+

WO2005061721A1 - Novel high-titre retroviral vector and transduction methods - Google Patents

Novel high-titre retroviral vector and transduction methods Download PDF

Info

Publication number
WO2005061721A1
WO2005061721A1 PCT/ES2004/000558 ES2004000558W WO2005061721A1 WO 2005061721 A1 WO2005061721 A1 WO 2005061721A1 ES 2004000558 W ES2004000558 W ES 2004000558W WO 2005061721 A1 WO2005061721 A1 WO 2005061721A1
Authority
WO
WIPO (PCT)
Prior art keywords
retroviral
retroviral vector
sequence
vector
vector according
Prior art date
Application number
PCT/ES2004/000558
Other languages
Spanish (es)
French (fr)
Inventor
Manuel Angel GONZALEZ DE LA PEÑA
José Luis ABAD MINGUEZ
Original Assignee
Cellerix, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cellerix, S.L. filed Critical Cellerix, S.L.
Publication of WO2005061721A1 publication Critical patent/WO2005061721A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/867Retroviral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13041Use of virus, viral particle or viral elements as a vector
    • C12N2740/13042Use of virus, viral particle or viral elements as a vector virus or viral particle as vehicle, e.g. encapsulating small organic molecule
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13041Use of virus, viral particle or viral elements as a vector
    • C12N2740/13043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/10Vectors comprising a special translation-regulating system regulates levels of translation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/20Vectors comprising a special translation-regulating system translation of more than one cistron
    • C12N2840/203Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES

Definitions

  • the present invention relates to new retroviral vectors capable of producing high-grade non-replicative infective retroviral particles and methods for the use of said particles in the transfer of gene constructs of interest.
  • Retroviruses are a group of viruses characterized by having as single-stranded RNA + genetic material. All retroviruses contain three main coding regions in their genome: Gag, which directs the synthesis of the structural proteins of the viral particle (matrix, capsid and nucleocapsid), Pro-Pol, which determines the synthesis of proteins with enzymatic activity (protease , reverse transcriptase and integrase), and Env, which encodes envelope glycoproteins (surface and transmembrane) (Duesberg et al., 1970).
  • the retrovirus cycle begins with the interaction of virion envelope glycoproteins with specific cell receptors. This interaction leads to the entry of the viral particle into the cell cytoplasm.
  • this viral genomic RNA Upon entry into the cell cytoplasm, this viral genomic RNA is converted to double stranded DNA through the first of the fundamental processes of its biological cycle: reverse transcription. Thanks to this process, the viral RNA, which at its 3 'end contains the region called U3 (unique region 3), results in a DNA in which U3 is duplicated and is represented on both sides of the chain, which allows Transcription of the integrated provirus, since U3 acts as a promoter.
  • U3 unique region 3
  • duplications of U5 and U3 during reverse transcription are due to the existence of sequences such as the polyurethane tract (PPT, immediately prior to 5 'end of U3), the first binding site (PBS, immediately after the 3' end of U5) and repeated regions (called R) located on both sides of the genome, which direct the synthesis of proviral DNA chains ( Baltimore, 1970; Temin et al., 1970; Coffin et al., 1997).
  • the newly formed copy DNA is the object of the second of the fundamental processes of the retroviral cycle: integration, thanks to which the viral DNA is inserted in non-predetermined places of the cell chromosomes, constituting the so-called provirus.
  • This viral DNA behaves like a cellular locus in the course of cell divisions and is the one that encodes the materials necessary for the formation of new viral particles, which constitute the progeny of the viral particle that originated the process.
  • LTR regions (English acronym for Long Term Repeats, formed by the succession of U3-R-U5 sequences) there are key sites for the integration of proviral DNA into the target cell. Adjacent to the LTR regions, as described above, sequences necessary for the reverse transcription of the viral genome, PBS and PPT respectively are located, in addition to a sequence necessary for the efficient encapsidation of viral RNA in retroviral particles (the sequence ⁇ ).
  • the 800 nucleotide region of the Moloney virus genome of murine leukemia (MoLV) that begins just after the SD (splicing donor site) and extends within the region encoding the gag polyprotein is sufficient to drive the efficient packaging of a heterologous transcript (Adam et al., 1988; Dornburg et al., 1988).
  • the processing of the viral mRNA is carried out from the SD, located next to the PBS, to the splicing acceptor site (SA), the latter, included within the coding region of the polyprotein pol.
  • SA splicing acceptor site
  • Retroviral vectors and their various applications have been described by numerous authors, (Mann et al., 1983; Cone et al., 1984; Miller, 1990), and US Patent Nos. 4,405,712; 4,861,719; 4,980,289 and PCT applications Nos. WO 89 / 02,468; WO 89 / 05,349 and WO 90 / 02,806.
  • Retroviral vectors as a method to introduce heterologous genes into target cells have been widely used for the following reasons: (1) Because of their broad cell tropism and their high efficiency in incorporating genetic material into the nucleus of replicative target cells; (2) For the relatively high levels of gene expression; (3) Because the type of gene expression they produce is stable due to the integration of the viral genome into the cell genome; (4) Because retroviral infection per se does not produce toxic effects on infected cells; (5) Because retroviral particles do not usually induce significant immune responses; (6) Because of the potential capacity that these vectors possess to regulate their expression in a tissue-dependent manner and / or cell target, as well as to regulate their expression over time; (7) Due to the knowledge that is already available of these types of vectors and their various applications (Romano et al., 2000).
  • retroviral vectors that focus on the induction of replication of the target cells or towards increasing the efficiency of replication of said cells, to allow retroviral infection of the target cells.
  • T cells there are various non-specific stimulation methods in vivo that are efficient enough to induce their replication (such as IL-2, mitogens, and anti-CD3 or anti-CD28 antibodies).
  • stimulation methods such as IL-2, mitogens, and anti-CD3 or anti-CD28 antibodies.
  • the retroviral vectors of the present invention allow efficient transduction of primary cells stimulated with methods compatible with clinical uses of said cells, although said methods do not produce stimulation as potent as others more nonspecific and incompatible with the clinical one.
  • the methods of producing retroviral particles by stable transfection they yield low titers, and co-cultivation of stable producing lines of retroviral particles with the target cell is usually required.
  • the method of producing infective retroviral particles by transient transfection of the packaging cell is much more efficient than stable packaging lines, but only some retroviral vectors such as those of the present invention are designed to be used by transient transfection.
  • the high-titre retroviral vectors of the present invention allow to infect primary cells with an efficiency that makes subsequent selection with antibiotics unnecessary.
  • its design allows to house other types of marker genes that involve selection processes of infected cells faster than antibiotic resistance selection.
  • a first aspect of the invention is to provide new replication-derived MoMLV retroviral vectors comprising a specific set of sequences with an optimized arrangement for the production of an infective but replication-deficient retroviral particle, which confers on said vectors the ability to produce high-titre retroviral supernatants for retroviral transduction of cells and cell lines difficult to transduce so far.
  • a second aspect of the invention is to provide host cells transfected, transformed and / or infected with the retroviral vectors of the present invention.
  • a third aspect of the present invention is to provide methods for the stable or transient production of infective retroviral particles and for the infection of target cells with said retroviral particles.
  • a fourth aspect of the present invention consists in the application of the retroviral vectors of the present invention for the production of transgenic animals by infection of embryonic stem cells with said retroviral particles, for gene therapy, production of retroviral libraries and Expression and / or overexpression of proteins or RNA.
  • Figure 1 shows the structure of the pRV proviral genome. MCS and MCS2, polycloning sites; SD, splicing donor site; SA, splicing acceptor site; ⁇ *, MoMLV extended packaging signal; CMV, early cytomegalovirus promoter; U3, R and U5, elements of the LTR of MoMLV and PBS, the first binding site.
  • the restriction sites indicated are unique within the plasmid pRV.
  • Figure 2 shows the structure of the 3 'LTR of the retroviral vector pRV (SEQ
  • Dotted lines indicate deletions that can be made in the U3 region of the 3 'LTR to construct a self-activating pRV vector.
  • the corresponding restriction targets are shown.
  • MCS polycloning site; RD, direct repetition; CAAT, CAAT box; TATA, TATA box.
  • the invention provides new retroviral vectors derived from MoMLV characterized in that they consist of a specific set of sequences with an optimized arrangement for the production of an infective but replication-deficient retroviral particle, which confers on said vectors the ability to produce supernatants.
  • These vectors comprise the retroviral plasmid pRV (SEQ ID NO.
  • Example 1 of the present invention which includes sequences, derived from MoMLV or heterologous, optimized for transcription, encapsidation and retrotranscription of the retroviral genomic RNA, for the correct processing (splicing) of the mRNA, for the integration of the proviral DNA in the genome of the target cell and for the correct translation of the mRNA and expression of heterologous genes of interest in the target cells of the particles retrovirals produced from the pRV vector and other derivatives thereof.
  • Figure 1 shows the structure of the pRV proviral DNA.
  • the present invention also includes the complementary strand of SEQ ID NO. 1 and DNA sequences that hybridize under high astringency conditions with SEQ ID NO. 1 or its complementary strand.
  • Nucleic acids with sequence identity or a high degree of homology can be detected by hybridization under high astringency conditions, for example, at 50 ° C or more in SSC solution 0, lx (15 mM sodium chloride / 1.5 sodium citrate mM). Nucleic acids having a region of high homology or identity with the sequences described in the present invention, eg allelic variants, or versions engineered, etc., bind to the sequences described in the invention under high conditions. astringency. Other conditions of high astringency are known in the state of the art that could also be used to identify nucleic acids that retain a high degree of homology with the described sequences.
  • the MoMLV regions encoding env and pol have been completely removed from the replication-deficient MoMLV retroviral vector of the present invention, and the gag coding region has been partially removed.
  • the gag region that has not been removed is part of the extended packaging signal, which comprises positions 215-1038 of the MoMLV virus.
  • the elimination of all these sequences is aimed at the maximum reduction of viral sequences that by homologous recombination can cause retroviral particles competent for replication.
  • the elimination of these sequences reduces the size of the proviral genome of the vector of the present invention up to 2.5 kb, which allows cloning inserts of up to 7.0 kb.
  • Retroviral vectors that only retain the minimum packaging signal (positions 215-563 of MoMLV), produce retroviral titers 10 to 100 times lower than those that possess the extended packaging signal as in the vector of the present invention. , which includes 455 bp from the gag coding region. (Naviaux et al., 1992)
  • the replication-deficient MoMLV-derived retroviral vector of the present invention has the U3 region of MoMLV 5 'LTR replaced by the cytomegalovirus (CMV) early promoter.
  • CMV cytomegalovirus
  • the production of the retroviral genomic RNA, being under the control of the CMV promoter, allows the number of copies of the retroviral genome to be significantly increased inside the packaging line, so that the retroviral titers of this vector are around an order of magnitude higher than those that retain the 5 'LTR native to MoMLV.
  • other heterologous promoters are provided in the same position as that of the CMV promoter, including but not limited to the Rous sarcoma virus (RSV) promoter.
  • RSV Rous sarcoma virus
  • the replication-deficient MoMLV-derived retroviral vector of the present invention includes donor and splicing acceptor sites that favor export to the cytoplasm of subgenomic RNA, which enhances expression in the target cell of the heterologous genes included in the vector.
  • the replication-deficient MoMLV retroviral vector of the present invention includes a polycloning site (MCS2) that precedes the splicing acceptor site that includes, but is not limited to, the following restriction sites: Bgl II,
  • Hpa I, Sph I Hpa I, Sph I.
  • This MCS 2 polycloning site allows the inclusion of heterologous sequences (eg cis regulatory sequences or internal promoters).
  • the replication-deficient MoMLV retroviral vector of the present invention includes as a splicing acceptor site (SA), a synthetic sequence based on a partially degenerated consensus sequence of the focus-forming Spleen virus (SFFV), which does not include open reading phases (ORF) or aberrant translation starts (ATG), coming from the 3 'end of the MoMLV Pol gene.
  • SA splicing acceptor site
  • SFFV focus-forming Spleen virus
  • ATG aberrant translation starts
  • This synthetic sequence only retains 26 base pairs homologous to the MoMLV Pol gene.
  • Many of the retroviral vectors containing SA sites include open reading frames (ORF) that can interfere with the correct expression of the heterologous genes encoded by the retroviral vector.
  • the retroviral vector of the present invention has a polycloning site called MCS located next to the SA site, which includes, but is not limited to, the following restriction sites: Bam HI-Xho I-Eco RI-Swa I - Sac II - C ⁇ a I - Not I - Sal I.
  • MCS polycloning site located next to the SA site, which includes, but is not limited to, the following restriction sites: Bam HI-Xho I-Eco RI-Swa I - Sac II - C ⁇ a I - Not I - Sal I.
  • MCS polycloning site located next to the SA site, which includes, but is not limited to, the following restriction sites: Bam HI-Xho I-Eco RI-Swa I - Sac II - C ⁇ a I - Not I - Sal I.
  • the presence of this MCS allows the inclusion in the retroviral vector of all types of heterologous sequences (eg genes applied in gene therapy or research, selection markers
  • the MCS site allows you to enter a single sequence (Example 2) or several simultaneously in the same construction (Examples 3 and 4).
  • the inclusion of one or two IRES in the pRV MCS allows bi- or tricistronic constructs to be made for the simultaneous expression of two or three genes in the cell where said constructs are introduced, either by transfection or by retroviral transduction (Example 4).
  • Heterologous sequences can be introduced interchangeably at the MCS, MCS 2 polycloning site or both simultaneously.
  • the method for the production of self-activating retroviral vectors from the retroviral vector described in the present invention is included, as well as said self-activating retroviral vectors.
  • Truncated LTRs are constructed by partial deletion of the U3 region of the viral LTR3 '.
  • This U3 region constitutes the viral promoter and has in its sequence two direct repeats (RD) that act as enhancers for the transcription of the viral RNA.
  • RD direct repeats
  • the U3 region possesses the transcriptional elements called CAAT and TATA boxes respectively, and which, together, constitute the minimum viral promoter.
  • the deletion of one or more of these elements affects, to a greater or lesser extent, the levels of expression obtained from the U3 viral promoter.
  • Self-activating vectors have advantages over those that preserve the U3 region in its entirety, since they lack viral sequences that could cause viruses competent for replication, by homologous recombination with exogenous or endogenous viruses.
  • the elimination of viral sequences that act as transcriptional activators reduces the risk of insertional mutagenesis in gene therapy protocols, by preventing the activation of oncogenes.
  • the method for obtaining infectious viral particles deficient in replication is included by transfection into packaging cell lines of the pRV vector (SEQ ID NO 1 or its complementary strand or DNA sequences that hybridize with them under conditions of high requirement) or retroviral constructions directly derived from said retroviral vector.
  • packaging lines may or may not stably express the necessary genes (gag, pol, env) for the formation of retroviral particles containing the retroviral vectors of the present invention.
  • the retroviral vector is co-transfected with them in said cell (Example 5).
  • the transfected packaging line as described above is grown under conditions and a culture medium that favors the production and release to said medium of infectious viral particles containing the retroviral vectors described in the present invention.
  • the titres obtained from the retroviral vectors directly derived from pRV (described in the present invention) are very high, with values that do not fall in any case of lxl O 6 Ul / ml, and even reach lxlO 8 Ul / ml (Table I).
  • the importance of these retroviral titres is evident when compared with those produced from other retroviral vectors (Table III).
  • Another embodiment of the invention includes the RNA sequence derived from the retroviral vector of the present invention, the DNA sequence of the retroviral provirus produced in the target cell during the reverse transcription process of the RNA derived from the retroviral vector and the mRNA produced from said retroviral provirus.
  • retroviral particles obtained by transfecting host cells (commonly referred to as packaging cells) with the retroviral vector of the present invention or RNA derived from said vector, host cells transformed or transfected with said retroviral vectors and cells. hosts infected or transduced with the retroviral particles obtained from the retroviral vectors described in the present invention.
  • Another aspect of the invention relates to a method of introducing heterologous or homologous nucleotide sequences in target cells comprising the infection of the cells with the retroviral particles obtained from the retroviral vectors described in the present invention.
  • retroviral vectors consist of the production of transgenic animals by transduction of embryonic stem cells with retroviral particles produced from the retroviral vectors described in the present invention, the production and screening of retroviral libraries constructed in these retroviral vectors, for the preparation of a pharmaceutical composition applicable for use in gene therapy and those pharmaceutically compatible vehicles with said composition, for cloning and gene selection and for the expression and / or overexpression of proteins or RNA.
  • Another aspect of the invention includes the use of the retroviral vectors described in the present invention for the production and / or purification of heterologous peptides or proteins whose genes are cloned at some position of the MCS polycloning site described in Figure 1 and in Example 1 of the present invention.
  • Proteins are obtained from host cells transfected with the retroviral vector containing the heterologous protein gene (s), or transduced with the infective particles produced from said retroviral vectors.
  • the host cells are cultured under conditions that favor the expression of the protein whose nucleotide sequence has been cloned into the MCS, so that the protein produced is collected from the culture medium and / or the host cells themselves.
  • Example 1 Construction of the retroviral vector pRV 1.1.- Construction of pUCm.
  • the pUC18 vector is digested with enzymes
  • a synthetic polycloning site is cloned constituted by the hybridization of the oligonucleotides with sequences SEQ ID NO 2 and SEQ ID NO 3.
  • the vector named pUCm originates.
  • the CMV promoter is amplified by PCR from the pcDNA3 vector, oligonucleotides SEQ ID NO 4 and SEQ ID NO 5 are used.
  • the PCR product is cloned into a vector destined for the reception of PCR products (pCR 2.1 or pCR -Blunt, from Invitrogen or pGEM-T from Promega, e.g.), the resulting construct is digested with Pme I and Sac I and the corresponding fragment is cloned into the Pme I and Sac I targets of pUCm.
  • the resulting vector is called pUCRV-1.
  • pUCRV-2 Construction of pUCRV-2.
  • the retroviral vector pFB is digested with the Sac I and Bgl II enzymes, the fragment corresponding to the RU5 region of MoMLV and the extended packaging signal is cloned into the corresponding Sac I and Bgl II targets of pUCRV-1, the resulting vector is called pUCRV-2.
  • pUCRV-3 Construction of pUCRV-3.
  • the pUCRV-2 vector is digested with the enzymes Bgl II and Bam HI.
  • the synthetic fragment constituted by the hybridization of oligonucleotides SEQ ID NO 6 and SEQ ID NO 7, corresponding to the MCS2 polycloning site and the region of the splicing acceptor site is introduced.
  • the resulting vector is called pUCRV-3.
  • pUCRV-4 Construction of pUCRV-4.
  • the vector pUCRV-3 is digested with the enzymes Bam HI and Sal I.
  • the synthetic fragment consisting of the hybridization of the oligonucleotides SEQ ID NO 8 and SEQ ID NO 9 is introduced, corresponding to the MCS polycloning site.
  • the resulting vector is called pUCRV-4.
  • pUCRV-5 Construction of pUCRV-5.
  • the vector pUCRV-4 is digested with the enzymes Sal I and Nhe I.
  • the synthetic fragment consisting of the hybridization of the oligonucleotides SEQ ID NO 10 and SEQ ID NO is introduced
  • the resulting vector is called pUCRV-5.
  • pBabePuro vector (Morgenstern et al, 1990) is digested with the enzymes Nhe I and Sap I.
  • the fragment corresponding to the 3 'LTR of MoMLV is cloned into the Nhe I and Sap I targets of pUCRV-5.
  • the resulting construction is called pRV ( Figure 1, SEQ ID NO 1).
  • the location of the most relevant pRV sequences is as follows: a. Early-intermediate promoter of human cytomegal virus (CMV): positions 23-604 of SEQ ID NO 1 b.
  • RU5 region of the 5 'LTR positions 641-785 of SEQ ID NO 1 c.
  • First junction site (PBS) positions 786-803 of SEQ ID NO 1 d.
  • Splicing donor site positions 846-847 of SEQ ID NO 1 e.
  • Extended packing signal positions 855-1700 of SEQ ID NO 1 f.
  • Polycloning site 2 MCS 2: positions 1703-1726 of SEQ ID NO 1 g. Region of the splicing acceptor site: positions 1727-1783 of SEQ ID NO 1 h.
  • Polycloning site (MCS) positions 1784-1861 of SEQ ID NO 1 j.
  • Polyurethane tract positions 1862-1903 of SEQ ID NO 1 k.
  • 3 'LTR positions 1904-2497 of SEQ ID NO 1
  • Example 2 Expression of a heterologous gene cloned at the polycloning site (MCS) of pRV.
  • MCS polycloning site
  • Example 3 Construction of retroviral vectors with a translation cassette consisting of an internal ribosome input sequence (IRES) and any heterologous gene.
  • IRES internal ribosome input sequence
  • Bam HI is treated with the Klenow fragment of E. coli DNA polymerase and blunt ends are ligated to remove the Bam HI target from the vector.
  • the vector thus treated is cut with Xho I and Not I, and the IRES-gfp fragment is cloned into pBacPAK8 digested with Xho I and Not I.
  • the resulting construct is called pB-IRES-gfp.
  • pB-IRES-gfp is cut with the Sac ⁇ and Not I enzymes and cloned into pRV cut with Sac II and Not I to obtain the retroviral vector pRV -IRES-gfp.
  • Oligo sense with a cohesive end at the 5 'end for the Ncol target, followed by the first 10 to 25 nucleotides corresponding to the ⁇ GHR sequence.
  • the end corresponding to Neo I contains the initial methionine sequence and the first nucleotide of the first codon of ⁇ GHR (CATGG).
  • the pB-IRES- ⁇ GHR construct is cut with Sac II and Not I and the IRES- ⁇ GHR fragment is cloned into pRV cut with Sac ⁇ and Not I.
  • the originating construct is called pRV-IRES- ⁇ GHR.
  • Oligos used Oligo sense: at the 5 'end it has a Bsa I target (GGTCTC) followed by the NCATG sequence (where N can be interchangeably A, T, C or G) that contains the cohesive end of the Ncol target, followed by the first 10 to 25 nucleotides corresponding to the sequence of Neo.
  • the fragment corresponding to Neo I contains the initial methionine sequence and the first nucleotide of the first Neo codon (CATGA).
  • Oligo antisense with a cohesive end at its 5 'end for the Not I target, followed by the first 10 to 25 nucleotides corresponding to the Neo sequence.
  • the PCR product is cloned into a vector for the reception of PCR products (pCR 2.1 or pCR-Blunt, from Invitrogen or pGEM-T from Promega, e.g.), the resulting construct is digested with Bsa I and Not I and the fragment corresponding to Neo is cloned into pB-IRES-gfp at the corresponding Neo I and Not I sites.
  • the pB-IRES-Neo construct is cut with Sac II and Not I and the IRES-Neo fragment is cloned into pRV cut with Sac II and Not I.
  • the originated construct is called pRV-IRES-Neo.
  • IRES-Gen regardless of whether the first base of the first codon after the initial methionine of the gene is a G (guanine), such as the truncated nerve growth factor receptor ( ⁇ NGFR), the ⁇ -Galactosidase (LacZ) gene ) or the combined marker ⁇ -Galactosidase / Neo ( ⁇ -Geo).
  • G guanine
  • ⁇ NGFR nerve growth factor receptor
  • LacZ ⁇ -Galactosidase
  • Neo ⁇ -Geo
  • Example 4 Construction of bicistronic retroviral vectors for the simultaneous expression of two heterologous genes
  • the construction of bicistronic retroviral vectors for the simultaneous expression of two heterologous genes was carried out, in which the different elements were arranged as follows: a heterologous gene any one precedes a translation cassette consisting of an internal ribosome input sequence (IRES), preferably derived from picornavirus, and more preferably from the encephalomyocarditis virus, and any second heterologous gene.
  • IRS internal ribosome input sequence
  • the assembly is cloned into the polycloning site (MCS) of pRV, using any possible combination of the restriction sites present in said polycloning site.
  • pRV-WASp-IRES-gfp Amplify the coding sequence of WASp (Wiscott Aldrich Protein Syndrome) by PCR with oligos that leave cohesive ends for BamHI and Eco RI at the 5'and 3 'ends respectively of the WASp cDNA.
  • the PCR product is cloned into a vector for the reception of PCR products (pCR 2.1 or pCR-Blunt, from Invitrogen or pGEM-T from Promise, p.
  • the resulting construct is digested with Bam HI and Eco RI and the fragment corresponding to WASp is cloned into the Bam HI and Eco RI targets of pRV-IRES-gfp, resulting in the construction pRV-WASp-IRES-gfp .
  • Example 5 Generation and titration of retroviral particles The following example illustrates the generation of infective and defective retroviral particles in replication for use in research, gene therapy or others.
  • constructs such as those cited in the above examples 1 to 4 are co-transfected, in line 293, or derived from 293, such as 293T; with packaging constructions encoding the proteins of the gag-pol and env genes, expressed from a single vector or more preferably from two different constructs, preferably a construction to express gag-pol and another for e «v.
  • the cotransfection is carried out by the calcium phosphate precipitation method.
  • the transfection medium is renewed at 8 hours. 24 hours after transfection, the medium for collecting the retroviral supernatant is added to the packaging cells. 48 hours after transfection, the supernatant is collected with the retroviral particles. This supernatant is filtered with a low protein retention filter and a pore size of 0.45 ⁇ m.
  • the supernatant can be used fresh for retroviral transduction or stored frozen at -80 ° C.
  • Retroviral vectors encoding selectable markers by cytometry (eg GFP, ⁇ NGFR, ⁇ GHR). 24 hours before infection, 1.5x10 5 NIH 3T3 cells are plated in complete DMEM, per well of a 6-well plate (p6). At the time of titration we count the cells of a well, typically there are around 3x10 5 cells per well. For titration, complete DMEM is prepared with 8 ⁇ g / ml of polybrene. 1 ml of well infection medium is put of p6 and an adequate volume of supernatant so as not to saturate the assay. Said volume, in the case of retroviral supernatants obtained in 293T by transient transfection of vectors such as those described in examples 1 to 4, is 1-20 ⁇ l, which implies a dilution of 1: 1000 to 1:50.
  • the medium is replaced with fresh complete DMEM.
  • the cultures are maintained for an additional 2-3 days, until the cytometry quantification of the percentage of cells expressing the marker, so we avoid obtaining erroneous results due to the phenomenon of pseudoinfection, caused by non-integrated but transcriptionally active retroviral genomes.
  • the titer is calculated as infective units per mi (Ul / ml), by the expression: (% of positive cells) x (number of cells at the time of infection / 100) x (dilution factor).
  • Retroviral vectors encoding an antibiotic resistance gene (eg Neomycin).
  • serial dilutions (10 ⁇ 3 to 10 "7 ) of the supernatant are made in complete DMEM with 8 ⁇ g / ml of polybrene.
  • the diluted supernatants are added onto NIH 3T3 cells plated 24 hours before (lml diluted supernatant / lxlO 5 cells / well p6) and incubate for 4 to 6 hours at 37 ° C.
  • the medium is then replaced with fresh complete DMEM and, 24 h after transduction, the selection is started with 0.5 mg / ml of G418 Ten to fifteen days later, antibiotic resistant colonies are stained with crystal violet (0.2% in 20% methanol), and finally counted in. A positive colony must contain at least 20 cells.
  • the titer is calculated as antibiotic-resistant colony-forming units for me (CFU Antib. R / ml) by the expression: (No. of resistant colonies x supernatant dilution factor).
  • Example 6 Titles of retroviral vectors Table I shows representative examples of ranges of retroviral titers of retroviral particles produced with different envelopes from retroviral vectors derived from the retroviral vector pRV described in Examples 2 to 4.
  • Retroviral particles were obtained according to example 5 and titrated according to examples 5.1 and 5.2 depending on the nature of the selection marker.
  • Retroviral transduction efficiencies Table II shows representative examples of the retroviral transduction efficiencies obtained for different cell lines and primary cells transduced with retroviral particles obtained from the retroviral vectors derived from pRV described in Examples 2 to 4. Retroviral (stable) transduction percentages correspond to the results of a characteristic experiment. In the case of non-retroviral methods, the values correspond to those obtained temporarily with the most efficient transfection method among the following three: electroporation, calcium phosphate and lipoplejos (commercial reagent). Examples include cell lines and primary cells, such as T lymphocytes, stem cells or undifferentiated progenitors. These transduction levels are compared, when available, with the most efficient usual transfection methods among those tested, such as electroporation, lipocomplexes (lipofectamine) or transfection with calcium phosphate.
  • Example 8 Comparison between the titles of the retroviral vector series pRV, pL, pCL and pLZR.
  • the titers of retroviral supernatants obtained from retroviral vectors derived from pRV are compared according to the procedure described in example 5, and described in examples 2 to 4, with the titres obtained from the vectors pLXS ⁇ N, pCLXSN and pLZR-CMV-gfp.
  • the pLXS ⁇ N vector (Ruggieri et al., 1997) has an LTR derived directly from MoMLV, which directs the expression of the heterologous gene X, and an internal promoter of SV40, which directs the expression of the ⁇ NGFR marker.
  • This vector lacks the mixed CMV-LTR promoter, and has a MoMLV derived splicing acceptor site.
  • the pCLXSN vector (Naviaux et al., 1996), unlike the previous one, does have a mixed LTR, with a CMV promoter, however, it shares with the leader sequence and, in particular, the area corresponding to the acceptor site of splicing
  • the pCLXSN vector has a selection marker consisting of the neomycin resistance gene, its expression is directed by the SV40 promoter.
  • the most modern vector is pLZR-CMV-gfp (Yang et al., 1999), with a mixed CMV promoter and a design for the production of high-titre retroviral particles based on presence, on the plasmid construction that supports the genome proviral, of the EBNA-1 and OriP sequences, origin of replication and nuclear antigen of the Epstein Barr virus, which give the plasmid an auto-replicative capacity in the packaging cell.
  • the pLZR-CMV-gfp leader is, however, derived from MoMLV.
  • Table III shows a comparison of typical retroviral titres obtained from different retroviral vectors directly derived from the retroviral vector pRV described in the present invention, with the titles of other retroviral vectors.
  • Vectors derived from pRV have significantly higher titres than vectors with older designs, such as pLXS ⁇ N and pCLXSN.
  • the titers are comparable for pLZR-CMV-gfp and the vectors described in the present invention, although they lack the self-replicating sequences of the pLZ series vectors.
  • Example 9 Construction of self-activating retroviral vectors
  • the resulting vector is pRV with an LTR3 'where the U3 region has been partially deleted, resulting in a self-activating retroviral pRV vector.
  • RNA-dependent DNA polymerase ⁇ n virions of RNA tumor viruses Nature 226 (252): 1209-11. Bandyopadhyay, PK and Temin, HM (1984). "Expression of complete chicken thymidine kinase gene inserted in a retrovirus vector.” Mol Cell Biol 4 (4): 749-54. Breuer, B., Steuer, B. and Alonso, A. (1993). "Genomic rearrangements of retroviral vectors carrying two genes in F9 EC cells.” Virus Genes 7 (1): 53-65. Coffin, JM, Hughes, SH and Varmus, HE (1997). “Retro viruses.” Cold Spring Harbor Laboratorv Press, Plainview. New YorkfPlainview, New York).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The invention relates to a novel high-titre retroviral vector and transduction methods. More specifically, the invention relates to novel retroviral vectors that can produce high-titre, non-replicative, infectious retroviral particles and to methods of using said particles for the transfer of gene constructions of interest. In particular, the invention relates to retroviral vectors which are derived from MoMLV and which comprise a nucleotide sequence that is characterised by general formula: 5'-[CMV-R-U5]-[PBS]-[SD]-Ψ+-[MCS2]-[SA]-[MCS]-[PPT]-[LTR]-3', as well as the uses of said vectors.

Description

Nuevo vector retroviral de alto título y métodos de transducción.New high-title retroviral vector and transduction methods.
La presente invención se refiere a nuevos vectores retrovirales capaces de producir partículas retrovirales infectivas no replicativas de alto título y métodos para la utilización de dichas partículas en la transferencia de construcciones génicas de interés.The present invention relates to new retroviral vectors capable of producing high-grade non-replicative infective retroviral particles and methods for the use of said particles in the transfer of gene constructs of interest.
Antecedentes de la invenciónBackground of the invention
Los retrovirus son un grupo de virus caracterizados por poseer como material genético ARN+ de cadena sencilla. Todos los retrovirus contienen en su genoma tres regiones codificantes principales: Gag, que dirige la síntesis de las proteínas estructurales de la partícula viral (matriz, cápsida y nucleocápsida), Pro-Pol, que determina la síntesis de las proteínas con actividad enzimática (proteasa, transcriptasa reversa e integrasa), y Env, que codifica las glicoproteínas de envuelta (superficie y transmembrana) (Duesberg et al., 1970). Εl ciclo de los retrovirus se inicia con la interacción de las glicoproteínas de la envuelta del virión con receptores celulares específicos. Esta interacción conduce a la entrada de la partícula viral dentro del citoplasma celular. A su entrada en el citoplasma de la célula, este ARN genómico viral se convierte en ADN de doble cadena mediante el primero de los procesos fundamentales de su ciclo biológico: la transcripción reversa. Merced a este proceso, el ARN viral, que en su extremo 3' contiene la región denominada U3 (región única 3), da como resultado un ADN en que U3 se duplica y queda representada a ambos lados de la cadena, lo que permite la transcripción del provirus integrado, ya que U3 actúa como promotor. Un fenómeno análogo ocurre con la secuencia U5 (región única 5), que se localiza en el extremo 5' del ARN genómico retroviral y contiene la secuencia terminadora de la transcripción de éste. Estas duplicaciones de U5 y U3 durante la transcripción reversa, se deben a la existencia de secuencias tales como el tracto de polipurinas (PPT, inmediatamente anterior al extremo 5' de U3), el sitio de unión del primer (PBS, inmediatamente posterior al extremo 3' de U5) y regiones repetidas (denominadas R) situadas a ambos lados del genoma, que dirigen la síntesis de las cadenas del ADN proviral (Baltimore, 1970; Temin et al., 1970; Coffin et al., 1997). Una vez terminada la transcripción reversa, el ADN copia recién formado es objeto del segundo de los procesos fundamentales del ciclo retroviral: la integración, merced a la que el ADN viral queda inserto en lugares no predeterminados de los cromosomas celulares, constituyendo el llamado provirus. Este ADN viral se comporta como un locus celular en el transcurso de las divisiones celulares y es el que codifica los materiales necesarios para la formación de las nuevas partículas virales, que constituyen la progenie de la partícula viral que originó el proceso.Retroviruses are a group of viruses characterized by having as single-stranded RNA + genetic material. All retroviruses contain three main coding regions in their genome: Gag, which directs the synthesis of the structural proteins of the viral particle (matrix, capsid and nucleocapsid), Pro-Pol, which determines the synthesis of proteins with enzymatic activity (protease , reverse transcriptase and integrase), and Env, which encodes envelope glycoproteins (surface and transmembrane) (Duesberg et al., 1970). The retrovirus cycle begins with the interaction of virion envelope glycoproteins with specific cell receptors. This interaction leads to the entry of the viral particle into the cell cytoplasm. Upon entry into the cell cytoplasm, this viral genomic RNA is converted to double stranded DNA through the first of the fundamental processes of its biological cycle: reverse transcription. Thanks to this process, the viral RNA, which at its 3 'end contains the region called U3 (unique region 3), results in a DNA in which U3 is duplicated and is represented on both sides of the chain, which allows Transcription of the integrated provirus, since U3 acts as a promoter. An analogous phenomenon occurs with the U5 sequence (single region 5), which is located at the 5 'end of the retroviral genomic RNA and contains the transcription terminator sequence thereof. These duplications of U5 and U3 during reverse transcription are due to the existence of sequences such as the polyurethane tract (PPT, immediately prior to 5 'end of U3), the first binding site (PBS, immediately after the 3' end of U5) and repeated regions (called R) located on both sides of the genome, which direct the synthesis of proviral DNA chains ( Baltimore, 1970; Temin et al., 1970; Coffin et al., 1997). Once the reverse transcription is finished, the newly formed copy DNA is the object of the second of the fundamental processes of the retroviral cycle: integration, thanks to which the viral DNA is inserted in non-predetermined places of the cell chromosomes, constituting the so-called provirus. This viral DNA behaves like a cellular locus in the course of cell divisions and is the one that encodes the materials necessary for the formation of new viral particles, which constitute the progeny of the viral particle that originated the process.
En los extremos de las regiones LTR (Siglas en inglés de Repeticiones Terminales Largas, formadas por la sucesión de las secuencias U3-R-U5) existen sitios claves para la integración del ADN proviral en la célula diana. Adyacentes a las regiones LTR, tal como se ha descrito anteriormente, se sitúan secuencias necesarias para la transcripción reversa del genoma viral, el PBS y el PPT respectivamente, además de una secuencia necesaria para la eficiente encapsidación del ARN viral en partículas retrovirales (la secuencia Ψ). La región de 800 nucleótidos del genoma del virus Moloney de la leucemia murina (MoLV) que comienza justo a continuación del SD (Sitio donador de splicing) y se extiende dentro de la región que codifica la poliproteína gag es suficiente para dirigir el eficiente empaquetamiento de un transcrito heterólogo (Adam et al., 1988; Dornburg et al., 1988).At the ends of the LTR regions (English acronym for Long Term Repeats, formed by the succession of U3-R-U5 sequences) there are key sites for the integration of proviral DNA into the target cell. Adjacent to the LTR regions, as described above, sequences necessary for the reverse transcription of the viral genome, PBS and PPT respectively are located, in addition to a sequence necessary for the efficient encapsidation of viral RNA in retroviral particles (the sequence Ψ). The 800 nucleotide region of the Moloney virus genome of murine leukemia (MoLV) that begins just after the SD (splicing donor site) and extends within the region encoding the gag polyprotein is sufficient to drive the efficient packaging of a heterologous transcript (Adam et al., 1988; Dornburg et al., 1988).
El procesamiento del ARNm (ARN mensajero) viral se lleva a cabo desde el SD, situado a continuación del PBS, hasta el sitio aceptor de splicing (SA), este último, incluido dentro de la región codificante de la poliproteína pol. Los vectores retrovirales y sus diversas aplicaciones han sido descritas por numerosos autores, (Mann et al., 1983; Cone et al., 1984; Miller, 1990), y U.S. Patent Nos. 4,405,712; 4,861,719; 4,980,289 y solicitudes PCT Nos. WO 89/02,468; WO 89/05,349 y WO 90/02,806. De estas publicaciones se infiere que lo habitual con relación a este tipo de vectores es sustituir una porción del ARN retroviral por un gen heterólogo de interés, manteniendo intactas las secuencias de LTR, Ψ, PBS y PPT, de tal manera que cuando la partícula retroviral recombinante introduce su ARN dentro de la célula diana durante el proceso infectivo, el gen heterólogo de interés también es introducido dentro de la célula, y de esta forma es incorporado dentro del genoma celular en forma de ADN tal y como si fuese parte del genoma celular. De esta forma, la presencia del gen de interés dentro del genoma de la célula hospedadora conlleva la expresión de la proteína heteróloga en dicha célula.The processing of the viral mRNA (messenger RNA) is carried out from the SD, located next to the PBS, to the splicing acceptor site (SA), the latter, included within the coding region of the polyprotein pol. Retroviral vectors and their various applications have been described by numerous authors, (Mann et al., 1983; Cone et al., 1984; Miller, 1990), and US Patent Nos. 4,405,712; 4,861,719; 4,980,289 and PCT applications Nos. WO 89 / 02,468; WO 89 / 05,349 and WO 90 / 02,806. From these publications it is inferred that the usual thing regarding this type of vectors is to replace a portion of the retroviral RNA with a heterologous gene of interest, keeping the sequences of LTR, Ψ, PBS and PPT intact, such that when the retroviral particle Recombinant introduces its RNA into the target cell during the infective process, the heterologous gene of interest is also introduced into the cell, and thus is incorporated into the cellular genome in the form of DNA as if it were part of the cellular genome. . Thus, the presence of the gene of interest within the genome of the host cell leads to the expression of the heterologous protein in said cell.
Los vectores retrovirales como método para introducir genes heterólogos en las células diana han sido utilizados ampliamente por las siguientes razones: (1) Por su amplio tropismo celular y por su elevada eficiencia a la hora de incorporar material genético en el núcleo de células diana replicativas; (2) Por los relativamente altos niveles de expresión génica; (3) Porque el tipo de expresión génica que producen es estable debido a la integración del genoma viral dentro del genoma celular; (4) Porque la infección retroviral per se no produce efectos tóxicos en las células infectadas; (5) Porque las partículas retrovirales no suelen inducir respuestas inmunes significativas; (6) Por la capacidad potencial que estos vectores poseen para regular su expresión de manera dependiente de tejido y/o diana celular, así como para regular su expresión en el tiempo; (7) Por el conocimiento que ya se tiene de este tipo de vectores y de sus diversas aplicaciones (Romano et al., 2000). Aun así, una desventaja que presentan los vectores retrovirales es que sólo infectan células replicativas, existiendo serias dificultades a la hora de infectar aquellas células caracterizadas como no replicativas o quiescentes (Roe et al., 1993). Además, existen diversos tipos celulares que tradicionalmente han sido difíciles de transducir mediante vectores retrovirales aun cuando se han estimulado para que entrasen en ciclo replicativo, algunos ejemplos incluyen linfocitos T, linfocitos B, células monocíticas y células dendríticas. Esto es particularmente frecuente para células primarias, entre las que se incluyen las células madre. Para este tipo de células anteriormente enumeradas, expertos en la materia han sugerido otros métodos de transferencia génica entre los que se incluyen la administración directa de ADN purificado como método para incorporar material genético dentro de las células diana.Retroviral vectors as a method to introduce heterologous genes into target cells have been widely used for the following reasons: (1) Because of their broad cell tropism and their high efficiency in incorporating genetic material into the nucleus of replicative target cells; (2) For the relatively high levels of gene expression; (3) Because the type of gene expression they produce is stable due to the integration of the viral genome into the cell genome; (4) Because retroviral infection per se does not produce toxic effects on infected cells; (5) Because retroviral particles do not usually induce significant immune responses; (6) Because of the potential capacity that these vectors possess to regulate their expression in a tissue-dependent manner and / or cell target, as well as to regulate their expression over time; (7) Due to the knowledge that is already available of these types of vectors and their various applications (Romano et al., 2000). Even so, a disadvantage presented by retroviral vectors is that they only infect replicative cells, there being serious difficulties in infecting those cells characterized as non-replicative or quiescent (Roe et al., 1993). In addition, there are several cell types that have traditionally been difficult to transduce by retroviral vectors even though they have been stimulated to enter the replicative cycle, some examples include T lymphocytes, B lymphocytes, monocytic cells and dendritic cells. This is particularly frequent for primary cells, including stem cells. For these types of cells listed above, those skilled in the art have suggested other methods of gene transfer, including the direct administration of purified DNA as a method of incorporating genetic material into the target cells.
Para tratar de mejorar la eficacia de los vectores retrovirales, se han sugerido métodos enfocados hacia la inducción de la replicación de las células diana o hacia el incremento de la eficiencia de replicación de dichas células, para permitir la infección retroviral de las células diana. En el caso de células T, existen diversos métodos de estimulación no específica in vivo que son bastante eficientes para inducir su replicación (tal como IL-2, mitógenos, y anticuerpos anti-CD3 o anti- CD28). No obstante, existen dificultades a la hora de obtener una transducción eficiente de linfocitos T utilizando métodos de estimulación que sean compatibles con usos clínicos y comerciales, ya que frecuentemente alteran la proporción relativa de las diferentes subpoblaciones celulares presentes en el riego sanguíneo (Movassagh et al., 2000). Los vectores retrovirales de la presente invención permiten la transducción eficiente de células primarias estimuladas con métodos compatibles con usos clínicos de dichas células, aunque dichos métodos no produzcan una estimulación tan potente como otros más inespecíficos e incompatibles con la clínica.To try to improve the efficiency of retroviral vectors, methods have been suggested that focus on the induction of replication of the target cells or towards increasing the efficiency of replication of said cells, to allow retroviral infection of the target cells. In the case of T cells, there are various non-specific stimulation methods in vivo that are efficient enough to induce their replication (such as IL-2, mitogens, and anti-CD3 or anti-CD28 antibodies). However, there are difficulties in obtaining an efficient transduction of T lymphocytes using stimulation methods that are compatible with clinical and commercial uses, since they frequently alter the relative proportion of the different cell subpopulations present in the blood supply (Movassagh et al. ., 2000). The retroviral vectors of the present invention allow efficient transduction of primary cells stimulated with methods compatible with clinical uses of said cells, although said methods do not produce stimulation as potent as others more nonspecific and incompatible with the clinical one.
Tal y como hemos mencionado anteriormente, la realización de una transferencia génica retroviral eficiente en células primarias tales como linfocitos T o células madre no es algo trivial. Los métodos utilizados actualmente para la transducción retroviral de dichas células presentan un número de limitaciones prácticas, entre las cuales una de las más importantes radica en los bajos títulos retrovirales obtenidos con la mayor parte de los vectores retrovirales disponibles, títulos que están normalmente en el rango de lxl O4 a lxlO6 unidades infectivas por mililitro (Ul/ml).As we mentioned earlier, the realization of an efficient retroviral gene transfer in primary cells such as T lymphocytes or stem cells is not trivial. The methods currently used for retroviral transduction of these cells have a number of practical limitations, among which one of the most important lies in the low retroviral titres obtained with most of the available retroviral vectors, titers that are normally in the range from lxl O 4 to lxlO 6 infective units per milliliter (Ul / ml).
Los métodos de producción de partículas retrovirales por transfección estable rinden bajos títulos, y se suele requerir incluso el cocultivo de las líneas estables productoras de las partículas retrovirales con la célula diana. Además, con frecuencia ha sido necesario adicionar grandes volúmenes de la preparación que contiene los vectores retrovirales a las células que van a ser transducidas para lograr una frecuencia de transducción útil. El método de producción de partículas retrovirales infectivas por transfección transitoria de la célula empaquetadora es mucho más eficiente que las líneas empaquetadoras estables, pero sólo algunos vectores retrovirales como los de la presente invención están diseñados para poder ser utilizados mediante transfección transitoria.The methods of producing retroviral particles by stable transfection they yield low titers, and co-cultivation of stable producing lines of retroviral particles with the target cell is usually required. In addition, it has often been necessary to add large volumes of the preparation containing retroviral vectors to the cells that are to be transduced to achieve a useful transduction frequency. The method of producing infective retroviral particles by transient transfection of the packaging cell is much more efficient than stable packaging lines, but only some retroviral vectors such as those of the present invention are designed to be used by transient transfection.
Adicionalmente, muchos de los vectores retrovirales más frecuentemente empleados codifican genes que confieren resistencia a ciertos antibióticos a las células que los expresan. Esta selección contribuye a compensar una baja eficiencia de transducción retroviral, pero a la vez puede tener ciertos efectos asociados no deseables. Trabajos previos indican que el cultivo prolongado in vitro de linfocitos humanos durante las más de dos semanas que exige la selección por antibióticos induce un empobrecimiento del repertorio inmune de dichas células. Este efecto es independiente del proceso de infección retroviral (Ferrand et al., 2000). La presión selectiva inducida por la selección con antibióticos puede inducir reorganizaciones estructurales en el vector integrado y/o el silenciamiento del gen de interés (Bandyopadhyay et al., 1984; Breuer et al., 1993; Schott et al, 1996). Además, algunos de los productos derivados de los genes de resistencia a antibióticos muestran una capacidad inmunogénica en estudios clínicos que afecta a la supervivencia de las células utilizadas como agente terapéutico (Riddell et al., 1996). Los vectores retrovirales de alto título de la presente invención permiten infectar células primarias con una eficiencia que hace innecesaria la selección subsiguiente con antibióticos. Además, su diseño permite albergar otro tipo de genes marcadores que impliquen procesos de selección de las células infectadas más rápidos que la selección por resistencia a antibióticos.Additionally, many of the most frequently used retroviral vectors encode genes that confer resistance to certain antibiotics to the cells that express them. This selection helps to compensate for low retroviral transduction efficiency, but at the same time it may have certain undesirable associated effects. Previous work indicates that prolonged in vitro culture of human lymphocytes during the more than two weeks required by antibiotic selection induces impoverishment of the immune repertoire of these cells. This effect is independent of the retroviral infection process (Ferrand et al., 2000). Selective pressure induced by antibiotic selection can induce structural reorganizations in the integrated vector and / or silencing of the gene of interest (Bandyopadhyay et al., 1984; Breuer et al., 1993; Schott et al, 1996). In addition, some of the products derived from antibiotic resistance genes show an immunogenic capacity in clinical studies that affects the survival of cells used as a therapeutic agent (Riddell et al., 1996). The high-titre retroviral vectors of the present invention allow to infect primary cells with an efficiency that makes subsequent selection with antibiotics unnecessary. In addition, its design allows to house other types of marker genes that involve selection processes of infected cells faster than antibiotic resistance selection.
Es un objeto de la presente invención proporcionar nuevos vectores retrovirales derivados del virus Moloney de la leucemia murina MoMLV con capacidad para producir sobrenadante retroviral de alto título constituido por partículas retrovirales infectivas y deficientes en replicación y métodos para la utilización de dichos sobrenadantes retrovirales en la transferencia génica a células resistentes a técnicas estándar de transducción, tal y como son linfocitos T, células madre o cualquier otro tipo de líneas celulares o células primarias. Estas células transducidas pueden ser utilizadas en investigación o ser administradas a pacientes mediante técnicas conocidas por el experto medio en la materia.It is an object of the present invention to provide new vectors retroviral derived from the Moloney virus of MoMLV murine leukemia with the capacity to produce high-titre retroviral supernatant consisting of infective and replication-deficient retroviral particles and methods for the use of said retroviral supernatants in gene transfer to cells resistant to standard transduction techniques, such as T lymphocytes, stem cells or any other type of cell lines or primary cells. These transduced cells can be used in research or administered to patients by techniques known to those skilled in the art.
Breve descripción de la invenciónBrief Description of the Invention
Un primer aspecto de la invención consiste en proporcionar nuevos vectores retrovirales derivados de MoMLV deficientes en replicación que comprenden un conjunto específico de secuencias con una disposición optimizada para la producción de una partícula retroviral infectiva pero deficiente en replicación, que confiere a dichos vectores la capacidad de producir sobrenadantes retrovirales de alto título para la transducción retroviral de células y líneas celulares difíciles de transducir hasta el momento. Un segundo aspecto de la invención consiste en proporcionar células hospedadoras transfectadas, transformadas y/o infectadas con los vectores retrovirales de la presente invención.A first aspect of the invention is to provide new replication-derived MoMLV retroviral vectors comprising a specific set of sequences with an optimized arrangement for the production of an infective but replication-deficient retroviral particle, which confers on said vectors the ability to produce high-titre retroviral supernatants for retroviral transduction of cells and cell lines difficult to transduce so far. A second aspect of the invention is to provide host cells transfected, transformed and / or infected with the retroviral vectors of the present invention.
Un tercer aspecto de la presente invención consiste en proporcionar métodos para la producción estable o transitoria de partículas retrovirales infectivas y para la infección de células diana con dichas partículas retrovirales.A third aspect of the present invention is to provide methods for the stable or transient production of infective retroviral particles and for the infection of target cells with said retroviral particles.
Un cuarto aspecto de la presente invención consiste en la aplicación de los vectores retrovirales de la presente invención para la producción de animales transgénicos mediante la infección de células madre embrionarias con dichas partículas retrovirales, para terapia génica, producción de librerías retrovirales y expresión y/o sobreexpresión de proteínas o ARN.A fourth aspect of the present invention consists in the application of the retroviral vectors of the present invention for the production of transgenic animals by infection of embryonic stem cells with said retroviral particles, for gene therapy, production of retroviral libraries and Expression and / or overexpression of proteins or RNA.
Otros aspectos de la presente invención resultarán evidentes para un experto en la materia a la vista de la descripción de la invención.Other aspects of the present invention will be apparent to one skilled in the art in view of the description of the invention.
Breve descripción de las figurasBrief description of the figures
La Figura 1 muestra la estructura del genoma proviral de pRV. MCS y MCS2, sitios de policlonaje; SD, sitio donador de splicing; SA, sitio aceptor de splicing; Ψ*, señal de empaquetamiento extendida de MoMLV; CMV, promotor temprano de citomegalovirus; U3, R y U5, elementos del LTR de MoMLV y PBS, sitio de unión del primer. Los sitios de restricción indicados son únicos dentro del plásmido pRV. La Figura 2 muestra la estructura del LTR 3 ' del vector retroviral pRV (SEQFigure 1 shows the structure of the pRV proviral genome. MCS and MCS2, polycloning sites; SD, splicing donor site; SA, splicing acceptor site; Ψ *, MoMLV extended packaging signal; CMV, early cytomegalovirus promoter; U3, R and U5, elements of the LTR of MoMLV and PBS, the first binding site. The restriction sites indicated are unique within the plasmid pRV. Figure 2 shows the structure of the 3 'LTR of the retroviral vector pRV (SEQ
ID NO 1). Las líneas de puntos indican deleciones que pueden realizarse en la región U3 del LTR 3' para construir un vector pRV autoinactivante. Se muestran las correspondientes dianas de restricción. MCS, sitio de policlonaje; RD, repetición directa; CAAT, caja CAAT; TATA, caja TATA.ID NO 1). Dotted lines indicate deletions that can be made in the U3 region of the 3 'LTR to construct a self-activating pRV vector. The corresponding restriction targets are shown. MCS, polycloning site; RD, direct repetition; CAAT, CAAT box; TATA, TATA box.
Descripción detallada de la invenciónDetailed description of the invention
En un primer aspecto, la invención proporciona nuevos vectores retrovirales derivados de MoMLV caracterizados porque consisten en un conjunto específico de secuencias con una disposición optimizada para la producción de una partícula retroviral infectiva pero deficiente en replicación, que confiere a dichos vectores la capacidad de producir sobrenadantes retrovirales de alto título para la transducción retroviral de células y líneas celulares difíciles de transducir hasta el momento. Estos vectores comprenden el plásmido retroviral pRV (SEQ ID NO. 1), cuya construcción se ilustra en el ejemplo 1 de la presente invención, que incluye secuencias, derivadas de MoMLV o heterólogas, optimizadas para la transcripción, la encapsidación y retrotranscripción del ARN genómico retroviral, para el correcto procesado (splicing) del ARNm, para la integración del ADN proviral en el genoma de la célula diana y para la correcta traducción del ARNm y expresión de genes heterólogos de interés en las células diana de las partículas retrovirales producidas a partir del vector pRV y otros derivados del mismo. La figura 1 muestra la estructura del ADN proviral de pRV. La presente invención también incluye la hebra complementaria de la SEQ ID NO. 1 y secuencias de ADN que hibridan bajo condiciones de alta astringencia con la SEQ ID NO. 1 o su hebra complementaria. Los ácidos nucleicos con identidad de secuencia o un alto grado de homología pueden ser detectados por hibridación bajo condiciones de alta astringencia, por ejemplo, a 50°C o más en solución SSC 0,lx (cloruro sódico 15 mM/citrato sódico 1,5 mM). Los ácidos nucleicos que tengan una región de alta homología o identidad con las secuencias descritas en la presente invención, p.ej. variantes alélicas, o versiones alteradas por ingeniería genética, etc, se unen a las secuencias descritas en la invención bajo condiciones de alta astringencia. Son conocidas otras condiciones de alta astringencia en el estado de la técnica que también podrían ser usadas para identificar ácidos nucleicos que conserven un alto grado de homología con las secuencias descritas.In a first aspect, the invention provides new retroviral vectors derived from MoMLV characterized in that they consist of a specific set of sequences with an optimized arrangement for the production of an infective but replication-deficient retroviral particle, which confers on said vectors the ability to produce supernatants. High titre retrovirals for retroviral transduction of cells and cell lines difficult to transduce so far. These vectors comprise the retroviral plasmid pRV (SEQ ID NO. 1), whose construction is illustrated in Example 1 of the present invention, which includes sequences, derived from MoMLV or heterologous, optimized for transcription, encapsidation and retrotranscription of the retroviral genomic RNA, for the correct processing (splicing) of the mRNA, for the integration of the proviral DNA in the genome of the target cell and for the correct translation of the mRNA and expression of heterologous genes of interest in the target cells of the particles retrovirals produced from the pRV vector and other derivatives thereof. Figure 1 shows the structure of the pRV proviral DNA. The present invention also includes the complementary strand of SEQ ID NO. 1 and DNA sequences that hybridize under high astringency conditions with SEQ ID NO. 1 or its complementary strand. Nucleic acids with sequence identity or a high degree of homology can be detected by hybridization under high astringency conditions, for example, at 50 ° C or more in SSC solution 0, lx (15 mM sodium chloride / 1.5 sodium citrate mM). Nucleic acids having a region of high homology or identity with the sequences described in the present invention, eg allelic variants, or versions engineered, etc., bind to the sequences described in the invention under high conditions. astringency. Other conditions of high astringency are known in the state of the art that could also be used to identify nucleic acids that retain a high degree of homology with the described sequences.
Las regiones de MoMLV que codifican env y pol han sido completamente eliminadas del vector retroviral derivado de MoMLV deficiente en replicación de la presente invención, y la región que codifica gag ha sido eliminada parcialmente. La región de gag que no se ha eliminado forma parte de la señal empaquetadora extendida, que comprende las posiciones 215-1038 del virus MoMLV. La eliminación de todas estas secuencias tiene por objeto la reducción al máximo de secuencias virales que por recombinación homologa puedan originar partículas retrovirales competentes para replicación. Además, la eliminación de estas secuencias reduce el tamaño del genoma proviral del vector de la presente invención hasta 2,5 kb, lo que permite clonar insertos de hasta 7,0 kb. Los vectores retrovirales que sólo conservan la señal de empaquetamiento mínima, (posiciones 215-563 de MoMLV), producen títulos retrovirales de 10 a 100 veces inferiores a aquellos que poseen la señal de empaquetamiento extendida tal y como sucede en el vector de la presente invención, que incluye 455 pb procedentes de la región codificante de gag. (Naviaux et al., 1992)The MoMLV regions encoding env and pol have been completely removed from the replication-deficient MoMLV retroviral vector of the present invention, and the gag coding region has been partially removed. The gag region that has not been removed is part of the extended packaging signal, which comprises positions 215-1038 of the MoMLV virus. The elimination of all these sequences is aimed at the maximum reduction of viral sequences that by homologous recombination can cause retroviral particles competent for replication. In addition, the elimination of these sequences reduces the size of the proviral genome of the vector of the present invention up to 2.5 kb, which allows cloning inserts of up to 7.0 kb. Retroviral vectors that only retain the minimum packaging signal, (positions 215-563 of MoMLV), produce retroviral titers 10 to 100 times lower than those that possess the extended packaging signal as in the vector of the present invention. , which includes 455 bp from the gag coding region. (Naviaux et al., 1992)
El vector retroviral derivado de MoMLV deficiente en replicación de la presente invención presenta la región U3 de MoMLV 5' LTR sustituida por el promotor temprano de Citomegalovirus (CMV). La producción del ARN genómico retroviral, al estar bajo el control del promotor CMV, permite aumentar sensiblemente el número de copias de genoma retroviral en el interior de la línea empaquetadora, con lo que los títulos retrovirales de este vector son en torno a un orden de magnitud superiores a los de aquellos que conservan el LTR 5' nativo de MoMLV. En otra realización preferida de la invención, se proporcionan otros promotores heterólogos en la misma posición que la del promotor de CMV, entre los que se incluye pero no se limitan al promotor del virus del sarcoma de Rous (RSV).The replication-deficient MoMLV-derived retroviral vector of the present invention has the U3 region of MoMLV 5 'LTR replaced by the cytomegalovirus (CMV) early promoter. The production of the retroviral genomic RNA, being under the control of the CMV promoter, allows the number of copies of the retroviral genome to be significantly increased inside the packaging line, so that the retroviral titers of this vector are around an order of magnitude higher than those that retain the 5 'LTR native to MoMLV. In another preferred embodiment of the invention, other heterologous promoters are provided in the same position as that of the CMV promoter, including but not limited to the Rous sarcoma virus (RSV) promoter.
El vector retroviral derivado de MoMLV deficiente en replicación de la presente invención incluye sitios donador y aceptor de splicing que favorecen la exportación al citoplasma del ARN subgenómico, lo que potencia la expresión en la célula diana de los genes heterólogos incluidos en el vector.The replication-deficient MoMLV-derived retroviral vector of the present invention includes donor and splicing acceptor sites that favor export to the cytoplasm of subgenomic RNA, which enhances expression in the target cell of the heterologous genes included in the vector.
El vector retroviral de MoMLV deficiente en replicación de la presente invención incluye un sitio de policlonaje (MCS2) que precede al sitio aceptor de splicing que incluye, pero no se limita a, los siguientes sitios de restricción: Bgl II,The replication-deficient MoMLV retroviral vector of the present invention includes a polycloning site (MCS2) that precedes the splicing acceptor site that includes, but is not limited to, the following restriction sites: Bgl II,
Hpa I, Sph I. Este sitio de policlonaje MCS 2 permite la inclusión de secuencias heterólogas (ej. secuencias reguladoras en cis o promotores internos).Hpa I, Sph I. This MCS 2 polycloning site allows the inclusion of heterologous sequences (eg cis regulatory sequences or internal promoters).
El vector retroviral de MoMLV deficiente en replicación de la presente invención incluye como sitio aceptor de splicing (SA), una secuencia sintética basada en una secuencia consenso parcialmente degenerada del virus Spleen focus-forming (SFFV), que no incluye fases de lectura abiertas (ORF) o inicios de traducción (ATG) aberrantes, procedentes del extremo 3' del gen Pol de MoMLV. Esta secuencia sintética sólo conserva 26 pares de bases homólogos al gen Pol de MoMLV. Muchos de los vectores retrovirales que contienen sitios SA incluyen marcos abiertos de lectura (ORF) que pueden interferir con la correcta expresión de los genes heterólogos codificados por el vector retroviral. La secuencia u oligonucleótido sintético incluido en el vector retroviral de la presente invención para actuar como sitio SA, al no contener ORFs, elimina la ulterior posibilidad de expresión de péptidos aberrantes, anormalmente alongados, que puedan interferir con la correcta expresión de los genes heterólogos incluidos en el ADN proviral. Adicionalmente, se disminuye el tamaño del vector en aproximadamente 350 pares de bases y se eliminan secuencias virales (del gen Pol) que pueden originar eventos de recombinación capaces de generar virus competentes para replicación. Adicionalmente, el vector retroviral de la presente invención posee un sitio de policlonaje denominado MCS situado a continuación del sitio SA, que incluye, pero no se limita, a los siguientes sitios de restricción: Bam HI - Xho I - Eco RI - Swa I - Sac II - Cía I - Not I - Sal I. La presencia de este MCS permite la inclusión en el vector retroviral de todo tipo de secuencias heterólogas (ej. genes aplicados en terapia génica o investigación, marcadores de selección tales como gfp, ΔNGFR, ΔGHR, Neo, LacZ y/o β-Geo [la mayoría de estos marcadores se describirán en más detalle en los ejemplos], promotores u otras secuencias reguladoras de la expresión o sitios internos de entrada de ribosomas, IRES). El sitio MCS permite introducir una sola secuencia (Ejemplo 2) o varias simultáneamente en la misma construcción (Ejemplos 3 y 4). La inclusión de uno o dos IRES en el MCS de pRV permite realizar construcciones bi- o tricistrónicas para la expresión simultánea de dos o tres genes en la célula donde dichas construcciones sean introducidas, ya sea por transfección o por transducción retroviral (Ejemplo 4). Las secuencias heterólogas se pueden introducir indistintamente en el sitio de policlonaje MCS, MCS 2 o en ambos simultáneamente. En otra realización de la invención se incluye el método para la producción de vectores retrovirales autoinactivantes a partir del vector retroviral descrito en la presente invención, así como dichos vectores retrovirales autoinactivantes. Estos vectores tienen un LTR3' truncado en su forma de DNA plasmídico, el cuál, por acción de la transcriptasa reversa se duplica en el provirus integrado de manera que este último tiene los dos LTRs truncados (Anson 2004). Los LTRs truncados se construyen mediante la deleción parcial de la región U3 del LTR3' viral. Esta región U3 constituye el promotor viral y posee en su secuencia dos repeticiones directas (RD) que actúan como enhancers para la transcripción del RNA viral. Además, la región U3 posee los elementos transcripcionales denominados cajas CAAT y TATA respectivamente, y que, en conjunto, constituyen el promotor viral mínimo. La deleción de uno o más de estos elementos afecta en mayor o menor medida a los niveles de expresión obtenidos a partir del promotor viral U3. Los vectores autoinactivantes poseen ventajas respecto a los que conservan la región U3 en su integridad, ya que carecen de secuencias virales que podrían originar virus competentes para replicación, por recombinación homologa con virus exógenos o endógenos. Además, la eliminación de secuencias virales que actúan como activadores transcripcionales, reduce el riesgo de mutagénesis insercional en protocolos de terapia génica, al evitar la activación de oncogenes.The replication-deficient MoMLV retroviral vector of the present invention includes as a splicing acceptor site (SA), a synthetic sequence based on a partially degenerated consensus sequence of the focus-forming Spleen virus (SFFV), which does not include open reading phases (ORF) or aberrant translation starts (ATG), coming from the 3 'end of the MoMLV Pol gene. This synthetic sequence only retains 26 base pairs homologous to the MoMLV Pol gene. Many of the retroviral vectors containing SA sites include open reading frames (ORF) that can interfere with the correct expression of the heterologous genes encoded by the retroviral vector. The synthetic sequence or oligonucleotide included in the retroviral vector of the present invention to act as an SA site, as it does not contain ORFs, eliminates the subsequent possibility of expression of abnormally rounded aberrant peptides that may interfere with the correct expression of the heterologous genes included in the proviral DNA. Additionally, the size of the vector is reduced by approximately 350 base pairs and viral sequences (from the Pol gene) that can cause recombination events capable of generating viruses competent for replication are eliminated. Additionally, the retroviral vector of the present invention has a polycloning site called MCS located next to the SA site, which includes, but is not limited to, the following restriction sites: Bam HI-Xho I-Eco RI-Swa I - Sac II - Cía I - Not I - Sal I. The presence of this MCS allows the inclusion in the retroviral vector of all types of heterologous sequences (eg genes applied in gene therapy or research, selection markers such as gfp, ΔNGFR, ΔGHR, Neo, LacZ and / or β-Geo [most of these markers will be described in more detail in the examples], promoters or other expression regulatory sequences or internal ribosome entry sites, IRES). The MCS site allows you to enter a single sequence (Example 2) or several simultaneously in the same construction (Examples 3 and 4). The inclusion of one or two IRES in the pRV MCS allows bi- or tricistronic constructs to be made for the simultaneous expression of two or three genes in the cell where said constructs are introduced, either by transfection or by retroviral transduction (Example 4). Heterologous sequences can be introduced interchangeably at the MCS, MCS 2 polycloning site or both simultaneously. In another embodiment of the invention the method for the production of self-activating retroviral vectors from the retroviral vector described in the present invention is included, as well as said self-activating retroviral vectors. These vectors have a truncated LTR3 'in its plasmid DNA form, which, by reverse transcriptase action is duplicated in the integrated provirus so that the latter has the two truncated LTRs (Anson 2004). Truncated LTRs are constructed by partial deletion of the U3 region of the viral LTR3 '. This U3 region constitutes the viral promoter and has in its sequence two direct repeats (RD) that act as enhancers for the transcription of the viral RNA. In addition, the U3 region possesses the transcriptional elements called CAAT and TATA boxes respectively, and which, together, constitute the minimum viral promoter. The deletion of one or more of these elements affects, to a greater or lesser extent, the levels of expression obtained from the U3 viral promoter. Self-activating vectors have advantages over those that preserve the U3 region in its entirety, since they lack viral sequences that could cause viruses competent for replication, by homologous recombination with exogenous or endogenous viruses. In addition, the elimination of viral sequences that act as transcriptional activators reduces the risk of insertional mutagenesis in gene therapy protocols, by preventing the activation of oncogenes.
En otra realización de la invención se incluye el método para la obtención de partículas virales infectivas deficientes en replicación mediante la transfección en líneas celulares empaquetadoras del vector pRV (SEQ ID NO 1 o su hebra complementaria o secuencias de ADN que hibridan con éstas bajo condiciones de alta exigencia) o construcciones retrovirales directamente derivadas de dicho vector retroviral. Estas líneas empaquetadoras pueden o no expresar de manera estable los genes necesarios (gag, pol, env) para la formación de partículas retrovirales que contengan los vectores retrovirales de la presente invención. En el caso de que la célula empaquetadora no exprese dichos genes auxiliares, el vector retroviral se cotransfecta con los mismos en dicha célula (Ejemplo 5). La línea empaquetadora transfectada tal como se ha descrito anteriormente, se cultiva en unas condiciones y un medio de cultivo que favorezcan la producción y liberación a dicho medio de partículas virales infectivas que contengan los vectores retrovirales descritos en la presente invención. Los títulos obtenidos a partir de los vectores retrovirales directamente derivados a partir de pRV (descritos en la presente invención) son muy altos, con unos valores que no bajan en ningún caso de lxl O6 Ul/ml, y que llegan incluso a lxlO8 Ul/ml (Tabla I). La importancia de estos títulos retrovirales queda patente cuando se comparan con los producidos a partir de otros vectores retrovirales (Tabla III). Sólo son comparables con los vectores descritos en la presente invención los títulos de vectores que producen un mayor número de copias de su ADN proviral en la célula empaquetadora mediante la inclusión de secuencias que confieren a dicho plásmido retroviral una capacidad autorreplicativa en la célula empaquetadora. Los altos títulos retrovirales producidos por los vectores descritos en la presente invención facilitan la transducción retroviral de líneas celulares y células primarias con una eficiencia superior a la obtenida por los medios más usuales de transfección (Tabla H).In another embodiment of the invention, the method for obtaining infectious viral particles deficient in replication is included by transfection into packaging cell lines of the pRV vector (SEQ ID NO 1 or its complementary strand or DNA sequences that hybridize with them under conditions of high requirement) or retroviral constructions directly derived from said retroviral vector. These packaging lines may or may not stably express the necessary genes (gag, pol, env) for the formation of retroviral particles containing the retroviral vectors of the present invention. In the event that the packaging cell does not express said auxiliary genes, the retroviral vector is co-transfected with them in said cell (Example 5). The transfected packaging line as described above is grown under conditions and a culture medium that favors the production and release to said medium of infectious viral particles containing the retroviral vectors described in the present invention. The titres obtained from the retroviral vectors directly derived from pRV (described in the present invention) are very high, with values that do not fall in any case of lxl O 6 Ul / ml, and even reach lxlO 8 Ul / ml (Table I). The importance of these retroviral titres is evident when compared with those produced from other retroviral vectors (Table III). Only the titles of vectors that produce a greater number of copies of their proviral DNA in the packing cell are comparable with the vectors described in the present invention by including sequences that confer said retroviral plasmid an self-replicating ability in the packing cell. The high retroviral titres produced by the vectors described in the present invention facilitate retroviral transduction of cell lines and primary cells with an efficiency superior to that obtained by the most usual means of transfection (Table H).
En otra realización de la invención se incluye la secuencia de ARN derivada del vector retroviral de la presente invención, la secuencia de ADN del provirus retroviral producido en la célula diana durante el proceso de transcripción reversa del ARN derivado del vector retroviral y el ARNm producido desde dicho provirus retroviral.Another embodiment of the invention includes the RNA sequence derived from the retroviral vector of the present invention, the DNA sequence of the retroviral provirus produced in the target cell during the reverse transcription process of the RNA derived from the retroviral vector and the mRNA produced from said retroviral provirus.
En otra realización más de la invención se incluyen partículas retrovirales obtenidas mediante la transfección de células hospedadoras (comúnmente denominadas células empaquetadoras) con el vector retroviral de la presente invención o ARN derivado de dicho vector, células hospedadoras transformadas o transfectadas con dichos vectores retrovirales y células hospedadoras infectadas o transducidas con las partículas retrovirales obtenidas a partir de los vectores retrovirales descritos en la presente invención.In yet another embodiment of the invention are included retroviral particles obtained by transfecting host cells (commonly referred to as packaging cells) with the retroviral vector of the present invention or RNA derived from said vector, host cells transformed or transfected with said retroviral vectors and cells. hosts infected or transduced with the retroviral particles obtained from the retroviral vectors described in the present invention.
Otro aspecto de la invención se relaciona con un método para introducir secuencias nucleotídicas heterólogas u homologas en células diana que comprende la infección de las células con las partículas retrovirales obtenidas a partir de los vectores retrovirales descritos en la presente invención. Otros usos preferidos de estos vectores retrovirales consisten en la producción de animales transgénicos mediante la transducción de células madre embrionarias con partículas retrovirales producidas a partir de los vectores retrovirales descritos en la presente invención, la producción y escrutinio de librerías retrovirales construidas en estos vectores retrovirales, para la preparación de una composición farmacéutica aplicable para uso en terapia génica y aquellos vehículos farmacéuticamente compatibles con dicha composición, para el clonaje y selección de genes y para la expresión y/o sobreexpresión de proteínas o ARN.Another aspect of the invention relates to a method of introducing heterologous or homologous nucleotide sequences in target cells comprising the infection of the cells with the retroviral particles obtained from the retroviral vectors described in the present invention. Other preferred uses of these retroviral vectors consist of the production of transgenic animals by transduction of embryonic stem cells with retroviral particles produced from the retroviral vectors described in the present invention, the production and screening of retroviral libraries constructed in these retroviral vectors, for the preparation of a pharmaceutical composition applicable for use in gene therapy and those pharmaceutically compatible vehicles with said composition, for cloning and gene selection and for the expression and / or overexpression of proteins or RNA.
En otro aspecto de la invención se incluye el uso de los vectores retrovirales descritos en la presente invención para la producción y/o purificación de péptidos o proteínas heterólogas cuyos genes son clonados en alguna posición del sitio de policlonaje MCS descrito en la figura 1 y en el ejemplo 1 de la presente invención. Las proteínas se obtienen a partir de células hospedadoras transfectadas con el vector retroviral que contiene el o los genes de las proteínas heterólogas, o transducidas con las partículas infectivas producidas a partir de dichos vectores retrovirales. Las células hospedadoras se cultivan en unas condiciones que favorezcan la expresión de la proteína cuya secuencia nucleotídica ha sido clonada en el MCS, de manera que la proteína producida se recoge del medio de cultivo y/o las propias células hospedadoras.Another aspect of the invention includes the use of the retroviral vectors described in the present invention for the production and / or purification of heterologous peptides or proteins whose genes are cloned at some position of the MCS polycloning site described in Figure 1 and in Example 1 of the present invention. Proteins are obtained from host cells transfected with the retroviral vector containing the heterologous protein gene (s), or transduced with the infective particles produced from said retroviral vectors. The host cells are cultured under conditions that favor the expression of the protein whose nucleotide sequence has been cloned into the MCS, so that the protein produced is collected from the culture medium and / or the host cells themselves.
A continuación, los Ejemplos describen en mayor detalle ciertas realizaciones de la presente invención.Next, the Examples describe in greater detail certain embodiments of the present invention.
EjemplosExamples
Los siguientes Ejemplos se presentan para ilustrar, pero no limitan la presente invención:The following Examples are presented to illustrate, but do not limit this invention:
Ejemplo 1: Construcción del vector retroviral pRV 1.1.- Construcción de pUCm. El vector pUC18 se digiere con las enzimasExample 1: Construction of the retroviral vector pRV 1.1.- Construction of pUCm. The pUC18 vector is digested with enzymes
Aat II y Afl III y en dicho fragmento se clona un sitio de policlonaje sintético constituido por la hibridación de los oligonucleótidos con secuencias SEQ ID NO 2 y SEQ ID NO 3. Se origina el vector denominado pUCm. 1.2.- Construcción de pUCRV-1. Se amplifica por PCR el promotor de CMV desde el vector pcDNA3, se usan los oligonucleótidos SEQ ID NO 4 y SEQ ID NO 5. El producto de la PCR se clona en algún vector destinado a la recepción de productos de PCR (pCR 2.1 o pCR-Blunt, de Invitrogen o pGEM-T de Promega, p. ej.), la construcción resultante se digiere con Pme I y Sac I y el fragmento correspondiente se clona en las dianas Pme I y Sac I de pUCm. El vector resultante se denomina pUCRV-1.Aat II and Afl III and in said fragment a synthetic polycloning site is cloned constituted by the hybridization of the oligonucleotides with sequences SEQ ID NO 2 and SEQ ID NO 3. The vector named pUCm originates. 1.2.- Construction of pUCRV-1. The CMV promoter is amplified by PCR from the pcDNA3 vector, oligonucleotides SEQ ID NO 4 and SEQ ID NO 5 are used. The PCR product is cloned into a vector destined for the reception of PCR products (pCR 2.1 or pCR -Blunt, from Invitrogen or pGEM-T from Promega, e.g.), the resulting construct is digested with Pme I and Sac I and the corresponding fragment is cloned into the Pme I and Sac I targets of pUCm. The resulting vector is called pUCRV-1.
1.3.- Construcción de pUCRV-2. El vector retroviral pFB se digiere con las enzimas Sac I y Bgl II, el fragmento correspondiente a la región RU5 de MoMLV y la señal de empaquetamiento extendida se clona en las correspondientes dianas Sac I y Bgl II de pUCRV-1, el vector resultante se denomina pUCRV-2.1.3.- Construction of pUCRV-2. The retroviral vector pFB is digested with the Sac I and Bgl II enzymes, the fragment corresponding to the RU5 region of MoMLV and the extended packaging signal is cloned into the corresponding Sac I and Bgl II targets of pUCRV-1, the resulting vector is called pUCRV-2.
1.4.- Construcción de pUCRV-3. El vector pUCRV-2 se digiere con las enzimas Bgl II y Bam HI. En dichas dianas se introduce el fragmento sintético constituido por la hibridación de los oligonucleótidos SEQ ID NO 6 y SEQ ID NO 7, correspondiente al sitio de policlonaje MCS2 y a la región del sitio aceptor de splicing. El vector resultante se denomina pUCRV-3.1.4.- Construction of pUCRV-3. The pUCRV-2 vector is digested with the enzymes Bgl II and Bam HI. In said targets the synthetic fragment constituted by the hybridization of oligonucleotides SEQ ID NO 6 and SEQ ID NO 7, corresponding to the MCS2 polycloning site and the region of the splicing acceptor site is introduced. The resulting vector is called pUCRV-3.
1.5.- Construcción de pUCRV-4. El vector pUCRV-3 se digiere con las enzimas Bam HI y Sal I. En dichas dianas se introduce el fragmento sintético constituido por la hibridación de los oligonucleótidos SEQ ID NO 8 y SEQ ID NO 9, correspondiente al sitio de policlonaje MCS. El vector resultante se denomina pUCRV-4.1.5.- Construction of pUCRV-4. The vector pUCRV-3 is digested with the enzymes Bam HI and Sal I. In said targets the synthetic fragment consisting of the hybridization of the oligonucleotides SEQ ID NO 8 and SEQ ID NO 9 is introduced, corresponding to the MCS polycloning site. The resulting vector is called pUCRV-4.
1.6.- Construcción de pUCRV-5. El vector pUCRV-4 se digiere con las enzimas Sal I y Nhe I. En dichas dianas se introduce el fragmento sintético constituido por la hibridación de los oligonucleótidos SEQ ID NO 10 y SEQ ID NO1.6.- Construction of pUCRV-5. The vector pUCRV-4 is digested with the enzymes Sal I and Nhe I. In said targets the synthetic fragment consisting of the hybridization of the oligonucleotides SEQ ID NO 10 and SEQ ID NO is introduced
1 1, correspondiente al tracto de polipurinas y a un fragmento del LTR 3' de1 1, corresponding to the polyurethane tract and a fragment of the 3 'LTR of
MoMLV. El vector resultante se denomina pUCRV-5. 1.7.- Construcción depRV. El vector pBabePuro (Morgenstern et al, 1990) se digiere con las enzimas Nhe I y Sap I. El fragmento correspondiente al LTR 3' de MoMLV se clona en las dianas Nhe I y Sap I de pUCRV-5. La construcción resultante se denomina pRV (Figura 1, SEQ ID NO 1). La localización de las secuencias más relevantes de pRV es la siguiente: a. Promotor temprano-intermedio del citomegalo virus (CMV) humano: posiciones 23-604 de la SEQ ID NO 1 b. Región RU5 del LTR 5': posiciones 641-785 de la SEQ ID NO 1 c. Sitio de unión del primer (PBS): posiciones 786-803 de la SEQ ID NO 1 d. Sitio donador de splicing: posiciones 846-847 de la SEQ ID NO 1 e. Señal de empaquetamiento extendida: posiciones 855-1700 de la SEQ ID NO 1 f. Sitio de policlonaje 2 (MCS 2): posiciones 1703-1726 de la SEQ ID NO 1 g. Región del sitio aceptor de splicing: posiciones 1727-1783 de la SEQ ID NO 1 h. Sitio aceptor de splicing posiciones 1780-1781 de la SEQ ID NO 1 i. Sitio de policlonaje (MCS): posiciones 1784-1861 de la SEQ ID NO 1 j. Tracto de polipurinas: posiciones 1862-1903 de la SEQ ID NO 1 k. LTR 3': posiciones 1904-2497 de la SEQ ID NO 1MoMLV The resulting vector is called pUCRV-5. 1.7.- DepRV construction. The pBabePuro vector (Morgenstern et al, 1990) is digested with the enzymes Nhe I and Sap I. The fragment corresponding to the 3 'LTR of MoMLV is cloned into the Nhe I and Sap I targets of pUCRV-5. The resulting construction is called pRV (Figure 1, SEQ ID NO 1). The location of the most relevant pRV sequences is as follows: a. Early-intermediate promoter of human cytomegal virus (CMV): positions 23-604 of SEQ ID NO 1 b. RU5 region of the 5 'LTR: positions 641-785 of SEQ ID NO 1 c. First junction site (PBS): positions 786-803 of SEQ ID NO 1 d. Splicing donor site: positions 846-847 of SEQ ID NO 1 e. Extended packing signal: positions 855-1700 of SEQ ID NO 1 f. Polycloning site 2 (MCS 2): positions 1703-1726 of SEQ ID NO 1 g. Region of the splicing acceptor site: positions 1727-1783 of SEQ ID NO 1 h. Site acceptor of splicing positions 1780-1781 of SEQ ID NO 1 i. Polycloning site (MCS): positions 1784-1861 of SEQ ID NO 1 j. Polyurethane tract: positions 1862-1903 of SEQ ID NO 1 k. 3 'LTR: positions 1904-2497 of SEQ ID NO 1
Ejemplo 2: Expresión de un gen heterólogo clonado en el sitio de policlonaje (MCS) de pRV. 2.1.- Construcción de pRV-gfp. Digestión del vector pEGFP-Nl con las enzimas Xho I y Not I, el fragmento resultante, gfp, se clona en pRV cortado con Xho I y Not I. La construcción originada se denomina pRV-gfp.Example 2: Expression of a heterologous gene cloned at the polycloning site (MCS) of pRV. 2.1.- Construction of pRV-gfp. Digestion of the vector pEGFP-Nl with the enzymes Xho I and Not I, the resulting fragment, gfp, is cloned into pRV cut with Xho I and Not I. The originating construct is called pRV-gfp.
Ejemplo 3: Construcción de vectores retrovirales con un cassette de traducción constituido por una secuencia de entrada interna del ribosoma (IRES) y un gen heterólogo cualquiera. 3.1.- Construcción de pRV-IRES-gfp. El vector pIRES-2-EGFP se corta conExample 3: Construction of retroviral vectors with a translation cassette consisting of an internal ribosome input sequence (IRES) and any heterologous gene. 3.1.- Construction of pRV-IRES-gfp. The vector pIRES-2-EGFP is cut with
Bam HI, se trata con el fragmento Klenow de la ADN polimerasa de E. Coli y se ligan los extremos romos para eliminar la diana Bam HI del vector. El vector así tratado se corta con Xho I y Not I, y el fragmento IRES-gfp se clona en pBacPAK8 digerido con Xho I y Not I. La construcción resultante se denomina pB-IRES-gfp. pB-IRES-gfp se corta con las enzimas Sac π y Not I y se clona en pRV cortado con Sac II y Not I para obtener el vector retroviral pRV -IRES-gfp.Bam HI, is treated with the Klenow fragment of E. coli DNA polymerase and blunt ends are ligated to remove the Bam HI target from the vector. The vector thus treated is cut with Xho I and Not I, and the IRES-gfp fragment is cloned into pBacPAK8 digested with Xho I and Not I. The resulting construct is called pB-IRES-gfp. pB-IRES-gfp is cut with the Sac π and Not I enzymes and cloned into pRV cut with Sac II and Not I to obtain the retroviral vector pRV -IRES-gfp.
3.2.- Construcción de pRV-IRES-ΔGHR (Receptor truncado de la hormona de crecimiento). Amplificación del receptor truncado de la hormona de crecimiento ΔGHR (Garcia-Ortiz et al., 2000) con oligonucleótidos de las siguientes características:3.2.- Construction of pRV-IRES-ΔGHR (Truncated growth hormone receptor). Amplification of the truncated growth hormone receptor ΔGHR (Garcia-Ortiz et al., 2000) with oligonucleotides of the following characteristics:
Oligo sense: con extremo cohesivo en el extremo 5' para la diana Ncol, seguido de los primeros 10 a 25 nucleótidos correspondientes a la secuencia de ΔGHR. El extremo correspondiente a Neo I contiene la secuencia de la metionina inicial y el primer nucleótido del primer codón de ΔGHR (CATGG).Oligo sense: with a cohesive end at the 5 'end for the Ncol target, followed by the first 10 to 25 nucleotides corresponding to the ΔGHR sequence. The end corresponding to Neo I contains the initial methionine sequence and the first nucleotide of the first codon of ΔGHR (CATGG).
Oligo antisense: con extremo cohesivo en su extremo 5' para la diana Not I, seguido de los primeros 10 a 25 nucleótidos correspondientes a la secuencia de ΔGHR. El producto de la PCR se clona en algún vector destinado a la recepción de productos de PCR (pCR 2.1 o pCR-Blunt, de Invitrogen o pGEM-T de Promega, p. ej.), la construcción resultante se digiere con Neo I y Not I y el fragmento correspondiente a ΔGHR se clona en pB-IRES-gfp (Ejemplo 3.1) en los correspondientes sitios Neo I y Not I.Oligo antisense: with a cohesive end at its 5 'end for the Not I target, followed by the first 10 to 25 nucleotides corresponding to the ΔGHR sequence. The PCR product is cloned into a vector for the reception of PCR products (pCR 2.1 or pCR-Blunt, from Invitrogen or pGEM-T from Promega, e.g.), the resulting construct is digested with Neo I and Not I and the fragment corresponding to ΔGHR is cloned into pB-IRES-gfp (Example 3.1) at the corresponding Neo I and Not I sites.
La construcción pB-IRES-ΔGHR se corta con Sac II y Not I y el fragmento IRES-ΔGHR se clona en pRV cortado con Sac π y Not I. La construcción originada se denomina pRV-IRES-ΔGHR.The pB-IRES-ΔGHR construct is cut with Sac II and Not I and the IRES-ΔGHR fragment is cloned into pRV cut with Sac π and Not I. The originating construct is called pRV-IRES-ΔGHR.
Este método es aplicable para la construcción de vectores análogos, pRV- IRES-Gen, siempre que la primera base del primer codón tras la metionina inicial del gen sea una G (guanina). 3.3.- Construcción de pRV-IRES-Neo. Amplificación de Neo por PCR a partir del plásmido pcDNA3.1This method is applicable for the construction of analog vectors, pRV-IRES-Gen, provided that the first base of the first codon after the initial methionine of the gene is a G (guanine). 3.3.- Construction of pRV-IRES-Neo. Neo PCR amplification from the plasmid pcDNA3.1
Oligos utilizados: Oligo sense: en el extremo 5' tiene una diana Bsa I (GGTCTC) seguida de la secuencia NCATG (donde N puede ser indistintamente A, T, C o G) que contiene el extremo cohesivo de la diana Ncol, seguida de los primeros 10 a 25 nucleótidos correspondientes a la secuencia de Neo. El fragmento correspondiente a Neo I contiene la secuencia de la metionina inicial y el primer nucleótido del primer codón de Neo (CATGA).Oligos used: Oligo sense: at the 5 'end it has a Bsa I target (GGTCTC) followed by the NCATG sequence (where N can be interchangeably A, T, C or G) that contains the cohesive end of the Ncol target, followed by the first 10 to 25 nucleotides corresponding to the sequence of Neo. The fragment corresponding to Neo I contains the initial methionine sequence and the first nucleotide of the first Neo codon (CATGA).
Oligo antisense: con extremo cohesivo en su extremo 5' para la diana Not I, seguido de los primeros 10 a 25 nucleótidos correspondientes a la secuencia de Neo.Oligo antisense: with a cohesive end at its 5 'end for the Not I target, followed by the first 10 to 25 nucleotides corresponding to the Neo sequence.
El producto de la PCR se clona en algún vector destinado a la recepción de productos de PCR (pCR 2.1 o pCR-Blunt, de Invitrogen o pGEM-T de Promega, p. ej.), la construcción resultante se digiere con Bsa I y Not I y el fragmento correspondiente a Neo se clona en pB-IRES-gfp en los correspondientes sitios Neo I y Not I.The PCR product is cloned into a vector for the reception of PCR products (pCR 2.1 or pCR-Blunt, from Invitrogen or pGEM-T from Promega, e.g.), the resulting construct is digested with Bsa I and Not I and the fragment corresponding to Neo is cloned into pB-IRES-gfp at the corresponding Neo I and Not I sites.
La construcción pB-IRES-Neo se corta con Sac II y Not I y el fragmento IRES-Neo se clona en pRV cortado con Sac II y Not I. La construcción originada se denomina pRV-IRES-Neo.The pB-IRES-Neo construct is cut with Sac II and Not I and the IRES-Neo fragment is cloned into pRV cut with Sac II and Not I. The originated construct is called pRV-IRES-Neo.
Este método es aplicable para la construcción de vectores análogos, pRV-This method is applicable for the construction of analog vectors, pRV-
IRES-Gen, independientemente de que la primera base del primer codón tras la metionina inicial del gen sea una G (guanina), como por ejemplo el receptor truncado del factor de crecimiento nervioso (ΔNGFR), el gen de la β-Galactosidasa (LacZ) o el marcador combinado β-Galactosidasa/Neo (β-Geo).IRES-Gen, regardless of whether the first base of the first codon after the initial methionine of the gene is a G (guanine), such as the truncated nerve growth factor receptor (ΔNGFR), the β-Galactosidase (LacZ) gene ) or the combined marker β-Galactosidase / Neo (β-Geo).
Ejemplo 4: Construcción de vectores retrovirales bicistrónicos para la expresión simultánea de dos genes heterólogos Se llevó a cabo la construcción de vectores retrovirales bicistrónicos para la expresión simultánea de dos genes heterólogos, en que los distintos elementos estaban dispuestos de la siguiente forma: un gen heterólogo cualquiera precede a un cassette de traducción constituido por una secuencia de entrada interna del ribosoma (IRES), preferiblemente derivada de picornavirus, y más preferiblemente del virus de la encefalomiocarditis, y un segundo gen heterólogo cualquiera.Example 4: Construction of bicistronic retroviral vectors for the simultaneous expression of two heterologous genes The construction of bicistronic retroviral vectors for the simultaneous expression of two heterologous genes was carried out, in which the different elements were arranged as follows: a heterologous gene any one precedes a translation cassette consisting of an internal ribosome input sequence (IRES), preferably derived from picornavirus, and more preferably from the encephalomyocarditis virus, and any second heterologous gene.
El conjunto se clona en el sitio de policlonaje (MCS) de pRV, utilizando para ello cualquier tipo de combinación posible de los sitios de restricción presentes en dicho sitio de policlonaje.The assembly is cloned into the polycloning site (MCS) of pRV, using any possible combination of the restriction sites present in said polycloning site.
4.1.- Clonaje de pRV-WASp-IRES-gfp. Amplificar la secuencia codificante de WASp (Wiscott Aldrich Síndrome Protein) por PCR con oligos que dejen extremos cohesivos para BamHI y Eco RI en los extremos 5'y 3' respectivamente del ADNc de WASp. El producto de la PCR se clona en algún vector destinado a la recepción de productos de PCR (pCR 2.1 o pCR-Blunt, de Invitrogen o pGEM-T de Promega, p. ej.), la construcción resultante se digiere con Bam HI y Eco RI y el fragmento correspondiente a WASp se clona en las dianas Bam HI y Eco RI de pRV- IRES-gfp, dando lugar a la construcción pRV-WASp-IRES-gfp.4.1.- Cloning of pRV-WASp-IRES-gfp. Amplify the coding sequence of WASp (Wiscott Aldrich Protein Syndrome) by PCR with oligos that leave cohesive ends for BamHI and Eco RI at the 5'and 3 'ends respectively of the WASp cDNA. The PCR product is cloned into a vector for the reception of PCR products (pCR 2.1 or pCR-Blunt, from Invitrogen or pGEM-T from Promise, p. ex.), the resulting construct is digested with Bam HI and Eco RI and the fragment corresponding to WASp is cloned into the Bam HI and Eco RI targets of pRV-IRES-gfp, resulting in the construction pRV-WASp-IRES-gfp .
Ejemplo 5: Generación y titulación de partículas retrovirales El siguiente ejemplo ilustra la generación de partículas retrovirales infectivas y defectivas en replicación para uso en investigación, terapia génica u otros.Example 5: Generation and titration of retroviral particles The following example illustrates the generation of infective and defective retroviral particles in replication for use in research, gene therapy or others.
Para generar partículas recombinantes, construcciones tales como las citadas en los anteriores ejemplos 1 a 4 se co-transfectan, en la línea 293, o derivadas de 293, tales como 293T; con construcciones empaquetadoras que codifiquen las proteínas de los genes gag-pol y env, expresadas desde un solo vector o más preferiblemente desde dos construcciones diferentes, preferiblemente una construcción para expresar gag-pol y otra para e«v. La cotransfección se realiza mediante el método de precipitación con fosfato calcico. El medio de la transfección se renueva a las 8 horas. 24 horas después de la transfección se añade a las células empaquetadoras el medio para la recogida del sobrenadante retroviral. 48 horas después de la transfección se recoge el sobrenadante con las partículas retrovirales. Este sobrenadante se filtra con un filtro de baja retención proteica y un tamaño de poro de 0,45 μm. El sobrenadante puede usarse fresco para la transducción retroviral o guardarse congelado a -80°C.To generate recombinant particles, constructs such as those cited in the above examples 1 to 4 are co-transfected, in line 293, or derived from 293, such as 293T; with packaging constructions encoding the proteins of the gag-pol and env genes, expressed from a single vector or more preferably from two different constructs, preferably a construction to express gag-pol and another for e «v. The cotransfection is carried out by the calcium phosphate precipitation method. The transfection medium is renewed at 8 hours. 24 hours after transfection, the medium for collecting the retroviral supernatant is added to the packaging cells. 48 hours after transfection, the supernatant is collected with the retroviral particles. This supernatant is filtered with a low protein retention filter and a pore size of 0.45 μm. The supernatant can be used fresh for retroviral transduction or stored frozen at -80 ° C.
Para titular el sobrenadante retroviral se emplearon distintos procedimientos según la naturaleza del gen de selección codificado por el vector retroviral.To titrate the retroviral supernatant, different procedures were used depending on the nature of the selection gene encoded by the retroviral vector.
5.1.- Vectores retrovirales que codifican marcadores seleccionables por citometría (p. ej. GFP, ΔNGFR, ΔGHR). 24 horas antes de la infección se plaquean 1,5x105 células NIH 3T3 en DMEM completo, por pocilio de una placa de 6 pocilios (p6). En el momento de la titulación contamos las células de un pocilio, típicamente hay en torno a 3x105 células por pocilio. Para la titulación, se prepara DMEM completo con 8 μg/ml de polibreno. Se pone 1 mi de medio de infección por pocilio de p6 y un volumen adecuado de sobrenadante para no saturar el ensayo. Dicho volumen, en el caso de sobrenadantes retrovirales obtenidos en 293T por transfección transitoria de vectores tales como los descritos en los ejemplos 1 a 4, es de 1-20 μl, lo que supone una dilución 1 :1000 a 1:50.5.1.- Retroviral vectors encoding selectable markers by cytometry (eg GFP, ΔNGFR, ΔGHR). 24 hours before infection, 1.5x10 5 NIH 3T3 cells are plated in complete DMEM, per well of a 6-well plate (p6). At the time of titration we count the cells of a well, typically there are around 3x10 5 cells per well. For titration, complete DMEM is prepared with 8 μg / ml of polybrene. 1 ml of well infection medium is put of p6 and an adequate volume of supernatant so as not to saturate the assay. Said volume, in the case of retroviral supernatants obtained in 293T by transient transfection of vectors such as those described in examples 1 to 4, is 1-20 μl, which implies a dilution of 1: 1000 to 1:50.
Tras 4 a 6 horas de incubación a 37°C, se reemplaza el medio con DMEM completo fresco. Los cultivos se mantienen durante 2-3 días adicionales, hasta la cuantificación por citometría del porcentaje de células que expresan el marcador, así evitamos la obtención de resultados erróneos debidos al fenómeno de la pseudoinfección, causada por genomas retrovirales no integrados pero transcripcionalmente activos. El título se calcula como unidades infectivas por mi (Ul/ml), mediante la expresión: (% de células positivas) x (número de células en el momento de la infección/ 100) x (factor de dilución).After 4 to 6 hours of incubation at 37 ° C, the medium is replaced with fresh complete DMEM. The cultures are maintained for an additional 2-3 days, until the cytometry quantification of the percentage of cells expressing the marker, so we avoid obtaining erroneous results due to the phenomenon of pseudoinfection, caused by non-integrated but transcriptionally active retroviral genomes. The titer is calculated as infective units per mi (Ul / ml), by the expression: (% of positive cells) x (number of cells at the time of infection / 100) x (dilution factor).
5.2.- Vectores retrovirales que codifican un gen de resistencia a antibióticos (p. ej. Neomicina). Para su titulación, se realizan diluciones seriadas (10~3 a 10"7) del sobrenadante en DMEM completo con 8 μg/ml de polibreno. Los sobrenadantes diluidos se añaden sobre células NIH 3T3 plaquedas 24 horas antes (lml sobrenadante diluído/lxlO5 células/pocilio p6) y se incuban de 4 a 6 horas a 37°C. Después se reemplaza el medio con DMEM completo fresco y, a las 24 h desde la transducción, se inicia la selección con 0,5 mg/ml de G418. De diez a quince días después, las colonias resistentes al antibiótico se tiñen con violeta cristal (0,2% en metanol al 20%), y finalmente se cuentan. Una colonia positiva ha de contener al menos 20 células. El título se calcula como unidades formadoras de colonias resistentes al antibiótico por mi (CFU Antib.R/ml) mediante la expresión: (N° de colonias resistentes x factor de dilución del sobrenadante).5.2.- Retroviral vectors encoding an antibiotic resistance gene (eg Neomycin). For titration, serial dilutions (10 ~ 3 to 10 "7 ) of the supernatant are made in complete DMEM with 8 μg / ml of polybrene. The diluted supernatants are added onto NIH 3T3 cells plated 24 hours before (lml diluted supernatant / lxlO 5 cells / well p6) and incubate for 4 to 6 hours at 37 ° C. The medium is then replaced with fresh complete DMEM and, 24 h after transduction, the selection is started with 0.5 mg / ml of G418 Ten to fifteen days later, antibiotic resistant colonies are stained with crystal violet (0.2% in 20% methanol), and finally counted in. A positive colony must contain at least 20 cells. The titer is calculated as antibiotic-resistant colony-forming units for me (CFU Antib. R / ml) by the expression: (No. of resistant colonies x supernatant dilution factor).
5.3.- Vectores retrovirales que codifican el gen de la β-galactosidasa (LacZ). El procedimiento es análogo al del ejemplo 5.1, lo que varía es el método de detección de la expresión del gen marcador. La expresión de este marcador puede evaluarse de forma cuantitativa mediante citometría de flujo, utilizando el kit FluoReporter lacZ Flow Cytometry Kit de Molecular Probes (Cat. F-1930). También puede detectarse la expresión del gen LacZ por tinción con X-Gal, un sustrato de la β-galactosidasa que origina un producto azul cuando es procesado por dicha enzima, coloreando así las células donde se expresa.5.3.- Retroviral vectors encoding the β-galactosidase (LacZ) gene. The procedure is analogous to that of example 5.1, what varies is the method of detecting expression of the marker gene. The expression of this marker can evaluated quantitatively by flow cytometry, using the FluoReporter lacZ Flow Cytometry Kit from Molecular Probes (Cat. F-1930). The expression of the LacZ gene can also be detected by staining with X-Gal, a substrate of β-galactosidase that originates a blue product when processed by said enzyme, thus coloring the cells where it is expressed.
Ejemplo 6: Títulos de los vectores retrovirales La tabla I muestra ejemplos representativos de rangos de títulos retrovirales de partículas retrovirales producidas con diferentes envueltas a partir de vectores retrovirales derivados del vector retroviral pRV descritos en los ejemplos 2 a 4.Example 6: Titles of retroviral vectors Table I shows representative examples of ranges of retroviral titers of retroviral particles produced with different envelopes from retroviral vectors derived from the retroviral vector pRV described in Examples 2 to 4.
Las partículas retrovirales fueron obtenidas según el ejemplo 5 y tituladas según los ejemplos 5.1 y 5.2 dependiendo de la naturaleza del marcador de selección.Retroviral particles were obtained according to example 5 and titrated according to examples 5.1 and 5.2 depending on the nature of the selection marker.
Ejemplo 7: Eficiencias de transducción retroviral La tabla II muestra ejemplos representativos de las eficiencias de transducción retroviral obtenidas para distintas líneas celulares y células primarias transducidas con partículas retrovirales obtenidas a partir de los vectores retrovirales derivados de pRV descritos en los ejemplos 2 a 4. Los porcentajes de transducción retroviral (estable) corresponden a los resultados de un experimento característico. En el caso de los métodos no retrovirales, los valores corresponden a los obtenidos de forma transitoria con el método de transfección más eficiente de entre los tres siguientes: electroporación, fosfato calcico y lipoplejos (reactivo comercial). Entre los ejemplos figuran líneas celulares y células primarias, tales como linfocitos T, células madre o progenitores no diferenciados. Estos niveles de transducción se comparan, cuando el dato está disponible, con los métodos de transfección usuales más eficientes de entre los ensayados, tales como electroporación, lipocomplejos (lipofectamina) o transfección con fosfato calcico.Example 7: Retroviral transduction efficiencies Table II shows representative examples of the retroviral transduction efficiencies obtained for different cell lines and primary cells transduced with retroviral particles obtained from the retroviral vectors derived from pRV described in Examples 2 to 4. Retroviral (stable) transduction percentages correspond to the results of a characteristic experiment. In the case of non-retroviral methods, the values correspond to those obtained temporarily with the most efficient transfection method among the following three: electroporation, calcium phosphate and lipoplejos (commercial reagent). Examples include cell lines and primary cells, such as T lymphocytes, stem cells or undifferentiated progenitors. These transduction levels are compared, when available, with the most efficient usual transfection methods among those tested, such as electroporation, lipocomplexes (lipofectamine) or transfection with calcium phosphate.
Ejemplo 8: Comparación entre los títulos de las series de vectores retrovirales pRV, pL, pCL y pLZR. En este ejemplo se comparan los títulos de sobrenadantes retrovirales obtenidos a partir de vectores retrovirales derivados de pRV según el procedimiento descrito en el ejemplo 5, y descritos en los ejemplos 2 a 4, con los títulos obtenidos a partir de los vectores pLXSΔN, pCLXSN y pLZR-CMV-gfp. El vector pLXSΔN (Ruggieri et al., 1997) posee un LTR derivado directamente de MoMLV, que dirige la expresión del gen heterólogo X, y un promotor interno de SV40, que dirige la expresión del marcador ΔNGFR. Este vector carece del promotor mixto CMV-LTR, y tiene un sitio aceptor de splicing derivado de MoMLV. El vector pCLXSN (Naviaux et al., 1996), al contrario que el anterior, sí posee un LTR mixto, con un promotor CMV, sin embargo, comparte con éste la secuencia leader y, en concreto, la zona correspondiente al sitio aceptor de splicing. El vector pCLXSN tiene un marcador de selección consistente en el gen de resistencia a neomicina, su expresión es dirigida por el promotor de SV40. El vector más moderno es el pLZR-CMV-gfp (Yang et al., 1999), con un promotor mixto CMV y un diseño para la producción de partículas retrovirales de alto título basado en la presencia, en la construcción plasmídica que soporta el genoma proviral, de las secuencias EBNA-1 y OriP, origen de replicación y antígeno nuclear del virus Epstein Barr, que confieren al plásmido una capacidad autorreplicativa en la célula empaquetadora. El leader de pLZR- CMV-gfp está, sin embargo, derivado de MoMLV.Example 8: Comparison between the titles of the retroviral vector series pRV, pL, pCL and pLZR. In this example, the titers of retroviral supernatants obtained from retroviral vectors derived from pRV are compared according to the procedure described in example 5, and described in examples 2 to 4, with the titres obtained from the vectors pLXSΔN, pCLXSN and pLZR-CMV-gfp. The pLXSΔN vector (Ruggieri et al., 1997) has an LTR derived directly from MoMLV, which directs the expression of the heterologous gene X, and an internal promoter of SV40, which directs the expression of the ΔNGFR marker. This vector lacks the mixed CMV-LTR promoter, and has a MoMLV derived splicing acceptor site. The pCLXSN vector (Naviaux et al., 1996), unlike the previous one, does have a mixed LTR, with a CMV promoter, however, it shares with the leader sequence and, in particular, the area corresponding to the acceptor site of splicing The pCLXSN vector has a selection marker consisting of the neomycin resistance gene, its expression is directed by the SV40 promoter. The most modern vector is pLZR-CMV-gfp (Yang et al., 1999), with a mixed CMV promoter and a design for the production of high-titre retroviral particles based on presence, on the plasmid construction that supports the genome proviral, of the EBNA-1 and OriP sequences, origin of replication and nuclear antigen of the Epstein Barr virus, which give the plasmid an auto-replicative capacity in the packaging cell. The pLZR-CMV-gfp leader is, however, derived from MoMLV.
La comparación de títulos se hace entre vectores que comparten el mismo marcador de selección y que están pseudotipados con la misma envuelta, siempre que es posible. En la tabla III se muestra una comparativa de títulos retrovirales típicos obtenidos a partir de diferentes vectores retrovirales directamente derivados del vector retroviral pRV descritos en la presente invención, con los títulos de otros vectores retrovirales. Los vectores derivados de pRV poseen títulos sensiblemente superiores a los de vectores con diseños más antiguos, tales como pLXSΔN y pCLXSN. Los títulos son comparables para pLZR-CMV-gfp y los vectores descritos en la presente invención, aunque carezcan de las secuencias autorreplicativas de los vectores de la serie pLZ. Ejemplo 9: Construcción de vectores retrovirales autoinactivantesThe comparison of titles is made between vectors that share the same selection marker and that are pseudotyped with the same envelope, whenever possible. Table III shows a comparison of typical retroviral titres obtained from different retroviral vectors directly derived from the retroviral vector pRV described in the present invention, with the titles of other retroviral vectors. Vectors derived from pRV have significantly higher titres than vectors with older designs, such as pLXSΔN and pCLXSN. The titers are comparable for pLZR-CMV-gfp and the vectors described in the present invention, although they lack the self-replicating sequences of the pLZ series vectors. Example 9: Construction of self-activating retroviral vectors
9.1 Subclonaje del LTR3' viral. Cortar el vector pRV (SEQ ID NO 1) con las enzimas Xhol y Pací para extraer el LTR3' retroviral. El fragmento resultante se subclona en un vector intermedio adecuado, tal como pBacPAKδ o pBluescript cortados con Xhol y Pací.9.1 Subcloning of the viral LTR3 '. Cut the pRV vector (SEQ ID NO 1) with the Xhol and Pací enzymes to extract the retroviral LTR3 '. The resulting fragment is subcloned into a suitable intermediate vector, such as pBacPAKδ or pBluescript cut with Xhol and Pací.
9.2 Deleción de un fragmento de U3. Eliminar un fragmento de la región U3 por digestión con una o dos enzimas de restricción. Si se usa la enzima Nhel junto con alguna de las siguientes enzimas, se eliminan de la región U3 (Figura 2) los siguientes elementos: - Las RD al digerir con Nhel y Xbal - Las RD y la caja CAAT al digerir con Nhel y BssHLI o Sacl - Las RD, la caja CAAT y la caja TATA al digerir con Nhel y Kasl.9.2 Deletion of a fragment of U3. Remove a fragment from the U3 region by digestion with one or two restriction enzymes. If the Nhel enzyme is used together with any of the following enzymes, the following elements are removed from the U3 region (Figure 2): - RDs by digesting with Nhel and Xbal - RDs and CAAT box when digesting with Nhel and BssHLI o Sacl - The RD, the CAAT box and the TATA box when digesting with Nhel and Kasl.
9.3 Subclonaje del LTR truncado y construcción del vector retroviral autoinactivante.9.3 Subcloning of the truncated LTR and construction of the self-activating retroviral vector.
Extraer el LTR truncado desde el vector intermedio cortando con Xhol y Pací y ligar con el vector pRV (SEQ ID NO 1) digerido con Xhol y Pací. El vector resultante es pRV con un LTR3' donde la región U3 ha sido parcialmente delecionada, lo que origina un vector pRV retroviral autoinactivante. Extract the truncated LTR from the intermediate vector by cutting with Xhol and Pací and bind with the pRV vector (SEQ ID NO 1) digested with Xhol and Pací. The resulting vector is pRV with an LTR3 'where the U3 region has been partially deleted, resulting in a self-activating retroviral pRV vector.
Tabla ITable I
Figure imgf000026_0001
n d . no etermina o
Figure imgf000026_0001
nd. does not determine or
Figure imgf000027_0001
Tabla m
Figure imgf000027_0001
Table m
Figure imgf000028_0001
Figure imgf000028_0001
Bibliografía Abad, J. L., Serrano, F., San Román, A. L., et al. (2002). "Single-step, múltiple retroviral transduction of human T cells." J Gene Med 4(1): 27-37. Adam, M. A. and Miller, A. D. (1988). "Identification of a signal in a murine retrovirus that is sufficient for packaging of nonretroviral RNA into virions." J Virol 62(10): 3802-6. Anson, D. S. (2004). "The use of retroviral vectors for gene therapy-what are the risks? A review of retro viral pathogenesis and its relevance to retroviral vector- mediated gene delivery." Genet Vaccines Ther 2(1): 9. Baltimore, D. (1970). "RNA-dependent DNA polymerase ín virions of RNA tumour viruses." Nature 226(252): 1209-11. Bandyopadhyay, P. K. and Temin, H. M. (1984). "Expression of complete chicken thymidine kinase gene inserted in a retrovirus vector." Mol Cell Biol 4(4): 749-54. Breuer, B., Steuer, B. and Alonso, A. (1993). "Genomic rearrangements of retroviral vectors carrying two genes in F9 EC cells." Virus Genes 7(1): 53-65. Coffin, J. M., Hughes, S. H. and Varmus, H. E. (1997). "Retro viruses." Cold Spring Harbor Laboratorv Press, Plainview. New YorkfPlainview, New York). Cone, R. D. and Mulligan, R. C. (1984). "High-efficiency gene transfer into mammalian cells: generation of helper- free recombinant retrovirus with broad mammalian host range." Proc Nati Acad Sci U S A 81(20): 6349-53.Bibliography Abad, JL, Serrano, F., San Román, AL, et al. (2002). "Single-step, multiple retroviral transduction of human T cells." J Gene Med 4 (1): 27-37. Adam, MA and Miller, AD (1988). "Identification of a signal in a murine retrovirus that is sufficient for packaging of nonretroviral RNA into virions." J Virol 62 (10): 3802-6. Anson, DS (2004). "The use of retroviral vectors for gene therapy-what are the risks? A review of retro viral pathogenesis and its relevance to retroviral vector- mediated gene delivery." Genet Vaccines Ther 2 (1): 9. Baltimore, D. (1970). "RNA-dependent DNA polymerase ín virions of RNA tumor viruses." Nature 226 (252): 1209-11. Bandyopadhyay, PK and Temin, HM (1984). "Expression of complete chicken thymidine kinase gene inserted in a retrovirus vector." Mol Cell Biol 4 (4): 749-54. Breuer, B., Steuer, B. and Alonso, A. (1993). "Genomic rearrangements of retroviral vectors carrying two genes in F9 EC cells." Virus Genes 7 (1): 53-65. Coffin, JM, Hughes, SH and Varmus, HE (1997). "Retro viruses." Cold Spring Harbor Laboratorv Press, Plainview. New YorkfPlainview, New York). Cone, RD and Mulligan, RC (1984). "High-efficiency gene transfer into mammalian cells: generation of helper- free recombinant retrovirus with broad mammalian host range. "Proc Nati Acad Sci USA 81 (20): 6349-53.
Dornburg, R. and Temin, H. M. (1988). "Retroviral vector system for the study of cDNA gene formation." Mol Cell Biol 8(6): 2328-34.Dornburg, R. and Temin, H. M. (1988). "Retroviral vector system for the study of cDNA gene formation." Mol Cell Biol 8 (6): 2328-34.
Duesberg, P. H., Martin, G. S. and K., Vogt P. (1970). "Glicoprotein components of avian and murine RNA tumor viruses." Virology 41: 631-646. Ferrand, C, Robinet, E., Contassot, E., et al. (2000). "Retrovirus-mediated gene transfer in primary T lymphocytes: influence of the transduction/selection process and of ex vivo expansión on the T cell receptor beta chain hypervariable región repertoire." Hum Gene Ther 11(8): 1151-64. Garcia-Ortiz, M. J., Serrano, F., Abad, J. L., et al. (2000). "DeltahGHR, a novel biosafe cell surface-labeling molecule for analysis and selection of genetically transduced human cells." Hum Gene Ther 11(2): 333-46.Duesberg, P. H., Martin, G. S. and K., Vogt P. (1970). "Glicoprotein components of avian and murine RNA tumor viruses." Virology 41: 631-646. Ferrand, C, Robinet, E., Contassot, E., et al. (2000). "Retrovirus-mediated gene transfer in primary T lymphocytes: influence of the transduction / selection process and of ex vivo expansion on the T cell receptor beta chain hypervariable region repertoire." Hum Gene Ther 11 (8): 1151-64. Garcia-Ortiz, M. J., Serrano, F., Abad, J. L., et al. (2000). "DeltahGHR, a novel biosafe cell surface-labeling molecule for analysis and selection of genetically transduced human cells." Hum Gene Ther 11 (2): 333-46.
Mann, R., Mulligan, R. C. and Baltimore, D. (1983). "Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus." Cell 33(1): 153-9.Mann, R., Mulligan, R. C. and Baltimore, D. (1983). "Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus." Cell 33 (1): 153-9.
Miller, A. D. (1990). "Retrovirus packaging cells." Hum Gene Ther 1(1): 5-14. Morgenstern J. P. (1990). "Advanced mammalian gene transfer: high titre retroviral vectors with múltiple drug selection markers and a complementary helper free packaging cell line." Nucleic Acids Research 18(12): 3587-3596.Miller, A. D. (1990). "Retrovirus packaging cells." Hum Gene Ther 1 (1): 5-14. Morgenstern J. P. (1990). "Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper free packaging cell line." Nucleic Acids Research 18 (12): 3587-3596.
Movassagh, M., Boyer, O., Burland, M. C, et al. (2000). "Retrovirus-mediated gene transfer into T cells: 95% transduction efficiency without further in vitro selection." Hum Gene Ther 11(8 : 1189-200.Movassagh, M., Boyer, O., Burland, M. C, et al. (2000). "Retrovirus-mediated gene transfer into T cells: 95% transduction efficiency without further in vitro selection." Hum Gene Ther 11 (8: 1189-200.
Naviaux, R. K., Costanzi, E., Haas, M., et al. (1996). "The pCL vector system: rapid production of helper-free, high-titer, recombinant retro viruses." J Virol 70(8): 5701- 5.Naviaux, R. K., Costanzi, E., Haas, M., et al. (nineteen ninety six). "The pCL vector system: rapid production of helper-free, high-titer, recombinant retro viruses." J Virol 70 (8): 5701-5.
Naviaux, R. K. and Verma, I. M. (1992). "Retroviral vectors for persistent expression in vivo." Curr Opin Biotechnol 3(5): 540-7.Naviaux, R. K. and Verma, I. M. (1992). "Retroviral vectors for persistent expression in vivo." Curr Opin Biotechnol 3 (5): 540-7.
Riddell, S. R., Elliott, M., Lewinsohn, D. A., et al. (1996). "T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients." Nat Med 2(2): 216-23.Riddell, S. R., Elliott, M., Lewinsohn, D. A., et al. (nineteen ninety six). "T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients." Nat Med 2 (2): 216-23.
Roe, T., Reynolds, T. C, Yu, G., et al. (1993). "Integration of murine leukemia virus DNA depends on mitosis." Embo J 12(5): 2099-108.Roe, T., Reynolds, T. C, Yu, G., et al. (1993). "Integration of murine leukemia virus DNA depends on mitosis." Embo J 12 (5): 2099-108.
Romano, G., Michell, P., Pacilio, C, et al. (2000). "Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications." Stem Cells 18(1): 19-39.Romano, G., Michell, P., Pacilio, C, et al. (2000). "Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. "Stem Cells 18 (1): 19-39.
Ruggieri, L., Aiuti, A., Salomoni, M., et al. (1997). "Cell-surface marking of CD(34+)-restricted phenotypes of human hematopoietic progenitor cells by retrovirus-mediated gene transfer." Hum Gene Ther 8(13): 1611-23.Ruggieri, L., Aiuti, A., Salomoni, M., et al. (1997). "Cell-surface marking of CD (34 +) - restricted phenotypes of human hematopoietic progenitor cells by retrovirus-mediated gene transfer." Hum Gene Ther 8 (13): 1611-23.
Schott, B., Iraj, E. S. and Roninson, I. B. (1996). "Effects of infection rate and selection pressure on gene expression from an internal promoter of a double gene retroviral vector." Somat Cell Mol Genet 22(4): 291-309.Schott, B., Iraj, E. S. and Roninson, I. B. (1996). "Effects of infection rate and selection pressure on gene expression from an internal promoter of a double gene retroviral vector." Somat Cell Mol Genet 22 (4): 291-309.
Temin, H. M. and Mizutani, S. (1970). "RNA-dependent DNA polymerase in virions of Rous sarcoma virus." Nature 226(252): 1211-3.Temin, H. M. and Mizutani, S. (1970). "RNA-dependent DNA polymerase in virions of Rous sarcoma virus." Nature 226 (252): 1211-3.
Yang, S., Delgado, R., King, S. R., et al. (1999). "Generation of retroviral vector for clinical studies using transient transfection." Hum Gene Ther 10(1): 123-32. Yang, S., Delgado, R., King, S. R., et al. (1999). "Generation of retroviral vector for clinical studies using transient transfection." Hum Gene Ther 10 (1): 123-32.

Claims

Reivindicaciones 1. Vector retroviral derivado de MoMLV que comprende una secuencia de nucleótidos caracterizada por la fórmula general:Claims 1. MoMLV-derived retroviral vector comprising a nucleotide sequence characterized by the general formula:
5*-[CMV-R-U5]-[PBS]-[SD]-Ψ+-[MCS2]-[SA]-[MCS]-[PPT]-[LTR]-3', donde: a. [CMV-R-U5] representa el LTR 5' donde CMV es definido como una secuencia de nucleótidos perteneciente al promotor de CMV o a un promotor cualesquiera b. [SA] corresponde con las posiciones 24 a 80 de SEQ ID NO. 6. c. [LTR] corresponde con las posiciones 1904 a 2497 de SEQ ID NO. 15 * - [CMV-R-U5] - [PBS] - [SD] -Ψ + - [MCS2] - [SA] - [MCS] - [PPT] - [LTR] -3 ', where: a. [CMV-R-U5] represents the 5 'LTR where CMV is defined as a nucleotide sequence belonging to the CMV promoter or any promoter b. [SA] corresponds to positions 24 to 80 of SEQ ID NO. 6c. [LTR] corresponds to positions 1904 to 2497 of SEQ ID NO. one
2. Vector retroviral, según la reivindicación 1, donde la secuencia [LTR] está truncada.2. Retroviral vector according to claim 1, wherein the [LTR] sequence is truncated.
3. Vector retroviral, según la reivindicación 1, que comprende una secuencia de ADN seleccionada del grupo formado por: a. La secuencia SEQ ID n°l o su hebra complementaria; y b. Secuencias de ADN que hibridan bajo condiciones de alta astringencia con las secuencias de ADN definidas en el apartado (a)3. Retroviral vector according to claim 1, comprising a DNA sequence selected from the group consisting of: a. The sequence SEQ ID No. 1 or its complementary strand; and b. DNA sequences that hybridize under high astringency conditions with the DNA sequences defined in section (a)
4. Vector retroviral, según cualquiera de las reivindicaciones 1 a 3, que comprende, al menos, una secuencia heteróloga clonada en cualquiera de las dianas de restricción del sitio de policlonaje MCS.4. Retroviral vector according to any one of claims 1 to 3, comprising at least one heterologous sequence cloned into any of the restriction targets of the MCS polycloning site.
5. Vector retroviral, según cualquiera de las reivindicaciones 1 a 3, que comprende, al menos, una secuencia heteróloga clonada en cualquiera de las dianas de restricción del sitio de policlonaje MCS2.5. Retroviral vector according to any one of claims 1 to 3, comprising at least one heterologous sequence cloned into any of the restriction targets of the MCS2 polycloning site.
6. Vector retroviral, según las reivindicaciones 4 a 5, donde dichas secuencias heterólogas comprenden una o más copias de la secuencia de un sitio interno de entrada del ribosoma (IRES)6. Retroviral vector according to claims 4 to 5, wherein said sequences Heterologous comprise one or more copies of the sequence of an internal ribosome entry site (IRES)
7. Vector retroviral, según las reivindicaciones 4 a 5, en el que, al menos, una de dichas secuencias heterólogas comprende un gen marcador.7. Retroviral vector according to claims 4 to 5, wherein at least one of said heterologous sequences comprises a marker gene.
8. Vector retroviral, según la reivindicación anterior, en el que dicho gen marcador es seleccionado entre el grupo constituido por: gfp, ΔNGFR, ΔGHR, Neo, Lac Z, β-Geo.8. Retroviral vector according to the preceding claim, wherein said marker gene is selected from the group consisting of: gfp, ΔNGFR, ΔGHR, Neo, Lac Z, β-Geo.
9. Secuencia de ARN genómico retroviral del vector retroviral según las reivindicaciones 1 a 8.9. Retroviral genomic RNA sequence of the retroviral vector according to claims 1 to 8.
10. Secuencia de ADN del provirus retroviral producido en la célula diana durante el proceso de transcripción reversa del ARN genómico retroviral según la reivindicación 9.10. DNA sequence of the retroviral provirus produced in the target cell during the reverse transcription process of the retroviral genomic RNA according to claim 9.
11. ARNm derivado del pro virus retroviral según la reivindicación 10. 11. mRNA derived from the retroviral pro virus according to claim 10.
12. Partícula retroviral infectiva caracterizada porque dicha partícula contiene el12. Infectious retroviral particle characterized in that said particle contains the
ARN genómico retroviral según la reivindicación 9.Genomic retroviral RNA according to claim 9.
13. Célula hospedadora caracterizada porque ha sido transfectada o transformada con un vector retroviral según cualquiera de las reivindicaciones 1 a 8 o con el ARN genómico retroviral de la reivindicación 9.13. Host cell characterized in that it has been transfected or transformed with a retroviral vector according to any one of claims 1 to 8 or with the retroviral genomic RNA of claim 9.
14. Célula hospedadora caracterizada porque está infectada con una partícula retroviral infectiva según la reivindicación 12. 14. Host cell characterized in that it is infected with an infective retroviral particle according to claim 12.
15. Método para la producción de partículas retrovirales infectivas caracterizado porque una línea celular empaquetadora es transfectada con un vector retroviral según cualquiera de las reivindicaciones 1 a 8, y la línea empaquetadora transfectada es cultivada bajo condiciones que permiten la liberación de partículas retrovirales que contienen el ARN genómico retroviral según la reivindicación 9. 15. Method for the production of infective retroviral particles characterized in that a packaging cell line is transfected with a retroviral vector according to any one of claims 1 to 8, and the transfected packaging line is cultured under conditions that allow the release of retroviral particles containing the retroviral genomic RNA according to claim 9.
16. Método para la producción de partículas retrovirales infectivas caracterizado porque una línea celular es cotransfectada con un vector retroviral según cualquiera de las reivindicaciones 1 a 8 y construcciones que expresan genes auxiliares para el empaquetamiento del genoma retroviral y la línea celular transfectada es cultivada bajo unas condiciones que permiten la liberación de partículas retrovirales que contienen el ARN genómico retroviral según la reivindicación 9.16. Method for the production of infective retroviral particles characterized in that a cell line is co-transfected with a retroviral vector according to any of claims 1 to 8 and constructs that express auxiliary genes for the packaging of the retroviral genome and the transfected cell line is cultured under conditions that allow the release of retroviral particles containing the retroviral genomic RNA according to claim 9.
17. Método para introducir secuencias nucleotídicas heterólogas u homologas en células diana que comprende la infección de dichas células diana con partículas retrovirales según la reivindicación 12.17. Method for introducing heterologous or homologous nucleotide sequences into target cells comprising the infection of said target cells with retroviral particles according to claim 12.
18. Uso del vector retroviral, según cualquiera de las reivindicaciones 1 a 8, para la preparación de una composición farmacéutica para su uso en terapia génica.18. Use of the retroviral vector, according to any of claims 1 to 8, for the preparation of a pharmaceutical composition for use in gene therapy.
19. Uso del vector retroviral, según cualquiera de las reivindicaciones 1 a 8, para el clonaje y selección de genes y la construcción de librerías retrovirales.19. Use of the retroviral vector, according to any of claims 1 to 8, for cloning and gene selection and the construction of retroviral libraries.
20. Uso del vector retroviral, según cualquiera de las reivindicaciones 1 a 8, para la expresión y/o sobreexpresión de proteínas o ARN, y la producción y/o purificación de péptidos o proteínas.20. Use of the retroviral vector, according to any of claims 1 to 8, for the expression and / or overexpression of proteins or RNA, and the production and / or purification of peptides or proteins.
21. Composición farmacéutica que comprende un vector retroviral, según cualquiera de las reivindicaciones 1 a 8, que además comprende un vehículo farmacéuticamente compatible. 21. Pharmaceutical composition comprising a retroviral vector according to any one of claims 1 to 8, further comprising a pharmaceutically compatible carrier.
PCT/ES2004/000558 2003-12-17 2004-12-16 Novel high-titre retroviral vector and transduction methods WO2005061721A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200302976 2003-12-17
ES200302976A ES2235638B1 (en) 2003-12-17 2003-12-17 NEW HIGH TITLE RETROVIRAL VECTOR AND TRANSDUCTION METHODS.

Publications (1)

Publication Number Publication Date
WO2005061721A1 true WO2005061721A1 (en) 2005-07-07

Family

ID=34707584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000558 WO2005061721A1 (en) 2003-12-17 2004-12-16 Novel high-titre retroviral vector and transduction methods

Country Status (2)

Country Link
ES (1) ES2235638B1 (en)
WO (1) WO2005061721A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020103144A1 (en) * 1998-05-08 2002-08-01 Wolfram Ostertag Retroviral gene transfer vectors
US20020168649A1 (en) * 1998-05-12 2002-11-14 Rigel Pharmaceuticals, Inc. Methods and compositions for screening for modulators of IgE synthesis, secretion and switch rearrangement
US20030059870A1 (en) * 1998-12-23 2003-03-27 Giuseppina Bestetti Recombinant bacterial strains for the production of natural nucleosides and modified analogues thereof
US20030175972A1 (en) * 2000-10-20 2003-09-18 Daley George Q. Expression vectors and uses thereof
US6645766B2 (en) * 1998-08-14 2003-11-11 Rigel Pharmaceuticals, Inc. Shuttle vectors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020103144A1 (en) * 1998-05-08 2002-08-01 Wolfram Ostertag Retroviral gene transfer vectors
US20020168649A1 (en) * 1998-05-12 2002-11-14 Rigel Pharmaceuticals, Inc. Methods and compositions for screening for modulators of IgE synthesis, secretion and switch rearrangement
US6645766B2 (en) * 1998-08-14 2003-11-11 Rigel Pharmaceuticals, Inc. Shuttle vectors
US20030059870A1 (en) * 1998-12-23 2003-03-27 Giuseppina Bestetti Recombinant bacterial strains for the production of natural nucleosides and modified analogues thereof
US20030175972A1 (en) * 2000-10-20 2003-09-18 Daley George Q. Expression vectors and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOSHI S.ET AL: "Co-packaging of non-vector RNAs generates replication-defective retroviral vector particles: a novel approach for blocking retrovirus replication.", NUCLEIC ACIDS RESEARCH., vol. 25, no. 16, 1997, pages 3199 - 3203 *

Also Published As

Publication number Publication date
ES2235638B1 (en) 2006-10-16
ES2235638A1 (en) 2005-07-01

Similar Documents

Publication Publication Date Title
EP0702084B1 (en) Recombinant retroviruses
Logg et al. A uniquely stable replication-competent retrovirus vector achieves efficient gene delivery in vitro and in solid tumors
Vile et al. Retroviruses as vectors
Naldini et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector.
Kimata et al. Construction and characterization of infectious human T-cell leukemia virus type 1 molecular clones
Ghattas et al. The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos
US6949242B2 (en) Retroviral vector for the transfer and expression of genes for therapeutic purposes in eukaryotic cells
Brown et al. A retrovirus vector expressing the putative mammary oncogene int-1 causes partial transformation of a mammary epithelial cell line
US8652837B2 (en) Method and means for producing high titer, safe, recombinant lentivirus vectors
JP4190579B2 (en) Vectors and methods of use for delivery of nucleic acids to non-dividing cells
US6410326B1 (en) Method for inhibiting human tumor cells
CA2328404C (en) Novel lentiviral packaging cells
JP2001502903A (en) Lentivirus vector
US6872528B2 (en) Highly productive packaging lines
US20050002903A1 (en) Gene delivery system and methods of use
CA2051288C (en) Viral targeted destruction of neoplastic cells
RU2566563C2 (en) Aslv-based vector system
US20080124308A1 (en) Gene Therapy of Solid Tumours by Means of Retroviral Vectors Pseudotyped With Arenavirus Glycoproteins
KR100246096B1 (en) Improved Retrovirus Vectors for Gene Therapy
JP4229982B2 (en) Retroviral vector transducing cytochrome P450
Howard et al. Transduction of human pancreatic tumor cells with vesicular stomatitis virus G-pseudotyped retroviral vectors containing a herpes simplex virus thymidine kinase mutant gene enhances bystander effects and sensitivity to ganciclovir
EP0848757B1 (en) The use of the wap of mmtv regulatory sequences for targeted expression of linked heterologous genes in human mammary cells, including human mammary carcinoma cells
ES2235638B1 (en) NEW HIGH TITLE RETROVIRAL VECTOR AND TRANSDUCTION METHODS.
JPH11507244A (en) Retroviral vector pseudotyped with SRV-3 envelope glycoprotein sequence
EP1059356A1 (en) Replicating or semi-replicating retroviral constructs, preparation and uses for gene delivery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载