+

WO2005082949A1 - Catalyseurs de polymerisation supportes - Google Patents

Catalyseurs de polymerisation supportes Download PDF

Info

Publication number
WO2005082949A1
WO2005082949A1 PCT/GB2005/000448 GB2005000448W WO2005082949A1 WO 2005082949 A1 WO2005082949 A1 WO 2005082949A1 GB 2005000448 W GB2005000448 W GB 2005000448W WO 2005082949 A1 WO2005082949 A1 WO 2005082949A1
Authority
WO
WIPO (PCT)
Prior art keywords
cocatalyst
metallocene complex
hydrogen
group
porous support
Prior art date
Application number
PCT/GB2005/000448
Other languages
English (en)
Inventor
Grant Berent Jacobsen
Sergio Mastroianni
Original Assignee
Ineos Europe Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ineos Europe Limited filed Critical Ineos Europe Limited
Publication of WO2005082949A1 publication Critical patent/WO2005082949A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the present invention relates to supported catalysts suitable for the polymerisation of olefins and in particular to supported metallocene catalysts providing advantages for operation in gas phase processes for the polymerisation of ethylene or the copolymerisation of ethylene and ⁇ -olefms having from 3 to 10 carbon atoms.
  • metallocene catalysts offer the advantage of generally a higher activity than traditional Ziegler catalysts and are usually described as catalysts which are single site in nature. There have been developed several different families of metallocene complexes.
  • Examples of both the bis (cyclopentadienyl) and mono (cyclopentadienyl) complexes have been described in WO 96/04290 and WO 95/00526 respectively.
  • the above metallocene complexes are utilised for polymerisation in the presence of a cocatalyst or activator.
  • activators are a iminoxanes, in particular methyl aluminoxane or alternatively may be compounds based on boron compounds.
  • Examples of the latter are borates such as trialkyl-substituted ammonium tetraphenyl- or tetrafluorophenyl-borates or triarylboranes such as tris(pentafluorophenyl) borane.
  • Catalyst systems incorporating borate activators are described in EP 561479, EP 418044 and EP 551277.
  • the above metallocene complexes may be used for the polymerisation of olefins in solution, slurry or gas phase.
  • the metallocene complex and/or the activator are suitably supported.
  • Typical supports include inorganic oxides eg. silica or polymeric supports may alternatively be used. Examples of the preparation of supported metallocene catalysts for the polymerisation of olefins maybe found in WO 94/26793, WO 95/07939, WO 96/00245, WO 96/04318, WO 97/02297 and EP 642536.
  • WO 98/27119 describes supported catalyst components comprising ionic compounds comprising a cation and an anion in which the anion contains at least one substituent comprising a moiety having an active hydrogen.
  • supported metallocene catalysts are exemplified in which the catalyst is prepared by treating the aforementioned ionic compound with a trialkylaluminium compound followed by subsequent treatment with the support and the metallocene.
  • WO 98/27119 also describes a method for activating a substantially inactive catalyst precursor comprising (a) an ionic compound comprising a cation and an anion containing at least one substituent comprising a moiety having an active hydrogen, (b) a transition metal compound and optionally, (c) a support by treatment with an organometallic compound thereby forming an active catalyst.
  • Various methods have been utilised to prepare supported catalysts of this type.
  • WO 98/27119 describes several methods of preparing the supported catalysts disclosed therein in which the support is impregnated with the ionic compound.
  • the volume of the ionic compound may correspond from 20 volume percent to greater than 200 volume percent of the total pore volume of the support.
  • the volume of the solution of the ionic compound does not exceed substantially, and is preferably equal to, the total pore-volume of the support.
  • Such methods of preparation may be referred to as incipient precipitation or incipient wetness techniques.
  • Our earlier application WO 04/020487 discloses that the addition of a polymerisable monomer to the support prior to contact with one or both of a polymerisation catalyst and a cocatalyst resulting in an improved supported catalyst system which has improved activity and which is also stable over extended periods of time.
  • the supported catalyst compositions exemplified comprise monocyclopentadienyl metallocene complexes wherein the molar ratios of cocatalyst to complex are in the region of 1.0.
  • a method for the preparation of a supported polymerisation catalyst system comprising the combination of (i) • a porous support (ii) a polymerisable monomer, (iii) a monocyclopentadienyl metallocene complex, and (iv) a cocatalyst, wherein the polymerisable monomer is added to the porous support before addition of one or both of the metallocene complex and the cocatalyst, said method characterised in that the molar ratio of cocatalyst to metallocene complex is > 1.2.
  • a preferred method according to the present invention comprises the following steps: (i) addition of a cocatalyst to a porous support, (ii) addition of a polymerisable monomer, and (ii) addition of a monocyclopentadienyl metallocene complex.
  • Other suitable orders of addition according to the present invention include the following: support, metallocene complex, monomer and cocatalyst support, monomer, cocatalyst and metallocene complex, or support, monomer, metallocene complex and cocatalyst.
  • the molar ratio of cocatalyst to metallocene complex is most preferably > 1.5.
  • the polymerisable monomer is added to the porous support at 0.01 - 2 times the pore volume of the support but is preferably less than or equal to the pore volume of the support.
  • Suitable porous support materials include inorganic metal oxides or alternatively polymeric supports may be used for example polyethylene, polypropylene, clays, zeolites, etc.
  • the most preferred support material for use with the supported catalysts according to the method of the present invention is silica.
  • Suitable silicas include Ineos ES70 and Grace Davison 948 silicas.
  • the support material may be subjected to a heat treatment and/or chemical treatment to reduce the water content or the hydroxyl content of the support material.
  • chemical dehydration agents are reactive metal hydrides, aluminium alkyls and halides.
  • the support material Prior to its use the support material may be subjected to treatment at 100°C to 1000°C and preferably at 200 to 850°C in an inert atmosphere under reduced pressure.
  • the porous supports are preferably pretreated with an organometallic compound preferably an organoaluminium compound and most preferably a trialkylaluminium compound in a dilute solvent.
  • the support material is pretreated with the organometallic compound at a temperature of -20°C to 150°C and preferably at 20°C to 100°C.
  • Polymerisable monomers suitable for use in the method of the present invention include ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decene, styrene, butadiene, and polar monomers for example vinyl acetate, methyl methacrylate, etc.
  • Preferred monomers are ethylene, propylene, 1-butene or 1-hexene.
  • a combination of one or more monomers may be used for example ethylene/1 -hexene.
  • the preferred polymerisable monomer for use in the present invention is 1- hexene.
  • the polymerisable monomer is suitably used in liquid form or alternatively may be used in a suitable solvent.
  • the catalyst components be optionally present in a solution of the polymerisable monomer for example when using 1-hexene as solvent.
  • the polymerisable monomer and metallocene complex are typically used in a ratio of 1:1 to 250:1 and most preferably in the ratio 20:1 to 80:1. Examples of monocyclopentadienyl metallocene complexes suitable for use in the present invention are described in EP 416815, EP 418044, EP 420436 and EP 551277.
  • Suitable complexes may be represented by the general formula: CpMX n wherein Cp is a single cyclopentadienyl or substituted cyclopentadienyl group optionally covalently bonded to M through a substituent, M is a Group VIA metal bound in a ⁇ 5 bonding mode to the cyclopentadienyl or substituted cyclopentadienyl group, X each occurrence is hydride or a moiety selected from the group consisting of halo, alkyl, aryl, aryloxy, alkoxy, alkoxyalkyl, amidoalkyl, siloxyalkyl etc.
  • R' each occurrence is independently selected from hydrogen, hydrocarbyl, silyl, germyl, halo, cyano, and combinations thereof, said R' having up to 20 nonhydrogen atoms, and optionally, two R 1 groups (where R' is not hydrogen, halo or cyano) together form a divalent derivative thereof connected to adjacent positions of the cyclopentadienyl ring to form a fused ring structure;
  • X is hydride or a moiety selected from the group consisting of halo, alkyl, aryl, aryloxy, alkoxy, alkoxyalkyl, amidoalkyl, siloxyalkyl etc.
  • R* each occurrence is independently hydrogen, or a member selected from hydrocarbyl, silyl, halogenated alkyl, halogenated aryl, and combinations thereof, said R* having up to 10 non-hydrogen atoms, and optionally, two R* groups from Z* (when R* is not hydrogen), or an R* group from Z* and an R* group from Y form a ring system.
  • n is 1 or 2 depending on the valence of M.
  • Suitable monocyclopentadienyl complexes are (tert-butylamido) dimethyl (tetramethyl- ⁇ 5 - cyclopentadienyl) silanetitanium dichloride and (2- methoxyphenylamido) dimethyl (tetramethyl— ⁇ 5 - cyclopentadienyl) silanetitanium dichloride.
  • Other suitable monocyclopentadienyl complexes are those comprising phosphinimine ligands described in WO 99/40125, WO 00/05237, WO 00/05238 and WO00/32653.
  • a typical examples of such a complex is cyclopentadienyl titanium [tri (tertiary butyl) phosphinimine] dichloride.
  • Another type of polymerisation catalyst suitable for use in the present invention are monocyclopentadienyl complexes comprising heteroallyl moieties such as zirconium (cyclopentadienyl) tris (diethylcarbamates) as described in US 5527752 and WO 99/61486.
  • Particularly preferred metallocene complexes for use in the preparation of the supported catalysts of the present invention maybe represented by the general formula:
  • R' each occurrence is independently selected from hydrogen, hydrocarbyl, silyl, germyl, halo, cyano, and combinations thereof, said R' having up to 20 nonhydrogen atoms, and optionally, two R' groups (where R' is not hydrogen, halo or cyano) together form a divalent derivative thereof connected to adjacent positions of the cyclopentadienyl ring to form a fused ring structure;
  • X is a neutral ⁇ 4 bonded diene group having up to 30 non-hydrogen atoms, which forms a ⁇ -complex with M;
  • Y is -O-, -S-, -NR*-, -PR*-, M is titanium or zirconium in the + 2 formal oxidation state;
  • Suitable X groups include s-trans- ⁇ 4 -l,4-diphenyl-l,3-butadiene, s- trans- ⁇ 4 -3-methyl-l,3-pentadiene; s-trans- ⁇ 4 -2,4-hexadiene; s-trans- ⁇ 4 - 1,3-pentadiene; s-trans- ⁇ 4 - 1 ,4-ditolyl- 1 ,3-butadiene; s-trans- ⁇ 4 - 1 ,4-bis(trimethylsilyl)- 1 ,3-butadiene; s- cis- ⁇ 4 -3-methyl-l,3-pentadiene; s-cis- ⁇ 4 -l,4-dibenzyl-l,3-butadiene; s-cis- ⁇ 4 -l,3- pentadiene; s-cis- ⁇ 4 -l,4-bis(trimethylsilyl)-l,3-
  • R' is hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, benzyl, or phenyl or 2 R' groups (except hydrogen) are linked together, the entire C 5 R' 4 group thereby being, for example, an indenyl, tetrahydroindenyl, fluorenyl, terahydrofluorenyl, or octahydrofiuorenyl group.
  • Highly preferred Y groups are nitrogen or phosphorus containing groups containing a group corresponding to the formula -N(R ; )- or -P(R 7/ )- wherein R ;/ is C MO hydrocarbyl.
  • Most preferred complexes are amidosilane - or amidoalkanediyl complexes. Most preferred complexes are those wherein M is titanium.
  • Specific complexes suitable for use in the preparation of the supported catalysts of the present invention are those disclosed in WO 95/00526 and are incorporated herein by reference.
  • a particularly preferred complex for use in the preparation of the supported catalysts of the present invention is (t-butylamido) (tetramethyl- ⁇ 5 - cyclopentadienyl) dimethyl silanetitanium - ⁇ -1.3 -pentadiene.
  • the loading (transition metal) in the supported catalysts of the present invention is typically in the range 0.1 ⁇ mol/g to 1 mmol/g.
  • Suitable cocatalysts for use in the method of the present invention are those typically used with the aforementioned metallocene complexes. These include aluminoxanes such as methyl aluminoxane (MAO), boranes such as tris(pentafluorophenyl) borane and borates. Aluminoxanes are well known in the art and preferably comprise oligomeric linear and/or cyclic alkyl aluminoxanes. Aluminoxanes may be prepared in a number of ways and preferably are prepare by contacting water and a trialkylaluminium compound, for example trimethylaluminium, in a suitable organic medium such as benzene or an aliphatic hydrocarbon.
  • aluminoxanes such as methyl aluminoxane (MAO)
  • boranes such as tris(pentafluorophenyl) borane and borates.
  • Aluminoxanes are well known in
  • a preferred aluminoxane is methyl aluminoxane (MAO).
  • suitable cocatalysts are organoboron compounds in particular triarylboron compounds.
  • a particularly preferred triarylboron compound is tris(pentafluorophenyl) borane.
  • Other compounds suitable as cocatalysts are compounds which comprise a cation and an anion. The cation is typically a Bronsted acid capable of donating a proton and the anion is typically a compatible non-coordinating bulky species capable of stabilizing the cation.
  • Such cocatalysts may be represented by the formula: (L*-H) + d (A d" ) wherein L* is a neutral Lewis base (L*-H) + d is a Bronsted acid A d" is a non-coordinating compatible anion having a charge of d " , and is an integer from 1 to 3.
  • the cation of the ionic compound may be selected from the group consisting of acidic cations, carbonium cations, silylium cations, oxonium cations, organometallic cations and cationic oxidizing agents.
  • Suitably preferred cations include trihydrocarbyl substituted ammonium cations eg.
  • N.N-dialkylanilinium cations such as N,N-dimethylanilinium cations.
  • the preferred ionic compounds used as cocatalysts are those wherein the cation of the ionic compound comprises a hydrocarbyl substituted ammonium salt and the anion comprises an aryl substituted borate.
  • Typical borates suitable as ionic compounds include: triethylammonium tetraphenylborate triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri(n-butyl)ammonium tetraphenylborate, tri(t-butyl)ammonium tetraphenylborate, N,N-dimethylanilinium tetraphenylborate, N,N-diethylanilinium tetraphenylborate, trimethylammonium tetrakis(pentafluorophenyl) borate, triethylammonium tetrakis(pentafluorophenyl) borate, tripropylammonium tetrakis(pentafluorophenyl) borate, tri(n-butyl)ammonium tetrakis(pentafluoropheny
  • a preferred type of cocatalyst suitable for use with the metallocene complexes of the present invention comprise ionic compounds comprising a cation and an anion wherein the anion has at least one substituent comprising a moiety having an active hydrogen.
  • Suitable cocatalysts of this type are described in WO ,98/27119 the relevant portions of which are incorporated herein by reference.
  • Examples of this type of anion include: triphenyl(hydroxyphenyl) borate tri (p-tolyl)(hydroxyphenyl) borate tris (pentafluorophenyl)(hydroxyphenyl) borate tris (pentafluorophenyl)(4-hydroxyphenyl) borate
  • Examples of suitable cations for this type of cocatalyst include triethylammonium, triisopropylammonium, diethylmethylammonium, dibutylethylammonium and similar.
  • Particularly suitable are those cations having longer alkyl chains such as dihexyldecylmethylammonium, dioctadecylmethylammonium, ditetradecylmethylammonium, bis(hydrogentated tallow alkyl) methylammonium and similar.
  • Particular preferred cocatalysts of this type are alkylammonium tris(pentafluorophenyl) 4-(hydroxyphenyl) borates.
  • a particularly preferred cocatalyst is bis(hydrogenated tallow alkyl) methyl ammonium tris (pentafluorophenyl) (4- hydroxyphenyl) .borate.
  • a preferred compound is the reaction product of an alkylammonium tris(pentaflurophenyl)-4-(hydroxyphenyl) borate and an organometallic compound, for example triethylaluminium. It is advantageous in this method of the present invention that the ionic compound is dried before contact with the organometallic compound. This enables lower ratios of organometallic compound to the ionic compound to be used without any detrimental effects on activity. In the most preferred method according to the present invention the molar ratio of B/Ti is > 1.2 and most preferably > 1.5.
  • the supported catalyst systems of the present invention are most suitable for operation in processes which typically employ supported metallocene catalysts.
  • the supported catalysts of the present invention may be suitable for the polymerisation of olefin monomers selected from (a) ethylene, (b) propylene (c) mixtures of ethylene and propylene and (d) mixtures of (a), (b) or (c) with one or more other alpha-olefins.
  • olefin monomers selected from (a) ethylene, (b) propylene (c) mixtures of ethylene and propylene and (d) mixtures of (a), (b) or (c) with one or more other alpha-olefins.
  • a slurry process typically uses an inert hydrocarbon diluent and temperatures from about 0°C up to a temperature just below the temperature at which the resulting polymer becomes substantially soluble in the inert polymerisation medium.
  • Suitable diluents include toluene or alkanes such as hexane, propane or isobutane.
  • Preferred temperatures are from about 30°C up to about 200°C but preferably from about 60°C to 100°C.
  • Loop reactors are widely used in slurry polymerisation processes.
  • Gas phase processes for the polymerisation of olefins especially for the homopolymerisation and the copolymerisation of ethylene and ⁇ -olefins for example 1- butene, 1-hexene, 4-methyl-l-pentene are well known in the art.
  • Typical operating conditions for the gas phase are from 20°C to 100°C and most preferably from 40°C to 85°C with pressures from subatmospheric to 100 bar.
  • Particularly preferred gas phase processes are those operating in a fluidised bed. Examples of such processes are described in EP 89691 and EP 699213 the latter being a particularly preferred process for use with the supported catalysts of the present invention.
  • Particularly preferred polymerisation processes are those comprising the polymerisation of ethylene or the copolymerisation of ethylene and ⁇ -olefins having from 3 to 10 carbon atoms.
  • a process for the polymerisation of ethylene or the copolymerisation of ethylene and ⁇ - olefins having from 3 to 1.0 carbon atoms said process performed under polymerisation conditions in the present of a supported catalyst system prepared as hereinbefore described.
  • the preferred ⁇ -olefins are 1-butene, 1-hexene, 4-methyl-l-pentene and 1- octene.
  • the supported catalysts prepared according to the present invention may also be suitable for the preparation of other polymers for example polypropylene, polystyrene, etc.
  • a free flowing powder is produced which typically may have a similar particle size to the starting porous support material.
  • the resultant supported catalysts are stable at room temperature over extended periods of time and exhibit a less deactivating kinetic profile than similar catalysts prepared without the incorporation of a polymerisable monomer. It is also an advantage of the method of the present invention that supported catalysts may be suitably prepared in a one-pot procedure ie.
  • [Al] 1.15 mmol/g
  • [Ti] 50.6 ⁇ mol/g

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

L'invention concerne un procédé amélioré de préparation d'un système de catalyseurs de polymérisation supportés constitué par : (i) un support poreux ; (ii) un monomère polymérisable ; (iii) un complexe métallocène de monocyclopentadiènyle ; et (iv) un cocatalyseur, le monomère polymérisable étant ajouté au support poreux avant l'ajout du complexe métallocène ou du cocatalyseur, ou des deux à la fois, ledit procédé se caractérisant en ce que le rapport molaire cocatalyseur/complexe métallocène est supérieur ou égal à 1,2. Le complexe métallocène préféré est un complexe de titane et le support poreux préféré est la silice. Les catalyseurs supportés selon l'invention sont particulièrement utiles dans la phase gazeuse et ils sont particulièrement adaptés à la régulation des propriétés des polymères, en particulier l'indice de fluidité.
PCT/GB2005/000448 2004-02-25 2005-02-09 Catalyseurs de polymerisation supportes WO2005082949A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0404213.1 2004-02-25
GB0404213A GB0404213D0 (en) 2004-02-25 2004-02-25 Supported polymerisation catalysts

Publications (1)

Publication Number Publication Date
WO2005082949A1 true WO2005082949A1 (fr) 2005-09-09

Family

ID=32050870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2005/000448 WO2005082949A1 (fr) 2004-02-25 2005-02-09 Catalyseurs de polymerisation supportes

Country Status (2)

Country Link
GB (1) GB0404213D0 (fr)
WO (1) WO2005082949A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006056734A1 (fr) * 2004-11-25 2006-06-01 Ineos Europe Limited Catalyseurs de polymerisation a support

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184170B1 (en) * 1996-09-24 2001-02-06 Exxon Chemical Patents, Inc. Metallocene catalyst systems
WO2004020487A1 (fr) * 2002-08-29 2004-03-11 Bp Chemicals Limited Catalyseurs de polymerisation supportes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184170B1 (en) * 1996-09-24 2001-02-06 Exxon Chemical Patents, Inc. Metallocene catalyst systems
WO2004020487A1 (fr) * 2002-08-29 2004-03-11 Bp Chemicals Limited Catalyseurs de polymerisation supportes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAMFJORD, THOR ET AL: "Supported metallocene catalysts prepared by impregnation of MAO-modified silica by a metallocene / monomer solution", MACROMOLECULAR RAPID COMMUNICATIONS , 19(10), 505-509 CODEN: MRCOE3; ISSN: 1022-1336, 1998, XP002325547 *
RYTTER, ERLING ET AL: "Supported metallocene catalysts prepared by impregnation of silica with metallocene /aluminoxane/1- hexene solutions", MACROMOLECULAR RAPID COMMUNICATIONS , 22(17), 1427-1431 CODEN: MRCOE3; ISSN: 1022-1336, 2001, XP002325546 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006056734A1 (fr) * 2004-11-25 2006-06-01 Ineos Europe Limited Catalyseurs de polymerisation a support

Also Published As

Publication number Publication date
GB0404213D0 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
EP1539835B1 (fr) Catalyseurs de polymerisation supportes
CA2534836C (fr) Catalyseurs de polymerisation supportes
WO2007080365A2 (fr) Système catalytique
WO2006131704A1 (fr) Catalyseurs de polymerisation sur support
US8008413B2 (en) Method for preparing copolymers
US20170081446A1 (en) Supported polymerisation catalysts
EP1694717A1 (fr) Procede de polymerisation
US7528090B2 (en) Supported polymerisation catalysts
EP1851253A1 (fr) Catalyseurs de polymérisation
WO2005082949A1 (fr) Catalyseurs de polymerisation supportes
WO2005075523A1 (fr) Composition de catalyseur
WO2005077988A1 (fr) Catalyseur de polymerisation sur support
WO2006056734A1 (fr) Catalyseurs de polymerisation a support
CA2494932A1 (fr) Procede de polymerisation des olefines

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载