminopropylthmethoxysilane, aminobutyltrimethoxysilane, aminopropyltriethoxysilane, aminobutyltriethoxysilane and the corresponding silanes which contain a glycidyl group as substituent X.
- the silane compounds are generally used in amounts of 0.05 to 5, preferably 0.5 to 1.5 and in particular 0.8 to 1% by weight (based on C) for surface coating.
- acicular mineral fillers are understood to be mineral fillers with a pronounced acicular character.
- An example is needle-shaped wollastonite.
- the mineral preferably has an L / D (length diameter) ratio of 8: 1 to 35: 1, preferably 8: 1 to 11: 1.
- the mineral filler may optionally have been pretreated with the abovementioned silane compounds; however, pretreatment is not essential.
- platelet-shaped or needle-shaped nanofillers preferably in amounts between 0.1 and 10%.
- Boehmite, bentonite, montmorillonite, vermicullite, hectorite and laponite are preferably used for this.
- the platelet-shaped nanofillers are organically modified according to the prior art.
- the addition of the platelet-shaped or needle-shaped nanofillers to the nanocomposites according to the invention leads to a further increase in the mechanical strength.
- thermoplastic molding compositions according to the invention can contain customary processing aids such as stabilizers, oxidation retardants, agents against heat decomposition and decomposition by ultraviolet light, lubricants and mold release agents, colorants such as dyes and pigments, nucleating agents, plasticizers, etc.
- customary processing aids such as stabilizers, oxidation retardants, agents against heat decomposition and decomposition by ultraviolet light, lubricants and mold release agents, colorants such as dyes and pigments, nucleating agents, plasticizers, etc.
- oxidation retarders and heat stabilizers are sterically hindered phenols and / or phosphites, hydroquinones, aromatic secondary amines such as diphenylamines, various substituted representatives of these groups and their mixtures in concentrations of up to 1% by weight, based on the weight of the thermoplastic molding compositions called.
- UV stabilizers which are generally used in amounts of up to 2% by weight, based on the molding composition.
- Inorganic pigments such as titanium dioxide, ultramarine blue, iron oxide and carbon black, furthermore organic pigments such as phthalocyanines, quinacridones, perylenes and dyes such as nigrosine and anthraquinones can be added as colorants.
- Sodium phenylphosphinate, aluminum oxide, silicon dioxide and preferably talc are used as nucleating agents.
- Additional lubricants and mold release agents are usually used in amounts of up to 1% by weight.
- Long-chain fatty acids eg stearic acid or behenic acid
- their salts eg Ca or Zn stearate
- montan waxes mixtures of straight-chain, saturated carboxylic acids with chain lengths of 28 to 32 C atoms
- Ca or Na are preferred.
- plasticizers are phthalic acid dioctyl ester, phthalic acid dibenzyl ester, phthalic acid butyl benzyl ester, hydrocarbon oils and N- (n-butyl) benzenesulfonamide.
- the molding compositions according to the invention can also contain 0 to 2% by weight of fluorine-containing ethylene polymers. These are polymers of ethylene with a fluorine content of 55 to 76% by weight, preferably 70 to 76% by weight.
- PTFE polytetrafluoroethylene
- tetrafluoroethylene-hexafluoropropylene copolymers or tetrafluoroethylene copolymers with smaller proportions (generally up to 50% by weight) of copolymerizable ethylenically unsaturated monomers.
- fluorine-containing ethylene polymers are homogeneously distributed in the molding compositions and preferably have a particle size d 5 o (number average) in the range of .0,05 to 10 .mu.m, in particular from 0.1 to 5 microns on. These small particle sizes can be achieved particularly preferably by using aqueous dispersions of fluorine-containing ethylene polymers and incorporating them into a polyester melt.
- the molding compositions according to the invention are preferably obtained by organically modifying agglomerated nanofillers in an organic solvent on the surface with a siloxane, chlorosilane, silazane, titanate or zirconate and then mixing them with a polymer A).
- Component B) can advantageously be added to the thermoplastic A) in the form of a dispersion with the organic solvent or by removing the solvent as a powder.
- thermoplastic melt A thermoplastic melt A
- thermoplastic molding compositions according to the invention can be produced by processes known per se, in which the starting components are mixed in conventional mixing devices such as screw extruders, Brabender mills or Banbury mills and then extruded. After the extrusion, the extrudate can be cooled and crushed. Individual components can also be premixed and then the remaining starting materials can be added individually and / or also mixed.
- the mixing temperatures are usually 230 to 290 ° C.
- components B) and optionally C) can be mixed, made up and granulated with a prepolymer.
- the granules obtained are then condensed in the solid phase under inert gas continuously or batchwise at a temperature below the melting point of component A) to the desired viscosity.
- thermoplastic molding compositions according to the invention are notable for very good mechanics, in particular elongation at break and modulus of elasticity. Therefore, they are suitable for the production of fibers, foils and moldings of all kinds, in particular for applications in injection molding for components such as electrical applications such as cable trees, cable harness elements, hinges, plugs, plug parts, plug connectors, circuit carriers, electrical connecting elements, mechatronic components, optoelectronic components, especially for young people in the automotive sector and under the hood.
- Polybutylene terephthalate with a viscosity number VZ of 130 ml / g and a carboxyl end group content of 34 meq / kg (Ultradur ® B 4520 from BASF AG) (VZ measured in 0.5% by weight solution of phenol / o-dichlorobenzene, 1: 1 Mixture at 25 ° C), containing 0.65 wt .-% pentaerythritol tetrastearate (component C / 1 based on 100 wt .-% A).
- Polyamide 6 (polycaprolactam) having a viscosity number VN of 150 ml / g, measured as 0.5 wt .-% solution in 96 wt .-% sulfuric acid at 25 ° C according to ISO 307 (B 3 was Umtramid ® from BASF used).
- Component B / 1 surface modification of fumed silica with 3-aminopropyltrimethoxysilane
- pyrogenic silica with a specific surface area of 200 m 2 / g (Aerosil 200) were weighed into a 2 l two-necked round bottom flask. 1000 g of 2-butanone (MEK) were added to the pyrogenic silica and the mixture was stirred with a KPG stirrer until a homogeneous suspension was formed (about 15-30 minutes). Then 56.66 g of 3-aminopropyltrimethoxysilane were added dropwise using a dropping funnel. The now thin suspension was stirred for a total of 48 hours. The 2-butanone was removed on a rotary evaporator at a bath temperature of 35 ° C. within 8 hours. After removing the solvent, a loose, coarse, porous powder remained.
- MEK 2-butanone
- pyrogenic silica with a specific surface area of 200 m 2 / g (Aerosil 200) were weighed into a 2 1 two-necked round bottom flask. 1000 g of 2-butanone (MEK) were added to the pyrogenic silica and the mixture was stirred for 30 minutes using a KPG stirrer, a homogeneous suspension being formed. 54 g of phenyltriethoxysilane were then added dropwise using a dropping funnel. The thin suspension was stirred for a total of 48 hours. The 2-butanone was removed on a rotary evaporator at a bath temperature of 35 ° C. within 8 hours. After removing the solvent, a loose, coarse, porous powder remained.
- MEK 2-butanone
- the molding compositions were produced on a Haake kneader by adding the powdered functionalized nanoparticles B) to the polymer melt A).
- the incorporation period was 10 minutes, regardless of the polymer matrix and the functionalized nanoparticles, and the processing temperature was 240 ° C.
- the inorganic content in the composites was 1.5-4.5% by weight.
- the morphology of selected composites of the polyester was examined by transmission electron microscopy.
- the granulate was processed into test specimens on a Battenfeld miniature injection molding machine, the mechanical properties of which were determined in a tensile test (1/8 tensile rod analogous to ISO 527-2). The crystallization behavior was examined on selected test specimens.
- the residue on ignition was determined by ashing 2 g of granules.
- the compositions of the molding compositions and the results of the measurements can be found in the tables.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200410008202 DE102004008202A1 (de) | 2004-02-18 | 2004-02-18 | Komposites aus Thermoplasten mit monodispers verteilten Füllstoffen |
DE102004008202.2 | 2004-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005082994A1 true WO2005082994A1 (fr) | 2005-09-09 |
Family
ID=34813510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/001545 WO2005082994A1 (fr) | 2004-02-18 | 2005-02-16 | Composites constitues de thermoplastiques dans lesquels des charges sont reparties de façon monodispersee |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102004008202A1 (fr) |
WO (1) | WO2005082994A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7879938B2 (en) * | 2006-07-17 | 2011-02-01 | Evonik Degussa Gmbh | Compositions comprising an organic polymer as the matrix and inorganic particles as the filler, process for the preparation thereof and applications of the same |
CN103189472A (zh) * | 2010-09-29 | 2013-07-03 | 弗劳恩霍弗应用技术研究院 | 由不饱和聚酯和聚硅氮烷制成的树脂及由此制得的热固性反应性树脂模制材料 |
US8962138B2 (en) | 2009-06-12 | 2015-02-24 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Organically functionalized polysiloxane nanoparticles, method for the production thereof, and use thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7704586B2 (en) | 2005-03-09 | 2010-04-27 | Degussa Ag | Plastic molded bodies having two-dimensional and three-dimensional image structures produced through laser subsurface engraving |
DE102005050890A1 (de) * | 2005-10-21 | 2007-04-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und Vorrichtung zur Herstellung eines Nanokomposites |
US20070160826A1 (en) * | 2006-01-06 | 2007-07-12 | Eastman Kodak Company | Polymer composite with silane coated nanoparticles |
US8440214B2 (en) * | 2006-01-31 | 2013-05-14 | Boston Scientific Scimed, Inc. | Medical devices for therapeutic agent delivery with polymeric regions that contain copolymers having both soft segments and uniform length hard segments |
DE102009024754A1 (de) * | 2009-06-12 | 2011-02-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Organisch funktionalisierte Polysiloxan-Nanopartikel, Verfahren zu ihrer Herstellung und ihre Verwendung in Kompositen |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0028391A2 (fr) * | 1979-11-05 | 1981-05-13 | BASF Aktiengesellschaft | Masse à mouler à base de polyamide chargé |
WO1998053004A1 (fr) * | 1997-05-22 | 1998-11-26 | Bayer Inc. | Procede permettant de rendre des particules hydrophobes, et utilisation desdites particules comme charges dans des melanges maitres de polymeres |
US5998504A (en) * | 1997-04-14 | 1999-12-07 | Bayer Aktiengesellschaft | Colloidal metal oxides having blocked isocyanate groups |
DE19955816A1 (de) * | 1999-11-19 | 2001-05-23 | Cognis Deutschland Gmbh | Verwendung |
US6455158B1 (en) * | 2000-06-16 | 2002-09-24 | Crompton Corporation | Treatment of minerals with alkylsilanes and alkylsilane copolymers |
US20030166757A1 (en) * | 2001-06-22 | 2003-09-04 | Hajime Nishihara | Particulate coated flame-retardant for polymer |
WO2004024811A2 (fr) * | 2002-09-07 | 2004-03-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Nanocomposites, procede de production et utilisation desdits nanocomposites |
EP1457521A1 (fr) * | 2003-03-11 | 2004-09-15 | Nissan Motor Co., Ltd. | Composition de résine, renforçant et procédé de sa production |
-
2004
- 2004-02-18 DE DE200410008202 patent/DE102004008202A1/de not_active Withdrawn
-
2005
- 2005-02-16 WO PCT/EP2005/001545 patent/WO2005082994A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0028391A2 (fr) * | 1979-11-05 | 1981-05-13 | BASF Aktiengesellschaft | Masse à mouler à base de polyamide chargé |
US5998504A (en) * | 1997-04-14 | 1999-12-07 | Bayer Aktiengesellschaft | Colloidal metal oxides having blocked isocyanate groups |
WO1998053004A1 (fr) * | 1997-05-22 | 1998-11-26 | Bayer Inc. | Procede permettant de rendre des particules hydrophobes, et utilisation desdites particules comme charges dans des melanges maitres de polymeres |
DE19955816A1 (de) * | 1999-11-19 | 2001-05-23 | Cognis Deutschland Gmbh | Verwendung |
US6455158B1 (en) * | 2000-06-16 | 2002-09-24 | Crompton Corporation | Treatment of minerals with alkylsilanes and alkylsilane copolymers |
US20030166757A1 (en) * | 2001-06-22 | 2003-09-04 | Hajime Nishihara | Particulate coated flame-retardant for polymer |
WO2004024811A2 (fr) * | 2002-09-07 | 2004-03-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Nanocomposites, procede de production et utilisation desdits nanocomposites |
EP1457521A1 (fr) * | 2003-03-11 | 2004-09-15 | Nissan Motor Co., Ltd. | Composition de résine, renforçant et procédé de sa production |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7879938B2 (en) * | 2006-07-17 | 2011-02-01 | Evonik Degussa Gmbh | Compositions comprising an organic polymer as the matrix and inorganic particles as the filler, process for the preparation thereof and applications of the same |
US8962138B2 (en) | 2009-06-12 | 2015-02-24 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Organically functionalized polysiloxane nanoparticles, method for the production thereof, and use thereof |
CN103189472A (zh) * | 2010-09-29 | 2013-07-03 | 弗劳恩霍弗应用技术研究院 | 由不饱和聚酯和聚硅氮烷制成的树脂及由此制得的热固性反应性树脂模制材料 |
Also Published As
Publication number | Publication date |
---|---|
DE102004008202A1 (de) | 2005-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102007021199B4 (de) | Zusammensetzungen aus organischem Polymer als Matrix und anorganischen Partikeln als Füllstoff, Verfahren zu deren Herstellung sowie deren Verwendung und damit hergestellte Formkörper | |
EP1423460B1 (fr) | Polyester ignifuge depourvu d'halogene | |
DE10304341A1 (de) | Hydrolysebeständige Polyester | |
WO1998017720A1 (fr) | Matieres de moulage ignifugees | |
EP1232215A1 (fr) | Matieres moulables polyesteriques thermostables | |
WO2017063841A9 (fr) | Mélange de polyesters ignifugé sans halogène | |
EP1412429B1 (fr) | Matieres de moulage thermoplastiques ignifugees | |
WO2004041933A1 (fr) | Matieres moulables ignifugees | |
WO2005082994A1 (fr) | Composites constitues de thermoplastiques dans lesquels des charges sont reparties de façon monodispersee | |
WO2008052998A1 (fr) | Corps moulés en polyester pauvres en émissions | |
EP2976385B1 (fr) | Polyester pour le moulage par soufflage, l'extrusion de profilés et/ou l'extrusion de tubes | |
EP3044255B1 (fr) | Polyesters ignifuges | |
EP2861665A1 (fr) | Polyesters ignifugés comprenant des homopolymères polyacrylonitrile | |
EP1917308B1 (fr) | Eléments de phares en polyester | |
EP1537178B1 (fr) | Procede pour la preparation des matieres a mouler thermoplastiques a base de polyesters | |
WO2009101026A1 (fr) | Polyester à charge minérale | |
DE102005005876A1 (de) | Elektrisch leitfähige Thermoplasten | |
WO2012022669A2 (fr) | Mélanges de nanocomposites et de polyesters | |
WO2000058401A1 (fr) | Melanges polyester/polycarbonate a stabilite dimensionnelle | |
WO2009050094A1 (fr) | Matières à mouler en polyester thermoplastique contenant des polyétheramines très ramifiées | |
WO2007088125A1 (fr) | Matieres pour moulage a base de polyester comprenant un copolymere d'imide maleique | |
WO2000046295A1 (fr) | Matiere moulable a base de polyester a resistance elevee aux chocs | |
DE19900891A1 (de) | Verfahren zur Herstellung von Polyesterblends | |
DE102004036583A1 (de) | Stecker, Steckerteile, Steckerverbinder und Filmscharniere aus Polyestern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |