+

WO2005073264A1 - 硬化性樹脂組成物 - Google Patents

硬化性樹脂組成物 Download PDF

Info

Publication number
WO2005073264A1
WO2005073264A1 PCT/JP2005/001020 JP2005001020W WO2005073264A1 WO 2005073264 A1 WO2005073264 A1 WO 2005073264A1 JP 2005001020 W JP2005001020 W JP 2005001020W WO 2005073264 A1 WO2005073264 A1 WO 2005073264A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin composition
curable resin
group
copolymer
Prior art date
Application number
PCT/JP2005/001020
Other languages
English (en)
French (fr)
Inventor
Masanao Kawabe
Hiroyuki Yano
Yasuji Shichijo
Kouhei Tomari
Isamu Akiba
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to US10/586,642 priority Critical patent/US7595362B2/en
Priority to CN2005800035118A priority patent/CN1914239B/zh
Priority to JP2005517460A priority patent/JP5021208B2/ja
Publication of WO2005073264A1 publication Critical patent/WO2005073264A1/ja
Priority to KR1020067017591A priority patent/KR101075749B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin

Definitions

  • the present invention relates to a curable resin composition, a film formed therefrom, a curable composite material comprising the resin composition and a substrate, a cured product thereof, a laminate comprising a cured product and a metal foil, and a resin-attached resin.
  • a curable resin composition a film formed therefrom, a curable composite material comprising the resin composition and a substrate, a cured product thereof, a laminate comprising a cured product and a metal foil, and a resin-attached resin.
  • copper foil a curable resin composition, a film formed therefrom, a curable composite material comprising the resin composition and a substrate, a cured product thereof, a laminate comprising a cured product and a metal foil, and a resin-attached resin.
  • Polyphenylene ether is an engineering plastic having excellent mechanical and electrical properties, and has relatively high heat resistance. However, if it is to be used as a printed circuit board material, extremely high solder heat resistance is required, so the heat resistance of polyphenylene ether is not enough. That is, polyphenylene ether is deformed when exposed to a high temperature of 200 ° C or more, causing a significant decrease in mechanical strength and peeling of a copper foil formed for a circuit on a resin surface. Polyphenylene ether has high resistance to acids, alkalis and hot water, but dissolves in these solvents, which have extremely low resistance to aromatic hydrocarbon compounds and halogen-substituted hydrocarbon compounds.
  • US Pat. Nos. 3,281,393 and 3,422,062 produce polyphenylene ether containing an aryl group by copolymerization of 2-aryl-16-methylphenol and 2,6-dimethylphenol. This is cured to obtain a cured polyphenylene ether.
  • the polyphenylene ether containing the aryl group has a melting temperature higher than the curing temperature, thermoforming such as vacuum lamination cannot be performed.
  • the use of a large amount of a plasticizer has been attempted as a method for improving the power and moldability, but this only impairs the excellent electrical properties (low dielectric constant and low dielectric loss tangent) of polyphenylene ether. This also led to a decrease in heat resistance and chemical resistance after curing.
  • Patent Document 1 JP-A-6-179734
  • Patent Document 2 JP-A-2003-261743
  • Patent Document 3 JP-A-2003-292570
  • Patent Document 4 JP-A-2000-128908
  • Another method using polyphenylene ether is a method in which a curable polymer or monomer is blended with a polyphenylene ether resin.
  • a curable polymer or monomer By combining with a curable polymer or monomer, it is possible to improve the chemical resistance of polyphenylene ether and to obtain a material that has the excellent dielectric properties of polyphenylene ether.
  • Curable polymers and monomers include epoxy resins, 1,2-polybutadiene, polyfunctional maleimides, polyfunctional cyanate esters, polyfunctional atalyloyl conjugates, triallyl isocyanurate, and the like.
  • Japanese Patent Application Laid-Open No. H6-179734 discloses (a) polyphenylene ether and unsaturated carboxylate. Reaction products with acid, etc., (b) diaryl phthalate, divinylbenzene, polyfunctional atalyloyl compound, polyfunctional methacryloyl compound, polyfunctional maleimide, polyfunctional cyanate ester, polyfunctional isocyanate, A curable composite material comprising (C) a thermoplastic resin such as unsaturated polyester and (d) a base material has been disclosed. It is disclosed that dibylbenzene or its prepolymer can be used as the component (b).
  • component (a) polyphenylene ether and unsaturated Reaction product with carboxylic acid or unsaturated carboxylic anhydride, only divinylbenzene is used as component (b). Since the curable composition produced by this method has low compatibility between the component (a) and the component (b), the cured product obtained from the composition has heat resistance, appearance, and chemical resistance. In addition to the disadvantages of insufficient mechanical properties and mechanical properties, there are also problems in industrial practice that the range of application conditions is narrow and the mechanical properties of products tend to vary.
  • JP-A-2003-261743 and JP-A-2003-292570 describe reactive polyphenylene ether oligomers having a cyanate group or an epoxy group at the terminal, What do you teach about what you have?
  • these patent documents show excellent moldability and good compatibility due to the synergistic effect of a reactive polyphenylene ether oligomer containing a butyl group at both terminals and a soluble polyfunctional butyl aromatic copolymer. It could not be imagined that it would develop and give a high-performance curable resin composition.
  • 2000-128908 describes a method for obtaining a styrene polymer from a polyfunctional compound, a polyfunctional chain transfer agent and a styrene monomer. It adds polyfunctional compound at a low concentration of 2000ppm or less. It was suitable exclusively for application as a thermoplastic resin. Therefore, it is impossible to imagine a soluble polyfunctional vinyl aromatic copolymer from the technology disclosed in the literature or the application as a thermosetting resin at all. There is no teaching that it can be used in combination with a resin.
  • a curable resin composition comprising a reactive polyphenylene ether oligomer containing a butyl group at both ends and a soluble polyfunctional vinyl aromatic copolymer has good moldability based on high fluidity and good moldability. Good due to control of molecular weight, molecular weight distribution and copolymer composition It was impossible to imagine that it would provide good compatibility, solve various problems of the prior art, and provide materials for use in the field of technology.
  • the present invention shows a resin composition exhibiting excellent chemical resistance, dielectric properties, and heat resistance after curing, and which can be used as a dielectric material, an insulating material, and a heat-resistant material in the fields of the electronics industry, space, and aircraft industry. It is an object to provide an object, a cured product, or a material containing the same. Another object is to provide, in addition to these, a resin composition, a cured product, or a material containing the same, which is excellent in flame retardancy.
  • the present invention relates to the component (A): a compound having a number average molecular weight Mn of 700,000 and having a butyl group at both terminals, represented by the formula (1):
  • R 2 , R ′, and R are the same or different and each may be a halogen atom or an alkyl group having 6 or less carbon atoms or a phenyl group.
  • R 3 , R 6 is the same or different and may be a hydrogen atom, a halogen atom or an alkyl having 6 or less carbon atoms. Or a phenyl group.
  • A is a single bond, a linear, branched or cyclic hydrocarbon group having 20 or less carbon atoms.
  • R 9 and R 1Q represent the same or different halogen atoms or alkyl or phenyl groups having 6 or less carbon atoms.
  • R u and R 12 represent a hydrogen atom, a halogen atom or an alkyl group or a phenyl group having 6 or less carbon atoms, which may be the same or different.
  • Z is an organic group having 1 or more carbon atoms and may include an oxygen atom.
  • T is a Bull group.
  • a and b each represent an integer of 0-20, at least one of which is not 0.
  • i and j each independently represent an integer of 0 or 1.
  • Component (B) a polyfunctional vinyl aromatic copolymer having a structural unit derived from a monomer consisting of a divinyl aromatic compound (a) and an ethyl vinyl aromatic compound (b), and a divininole aromatic compound (a) Containing at least 20 mol% of repeating units derived from the following formulas (a1) and (a2)
  • R ′′ represents an aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • R 14 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • GPC gel permeation chromatography
  • a curable resin composition comprising a solvent-soluble polyfunctional vinyl aromatic copolymer having a weight average molecular weight (Mw) and a number average molecular weight (Mn) ratio (Mw / Mn) of 20.0 or less.
  • Curable resin composition characterized in that the blending amount of component (A) is 20-98 wt% and the blending amount of component (B) is 2-80 wt% based on the sum of components (A) and (B). It is.
  • component (B) a polyfunctional vinyl aromatic copolymer having a structural unit derived from a monomer composed of a divinyl aromatic compound (a) and an ethyl vinyl aromatic compound (b) is used.
  • the following general formula (4) the following general formula (4)
  • Q represents a saturated or unsaturated aliphatic hydrocarbon group or aromatic hydrocarbon group, or an aromatic ring or a substituted aromatic ring fused to a benzene ring, and n is an integer of 0-4.
  • an indane structure represented by
  • an ethyl vinyl aromatic compound is contained in the copolymer.
  • a soluble polyfunctional vinyl aromatic copolymer containing a structural unit derived from the monovinyl aromatic compound (c) other than (b) is also preferable.
  • the present invention also provides a curable resin composition containing, in addition to the components (A) and (B), a thermoplastic resin as the component (C), wherein the component (A) and the component (B) The curable resin composition described above, wherein the blending amount of the component (C) is 2 to 60% by weight based on the total of the component and the component (C).
  • the thermoplastic resin (C) is at least one kind of thermoplastic resin selected from the group consisting of a block copolymer having a polymer segment having a glass transition temperature of 20 ° C. or lower and a polyphenylene ether. It's preferable that there is.
  • the present invention provides a curable resin composition containing a thermosetting resin as the component (D) in addition to the component (A), the component (B) and the component (C), wherein the component (A) The curable resin as described above, wherein the blending amount of the component (D) is 2 to 40% by weight based on the total of the components (B), (C) and (D).
  • the thermosetting resin of the component (D) is composed of a thermosetting polyphenylene ether, a polyphenylene ether oligomer having a functional group different from the component (A) at both terminals, and a multifunctional epoxy compound. It is preferable to use one or more thermosetting resins selected from the group.
  • the present invention also relates to a curable resin composition containing a filler as component (E) in addition to component (A), component (B), component (C) and component (D).
  • a curable resin composition containing a filler as component (E) in addition to component (A), component (B), component (C) and component (D).
  • the curable resin composition as described above, wherein the blending amount of the component (E) is 2-90 wt% with respect to the total of the components (A), (B), (C), (D) and (E). Things.
  • the present invention provides a curable resin composition containing a layered silicate as a component Q) in addition to the component (A), the component (B), the component (C), the component (D) and the component (E).
  • the curable resin composition is characterized in that the amount of component (1) is 0.1-98 wt%.
  • the present invention provides, in addition to the component (A), the component (B), the component (C), the component (D) and the component (E), a layered silicate as the component Q) and a halogenated silicate as the component ( ⁇ ).
  • a curable resin composition containing a flame retardant characterized in that the amount of the component (J) is 0.1 to 95.9% by weight and the amount of the component (K) is 0.1 to 95.9% by weight.
  • a flame-retardant curable resin composition characterized in that the amount of the component (J) is 0.1 to 95.9% by weight and the amount of the component (K) is 0.1 to 95.9% by weight.
  • the present invention is a film obtained by molding the curable resin composition into a film.
  • the present invention is also a resin-attached metal foil having a film formed from the curable resin composition on one side of the metal foil.
  • the present invention also relates to a curable composite material having the above curable resin composition and a base material, wherein the base material is contained at a ratio of 5 to 90% by weight. It is a material or a cured composite material obtained by curing it. Further, the present invention is a laminate comprising the above-described cured composite material layer and a metal foil layer.
  • a polyphenylene ether oligomer having a vinyl group at both terminals (hereinafter referred to as a bifunctional ⁇ PE-2Vn) characteristically used in the present invention used as the component (A) will be described.
  • the above-mentioned bifunctional PE-2Vn is a polyphenylene ether oligomer represented by the formula (8) obtained by oxidative copolymerization of a divalent phenol and a monovalent phenol (hereinafter, referred to as a bifunctional OPE). ), Chloromethylstyrene, glycidyl methacrylate, glycidyl lac It is obtained by reacting with
  • R 1 , R 2 , R 7 , R 8 , R 9 , and R 1Q may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
  • R 4 , R ′′ and R 12 are the same or different and may be a hydrogen atom, a halogen atom or an alkyl group or a phenyl group having 6 or less carbon atoms.
  • A is a straight-chain or branched having 20 or less carbon atoms.
  • a or b is an integer of 0 to 20 and at least one of them is not 0.
  • -(0-X-0)-is R 1 R 2 , R 7 , R 8 , and R 3 , R 4 , R 5 , and R 6 are hydrogen atoms
  • the bifunctional OPE represented by the formula (8) is obtained by converting a divalent phenol represented by the formula (11) and a monovalent phenol represented by the formula (12) singly or in a mixture with toluene-alcohol or ketone. Efficient production can be achieved by oxidative polymerization in a solvent.
  • the divalent phenol represented by the formula (11) is a divalent phenol in which R 1 R 2 , R 7 , and R 8 must not be a hydrogen atom, and 4,4, -methylenebis (2,6- Dimethylphenol), 4,4 '-(1-methylethylidene) bis (2,6-dimethylphenol), 4,4'-methylenebis (2,3,6-trimethylphenol), 4,4'-cyclohexylidenebis (2,6-dimethylphenol), 4,4'_ (phenylmethylene) bis (2,3,6-trimethylphenol), 4,4 '-[1,4-phenylenebis (1-methylethylidene) ] Bis (2,6-dimethylphenol), 4,4'-methylenebis [2,6-bis (1,1-dimethylethyl) phenol], 4,4'-cyclopentylidenebis (2,6-dimethylphenol) ), 4,4-di (2-furylmethylene) bis (2,6-dimethylphenol), 4,4
  • the monovalent phenol represented by the formula (12) those having a substituent at the 2,6-position alone or those having a substituent at the 3-position or 3,5-position It is preferred that they be used together. More preferably, 2,6-dimethylphenol and 2,3,6-trimethylphenol are used alone, and 2,6-dimethylphenol and 2,3,5-trimethylphenol are used together.
  • oxidation there is a method of directly using oxygen gas or air.
  • electrode oxidation method there is also an electrode oxidation method. Either method is not particularly limited. Air oxidation is preferred because of its safety and low capital investment.
  • One or more of copper salts such as CuBr, CuSO, CuCl, CuBr, CuSO, and Cul are used.
  • reaction solvent examples include aromatic hydrocarbon solvents such as toluene, benzene, and xylene; halogenated hydrocarbon solvents such as methylene chloride, chlorophonolem, and carbon tetrachloride; and alcohol solvents or ketones. It can be used in combination with a system solvent or the like.
  • alcohol solvents include methanol, ethanol, butanol, propanol, methyl propylene diglycone, diethylene glycol olenoethyl enoate, butynole propylene glycol, propyl propylene glycol, and ketone solvents such as acetone and methyl ethyl ketone. , Getyl ketone, methyl butyl ketone, methyl isobutyl ketone, and the like. Others include tetrahydrofuran, dioxane, and the like. Not something.
  • the reaction temperature is not particularly limited, but is preferably 25 to 50 ° C. Since oxidative polymerization is an exothermic reaction, it is difficult to control the temperature above 50 ° C and the molecular weight is difficult to control. At 25 ° C. or lower, the reaction rate becomes extremely slow, so that efficient production cannot be performed.
  • the bifunctional OPE_2Vn is represented by the formula (1). That is, _ (0_X_0)-is represented by equation (2), and-(Y-0)-is represented by equation (3).
  • Z can be an organic group having 1 or more carbon atoms and optionally containing an oxygen atom.
  • Z can be an organic group having 1 or more carbon atoms and optionally containing an oxygen atom.
  • Examples of the method of addition include a method of directly adding a bifunctional compound represented by the formula (8) and a method of using a halide having a long carbon chain at the time of synthesizing a derivative, but are not limited thereto.
  • bifunctional OPE-2Vn a derivative from a bifunctional group represented by the formula (8), which is the simplest structure, will be described.
  • a bifunctional OPE represented by the above formula (8) it can be used either in the form of powder separated from the reaction solution or dissolved in the reaction solution. it can.
  • a method for producing the bifunctional OPE-2Vn used as the component (A) of the curable resin composition of the present invention will be exemplified. It can be synthesized by reacting a compound having a phenolic hydroxyl group at both terminals represented by the above formula (8) with chloromethylstyrene, glycidyl metharylate, glycidyl atalylate, or the like.
  • chloromethyl styrene and carbon are used in view of the dielectric properties and heat resistance of the cured product of the thermosetting resin composition of the present invention.
  • a chloromethylstyrene derivative having 117 substituents of the number 1 to 30 is preferred. Chloromethylstyrene is most preferred from the viewpoint of economy and availability of raw materials.
  • the reaction temperature is between -10 ° C and 110 ° C.
  • the number average molecular weight Mn of the above-mentioned bifunctional OPE-2Vn is in the range of 700 to 4000. If the Mn exceeds 4000, the melt viscosity of the resin composition increases, and if the moldability decreases, the resin composition loses its compatibility with other resin components such as the component (B). It is not preferable because it causes a decrease in the quality. On the other hand, if Mn is less than 700, mechanical strength and heat resistance decrease. To do.
  • the above-mentioned bifunctional OPE-2Vn has low melt viscosity and good fluidity, has excellent compatibility with polyfunctional vinyl aromatic copolymer, and has vinyl groups at both ends, so that the strength of the resin composition, The heat resistance is good, and the strength of the cured product when heated is more excellent. As a result, the occurrence of cracks when exposed to high temperatures such as solder can be prevented.
  • the soluble polyfunctional vinyl aromatic copolymer used as the component (B) of the curable resin composition of the present invention is a monomer comprising a divinyl aromatic compound (a) and an ethyl vinyl aromatic compound (b).
  • the mole fraction of the structural unit having a butyl group derived from the dibutyl aromatic compound (a) represented by the formula satisfies (al) / [(al) + (a2)] ⁇ 0.5 and is polyfunctional.
  • the Mn and Mw / Mn in terms of polystyrene measured by gel permeation chromatography (GPC) of the vinyl aromatic copolymer satisfy 600 ⁇ Mn ⁇ 30,000 and MwZMn ⁇ 20.0.
  • the curable resin composition of the present invention comprises the above components (A) and (B) as essential components, and the compounding amount of the component (A) is 30 to the total of the components (A) and (B). 98wt%, the amount of component (B) is 2-70wt%.
  • component (B) of the curable resin composition of the present invention not only has good dielectric properties due to its molecular structure but also has both ends. It is used as a component that solves the problem of moldability in which the reactivity of polyphenylene ether oligomer having a vinyl group is low, and further enhances heat resistance. Therefore, in the curable resin composition of the present invention, component (B) is a multifunctional vinyl aromatic having a structural unit derived from a monomer consisting of a divinyl aromatic compound (a) and an ethyl vinyl aromatic compound (b). Having an indane structure represented by the above general formula (4) in the main chain skeleton of the copolymer is advantageous from the viewpoint of further improving heat resistance.
  • a polyfunctional vinyl aromatic copolymer having a structural unit derived from a monomer composed of a divinyl aromatic compound (a) and an ethyl vinyl aromatic compound (b) is used.
  • a soluble polyfunctional vinyl aromatic copolymer containing a structural unit derived from a monovinyl aromatic compound (c) other than the ethyl vinyl aromatic compound (b) may be compatible with the polyphenylene ether-based resin. It is preferable from the viewpoint of improvement.
  • This copolymer contains structural units represented by the above formulas (al), (a2) and (4) as repeating units derived from the divinyl aromatic compound (a).
  • R 13 , R 14, Q and n in the structural units represented by the above formulas (al), (a2) and (4) have the above-mentioned meanings, but the proportion of each structural unit present in the copolymer Is determined by the type of the divinyl aromatic compound (a) and the ethylvinyl aromatic compound (b) used, the reaction catalyst, the reaction temperature and other reaction conditions.
  • the dibutyl aromatic compound (a) used includes, for example, m-dibutylbenzene, p-dibutylbenzene, 1,2-diisopropenylbenzene, 1,3-diisopropenylbenzene, 1,4 —Diisopropenylbenzene, 1,3-divinylnaphthalene, 1,8-divinylnaphthalene, 1,4-divinylnaphthalene, 1,5-divinylnaphthalene, 2,3-divinylnaphthalene, 2,7_divinylnaphthalene, 2 , 6-Divinylnaphthalene, 4,4'_divinylbiphenyl, 4,3, -divinylbiphenyl, 4,2'_divinylbiphenyl, 3,2'-divinylbiphenyl, 3,3'_divinylbiphenyl , 2,2'-Diviny
  • dibutyl aromatic compound (a) examples include dibutylbenzene (both m- and p-isomers) and divinylbipheninole (in each case) in view of cost and heat resistance of the obtained polymer.
  • Preferred are the isomers and dibulnaphthalene (including each isomer). More preferably, they are dibutylbenzene (both m- and p-isomers) and divinylbiphenyl (including each isomer).
  • dibutylbenzene (both m- and p-isomers) is most preferably used.
  • divinylbiphenyl (including each isomer) and divinylnaphthalene (including each isomer) are preferably used.
  • the polyfunctional vinyl aromatic copolymer it is possible to adjust the compatibility with the polyphenylene oligomer having a vinyl group at both terminals, which is the component (A), and improve the solvent solubility and processability.
  • the ethyl butyl aromatic compound used as the component (b) which gives a structural unit include 0-ethyl vinole benzene, m-ethyl vinole benzene, p-ethyl vinole benzene, and 2-vinyl benzene.
  • Examples of other monobutyl aromatic compounds (c) include styrene, a nucleated alkyl-substituted styrene other than ethylvinylaromatic compound, a nucleated alkyl-substituted aromatic vinylid conjugated compound other than ethylvinylaromatic compound, para-alkyl-substituted styrene, Examples thereof include an alkyl-substituted aromatic compound, ⁇ -alkyl-substituted styrene, alkoxy-substituted styrene, an indene derivative, and an acenaphthylene derivative.
  • alkyl-substituted styrene for example, alkyl-substituted styrene such as methyl styrene, ethyl styrene, and butyl styrene can be used.
  • alkoxy-substituted styrene examples include methoxystyrene, ethoxystyrene, and butoxy.
  • Alkoxystyrene such as styrene can be used.
  • phenoxystyrene can be used.
  • aromatic vinyl compound for example, 2-vinylbiphenyl, 3-vinylbiphenyl, 4-vinylbiphenyl, 1-burnaphthalene, 2-burnaphthalene and the like can be used.
  • core alkyl-substituted aromatic vinyl compound for example, vinyl propyl biphenyl, vinyl propyl naphthalene, and the like can be used.
  • para-alkyl-substituted styrene examples include para-methylstyrene, para-ethylstyrene, and the like.
  • indene derivative besides indene, alkyl-substituted indene such as methyl indene, ethyl indene, propyl indene, butyl indene and the like can be used. Also, alkyl-substituted indene such as methyl indene, ethyl indene, propyl indene, butyl indene and the like can be used. Also, alkyl-substituted indene such as methyl indene, ethyl indene, propyl indene, butyl indene and the like can be used. Also, alkyl-substituted indene such as methyl indene, ethyl indene, propyl indene, butyl indene and the like can be used. Also, alkyl-substituted indene such as methyl indene, ethyl indene, propyl indene, butyl in
  • Alkoxy indene such as methoxyindene, ethoxyindene, butoxyindene, butoxyindene and the like can be used.
  • acenaphthylene derivative examples include, in addition to acenaphthylene, alkylacenaphthylenes such as methylacenaphthylene and ethylacenaphthylene; halogenated acenaphthylenes such as chloroacenaphthylene and bromoacenaphthylene; And dilacenaphthylenes.
  • These monovinyl aromatic compounds (b) are limited to those exemplified above, and may be used alone or in combination of two or more.
  • the monovinyl aromatic compound as the component (c) is not limited thereto. These can be used alone or in combination of two or more.
  • the monobutyl aromatic compounds of component (c) styrene, para-alkyl-substituted styrene, para-alkyl-substituted styrene, in that the amount of indane structure generated in the copolymer skeleton during polymerization is large.
  • Aromatic butyl compounds are preferred. The most preferred specific examples include styrene, 4-methylstyrene and 4-isopropenylbiphenyl in view of cost and heat resistance of the obtained polymer.
  • the divinyl aromatic compound as the component (a) is based on the total of the monomers composed of the components (a), (b) and (c). 20 99.5 m % Used. Preferably 30- 99 mole 0/0 above. More preferably, it is at least 40-95 mol%. It is particularly preferably at least 50-85 mol%. If the content of the dibutyl aromatic compound (a) is less than 20 mol%, the heat resistance tends to decrease when the resulting soluble polyfunctional butyl aromatic copolymer is cured, which is not preferable.
  • the ethyl vinyl aromatic compound as the component (b) is a component (a), a component (b), and a component (c), which is also the total of the monomers having the power. used 0.5 one 80 mole 0/0 for. Preferably 1 one 70 mole 0/0. More preferably, it is 560 mol%. Particularly preferably, it is 15 to 50 mol%.
  • the content of the ethyl butyl aromatic compound (b) is 80 mol% or more, the heat resistance tends to decrease when the resulting soluble polyfunctional butyl aromatic copolymer is cured.
  • the monovinyl aromatic compound as the component (c) is 40 mol% with respect to the total of the monomers composed of the components (a), (b) and (c). Less than used. Preferably it is less than 30 mol%. More preferably, it is less than 25 mol%. Particularly preferably, it is less than 20 mol%.
  • the content of the ethyl vinyl aromatic compound (b) is 40 mol% or more, the heat resistance tends to decrease when the resulting soluble polyfunctional vinyl aromatic copolymer is cured, which is not preferable.
  • the molar fraction (al) / [of the structural unit containing a vinyl group derived from the divinyl aromatic compound represented by the above formulas (al) and (a2) / [ (al) + (a2)] must satisfy ⁇ 0.5.
  • the molar fraction is 0.7 or more, particularly preferably 0.9 or more. If it is less than 0.5, the heat resistance of the resulting cured product of the copolymer is lowered, or the curing takes a long time, which is not preferable.
  • the soluble polyfunctional vinyl aromatic copolymer needs to have an indane structure represented by the above general formula (4) in its main chain skeleton.
  • Q represents an unsaturated aliphatic hydrocarbon group such as a vinyl group, an aromatic hydrocarbon group such as a phenyl group, or a hydrocarbon group-substituted product thereof. can do.
  • Q can also be a divalent hydrocarbon group forming a condensed ring with a benzene ring having an indane structure to form a naphthalene ring or the like, and the divalent hydrocarbon group has a substituent. Is also good.
  • the indane structure represented by the general formula (4) has a heat resistance of a soluble polyfunctional vinyl aromatic copolymer. This is a structural unit that further enhances the solubility and solubility in solvents.When a polyfunctional vinyl aromatic copolymer is produced, it can be grown under specific solvent, catalyst, temperature, etc. Are generated by attacking an aromatic ring of a structural unit derived from a dibutyl aromatic compound and a monobutyl aromatic compound.
  • the indane structure is preferably present in an amount of 0.01 mol% or more based on the structural units of all monomers. More preferably, it is at least 0.1 mol%, even more preferably at least 1 mol%. Particularly preferably, it is at least 3 mol%.
  • the indane structure does not exist in the main chain skeleton of the polyfunctional vinyl aromatic copolymer, heat resistance and solubility in a solvent are insufficient, which is not preferable.
  • the number average molecular weight Mn of the soluble polyfunctional vinyl aromatic copolymer is preferably 600 30,000. More preferably, it is 600-10,000. Most preferably, it is 700-5,000. If the ⁇ power is less than 600, the viscosity of the soluble polyfunctional bur aromatic copolymer is too low, so that the formation of a thick film becomes difficult and the processability deteriorates. On the other hand, if ⁇ is 30,000 or more, a gel is likely to be formed or compatibility with other resin components is likely to be reduced, and when molded into a film or the like, the appearance and physical properties are reduced. Not preferred.
  • the soluble polyfunctional bur aromatic copolymer preferably has a molecular weight distribution (Mw / Mn) of 20 or less. Preferably, it is 15 or less. More preferably, it is 10 or less. Most preferably, it is 5 or less.
  • Mw / Mn exceeds 20, the processing properties are deteriorated due to the increase in the viscosity of the curable resin composition of the present invention, and the appearance and physical properties are deteriorated due to the decrease in compatibility with other resin components. This is undesirable because it causes problems.
  • the soluble polyfunctional vinyl aromatic copolymer used as the component (B) preferably has a metal ion content of 500 ppm or less for each metal ion. More preferably, it is 100 ppm or less. It is even more preferable that the concentration is 20 ppm or less.
  • the soluble polyfunctional vinyl aromatic copolymer may be a tributyl aromatic compound, another dibutyl compound, or a monobutyl compound as long as the effects of the present invention are not impaired. It can be copolymerized using a bull compound.
  • trivier aromatic compounds include 1,2,4-trivinylbenzene, 1,3,5-tributylbenzene, 1,2,4-triisopropenylbenzene, and 1,3,5-triisopropenylbenzene.
  • dibutyl compounds include gen compounds such as butadiene and isoprene.
  • Other monobutyl compounds include alkyl vinyl ether, aromatic vinyl ether, isobutene, diisobutylene and the like. These can be used alone or in combination of two or more. These other monomers are used in an amount of less than 30 mol% based on the total amount of the monomers containing the monovinyl aromatic compound of the divinyl aromatic compounds ( a ), (b) and (c). You.
  • the soluble polyfunctional vinyl aromatic copolymer includes, for example, a monovinyl aromatic compound (c) other than divinyl aromatic compound (a), ethyl vinyl aromatic compound (b) and ethyl vinyl aromatic compound (b).
  • a monovinyl aromatic compound (c) other than divinyl aromatic compound (a) ethyl vinyl aromatic compound (b) and ethyl vinyl aromatic compound (b).
  • a Lewis acid catalyst and an initiator represented by the following general formula (13) in one or more organic solvents having a dielectric constant of 2-15.
  • R 15 represents a hydrogen atom or a monovalent hydrocarbon group having 16 carbon atoms
  • R lb represents a p-valent aromatic hydrocarbon group or an aliphatic hydrocarbon group
  • Z represents a halogen atom.
  • p represents an integer of 16.
  • the method of recovering the copolymer after the termination of the polymerization reaction is not particularly limited, and a commonly used method such as a steam stripping method or precipitation with a poor solvent may be used.
  • the mixing ratio of the above components (A) and (B) for obtaining the curable resin composition of the present invention can be varied over a wide range, but the mixing of the components (A) and (B) can be varied.
  • Amount (%) is below It is necessary to satisfy the formula.
  • the blending amount of the component (A) is 30 95 wt% and the blending amount of the component (B) is 570 wt%. It is better to do.
  • (B) If the compounding power is less than 3 ⁇ 4wt%, the improvement of the chemical resistance is insufficient, and if it exceeds 80wt%, the mechanical properties deteriorate. Furthermore, since the polyphenylene ether oligomer having vinyl groups at both ends and the polyfunctional vinyl aromatic copolymer used in the present invention are materials having low dielectric properties, a cured product having a low dielectric constant is formed. be able to.
  • the curable resin composition of the present invention may contain one or more thermoplastic resins as the component (C) in addition to the components (A) and (B).
  • the blending amount (weight ratio) of the component (C) to the total of the components (A), (B) and (C) is 2 to 60 wt%, preferably 550 wt%. is there. If the amount of component (C) is less than 2% by weight, the mechanical properties decrease, and if it exceeds 60% by weight, the chemical resistance decreases.
  • thermoplastic resin (C) polyolefins such as polyethylene, polypropylene and ethylene-propylene copolymer and derivatives thereof, polyamides such as nylon 4, nylon 6, and nylon 6.6, and derivatives thereof, Polyesters such as polyethylene terephthalate and polybutylene terephthalate and derivatives thereof, polyphenylene ether, modified polyphenylene ether, polycarbonate, polyacetal, polysulfone, polymethyl methacrylate, acrylic acid (or methacrylic acid) ester copolymers, Polystyrenes such as polystyrenes, phthalonitrile styrene copolymers, acrylonitrile styrene butadiene copolymers and the like, rubbers such as styrene conjugated gen block copolymers, hydrogenated styrene conjugates Rubber such as Enburokku copolymer, polybutadiene, rubbers such as polyisoprene, polyphosphate Zen,
  • thermoplastic block copolymer into which at least one functional group selected from an epoxy group, a carboxylic acid group and a maleic anhydride group is introduced.
  • thermoplastic resins it is preferable to use a block copolymer having a polymer segment having a glass transition temperature of 20 ° C or lower in order to improve the toughness effect. . It is more preferable to use a block copolymer having a polymer segment having a glass transition temperature of o ° c or lower.
  • the block copolymer having a polymer segment having a glass transition temperature of 20 ° C. or lower refers to a rubber such as a styrene conjugated gen block copolymer or a hydrogenated styrene conjugated gen block copolymer or the like.
  • the rubbers are preferably Most preferred are hydrogenated rubbers such as hydrogenated styrene conjugated genlock copolymer from the viewpoint of the heat-resistant oxidative deterioration of the curable resin composition of the present invention.
  • the structure of the hydrogenated block copolymer is a block composed of at least one polymer block A mainly composed of a butyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound. It is obtained by hydrogenating a copolymer.
  • This hydrogenated block copolymer contains 5-85 wt%, preferably 10-70 wt% of a vinyl aromatic compound. More preferably, it contains 15 to 40% by weight.
  • the polymer block A mainly composed of a bullet aromatic compound accounts for more than 50% by weight of a polymer block or a vinyl aromatic compound composed solely of a bullet aromatic compound, preferably It has a structure of a copolymer block of a butyl aromatic compound containing 70% by weight or more and a hydrogenated conjugated gen compound, and further has a polymer block B mainly composed of a hydrogenated conjugated gen compound.
  • a polymer block A mainly composed of these vinyl aromatic compounds was hydrogenated.
  • the polymer block B mainly composed of a conjugated diene compound has a distribution of hydrogenated conjugated diene compound or vinyl aromatic compound in the molecular chain in each polymer block. Random, tapered (monomer along the molecular chain) Component increases or decreases), a polymer block mainly composed of the butyl aromatic compound, which may be partially block-shaped or any combination thereof, and the hydrogenated conjugated diene compound as a main component.
  • each of the polymer blocks may have the same structure or different structures.
  • the vinyl aromatic compound constituting the hydrogenated block copolymer for example, one or more kinds selected from styrene, permethylstyrene, ⁇ -methylstyrene, byrnolenene, p-tert-butylstyrene and the like are selected. Of which styrene is preferred.
  • the conjugated diene compound before hydrogenation that constitutes the hydrogenated conjugated diene compound include, for example, butadiene, isoprene, 1,3-pentadiene, 1,3-dimethinolane 1,3-butadiene, etc. Or two or more are selected, butadiene, isoprene and combinations thereof are preferred. Most preferably, it is butadiene from the viewpoint of compatibility with the components (A) and (B) of the present invention.
  • the number average molecular weight Mn of the hydrogenated block copolymer having the above-mentioned structure and used in the present invention is not particularly limited, and is 5,000 to 1,000,000, preferably 10,000 to 500,000. , 000, more preferably 30,000-300,000. Further, the molecular structure of the hydrogenated block copolymer may be linear, branched, radial, or any combination thereof.
  • the curable resin composition of the present invention may contain a thermosetting resin as the component (D).
  • the blending amount of the component (D) with respect to the total of the components (%), ( ⁇ ), (C) and (D) is 240 wt%, preferably 5-85 wt%. It is. If the amount of the component (D) is less than 2% by weight, the degree of improvement in the adhesiveness and chemical resistance due to the addition of the filler is insufficient, and when the amount exceeds 40% by weight, the mechanical properties of the composition are insufficient. Drop significantly
  • crosslinking components other than the component (B) can be added as long as the effects are not impaired.
  • a crosslinking component multifunctional epoxidation Compound, diaryl phthalate, polyfunctional atalyloyl compound, polyfunctional methacryloyl compound, polyfunctional maleimide, polyfunctional cyanate ester, polyfunctional isocyanate, unsaturated polyester and their prepolymers Polymers. They are
  • One or two or more are used.
  • the polyfunctional epoxy conjugate may be any epoxy resin having two or more epoxy groups in the molecule.
  • examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type.
  • Epoxy resins, hydantoin-type epoxy resins, alicyclic epoxy resins, biphenyl-type epoxy resins, and epoxy resins obtained by halogenating these resins, triphenylmethane-type epoxy resins, tetraphenyldaricidyl ether ethane (tetrafunctional Epoxy resin), various novolak type epoxy resins and the like, and two or more kinds may be used in combination. It should be noted that an epoxy resin having one epoxy group in the molecule may be used in combination as long as the effects of the present invention are not impaired.
  • examples of the curing agent for the polyfunctional epoxy compound contained in the curable resin composition of the present invention include amide-based curing agents such as dicyandiamide and aliphatic polyamide.
  • Amine-based curing agents such as diaminodiphenylmethane, metaphenylenediamine, ammonia, triethylamine and getylamine; Examples thereof include a curing agent and acid anhydrides, and these may be used in combination as long as the effects of the present invention are not impaired.
  • a curing accelerator can be added to accelerate the curing reaction within a range that does not impair the effects of the present invention.
  • the curing accelerator that can be contained include imidazoles such as 2-methylimidazole, 2_ethyl-4-methylimidazole, and 2-phenylimidazole, and 1,8-diaza-bicyclo [5] .4.0] Pendecene_7, tertiary amines such as triethylenediamine and benzyldimethylamine, organic phosphines such as tributylphosphine and triphenylphosphine, tetraphenylphosphoniumtetraphenylborate, triphenylphosphine Examples thereof include tetraphenylboron salts such as tetraphenylborate, and two or more kinds thereof may be used in combination.
  • any of the ortho, meta, and para isomers is the same as the component (E). Can be used.
  • polyfunctional (meth) atalyloylid conjugate examples include compounds represented by the following formula.
  • m is an integer of 2-10, R 2 ° and R 22 represent hydrogen or a methyl group, and R 21 represents a residue of a polyvalent hydroxy group compound.
  • polyfunctional (meth) ataryloyluid conjugate examples include ethylene glycol diatalylate, propylene glycol diatalylate, 1,4-butanediol diatalylate, polyethylene glycol diatalylate, Polypropylene glycol diatalylate, bisphenol phenol A-diatalate; polyhydric atalylate of a phenol resin precondensate; bisphenol A epoxy resin, novolak epoxy resin, alicyclic epoxy resin, diglycidyl phthalate and polycarboxylic acid, etc. Epoxy acrylates obtained by reacting acrylonitrile with acrylic acid. Further, hexahydro-1,3,5-triatalyleno-re-s-triazine and hexahydro-11,3,5-trimethacryloyl-S-triazine are exemplified.
  • Polyfunctional maleimides include those represented by the following formula.
  • n is an integer of 2-10
  • R and R represent hydrogen, halogen or a lower alkyl group
  • R 25 represents a 2-10 valent aromatic or aliphatic organic group.
  • the polyfunctional maleimide is produced by reacting maleic anhydrides with a polyamine having 210 amino groups in the molecule to produce a maleamic acid, and dehydrating and cyclizing the maleamic acid. Is done.
  • Suitable polyamines include metaphenylenediamine, paraphenylenediamine, metaxylylenediamine, paraxylylenediamine, 4,4-diaminobiphenyl, bis (4-aminophenyl) methane, bis ( 4-aminophenyl) ether, bis (4-aminophenyl) sulfone, 2,2-bis (4-aminophenyl) propane, melanins having an s-triazine ring, polyamines obtained by reacting aniline with formaldehyde (usually, Those having 10 or less benzene nuclei are preferably used).
  • the polyfunctional cyanate ester includes those represented by the following formula.
  • R b represents a 2-10 valent aromatic organic group, and the cyanate ester group is directly bonded to the aromatic ring of the organic group R 26 )
  • Examples of such a polyfunctional cyanate ester include 1,3-dicyanatebenzene, 1,4-dicyanatebenzene, 2,6_dicyanatenaphthalene, and 4,4_dicyanate.
  • benzene polynuclear polycyanate obtained by the reaction of a phenol resin with a cyanogen halide.
  • polyfunctional isocyanate examples include those represented by the following formula.
  • q is an integer of 2 to 10, and represents a 2 to 10 valent aromatic or aliphatic organic group.
  • Examples of the multifunctional isocyanate include 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, metaphenylene diisocyanate, and paraphenylene diisocyanate. .
  • polyfunctional isocyanates can also be converted into polyfunctional block isocyanates using various blocking agents before use.
  • the blocking agent include known agents such as alcohols, phenols, oximes, ratatams, malonic esters, acetoacetates, acetylacetones, amides, imidazoles, and sulfites.
  • Examples of the unsaturated polyester include those obtained by reacting glycols with unsaturated polybasic acids and saturated polybasic acids, or anhydrides, esters and acid chlorides thereof. Can be
  • glycols include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butane
  • examples thereof include diol, 1,4-butanediol, 1,6 xandiol, hydrogenated bisphenol A, bisphenol A propylene oxide adduct, and dibutene monopenpentone glycol.
  • Typical examples of the unsaturated polybasic acid include maleic anhydride, fumaric acid, itaconic acid and the like.
  • Representative examples of saturated polybasic acids include phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, adipic acid, sebacic acid, tetonic acid, tetrabromoacid And phthalic anhydride.
  • the component (D) when the component (D) is blended into the curable resin composition of the present invention, the component (D) may be used alone or in combination of two or more of the above-mentioned compound groups. it can.
  • a prepolymer obtained by preliminarily reacting these compounds with heat, light, or the like in the presence or absence of known catalysts, initiators, curing agents, and the like described below may also be used as the component (D) of the present invention. Can be.
  • a polyfunctional resin is used. Epoxy daggers are the most preferred.
  • the curable resin composition of the present invention may contain a filler as the component (E).
  • the blending amount of the component (E) is preferably 2 to 90 wt% with respect to the total of the components (A), (B), (C), (D) and (E). Is 5-85wt ° /.
  • (E) Ingredient If the compounding amount is less than 2 wt%, the degree of improvement in mechanical properties by adding a filler is insufficient, and if it exceeds 90 wt%, the fluidity of the composition is significantly reduced.
  • Examples of the filler of the component (E) include carbon black, silica, alumina, tanolek, mica, glass beads, and glass hollow spheres.
  • the filler may be in the form of fibers or powder.
  • the resin composition of the present invention is cured by causing a crosslinking reaction by means of heating or the like, as described later. However, in order to lower the reaction temperature or promote the crosslinking reaction of the unsaturated group, the resin composition is used.
  • a dical initiator may be used.
  • the amount of the radical initiator used for this purpose is 0.1 to 10% by weight, preferably 0.1 to 8% by weight, based on the sum of the components (A) and (B).
  • radical initiator examples include benzoyl peroxide, cumenehydride peroxide, 2,5_dimethylhexane-l, 5-dihydride peroxide, 2,5-dimethyl_2, 5-di (t_butylperoxy) hexine-3, di_t_butylperoxide, t-butylcumyl peroxide, a, h, bis (t_butylperoxy_m-isopropyl) benzene, 2,5_dimethyl-2 5-di (t_butylperoxy) hexane, dicumyl peroxide, di-t_butylperoxyisophthalate, t_butylperoxybenzoate, 2,2_bis (t_butylperoxy) butane, 2,2 _Bis (t_butylperoxy) octane, 2,5-dimethinolane 2,5-di (benzoylperoxy) hexan
  • a polyamine force S and a catalyst suitable for a polyfunctional cyanate ester are used as a curing agent suitable for the polyfunctional maleimide used as the component (D) in the curable resin composition of the present invention.
  • a polyamine force S and a catalyst suitable for a polyfunctional cyanate ester are used as a curing agent suitable for the polyfunctional maleimide used as the component (D) in the curable resin composition of the present invention.
  • phosphates such as tributylphosphine, etc.Also
  • catalysts and curing agents suitable for polyfunctional isocyanates are described in, for example, Keiji Iwata, ed. Polyurethane Resin Handbook "(Nikkan Kogyo Shimbun, 1977), pages 118-123, amines, organic metals, polyhydric alcohols, and the like, respectively.
  • the layered silicate is one of the fillers of the component (II), but is different from the component (II) in the curable resin composition containing the layered silicate. Calculate as CO component.
  • the curable resin composition of the present invention containing a layered silicate has excellent curability after thinning. Shows properties, dielectric properties, heat resistance, heat-resistant hydrolyzability, and is used for dielectric materials, thin insulation materials, heat-resistant materials, packaging materials, adhesive materials, etc. in thin molded products in advanced technology fields such as the electronics industry and space * aircraft industry. Can be.
  • the curable resin composition containing the layered silicate of the present invention is characterized in that the polyphenylene ether oligomer as the component (A) and the solvent-soluble polyfunctional vinyl aromatic copolymer as the component (B) are A curable resin composition comprising a layered silicate as a component, wherein the compounding amount of the ⁇ component is 0.198 wt%.
  • This curable resin composition can be blended with component (C), component (E) and other components in addition to component (A) and component (B).
  • component (C) It is preferable that the mixing ratio of the component (E) and the other components is the above-mentioned ratio.
  • the component (B) is contained in the main chain skeleton of a polyfunctional vinyl aromatic copolymer having a structural unit derived from a monomer composed of a divinyl aromatic compound (a) and an ethyl vinyl aromatic compound (b).
  • a polyfunctional vinyl aromatic copolymer having a structural unit derived from a monomer composed of a divinyl aromatic compound (a) and an ethyl vinyl aromatic compound (b).
  • the component ⁇ ) is a swellable layered silicate having an affinity for an organic solvent.
  • component (I) In addition to component (I) and component), one or more components selected from thermoplastic resin as component (C), thermosetting resin as component (D), and filler as component (II)
  • the amount of component (C) is 1-80 with respect to the sum of components ( ⁇ ), ( ⁇ ) and). /.
  • the compounding amount of component (D) shall be 1-80 wt%, and the compounding amount of component (E) shall be 290 wt%.
  • the blending amount of component (C) shall be 1-180 wt% based on the total of component CO, component (B) and component (C).
  • the component (C) is at least one thermoplastic selected from the group consisting of a block copolymer having a polymer segment having a glass transition temperature of 20 ° C or lower and polyphenylene ether. Be a resin.
  • the layered silicate used in the curable resin composition containing a layered silicate refers to a layered silicate mineral having an exchangeable metal cation between layers, and is a synthetic product that may be a natural product. It may be hot.
  • the layered silicate is not particularly limited and includes, for example, smectite-based clay minerals such as montmorillonite, hectorite, savonite, paiderite, stevensite, and nontronite, swelling mylite, vermiculite, halloysite, and the like. . Among them, at least one selected from the group consisting of montmorillonite, hectorite, and swelling my force is preferably used. These layered silicates may be used alone or in combination of two or more.
  • the crystal shape of the layered silicate is not particularly limited, but the lower limit of the average length is preferably 0.005 ⁇ m, the upper limit is 3 ⁇ m, and the lower limit of the preferred thickness is 0.001 ⁇ m.
  • the upper limit is 1 ⁇ m
  • the preferred lower limit of the aspect ratio is 20, and the upper limit is 500
  • the more preferred lower limit of the average length is 0.01 ⁇ m
  • the upper limit is 2 / im
  • the more preferred lower limit of the thickness is 0. 005 / im
  • the upper limit is 0.5 ⁇ m
  • the lower limit of the aspect ratio is more preferably 50
  • the upper limit is 200.
  • the layered silicate preferably has a large shape anisotropy effect defined by the following formula (3).
  • the cured resin obtained from the resin composition has excellent mechanical properties.
  • S1 indicates the surface area of the lamination surface of the flaky crystal
  • S2 indicates the surface area of the lamination side surface of the flake crystal.
  • the exchangeable metal cation existing between the layers of the layered silicate means metal ions such as sodium and calcium present on the surface of the flaky crystal of the layered silicate, and these metal ions are cationic. Since it has a cation exchange property with a substance, various substances having a cationic property can be introduced (inter-force rate) between the crystal layers of the layered silicate.
  • the cation exchange capacity of the layered silicate is not particularly limited, but a preferred lower limit is 50 milliequivalents Z100g and an upper limit is 200 milliequivalents / 100g. 50 milliequivalent / less than 100g In this case, since the amount of the cationic substance intercalated between the crystal layers of the layered silicate by cation exchange is reduced, the crystal layers are not sufficiently depolarized (hydrophobicized). If the amount exceeds 200 milliequivalents / 100 g, the bonding strength between the crystal layers of the layered silicate may be too strong, and the crystal flakes may not be easily separated.
  • layered silicate those having improved dispersibility in resin by being subjected to chemical treatment are preferable.
  • the layered silicate is hereinafter also referred to as an organically modified layered silicate.
  • the chemical treatment can be carried out, for example, by the following chemical modification methods (1)-(6). These chemical modification methods may be used alone or in combination of two or more.
  • the chemical modification method (1) is also referred to as a cation exchange method using a cationic surfactant, and specifically, a method in which cation exchange is performed between layers of a layered silicate with a cationic surfactant to make the layer silicate hydrophobic. It is. By preliminarily making the interlayer of the layered silicate hydrophobic, the affinity between the layered silicate and the low-polarity resin is increased, and the force of dispersing the layered silicate more uniformly and finely in the low-polarity resin can be obtained.
  • the cationic surfactant is not particularly limited, and examples thereof include quaternary ammonium salts and quaternary phosphonium salts. Among them, a quaternary ammonium salt containing an alkyl ammonium ion having 6 or more carbon atoms and having an alkyl chain having 6 or more carbon atoms is preferably used because the crystal layer of the layered silicate can be sufficiently hydrophobized.
  • the quaternary ammonium salt is not particularly limited, and examples thereof include a trimethylalkylammonium salt, a triethylalkylammonium salt, a tributylalkylammonium salt, a trihexylalkylammonium salt, and a trioctylalkyl salt.
  • Ammonium salt dimethyldialkylammonium salt, dibutyldialkylammonium salt, methylbenzyldialkylammonium salt, dibenzyldialkylammonium salt, trialkylmethylammonium salt, trialkylethylammonium salt
  • Quaternary ammonium salts derived from aromatic amines such as trialkylbutylammonium salts, quaternary ammonium salts having an aromatic ring, trimethylphenylammonium, dialkyl quaternary ammonium salts having two polyethylene glycol chains, polypropylene Dialkyl quaternary ammonium salts having two glycol chains, trialkyl quaternary ammonium salts having one polyethylene glycol chain, And trialkyl quaternary ammonium salts having one pyrene glycol chain.
  • lauryltrimethylammonium salt, stearyltrimethylammonium salt, trioctylmethylammonium salt, distearyldimethylammonium salt, di-hardened beef tallow dimethylammonium salt, distearyldibenzylammonium salt, N —Polyoxyethylene-1-N-lauryl-1-N, N-dimethylammonium salt and the like are preferred.
  • These quaternary ammonium salts may be used alone or in combination of two or more.
  • the quaternary phosphonium salt is not particularly limited, and examples thereof include dodecyltriphenylphosphonium salt, methyltriphenylphosphonium salt, lauryltrimethylphosphonium salt, stearyltrimethylphosphonium salt, Trioctylphosphonium salt, distearyldimethylphosphonium salt, distearyldibenzylphosphonium salt and the like can be mentioned. These quaternary phosphonium salts may be used alone or in combination of two or more.
  • the hydroxyl group present on the crystallized surface of the organically modified layered silicate chemically treated in the chemical modification method (1) is chemically modified with a functional group capable of chemically bonding to a hydroxyl group or a hydroxyl group.
  • This is a chemical treatment method using a compound having one or more functional groups with high affinity at the molecular terminals.
  • the functional group capable of chemically bonding to the hydroxyl group or the functional group having high chemical affinity with the hydroxyl group is not particularly limited, and examples thereof include an alkoxy group, a glycidyl group, and a carboxy group (including dibasic acid anhydrides). ), A hydroxyl group, an isocyanate group, an aldehyde group and the like.
  • the compound having a functional group capable of chemically bonding to the hydroxyl group or the compound having a functional group having a high chemical affinity with the hydroxyl group is not particularly limited, and examples thereof include a silane compound, a titanate compound, and a glycidyl compound having the functional group. Carboxylic acids, alcohols and the like. These compounds may be used alone or in combination of two or more.
  • the above silani conjugate is not particularly limited, and examples thereof include burtrimethoxysilane, vinoletritriethoxysilane, burtris (-methoxyethoxy) silane, and tiltriethoxysilane.
  • Toxisilane ⁇ -methacryloxypropylmethyldimethoxysilane, and the like. These silane compounds may be used alone or in combination of two or more.
  • the hydroxyl group present on the crystal surface of the organically modified layered silicate chemically treated in the chemical modification method (1) is converted into a functional group capable of chemically bonding to a hydroxyl group or a hydroxyl group.
  • This is a method in which chemical treatment is performed with a functional group having high compatibility and a compound having at least one reactive functional group at the molecular terminal.
  • the chemical modification method (4) is a method in which the crystal surface of the organically modified layered silicate chemically treated in the chemical modification method (1) is chemically treated with a compound having anionic surface activity.
  • the compound having anionic surface activity is not particularly limited as long as it can chemically treat the layered silicate by ionic interaction.
  • Examples thereof include sodium laurate, sodium stearate, sodium oleate, and higher Alcohol sulfates, secondary higher alcohol sulfates, unsaturated alcohol sulfates, etc.
  • These compounds may be used alone or in combination of two or more.
  • the chemical modification method (5) is a method of chemically treating a compound having one or more reactive functional groups other than the anion site in the molecular chain among the compounds having anionic surface activity.
  • the organic layered silicate chemically treated by any one of the chemical modification methods (1) and (5) is further subjected to, for example, maleic anhydride-modified polyphenylene.
  • This is a method of chemically treating with a resin having a functional group capable of reacting with a layered silicate such as an ether resin.
  • the compounding ratio of component (B) and component (B) can be varied over a wide range.
  • Force J) is 2-99.9 (wt. %), Preferably 3-99.5 wt%, more preferably 30-99. Owt%, and the component (B) is 0.1-98 (wt%), preferably 0.5-97 wt%, Preferably it is 1.070 (wt%). If the amount of the component (B) is less than 0.1% by weight, the effect of the lamellar silicate on hardening is reduced, and if it exceeds 98% by weight, the mechanical properties are reduced. Furthermore, since the polyfunctional vinyl aromatic copolymer as the component (B) is a material having low dielectric properties, a cured product having a low dielectric constant can be formed.
  • the curable resin composition is made of an antimony trioxide such as antimony trioxide, which is concerned about toxicity. It does not contain compounds in a substantial amount or more, and has excellent flame retardancy, high heat resistance, thermal shock resistance, low dielectric properties, and reliability.
  • a specific halogen-based flame retardant and a specific layered silicate with an aromatic resin, even a thin molded product or a cured product has a high degree of flame retardancy, good appearance, moldability, Shows curing properties, dielectric properties, heat resistance, and heat hydrolysis resistance, and in advanced technology fields such as the electronics industry, space, and aircraft industries, dielectric materials for thin molded products, insulating materials, heat-resistant materials, packaging materials, adhesive materials, and housings. It can be used for materials and the like.
  • This flame-retardant curable resin composition comprises the essential components (A) and (B) constituting the curable resin composition of the present invention, and optionally the component (C), In addition to component (D) and component (E),
  • ti) component layered silicate, preferably montmorillonite, swelling my power, and at least one layered silicate selected from the group consisting of hectorite power,
  • the (F) component (E) and other components can be added to the flame-retardant curable resin composition.
  • the mixing ratio of the component (C) to the component (E) and the other components is the above-mentioned ratio.
  • thermosetting composition formed by the above component ( ⁇ ) -ti) has better characteristics.
  • a better flame-retardant curable resin composition is provided.
  • thermoplastic resin of component (C) is one or more thermoplastic resins containing an aromatic structure.
  • thermosetting resin of component (D) is one or more thermosetting resins containing an aromatic structure.
  • halogen-based flame retardant of the component (K) used in the flame-retardant curable resin composition is as described above, and these halogen-based flame retardants may be used alone or in combination of two or more. May be used in combination.
  • the halogen-based flame retardant power of the component 1,2-bis (pentabromophenyl), bis (2,4,6-tribromophenoxy) ethane, ethylene bistetrabromophthalimide, polydibromophenylene oxide, tris (tribromophenyl) cyanurate, atactic Brominated polystyrene having a structure, brominated styrene monomethyl methacrylate copolymer having an atactic structure, brominated styrene-methyl methacrylate-glycidyl methacrylate copolymer having an atactic structure, and brominated styrene having an atactic structure Glycidyl methacrylate copolymer, brominated styrene-polypropylene copoly
  • Flame retardant is ethane 1,2_bis (pentabromophenyl), polydibromophenylenoxide, odor of atactic structure Les, Shi preferred that one or more C androgenic flame retardant selected from the group consisting of polystyrene.
  • the layered silicate of the ⁇ component used in the flame-retardant curable resin composition may be the ⁇ component described in the invention relating to the curable resin composition containing the layered silicate.
  • at least one selected from the group consisting of montmorillonite, hectorite, and swelling my power is used.
  • the mixing ratio of the above-mentioned component (II), component (II), component (I) and component (II) to obtain a flame-retardant curable resin composition can be varied over a wide range. It is preferable that the compounding amount (wt%) of each component relative to the total of component (I), component (I), component Q) and component (II) satisfies the following formula.
  • component-one (E) component total compounding amount 4- 99.8wt. / 0 , preferably 6-99 wt%, more preferably 30 96 wt%
  • Component C content 0.1-95.9wt%, preferably 0.5-90wt%, more preferably 270wt%
  • (K) Component amount 0.195.9wt%, 0.5-80wt%, more preferably 1-150wt%
  • the flame-retardant curable resin composition comprises, in addition to the component (A), the component (E), the component (i) and the component (II),
  • the other components described above can be contained, but the amount is preferably in the above range.
  • a nitrogen-based flame retardant in order to further improve the flame retardancy, a nitrogen-based flame retardant, a phosphorus-based flame retardant, and a nitrogen-phosphorus-based flame retardant in an amount not impairing the effects of the present invention.
  • one or more flame retardants selected from the group consisting of inorganic flame retardants.
  • the nitrogen-based flame retardant used as the component (G) when the compounded resin is exposed to a high temperature, it absorbs heat and removes heat from the resin and forms an inert atmosphere. It is a flame retardant that exhibits a flame retardant effect. Among them, those having an endothermic force at the time of decomposition in differential thermal analysis of at least 50 mJ per mg, and particularly preferably at least 150 mJ, are preferable.
  • nitrogen-based flame retardants known ones can be used without limitation, and aliphatic amine compounds, aromatic amine compounds, nitrogen-containing heterocyclic compounds such as triazine, melamine, benzoguanamine, methyldanaamine, and cyanuric acid, and cyanide compounds , Aliphatic amides, aromatic amides, urea, thiourea and the like.
  • salts of the above compounds can also be used.
  • the salt include sulfate, nitrate, borate, isocyanurate and the like.
  • aliphatic amine compounds, triazine compounds and salts thereof exhibit an excellent flame-retardant effect, and therefore these compounds are particularly preferably used in the present invention. it can.
  • the phosphorus-based flame retardant used as the component (G) generates a polyphosphoric acid compound when the compounded resin is exposed to high temperatures to form a heat-resistant film, and promotes carbonization by a solid acid. It is thought that the mechanism has a flame retardant effect.
  • a phosphorus-based flame retardant known ones can be used without any limitation. Specific examples thereof include simple phosphorus such as red phosphorus; phosphates such as calcium phosphate and titanium phosphate; tributyl phosphate and triphenyl. Esthenol phosphate such as phosphate; polyphosphoric acid; polyphosphate such as calcium polyphosphate; polyphosphate such as poly (difluorophosphoric acid).
  • phosphate esters, phosphates, and polyphosphates can be suitably used because they have a large flame-retarding effect and good electrical characteristics.
  • a nitrogen-phosphorus-based compound having both a nitrogen atom and a phosphorus atom in one molecule is used as the compound having both functions of the nitrogen-based flame retardant and the phosphorus-based flame retardant as the component (G)
  • Flame retardants can be used as the compound having both functions of the nitrogen-based flame retardant and the phosphorus-based flame retardant as the component (G).
  • Flame retardants can be used. By using such a flame retardant, a resin composition having particularly excellent flame retardancy can be obtained.
  • flame retardants examples include phosphates and polyphosphates of the compounds exemplified above as nitrogen-based flame retardants; phosphazene compounds such as phenoxyphosphazene and methylphenoxyphosphazene; N, N-ethyl Examples thereof include phosphoric acid amides such as phosphamide; and polyphosphoric acid amides such as poly (N, N-getylphosphamide).
  • Polyphosphates and phosphazene compounds can be suitably used in the present invention because of their great flame retardant effect. Further, from the viewpoint of electrical characteristics, a phosphazene compound is most preferably used.
  • the above-mentioned nitrogen-phosphorus flame retardants can be used alone or in combination of two or more.
  • examples of the inorganic flame retardant that can be suitably used as the component (G) include one or more inorganic flame retardants selected from the group consisting of metal hydroxides and metal oxides.
  • examples of the metal hydroxide that can be suitably used as a powerful inorganic flame retardant include magnesium hydroxide, aluminum hydroxide, and hydrated talcite.
  • the metal hydroxide that can be suitably used as the component (G) is desirably surface-treated.
  • the surface treatment is preferred because the heat resistance of the metal hydroxide is improved, and the appearance and flame retardancy of the molded product are improved.
  • metal oxides that can be suitably used as the inorganic flame retardant of the component (G) include copper oxide, magnesium oxide, tungsten oxide, titanium oxide, zinc oxide, iron oxide, barium oxide, manganese oxide, And the like.
  • the antimony oxide compound is not used as a component (G) in the present invention from the viewpoint of harmful effects. However, it does not prevent the presence of impurities.
  • the compounding amounts of the nitrogen-based flame retardant, the phosphorus-based flame retardant, the nitrogen-phosphorus-based flame retardant and the inorganic flame retardant of the component (G) are as follows: (A)-(E) component; It is 0.1 to 25 wt%, preferably 0.1 to 20 wt%, based on the sum of the components (K). Especially preferably, it is 0.215 wt%. If the amount is less than 0.1% by weight, a sufficient flame-retardant effect cannot be obtained, and if it is more than 25% by weight, the moldability and mechanical properties deteriorate, which is not preferable.
  • the flame retardant resin composition of the present invention preferably contains a flame retardant aid as the component (H).
  • a flame retardant aid can improve the oxygen index and significantly reduce the maximum heat generation rate.
  • the flame retardant aid for example, at least one kind of flame retardant aid selected from the group consisting of a hindered amine compound, a fluororesin, a silicone oil, and a silicone-acrylic composite rubber is preferably used.
  • the compounding amount of the flame retardant aid as the component (H) is 0.1% based on the total of the components (A) and (E).
  • One is 25 wt%, preferably 0.120 wt%. Particularly preferably, it is 0.2 to 15% by weight. If the amount is less than 0.1 wt%, a sufficient flame retardant effect cannot be obtained, and if the amount is more than 25 wt%, the moldability, flexibility and elongation at break will be reduced, which is not preferable.
  • the curable resin composition of the present invention may be further blended with an additive in an amount that does not impair the original properties for the purpose of imparting desired performance according to its use.
  • the additives include an antioxidant, a heat stabilizer, an antistatic agent, a plasticizer, a pigment, a dye, and a colorant.
  • composition (% by weight) of the curable resin composition of the present invention is preferably in the following range.
  • Component (C) 0-60%, preferably 20-50%
  • Component (D) 0 50%, preferably 2 20%
  • Component (E) 0 98%, preferably 0 10%
  • component (A), component (B) and component CF) are required
  • Component (C) 0-60%, preferably 20-50%
  • Component (D) 0 50%, preferably 2 20%
  • Component I) 2-98%, preferably 2-10%
  • component (A), component (B), component) and component ( ⁇ ) are essential components
  • Component (C) 0-60%, preferably 20-50%
  • Component (D) 0 50%, preferably 1-120%
  • Component (II) 0 98%, preferably 0 10%
  • Component (K) 0.1 96%, preferably 540%
  • the curable resin composition of the present invention in producing the curable resin composition of the present invention, as a method of mixing each component, a solution mixing method of uniformly dissolving or dispersing each component in a solvent, or stirring by a Henschel mixer or the like is used. ⁇ Blending method for mixing can be used.
  • a solvent used for the solution mixing an aromatic solvent such as benzene, toluene and xylene, and tetrahydrofuran are used alone or in combination of two or more.
  • the curable resin composition of the present invention may be previously formed into a desired shape according to its use.
  • the molding method is not particularly limited. Usually, a casting method in which the resin composition is dissolved in the above-described solvent and molded into a predetermined shape, or a heat melting method in which the resin composition is heated and melted and molded into a predetermined shape is used.
  • a cured product is obtained by curing the curable resin composition of the present invention.
  • the method of curing is arbitrary, and a method using heat, light, an electron beam, or the like can be employed.
  • the temperature is selected within the range of 80 to 300 ° C, more preferably 120 to 250 ° C, though it varies depending on the type of the radical initiator.
  • the time is about 1 minute to 10 hours, more preferably 1 minute to 5 hours.
  • the curable resin composition of the present invention can be used by being bonded to a metal foil (including a metal plate; the same applies hereinafter), similarly to the cured composite material described later.
  • the curable composite material of the curable resin composition of the present invention and the cured product thereof will be described.
  • the curable composite material using the curable resin composition of the present invention has an increased mechanical strength. Add substrates to increase dimensional stability.
  • Examples of such a base material include various glass cloths such as roving cloth, cloth, chopped mat, and surfing mat, asbestos cloth, metal fiber cloth, other synthetic or natural inorganic fiber cloths, wholly aromatic polyamide fibers, Woven or non-woven fabric obtained from liquid crystal fibers such as aromatic polyester fiber and polybenzol fiber, woven or non-woven fabric obtained from synthetic fiber such as polybutyl alcohol fiber, polyester fiber and acrylic fiber, cotton cloth, linen cloth, Cloths such as natural fiber cloth such as felt, carbon fiber cloth, kraft paper, cotton paper, natural cellulosic cloth such as mixed paper-glass paper, papers, etc. are used alone or in combination of two or more. Used.
  • the proportion occupied by the base material in the curable composite material is preferably 5 to 90 wt%, more preferably 1080 wt%, and still more preferably 20 to 70 wt%. If the amount of the base material is less than 5% by weight, the dimensional stability and strength of the composite material after curing are insufficient, and if the amount of the base material is more than 90% by weight, the dielectric properties of the composite material are inferior, which is not preferable.
  • a coupling agent can be used for the purpose of improving the adhesion at the interface between the resin and the substrate.
  • the coupling agent general ones such as a silane coupling agent, a titanate coupling agent, an aluminum-based coupling agent, and a dinoreco-oleminate coupling agent can be used.
  • the curable resin composition of the present invention and, if necessary, other components are mixed with the aforementioned aromatic or ketone-based solvent or a mixture thereof.
  • a method of uniformly dissolving or dispersing in a solvent, impregnating the substrate, and then drying is used.
  • the impregnation is performed by dipping (diving), coating, or the like.
  • the impregnation can be repeated several times as necessary.In this case, the impregnation can be repeated using a plurality of solutions having different compositions and concentrations to finally adjust the desired resin composition and resin amount. It is possible.
  • the curable composite material of the present invention is cured by a method such as heating to obtain a cured composite material.
  • the manufacturing method is not particularly limited.For example, a plurality of curable composite materials are stacked, and the respective layers are adhered to each other under heat and pressure, and simultaneously heat-cured to obtain a cured composite material having a desired thickness. .
  • the hardened It is also possible to obtain a cured composite material having a new layer configuration by combining a cured composite material and a curable composite material.
  • Lamination molding and curing are usually performed simultaneously using a hot press or the like, but both may be performed independently. That is, it is possible to harden the uncured or semi-cured composite material obtained by pre-lamination molding by heat treatment or another method.
  • Molding and curing are performed at a temperature of 80 to 300 ° C, a pressure of 0.1 1000 kg m 2 , a time of 1 minute to 10 hours, and more preferably a temperature of 150 to 250 ° C and a pressure of 1 to 10 hours. 500 kg m 2 , time: 1 minute to 5 hours.
  • the laminate of the present invention is composed of the cured composite material layer of the present invention and a metal foil layer.
  • the metal foil used here include a copper foil and an aluminum foil. Its thickness is not particularly limited, but is in the range of 3200 x m, more preferably 3 105 x m.
  • the curable resin composition of the present invention and the curable composite material obtained from the base material described above, and a metal foil having a layer structure suitable for the purpose are used. And heat-curing at the same time as bonding the layers under heat and pressure.
  • the cured composite material and the metal foil are laminated in any layer configuration.
  • the metal foil can be used as both a surface layer and an intermediate layer.
  • lamination and curing can be repeated a plurality of times to form a multilayer.
  • Adhesives include epoxy-based, acryl-based, phenol-based, and cyanoacrylate-based adhesives.
  • the adhesive is not particularly limited to these.
  • the above-mentioned lamination molding and curing can be performed under the same conditions as in the production of the cured composite material of the present invention.
  • the film of the present invention is obtained by molding the curable resin composition of the present invention into a film.
  • the thickness is not particularly limited, but is in the range of 0.5200 zm, more preferably 5105 zm.
  • the method for producing the film of the present invention is not particularly limited.
  • the curable resin composition and, if necessary, other components are uniformly dissolved in an aromatic or ketone-based solvent or a mixed solvent thereof. Or disperse and apply to resin film such as PET film. And then drying.
  • the application can be repeated several times as necessary.In this case, the application can be repeated using a plurality of solutions having different compositions and concentrations to finally adjust the desired resin composition and resin amount. It is possible.
  • the metal foil with resin of the present invention is composed of the curable resin composition of the present invention and a metal foil.
  • the metal foil used here include a copper foil and an aluminum foil. Its thickness is not particularly limited, but is in the range of 0.5 to 200 zm, more preferably 5 to 105 ⁇ m.
  • the method for producing the resin-attached metal foil of the present invention is not particularly limited.
  • a curable resin composition and, if necessary, other components may be mixed with an aromatic or ketone-based solvent or the like. Can be uniformly dissolved or dispersed in the mixed solvent, applied to a metal foil, and then dried. The application can be repeated multiple times as necessary.At this time, the application is repeated using multiple solutions with different compositions and concentrations to finally adjust the desired resin composition and resin amount. It is also possible.
  • the molecular weight and molecular weight distribution of the soluble polyfunctional vinyl aromatic copolymer were measured using GPC (HLC-8120GPC, manufactured by Tosoh I), solvent: tetrahydrofuran (THF), flow rate: 1. Oml
  • the molecular weight of the copolymer was measured using a calibration curve of monodispersed polystyrene as a polystyrene equivalent molecular weight.
  • the resonance line of tetrachloroethane-d was used as an internal standard.
  • the Tg of the cured product film obtained by hot press molding was measured using a dynamic viscoelasticity measuring device at a heating rate of 2 ° CZmin, and was determined from the peak of the loss modulus.
  • the tensile strength and the elongation were measured using a tensile tester. The elongation was measured from a tensile test chart.
  • a 20 mm wide and 100 mm long test piece was cut out from the laminate, and a 10 mm wide parallel cut was made on the copper foil surface.Continuously at a speed of 50 mm / min.
  • the copper foil was peeled off, and the stress at that time was measured with a tensile tester, and the minimum value of the stress was shown in accordance with JIS C 6481).
  • the measurement was performed at a frequency of 100 MHz to 1 GHz using an impedance analyzer.
  • An uncured film of the curable resin composition is laminated on the blackened copper-clad laminate, and the temperature is set to 110 ° C, the press pressure is set to 0, and the vacuum pressure is set to 0 by IMPa using a vacuum laminator. And evaluated according to the state of adhesion between the blackened copper foil and the film. The evaluation was “ ⁇ ” when the adhesion between the blackened copper foil and the film was good, and “X” when the adhesion was such that the blackened copper foil and the film could be easily peeled off. .
  • is 1.54
  • d represents a plane interval of the layered silicate
  • represents a diffraction angle
  • the flammability was evaluated by performing a flammability test in accordance with the vertical combustion test method of the American UL Standard Subject 94 (UL94).
  • the surface properties of the molded product were observed using a stereoscopic microscope, and evaluated according to the following three levels according to the smoothness of the surface.
  • the Mw of the obtained copolymer A was 7670, Mn was 3680, and Mw / Mn was 2.1.
  • the copolymer one 1 structure units of 51 mol 0/0 from di Bulle benzene, had a structural unit derived from E chill vinylbenzene containing 49 mol%. It was also found that copolymer A had an indane structure. The indane structure was present at 7.5 mol% based on the structural units of all monomers. Furthermore, the mole fraction of the structural unit represented by the general formula (al) in the total amount of the structural units represented by the general formulas (al) and (a2) was 0.99.
  • Copolymer A was soluble in tonolen, xylene, THF, dichloroethane, dichloromethane, and chlorophorone, and no gel formation was observed.
  • the cast finolem of the copolymer A was a clear finolem without clouding.
  • copolymer B contained 52 mono% of structural units derived from divinylbenzene and 48 mol% of structural units derived from ethylvinylbenzene. It was also apparent that copolymer B had an indane structure. The indane structure was present at 7.5 mol% based on the structural units of all monomers. Further, the molar fraction of the structural unit represented by the general formula (al) in the total amount of the structural units represented by the general formulas (al) and (a2) was 0.99. As a result of TMA measurement, Tg was 287 ° C and softening temperature was 300 ° C or more. As a result of TGA measurement, the pyrolysis temperature was 413 ° C and the carbonization yield was 26%.
  • Copolymer B was soluble in toluene, xylene, THF, dichloroethane, dichloromethane and chlorophorone, and no gel formation was observed.
  • the cast finolem of the copolymer B was a clear finolem without clouding.
  • PPE Polyphenylene ether having an intrinsic viscosity of 0.45 (Mitsubishi Gas Chemical Co., Ltd.)
  • P-1 2, 5 - dimethyl _ 2, 5_ bis (t-Buchirupaokishi) hexane (manufactured by NOF Corp., trade name: Kisa to par 25B)
  • T-1 hydrogenated styrene butadiene block copolymer (manufactured by Asahi Chemical Industry Co., Ltd., trade name: Tuftec HI-041)
  • T-2 hydrogenated styrene butadiene block copolymer (manufactured by Kraton Polymer Japan Co., Ltd. Product name: KRATON G1652)
  • T-1 3 Hydrogenated styrene isoprene block copolymer (Craton Polymer Japan K.K., trade name: KRATON G1726)
  • T-1 Styrene butadiene block copolymer (Asahi Kasei Kogyo Co., Ltd., trade name: Tufprene 315P)
  • T-6 Hydrogenated styrene-butadiene block copolymer (trade name: KRATON GRP6935, manufactured by Clayton Polymer Japan)
  • T-7 Hydrogenated styrene isoprene block copolymer (Craton Polymer Japan, product name: KRATON G1730)
  • E-1 Epoxy resin represented by the following formula (manufactured by Nippon Kayaku Co., Ltd., trade name: EOCN-1020)
  • E-2 Epoxy resin represented by the following formula (manufactured by Toto Kasei Co., Ltd., trade name: ZX-1627)
  • E-3 Epoxy resin represented by the following formula (manufactured by Toto Kasei Co., Ltd., trade name: YD-128)
  • E-4 Epoxy resin represented by the following formula (manufactured by Toto Kasei Co., Ltd., trade name: YD-8170)
  • E-5 Epoxy resin represented by the following formula (manufactured by Toto Kasei Co., Ltd., trade name: ZX-1658)
  • E-6 Triallyl isocyanurate (manufactured by Toagosei Co., Ltd., trade name: Aronix M-315)
  • E-7 Liquid bisphenol A type epoxy resin (Epico 828, manufactured by Japan Epoxy Resin Co., Ltd.)
  • Spherical silica average particle size: 0.5 x m (trade name: Admafine SO-C2, manufactured by Admatechs Co., Ltd.)
  • Calcium carbonate calcium carbonate with an average particle size of 50 ⁇ m
  • LS-1 Synthetic hectorite organically treated with trioctylmethylammonium salt (Cup Chemical Co., Ltd., Lucentite STN)
  • LS-2 Swellable fluorinated myric strength treated with distearyl dimethyl quaternary ammonium salt (Somasif MAE-100 manufactured by Corp Chemical)
  • LS-3 Natural montmorillonite treated with distearyldimethyl quaternary ammonium salt _1 (New S-Ben D, Toyshun Yoko Co., Ltd.)
  • F-3 Polydibromophenylene oxide (Daiichi F. Arnole, Pyrogard SR-460B)
  • F_4 Otatab mouth motrimethylphenylindane (Altex Mart Cytex 8010)
  • F-5 Brominated epoxy compound (BROC manufactured by Nippon Kayaku)
  • Table 1 shows the copolymer AB obtained by the above synthesis example, and PPE, OPE-2St-Broad 3, reaction initiator P-1, thermoplastic resin T-11, and thermosetting resin E-7. The amount and the solvent were mixed with toluene, and after stirring, the reaction initiator P-1 was added to prepare a thermosetting resin composition solution.
  • thermosetting resin composition solution was cast on a table on which a polyethylene terephthalate resin (PET) sheet was stuck to obtain a film.
  • PET polyethylene terephthalate resin
  • the obtained film had a thickness of about 5 CT60 ⁇ , was free from stickiness, and was excellent in film-forming properties.
  • the film was dried and dried in a vacuum oven at 80 ° C for 10 minutes, and then thermally cured at 180 ° C for 1 hour in a vacuum press molding machine to obtain a cured film of about 50 ⁇ ⁇ .
  • Copolymer B (wt3 ⁇ 4) 18.5
  • OPE-2 St-1 (wt3 ⁇ 4) 36.5 56.5
  • thermosetting resin composition solution The copolymer A, PPE, reaction initiator P-1, thermoplastic resin T-1 and thermosetting resin E-6 obtained by the above synthesis examples were blended with the amounts shown in Table 2 and toluene as a solvent. After stirring, the reaction initiator P-1 was added to prepare a thermosetting resin composition solution.
  • thermosetting resin composition solution was cast on a table on which a polyethylene terephthalate resin (PET) sheet was stuck to obtain a film.
  • PET polyethylene terephthalate resin
  • the obtained film had a thickness of about 50 to 60 m, was free from stickiness, and was excellent in film formability.
  • This film was dried in a air oven at 80 ° C for 10 minutes, and thermally cured at 180 ° C for 1 hour in a vacuum press molding machine to obtain a cured film of about 50 / m.
  • Copolymer A (wt3 ⁇ 4) 18.5
  • thermosetting resin composition A solution of a thermosetting resin composition was prepared in the same manner as in Example 1 except that thermoplastic resin T-2—T3, thermosetting resin ⁇ -11, ⁇ -6, spherical silica S and ⁇ were used. Was prepared, and a film was obtained, and various evaluations were made. The results are shown in Table 3-5.
  • Copolymer B (wt3 ⁇ 4) 18.5 18.5 18.5 18.5 18.5
  • a plurality of the above-mentioned curable composite materials are laminated as necessary so that the thickness after molding becomes approximately 0.6mm-1.0mm, and a copper foil having a thickness of 35 ⁇ m is laminated on both surfaces thereof. It was placed and molded and cured by a press molding machine to obtain a laminate.
  • the curing conditions in each example were such that the temperature was raised by 3 ° C.Z and held at 180 ° C. for 90 minutes. The pressure was 30 kg m 2 .
  • Trichlorethylene resistance The laminate from which the copper foil was removed was cut into 25 mm squares, boiled in trichloroethylene for 5 minutes, and visually observed for changes in appearance (based on CFIS C6481).
  • Solder heat resistance The laminate from which the copper foil was removed was cut into 25 mm squares, floated in a solder bath at 260 ° C for 120 seconds, and visually observed for changes in appearance (based on CJIS C6481).
  • Experiment No. 16 The solution of Experiment No. 16 was applied on an electrolytic copper foil of 18 ⁇ , air-dried for 10 minutes, and then dried in an air oven at 80 ° C for 10 minutes.
  • the resin thickness on the copper foil was 50 / m.
  • the resin-coated copper foil and the core material of Example 3 were superposed and cured by heating and pressing at 180 ° C. for 90 minutes at a pressure of 30 kg m 2 . When the through holes were observed, no through holes not filled with resin were confirmed.
  • the copolymer B obtained by the above synthesis example a synthetic hectorite (Lucentite STN, manufactured by Corp Chemical Co., Ltd.), which has been treated with trioctylmethylammonium salt as a layered silicate LS-1, and a thermoplastic resin T 1.
  • a synthetic hectorite (Lucentite STN, manufactured by Corp Chemical Co., Ltd.)
  • trioctylmethylammonium salt as a layered silicate LS-1
  • thermoplastic resin T 1 thermoplastic resin
  • Liquid bisphenol A type epoxy resin (Epicoat 828, manufactured by Japan Epoxy Resin Co., Ltd.) E-7 as a thermosetting resin
  • PPE as another thermoplastic resin
  • thermosetting resin composition solution was cast on a PET sheet to form a film of about 15 / m.
  • the obtained film was excellent in film-forming properties without stickiness or the like.
  • This film was dried and dried in a air oven at 80 ° C for 10 minutes, and then a PET sheet was laminated on the cast surface and cured in an air oven at 180 ° C to obtain a cured product film.
  • the average interlayer distance of the layered silicate was obtained from the diffraction of the laminated surface of the layered silicate in the 2 mm-thick plate-shaped product using an X-ray diffraction measuring device (RINT1100, manufactured by Rigaku Corporation). 2 2 of the diffraction peak obtained is measured, and the (00 1) interplanar spacing d of the layered silicate is calculated by the black diffraction equation of the following equation (16). did.
  • is 1.54, and ⁇ represents a diffraction angle.
  • a layered silicate having a thickness of 100 / m which is dispersed as a laminate of five or less layers, is observed at a magnification of 100,000 with a transmission electron microscope, and can be observed in a fixed area.
  • the total number X of layered silicates and the number Y of layered silicates dispersed in 5 or less layers are measured, and the layered silicate dispersed in a layered structure of 5 or less is calculated by the following equation (17).
  • the salt ratio P (%) was calculated.
  • the cured product film was also measured for tensile strength, elongation, dielectric constant, and dielectric loss tangent. Table 6 shows the results.
  • Copper foil peel strength (kgf / cm) 0.95 0.91 0.87 0.81
  • V Softening temperature
  • thermosetting resin composition was evaluated in the same manner as in Example: L, except that a film of about 15 ⁇ m was prepared by casting the resin composition solution on a PET sheet. Table 7 shows the results.
  • Copper foil peel strength (kgf / cm) 0.91 0.67 0.41
  • distearyl dimethyl quaternary ammonium salt is organically treated and swellable fluorinated copper (Somasif MAE-100, manufactured by Corp Chemical), and as a layered silicate LS-3, distearyl Using a natural montmorillonite-1 (New S-Bend D, manufactured by Toyshun Yoko Co., Ltd.) organically treated with dimethyl quaternary ammonium salt, a solution of a thermosetting resin composition was applied to a polyethylene terephthalate (PET) sheet.
  • PET polyethylene terephthalate
  • thermosetting resin composition was evaluated in the same manner as in Example 5 except that a product film was obtained. The results are shown in Table 8
  • Copolymer B (wt%) 17.6 17.6
  • the curing conditions in each example were to raise the temperature at 3 ° C./min and hold at 180 ° C. for 90 minutes.
  • the pressure was 30 kg m 2 .
  • thermosetting resin composition A cured film obtained from the thermosetting resin composition was evaluated in the same manner as in Example 6, except that the composition was as shown in Table 9. Table 9 shows the results.
  • thermosetting resin composition A cured film obtained from the thermosetting resin composition was evaluated in the same manner as in Example 6, except that the composition was as shown in Table 10. Table 10 shows the results.
  • Copolymer B (wt3 ⁇ 4) 17.6 17.6 17.6 17.6
  • copolymer A PPE OPE_2St_l, thermoplastic resin T-1, halogen-based flame retardant F_l, halogen-based flame retardant F-5, and layered silicate LS-1, the amount shown in Table 11 and toluene as the solvent were used. After mixing and stirring, the reaction initiator P-1 and the curing catalyst C-11 were added to prepare a flame-retardant resin composition solution.
  • the flame-retardant resin composition solution was cast on a table on which a polyethylene terephthalate resin (PET) sheet was adhered to obtain a film.
  • PET polyethylene terephthalate resin
  • the obtained film had a thickness of about 50 to 60 m, was free from stickiness, and was excellent in film-forming properties.
  • This film was dried in a air oven at 80 ° C for 10 minutes, and then thermally cured in a vacuum press molding machine at 180 ° C for 1 hour to obtain a cured film of about 50 zm.
  • the resulting flame-retardant resin composition solution is cast on a PET sheet to form a film of about 15 ⁇ m, and the PET sheet is laminated on the cast surface and cured in an air oven at 180 ° C. Thus, a cured product film was obtained.
  • a cured film was obtained in the same manner as in Example 10, except that the amount of the flame retardant added was changed and the thermosetting resin E-7 was added.
  • thermosetting resin E-1 was added.
  • Table 11 shows the composition and evaluation results.
  • Example 1 0 1 1 1 2 1 3 Copolymer A (wt%) 10.0 9.0 9.00 9.0
  • OPE-2 St-1 (wt3 ⁇ 4) 27.0 25.5 25.5 25.5
  • Copolymer A PPE, OPE-2St-1, thermoplastic resin T_l, halogen-based flame retardant F_l, halogen-based flame retardant F-5, and layered silicate H-1 and calcium carbonate with an average particle diameter of 50 ⁇ m
  • the flame retardant resin composition solution prepared by blending the amount shown in Table 12 with toluene as the solvent, stirring, and then mixing the reaction initiator P-1 and the curing catalyst C-1 into a PET sheet. Evaluation was performed in the same manner as in Example 10 except that a film of about 15 ⁇ m was prepared by casting above. Table 12 shows the results.
  • Copolymer A PPE, OPE_2St_l, thermoplastic resin T-1, brominated polystyrene with syndiotactic structure as halogen flame retardant F_6 (bromine content: 51%, syndiotacticity: 95% or more, number average molecular weight : 670,000, Mw / Mn: 2.75), Hexeb mouth mocyclododecane (Firemaster CD-75P manufactured by Great Lakes Co., Ltd.) as halogen-based flame retardant F-17, and layered silicate LS-1 and average particles
  • F_6 brominated polystyrene with syndiotactic structure as halogen flame retardant F_6 (bromine content: 51%, syndiotacticity: 95% or more, number average molecular weight : 670,000, Mw / Mn: 2.75), Hexeb mouth mocyclododecane (Firemaster CD-75P manufactured by Great Lakes Co., Ltd.
  • layered silicate H-2 swelling fluorinated myocardium _1 (Somasif MAE-100, manufactured by Coop Chemical Co., Ltd.) that has been treated with distearyl dimethyl quaternary ammonium salt
  • layered silicate H-3 Use of natural montmorillonite 1-1 (New S-Bend D, manufactured by Toyshun Yoko Co., Ltd.) organically treated with stearyl dimethyl quaternary ammonium salt, thermosetting resin composition on polyethylene terephthalate resin (PET) sheet
  • PET polyethylene terephthalate resin
  • Copolymer B thermoplastic resin T-6, thermoplastic resin ⁇ -7, thermoplastic resin ⁇ -5, thermosetting resin ⁇ -3, thermosetting resin ⁇ -5, thermosetting resin ⁇ -5, The evaluation was performed in the same manner as in Example 10 except that the halogen-based flame retardant F-3, the halogen-based flame retardant F-4, and the inorganic flame retardant M-1 were used. Table 15 shows the results.
  • Copolymer B (wt3 ⁇ 4) 10.0 7.0 8.0 10.0
  • a glass cloth (E glass, basis weight 71 g / m 2 ) was immersed in the resin composition solution obtained in Example 11 to perform impregnation, and dried in an air oven at 60 ° C. for 30 minutes.
  • the resin content (RC) of the obtained prepreg was 67%.
  • the curing conditions in each example were as follows: the temperature was raised at 3 ° C./min and the temperature was maintained at 180 ° C. for 60 minutes. The pressure was set to 30 kg m 2 .
  • Copolymer A (wt3 ⁇ 4) 8.0 0 8.0 0 8.0
  • the curable resin composition of the present invention exhibits excellent chemical resistance, dielectric properties, low water absorption, heat resistance, flame retardancy, and mechanical properties after curing, and the curable resin composition containing a layered silicate is Even thin moldings show good curing properties, heat resistance, dielectric properties, moldability, and mechanical properties.
  • Flume-retardant curable resin compositions containing layered silicates and flame retardants include antimony trioxide. Even when a thin molded product or cured product does not contain the antimony compound, it exhibits high flame retardancy, good appearance, moldability, curing properties, dielectric properties, heat resistance, and heat hydrolysis resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

 硬化後に優れた耐薬品性、誘電特性、低吸水性、耐熱性、難燃性、機械特性を示し、誘電材料、絶縁材料、耐熱材料、構造材料等に用いることができる硬化性樹脂組成物に関する。  この硬化性樹脂組成物は、(A)成分:数平均分子量が700~4,000の両末端にビニル基を有するポリフェニレンエーテルオリゴマーと、(B)成分:ジビニル芳香族化合物(a)及びエチルビニル芳香族化合物(b)からなる単量体由来の構造単位を有し、ジビニル芳香族化合物(a)に由来する繰り返し単位を20モル%以上含有する溶剤可溶性の多官能ビニル芳香族共重合体とからなり、(A)成分と(B)成分の配合量の比が20~98:2~80wt%である。この硬化性樹脂組成物には、更に層状珪酸塩、ハロゲン系難燃剤等を配合することができる。

Description

明 細 書
硬化性樹脂組成物
技術分野
[0001] 本発明は、硬化性樹脂組成物、これから形成されたフィルム、該樹脂組成物と基材 からなる硬化性複合材料、その硬化体、硬化体と金属箔からなる積層体及び樹脂付 き銅箔に関する。
背景技術
[0002] 近年、通信用、民生用、産業用等の電子機器の分野における実装方法の小型化、 高密度化への指向は著しいものがあり、それに伴って材料の面でもより優れた耐熱 性、寸法安定性、電気特性が要求されつつある。例えばプリント配線基板としては、 従来からフエノール樹脂やエポキシ樹脂などの熱硬化性樹脂を材料とする銅張り積 層板が用いられてきた。これらは各種の性能をバランスよく有するものの、電気特性、 特に高周波領域での誘電特性が悪いという欠点を持っている.この問題を解決する 新しレ、材料としてポリフエ二レンエーテルが近年注目をあび銅張積層板等への応用 が試みられている。
[0003] ポリフエ二レンエーテルは機械的特性と電気的特性に優れたエンジニアリングプラ スチックであり、耐熱性も比較的高い。し力、しながらプリント基板材料として利用しょう とした場合、極めて高いハンダ耐熱性が要求されるため、ポリフエ二レンエーテル本 来の耐熱性では決して十分とは言えなレ、。すなわち、ポリフエ二レンエーテルは 200 °C以上の高温に曝されると変形を起こし、機械的強度の著しい低下や、樹脂表面に 回路用として形成された銅箔の剥離を引き起こす。またポリフエ二レンエーテルは、 酸、アルカリ、熱水に対しては強い抵抗性を有するものの芳香族炭化水素化合物や ハロゲン置換炭化水素化合物に対する抵抗性が極めて弱ぐこれらの溶媒に溶解す る。
[0004] ポリフエ二レンエーテルの耐熱性と耐薬品性を改善する方法の一つとして、ポリフエ 二レンエーテルの鎖中に架橋性の官能基を導入し更に硬化させて硬化ポリフエニレ ンエーテルとして利用する方法が提案されているが、今のところ満足すべき解決法は 得られていない。
[0005] 具体例を挙げると、米国特許第 3281393号及び同 3422062号では、 2—ァリル一 6—メ チルフエノールと 2, 6—ジメチルフエノールの共重合によってァリル基を含むポリフエ二 レンエーテルを製造し、これを硬化させることによって硬化ポリフヱニレンエーテルを 得ている。し力 ながらこのァリル基を含むポリフエ二レンエーテルは、溶融温度が硬 化温度よりも高いため、真空ラミネートを始めとする熱成形を行うことは不可能である 。力、かる成形性の改良方法として後者では、多量の可塑剤の併用が試みられている が、これはポリフエ二レンエーテルの優れた電気特性 (低誘電率、低誘電正接)を損う だけでなぐ硬化後の耐熱性、耐薬品性の低下にもつながっていた。
[0006] 一方、米国特許第 4634742号では、 2,6—ジメチルフヱノールの重合体を用い、メチ ル基をビュル基に変換する力 あるいはフエニル基の 3,5位にビュル基を導入するか して硬化性のポリフヱニレンエーテルとし、これを熱硬化させている。この場合、ビニ ル基は屈曲性の炭素鎖やエーテル結合を介せず直接ポリフエ二レンエーテルの芳 香環に結合することになるため、硬化後は可撓性に不足し、極めて脆い材料となって 実用に耐えなレ、ものであった。
[0007] 本発明に関連する先行文献として次の文献がある。
特許文献 1 :特開平 6 - 179734号公報
特許文献 2:特開平 2003 - 261743号公報
特許文献 3:特開平 2003 - 292570号公報
特許文献 4 :特開平 2000— 128908号公報
[0008] ポリフエ二レンエーテルを利用するもう一つ方法は、ポリフエ二レンエーテル樹脂に 硬化性のポリマーやモノマーを配合して用いる方法である。硬化性のポリマーやモノ マーと組み合わせることによってポリフエ二レンエーテルの耐薬品性を改善し、かつ ポリフヱニレンエーテルの優れた誘電特性を生力、した材料を得ることができる。硬化 性のポリマーやモノマーとしては、エポキシ樹脂、 1 , 2—ポリブタジエン、多官能性マ レイミド、多官能性シアン酸エステル、多官能性アタリロイルイ匕合物、トリアリルイソシ ァヌレートなどがある。
[0009] そして、特開平 6—179734号公報は、(a)ポリフエ二レンエーテルと不飽和カルボ ン酸などとの反応生成物、(b)ジァリルフタレート、ジビニルベンゼン、多官能性アタリ ロイル化合物、多官能性メタクリロイル化合物、多官能性マレイミド、多官能性シアン 酸エステル、多官能性イソシァネート、不飽和ポリエステルなど(C)熱可塑性樹脂及 び (d)基材からなる硬化性複合材料が開示されてレ、る。 (b)成分としてはジビュルべ ンゼン又はそのプレボリマーが使用され得ることが開示されているが、その実施例に 於いて、開示されているのは(a)成分として、ポリフエ二レンエーテルと不飽和カルボ ン酸又は不飽和カルボン酸無水物との反応生成物、(b)成分としてジビニルベンゼ ンが使用されているのみである。そして、この方法で製造された硬化性組成物は(a) 成分と(b)成分との間の相溶性が低いために、この組成物から得られた硬化物は耐 熱性、外観、耐薬品性及び機械的特性が十分でないという欠点を有している他、加 ェ条件の範囲が狭い、製品の機械的特性にバラツキを生じやすいという工業的実施 における問題点を有している。
[0010] また、特開平 2003-261743号公報及び特開平 2003-292570号公報には、末 端にシァネート基やエポキシ基を有する反応性ポリフエ二レンエーテルオリゴマーが 記載されているが、ビエル基を有するものについて教えるものはなレ、。また、これらの 特許文献には両末端にビュル基を含有する反応性ポリフエ二レンエーテルオリゴマ 一と可溶性多官能ビュル芳香族共重合体の相乗効果によって、優れた成形性と良 好な相溶性を発現し、高性能な硬化性樹脂組成物を与えることは想像することもでき なかった。更に、特開平 2000— 128908号公報には、多官能ビュル化合物、多官能 連鎖移動剤とスチレン系単量体からスチレン系重合体を得る方法が記載されている 力 これに記載されているのは多官能ビュル化合物を 2000ppm以下の低濃度で添 加を行うものであり。専ら熱可塑性樹脂としての応用のみに適したものであった。従つ て、力、かる文献に開示された技術からは、可溶性多官能ビニル芳香族共重合体が得 られることも、熱硬化性樹脂としての応用も全く想像することもできず、更に熱硬化性 樹脂と混合して使用することを教えるものはない。
[0011] 従って、両末端にビュル基を含有する反応性ポリフエ二レンエーテルオリゴマー及 び可溶性多官能ビニル芳香族共重合体からなる硬化性樹脂組成物が高度の流動 性に基づく良好な成形性と分子量、分子量分布と共重合組成の制御に起因する良 好な相溶性を示し、従来技術の種々の問題点を解決し、ノ、ィテク分野で使用される 材料が得られることは想像だにし得なかつた。
発明の開示
発明が解決しょうとする課題
[0012] 本発明は、硬化後において優れた耐薬品性、誘電特性、耐熱性を示し、電子産業 、宇宙'航空機産業等の分野において誘電材料、絶縁材料、耐熱材料に用いること ができる樹脂組成物、硬化物又はこれを含む材料を提供することを目的とする。他の 目的は、これらに加えて難燃性に優れる樹脂組成物、硬化物又はこれを含む材料を 提供することにある。
課題を解決するための手段
[0013] 本発明は、(A)成分:数平均分子量 Mnが 700 4, 000の両末端にビュル基を有 する式(1)
[化 1]
Figure imgf000005_0001
(ここで、 -(0- X_0) _は式(2)で表され、 、 R2、 R'、 R。は、同一又は異なってもよい ハロゲン原子又は炭素数 6以下のアルキル基又はフエ二ル基を示し、 R3
Figure imgf000005_0002
R6 は、同一又は異なってもよぐ水素原子、ハロゲン原子又は炭素数 6以下のアルキル 基又はフエ二ル基を示す。 Aは、単結合、炭素数 20以下の直鎖状、分岐状又は環状 の炭化水素基である。 - (Y-0) -は、式(3)で表される 1種類以上の構造を示す。 R9、 R1Qは、同一又は異なってもよいハロゲン原子又は炭素数 6以下のアルキル基又はフ ェニル基を示す。 Ru、 R12は、同一又は異なってもよぐ水素原子、ハロゲン原子又は 炭素数 6以下のアルキル基又はフヱニル基を示す。 Zは、炭素数 1以上の有機基であ り、酸素原子を含むこともある。 Tはビュル基である。 a及び bは、少なくともいずれか一 方が 0でない 0— 20の整数を示す。 i及び jは、それぞれ独立に 0又は 1の整数を示す 。)で表されるポリフエ二レンエーテルオリゴマーと、
(B)成分:ジビニル芳香族化合物(a)及びェチルビニル芳香族化合物 (b)からなる 単量体由来の構造単位を有する多官能ビニル芳香族共重合体であって、ジビニノレ 芳香族化合物(a)に由来する繰り返し単位を 20モル%以上含有し、かつ、下記式 (a 1)及び (a2)
[化 2]
Figure imgf000006_0001
(式中、 R"は炭素数 6— 30の芳香族炭化水素基を示す。 )
[化 3]
Figure imgf000006_0002
(式中、 R14は炭素数 6— 30の芳香族炭化水素基を示す。)で表されるジビュル芳香 族化合物(a)由来のビュル基を含有する構造単位のモル分率が、(al) /[ (al) + ( a2) ]≥0. 5を満足し、かつ多官能ビニル芳香族共重合体のゲル浸透クロナトグラフィ 一(GPC)で測定されるポリスチレン換算の数平均分子量(Mn)が 600— 30, 000で あり、重量平均分子量 (Mw)と数平均分子量 (Mn)の比(Mw/Mn)が 20. 0以下 である溶剤可溶性の多官能ビュル芳香族共重合体とからなる硬化性樹脂組成物で あり、(A)成分及び (B)成分の合計に対する (A)成分の配合量が 20— 98wt%、(B) 成分の配合量が 2— 80wt%であることを特徴とする硬化性樹脂組成物である。
[0014] ここで、 (B)成分としては、ジビニル芳香族化合物(a)及びェチルビニル芳香族化 合物 (b)からなる単量体由来の構造単位を有する多官能ビニル芳香族共重合体の 主鎖骨格中に下記一般式 (4)
[化 4]
Figure imgf000007_0001
(但し、 Qは飽和若しくは不飽和の脂肪族炭化水素基又は芳香族炭化水素基又は ベンゼン環に縮合した芳香族環若しくは置換芳香族環を示し、 nは 0— 4の整数であ る。)で表されるインダン構造を有することが好ましい。更に、 (B)成分がジビュル芳 香族化合物(a)及びェチルビニル芳香族化合物 (b)からなる単量体由来の構造単 位を有する多官能ビュル芳香族共重合体中に、ェチルビニル芳香族化合物 (b)以 外のモノビニル芳香族化合物(c)に由来する構造単位を含有する可溶性多官能ビ ニル芳香族共重合体であることも好ましい。
[0015] また、本発明は、(A)成分及び (B)成分の他に、(C)成分としての熱可塑性樹脂を 含む硬化性樹脂組成物であって、(A)成分、(B)成分及び (C)成分の合計に対する (C)成分の配合量が 2— 60wt%である前記の硬化性樹脂組成物である。ここで、 (C )成分の熱可塑性樹脂が、ガラス転移温度が 20°C以下の重合体セグメントを有する ブロック共重合体及びポリフヱニレンエーテルからなる群から選ばれる 1種類以上の 熱可塑性樹脂であることが好ましレ、。
更に、本発明は、(A)成分、(B)成分及び (C)成分の他に、(D)成分としての熱硬 化性樹脂を含む硬化性樹脂組成物であって、 (A)成分、(B)成分、(C)成分及び( D)成分の合計に対する(D)成分の配合量が 2— 40wt%である前記の硬化性樹脂 組成物である。ここで、(D)成分の熱硬化性樹脂が熱硬化性ポリフエ二レンエーテル 、両末端に (A)成分とは異なる官能基を有するポリフエ二レンエーテルオリゴマー及 び多官能性エポキシィヒ合物からなる群から選ばれる 1種類以上の熱硬化性樹脂であ ることが好ましい。
[0016] また、本発明は、(A)成分、 (B)成分、(C)成分及び (D)成分の他に、(E)成分とし ての充填剤を含む硬化性樹脂組成物であって、(A)成分、(B)成分、(C)成分、 (D )成分及び (E)成分の合計に対する(E)成分の配合量が 2— 90wt%である前記の硬 化性樹脂組成物である。
また、本発明は、(A)成分、 (B)成分、(C)成分、 (D)成分及び (E)成分の他に、 Q )成分としての層状珪酸塩を含む硬化性樹脂組成物であって、 )成分の配合量が 0 . 1一 98wt%であることを特徴とする硬化性樹脂組成物である。
更に、本発明は (A)成分、(B)成分、(C)成分、(D)成分及び (E)成分の他に、 Q )成分としての層状珪酸塩と (Κ)成分としてのハロゲン系難燃剤を含む硬化性樹脂 組成物であって、 J)成分の配合量が 0. 1— 95. 9wt%、(K)成分の配合量が 0. 1 一 95· 9wt%であることを特徴とする難燃性の硬化性樹脂組成物である。
更に、本発明は、前記の硬化性樹脂組成物をフィルム状に成形してなるフィルムで ある。また、本発明は、前記の硬化性樹脂組成物から形成された膜を金属箔の片面 に有する樹脂付き金属箔でもある。
[0017] また、本発明は、前記の硬化性樹脂組成物と基材力 なる硬化性複合材料であつ て、基材を 5— 90重量%の割合で含有することを特徴とする硬化性複合材料又はこ れを硬化して得られた硬化複合材料である。更に、本発明は、前記の硬化複合材料 の層と金属箔層とを有することを特徴とする積層体である。
[0018] 以下、本発明を更に説明する。
本発明で、(A)成分として用いられる本発明に特徴的に用いられる両末端にビニ ル基を有するポリフエ二レンエーテルオリゴマー体 (以下、 2官能〇PE-2Vnと記す)に ついて説明する。上述の 2官能〇PE-2Vnは、 2価のフヱノールと 1価のフヱノールとを 酸化共重合して得られる式(8)で表されるポリフエ二レンエーテルオリゴマー体 (以下 、 2官能 OPEと記す)を、クロロメチルスチレン、グリシジルメタタリレート、グリシジルァク ト等と反応させることにより得られる。
Figure imgf000009_0001
式(8)で表される 2官能 OPEは、 -(0-X-0)-が式(2)で表され、 -(Y-0)-は式(3)で 表される 1種類以上の構造を示す。式中、 R1, R2、 R7、 R8、 R9、 R1Qは、同一又は異なつ てもよく、ハロゲン原子又は炭素数 6以下のアルキル基又はフエニル基である。
Figure imgf000009_0002
R4 、 R"、 R12は、同一又は異なってもよぐ水素原子、ハロゲン原子又は炭素数 6 以下のアルキル基又はフエニル基である。 Aは、炭素数 20以下の直鎖状あるいは、 分岐状あるいは、環状の炭化水素である。 a、 bは少なくともいずれか一方が 0でない 、 0— 20の整数を示す。好ましくは、 - (0- X-0)-が R1 R2、 R7、 R8カ チル基であり、更 に R3、 R4、 R5、 R6、が水素原子であり、 -(Y-0)-が式(9)あるいは式(10)、又は式(9) と式(10)がランダムに配列した構造を有することが望ましい。
[化 6]
Figure imgf000009_0003
式(8)で表される 2官能 0PEは、式(11)で表される 2価のフエノールと、式(12)で表 される 1価のフエノールの単独又は混合物を、トルエン一アルコールあるいはケトン溶 媒中で酸化重合することで効率的に製造することができる。 [化 7]
Figure imgf000010_0001
ここで、式(11)及び(12)の A及び R1— R12は上記と同じ意味を有する。
式(11)で表される 2価のフエノールは、 R1 R2、 R7、 R8が水素原子でないことが必須 の 2価のフエノールであり、 4,4,-メチレンビス (2,6 -ジメチルフエノール)、 4,4し (1-メチル ェチリデン)ビス (2, 6-ジメチルフエノール)、 4,4'-メチレンビス (2, 3, 6-トリメチルフエノー ル)、 4,4しシクロへキシリデンビス (2,6-ジメチルフエノール)、 4,4'_ (フエニルメチレン)ビ ス (2,3, 6-トリメチルフエノール)、 4,4'-[1,4-フエ二レンビス (1-メチルェチリデン)]ビス (2,6-ジメチルフエノール)、 4,4'-メチレンビス [2,6-ビス (1, 1-ジメチルェチル)フエノー ル]、 4,4'-シクロペンチリデンビス (2, 6-ジメチルフエノール)、 4,4し(2-フリルメチレン)ビ ス (2,6-ジメチルフエノール)、 4,4'-(1,4-フェニレンビスメチレン)ビス(2,6-ジメチルフェ ノール)、 4,4'-(3,3,5-トリメチルシクロへキシデン)ビス (2,6-ジメチルフエノール)、 4,4'-[4-(1-メチルェチル)シクロへキシリデン]ビス(2,6-ジメチルフェノール)、 4,4'-(4- メチルフエニルエチレン)ビス (2, 3,6-トリメチルフエノール)、 4,4'-(1,4-フエ二レンビスメ チレン)ビス (2,3,6-トリメチルフエノール)、 4-[1-[4-(4-ヒドロキシ -3,5-ジメチルフエニル )-4-メチルシクロへキシル メチルェチル ]_2, 6 -ジメチルフヱノール、 4,4,_(4 -メトキ シフエニルメチレン)ビス (2, 3, 6-トリメチルフエノール)、 4,4,-[4- (1-メチルェチル)フエ二 ルメチレン]ビス (2,3,6_トリメチルフエノール)、 4,4'-(9H-フルオレン - 9_イリデン)ビス (2,6 -ジメチルフエノール)、 4,4'_[1,3-フエ二レンビス (1-メチルェチリデン)]ビス (2,3,6- トリメチルフエノール)、 4,4し(1,2-ェタンジィル)ビス[2,6-ジ-(1, 1-ジメチルェチノレ)フェ ノール]、 5,5し(1-メチルェチリデン)ビス [3_(1, 1 -ジメチルェチル) -1,1_ビフヱニル -2- オール]などが挙げられるが、これらに限定されるものではなレ、。 [0022] 次に、式(12)で表される 1価のフエノールとしては、 2,6位に置換基を有するもの単 独、又はこれと 3位あるいは 3, 5位に置換基を有するものが併用されることが好ましレヽ 。更に好ましくは、単独では 2,6-ジメチルフエノール、 2,3,6-トリメチルフエノールがよ く、併用では 2,6-ジメチルフヱノールと 2, 3,5-トリメチルフエノールがよレ、。
[0023] 酸化の方法については直接酸素ガス、あるいは空気を使用する方法がある。また、 電極酸化の方法もある。いずれの方法でも良ぐ特に限定されない。安全性及び設 備投資が安価であることから空気酸化が好ましい。
[0024] 酸素ガス、あるいは空気を用いて酸ィ匕重合をする場合の触媒としては、 CuCl、
CuBr、 Cu SO、 CuCl、 CuBr、 CuSO、 Cul等の銅塩等の一種又は二種以上が用い られ、上記触媒に加えて、モノ及びジメチルァミン、モノ及びジェチルァミン、モノ及 びジプロピルァミン、モノ-及びジ -n-ブチルァミン、モノ-及びジ -sec -ジプロピルアミ ン、モノ及びジベンジルァミン、モノ及びジシクロへキシルァミン、モノ及びジエタノー ノレアミン、ェチルメチルァミン、メチルプロピルァミン、ブチルジメチルァミン、ァリルェ チルァミン、メチルシクロへキシルァミン、モルホリン、メチル -n-ブチルァミン、ェチル イソプロピルァミン、ベンジルメチルァミン、ォクチルベンジルァミン、ォクチルクロ口べ ンジルァミン、メチル(フエニルェチル)ァミン、ベンジルェチルァミン、 N-n-ブチルジ メチノレアミン、 Ν,Ν'-ジ- tert-ブチルエチレンジァミン、ジ(クロ口フエニルェチル)ァミン 、 1-メチルァミノ- 4-ペンテン、ピリジン、メチルピリジン、 4-ジメチルァミノピリジン、ピ ペリジン等を一種又は二種以上のァミンが併用される。銅塩及びァミンであれば、特 にこれらに限定されるものではない。
[0025] 反応溶媒としては、トルエン、ベンゼン、キシレン等の芳香族炭化水素系溶剤、メチ レンク口ライド、クロロホノレム、四塩化炭素等のハロゲン化炭化水素系溶剤等に加え て、アルコール系溶剤あるいはケトン系溶剤などと併用することができる。アルコール 系溶剤としては、メタノーノレ、エタノール、ブタノール、プロパノール、メチルプロピレン ジグリコーノレ、ジエチレングリコーノレエチノレエーテノレ、ブチノレプロピレングリコーノレ、 プロピルプロピレングリコール等が挙げられ、ケトン系溶剤としては、アセトン、メチル ェチルケトン、ジェチルケトン、メチルブチルケトン、メチルイソブチルケトン等が挙げ られ、その他にはテトラヒドロフラン、ジォキサン等が挙げられる力 これらに限定され るものではない。
[0026] 反応温度については、特には限定されないが、 25— 50°Cが好ましい。酸化重合が 発熱反応のため、 50°C以上では温度制御が困難で分子量制御が困難となる。 25°C 以下では反応速度が極端に遅くなるために、効率的な製造ができなくなる。
[0027] 上述 2官能 OPE_2Vnは、式 (1)で表される。すなわち、 _(0_X_0)-は式(2)で表され 、 -(Y-0)-は式(3)で表される。
[0028] Zは、炭素数 1以上で酸素原子を含んでもよい有機基であることができる。例示する と、 -(-CH -)―、 -(-CH -CH -) -、 -(-CH -Ar_)_などである力 これらに限定されること
2 2 2 2
はない。付加する方法は、式 (8)で示される 2官能 ΟΡΕに直接付加する方法や、誘導 体合成時に炭素鎖の長いハロゲン化物を使用する方法があるが、これらに限定され ることはない。
[0029] 以下に、便宜上、最も単純構造である式 (8)で示される 2官能〇ΡΕからの誘導体に ついて説明する。 2官能 OPE-2Vnを製造するには、上述の式 (8)で表される 2官能 OPEを用いるが、反応液から分離した粉末又は反応液に溶解した形のどちらでも用 レ、ることができる。
[0030] 本発明の硬化性樹脂組成物の (A)成分として使用される 2官能 OPE-2Vnの製造方 法について例示する。上述の式 (8)で表される両末端にフエノール性水酸基を有す る化合物をクロロメチルスチレン、グリシジルメタタリレート及びグリシジルアタリレート 等と反応させて合成することができる。 2官能 OPE-2Vnを合成する際に、ビニル基を 導入する反応性化合物としては、本発明の熱硬化性樹脂組成物の硬化物の誘電特 性及び耐熱性の観点から、クロロメチルスチレン及び炭素数 1一 30の置換基を 1一 7 個有するクロロメチルスチレン誘導体が好ましい。経済性及び原料入手の容易さの 観点からクロロメチルスチレンが最も好ましい。この反応温度は、 _10°Cと 110°Cの間 で行うことが好ましい。
[0031] 上述の 2官能 OPE-2Vnの数平均分子量 Mnは 700— 4000の範囲とする。 Mnが 40 00を超えると樹脂組成物の溶融粘度が増大し、成形性が低下するば力 でなぐ (B )成分などの他の樹脂成分との相溶性が低下し、フィル外観の悪化、物性の低下な どをもたらし好ましくない。一方、 Mnが 700未満であると機械的強度や耐熱性が低下 する。上記の 2官能 OPE-2Vnは、溶融粘度が低く流動性が良好で、多官能ビニル芳 香族共重合体との相溶性に優れ、また両末端にビニル基を有するため樹脂組成物 の強度、耐熱性が良好であり、かつ硬化物の熱時強度がより優れる。その結果、半田 等高温に曝された際に、クラックの発生を防ぐことができる。
[0032] 本発明の硬化性樹脂組成物の(B)成分として使用される可溶性多官能ビニル芳香 族共重合体はジビニル芳香族化合物(a)及びェチルビニル芳香族化合物 (b)からな る単量体由来の構造単位を有する多官能ビニル芳香族共重合体中に、ジビニル芳 香族化合物(a)に由来する繰り返し単位を 20モル%以上含有し、かつ、上記式 (al) 及び (a2)で表されるジビュル芳香族化合物(a)由来のビュル基を含有する構造単位 のモル分率が、 (al) /[ (al) + (a2) ]≥0. 5を満足し、かつ多官能ビニル芳香族共重 合体のゲル浸透クロナトグラフィー(GPC)で測定されるポリスチレン換算の Mn及び Mw/Mnが、 600≤Mn≤30, 000及び MwZMn≤ 20. 0を満足する。
[0033] 本発明の硬化性樹脂組成物は、上記 (A)成分及び (B)成分を必須成分とし、 (A) 成分及び (B)成分の合計に対する (A)成分の配合量が 30— 98wt%、 (B)成分の配 合量が 2— 70wt%である。
[0034] 本発明の硬化性樹脂組成物の(B)成分として使用される可溶性多官能ビュル芳香 族共重合体はその分子構造に由来して、良好な誘電特性をもっているだけではなく 、両末端にビニル基を有するポリフエ二レンエーテルオリゴマーの反応性が低レヽとレヽ つた成形性に関する問題点を解決し、耐熱性を更に高める成分として用いられる。従 つて、本発明の硬化性樹脂組成物において、(B)成分がジビュル芳香族化合物(a) 及びェチルビニル芳香族化合物(b)からなる単量体由来の構造単位を有する多官 能ビニル芳香族共重合体の主鎖骨格中に上記一般式 (4)で表されるインダン構造 を有することは、更に耐熱性を高める観点から有利である。
[0035] また、 (B)成分としては、ジビニル芳香族化合物(a)及びェチルビニル芳香族化合 物 (b)からなる単量体由来の構造単位を有する多官能ビニル芳香族共重合体中に、 ェチルビニル芳香族化合物 (b)以外のモノビニル芳香族化合物(c)に由来する構造 単位を含有する可溶性多官能ビュル芳香族共重合体であることも、ポリフエ二レンェ 一テル系樹脂との相溶性の改良といった観点から好ましい。 この共重合体は、ジビュル芳香族化合物(a)に由来する繰り返し単位として、上記 式 (al)、(a2)及び (4)で表される構造単位を含む。上記式 (al)、(a2)及び (4)で表 される構造単位中の R13、 R14及び Q及び nは上記の意味を有するが、各構造単位が 共重合体中に存在する割合は、使用するジビニル芳香族化合物(a)及びェチルビ ニル芳香族化合物 (b)の種類及び反応触媒、反応温度等の反応条件によって定ま る。
[0036] 使用されるジビュル芳香族化合物(a)としては、たとえば、 m—ジビュルベンゼン、 p —ジビュルベンゼン、 1 ,2—ジイソプロぺニルベンゼン、 1 ,3—ジイソプロぺニルベンゼ ン、 1 ,4—ジイソプロぺニルベンゼン、 1 ,3—ジビュルナフタレン、 1,8—ジビュルナフタ レン、 1,4—ジビニルナフタレン、 1 , 5—ジビニルナフタレン、 2, 3—ジビュルナフタレン、 2, 7_ジビニルナフタレン、 2,6—ジビニルナフタレン、 4, 4 ' _ジビニルビフエニル、 4, 3,—ジビニルビフエニル、 4, 2 ' _ジビニルビフエニル、 3, 2 '—ジビニルビフエニル、 3 , 3 ' _ジビニルビフエニル、 2, 2 '—ジビ二ルビフエニル、 2, 4—ジビ二ルビフエニル、 1, 2—ジビニノレー 3,4—ジメチルベンゼン、 1 ,3—ジビニノレー 4, 5,8_トリブチルナフタレン、 2,2,一ジビニルー 4—ェチルー 4,_プロピルビフエ二ル等を用いることができる力 これ らに制限されるものではなレ、。これらは単独で又は 2種以上を組合せて用いることが できる。
[0037] ジビュル芳香族化合物(a)の好適な具体例としては、コスト及び得られたポリマー の耐熱性の点でジビュルベンゼン(m—及び p—異性体の両方)、ジビニルビフエ二ノレ (各異性体を含む)及びジビュルナフタレン (各異性体を含む)が好適である。より好 ましくは、ジビュルベンゼン(m—及び p—異性体の両方)、ジビニルビフエニル(各異 性体を含む)である。特に、ジビュルベンゼン (m—及び p—異性体の両方)が最も好ま しく用いられる。特に高度の耐熱性が要求される分野ではジビニルビフエニル (各異 性体を含む)及びジビュルナフタレン (各異性体を含む)が好適に使用される。
[0038] 多官能ビニル芳香族共重合体に於いて、(A)成分である両末端にビニル基を有す るポリフエ二レンオリゴマーとの相溶性の調整、溶剤可溶性及び加工性を改善する構 造単位を与える(b)成分として使用されるェチルビュル芳香族化合物としては、 0 -ェ チノレビ二ノレベンゼン、 m-ェチノレビ二ノレベンゼン、 p-ェチノレビ二ノレベンゼン、 2-ビニ ノレ 2 '—ェチルビフエニル、 2-ビニルー 3 '—ェチルビフエニル、 2-ビニノレー 4 ' _ェチル ビフエニル、 3-ビニルー 2,—ェチルビフエニル、 3-ビニノレー 3 '—ェチルビフエニル、 3- ビニノレー 4 '—ェチルビフエニル、 4-ビニルー 2,一ェチルビフエニル、 4-ビニノレー 3 '—ェ チルビフエニル、 4-ビニノレ— 4'—ェチルビフエニル、 1—ビニノレ— 2—ェチルナフタレン 、 1—ビニノレ一 3—ェチノレナフタレン、 1—ビニノレ一 4—ェチノレナフタレン、 1—ビニノレ _5_ ェチノレナフタレン、 1—ビニノレ一 6—ェチノレナフタレン、 1—ビニノレ一 7—ェチノレナフタレン 、 1—ビニノレ一 8—ェチノレナフタレン、 2—ビニノレ一 1—ェチノレナフタレン、 2—ビニノレ _3_ ェチルナフタレン、 2—ビニノレ一 4—ェチルナフタレン、 2—ビニノレ一 5—ェチルナフタレン 、 2—ビニノレ一 6—ェチノレナフタレン、 2—ビニノレ一 7—ェチノレナフタレン、 2—ビニノレ _8_ ェチルナフタレン等を用いることができる力 これらに制限されるものではなレ、。これら は単独で又は 2種以上を組合せて用いることができる。 (b)成分から誘導される構造 単位が多官能ビニル芳香族共重合体中に導入されることによって、共重合体のゲル 化を防ぎ、溶媒への溶解性を高めることができるば力りではなぐ本発明の硬化性榭 脂組成物の硬化物の引張り破断伸びといった機械的特性を改善することができる。 好適な具体例としては、コスト、ゲル化防止及び得られたポリマーの耐熱性の点でェ チルビュルベンゼン(m 及び p 異性体の両方)及びェチルビ二ルビフエニル(各異 性体を含む)等を挙げることができる。
[0039] 本発明の硬化性樹脂組成物の硬化物の耐熱性を高める目的、あるいは他の樹脂 との相溶性の改善といった目的のために添加されるェチルビニル芳香族化合物 (b) 以外の他のモノビュル芳香族化合物(c)を添加することができる。他のモノビュル芳 香族化合物(c)としては、スチレン、ェチルビニル芳香族化合物以外の核アルキル 置換スチレン、ェチルビニル芳香族化合物以外の核アルキル置換芳香族ビニルイ匕 合物、 ひ-アルキル置換スチレン、 ひ -アルキル置換芳香族ビュル化合物、 β -アル キル置換スチレン、アルコキシ置換スチレン、インデン誘導体及びァセナフチレン誘 導体等を挙げることができる。
[0040] 核アルキル置換スチレンとしては例えば、メチルスチレン、ェチルスチレン、ブチル スチレン等のアルキル置換スチレンを用いることができる。
[0041] また、アルコキシ置換スチレンとしては、メトキシスチレン、エトキシスチレン、ブトキ シスチレン等のアルコキシスチレンを用いることができる。その他、フエノキシスチレン 等も用いること力 Sできる。
[0042] 芳香族ビュル化合物としては、例えば、 2-ビニルビフエニル、 3-ビニルビフエニル、 4-ビニルビフエニル、 1—ビュルナフタレン、 2—ビュルナフタレン等を用いることがで きる。
[0043] 核アルキル置換芳香族ビュル化合物としては、例えば、ビュル一プロピルビフヱ二 ノレ、ビュル一プロピルナフタレン等を用いることができる。
[0044] また、 ひ-アルキル置換スチレンとしては、例えば、 ひ -メチルスチレン、 ひ -ェチルス チレン等を用いることができる。
[0045] インデン誘導体としては、インデンの他に、メチルインデン、ェチルインデン、プロピ ルインデン、ブチルインデン等のアルキル置換インデン等を用いることができる。また
、メトキシインデン、エトキシインデン、プトキシインデン、ブトキシインデン等のアルキ コシインデン等を用いることができる。
[0046] ァセナフチレン誘導体としては、例えば、ァセナフチレンの他に;メチルァセナフチ レン、ェチルァセナフチレン等のアルキルァセナフチレン類;クロロアセナフチレン、 ブロモアセナフチレン等のハロゲン化ァセナフチレン類;フエ二ルァセナフチレン類 等が挙げられる。
[0047] これらのモノビニル芳香族化合物 (b)は、上記に例示されたものに制限されるもの ではぐまた、これらは単独で又は 2種以上を組合せて用いることができる。
[0048] 可溶性多官能ビュル芳香族共重合体では、これらの(c)成分のモノビニル芳香族 化合物はこれらに制限されるものではなレ、。これらは単独で又は 2種以上を組合せて 用いることができる。これらの(c)成分のモノビュル芳香族化合物の中で、重合時に 共重合体の骨格中に於ける、インダン構造の生成量が大きいという点で、スチレン、 ひ-アルキル置換スチレン、 ひ-アルキル置換芳香族ビュル化合物が好ましい。最も 好適な具体例としては、コスト及び得られたポリマーの耐熱性の点でスチレン、 ひ-メ チルスチレン及び 4-イソプロぺニルビフエニルを挙げることができる。
[0049] 可溶性多官能ビニル芳香族共重合体では、(a)成分としてのジビニル芳香族化合 物は、(a)成分、(b)成分及び(c)成分からなる単量体の合計に対して 20 99. 5モ ル%使用される。好ましくは 30— 99モル0 /0以上である。更に好ましくは 40— 95モル %以上である。特に好ましくは 50— 85モル%以上である。ジビュル芳香族化合物(a )の含有量が 20モル%未満であると、生成した可溶性多官能ビュル芳香族共重合 体を硬化させた場合に耐熱性が低下する傾向があり好ましくない。
[0050] また、可溶性多官能ビニル芳香族共重合体では、(b)成分としてのェチルビニル芳 香族化合物は(a)成分、(b)成分及び (c)成分力もなる単量体の合計に対して 0. 5 一 80モル0 /0使用される。好ましくは 1一 70モル0 /0である。更に好ましくは 5 60モル %である。特に好ましくは 15— 50モル%である。ェチルビュル芳香族化合物(b)の 含有量が 80モル%以上であると、生成した可溶性多官能ビュル芳香族共重合体を 硬化させた場合に、耐熱性が低下する傾向があり好ましくなレ、。
可溶性多官能ビニル芳香族共重合体では、(c)成分であるモノビニル芳香族化合 物は(a)成分、(b)成分及び(c)成分からなる単量体の合計に対して 40モル%未満 使用される。好ましくは 30モル%未満である。更に好ましくは 25モル%未満である。 特に好ましくは 20モル%未満である。ェチルビニル芳香族化合物 (b)の含有量が 40 モル%以上であると、生成した可溶性多官能ビュル芳香族共重合体を硬化させた場 合に、耐熱性が低下する傾向があり好ましくない。
[0051] 可溶性多官能ビュル芳香族共重合体中では上記式 (al)及び (a2)で表されるジビ ニル芳香族化合物由来のビュル基を含有する構造単位のモル分率 (al) /[ (al) + ( a2) ]が≥0. 5を満足することが必要である。好ましくはモル分率が 0. 7以上であり、 特に好ましくは 0. 9以上である。 0. 5未満であると生成した共重合体の硬化物の耐 熱性が低下したり、硬化に長時間を要するので好ましくない。
[0052] また、可溶性多官能ビニル芳香族共重合体ではその主鎖骨格中に上記一般式 (4 )で表されるインダン構造を有することが必要である。一般式 (4)において、 Qはビニ ル基等の不飽和脂肪族炭化水素基、フエニル基等の芳香族炭化水素基、これらの 炭化水素基置換体等があり、これらは 0— 4個置換することができる。また、 Qはイン ダン構造のベンゼン環と縮合環を形成してナフタレン環等を形成する 2価の炭化水 素基であることもでき、この 2価の炭化水素基は置換基を有してもよい。
[0053] 一般式 (4)で表されるインダン構造は可溶性多官能ビニル芳香族共重合体の耐熱 性と溶剤への可溶性を更に高める構造単位であり、多官能ビニル芳香族共重合体を 製造する際、特定の溶媒、触媒、温度等の製造条件下で製造を行うことにより、成長 ポリマー鎖末端の活性点がジビュル芳香族化合物及びモノビュル芳香族化合物由 来の構造単位の芳香族環を攻撃することにより生成するものである。インダン構造は 全ての単量体の構造単位に対して 0. 01モル%以上存在することが好ましく。より好 ましくは 0. 1モル%以上であり、更に好ましくは 1モル%以上である。特に好ましくは 3 モル%以上である。最も好ましくは 5モル%以上である。上限は 20モル%以下である ことが好ましぐより好ましくは 15モル%以下である。多官能ビュル芳香族共重合体 の主鎖骨格中に上記インダン構造が存在しなレ、と、耐熱性と溶剤への可溶性が不足 するので好ましくない。
[0054] 可溶性多官能ビニル芳香族共重合体の数平均分子量 Mn (ゲル浸透クロマトグラフ ィーを用いて得られる標準ポリスチレン換算による。)は、 600 30, 000が好ましレヽ 。より好ましく ίま 600— 10, 000である。最も好ましく ίま 700— 5, 000である。 Μη力 6 00未満であると可溶性多官能ビュル芳香族共重合体の粘度が低すぎる為、厚膜の 形成が困難になるなど、加工性が低下するので好ましくなレ、。また、 Μηが 30, 000 以上であると、ゲルが生成したり、他の樹脂成分との相溶性が低下しやすくなり、フィ ルム等に成形した場合、外観の低下や物性の低下を招くので好ましくない。
[0055] また、可溶性多官能ビュル芳香族共重合体は分子量分布 (Mw/Mn)の値が 20 以下であることがよい。好ましくは、 15以下である。より好ましくは 10以下である。最も 好ましくは 5以下である。 Mw/Mnが 20を越えると、本発明の硬化性樹脂組成物の 粘度が上昇することに伴う加工特性の悪化、他の樹脂成分との相溶性の低下に伴う 外観や物性の低下とレ、つた問題点を生ずるので好ましくなレ、。
[0056] (B)成分として使用される可溶性多官能ビニル芳香族共重合体の金属イオン含有 量は各金属イオンについて 500ppm以下であることが好ましく。 lOOppm以下である ことがより好ましい。 20ppm以下であることがさらに好ましぐ lppm以下が最も好まし レ、。
[0057] 可溶性多官能ビニル芳香族共重合体は、上記(a)—(c)成分の他に、本発明の効 果を損なわない範囲でトリビュル芳香族化合物やその他のジビュル化合物及びモノ ビュル化合物を使用して共重合したものであることができる。
トリビエル芳香族化合物の具体例としてはたとえば、 1,2,4-トリビニルベンゼン、 1 , 3,5—トリビュルベンゼン、 1,2, 4—トリイソプロぺニルベンゼン、 1,3,5—トリイソプロぺニ ルベンゼン、 1,3,5_トリビュルナフタレン、 3,5, —トリビュルビフヱ二ル等を挙げる こと力 Sできる。また、その他のジビュル化合物としては、ブタジエン、イソプレンなどの ジェン化合物を挙げることができる。その他のモノビュル化合物としてはアルキルビ ニルエーテル、芳香族ビュルエーテル、イソブテン、ジイソブチレン等を挙げることが できる。これらは単独で又は 2種以上を組合せて用いることができる。これらのその他 の単量体はジビニル芳香族化合物(a)、 (b)成分及び(c)成分のモノビニル芳香族 化合物を含む単量体の総量に対して 30モル%未満の範囲内で使用される。
[0058] この可溶性多官能ビニル芳香族共重合体は、例えば、ジビニル芳香族化合物(a) 、ェチルビニル芳香族化合物 (b)とェチルビニル芳香族化合物 (b)以外のモノビニ ル芳香族化合物(c)を含む単量体成分を、誘電率が 2— 15である 1種以上の有機溶 媒中、ルイス酸触媒及び下記一般式(13)で表される開始剤の存在下、 20— 100°C の温度で重合させることによって得ることができる。
[化 8]
Figure imgf000019_0001
(式中、 R15は水素原子又は炭素数 1一 6の 1価の炭化水素基を示し、 Rlbは p価の芳 香族炭化水素基又は脂肪族炭化水素基を示し、 Zはハロゲン原子、炭素数 1一 6の アルコキシル基又はァシルォキシ基を示し、 pは 1一 6の整数を示す。一分子中に、 複数の R15及び Zがある場合、それぞれは同一であって、異なってもよい)
重合反応停止後、共重合体を回収する方法は特に限定されず、例えば、スチーム ストリツビング法、貧溶媒での析出などの通常用いられる方法を用いればよい。
[0059] 本発明の硬化性樹脂組成物とするための、上記の (A)及び (B)成分の配合比は 広範囲に変化させることができるが、 (A)成分及び (B)成分の配合量 ( %)が下記 式を満足する必要がある。
(A)成分配合量 = 20— 98 (wt%)
(B)成分配合量 = 2— 80 (wt%)
好ましくは、 (A)成分配合量が 30 95wt%、(B)成分配合量が 5 70wt%である 。とするのがよい。 (B)成分配合量力 ¾wt%未満では耐薬品性の改善が不十分であ り、 80wt%を越えると機械的特性が低下する。更に、本発明で使用する両末端にビ 二ル基を有するポリフヱニレンエーテルオリゴマーと多官能ビュル芳香族共重合体は 低誘電特性を有する材料であるため、低誘電率の硬化物を形成することができる。
[0060] 本発明の硬化性樹脂組成物は、(A)及び (B)成分の他、(C)成分として一種又は 二種以上の熱可塑性樹脂を配合することができる。 (C)成分を配合する場合の (A) 成分、(B)成分及び (C)成分の合計に対する(C)成分の配合量 (重量比)は 2— 60 wt%、好ましくは 5 50wt%である。 (C)成分配合量が 2wt%未満では機械的特性 が低下し、 60wt%を越えると耐薬品性が低下する。
[0061] (C)成分の熱可塑性樹脂としてはポリエチレン、ポリプロピレン、エチレン-プロピレ ン共重合体等のポリオレフイン類及びその誘導体、ナイロン 4、ナイロン 6、ナイロン 6 · 6などのポリアミド類及びその誘導体、ポリエチレンテレフタレート、ポリブチレンテレフ タレートなどのポリエステル類及びその誘導体、ポリフエ二レンエーテル、変性ポリフ ェニレンエーテル、ポリカーボネート、ポリアセタール、ポリスルフォン、ポリメチルメタ タリレート類、アクリル酸(又はメタクリル酸)エステル共重合体類、ポリスチレン類、ァ タリロニトリルスチレン共重合体類、アクリロニトリルスチレンブタジエン系共重合体等 のポリスチレン類及びその共重合体類、スチレン共役ジェンブロック共重合体等のゴ ム類、水添スチレン共役ジェンブロック共重合体等のゴム類、ポリブタジエン、ポリイソ プレン等のゴム類、ポリホスファーゼン類、ポリエーテルスルホン、ポリエーテルケトン 、ポリエーテノレイミド、ポリフヱニレンサルファイド、ポリアミドイミド、熱可塑性ポリイミド
、あるいはエポキシ基、カルボン酸基、無水マレイン酸基の中から選ばれた少なくとも 一つの官能基が導入されている熱可塑性のブロック共重合等が挙げられる。
[0062] これらの熱可塑性樹脂の内で、また、靱性の効果をあげるために、ガラス転移温度 が 20°C以下の重合体セグメントを有するブロック共重合体を併用することが好ましレ、 。ガラス転移温度が o°c以下の重合体セグメントを有するブロック共重合体を使用す ることがより好ましい。ここであげるガラス転移温度が 20°C以下の重合体セグメントを 有するブロック共重合体とは、スチレン共役ジェンブロック共重合体等のゴム類、若し くは水添スチレン共役ジェンブロック共重合体等のゴム類であることが好ましい。本発 明の硬化性樹脂組成物の耐熱酸化劣化性の観点から水添スチレン共役ジェンプロ ック共重合体等の水添ゴム類であることが最も好ましレ、。水添ブロック共重合体の構 造としては、少なくとも 1個のビュル芳香族化合物を主体とする重合体ブロック Aと少 なくとも 1個の共役ジェン化合物を主体とする重合体ブロック Bとから成るブロック共 重合体を水素添加して得られるものであり、例えば、
A-B
A-B-A
B-A-B-A
[A-B-] -Si
4
[B-A-B-] -Si
4
等の構造を有するビニル芳香族化合物一共役ジェン化合物ブロック共重合体の水素 添加されたものである。この水添ブロック共重合体は、ビニル芳香族化合物を 5— 85 wt%、好ましくは 10— 70wt%含むものである。より好ましくは 15— 40wt%含むもので ある。
[0063] 更にブロック構造について言及すると、ビュル芳香族化合物を主体とする重合体ブ ロック Aが、ビュル芳香族化合物のみからなる重合体ブロック又はビニル芳香族化合 物を 50重量%を越え、好ましくは 70重量%以上含有するビュル芳香族化合物と水 素添加された共役ジェン化合物との共重合ブロックの構造を有しており、そして更に 、水素添加された共役ジェン化合物を主体とする重合体ブロック Bが、水素添加され た共役ジェンィ匕合物のみからなる重合体ブロック、又は水素添加された共役ジェン 化合物を 50重量%を越え、好ましくは 70重量%以上含有する水素添加された共役 ジェン化合物とビニル芳香族化合物との共重合体ブロックの構造を有するものである
[0064] また、これらのビニル芳香族化合物を主体とする重合体ブロック A、水素添加された 共役ジェン化合物を主体とする重合体ブロック Bは、それぞれの重合体ブロックにお ける分子鎖中の水素添加された共役ジェン化合物又はビニル芳香族化合物の分布 力 ランダム、テーパード(分子鎖に沿ってモノマー成分が増加又は減少するもの)、 一部ブロック状又はこれらの任意の組み合わせで成っていてもよぐ該ビュル芳香族 化合物を主体とする重合体ブロック及び該水素添加された共役ジェン化合物を主体 とする重合体ブロックがそれぞれ 2個以上ある場合は、各重合体ブロックはそれぞれ が同一構造であってもよぐ異なる構造であってもよい。
[0065] 水添ブロック共重合体を構成するビニル芳香族化合物としては、例えばスチレン、 ひーメチルスチレン、 ρ—メチルスチレン、ビュルトノレェン、 p—第 3ブチルスチレン等の うちから 1種又は 2種以上が選択でき、中でもスチレンが好ましい。また水素添加され た共役ジェン化合物を構成する水添前の共役ジェン化合物としては、例えば、ブタ ジェン、イソプレン、 1 , 3_ペンタジェン、 1, 3—ジメチノレー 1, 3—ブタジエン等のうち 力 1種又は 2種以上が選ばれ、中でもブタジエン、イソプレン及びこれらの組み合わ せが好ましレ、。本発明の (A)成分及び (B)成分との相溶性の観点からブタジエンで あることが最も好ましい。
[0066] また、上記の構造を有する本発明に供する水添ブロック共重合の数平均分子量 M nは特に限定されなレヽカ、 5, 000— 1 , 000, 000、好ましくは 10, 000— 500, 000 、更に好ましく ίま 30, 000— 300, 000の範囲である。更に水添ブロック共重合体の 分子構造は、直鎖状、分岐状、放射状あるいはこれらの任意の組み合わせのいずれ であってもよい。
[0067] 本発明の硬化性樹脂組成物は、(D)成分として、熱硬化性樹脂を配合することが できる。 (D)成分を配合する場合の (Α)成分、(Β)成分、 (C)成分及び (D)成分の合 計に対する(D)成分の配合量は 2 40wt%、好ましくは 5— 85wt%である。 (D)成分配 合量が 2wt%未満であると充填剤を添加したことによる接着性ゃ耐薬品性の向上の 程度不十分であり、 40wt%を越える場合は、組成物の機械的物性が著しく低下する
[0068] 本発明の硬化性樹脂組成物には、その効果を損なわない範囲で、(B)成分以外の その他の架橋成分を添加することができる。架橋成分としては、多官能性エポキシ化 合物、ジァリルフタレート、多官能性アタリロイル化合物、多官能性メタクリロイル化合 物、多官能性マレイミド、多官能性シアン酸エステル、多官能性イソシァネート、不飽 和ポリエステルからなる化合物及びこれらのそのプレポリマーが挙げられる。これらは
1種又は 2種以上が用いられる。
[0069] 多官能性エポキシィ匕合物としては、分子内にエポキシ基を 2個以上有するエポキシ 樹脂であればよぐ例えばビスフエノール A型エポキシ樹脂、ビスフエノール F型ェポ キシ樹脂、ビスフヱノール S型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式ェ ポキシ樹脂、ビフヱニル型エポキシ樹脂、及びこれらの樹脂をハロゲンィ匕したェポキ シ樹脂、トリフエニルメタン型エポキシ樹脂、テトラフエニルダリシジルエーテルエタン( 4官能性エポキシ樹脂)、各種のノボラック型エポキシ樹脂等が挙げられ、 2種類以上 を併用してもよい。なお、本発明の効果を損なわない範囲内で分子内にエポキシ基 を 1個有するエポキシ樹脂を併用することもできる。
[0070] 更に、多官能性エポキシ化合物を使用する場合、本発明の硬化性樹脂組成物に 含有する多官能性エポキシ化合物の硬化剤としては、例えばジシアンジアミド、脂肪 族ポリアミド等のアミド系硬化剤や、ジアミノジフエニルメタン、メタフエ二レンジァミン、 アンモニア、トリェチルァミン、ジェチルァミン等のアミン系硬化剤や、ビスフエノーノレ A、ビスフエノール F、フエノールノボラック樹脂、クレゾ一ルノボラック樹脂、 ρ-キシレ ン-ノポラック樹脂等のフエノール系硬化剤や、酸無水物類等が挙げられ、これらを本 発明の効果を損なわない範囲内で併用してもよい。
[0071] なお、多官能性エポキシ化合物を使用する場合には、硬化反応を促進するために 、本発明の効果を損なわない範囲内で硬化促進剤の添加を行うこともできる。含有す ることができる硬化促進剤としては、例えば、 2-メチルイミダゾール、 2_ェチル -4-メ チルイミダゾール、 2-フエ二ルイミダゾール等のイミダゾール類、 1, 8 -ジァザ-ビシク 口 [5. 4. 0]ゥンデセン _7、トリエチレンジァミン、ベンジルジメチルァミン等の三級ァ ミン類、トリブチルホスフィン、トリフエニルホスフィン等の有機ホスフィン類、テトラフエ ニルホスホニゥムテトラフエニルボレート、トリフエニルホスフィンテトラフエニルボレート 等のテトラフヱニルボロン塩等が挙げられ、 2種類以上を併用してもよい。
[0072] 一方、ジァリルフタレートとしては、オルト、メタ、パラのいずれの異性体も(E)成分と して用いることができる。
多官能性 (メタ)アタリロイルイ匕合物としては、次式で表される化合物がある。
[化 9]
Figure imgf000024_0001
(式中、 mは 2— 10の整数であり、 R2°及び R22は水素又はメチル基を示し、 R21は多価 ヒドロキシ基化合物の残基を示す)
[0073] 上式において、多価ヒドロキシ化合物の残基 R21としては、エチレングリコール、プロ ピレンダリコール、ブタンジオールなどで例示されるポリエーテルポリオールの残基; キシレンダリコール、ビスフエノール Aで代表される複数個のベンゼン環が橋絡部を 介して連結された芳香族性ポリオール及びこれらの芳香族ポリオールのアルキレン オキサイド付加物などで例示される芳香族ポリオール残基;フエノールとホルムアル デヒドとを反応させて得られるベンゼン多核体 (通常、 10核体以下のものが好適に用 レ、られる)の残基等がある。
[0074] 多官能 (メタ)アタリロイルイ匕合物の具体的例としては、エチレングリコールジアタリレ ート、プロピレングリコールジアタリレート、 1, 4_ブタンジオールジアタリレート、ポリエ チレングリコールジアタリレート、ポリプロピレングリコールジアタリレート、ビスフエノー ノレ A—ジアタリレート;フヱノール樹脂初期縮合体の多価アタリレート;ビスフヱノーノレ A 系エポキシ樹脂、ノボラック系エポキシ樹脂、脂環式エポキシ樹脂、フタル酸ジグリシ ジルエステルとポリカルボン酸等とアクリル酸とを反応させて得られるエポキシアタリレ ート類等が挙げられる。 更に、へキサヒドロ一 1, 3, 5-トリアタリロイノレ一 s-トリァジン、へキサヒドロ一 1 , 3, 5- トリメタクリロイル -S-トリァジンが挙げられる。
[0075] 多官能性マレイミドとしては、次の式で表されるものがある。
[化 10]
Figure imgf000025_0001
(式中、 nは 2— 10の整数であり、 R 、 R は水素、ハロゲン又は低級アルキル基を表 し、 R25は 2— 10価の芳香族又は脂肪族有機基を示す)
[0076] この多官能性マレイミドは、無水マレイン酸類と分子内にアミノ基を 2 10個有する ポリアミンとを反応させてマレアミド酸とし、っレ、でこのマレアミド酸を脱水環化させるこ とにより製造される。
好適なポリアミンとしては、メタフヱニレンジァミン、パラフヱニレンジァミン、メタキシリ レンジァミン、パラキシリレンジァミン、 4, 4—ジアミノビフエニル、ビス(4—ァミノフエ二 ノレ)メタン、ビス(4—ァミノフエニル)エーテル、ビス(4—ァミノフエニル)スルホン、 2, 2 —ビス(4—ァミノフエニル)プロパン、 s-トリアジン環を持ったメラニン類、ァニリンとホル ムアルデヒドを反応させて得られるポリアミン(通常、ベンゼン核が 10核体以下のもの が好適に用いられる)等が挙げられる。
[0077] 多官能性シアン酸エステルとは、次式で表されるものがある。
[化 11]
Figure imgf000025_0002
(式中、 pは 2— 10の整数であり、 R bは 2— 10価の芳香族有機基を表し、シアン酸ェ ステル基は有機基 R26の芳香環に直接結合している)
[0078] このような多官能シアン酸エステルの例としては、 1, 3—ジシァネートベンゼン、 1 , 4 —ジシァネートベンゼン、 2, 6_ジシァネートナフタレン、 4, 4_ジシァネートビフエ二 ノレ、ビス(4—シァネートフヱニル)メタン、 2, 2_ビス(4—シァネートフヱニル)プロパン 、ビス(4—シァネートフヱニル)エーテル、ビス(4—シァネートフヱニル)チォエーテル 、ビス(4—シァネートフエニル)スルホン、及びフエノール樹脂とハロゲン化シアンとの 反応により得られるベンゼン多核体のポリシァネートイ匕合物等が挙げられる。
[0079] 多官能性イソシァネートとしては、次式で表されるものがある。
[化 12]
Figure imgf000026_0001
(式中、 qは 2— 10の整数であり、 は 2— 10価の芳香族又は脂肪族有機基を示す )
[0080] 力、かる多官能性イソシァネートの例としては、 2, 4_トルエンジイソシァネート、 2, 6 一トルエンジイソシァネート、メタフエ二レンジイソシァネート、パラフエ二レンジイソシァ ネート等が挙げられる。
[0081] これらの多官能性イソシァネートは、種々のブロック剤を用いて多官能性ブロックィ ソシァネートに変換して用いることもできる。ブロック剤の例としては、アルコール類、 フエノール類、ォキシム類、ラタタム、マロン酸エステル、ァセト酢酸エステル、ァセチ ルアセトン、アミド類、イミダゾール類、亜硫酸塩等公知のものが使用できる。
[0082] 不飽和ポリエステルとしては、グリコール類を不飽和多塩基酸及び飽和多塩基酸、 あるいはこれらの無水物、エステル、酸クロライドと反応させることによって得られるも のがあり、一般のものが用いられる。
グリコール類の代表的な例としては、エチレングリコール、プロピレングリコール、ジ エチレングリコール、ジフロピレングリコール、ネオペンチルグリコール、 1, 3_ブタン ジオール、 1 , 4一ブタンジオール、 1 , 6 キサンジオール、水素化ビスフエノーノレ A 、ビスフエノーノレ Aプロピレンォキシド付加物、ジブ口モネオペントノレグリコール等が挙 げられる。
[0083] 不飽和多塩基酸の代表的な例としては、無水マレイン酸、フマル酸、ィタコン酸等 が挙げられる。飽和多塩基酸の代表的な例としては、無水フタル酸、イソフタル酸、 テレフタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレ ンテトラヒドロ無水フタル酸、アジピン酸、セバシン酸、テツト酸、テトラブロモ無水フタ ル酸等が挙げられる。
不飽和ポリエステルの詳細については、例えば滝山榮一郎著、「ポリエステル樹脂 ハンドブック」(日刊工業新聞社、 1988)が参照される。
[0084] 本発明の硬化性樹脂組成物に (D)成分を配合する場合、(D)成分としては、以上 述べた化合物群のうちから 1種のみを、あるいは 2種以上組み合わせて用いることが できる。またこれらの化合物を、後述する公知の触媒、開始剤、硬化剤等の存在下又 は不存在下で熱、光等により予備反応せしめて得られるプレボリマーも本発明の(D) 成分として用いることができる。
これらの本発明の硬化性樹脂組成物で使用される(D)成分の中で、本発明の硬化 性樹脂組成物と金属等の異種材料との接着性の改良効果という観点から、多官能性 エポキシィ匕合物が最も好ましレ、。
[0085] 本発明の硬化性樹脂組成物は、(E)成分として、充填剤を配合することができる。 ( E)成分を配合する場合の (A)成分、(B)成分、 (C)成分、(D)成分及び (E)成分の 合計に対する(E)成分の配合量は 2— 90wt%、好ましくは 5— 85wt°/ ある。 (E)成分 配合量が 2wt%未満であると充填剤を添加したことによる機械物性の向上の程度不 十分であり、 90wt%を越える場合は、組成物の流動性が著しく低下する。
[0086] (E)成分の充填剤としては、カーボンブラック、シリカ、アルミナ、タノレク、雲母、ガラ スビーズ、ガラス中空球等を挙げることができる。充填剤は繊維状であっても粉末状 であってもよい。
[0087] 本発明の樹脂組成物は後述するように加熱等の手段により架橋反応を起こして硬 化するが、その際の反応温度を低くしたり不飽和基の架橋反応を促進する目的でラ ジカル開始剤を含有させて使用してもよい。この目的で用いられるラジカル開始剤の 量は (A)成分と(B)成分の和を基準として 0. 1— 10重量%、好ましくは 0. 1— 8重量
%である。
[0088] ラジカル開始剤の代表的な例を挙げると、ベンゾィルパーオキサイド、クメンハイド口 パーオキサイド、 2, 5_ジメチルへキサン一 2, 5—ジハイド口パーオキサイド、 2, 5—ジ メチル _2, 5—ジ(t_ブチルパーォキシ)へキシン— 3、ジ _t_ブチルパーオキサイド、 t —ブチルクミルパーオキサイド、 a , ひ,—ビス(t_ブチルパーォキシ _m—イソプロピル )ベンゼン、 2, 5_ジメチルー 2, 5—ジ(t_ブチルパーォキシ)へキサン、ジクミルパー オキサイド、ジ一 t_ブチルパーォキシイソフタレート、 t_ブチルパーォキシベンゾエー ト、 2, 2_ビス(t_ブチルパーォキシ)ブタン、 2, 2_ビス(t_ブチルパーォキシ)ォクタ ン、 2, 5—ジメチノレー 2, 5—ジ(ベンゾィルパーォキシ)へキサン、ジ(トリメチルシリル) パーオキサイド、トリメチルシリルトリフエニルシリルパーオキサイド等の過酸化物があ るがこれらに限定されない。また過酸化物ではないが、 2, 3—ジメチルー 2, 3—ジフヱ ニルブタンもラジカル開始剤として使用できる。しかし、本樹脂組成物の硬化に用い られる開始剤はこれらの例に限定されない。
[0089] この他、本発明の硬化性樹脂組成物に(D)成分として用いられる多官能性マレイミ ドの適した硬化剤としてはポリアミン力 S、多官能性シアン酸エステルに適した触媒とし ては鉱酸、ルイス酸、炭酸ナトリウムあるいは塩化リチウム等の塩類、トリブチルホスフ イン等のリン酸エステル類等力 また多官能性イソシァネートに適した触媒、硬化剤と しては、例えば岩田敬治編、「ポリウレタン樹脂ハンドブック」(日刊工業新聞社、 198 7) 1 18— 123頁中に教示されているようなアミン類、有機金属、多価アルコール等が それぞれ挙げられる。
[0090] 上記の触媒、開始剤、硬化剤等は、架橋成分の種類に応じて適宜選択して用いら れる。
[0091] 次に、 ω成分として層状珪酸塩を含む硬化性樹脂組成物について、説明する。こ こで、層状珪酸塩は、前記 (Ε)成分の充填剤の 1種でもあるが、層状珪酸塩を含む硬 化性樹脂組成物にぉレ、ては、 (Ε)成分とは区別して CO成分として計算する。
[0092] 層状珪酸塩を含む本発明の硬化性樹脂組成物は、薄膜化後において優れた硬化 特性、誘電特性、耐熱性、耐熱加水分解性を示し、電子産業、宇宙 *航空機産業等 の先進技術分野において薄肉成形物の誘電材料、絶縁材料、耐熱材料、包装材料 、接着材料などに用いることができる。
[0093] 本発明の層状珪酸塩を含む硬化性樹脂組成物は、前記 (A)成分であるポリフエ二 レンエーテルオリゴマーと(B)成分である溶剤可溶性の多官能ビニル芳香族共重合 体と to成分の層状珪酸塩を含んでなる硬化性樹脂組成物であり、 ω成分の配合量 が 0. 1 98wt%であることを特徴とする。この硬化性樹脂組成物には、(A)成分と( B)成分の他に、前記(C)一(E)成分及びその他の成分を配合することができ、これ らの成分を含む場合の(C)一 (E)成分及びその他の成分の配合割合は前記の割合 とすることが好ましい。
[0094] ここで、上記層状珪酸塩を含む硬化性樹脂組成物が次の 1)一 8)の要件の 1以上を 満足することは、より良好な硬化性樹脂組成物を与える。
1) (B)成分が、ジビニル芳香族化合物(a)及びェチルビニル芳香族化合物 (b)か らなる単量体由来の構造単位を有する多官能ビニル芳香族共重合体の主鎖骨格中 に上記一般式 (4)で表されるインダン構造を有すること。
2) (B)成分がジビニル芳香族化合物(a)及びェチルビニル芳香族化合物(b)から なる単量体由来の構造単位を有する多官能ビニル芳香族共重合体中に、ェチルビ ニル芳香族化合物 (b)以外のモノビニル芳香族化合物 (c)に由来する構造単位を含 有すること。
3) α)成分が、有機溶媒に親和性のある膨潤性層状珪酸塩であること。
4) (Β)成分及び )成分の他に、 (C)成分としての熱可塑性樹脂、(D)成分として の熱硬化性樹脂及び (Ε)成分としての充填剤から選ばれる 1種以上の成分を含み、 (Β) (Ε)成分及び )成分の合計に対し、(C)成分の配合量は 1一 80 。/。、 (D) 成分の配合量は 1一 80wt%、 (E)成分の配合量は 2 90wt%であること。
5) CO成分、(B)成分及び (C)成分の合計に対する(C)成分の配合量が 1一 80wt %であること。
6) (C)成分が、ガラス転移温度が 20°C以下の重合体セグメントを有するブロック共 重合体及びポリフヱニレンエーテルからなる群から選ばれる 1種類以上の熱可塑性 樹脂であること。
[0095] )成分の層状珪酸塩以外の (A)—(D)成分については、前記で説明したと同じも のが使用できるので、以下 ω成分の層状珪酸塩にっレ、て説明する。
[0096] 層状珪酸塩を含む硬化性樹脂組成物で用いる層状珪酸塩とは、層間に交換性金 属カチオンを有する層状の珪酸塩鉱物を意味し、天然物であってもよぐ合成物であ つてもよレ、。上記層状珪酸塩としては特に限定されず、例えば、モンモリロナイト、へ クトライト、サボナイト、パイデライト、スティブンサイト及びノントロナイト等のスメクタイト 系粘土鉱物、膨潤性マイ力、バーミキユライト、ハロイサイト等が挙げられる。中でも、 モンモリロナイト、ヘクトライト、膨潤性マイ力からなる群より選択される少なくとも 1種が 好適に用いられる。これらの層状珪酸塩は、単独で用いられてもよぐ 2種以上が併 用されてもよい。
[0097] 上記層状珪酸塩の結晶形状としては特に限定されないが、平均長さの好ましい下 限は 0. 005 μ m、上限は 3 μ m、厚さの好ましレヽ下限は 0. 001 μ m、上限は 1 μ m、 アスペクト比の好ましい下限は 20、上限は 500であり、平均長さのより好ましい下限 は 0. 01 μ ΐη、上限は 2 /i m、厚さのより好ましい下限は 0. 005 /i m、上限は 0. 5 μ m、アスペクト比のより好ましい下限は 50、上限は 200である。
[0098] 層状珪酸塩は、下記式(3)で定義される形状異方性効果が大きいことが好ましい。
形状異方性効果 (E)の大きい層状珪酸塩を用いることにより、樹脂組成物から得ら れる硬化樹脂は優れた力学的物性を有するものとなる。なお、 S 1は薄片状結晶の積 層面の表面積を示し、 S2は薄片状結晶の積層側面の表面積を示す。
(E) = S 1/S2 (3)
[0099] 上記層状珪酸塩の層間に存在する交換性金属カチオンとは、層状珪酸塩の薄片 状結晶表面に存在するナトリウムやカルシウム等の金属イオンを意味し、これらの金 属イオンは、カチオン性物質とのカチオン交換性を有するため、カチオン性を有する 種々の物質を上記層状珪酸塩の結晶層間に揷入 (インター力レート)することができ る。
[0100] 上記層状珪酸塩のカチオン交換容量としては特に限定されないが、好ましい下限 は 50ミリ等量 Zl00g、上限は 200ミリ等量/ 100gである。 50ミリ等量/ 100g未満 であると、カチオン交換により層状珪酸塩の結晶層間にインター力レートされるカチォ ン性物質の量が少なくなるために、結晶層間が充分に非極性化 (疎水化)されないこ と力 Sある。 200ミリ等量/ 100gを超えると、層状珪酸塩の結晶層間の結合力が強固 になりすぎて、結晶薄片が剥離し難くなることがある。
[0101] 上記層状珪酸塩としては、化学処理されることにより樹脂中への分散性を向上され たものが好ましい。力、かる層状珪酸塩を、以下、有機化層状珪酸塩ともいう。上記化 学処理としては、例えば、以下に示す化学修飾法(1 )一(6)によって実施することが できる。これらの化学修飾法は、単独で用いられてもよぐ 2種以上が併用されてもよ レ、。
[0102] 化学修飾法(1 )は、カチオン性界面活性剤によるカチオン交換法ともいい、具体的 には、層状珪酸塩の層間をカチオン性界面活性剤でカチオン交換し、疎水化してお く方法である。予め層状珪酸塩の層間を疎水化しておくことにより、層状珪酸塩と低 極性樹脂との親和性が高まり、層状珪酸塩を低極性樹脂中により均一に微分散させ ること力 Sできる。
[0103] 上記カチオン性界面活性剤としては特に限定されず、例えば、 4級アンモニゥム塩 、 4級ホスホニゥム塩等が挙げられる。なかでも、層状珪酸塩の結晶層間を充分に疎 水化できることから、炭素数 6以上のアルキルアンモニゥムイオンを含有する、炭素数 6以上のアルキル鎖を有する 4級アンモニゥム塩が好適に用いられる。
[0104] 上記 4級アンモニゥム塩としては特に限定されず、例えば、トリメチルアルキルアン モニゥム塩、トリェチルアルキルアンモニゥム塩、トリブチルアルキルアンモニゥム塩、 トリへキシルアルキルアンモニゥム塩、トリオクチルアルキルアンモニゥム塩、ジメチル ジアルキルアンモニゥム塩、ジブチルジアルキルアンモニゥム塩、メチルベンジルジ アルキルアンモニゥム塩、ジベンジルジアルキルアンモニゥム塩、トリアルキルメチル アンモニゥム塩、トリアルキルェチルアンモニゥム塩、トリアルキルブチルアンモニゥム 塩、芳香環を有する 4級アンモニゥム塩、トリメチルフヱニルアンモニゥム等の芳香族 ァミン由来の 4級アンモニゥム塩、ポリエチレングリコール鎖を 2つ有するジアルキル 4 級アンモニゥム塩、ポリプロピレングリコール鎖を 2つ有するジアルキル 4級アンモニゥ ム塩、ポリエチレングリコール鎖を 1つ有するトリアルキル 4級アンモニゥム塩、ポリプロ ピレングリコール鎖を 1つ有するトリアルキル 4級アンモニゥム塩等が挙げられる。なか でも、ラウリルトリメチルアンモニゥム塩、ステアリルトリメチルアンモニゥム塩、トリオク チルメチルアンモニゥム塩、ジステアリルジメチルアンモニゥム塩、ジ硬化牛脂ジメチ ノレアンモニゥム塩、ジステアリルジベンジルアンモニゥム塩、 N—ポリオキシエチレン一 N—ラウリル一 N, N—ジメチルアンモニゥム塩等が好適である。これらの 4級アンモニゥ ム塩は、単独で用いられてもよぐ 2種以上が併用されてもよい。
[0105] 上記 4級ホスホニゥム塩としては特に限定されず、例えば、ドデシルトリフヱニルホス ホニゥム塩、メチルトリフヱニルホスホニゥム塩、ラウリルトリメチルホスホニゥム塩、ステ ァリルトリメチルホスホニゥム塩、トリオクチルホスホニゥム塩、ジステアリルジメチルホ スホニゥム塩、ジステアリルジベンジルホスホニゥム塩等が挙げられる。これらの 4級ホ スホニゥム塩は、単独で用いられてもよぐ 2種以上が併用されてもよい。
[0106] 化学修飾法(2)は、化学修飾法(1)で化学処理された有機化層状珪酸塩の結晶 表面に存在する水酸基を、水酸基と化学結合し得る官能基又は水酸基との化学的 親和性の大きい官能基を分子末端に 1個以上有する化合物で化学処理する方法で ある。
[0107] 上記水酸基と化学結合し得る官能基又は水酸基との化学的親和性の大きい官能 基としては特に限定されず、例えば、アルコキシ基、グリシジル基、カルボキシノレ基( 二塩基性酸無水物も包含する)、水酸基、イソシァネート基、アルデヒド基等が挙げら れる。上記水酸基と化学結合し得る官能基を有する化合物又は水酸基との化学的 親和性の大きい官能基を有する化合物としては特に限定されず、例えば、上記官能 基を有する、シラン化合物、チタネート化合物、グリシジル化合物、カルボン酸類、ァ ルコール類等が挙げられる。これらの化合物は、単独で用いられてもよぐ 2種以上が 併用されてもよい。
[0108] 上記シランィ匕合物としては特に限定されず、例えば、ビュルトリメトキシシラン、ビニ ノレトリエトキシシラン、ビュルトリス( ーメトキシエトキシ)シラン、チルトリエトキシシラン
トキシシラン、 γ—メタクリロキシプロピルメチルジメトキシシラン等が挙げられる。これら のシラン化合物は、単独で用いられてもよぐ 2種以上が併用されてもよい。
[0109] 化学修飾法(3)は、化学修飾法(1)で化学処理された有機化層状珪酸塩の結晶 表面に存在する水酸基を、水酸基と化学結合し得る官能基又は水酸基と化学的親 和性の大きい官能基と反応性官能基を分子末端に 1個以上有する化合物とで化学 処理する方法である。
[0110] 化学修飾法 (4)は、化学修飾法(1)で化学処理された有機化層状珪酸塩の結晶 表面を、ァニオン性界面活性を有する化合物で化学処理する方法である。
[0111] 上記ァニオン性界面活性を有する化合物としては、イオン相互作用により層状珪酸 塩を化学処理できるものであれば特に限定されず、例えば、ラウリル酸ナトリウム、ス テアリン酸ナトリウム、ォレイン酸ナトリウム、高級アルコール硫酸エステル塩、第 2級 高級アルコール硫酸エステル塩、不飽和アルコール硫酸エステル塩等が挙げられる
。これらの化合物は、単独で用いられてもよぐ 2種以上が併用されてもよい。
[0112] 化学修飾法(5)は、上記ァニオン性界面活性を有する化合物のうち、分子鎖中の ァニオン部位以外に反応性官能基を 1個以上有する化合物で化学処理する方法で ある。
[0113] 化学修飾法(6)は、化学修飾法(1)一(5)のいずれかの方法で化学処理された有 機化層状珪酸塩に、更に、例えば、無水マレイン酸変性ポリフエ二レンエーテル樹脂 のような層状珪酸塩と反応可能な官能基を有する樹脂で化学処理する方法である。
[0114] 層状珪酸塩を含む硬化性樹脂組成物とするための、上記のひ)と (B)成分の配合 比は広範囲に変化させることができる力 J)成分が 2— 99. 9 (wt%)、好ましくは 3— 99. 5wt%、より好ましくは 30— 99. Owt%であり、及び(B)成分が 0· 1— 98 (wt%) 、好ましくは 0. 5— 97wt%、より好ましく 1. 0 70 (wt%)である。 (B)成分配合量が 0. lwt%未満では層状珪酸塩の効果である硬化促進作用が低下し、 98wt%を越え ると機械的物性が低下する。更に、(B)成分の多官能ビニル芳香族共重合体は低誘 電特性を有する材料であるため、低誘電率の硬化物を形成することができる。
[0115] 次に、 )成分として層状珪酸塩を含み、(Κ)成分としてハロゲン系難燃剤を含む 硬化性樹脂組成物について、説明する。
[0116] この硬化性樹脂組成物は、毒性が懸念される三酸化アンチモン等のアンチモンィ匕 合物を実質量以上含有せず、難燃性、高耐熱性、耐熱衝撃性、低誘電性、信頼性 に優れる。また、芳香族系樹脂に特定のハロゲン系難燃剤と特定の層状珪酸塩を配 合することによって、薄物の成形物或いは硬化物においても、高度の難燃性、良好 な外観、成形加工性、硬化特性、誘電特性、耐熱性、耐熱加水分解性を示し、電子 産業、宇宙'航空機産業等の先進技術分野において薄肉成形物の誘電材料、絶縁 材料、耐熱材料、包装材料、接着材料、筐体材料などに用いることができる。
この難燃性硬化性樹脂組成物は、本発明の硬化性樹脂組成物を構成する必須成 分である (A)成分及び (B)成分、そして、所望により添加される(C)成分、(D)成分 及び (E)成分に加えて、
ti)成分:層状珪酸塩、好ましくはモンモリロナイト、膨潤性マイ力、及び、ヘクトライト 力 なる群より選択される少なくとも 1種である層状珪酸塩、
(K)成分:ハロゲン系難燃剤、好ましくはデカブ口モジフヱニルオキサイド、オタタブ口 モジフエニルオキサイド、テトラブロモジフエニルオキサイド、ェタン一 1, 2-ビス(ペン タブロモフエ二ル)、ビス(2, 4, 6—トリブロモフエノキシ)ェタン、エチレンビステトラブ ロモフタルイミド、ポリジブロモフエ二レンオキサイド、テトラブロムビスフエノーノレ一 S、 1 , 1—スルホニル [3, 5—ジブ口モー 4_ (2, 3_ジブロモプロポキシ)]ベンゼン、トリス(2 , 3—ジブロモプロピル一 1)イソシァヌレート、トリス(トリブロモフエニル)シァヌレート、 ァタクチック構造の臭素化ポリスチレン、ァタクチック構造の臭素化スチレンーメチルメ タクリレート系共重合体、ァタクチック構造の臭素化スチレンーメチルメタクリレートーグ リシジルメタタリレート系共重合体、ァタクチック構造の臭素化スチレンーグリシジルメ タクリレート系共重合体、ァタクチック構造の臭素化スチレン一ポリプロピレン系共重 合体、臭素化ポリエチレン、テトラブロムビスフエノール _A、テトラブロムビスフエノー ノレ _A_エポキシオリゴマー、臭素化エポキシ化合物(例えば臭素化ビスフエノール A とェピクロルヒドリンとの反応によって製造されるジエポキシィ匕合物や臭素化フエノー ル類とェピクロルヒドリンとの反応によって得られるエポキシ化合物)、テトラブロムビス フエノーノレ _A_カーボネートオリゴマー、テトラブロムビスフエノーノレ _A_ビス(2—ヒド 口キシジェチルエーテル)、テトラブロムビスフエノールー A—ビス(2, 3—ジブロモプロ ピルエーテル)、ポリ(ペンタブロモベンジルアタリレート)、オタタブ口モトリメチルフエ ニルインダンからなるからなる群から選ばれる一種以上のハロゲン系難燃剤を含み、 J)成分の配合量が 0. 1— 95. 9wt%、(K)成分の配合量が 0. 1— 95. 9wt%であ ることを特徴とする。この難燃性硬化性樹脂組成物には、(A)成分と (B)成分の他に 、前記(C)一(E)成分及びその他の成分を配合することができ、これらの成分を含む 場合の(C)一 (E)成分及びその他の成分の配合割合は前記の割合とすることが好ま しい。
[0118] ここで、上記 )成分と (K)成分を含む難燃性硬化性樹脂組成物は、前述の (Α)— ti)成分によって形成される熱硬化性組成物がより良好な特性を発現するのに必要 な要件の他に、次のの要件の 1以上を満足することにより、より良好な難燃性硬化性 樹脂組成物を与える。
1) (C)成分の熱可塑性樹脂が芳香族構造を含む一つ以上の熱可塑性樹脂である こと。
2) (D)成分の熱硬化性樹脂が芳香族構造を含む一つ以上の熱硬化性樹脂である こと。
[0119] 難燃性硬化性樹脂組成物で用いる(K)成分のハロゲン系難燃剤は、前記のとおり であるが、これらのハロゲン系難燃剤は、単独で用いられてもよぐ 2種以上が併用さ れてもよい。
[0120] (A)成分と (B)成分及び )成分との難燃性における相乗効果と耐熱性とレ、う観点 力 (Κ)成分のハロゲン系難燃剤力 デカブ口モジフエニルオキサイド、エタンー 1 , 2 —ビス(ペンタブロモフエ二ル)、ビス(2, 4, 6—トリブロモフエノキシ)ェタン、エチレン ビステトラブロモフタルイミド、ポリジブロモフエ二レンオキサイド、トリス(トリブロモフエ ニル)シァヌレート、ァタクチック構造の臭素化ポリスチレン、ァタクチック構造の臭素 化スチレン一メチルメタタリレート系共重合体、ァタクチック構造の臭素化スチレンーメ チルメタタリレート—グリシジルメタタリレート系共重合体、ァタクチック構造の臭素化ス チレンーグリシジルメタタリレート系共重合体、ァタクチック構造の臭素化スチレンーポ リプロピレン系共重合体、テトラブロムビスフエノールー Α—エポキシオリゴマー、臭素 化エポキシィ匕合物(例えば臭素化ビスフエノール Aとェピクロルヒドリンとの反応によつ て製造されるジエポキシ化合物や臭素化フエノール類とェピクロルヒドリンとの反応に よって得られるエポキシィ匕合物)、テトラブロムビスフエノールー A カーボネートオリゴ マー、テトラブロムビスフエノーノレ A ビス(2—ヒドロキシジェチルエーテル)、ポリ(ぺ ンタブロモベンジルアタリレート)、オタタブ口モトリメチルフエニルインダン力 なる群 力 選ばれる一種以上のハロゲン系難燃剤であることがより好ましい。
[0121] 更に好ましくは、 (ェタン— 1 , 2_ビス(ペンタブロモフエニル)、ポリジブロモフエユレ ンオキサイド、トリス(トリブロモフエニル)シァヌレート、ァタクチック構造の臭素化ポリ スチレン、テトラブロムビスフエノールー A—エポキシオリゴマー、臭素化エポキシ化合 物(例えば臭素化ビスフエノール Aとェピクロルヒドリンとの反応によって製造されるジ エポキシィ匕合物や臭素化フエノール類とェピクロルヒドリンとの反応によって得られる エポキシィ匕合物)からなる群から選ばれる一種以上のハロゲン系難燃剤である。 一方、難燃性硬化性樹脂組成物の低誘電性という観点からは (K)成分のハロゲン 系難燃剤がエタン一 1 , 2_ビス(ペンタブロモフエニル)、ポリジブロモフエ二レンォキ サイド、ァタクチック構造の臭素化ポリスチレンからなる群から選ばれる一種以上のハ ロゲン系難燃剤であることが好ましレ、。
[0122] 難燃性硬化性樹脂組成物に使用する ω成分の層状珪酸塩は、層状珪酸塩を含 む硬化性樹脂組成物に関する発明ので説明された ω成分であることができる。好ま しくは、モンモリロナイト、ヘクトライト、膨潤性マイ力からなる群より選択される少なくと も 1種が用いられる。
[0123] 難燃性硬化性樹脂組成物とするための、上記の (Α)成分一 (Ε)成分、 )成分及 び (Κ)成分の配合比は広範囲に変化させることができるが、(Α)成分一(Ε)成分、 Q )成分及び (Κ)成分の合計に対する各成分の配合量 (wt%)が下記式を満足すること がよい。
(A)成分一(E)成分合計配合量 =4一 99. 8wt。/0、好ましくは 6— 99wt%であり、より 好ましくは 30 96wt%
C 成分配合量 =0. 1— 95. 9wt%、好ましくは 0. 5— 90wt%、より好ましく 2 70wt %
(K)成分配合量 =0. 1 95. 9wt%、 0. 5— 80wt%、より好ましく 1一 50wt%
[0124] 難燃性硬化性樹脂組成物は、 (A)成分一 (E)成分、 ひ)成分及び (Κ)成分の他、 先に説明したその他の成分を含有することができるが、その配合量は前記の範囲と することが好ましい。
[0125] また、難燃性の一層の向上を図る目的で、(G)成分として、本発明の効果を損なわ ない範囲の量の窒素系難燃剤、リン系難燃剤、窒素'リン系難燃剤及び無機系難燃 剤からなる群から選ばれる 1種以上の難燃剤を配合して使用することができる。
[0126] (G)成分として使用される窒素系難燃剤としては、配合される樹脂が高温下に晒さ れた時、吸熱分解して樹脂から熱を奪レ、且つ不活性な雰囲気を形成して難燃効果 を示す難燃剤である。なかでも、示差熱分析における分解時の吸熱力^ mgあたり 50 mj以上、とくには 150mJ以上であるものが好ましい。このような窒素系難燃剤として は、公知のものを制限なく使用できるが、脂肪族ァミン化合物、芳香族ァミン化合物、 トリアジン、メラミン、ベンゾグアナミン、メチルダアナミン、シァヌル酸等の含窒素複素 環化合物、シアン化合物、脂肪族アミド、芳香族アミド、尿素、チォ尿素等を例示する こと力 Sできる。
[0127] (G)成分として使用される窒素系難燃剤として上記した各化合物の塩も使用するこ とができる。塩としては、硫酸塩、硝酸塩、硼酸塩、イソシァヌル酸塩等を挙げること ができる。
上記の窒素系難燃剤のなかでも、脂肪族ァミン化合物、トリァジン化合物及びこれ らの塩は優れた難燃化効果を発揮するので、本発明においてはこれらの化合物を特 に好適に使用することができる。
[0128] (G)成分として使用されるリン系難燃剤は、配合された樹脂が高温下に晒された時 にポリリン酸化合物を生成して耐熱皮膜を形成し、また、固体酸による炭化促進機構 で難燃効果を示すと考えられている。こうしたリン系難燃剤としては、公知のものを制 限なく使用できるが、具体例としては、赤リンのようなリン単体;リン酸カルシウム、リン 酸チタニウム等のようなリン酸塩;トリブチルホスフェート、トリフエニルホスフェート等の ようなリン酸エステノレ;ポリリン酸;ポリリン酸カルシウムのようなポリリン酸塩;ポリ(ジフ ヱ二ルリン酸)のようなポリリン酸エステルなどを挙げることができる。
[0129] このうち、リン酸エステル、リン酸塩及びポリリン酸塩が難燃化効果が大きぐかつ、 電気的特性も良好であるために好適に使用できる。 [0130] また、本発明では、(G)成分として上記した窒素系難燃剤とリン系難燃剤の機能を 併せ有する化合物として、一分子中に窒素原子とリン原子とを共に有する窒素'リン 系難燃剤を使用することができる。このような難燃剤を使用することにより、特に難燃 性に優れた樹脂組成物を得ることができる。このような難燃剤としては、前記において 窒素系難燃剤として例示した各化合物のリン酸塩及びポリリン酸塩;フエノキシホスフ ァゼン、メチルフエノキシフォスファゼン等のようなフォスファゼン化合物; N, N—ジェ チルフォスフアミドのようなリン酸アミド;ポリ(N, N—ジェチルフォスフアミド)のようなポ リリン酸アミド、などを挙げることができる。ポリリン酸塩、並びに、フォスファゼン化合 物は、難燃化効果が大きいために、本発明において好適に使用できる。また、電気 的特性の観点から、フォスファゼン化合物が最も好適に使用される。
[0131] 上記の窒素'リン系難燃剤は、単独で又は二種以上を混合して使用できる。
更に、(G)成分として好適に使用できる無機系難燃剤としては、金属水酸化物及び 金属酸化物からなる群から選ばれる 1種以上の無機系難燃剤を挙げることができる。 力かる無機系難燃剤として好適に使用できる金属水酸化物としては、例えば、水酸 化マグネシウム、水酸化アルミニウム、ハイド口タルサイト類等が挙げられる。
[0132] (G)成分として好適に使用できる金属水酸化物は、表面処理されていることが望ま しい。表面処理を施すことによって金属水酸化物の耐熱性が向上し、成形品の外観 、難燃性の向上に効果があるので好ましい。
[0133] 一方、(G)成分の無機系難燃剤として好適に使用できる金属酸化物としては酸化 銅、酸化マグネシウム、酸化タングステン、酸化チタン、酸化亜鉛、酸化鉄、酸化バリ ゥム、酸化マンガン、等の金属酸化物を挙げることができる。なお、本発明の(G)成 分として酸化アンチモン化合物は有害性の観点から使用されなレ、。しかし、不純物量 の存在を妨げない。
[0134] 上記の (G)成分の窒素系難燃剤、リン系難燃剤、窒素'リン系難燃剤及び無機系 難燃剤の配合量は、 (A)— (E)成分、ひ)成分及び (K)成分の和を基準として 0. 1 一 25wt%、好ましくは 0. 1— 20wt%である。特に好ましくは 0. 2 15wt%である。 配合量が 0. lwt%より少ない場合には、十分な難燃効果が得られず、また 25wt% よりも多い場合には、成形性及び機械的特性が低下するので好ましくない。 [0135] なお、本発明の難燃性樹脂組成物は (H)成分として難燃助剤を含有することが好 ましい。難燃助剤が配合されることにより、酸素指数の向上や最大発熱速度の大幅 な低下をもたらすことができる。上記難燃助剤としては、例えば、ヒンダードアミン系化 合物、フッ素樹脂、シリコーンオイル、シリコーン一アクリル複合ゴムからなる群より選 択される少なくとも 1種類の難燃助剤が好適に用いられる。これらの難燃助剤を用い ることにより (A)—(D)成分である樹脂の分解を防ぎ、最大発熱速度を抑制すること ができる。
[0136] 上記 (H)成分である難燃助剤の配合量は、 (A)一 (E)成分の合計を基準として 0.
1一 25wt%、好ましくは 0. 1 20wt%である。特に好ましくは 0. 2— 15wt%である 。配合量が 0. lwt%より少ない場合には、十分な難燃効果が得られず、また 25wt %よりも多い場合には、成形性及び屈曲性や破断伸びが低下するので好ましくない
[0137] 本発明の硬化性樹脂組成物は、更に、その用途に応じて所望の性能を付与させる 目的で本来の性質を損なわない範囲の量の添加剤を配合して用いることができる。 添加剤としては、酸化防止剤、熱安定剤、帯電防止剤、可塑剤、顔料、染料、着色 剤等が挙げられる。
[0138] 本発明の硬化性樹脂組成物の組成(重量%)は次の範囲であることが好ましい。
1) (A)成分と (B)成分を必須成分とする場合
(A)成分: 1一 40%、好ましくは 10— 30%
(B)成分: 1一 50%、好ましくは 20— 45%
(C)成分: 0— 60%、好ましくは 20— 50%
(D)成分: 0 50%、好ましくは 2 20%
(E)成分: 0 98%、好ましくは 0 10%
2) (A)成分と (B)成分と CF)成分を必須成分とする場合
(A)成分: 1一 40%、好ましくは 10 30%
(B)成分: 1一 50%、好ましくは 20 45%
(C)成分: 0— 60%、好ましくは 20— 50%
(D)成分: 0 50%、好ましくは 2 20% (E)成分: 0— 98%、好ましくは 0— 10%
I)成分: 2— 98%、好ましくは 2— 10%
3) (A)成分と (B)成分と )成分と (Κ)成分とを必須成分とする場合
(Α)成分: 1一 40%、好ましくは 10 30%
(Β)成分: 1一 50%、好ましくは 20 45%
(C)成分: 0— 60%、好ましくは 20— 50%
(D)成分: 0 50%、好ましくは 1一 20%
(Ε)成分: 0 98%、好ましくは 0 10%
成分: 2— 98%、好ましくは 2— 10%
(K)成分: 0. 1 96%、好ましくは 5 40%
[0139] 本発明の硬化性樹脂組成物を製造する際に、各成分を混合する方法としては、各 成分を溶媒中に均一に溶解又は分散させる溶液混合法、あるいはヘンシェルミキサ 一等によりの撹拌 ·混合するブレンド法等が利用できる。溶液混合に用いられる溶媒 としては、ベンゼン、トルエン、キシレンなどの芳香族系溶媒、テトラヒドロフランが単 独であるいは二種以上を組み合わせて用いられる。本発明の硬化性樹脂組成物は 、あらかじめその用途に応じて所望の形に成形してもよい。その成形方法は特に限 定されない。通常は、樹脂組成物を上述した溶媒に溶解させて所定の形に成形する キャスト法、又は樹脂組成物を加熱溶融して所定の形に成形する加熱溶融法が用い られる。
[0140] 本発明の硬化性樹脂組成物を硬化することにより硬化体が得られる。硬化の方法 は任意であり、熱、光、電子線等による方法を採用することができる。加熱により硬化 を行う場合その温度は、ラジカル開始剤の種類によっても異なるが、 80— 300°C、よ り好ましくは 120 250°Cの範囲で選ばれる。また時間は、 1分一 10時間程度、より 好ましくは 1分一 5時間である。
[0141] また、本発明の硬化性樹脂組成物は、後述する硬化複合材料と同様、金属箔 (金 属板を含む意味である。以下、同じ。)と張り合わせて用いることができる。
[0142] 次に、本発明の硬化性樹脂組成物の硬化性複合材料とその硬化体にっレ、て説明 する。本発明の硬化性樹脂組成物による硬化性複合材料には、機械的強度を高め 、寸法安定性を増大させるために基材を加える。
[0143] このような基材としては、ロービングクロス、クロス、チョップドマット、サーフエシング マットなどの各種ガラス布、アスベスト布、金属繊維布及びその他合成若しくは天然 の無機繊維布、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維、ポリべンゾザ ール繊維等の液晶繊維から得られる織布又は不織布、ポリビュルァルコール繊維、 ポリエステル繊維、アクリル繊維などの合成繊維から得られる織布又は不織布、綿布 、麻布、フェルトなどの天然繊維布、カーボン繊維布、クラフト紙、コットン紙、紙ーガ ラス混繊紙などの天然セルロース系布などの布類、紙類等がそれぞれ単独で、ある いは 2種以上併せて用いられる。
[0144] 基材の占める割合は、硬化性複合材料中に 5— 90wt%、好ましくは 10 80wt%、 更に好ましくは 20— 70wt%であることがよい。基材が 5wt%より少なくなると複合材料 の硬化後の寸法安定性や強度が不十分であり、また基材が 90wt%より多くなると複 合材料の誘電特性が劣り好ましくない。
本発明の硬化性複合材料には、必要に応じて樹脂と基材の界面における接着性 を改善する目的でカップリング剤を用いることができる。カップリング剤としては、シラ ンカップリング剤、チタネートカップリング剤、アルミニウム系カップリング剤、ジノレコア ノレミネートカップリング剤等一般のものが使用できる。
[0145] 本発明の硬化性複合材料を製造する方法としては、例えば、本発明の硬化性樹脂 組成物と必要に応じて他の成分を前述の芳香族系、ケトン系等の溶媒若しくはその 混合溶媒中に均一に溶解又は分散させ、基材に含浸させた後、乾燥する方法が挙 げられる。含浸は浸漬(デイツビング)、塗布等によって行われる。含浸は必要に応じ て複数回繰り返すことも可能であり、またこの際、組成や濃度の異なる複数の溶液を 用いて含浸を繰り返し、最終的に希望とする樹脂組成及び樹脂量に調整することも 可能である。
[0146] 本発明の硬化性複合材料を、加熱等の方法により硬化することによって硬化複合 材料が得られる。その製造方法は特に限定されるものではなぐ例えば硬化性複合 材料を複数枚重ね合わせ、加熱加圧下に各層間を接着せしめると同時に熱硬化を 行い、所望の厚みの硬化複合材料を得ることができる。また、一度接着硬化させた硬 化複合材料と硬化性複合材料を組み合わせて新たな層構成の硬化複合材料を得る ことも可能である。積層成形と硬化は、通常熱プレス等を用い同時に行われるが、両 者をそれぞれ単独で行ってもよい。すなわち、あら力じめ積層成形して得た未硬化あ るいは半硬化の複合材料を、熱処理又は別の方法で処理することによって硬化させ ること力 Sできる。
[0147] 成形及び硬化は、温度: 80— 300°C、圧力: 0. 1 1000kgん m2、時間: 1分一 10 時間の範囲、より好ましくは、温度: 150 250°C、圧力 1一 500kgん m2、時間: 1分 一 5時間の範囲で行うことができる。
[0148] 本発明の積層体とは、本発明の硬化複合材料の層と金属箔の層より構成されるも のである。ここで用いられる金属箔としては、例えば銅箔、アルミニウム箔等が挙げら れる。その厚みは特に限定されなレ、が、 3 200 x m、より好ましくは 3 105 x mの 範囲である。
[0149] 本発明の積層体を製造する方法としては、例えば上で説明した本発明の硬化性榭 脂組成物と基材力 得た硬化性複合材料と、金属箔を目的に応じた層構成で積層し 、加熱加圧下に各層間を接着せしめると同時に熱硬化させる方法を挙げることができ る。本発明の硬化性樹脂組成物の積層体においては、硬化複合材料と金属箔が任 意の層構成で積層される。金属箔は表層としても中間層としても用いることができる。 上記の他、積層と硬化を複数回繰り返して多層化することも可能である。
[0150] 金属箔との接着には接着剤を用いることもできる。接着剤としては、エポキシ系、ァ クリル系、フエノール系、シァノアクリレート系等が挙げられる力 特にこれらに限定さ れない。上記の積層成形と硬化は、本発明の硬化複合材料の製造と同様の条件で 行うことができる。
[0151] 本発明のフィルムとは、本発明の硬化性樹脂組成物をフィルム状に成形したもので ある。その厚みは特に限定されなレ、が、 0. 5 200 z m、より好ましくは 5 105 z m の範囲である。
本発明のフィルムを製造する方法としては特に限定されることはなぐ例えば硬化 性樹脂組成物と必要に応じて他の成分を芳香族系、ケトン系等の溶媒若しくはその 混合溶媒中に均一に溶解又は分散させ、 PETフィルムなどの樹脂フィルムに塗布し た後乾燥する方法などが挙げられる。塗布は必要に応じて複数回繰り返すことも可 能であり、またこの際組成や濃度の異なる複数の溶液を用いて塗布を繰り返し、最終 的に希望とする樹脂組成及び樹脂量に調整することも可能である。
[0152] 本発明の樹脂付き金属箔とは本発明の硬化性樹脂組成物と金属箔より構成される ものである。ここで用いられる金属箔としては、例えば銅箔、アルミニウム箔等が挙げ られる。その厚みは特に限定されなレ、が、 0. 5— 200 z m、より好ましくは 5— 105 μ mの範囲である。
[0153] 本発明の樹脂付き金属箔を製造する方法としては特に限定されることはなぐ例え ば硬化性樹脂組成物と必要に応じて他の成分を芳香族系、ケトン系等の溶媒若しく はその混合溶媒中に均一に溶解又は分散させ、金属箔に塗布した後乾燥する方法 が挙げられる。塗布は必要に応じて複数回繰り返すことも可能であり、またこの際、組 成や濃度の異なる複数の溶液を用いて塗布を繰り返し、最終的に希望とする樹脂組 成及び樹脂量に調整することも可能である。
発明を実施するための最良の形態
[0154] 次に実施例により本発明を説明するが、本発明はこれらにより制限されるものでは なレ、。なお、各例中の部はいずれも重量部である。また、実施例中の測定結果は以 下に示す方法により試料調製及び測定を行つたものである。
[0155] 1)ポリマーの分子量及び分子量分布
可溶性多官能ビニル芳香族共重合体の分子量及び分子量分布測定は GPC (東ソ 一製、 HLC—8120GPC)を使用し、溶媒:テトラヒドロフラン (THF)、流量: 1. Oml
/min、カラム温度: 40°Cで行った。共重合体の分子量は単分散ポリスチレンによる 検量線を用レ、、ポリスチレン換算分子量として測定を行った。
[0156] 2)ポリマーの構造
日本電子 ¾[NM-LA600型核磁気共鳴分光装置を用い、 13C - NMR及び1 H - N
MR分析により決定した。溶媒としてクロ口ホルム- dを使用した。 NMR測定溶媒であ
1
るテトラクロロェタン- dの共鳴線を内部標準として使用した。
2
[0157] 3)ガラス転移温度 (Tg)及び軟化温度測定の試料調製及び測定
硬化性樹脂組成物溶液をガラス基板に乾燥後の厚さが、 20 μ mになるように均一 に塗布した後、ホットプレートを用いて、 90°Cで 30分間加熱し、乾燥させた。得られ たガラス基板上の樹脂膜はガラス基板と共に、 TMA (熱機械分析装置)測定装置に セットし、窒素気流下、昇温速度 10°C/分で 220°Cまで昇温し、更に、 220°Cで 20 分間加熱処理することにより、残存する溶媒を除去した。ガラス基板を室温まで放冷 した後、 TMA測定装置中の試料に分析用プローブを接触させ、窒素気流下、昇温 速度 10°C/分で 30°Cから 360°Cまでスキャンさせることにより測定を行レ、、接線法に より軟化温度を求めた。また、線膨張係数の変化する変曲点より Tgを求めた。
加熱プレス成形により得られた硬化物フィルムの Tgの測定は動的粘弾性測定装置 を使用し、昇温速度 2°CZminで測定を行い、損失弾性率のピークより決定した。
[0158] 4)引張り強度及び伸び率
引張り強度及び伸び率は引張り試験装置を用いて測定を行った。伸び率は引張り 試験のチャートから測定した。
[0159] 5)銅箔引き剥し強さ
積層体から幅 20mm、長さ 100mmの試験片を切り出し、銅箔面に幅 10mmの平 行な切り込みを入れた後、面に対して 180° の方向に 50mm/分の速さで連続的に 銅箔を引き剥し、その時の応力を引張り試験機にて測定し、その応力の最低値を示 した JIS C 6481に準拠)。
[0160] 6)誘電率及び誘電正接
インピーダンスアナライザーを使用し、周波数 100MHz— 1GHzで測定した。
[0161] 7)成形性
黒化処理を行った銅張り積層板の上に、硬化性樹脂組成物の未硬化フィルムを積 層し、真空ラミネーターを用いて、温度: 1 10°C、プレス圧: 0. IMPaで真空ラミネート を行い、黒化処理銅箔とフィルムの接着状態により評価を行った。評価は黒化処理 銅箔とフィルムの接着状態が良好であったものを「〇」、黒化処理銅箔とフィルムとが 容易に剥離することができる接着状態のものを「 X」として評価した。
[0162] 8)層状珪酸塩の平均層間距離
X線回折測定装置(リガク社製、 RINT1 100)を用いて、厚さ 2mmの板状成形体中 の層状珪酸塩の積層面の回折より得られる回折ピークの 2 Θを測定し、下記のブラッ クの回折式により、層状珪酸塩の(001)面間隔 (d)を算出し、得られた dを平均層間 距離 (nm)とした。
λ = 2dsin 0 (4)
式中、 λは 1. 54であり、 dは層状珪酸塩の面間隔を表し、 Θは回折角を表す。
[0163] 9) 5層以下に分散している層状珪酸塩の割合
透過型電子顕微鏡を用いて 5万一 10万倍で観察して、一定面積中において観察 できる層状珪酸塩の積層集合体の全層数 (X)のうち 5層以下で分散している層状珪 酸塩の層数 (Y)を計測し、下記の式により 5層以下に分散している層状珪酸塩の割 合 P (%)を算出した。
5層以下に分散している層状珪酸塩の割合 P (%) = (Y/X) X 100
[0164] 10)燃焼性
燃焼性はアメリカ UL規格サブジェクト 94 (UL94)の垂直燃焼試験法に準拠して燃 焼試験を行い、難燃性を評価した。
[0165] 12)表面性状
成形物の表面性状は実体顕微鏡を使用して観察を行い、その表面の平滑性に応 じて下記の 3段階で評価を行った。
〇:平滑性が高ぐ良好な表面性状をしている。
△:小さな凹凸が存在し、平滑性はやや劣る。
X:大きな凹凸が存在し、平滑性の低い表面性状をしている。
[0166] 13) DTUL
ASTM D648に準拠して測定を実施した。荷重: 18. 6Kg/cm2
実施例
[0167] 合成例 1
ジビュルベンゼン 0. 481モル(68ml)、ェチルビニルベンゼン 0. 362モノレ(52ml) 、 1_クロ口ェチルベンゼン(30mmol)のジクロロェタン溶液(濃度: 0· 634mmol/ ml) 47ml, n—テトラブチルアンモニゥム 'クロリド(2· 25mmol)のジクロロェタン溶液 (濃度: 0· 035mmol/ml) 65ml、及びジクロロェタン(誘電率: 10· 3) 500mlを 10 00mlのフラスコ内に投入し、 70°Cで: L 5mmolの SnClのジクロロェタン溶液(濃度: 0. 068mmol/ml) 22mlを添加し、 1時間反応させた。重合反応を窒素でバブリン グを行った少量のメタノールで停止させた後、室温で反応混合液を大量のメタノール に投入し、重合体を析出させた。得られた重合体をメタノールで洗浄し、濾別、乾燥、 秤量して、共重合体 A67. 4g (収率: 61. 4wt%)を得た。重合活性は 44. 9 (gポリマ ~ / mmol n.hr)であった。
[0168] 得られた共重合体 Aの Mwは 7670、 Mnは 3680、 Mw/Mnは 2. 1であった。 1 C —NMR及び1 H—NMR分析により、共重合体一 1はジビュルベンゼン由来の構造単 位を 51モル0 /0、ェチルビニルベンゼン由来の構造単位を 49モル%含有していた。 また、共重合体 Aにはインダン構造が存在していることがわかった。インダン構造は全 ての単量体の構造単位に対して 7. 5モル%存在していた。更に、前記一般式 (al) 及び (a2)で表される構造単位の総量に占める一般式 (al)で表される構造単位のモ ル分率は 0. 99であった。また、 TMA測定の結果、 Tgは 291°C、軟化温度は 300°C 以上であった。 TGA測定の結果、熱分解温度は 417°C、炭化歩留りは 28%であった。 共重合体 Aはトノレェン、キシレン、 THF、ジクロロェタン、ジクロロメタン、クロロホノレ ムに可溶であり、ゲルの生成は認められなかった。また、共重合体 Aのキャストフィノレ ムは曇りのない透明なフイノレムであった。
[0169] 合成例 2
ジビエルベンゼン 0· 481モル(68. 4ml)、ェチルビニルベンゼン 0· 0362モノレ(5 . 16ml)、 1_クロ口ェチルベンゼン(40mmol)のジクロロェタン溶液(濃度: 0· 634 mmol/ml) 63ml、 n—テトラブチルアンモニゥム 'ブロミド(1 · 5mmol)のジクロロェ タン溶液(濃度: 0. 135mmol/ml) l lml、及びジクロロエタン(誘電率: 10. 3) 500 mlを 1000mlのフラスコ内に投入し、 70°Cで 1. 5mmolの SnClのジクロロェタン溶液
(濃度: 0. 068mmol/ml) l . 5mlを添加し、 1時間反応させた。重合反応を窒素で パブリングを行った少量のメタノールで停止させた後、室温で反応混合液を大量のメ タノールに投入し、重合体を析出させた。得られた重合体をメタノールで洗浄し、濾 別、乾燥、秤量して、共重合体 B54. 6g (収率: 49. 8wt%)を得た。重合活性は 49 . 8 (gポリマー ZmmolSn'hr)であった。
[0170] 得られた共重合体 Bの Mwは 4180、 Mnは 2560、 MwZMnは 1. 6であった。 13C 一 NMR及び1 H— NMR分析により、共重合体 Bはジビニルベンゼン由来の構造単位 を 52モノレ%、ェチルビニルベンゼン由来の構造単位を 48モル%含有していた。また 、共重合体 Bにはインダン構造が存在していることがわ力 た。インダン構造は全ての 単量体の構造単位に対して 7. 5モル%存在していた。更に、前記一般式 (al)及び( a2)で表される構造単位の総量に占める一般式 (al)で表される構造単位のモル分率 は 0. 99であった。また、 TMA測定の結果、 Tgは 287°C、軟化温度は 300°C以上で あった。 TGA測定の結果、熱分解温度は 413°C、炭化歩留りは 26%であった。
共重合体 Bはトルエン、キシレン、 THF、ジクロロェタン、ジクロロメタン、クロロホノレ ムに可溶であり、ゲルの生成は認められなかった。また、共重合体 Bのキャストフィノレ ムは曇りのない透明なフイノレムであった。
[0171] 実施例で使用した成分の略号を次に示す。
PPE :極限粘度が 0. 45のポリフヱニレンエーテル(三菱瓦斯化学 (株)製)
OPE-2St-l :両末端にビニル基を有するポリフエ二レンオリゴマー(Mn= 1160、三 菱瓦斯化学 (株)製、 2,2',3,3',5,5'-へキサメチルビフェニル-4,4'-ジォール' 2,6-ジメ チルフヱノール重縮合物とクロロメチルスチレンとの反応生成物)
OPE-2St-2 :両末端にビニル基を有するポリフエ二レンオリゴマー(Mn= 2270、三 菱瓦斯化学 (株)製、 2,2',3,3',5,5'-へキサメチルビフェニル-4,4'-ジォール' 2,6-ジメ チルフヱノール重縮合物とクロロメチルスチレンとの反応生成物)
OPE-2St-3 :両末端にビニル基を有するポリフエ二レンオリゴマー(Mn= 3560、三 菱瓦斯化学 (株)製、 2,2',3,3',5,5'-へキサメチルビフェニル-4,4'-ジォール' 2,6-ジメ チルフヱノール重縮合物とクロロメチルスチレンとの反応生成物)
[0172] 反応開始剤
P—1 : 2,5 -ジメチル _2,5_ビス(t-ブチルパーォキシ)へキサン(日本油脂(株)製、商 品名:パーへキサ 25B)
[0173] 熱可塑性樹脂
T-1:水添スチレンブタジエンブロック共重合体 (旭化成工業 (株)製、商品名:タフテ ック HI 041)
T-2:水添スチレンブタジエンブロック共重合体(クレイトンポリマージャパン(株)製、 商品名: KRATON G1652)
T一 3:水添スチレンイソプレンブロック共重合体 (クレイトンポリマージャパン (株)製、 商品名: KRATON G1726)
T一 4 :スチレンブタジエンブロック共重合体 (旭化成工業 (株)製、商品名:タフプレン 315P)
T-6:水添スチレンブタジエンブロック共重合体(クレイトンポリマージャパン社製、商 品名: KRATON GRP6935)
T-7:水添スチレンイソプレンブロック共重合体 (クレイトンポリマージャパン社製、商 品名: KRATON G1730)
熱硬化性樹脂
E-1:下記式で示されるエポキシ樹脂(日本化薬 (株)製、商品名: EOCN— 1020) [化 13]
Figure imgf000048_0001
E— 2 :下記式で示されるエポキシ樹脂(東都化成 (株)製、商品名: ZX— 1627) [化 14]
Figure imgf000048_0002
E— 3:下記式で示されるエポキシ樹脂 (東都化成 (株)製、商品名: YD— 128) [化 15]
Figure imgf000048_0003
E— 4:下記式で示されるエポキシ樹脂 (東都化成 (株)製、商品名: YD— 8170) [化 16]
Figure imgf000049_0001
E— 5 :下記式で示されるエポキシ樹脂(東都化成 (株)製、商品名: ZX— 1658) [化 17]
Figure imgf000049_0002
E-6:トリアリルイソシァヌレート(東亜合成 (株)製、商品名:ァロニックス M— 315) E-7:液状ビスフエノーノレ A型エポキシ樹脂(ジャパンエポキシレジン社製、ェピコ一 卜 828)
[0175] 球状シリカ:平均粒径: 0. 5 x m ( (株)アドマテックス製、商品名:アドマファイン SO— C2)
炭酸カルシウム:平均粒子径 50 μ mの炭酸カルシウム
[0176] 層状珪酸塩
LS-1:トリオクチルメチルアンモニゥム塩で有機化処理が施された合成へクトライト(コ ープケミカル社製、ルーセンタイト STN)
LS-2:ジステアリルジメチル 4級アンモニゥム塩で有機化処理が施された膨潤性フッ 素マイ力(コープケミカル社製、ソマシフ MAE—100)
LS-3:ジステアリルジメチル 4級アンモニゥム塩で有機化処理が施された天然モンモ リロナイト _1 (豊順洋行社製、 New S-Ben D)
[0177] 硬化触媒
C一 1 : 2-ェチル -4-メチルイミダゾール(四国化成社製、キュアゾール 2E4MZ) C_2 : 1—シァノエチルー 2—メチルイミダゾール(四国化成社製、キュアゾール 2MZ_ CN) [0178] ハロゲン系難燃剤
F— 1 :ェタン一 1, 2—ビス(ペンタブロモフエニル)(アルべマール社製サイテックス 801 0)
F—2:ァタクチック構造の臭素化ポリスチレン(グレートレークス社製フアイヤーマスタ — PBS-64HW)
F-3:ポリジブロモフエ二レンオキサイド(第一エフ ·アーノレ社、ピロガード SR—460B) F_4 :オタタブ口モトリメチルフエ二ルインダン(アルべマール社製サイテックス 8010) F-5:臭素化エポキシ化合物(日本化薬社製 BROC)
[0179] 実施例 1
上記合成例により得られた共重合体 A B、及び、 PPE、 OPE-2St-广 3、反応開始 剤 P— 1、熱可塑性樹脂 T一 1、熱硬化性樹脂 E-7について表 1に示した量と溶剤とし てトルエンとを配合して、攪拌後、反応開始剤 P— 1を加えて、熱硬化性樹脂組成物 溶液を調製した。
ポリエチレンテレフタレート樹脂 (PET)シートを張りつけた台に、熱硬化性樹脂組 成物溶液をキャストし、フィルムを得た。得られたフィルムは約 5CT60 μ ΐηの厚みであ り、ベたつき等がなく成膜性に優れていた。このフィルムをェヤーオーブンで 80°C10 分間乾燥乾燥後、真空プレス成形機にて 180°C、 1時間熱硬化させ、約 50 μ ΐηの硬 化物フィルムを得た。
この硬化物フィルムの引っ張り強度、伸び率、誘電率、誘電正接を測定した。結果 を表 1に示す。
[0180] [表 1]
実験番号 1 2 3 4 共重合体 A (wt¾) 18. 5 18. 5 18. 5
共重合体 B (wt¾) 18. 5
OPE - 2 S t - 1 (wt¾) 36. 5 36. 5
OPE - 2 St - 2 (wt¾) 36. 5
OPE- 2 St- 3 (wt¾) 36. 5
T - 1 (wt¾) 40. 0 40. 0 40. 0 40. 0
E - 1 (wt¾) 5. 0 5. 0 5. 0 5. 0
P - 1 (phr) 4. 0 4. 0 4. 0 4. 0
引張強度 (kgf/mm2) 4. 20 4. 1 1 3. 77 3. 51 引張破断伸び (%) 21. 1 19. 5 20. 1 39. 0 銅箔引剥し強さ (kgf/cm) 1. 01 1. 05 1. 03 0. 97 力'ラス転移温度 (°C) 204. 2 202. 6 197. 6 199. 3 軟化温度 (で) >300 〉300 〉300 〉300- 誘電率 ( 1. 0GHz) 2. 35 2. 37 2. 39 2. 36 誘電正接 ( 1. 0GHz) 0. 0045 0. 0042 0. 0051 0. 0058 成形性 〇 〇 〇 〇
[0181] 比較例 1
上記合成例により得られた共重合体 A、 PPE、反応開始剤 P - 1、熱可塑性樹脂 T - 1及び熱硬化性樹脂 E— 6について表 2に示した量と溶剤としてトルエンとを配合して 、攪拌後、反応開始剤 P - 1を加えて、熱硬化性樹脂組成物溶液を調製した。
ポリエチレンテレフタレート樹脂(PET)シートを張りつけた台に、熱硬化性樹脂組 成物溶液をキャストし、フィルムを得た。得られたフィルムは約 50〜60 mの厚みであ り、ベたつき等がなく成膜性に優れていた。このフィルムをェヤーオーブンで 80°C10 分間乾燥後、真空プレス成形機にて 180°C、 1時間熱硬化させ、約 50 / mの硬化物 フィルムを得た。
この硬化物フィルムの引っ張り強度、伸び率、誘電率、誘電正接を測定した。結果 を表 2に示す。
[0182] [表 2] 比較実験番号 1 2 3
共重合体 A (wt¾) 18. 5
P P E (wt¾) 36. 5 36. 5
OPE - 2 St- 1 (wt¾) 36. 5
T - 1 (wt¾) 40. 0 40. 0 40. 0
E-l ( t%) 5. 0
E-6 (wt%) 23. 5 23. 5
P-l (phr) 4. 0 4. 0 4. 0
引張強度 (kgf/mni2) 4. 07 3. 26 2. 69
引張破断伸び (« 27. 1 3. 5 9. 1
銅箔引剥し強さ (kgf/cm) 0. 74 0. 47 0. 53
力'ラス転移温度 (°C) 188. 5 165. 8 172. 3
軟化温度 (°c) 〉300 >300 〉300
誘電率 ( 1. 0GHz) 2. 43 2. 78 2. 76
誘電正接 ( 1. 0GHz) 0. 0078 0. 014 0. 013
成形性 X 〇 X
[0183] 実施例 2
熱可塑性樹脂 T - 2— T3、熱硬化性樹脂 Ε - 1一 Ε - 6、球状シリカ S及び ΡΡΕを用 レ、たこと以外は実施例 1と同様の方法で熱硬化性樹脂組成物の溶液を調製し、それ 力らフィルムを得て、各種の評価を行った。結果を表 3— 5に示す。
[0184] [表 3] 実験番号 5 6 7 8
共重合体 B (wt¾) 18. 5 18. 5 18. 5 18. 5
OPE- 2 St- 1 (wt¾) 36. 5 36. 5 36. 5 34. 5
P P E (wt¾) 2. 0
T-2 (wt¾) 40. 0 30. 0 40. 0
T-3 (wt¾) 10. 0
T-4 (wt¾) 40. 0
E-l (wt¾) 5. 0 5. 0 5. 0 5. 0
反応開始剤 P - 1 (phr) 4. 0 4. 0 4. 0 4. 0
引張強度 (kgi/mm2) 3. 78 4. 03 3. 89 4. 22 引張破断伸び «) 19. 4 15. 3 26. 5 22. 0 銅箔引剥し強さ (kgf/cm) 1. 08 0. 96 0. 99 1. 07 力'ラス転移温度 (°C) 202. 3 198. 7 192. 1 201. 4 軟化温度 (。C) 〉300 〉300 〉300 >300- 誘電率 ( 1. 0GHz) 2. 38 2. 35 2. 37 2. 34 誘電正接 ( 1. 0GHz) 0. 0051 0. 0045 0. 0053 成形性 〇 〇 〇 〇 [0185] [表 4]
Figure imgf000053_0001
[0186] [表 5]
Figure imgf000053_0002
実施例 3
実施例 1の実験番号 2で得られた熱硬化性樹脂組成物溶液にガラスクロス (Eガラ ス、 目付 71g/m2)を浸漬して含浸を行い、 50°Cのエアーオーブン中で 30分間乾燥さ せた。得られたプリプレダのレジンコンテンツ(R. C)は 69%であった。 このプリプレダを使用して、直径 0. 35mmのスルーホールが 5mmピッチで配置さ れている厚み 0· 8mmのコア材を張り合わせたところ、樹脂が充填されていないスル 一ホーノレは 4500穴中 0であった。
[0188] 成形後の厚みが約 0. 6mm— 1. 0mmになるように、上記の硬化性複合材料を必 要に応じて複数枚重ね合わせ、その両面に厚さ 35 μ mの銅箔を置いてプレス成形 機により成形硬化させて積層体を得た。各実施例の硬化条件は、 3°CZ分で昇温し 、 180°Cで 90分間保持することにとした。また、圧力はいずれも 30kgん m2とした。
[0189] このようにして得られた積層体の諸物性を以下の方法で測定した。
1)耐トリクロロエチレン性:銅箔を除去した積層体を 25mm角に切り出し、トリクロロェ チレン中で 5分間煮沸し、外観の変化を目視により観察した CFIS C6481に準拠)。
2)ハンダ耐熱性:銅箔を除去した積層体を 25mm角に切り出し、 260°Cのハンダ浴 中に 120秒間浮かべ、外観の変化を目視により観察した CJIS C6481に準拠)。
[0190] 耐トリクロロエチレン性試験では積層体の外観に変化は観察されなかった。積層体 の Tgは 217°Cであった。ハンダ耐熱性試験では積層体の外観に変化は観察されな 力つた。誘電率: 2· 57、誘電正接 0· 0044であった。
[0191] 実施例 4
実験番号 16の溶液を 18 μ ΐηの電解銅箔上に塗布し、 10分間風乾した後、 80°Cの エアーオーブン中で 10分間乾燥させた。銅箔上の樹脂厚みは 50 / mであった。本 樹脂付き銅箔と実施例 3のコア材を重ね 180°Cで 90分間、 30kgん m2の圧力で加熱 加圧硬化した。スルーホールを観察したところ、樹脂が充填されていないスルーホー ルは確認されなかった。
[0192] 実施例 5
上記合成例により得られた共重合体 B、及び、層状珪酸塩 LS-1としてトリオクチルメ チルアンモニゥム塩で有機化処理が施された合成へクトライト(コープケミカル社製、 ルーセンタイト STN)、熱可塑性樹脂 T一 1、熱硬化性樹脂として液状ビスフヱノール A型エポキシ樹脂(ジャパンエポキシレジン社製、ェピコート 828) E— 7、及び他の熱 可塑性樹脂として PPEを用レ、、表 1に示した量と溶剤としてトルエンとを配合して、攪 拌後、反応開始剤 P - 1を加えて、熱硬化性樹脂組成物溶液を調製した。
得られた熱硬化性樹脂組成物溶液を PETシート上でキャストすることにより約 15 / mのフィルムを作成した。得られたフィルムはべたつき等がなく成膜性に優れてレ、た。 このフィルムをェヤーオーブンで 80°C 10分間乾燥乾燥後、さらにキャスト面に PET シートをラミネートして、 180°Cのエアオーブン中で硬化させ、硬化物フィルムを得た
[0193] ここで、層状珪酸塩の平均層間距離 X線回折測定装置 (リガク社製、 RINT1 100) を用いて、厚さ 2mmの板状成形体中の層状珪酸塩の積層面の回折より得られる回 折ピークの 2 Θを測定し、下記式(16)のブラックの回折式により、層状珪酸塩の(00 1 )面間隔 dを算出し、得られた dを平均層間距離 (nm)とした。
λ = 2dsin 0 ( 16)
式(16)中、 λは 1. 54であり、 Θは回折角を表す。
[0194] また、 5層以下の積層体として分散している層状珪酸塩の厚さ 100 / mの板状成形 体を透過型電子顕微鏡により 10万倍で観察し、一定面積中において観察できる層 状珪酸塩の積層体の全層数 X及び 5層以下で分散している層状珪酸塩の層数 Yを 計測し、下記式(17)により 5層以下の積層体として分散している層状珪酸塩の割合 P (%)を算出した。
P(%) = (Y/X) X 100 ( 17)
この硬化物フィルムの引っ張り強度、伸び率、誘電率、誘電正接についても測定を 行った。結果を表 6に示す。
[0195] [表 6]
実験番号 1 2 3 4 共重合体 B (wt¾) 18.1 17.6 16.8 15.4
OPE- 2 St 1 (wt¾) 33.8 32.9 31.4 28.7
P P E (wt¾) 2.0 1.9 1.8 1.7
T- 1 (wt¾) 39.2 38.1 36.4 33.3
E-7 (wt%) 4.9 4.8 4.5 4.2
LS-1 (wt¾) 2.0 4.8 9.1 16.7
P-l (phr) 4.0 3.8 3.6 3.4
平均層間距離 (nm) 3.5く 3.5く 3.5く 3.5く
P (¾) 10く 10く 10く 10く
引張強度 (kgf/mm2) 4.54 4.55 4.57 4.15
引張破断伸び (« 18.1 15.3 13.6 8.4
引張り弾性率 (kgf/mm2) 75.1 79.6 84.4 109.4
銅箔引剥し強さ (kgf/cm) 0.95 0.91 0.87 0.81
力'ラス転移温度 (°C) 208.1 208.4 207.3 205.7
軟化温度 (V) >300 >300 >300 >300- 誘電率 (1.0GHz) 2.37 2.45 2.57 2.54
誘電正接 (1.0GHz) 0.0053 0.0049 0.0065 0.0053 成形性 〇 〇 〇 〇
[0196] 比較例 2
共重合体 B、層状珪酸塩、及び、 PPE、反応開始剤 P - 1、熱可塑性樹脂 T - 1、熱 硬化性樹脂 E— 7及び平均粒子径 50 μ mの炭酸カルシウムを用いた熱硬化性樹脂 組成物溶液を PETシート上でキャストすることにより約 15 μ mのフィルムを作成したこ と以外は実施例: Lと同様の方法で熱硬化性樹脂組成物の評価を行った。結果を表 7 に示す。
[0197] [表 7]
比較実験番号 1 2 3 共重合体 B (wt¾) 18. 5 17. 6
OPE- 2 St- 1 (wt¾) 36. 5 50. 5 32. 9
P P E (wt¾) 2. 0 1. 9 1. 9
T-l (wt¾) 40. 0 38. 1 38. 1
E-l (wt¾) 5. 0 4. 8 4. 8
LS-1 (wt¾) 4. 8
炭酸カルシウム (wt« 4. 8
P-l (phr) 4. 0 3. 8 3. 8
平均層間距離 (n m) 3. 5く
P (¾) 10く
引張強度 (kgf/ram2) 4. 38 3. 86 3. 26
引張破断伸び ) 20. 5 7. 8 4. 3
引張り弾性率 (kgf/匪2) 58. 1 81. 5 54. 1
銅箔引剥し強さ (kgf/cm) 0. 91 0. 67 0. 41
力'ラス転移温度 (°C) 184. 5 167. 7 181. 3
軟化温度 (°C) >300 205, 6 >300
誘電率 ( 1. 0GHz) 2. 32 2. 64 2. 71
誘電正接 ( 1. 0GHz) 0. 0057 0. 0061 0. 0051
成形性 〇 〇 Δ 実施例 6
層状珪酸塩 LS-2として、ジステアリルジメチル 4級アンモニゥム塩で有機化処理が 施された膨潤性フッ素マイ力(コープケミカル社製、ソマシフ MAE— 100)、層状珪酸 塩 LS- 3として、ジステアリルジメチル 4級アンモニゥム塩で有機化処理が施された天 然モンモリロナイト— 1 (豊順洋行社製、 New S— Ben D)を用い、ポリエチレンテレフ タレート樹脂(PET)シートに熱硬化性樹脂組成物溶液をキャストし、得られたフィノレ ム (約 5CT60 μ mの厚み)をェヤーオーブンで 80°C10分間乾燥乾燥後、真空プレス 成形機にて 180°C、 1時間熱硬化させ、約 50 μ πιの硬化物フィルムを得たこと以外 は実施例 5と同様の方法で熱硬化性樹脂組成物の評価を行った。結果を表 8に示す
[表 8] 実験番号 5 6
共重合体 B (wt%) 17. 6 17. 6
OPE- 2 St- 1 (wt¾) 32. 9 32. 9
P P E (wt¾) 1. 9 1. 9
T- 1 (wt¾) 38. 1 38. 1
E-7 (wt¾) 4. 8 4. 8
LS-2 (wt¾) 4. 8
LS-3 (wt¾) 4. 8
P-l (phr) 3. 8 3. 8
平均層間距離 (n m) 3. 5< 3. 5く
P (¾) 10く 10く
引張強度 (kgi/mm2) 4. 32 4. 27
引張破断伸び (« 18. 7 17. 1
引張り弾性率 (kgi/匪2) 77. 4 78. 3
銅箔引剥し強さ (kgf/cm) 0. 85 0. 91
力'ラス転移温度 (°C) 202. 3 208. 4
軟化温度 ( ) >300 >300
誘電率 ( 1. 0GHz) 2. 34 2. 38
誘電正接 ( 1. 0GHz) 0. 0057 0. 0061
成形性 〇 〇
[0200] 実施例 7
実施例 5の実験番号 2で得られた熱硬化性樹脂組成物溶液にガラスクロス (Eガラ ス、 目付 71g/m2)を浸漬して含浸を行い、 50°Cのエアーオーブン中で 30分間乾燥さ せた。得られたプリプレダのレジンコンテンツ(R. C)は 69%であった。
このプリプレダを使用して、直径 0. 35mmのスルーホールが 5mmピッチで配置さ れている厚み 0. 8mmのコア材を張り合わせたところ、樹脂が充填されていないスル 一ホーノレは 4500穴中 0であった。
成形後の厚みが約 0. 6mm— 1. Ommになるように、上記の硬化性複合材料を必 要に応じて複数枚重ね合わせ、その両面に厚さ 35 μ mの銅箔を置いてプレス成形 機により成形硬化させて積層体を得た。各実施例の硬化条件は、 3°C/分で昇温し 、 180°Cで 90分間保持することにとした。また、圧力はいずれも 30kgん m2とした。
[0201] このようにして得られた積層体の諸物性を上記の方法で測定した。
耐トリクロロエチレン性試験では積層体の外観に変化は観察されなかった。積層体 の Tgは 212°Cであった。ハンダ耐熱性試験では積層体の外観に変化は観察されな 力つた。誘電率: 2· 61、誘電正接 0· 0042であった。
[0202] 実施例 8
配合組成を表 9に示すようにしたこと以外は実施例 6と同様の方法で熱硬化性樹脂 組成物から得た硬化物フィルムの評価を行った。結果を表 9に示す。
[0203] [表 9]
Figure imgf000059_0001
実施例 9
[0204] 配合組成を表 10に示すようにしたこと以外は実施例 6と同様の方法で熱硬化性榭 脂組成物から得た硬化物フィルムの評価を行った。結果を表 10に示す。
[0205] [表 10] 実験番号 1 3 1 4 1 5 1 6
共重合体 B (wt¾) 17. 6 17. 6 17. 6 17. 6
OPE- 2 S t- 1 (wt¾) 32. 9 32. 9
OPE- 2 S t- 2 (wt%) 32. 9
OPE- 2 S t- 3 (wt¾) 32. 9
P P E (wt¾) 1. 9 1. 9 1. 9 1. 9
T- l (wt¾) 38. 1 38. 1 38. 1
T- 4 (wt¾) 38. 1
E - 1 (wt¾) 4. 8 4. 8
E- 5 (wt¾) 4. 8
E-6 (wt¾) 4. 8
4. 8 4. 8 3. 8 4. 8
球状シリカ (w ) 1. 0
P-l (phr) 3. 8 3. 8 3. 8 3. 8
平均層間距離 (n m) 3. 5く 3. 5< 3. 5< 3. 5く
P (¾) 10く 10< 10く 10く
引張強度 (kgi/匪2) 4. 17 3. 87 4. 46 4. 77
引張破断伸び (« 25. 6 31. 3 15. 7 21. 6
引張り弾性率 (kgf/mi2) 69. 5 58. 3 76. 9 81. 4
銅箔引剥し強さ (kgf/cm) 0. 89 0. 91 0. 93 1. 07
力'ラス転移温度 (で) 197. 1 193. 5 201. 7 198. 6
軟化温度 {°0 ) 〉300 〉300 >300 >300- 誘電率 ( 1. 0GHz) 2. 42 2. 37 2. 41 2. 40
誘電正接 ( 1. 0GHz) 0. 0056 0. 0064 0. 0058 0. 0052
成形性 〇 〇 〇 〇 実施例 10
共重合体 A PPE OPE_2St_l、熱可塑性樹脂 T— 1、ハロゲン系難燃剤 F_l、ハ ロゲン系難燃剤 F— 5、及び層状珪酸塩 LS-1について表 11に示した量と溶剤としてト ルェンとを配合して、攪拌後、反応開始剤 P— 1及び硬化触媒 C一 1を加えて、難燃性 樹脂組成物溶液を調製した。
ポリエチレンテレフタレート樹脂(PET)シートを張りつけた台に、難燃性樹脂組成 物溶液をキャストし、フィルムを得た。得られたフィルムは約 50~60 mの厚みであり 、ベたつき等がなく成膜性に優れていた。このフィルムをェヤーオーブンで 80°C10 分間乾燥後、真空プレス成形機にて 180°C 1時間熱硬化させ、約 50 z mの硬化物 フィルムを得た。
この硬化物フィルムの引っ張り強度、伸び率、誘電率、誘電正接、層状珪酸塩の平 均層間距離、 5層以下の積層体として分散している層状珪酸塩の割合 P (%)、難燃 性、表面性状及び成形性を測定した。
[0207] 実施例 11
共重合体 B、 PPE、 OPE-2St_l、熱可塑性樹脂 T_2、ハロゲン系難燃斉 ljF_l、ハロ ゲン系難燃剤 F— 5、及び、層状珪酸塩 H— 1を用レ、、表 11に示した量と溶剤としてト ルェンとを配合して、攪拌後、反応開始剤 P— 1及び硬化触媒 C一 2を加えて、難燃性 樹脂組成物溶液を調製した。
得られた難燃性樹脂組成物溶液を PETシート上でキャストすることにより約 15 μ m のフィルムを作成し、更にキャスト面に PETシートをラミネートして、 180°Cのエアォー ブン中で硬化させ、硬化物フィルムを得た。
[0208] 実施例 12
難燃剤添加量の変更及び熱硬化性樹脂 E— 7を添加したこと以外は実施例 10と同 様にして、難燃性樹脂組成物力も硬化物フィルムを得た。
[0209] 実施例 13
熱硬化性樹脂 E-1を添加したこと以外は実施例 12と同様にして、難燃性樹脂組成 物力 硬化物フィルムを得た。
配合組成及び評価結果を表 11に示す。
[0210] [表 11]
実施例 1 0 1 1 1 2 1 3 共重合体 A (wt%) 10. 0 9. 0 9. 0 9. 0
OPE - 2 S t- 1 (wt¾) 27. 0 25. 5 25. 5 25. 5
P P E (wt¾) 2. 5 2. 5 2. 5 2. 5
T- l (wt¾) 34. 0 34. 0 34. 0
T-2 (wt¾) 34. 0
E-7 (wt¾) 1. 0
E - 1 (wt¾) 1. 0
F - 1 (wt¾) 20. 0 20. 0 20. 0 20. 0
F-5 (wt¾) 4. 0 4. 0 3. 0 3. 0
2. 5 5. 0 5. 0 5. 0
P- l (phr) 3. 0 3. 0 3. 0 3. 0
C- 1 (phr) 0. 08 0. 08 0. 08
C-2 (phr) 0. 08
平均層間距離 (n m) 3. 5< 3. 5く 3. 5く 3. 5く
P (¾) 10く 10く 10く 10く
引張強度 (kgf/mm2) 3. 51 3. 67 3. 38 3. 42 引張破断伸び ( 19. 5 1 1. 3 15. 7 21. 4 引張り弾性率 (kgf/mm2) 77. 2 81. 6 84. 7 84. 7 銅箔引剥し強さ (kgf/cm) 1. 01 0. 97 0. 87 1. 05 力'ラス転移温度 CC ) 208. 6 202. 4 204. 3 206. 2 軟化温度 ( ) 〉300 >300 〉300 >300 誘電率 ( 1. 0GHz) 2. 39 2. 41 2. 52 2. 56 誘電正接 ( 1. 0GHz) 0. 0043 0. 0037 0. 0046 0. 0052 難燃性 (UL94) VTM0 VTM0 VTM0 VTM0 表面性状 △ Δ Δ Δ
成形性 〇 〇 〇 〇
[0211] 比較例 3— 6
共重合体 A、 PPE、 OPE- 2St- 1、熱可塑性樹脂 T_l、ハロゲン系難燃剤 F_l、ハ ロゲン系難燃剤 F - 5、及び層状珪酸塩 H - 1及び平均粒子径 50 μ mの炭酸カルシゥ ムについて表 1 2に示した量と溶剤としてトルエンとを配合して、攪拌後、反応開始剤 P - 1及び硬化触媒 C - 1をカ卩えて調製した難燃性樹脂組成物溶液を PETシート上で キャストすることにより約 15 μ mのフィルムを作成したこと以外は実施例 10と同様にし て評価を行った。結果を表 12に示す。
[0212] [表 12] 比較例 3 4 5 6 共重合体 A (wt¾) 10. 0 6. 5 10. 0 8. 0
OPE- 2 S t- 1 (wt¾) 27. 0 19. 0 27. 0 21. 5
P P E (wt¾) 2. 5 1. 5 2. 5 1. 5
T - 1 (wt¾) 34. 0 29. 0 34. 0 25. 0
T-2 (wt¾)
E-7 (wt¾) 4. 0
E- l (wt¾)
F- 1 (wt¾) 22. 5 40. 0 20. 0 20. 0
F-5 (wt¾) 4. 0 4. 0 4. 0
LS- 1 (wt¾)
炭酸カルシウム (w ) 5. 0 20. 0
P-l (phr) 3. 0 3. 0 3. 0 3. 0
C-l (phr) 0. 08 0. 08 0. 08 0. 08 平均層間距離 (n m)
P (¾)
引張強度 (kgf/im2) 1. 89 1. 56 1. 86 1. 81 引張破断伸び «) 21. 8 8. 7 6. 5 4. 8
引張り弾性率 (kgf/mm2) 44. 5 45. 9 47. 3 45. 6 銅箔引剥し強さ (kgf/cm) 0. 54 0. 48 0. 61 0. 57 力'ラス転移温度 (。C ) 121. 9 125. 2 124. 3 126. 3 軟化温度 (*c) 128. 9 130. 8 129. 1 131. 3 誘電率 ( 1. 0GHz) 2. 51 2. 58 2. 78 2. 77 誘電正接 ( 1. 0GHz) 0. 0052 0. 0056 0. 0055 0. 0048 難燃性 (UL94) NG NG NG NG
表面性状 X X X X
成形性 〇 〇 〇 〇
[0213] 比較例 7— 10
共重合体 A、 PPE、 OPE_2St_l、熱可塑性樹脂 T一 1、ハロゲン系難燃剤 F_6として シンジオタクチック構造を有する臭素化ポリスチレン (臭素含有量: 51%、シンジオタク ティシティ: 95%以上、数平均分子量: 670,000、 Mw/Mn : 2.75)、ハロゲン系難燃剤 F 一 7としてへキサブ口モシクロドデカン(グレートレークス(株)製フアイヤーマスター CD - 75P)、及び層状珪酸塩 LS-1及び平均粒子径 50 μ mの炭酸カルシウムにつレ、て 表 13に示した量と溶剤としてトルエンとを配合して、攪拌後、反応開始剤 P— 1及び硬 化触媒 C一 1を加えて調製した難燃性樹脂組成物溶液を PETシート上でキャストする ことにより約 15 μ mのフィルムを作成したこと以外は実施例 10と同様にして評価を行 つた。結果を表 13に示す。
[0214] [表 13] 比較例 7 8 9 1 0 共重合体 A (wt¾) 10. 0 6. 5 10. 0 8. 0
OPE- 2 S t- 1 (wt¾) 27. 0 19. 0 27. 0 21. 5
P P E (wt¾) 2. 5 1. 5 2. 5 1. 5
T - 1 (wt¾) 34. 0 29. 0 34. 0 25. 0
E-7 (wt¾) 4. 0
F-6 (wt%) 36. 5 40. 0
F-7 (wt¾) 25. 0 35. 0
F-5 (wt¾) 4. 0 4. 0 4. 0 4. 0
LS-1 (wt¾) 5. 0 5. 0 5. 0 5. 0
P-l (phr) 3. 0 3. 0 3. 0 3. 0
C- l (phr) 0. 08 0. 08 0. 08 0. 08 平均層間距離 (n m) 3. 5く 3. 5く 3. 5く 3. 5<
P (¾) 10く 10く 10く 10く 引張強度 (kgf/mm2) 2. 47 2. 32 2. 62 2. 55 引張破断伸び (¾) 4. 8 3. 5 7. 5 4. 1 引張り弾性率 (kgf/mm2) 104. 6 1 17. 8 58. 6 61. 2 銅箔引剥し強さ (kgf/cm) 0. 49 0. 42 0. 53 0. 46 力'ラス転移温度 CO 189. 0 181. 7 176. 9 177. 4 軟化温度 ( 〉300 〉300 >300 >300 誘電率 ( 1. 0GHz) 2. 59 2. 56 2. 71 2. 73 誘電正接 ( 1. 0GHz) 0. 0065 0. 0061 0. 0070 0. 0072 難燃性 (UL94) NG NG NG NG
表面性状 X X X X
成形性 X X X X
[0215] 実施例 14
層状珪酸塩 H— 2として、ジステアリルジメチル 4級アンモニゥム塩で有機化処理が 施された膨潤性フッ素マイ力 _1 (コープケミカル社製、ソマシフ MAE—100)、層状 珪酸塩 H— 3として、ジステアリルジメチル 4級アンモニゥム塩で有機化処理が施され た天然モンモリロナイト一 1 (豊順洋行社製、 New S— Ben D)を用レ、、ポリエチレンテ レフタレート樹脂(PET)シートに熱硬化性樹脂組成物溶液をキャストし、得られたフ イルム(約 50~60 μ πιの厚み)をェヤーオーブンで 80°C 10分間乾燥後、真空プレス 成形機にて 180°C、 1時間熱硬化させ、約 50 mの硬化物フィルムを得たこと以外 は実施例 10と同様にして評価を行った。配合組成及び評価結果を表 14に示す。
[0216] [表 14] 実験番号 5 6 7 8 共重合体 A (wt¾) 8. 0 8. 0 8. 0 8. 0
OPE- 2 St- 1 (wt¾) 23. 5 23. 5 23. 5 23. 5
P P E (wt¾) 1. 5 1. 5 1. 5 1. 5
T-l (wt¾) 31. 0 31. 0 31. 0 31. 0
E-7 (wt¾) 4. 0 4. 0
E-l (wt¾) 4. 0 4. 0
F-2 (wt¾) 26. 0 26. 0 26. 0 26. 0
F-5 (wt¾) 1. 0 1. 0 1. 0 1. 0
LS-2 (wt¾) 5. 0 5. 0
LS-3 (wt¾) 5. 0 5. 0
P-l (phr) 3. 0 3. 0 3. 0 3. 0
C-l (phr) 0. 08 0. 08 0. 08 0. 08 平均層間距離 (n m) 3. 5く 3. 5< 3. 5く 3. 5く
P (%) 10く 10く 10< 10く 引張強度 (kgf/mm2) 3. 44 3. 51 3. 37 3. 56 引張破断伸び (« 18. 5 19. 7 17. 3 18. 1 引張り弾性率 (kgf/mm2) 78. 3 82. 6 79. 3 81. 7 銅箔引剥し強さ (kgf/ci) 1. 02 1. 07 0. 96 1. 01 力'ラス転移温度 ( 206. 4 203. 1 207. 2 204. 2 軟化温度 ( :) >300 〉300 >300 〉300 誘電率 ( 1. 0GHz) 2. 39 2. 42 2. 39 2. 47 誘電正接 (1. 0GHz) 0. 0037 0. 0045 0. 0041 0. 0050 難燃性 (UL94) VTM0 VTM0 VTM0 VTM0 表面性状 〇 〇 〇 〇
成形性 O 〇 〇 〇
[0217] 実施例 15
共重合体 B、熱可塑性樹脂 T-6、熱可塑性樹脂 Τ-7、熱可塑性樹脂 Τ - 5、熱硬化 性樹脂 Ε - 3、熱硬化性樹脂 Ε-5、熱硬化性樹脂 Ε - 5、ハロゲン系難燃剤 F - 3、ハロ ゲン系難燃剤 F— 4、無機系難燃剤 M-1を用いたこと以外は実施例 10と同様にして評 価を行った。結果を表 15に示す。
[0218] [表 15] 実験番号 1 3 1 4 1 5 1 6
共重合体 B (wt¾) 10. 0 7. 0 8. 0 10. 0
OPE- 2 S t- 1 (wt¾) 21. 5 20. 5 23. 5 22. 5
P P E (wt¾) 1. 5 1. 5 1. 5 1. 5
T-6 (wt¾) 26. 0 26. 0
T-7 (wt%) 5. 0 5. 0
T-4 (wt%) 31. 0 30. 0
E- 4 (wt¾) 4. 0 3. 0
E-5 (wt¾) 4. 0
E-6 (wt¾) 4. 0
F- l (wt¾) 27. 0
F-3 (wt¾) 31. 0 23. 0
F - 4 (wt¾) 27. 0
LS- l (wt¾) 5. 0 5. 0 5. 0 5. 0
M-l (wt%) 5. 0
P-l (phr) 3. 0 3. 0 3. 0 3. 0
C - 1 (phr) 0. 08 0. 08 0. 08 0. 08
平均層間距離 (n m) 3. 5< 3. 5< 3. 5< 3. 5<
P (¾) 10く 10く 10く 10く
引張強度 (kgf/mm2) 3. 57 3. 18 3. 62 3. 41
引張破断伸び ( 24. 6 18. 4 22. 1 15. 4
引張り弾性率 (kgf/mm2) 96. 0 79. 0 77. 6 80. 9
銅箔引剥し強さ (kgf/cm) 1. 06 1. 00 0. 99 1. 02
力'ラス転移温度 ( ) 204. 9 201. 6 208. 1 203. 7
軟化温度 (°c) >300 >300 〉300 >300
誘電率 ( 1. 0GHz) 2. 38 2. 56 2. 52 2. 57
誘電正接 ( 1. 0GHz) 0. 0041 0. 0051 0. 0055 0. 0053
難燃性 (UL94) VTM0 VTM0 覆 0 VTM0
表面性状 〇 〇 〇 〇
成形性 〇 〇 〇 〇 実施例 16
実施例 1 1で得られた樹脂組成物溶液にガラスクロス (Eガラス、 目付 71g/m2)を浸 漬して含浸を行い、 60°Cのエアーオーブン中で 30分間乾燥させた。得られたプリプ レグのレジンコンテンツ(R. C)は 67%であった。
このプリプレダを使用して、直径 0. 35mmのスルーホールが 5mmピッチで配置さ れている厚み 0. 8mmのコア材を張り合わせたところ、樹脂が充填されていないスル 一ホーノレは 4500穴中 0であった。
成形後の厚みが約 0. 6mm— 1. Ommになるように、上記の硬化性複合材料を必 要に応じて複数枚重ね合わせ、その両面に厚さ 35 μ mの銅箔を置いてプレス成形 機により成形硬化させて積層体を得た。各実施例の硬化条件は、 3°C/分で昇温し 、 180°Cで 60分間保持することにとした。また、圧力はいずれも 30kg m2とした。
[0220] このようにして得られた積層体の諸物性を上記の方法で測定した。
耐トリクロロエチレン性試験では積層体の外観に変化は観察されなかった。積層体 の Tgは 209°Cであった。ハンダ耐熱性試験では積層体の外観に変化は観察されな 力、つた。誘電率: 2. 65、誘電正接。. 0023であった。
[0221] 実施例 17
リン酸メラミン(三和ケミカル社製、商品名: P— 7202、難燃剤 G_l)、ピロリン酸メラミ ン(三和ケミカル社製、商品名: MPP_A、難燃剤 G_2)、メラミンシァヌレート(日産化 学社製、 MC— 440、難燃剤 G— 3)、へキサフエノキシシクロトリホスファゼン (大塚化 学社製、 SPB-100,難燃剤 G-4)を用いたこと以外は実施例 10と同様にして評価 を行つた。配合組成及び評価結果を表 16に示す。
[0222] [表 16]
実験番号 1 8 1 9 2 0 2 1
共重合体 A (wt¾) 8. 0 8. 0 8. 0 8. 0
OPE- 2 S t- 1 ( t¾) 23. 5 23. 5 23. 5 23. 5
P P E (wt¾) 1. 5 1. 5 1. 5 1. 5
T- l (wt¾) 31. 0 31. 0 31. 0 31. 0
E- 1 (wt¾) 4. 0 4. 0 4. 0 4. 0
F-2 (wt¾) 24. 0 24. 0 24. 0 24. 0
F-5 (wt¾) 1. 0 1. 0 1. 0 1. 0
G- l (wt¾) 2. 0
G-2 (wt¾) 2. 0
G-3 (wt¾) 2. 0
G-4 (wt¾) 2. 0
LS-2 (wt¾) 5. 0 5. 0
LS-3 (wt¾) 5. 0 5. 0
P-l (phr) 3. 0 3. 0 3. 0 3. 0
C-l (phr) 0. 08 0. 08 0. 08 0. 08
平均層間距離 (n m) 3. 5< 3. 5< 3. 5く 3. 5く
P (¾) 10< 10く 10く 10く
引張強度 (kgf/mm2) 3. 04 3. 05 2. 97 2. 12
引張破断伸び (¾) 13. 2 12. 1 13. 6 1 1. 2
引張り弾性率 (kgf/mm2) 81. 3 83. 6 79. 2 76. 8
銅箔引剥し強さ (kgf/cm) 0. 91 0. 84 0. 88 0. 95
力'ラス転移温度 ( ) 204. 2 205. 6 203. 1 203. 3
軟化温度 (° ) 〉300 〉300 >300 >300
誘電率 ( 1. 0GHz) 2. 51 2. 54 2. 49 2. 57
誘電正接 ( 1. 0GHz) 0. 0056 0. 0066 0. 0063 0. 0057
難燃性 (UL94) YTM0 VTM0 VTM0 VTM0
表面性状 〇 〇 〇 〇
成形性 〇 O 〇 〇 産業上の利用可能性
本発明の硬化性樹脂組成物は、硬化後において優れた耐薬品性、誘電特性、低 吸水性、耐熱性、難燃性、機械特性を示し、層状珪酸塩を含有する硬化性樹脂組成 物は薄物の成形物においても良好な硬化特性、耐熱性、誘電特性、成形性、機械 特性を示す、また、層状珪酸塩と難燃剤を含有する難燃性硬化性樹脂組成物は、三 酸化アンチモン等のアンチモンィヒ合物を含有することなく薄物の成形物或いは硬化 物においても、高度の難燃性、良好な外観、成形加工性、硬化特性、誘電特性、耐 熱性、耐熱加水分解性を示す。したがって、電気産業、宇宙'航空機産業等の分野 において誘電材料、絶縁材料、耐熱材料、構造材料等に用いることができる。特に 片面、両面、多層プリント基板、フレキシブルプリント基板、ビルドアップ基板等として 用いることができる。

Claims

請求の範囲
(A)成分:数平均分子量 Mnが 700— 4, 000の両末端にビュル基を有する式(1 )
Figure imgf000070_0001
(ここで、 zは炭素数 1以上の有機基であり、酸素原子を含むこともある。 τはビニル基 である。 a及び bは少なくともいずれか一方が 0でなレ、 0 20の整数を示す。 i及び jは それぞれ独立に 0又は 1の整数を示す。 _ (0-X_0) -は式(2)で表され、 _ (Y_0) _は 式(3)で表される 1種類以上の構造を示す。)
[化 2]
Figure imgf000070_0002
(ここで、 Αは、単結合、炭素数 20以下の直鎖状、分岐状又は環状の炭化水素基で ある。
Figure imgf000070_0003
R7、 R8、 R9、 R1Qは、独立にハロゲン原子又は炭素数 6以下のアルキル基 又はフエ二ル基を示す。
Figure imgf000070_0004
R6、 RU、 R12は、独立に、水素原子、ハロゲン原子 又は炭素数 6以下のアルキル基又はフエ二ル基を示す。 )
で表されるポリフエ二レンエーテルオリゴマーと、
(B)成分:ジビニル芳香族化合物(a)及びェチルビニル芳香族化合物 (b)からなる 単量体由来の構造単位を有する多官能ビニル芳香族共重合体であって、ジビニノレ 芳香族化合物(a)に由来する繰り返し単位を 20モル%以上含有し、かつ、下記式 (a 1)及び (a2)
[化 3]
Figure imgf000071_0001
(式中、 R"は炭素数 6— 30の芳香族炭化水素基を示し、 R14は炭素数 6— 30の芳香 族炭化水素基を示す。)で表されるジビニル芳香族化合物(a)由来のビニル基を含 有する構造単位のモル分率力 (al) /[ (al) + (a2) ]≥0. 5を満足し、かつゲル浸透 クロナトグラフィー(GPC)で測定されるポリスチレン換算の数平均分子量 (Mn)が 60 0— 30, 000であり、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn) 力 ¾0. 0以下である溶剤可溶性の多官能ビニル芳香族共重合体とからなる硬化性樹 脂組成物であり、 (A)成分及び (B)成分の合計に対する (A)成分の配合量が 20 9 8wt%、(B)成分の配合量が 2 80wt%であることを特徴とする硬化性樹脂組成物。
[2] (B)成分が多官能ビニル芳香族共重合体の主鎖骨格中に下記一般式 (4)
[化 4]
Figure imgf000071_0002
(但し、 Qは飽和若しくは不飽和の脂肪族炭化水素基又は芳香族炭化水素基又は ベンゼン環に縮合した芳香族環若しくは置換芳香族環を示し、 nは 0 4の整数であ る。 )で表されるインダン構造を有することを特徴とする可溶性多官能ビニル芳香族 共重合体であることを特徴とする請求項 1に記載の硬化性樹脂組成物。
[3] (B)成分が、多官能ビニル芳香族共重合体中に、ェチルビニル芳香族化合物 (b) 以外のモノビニル芳香族化合物(c)に由来する構造単位を含有する可溶性多官能 ビニル芳香族共重合体であることを特徴とする請求項 1又は 2に記載の硬化性樹脂 組成物。
[4] (A)成分及び (B)成分の他に、 (C)成分としての熱可塑性樹脂を含む硬化性樹脂 組成物であって、(A)成分、(B)成分及び (C)成分の合計に対する(C)成分の配合 量が 2 60wt%である請求項 1一 3記載のいずれかに硬化性樹脂組成物。
[5] (C)成分の熱可塑性樹脂が、ガラス転移温度が 20°C以下の重合体セグメントを有 するブロック共重合体及びポリフヱニレンエーテルからなる群から選ばれる 1種類以 上の熱可塑性樹脂である請求項 4に記載の硬化性樹脂組成物。
[6] (A)成分、(B)成分及び (C)成分の他に、(D)成分としての熱硬化性樹脂を含む 硬化性樹脂組成物であって、(A)成分、(B)成分、(C)成分及び (D)成分の合計に 対する(D)成分の配合量が 2— 40wt%である請求項 4又は 5記載の硬化性樹脂組 成物。
[7] (D)成分の熱硬化性樹脂が、熱硬化性ポリフエ二レンエーテル、両末端に (A)成 分とは異なる官能基を有するポリフエ二レンエーテルオリゴマー及び多官能性ェポキ シ化合物からなる群から選ばれる 1種類以上の熱硬化性樹脂である請求項 6に記載 の硬化性樹脂組成物。
[8] (A)成分、(B)成分、(C)成分及び (D)成分の他に、(E)成分としての充填剤を含 む硬化性樹脂組成物であって、(A)成分、(B)成分、(C)成分、(D)成分及び (E) 成分の合計に対する(E)成分の配合量が 2— 90wt%である請求項 6又は 7記載の硬 化性樹脂組成物。
[9] 請求項 1一 8のいずれかに記載の硬化性樹脂組成物に、ひ)成分としての層状珪酸 塩を含む硬化性樹脂組成物であって、 ti)成分の配合量が 0. 1— 98wt%であること を特徴とする硬化性樹脂組成物。
[10] CF)成分が、有機溶媒に親和性のある膨潤性層状珪酸塩である請求項 9に記載の 硬化性樹脂組成物。
[11] 請求項 1一 8のいずれかに記載の硬化性樹脂組成物に、 α)成分としての層状珪酸 塩と (κ)成分としてのハロゲン系難燃剤を含む硬化性樹脂組成物であって、 ω成分 の配合量が 0. 1— 95. 9wt%、(K)成分の配合量が 0. 1 95. 9wt%であることを特 徴とする難燃性の硬化性樹脂組成物。
[12] ti)成分が、モンモリロナイト、膨潤性マイ力及びへクトライトからなる群より選択され る少なくとも 1種の層状珪酸塩であり、(K)成分が、デカブロモジフエニルオキサイド、 オタタブ口モジフヱニルオキサイド、テトラブロモジフヱニルオキサイド、ェタン— 1 , 2- ビス(ペンタブロモフエ二ル)、ビス(2, 4, 6—トリブロモフエノキシ)ェタン、エチレンビ ステトラブロモフタルイミド、ポリジブロモフエ二レンオキサイド、テトラブロムビスフエノ ール _S、 1 , 1—スルホニル [3, 5_ジブロモ— 4_ (2, 3_ジブロモプロポキシ)]ベンゼ ン、トリス(2, 3_ジブロモプロピル一 1)イソシァヌレート、トリス(トリブロモフエニル)シァ ヌレート、ァタクチック構造の臭素化ポリスチレン、ァタクチック構造の臭素化スチレン 一メチルメタタリレート系共重合体、ァタクチック構造の臭素化スチレン一メチルメタタリ レートーグリシジルメタタリレート系共重合体、ァタクチック構造の臭素化スチレン一ダリ シジルメタタリレート系共重合体、ァタクチック構造の臭素化スチレン一ポリプロピレン 系共重合体、臭素化ポリエチレン、テトラブロムビスフエノールー A、テトラブロムビスフ エノールー A—エポキシオリゴマー、臭素化エポキシ化合物、テトラブロムビスフエノー ノレ _A_カーボネートオリゴマー、テトラブロムビスフエノーノレ _A_ビス(2—ヒドロキシジ ェチルエーテル)、テトラブロムビスフエノールー A—ビス(2, 3_ジブロモプロピルエー テル)、ポリ(ペンタブロモベンジルアタリレート)及びオタタブ口モトリメチルフエ二ルイ ンダンからなる群から選ばれる一種以上のハロゲン系難燃剤である請求項 11記載の 難燃性の硬化性樹脂組成物。
[13] CO成分が広角 X線回折測定法により測定した (001)面の平均層間距離が 3nm以 上であり、かつ、一部又は全部力 層以下に分散していることを特徴とする層状珪酸 塩である請求項 11又は 12に記載の硬化性樹脂組成物。
[14] 請求項 1一 13のいずれかに記載の硬化性樹脂組成物をフィルム状に成形してなる フィルム。
[15] 請求項 1一 13のいずれかに記載の硬化性樹脂組成物と基材からなる硬化性複合 材料であって、基材を 5— 90重量%の割合で含有することを特徴とする硬化性複合 材料。
[16] 請求項 15記載の硬化性複合材料を硬化して得られた硬化複合材料。
[17] 請求項 15記載の硬化複合材料の層と金属箔層とを有することを特徴とする積層体
[18] 請求項 1一 13のいずれかに記載の硬化性樹脂組成物から形成された膜を金属箔 の片面に有することを特徴とする樹脂付き金属箔。
PCT/JP2005/001020 2004-01-30 2005-01-26 硬化性樹脂組成物 WO2005073264A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/586,642 US7595362B2 (en) 2004-01-30 2005-01-26 Curable resin composition
CN2005800035118A CN1914239B (zh) 2004-01-30 2005-01-26 固化性树脂组合物
JP2005517460A JP5021208B2 (ja) 2004-01-30 2005-01-26 硬化性樹脂組成物
KR1020067017591A KR101075749B1 (ko) 2004-01-30 2006-08-30 경화성 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-024122 2004-01-30
JP2004024122 2004-01-30

Publications (1)

Publication Number Publication Date
WO2005073264A1 true WO2005073264A1 (ja) 2005-08-11

Family

ID=34823909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001020 WO2005073264A1 (ja) 2004-01-30 2005-01-26 硬化性樹脂組成物

Country Status (5)

Country Link
US (1) US7595362B2 (ja)
JP (1) JP5021208B2 (ja)
KR (1) KR101075749B1 (ja)
CN (1) CN1914239B (ja)
WO (1) WO2005073264A1 (ja)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070136A (ja) * 2004-09-01 2006-03-16 Nippon Steel Chem Co Ltd 硬化性樹脂組成物
JP2006083364A (ja) * 2004-08-19 2006-03-30 Mitsubishi Gas Chem Co Inc 硬化性樹脂組成物および硬化性フィルムおよびフィルム
JP2006274169A (ja) * 2005-03-30 2006-10-12 Nippon Steel Chem Co Ltd 硬化性樹脂組成物
JP2007191681A (ja) * 2005-12-22 2007-08-02 Mitsubishi Gas Chem Co Inc 保存安定性に優れる硬化性樹脂組成物、硬化性フィルムおよびフィルム
JP2007262191A (ja) * 2006-03-28 2007-10-11 Nippon Steel Chem Co Ltd 難燃硬化性樹脂組成物
WO2008018483A1 (fr) * 2006-08-08 2008-02-14 Namics Corporation Composition de résine thermodurcissable et film non durci en étant composé
JP2008133329A (ja) * 2006-11-27 2008-06-12 Matsushita Electric Works Ltd 銅張積層板用熱硬化性樹脂組成物、銅張積層板、及び銅張積層板の製造方法
JP2008208293A (ja) * 2007-02-28 2008-09-11 Namics Corp 回転砥石用保護フィルム、回転砥石および回転砥石の製造方法
US20080300350A1 (en) * 2007-05-31 2008-12-04 Mitsubishi Gas Chemical Company, Inc. Curable resin composition, curable film and their cured products
JP2009126998A (ja) * 2007-11-27 2009-06-11 Mitsubishi Gas Chem Co Inc 硬化性樹脂組成物およびその硬化物
JP2010212291A (ja) * 2009-03-06 2010-09-24 Namics Corp 配線基板の製造方法、配線基板および半導体装置
US8080297B2 (en) * 2006-05-01 2011-12-20 Nanopack, Inc. Barrier coatings for films and structures
WO2012029650A1 (ja) * 2010-09-03 2012-03-08 ナミックス株式会社 フィルムアンテナおよびその製造方法、ならびに、それに用いるアンテナ基板用フィルム
JP2014034580A (ja) * 2012-08-07 2014-02-24 Ajinomoto Co Inc 樹脂組成物
US8841367B2 (en) 2012-05-24 2014-09-23 Sabic Innovative Plastics Ip B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US9023922B2 (en) 2012-05-24 2015-05-05 Sabic Global Technologies B.V. Flame retardant compositions, articles comprising the same and methods of manufacture thereof
JP2016190899A (ja) * 2015-03-30 2016-11-10 新日鉄住金化学株式会社 末端変性可溶性多官能ビニル芳香族共重合体及びその製造方法
JP2017071798A (ja) * 2017-01-10 2017-04-13 味の素株式会社 樹脂組成物
KR20170099952A (ko) 2014-12-26 2017-09-01 신닛테츠 수미킨 가가쿠 가부시키가이샤 말단 변성 가용성 다관능 비닐 방향족 공중합체, 경화성 수지 조성물 및 이것을 사용한 광도파로
JP2019090037A (ja) * 2014-12-22 2019-06-13 ドゥーサン コーポレイション 熱硬化性樹脂組成物及びこれを用いたプリプレグ、積層シート、並びに印刷回路基板
JP2019108557A (ja) * 2019-03-15 2019-07-04 味の素株式会社 樹脂組成物
JP2020515701A (ja) * 2017-08-04 2020-05-28 廣東生益科技股▲ふん▼有限公司Shengyi Technology Co.,Ltd. 熱硬化性樹脂組成物、それを用いて製造されたプリプレグおよび金属箔張積層板
CN111223833A (zh) * 2020-01-10 2020-06-02 四川豪威尔信息科技有限公司 一种集成电路结构及其形成方法
WO2020166288A1 (ja) * 2019-02-12 2020-08-20 ナミックス株式会社 光硬化性樹脂組成物及びそれを硬化させて得られる硬化物
JP2020132764A (ja) * 2019-02-20 2020-08-31 旭化成株式会社 ポリフェニレンエーテル含有樹脂組成物
JP2020200425A (ja) * 2019-06-13 2020-12-17 旭化成株式会社 ポリフェニレンエーテル含有樹脂組成物
JPWO2021065275A1 (ja) * 2019-10-02 2021-04-08
JP2021138802A (ja) * 2020-03-03 2021-09-16 住友ベークライト株式会社 樹脂組成物、それを用いたキャリア付樹脂膜、プリプレグ、積層板、プリント配線基板および半導体装置
US11130861B2 (en) 2017-03-30 2021-09-28 Nippon Steel Chemical & Material Co., Ltd. Soluble polyfunctional vinyl aromatic copolymer, method for producing same, curable resin composition and cured product thereof
WO2022054303A1 (ja) * 2020-09-11 2022-03-17 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP2023001134A (ja) * 2017-03-02 2023-01-04 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2024034463A1 (ja) * 2022-08-08 2024-02-15 三井金属鉱業株式会社 樹脂組成物、樹脂付銅箔及びプリント配線板

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034514B2 (en) * 2005-03-08 2011-10-11 Nippon Steel Chemical Co., Ltd. Photosensitive resin composition for volume phase hologram recording and optical information recording medium using the same
WO2007102470A1 (ja) * 2006-03-09 2007-09-13 Nippon Steel Chemical Co., Ltd. 体積位相型ホログラム記録用感光性樹脂組成物及びそれを用いた光情報記録媒体
CN102718914B (zh) * 2007-03-26 2015-04-22 新日铁住金化学株式会社 可溶性多官能乙烯基芳香族共聚物及其制造方法
JP5150295B2 (ja) * 2008-02-12 2013-02-20 ローム株式会社 フレキシブル基板及びその製造方法
KR20110003473A (ko) * 2008-04-14 2011-01-12 쇼와 덴코 가부시키가이샤 투명 복합 재료 및 그 제조 방법
JO3423B1 (ar) * 2008-12-02 2019-10-20 Albemarle Corp مؤخرات لهب معالجة بالبروم و مواد مشتقه منها
EP2516529B1 (en) * 2009-12-24 2015-02-25 Bromine Compounds Ltd. Flame retardant compositions
US8617702B2 (en) 2010-04-28 2013-12-31 Sabic Innovative Plastics Ip B.V. Thermally insulated structural members, and doors and windows incorporating them
WO2013055328A1 (en) * 2011-10-12 2013-04-18 Otis Elevator Company Flame retardant tension member
US8696864B2 (en) * 2012-01-26 2014-04-15 Promerus, Llc Room temperature debonding composition, method and stack
FR2988644B1 (fr) * 2012-04-02 2014-04-11 Michelin & Cie Procede de rechapage d'un pneumatique dont la zone sommet est pourvue d'une sous-couche comportant un elastomere thermoplastique
JP5901066B2 (ja) * 2012-04-27 2016-04-06 三井金属鉱業株式会社 樹脂組成物、樹脂層付金属箔、金属張積層板及びプリント配線板
CN102807658B (zh) 2012-08-09 2014-06-11 广东生益科技股份有限公司 聚苯醚树脂组合物及使用其制作的半固化片与覆铜箔层压板
JP5955156B2 (ja) * 2012-08-10 2016-07-20 ナミックス株式会社 樹脂組成物、ならびに、それによる接着フィルムおよびカバーレイフィルム
JP5914812B2 (ja) * 2012-08-29 2016-05-11 パナソニックIpマネジメント株式会社 変性ポリフェニレンエーテル、その製造方法、ポリフェニレンエーテル樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板
CN104781307B (zh) * 2012-11-06 2017-04-12 日本化药株式会社 多元亚苯基醚酚醛清漆树脂、环氧树脂组合物及其固化物
US9617398B2 (en) 2013-12-16 2017-04-11 Ut-Battelle, Llc Multifunctional curing agents and their use in improving strength of composites containing carbon fibers embedded in a polymeric matrix
EP3085741B1 (en) * 2013-12-20 2018-10-03 Sumitomo Bakelite Company Limited Thermosetting resin composition and metal-resin composite
US10662304B2 (en) 2013-12-31 2020-05-26 Saint-Gobain Performance Plastics Corporation Composites for protecting signal transmitters/receivers
US10287387B2 (en) 2014-09-11 2019-05-14 Kaneka Corporation Epoxy resin composition for casting
ES2834740T3 (es) * 2016-05-13 2021-06-18 Nanya Plastics Corp Composición resistente a la soldadura con Dk/Df baja utilizada para placa de circuito impreso
TWI715778B (zh) * 2016-06-10 2021-01-11 日商索馬龍股份有限公司 不飽和聚酯樹脂組合物及其固化物
US10527936B2 (en) 2016-06-17 2020-01-07 Nan Ya Plastics Corporation Low Dk/Df solder resistant composition use for printed circuit board
TWI635133B (zh) * 2017-03-27 2018-09-11 廣科工業股份有限公司 聚苯醚樹脂組合物
CN109385018A (zh) 2017-08-04 2019-02-26 广东生益科技股份有限公司 一种热固性树脂组合物及使用其制作的半固化片与覆金属箔层压板
CN109385020A (zh) * 2017-08-04 2019-02-26 广东生益科技股份有限公司 一种热固性树脂组合物及使用其制作的半固化片与覆金属箔层压板
US10329269B2 (en) 2017-08-31 2019-06-25 Leukogene Therapeutics Incorporated Indene derivatives and uses thereof
KR101838027B1 (ko) 2017-12-05 2018-04-27 김철호 기능성과 내구성이 개선된 탄성 포장재 조성물 및 이를 이용한 박층 포장 방법
US10995182B2 (en) 2018-04-30 2021-05-04 Shpp Global Technologies B.V. Phenylene ether oligomer, curable composition comprising the phenylene ether oligomer, and thermoset composition derived therefrom
EP3567068A1 (en) * 2018-05-07 2019-11-13 SABIC Global Technologies B.V. Functional phenylene ether oligomer and curable and thermoset compositions prepared therefrom
KR102329650B1 (ko) * 2018-06-01 2021-11-19 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
US12024590B2 (en) * 2018-07-19 2024-07-02 Panasonic Intellectual Property Management Co., Ltd. Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
TWI688607B (zh) * 2018-10-04 2020-03-21 台光電子材料股份有限公司 樹脂組合物及由其製成之物品
TWI700332B (zh) 2018-12-06 2020-08-01 台燿科技股份有限公司 無鹵素低介電樹脂組合物,使用彼所製得之預浸漬片、金屬箔積層板及印刷電路板
WO2020196759A1 (ja) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 プリプレグ、金属張積層板、及び配線板
CN114423821A (zh) * 2019-09-27 2022-04-29 松下知识产权经营株式会社 树脂组合物、和使用其的预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板及布线板
CN114423602A (zh) * 2019-09-27 2022-04-29 松下知识产权经营株式会社 树脂组合物、预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板、以及布线板
KR20220070236A (ko) * 2019-09-30 2022-05-30 다이요 홀딩스 가부시키가이샤 폴리페닐렌에테르를 포함하는 경화성 조성물, 드라이 필름, 프리프레그, 경화물, 적층판 및 전자 부품
US20230094806A1 (en) * 2019-10-25 2023-03-30 Panasonic Intellectual Property Management Co., Ltd. Metal-clad laminate, wiring board, resin-including metal foil, and resin composition
CN111333906B (zh) * 2020-03-26 2021-03-30 中国科学院化学研究所 一种固体酸催化剂、碳纳米纤维的制备方法
CN111393824B (zh) * 2020-04-23 2022-07-08 泰州市旺灵绝缘材料厂 高频高速树脂组合物
KR102328970B1 (ko) * 2020-07-23 2021-11-19 주식회사 엘케이건설 방수 시공 방법.
TWI795658B (zh) * 2020-07-23 2023-03-11 南亞塑膠工業股份有限公司 高頻基板用樹脂組成物及金屬積層板
CN112679936B (zh) * 2020-12-23 2022-08-16 广东生益科技股份有限公司 一种热固性树脂组合物及包含其的树脂胶液、预浸料、层压板、覆铜板和印刷电路板
TWI845083B (zh) 2022-12-23 2024-06-11 財團法人工業技術研究院 具有乙烯基的共聚物與樹脂組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912930A (ja) * 1982-06-30 1984-01-23 アモコ、コ−ポレ−ション ポリアリーレンポリエーテル及びポリスルホン樹脂の製法
JPH06136075A (ja) * 1992-10-28 1994-05-17 Asahi Chem Ind Co Ltd 硬化性樹脂組成物および硬化性複合材料
JPH06179734A (ja) * 1992-12-15 1994-06-28 Asahi Chem Ind Co Ltd 硬化性の樹脂組成物および硬化性複合材料
JPH06184213A (ja) * 1992-12-22 1994-07-05 Asahi Chem Ind Co Ltd 硬化性樹脂組成物および硬化性複合材料
JP2003515642A (ja) * 1999-12-01 2003-05-07 ゼネラル・エレクトリック・カンパニイ ポリ(フェニレンエーテル)−ポリビニル熱硬化性樹脂

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965663A (en) * 1995-06-06 1999-10-12 Kabushiki Kaisha Toshiba Resin composition and resin-molded type semiconductor device
JP2000128908A (ja) 1998-10-23 2000-05-09 Daicel Chem Ind Ltd スチレン系重合体及びその製造方法
JP4310607B2 (ja) 2002-03-11 2009-08-12 三菱瓦斯化学株式会社 積層板用熱硬化性樹脂組成物
JP2003292570A (ja) 2002-03-29 2003-10-15 Mitsubishi Gas Chem Co Inc 積層板用エポキシ樹脂組成物
US6835785B2 (en) * 2002-01-28 2004-12-28 Mitsubishi Gas Chemical Company, Inc. Polyphenylene ether oligomer compound, derivatives thereof and use thereof
JP4717358B2 (ja) * 2004-01-30 2011-07-06 新日鐵化学株式会社 可溶性多官能ビニル芳香族重合体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912930A (ja) * 1982-06-30 1984-01-23 アモコ、コ−ポレ−ション ポリアリーレンポリエーテル及びポリスルホン樹脂の製法
JPH06136075A (ja) * 1992-10-28 1994-05-17 Asahi Chem Ind Co Ltd 硬化性樹脂組成物および硬化性複合材料
JPH06179734A (ja) * 1992-12-15 1994-06-28 Asahi Chem Ind Co Ltd 硬化性の樹脂組成物および硬化性複合材料
JPH06184213A (ja) * 1992-12-22 1994-07-05 Asahi Chem Ind Co Ltd 硬化性樹脂組成物および硬化性複合材料
JP2003515642A (ja) * 1999-12-01 2003-05-07 ゼネラル・エレクトリック・カンパニイ ポリ(フェニレンエーテル)−ポリビニル熱硬化性樹脂

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541408B2 (en) * 2004-08-19 2009-06-02 Mitsubishi Gas Chemical Company, Inc. Curable resin composition, curable film and cured film
JP2006083364A (ja) * 2004-08-19 2006-03-30 Mitsubishi Gas Chem Co Inc 硬化性樹脂組成物および硬化性フィルムおよびフィルム
JP2006070136A (ja) * 2004-09-01 2006-03-16 Nippon Steel Chem Co Ltd 硬化性樹脂組成物
JP2006274169A (ja) * 2005-03-30 2006-10-12 Nippon Steel Chem Co Ltd 硬化性樹脂組成物
JP2007191681A (ja) * 2005-12-22 2007-08-02 Mitsubishi Gas Chem Co Inc 保存安定性に優れる硬化性樹脂組成物、硬化性フィルムおよびフィルム
JP2007262191A (ja) * 2006-03-28 2007-10-11 Nippon Steel Chem Co Ltd 難燃硬化性樹脂組成物
US8080297B2 (en) * 2006-05-01 2011-12-20 Nanopack, Inc. Barrier coatings for films and structures
WO2008018483A1 (fr) * 2006-08-08 2008-02-14 Namics Corporation Composition de résine thermodurcissable et film non durci en étant composé
JP2008133329A (ja) * 2006-11-27 2008-06-12 Matsushita Electric Works Ltd 銅張積層板用熱硬化性樹脂組成物、銅張積層板、及び銅張積層板の製造方法
JP2008208293A (ja) * 2007-02-28 2008-09-11 Namics Corp 回転砥石用保護フィルム、回転砥石および回転砥石の製造方法
US9062145B2 (en) * 2007-05-31 2015-06-23 Mitsubishi Gas Chemical Company, Inc. Curable resin composition, curable film and their cured products
US20080300350A1 (en) * 2007-05-31 2008-12-04 Mitsubishi Gas Chemical Company, Inc. Curable resin composition, curable film and their cured products
JP2009126998A (ja) * 2007-11-27 2009-06-11 Mitsubishi Gas Chem Co Inc 硬化性樹脂組成物およびその硬化物
JP2010212291A (ja) * 2009-03-06 2010-09-24 Namics Corp 配線基板の製造方法、配線基板および半導体装置
WO2012029650A1 (ja) * 2010-09-03 2012-03-08 ナミックス株式会社 フィルムアンテナおよびその製造方法、ならびに、それに用いるアンテナ基板用フィルム
US8841367B2 (en) 2012-05-24 2014-09-23 Sabic Innovative Plastics Ip B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US8895649B2 (en) 2012-05-24 2014-11-25 Sabic Global Technologies B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US8927661B2 (en) 2012-05-24 2015-01-06 Sabic Global Technologies B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US9018286B2 (en) 2012-05-24 2015-04-28 Sabic Global Technologies B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US9023922B2 (en) 2012-05-24 2015-05-05 Sabic Global Technologies B.V. Flame retardant compositions, articles comprising the same and methods of manufacture thereof
US9023923B2 (en) 2012-05-24 2015-05-05 Sabic Global Technologies B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US9394483B2 (en) 2012-05-24 2016-07-19 Sabic Global Technologies B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
JP2014034580A (ja) * 2012-08-07 2014-02-24 Ajinomoto Co Inc 樹脂組成物
JP2019090037A (ja) * 2014-12-22 2019-06-13 ドゥーサン コーポレイション 熱硬化性樹脂組成物及びこれを用いたプリプレグ、積層シート、並びに印刷回路基板
KR20170099952A (ko) 2014-12-26 2017-09-01 신닛테츠 수미킨 가가쿠 가부시키가이샤 말단 변성 가용성 다관능 비닐 방향족 공중합체, 경화성 수지 조성물 및 이것을 사용한 광도파로
JP2016190899A (ja) * 2015-03-30 2016-11-10 新日鉄住金化学株式会社 末端変性可溶性多官能ビニル芳香族共重合体及びその製造方法
JP2017071798A (ja) * 2017-01-10 2017-04-13 味の素株式会社 樹脂組成物
JP2023001134A (ja) * 2017-03-02 2023-01-04 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP7557841B2 (ja) 2017-03-02 2024-09-30 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP7519600B2 (ja) 2017-03-02 2024-07-22 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
US11130861B2 (en) 2017-03-30 2021-09-28 Nippon Steel Chemical & Material Co., Ltd. Soluble polyfunctional vinyl aromatic copolymer, method for producing same, curable resin composition and cured product thereof
JP2020515701A (ja) * 2017-08-04 2020-05-28 廣東生益科技股▲ふん▼有限公司Shengyi Technology Co.,Ltd. 熱硬化性樹脂組成物、それを用いて製造されたプリプレグおよび金属箔張積層板
WO2020166288A1 (ja) * 2019-02-12 2020-08-20 ナミックス株式会社 光硬化性樹脂組成物及びそれを硬化させて得られる硬化物
JP7401917B2 (ja) 2019-02-12 2023-12-20 ナミックス株式会社 光硬化性樹脂組成物及びそれを硬化させて得られる硬化物
JPWO2020166288A1 (ja) * 2019-02-12 2021-12-16 ナミックス株式会社 光硬化性樹脂組成物及びそれを硬化させて得られる硬化物
JP2020132764A (ja) * 2019-02-20 2020-08-31 旭化成株式会社 ポリフェニレンエーテル含有樹脂組成物
JP7202920B2 (ja) 2019-02-20 2023-01-12 旭化成株式会社 ポリフェニレンエーテル含有樹脂組成物
JP2019108557A (ja) * 2019-03-15 2019-07-04 味の素株式会社 樹脂組成物
JP2020200425A (ja) * 2019-06-13 2020-12-17 旭化成株式会社 ポリフェニレンエーテル含有樹脂組成物
JP7339025B2 (ja) 2019-06-13 2023-09-05 旭化成株式会社 ポリフェニレンエーテル含有樹脂組成物
CN114514261A (zh) * 2019-10-02 2022-05-17 旭化成株式会社 聚苯醚组合物
JP7202476B2 (ja) 2019-10-02 2023-01-11 旭化成株式会社 ポリフェニレンエーテル組成物
KR20220029709A (ko) * 2019-10-02 2022-03-08 아사히 가세이 가부시키가이샤 폴리페닐렌에테르 조성물
KR102660658B1 (ko) 2019-10-02 2024-04-26 아사히 가세이 가부시키가이샤 폴리페닐렌에테르 조성물
JPWO2021065275A1 (ja) * 2019-10-02 2021-04-08
CN111223833A (zh) * 2020-01-10 2020-06-02 四川豪威尔信息科技有限公司 一种集成电路结构及其形成方法
JP2021138802A (ja) * 2020-03-03 2021-09-16 住友ベークライト株式会社 樹脂組成物、それを用いたキャリア付樹脂膜、プリプレグ、積層板、プリント配線基板および半導体装置
JP7476574B2 (ja) 2020-03-03 2024-05-01 住友ベークライト株式会社 樹脂組成物、それを用いたキャリア付樹脂膜、プリプレグ、積層板、プリント配線基板および半導体装置
WO2022054303A1 (ja) * 2020-09-11 2022-03-17 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2024034463A1 (ja) * 2022-08-08 2024-02-15 三井金属鉱業株式会社 樹脂組成物、樹脂付銅箔及びプリント配線板

Also Published As

Publication number Publication date
JP5021208B2 (ja) 2012-09-05
JPWO2005073264A1 (ja) 2007-09-06
CN1914239A (zh) 2007-02-14
CN1914239B (zh) 2010-05-05
KR20070009572A (ko) 2007-01-18
US7595362B2 (en) 2009-09-29
KR101075749B1 (ko) 2011-10-24
US20070129502A1 (en) 2007-06-07

Similar Documents

Publication Publication Date Title
WO2005073264A1 (ja) 硬化性樹脂組成物
TWI814832B (zh) 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂片及印刷配線板
TWI706993B (zh) 樹脂組成物、預浸體、積層板及多層印刷線路板
KR101144566B1 (ko) 에폭시 수지 조성물, 그 에폭시 수지 조성물을 이용한 프리프레그, 금속 클래드 적층판, 및 프린트 배선판
TWI719382B (zh) 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂複合片、及印刷配線板
JP6684822B2 (ja) 高周波用熱硬化性樹脂組成物及びこれを用いたプリプレグ、積層シート、並びに印刷回路基板
TWI572656B (zh) A resin composition and a prepreg and a laminate using the resin composition
CN110655536B (zh) 一种含磷化合物、含磷阻燃剂及其制备方法与制品
KR101920106B1 (ko) 프린트 배선판 재료용 수지 조성물, 그리고 그것을 사용한 프리프레그, 수지 시트, 금속박 피복 적층판 및 프린트 배선판
JP6536565B2 (ja) 樹脂組成物、プリプレグ、樹脂シート、金属箔張積層板及びプリント配線板
TWI572649B (zh) 預浸體及疊層板
TWI546333B (zh) 樹脂組成物、預浸體、樹脂板片及覆金屬箔疊層板
JP2007262191A (ja) 難燃硬化性樹脂組成物
JP2006089683A (ja) 難燃性樹脂組成物
WO2015152427A1 (ja) N-置換マレイミド基を有するポリフェニレンエーテル誘導体、並びにそれを用いた熱硬化性樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及び多層プリント配線板
KR101730283B1 (ko) 열경화성 수지 조성물 및 그 용도
JP4864301B2 (ja) 硬化性樹脂組成物
TWI555766B (zh) 樹脂組成物、預浸體及疊層板
JP2006274169A (ja) 硬化性樹脂組成物
TW202235267A (zh) 覆銅箔疊層板及印刷配線板
JP2017066280A (ja) 熱硬化性樹脂組成物とその製造方法、並びに前記熱硬化性樹脂組成物を有するプリプレグ、金属張積層板、及び多層プリント配線板
TW202024223A (zh) 熱硬化性樹脂組成物、預浸體、樹脂片、覆金屬箔疊層板及印刷配線板
JP2006291098A (ja) 熱硬化性樹脂組成物及びそれを用いたプリプレグ、金属張積層板、配線板
JP2011074397A (ja) 熱硬化性樹脂組成物及びそれを用いたプリプレグ、金属張積層板、配線板
CN112679911B (zh) 改性环氧树脂组合物及应用其制备的半固化片和层压板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517460

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007129502

Country of ref document: US

Ref document number: 10586642

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580003511.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067017591

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067017591

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10586642

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载