+

WO2005053364A1 - 無電極放電ランプ点灯装置および照明器具 - Google Patents

無電極放電ランプ点灯装置および照明器具 Download PDF

Info

Publication number
WO2005053364A1
WO2005053364A1 PCT/JP2004/017451 JP2004017451W WO2005053364A1 WO 2005053364 A1 WO2005053364 A1 WO 2005053364A1 JP 2004017451 W JP2004017451 W JP 2004017451W WO 2005053364 A1 WO2005053364 A1 WO 2005053364A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
circuit
voltage
discharge lamp
electrodeless discharge
Prior art date
Application number
PCT/JP2004/017451
Other languages
English (en)
French (fr)
Inventor
Shinji Makimura
Hiroshi Kido
Shingo Masumoto
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to CN2004800338629A priority Critical patent/CN1883235B/zh
Priority to DE602004030148T priority patent/DE602004030148D1/de
Priority to EP04819385A priority patent/EP1689215B1/en
Priority to US10/577,717 priority patent/US7365498B2/en
Publication of WO2005053364A1 publication Critical patent/WO2005053364A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
    • H05B41/2806Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices and specially adapted for lamps without electrodes in the vessel, e.g. surface discharge lamps, electrodeless discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to an electrodeless discharge lamp lighting device and a lighting fixture.
  • An electrodeless discharge lamp lighting device is configured to generate high-frequency power with a power amplifier and supply the high-frequency power to the electrodeless discharge lamp via an induction coil.
  • a power amplifier and supply the high-frequency power to the electrodeless discharge lamp via an induction coil.
  • various problems caused by the fluctuation of the phase difference For this reason, various devices for suitably controlling the high-frequency power supplied to the induction coil have been proposed.
  • the prior art device described in Japanese Patent Application Laid-Open No. 6-76971 discloses an induction coil, a half 'bridge' inverter constituting a power amplifier, and a high-frequency square wave voltage from this output point. It includes a capacitor divider that detects and outputs a detection voltage, and a current transformer that detects a high-frequency rectangular wave current from the output point and outputs a detection current.
  • the phase difference between the detection voltage and the detection current is reduced, the DC voltage input to the inverter is reduced, while when the phase difference is expanded, the DC voltage is increased.
  • the load impedance is considerably reduced. Therefore, by reducing the DC voltage, over-input to the inverter can be prevented.
  • the prior art device described in Japanese Patent Application Laid-Open No. 8-45684 discloses an induction coil, a half 'bridge' inverter constituting a power amplifier, and a voltage to each control terminal.
  • the ON width of the rectangular wave is reduced, and the operating frequency of the power amplifier is reduced.
  • the ON width of the rectangular wave is increased and the operating frequency of the power amplifier is increased. According to this device, the phase difference between the voltage and the current of the high-frequency power is reduced, so that the reactive current can be reduced.
  • the target value of the starting current is the current value obtained by adding a margin to the required current at the lowest frequency in the range. Is set to In this case, there is a problem that a margin for the highest frequency in the range becomes too large.
  • This problem can be solved by the device described in JP-A-2003-332090.
  • This device consists of an induction coil, a power amplifier, a current transformer that detects high-frequency current from this output and outputs a detected current, and an F-V converter that detects the driving frequency of the power amplifier corresponding to the operating frequency. And a set value changing means and a control means.
  • the set value changing means sets the target value of the starting current to a smaller value as the frequency detected by the F-V converter becomes higher.
  • the control means controls the drive frequency such that the detected current becomes equal to the value set by the set value changing means. According to this device, the margin on the highest frequency side of the above range can be reduced. Disclosure of the invention
  • the power amplifier is, for example, a DCZAC converter such as a half-bridge inverter. It is composed of a circuit and a resonance circuit.
  • the resonance circuit has a first resonance force having a resonance peak at a predetermined resonance frequency in the starting mode before the electrodeless discharge lamp is turned on. It has a resonance characteristic that switches to a second resonance curve lower than the first resonance curve. Therefore, when the electrodeless discharge lamp is turned on, the resonance characteristics of the resonance circuit change. If the end frequency is set near the high voltage of the second resonance curve, a large stress is applied to the circuit. Will be. In addition, if the voltage at the end frequency in the second resonance curve is insufficient, there is a problem that the electrodeless discharge lamp extinguishes.
  • the electrodeless discharge lamp lighting device of the present invention includes a DCZAC conversion circuit, a resonance circuit, an induction coil, a voltage detection circuit, a drive circuit, a starting circuit, a current detection circuit, a control circuit, and a suppression means.
  • the DCZAC conversion circuit converts DC power into high-frequency power having an operating frequency corresponding to the drive frequency according to the drive signal having the drive frequency.
  • the resonance circuit the first resonance curve having the resonance peak at a predetermined resonance frequency in the starting mode before the electrodeless discharge lamp is turned on is set in the lighting mode while the electrodeless discharge lamp is turned on.
  • the resonance circuit also receives high-frequency power from the DCZAC conversion circuit, and outputs high-frequency power that varies according to the operating frequency based on the resonance characteristics.
  • the induction coil generates a high-frequency electromagnetic field in accordance with the high-frequency power output from the resonance circuit, and guides the high-frequency power to the electrodeless discharge lamp by applying the high-frequency electromagnetic field to the electrodeless discharge lamp.
  • the voltage detection circuit detects a voltage applied to the induction coil by high frequency power having a resonance circuit power and outputs a detection voltage.
  • the drive circuit supplies a drive signal having a drive frequency to the DCZAC conversion circuit while adjusting the drive frequency according to the variable power.
  • the starting circuit When starting the electrodeless discharge lamp, the starting circuit sweeps the operating frequency to a predetermined starting frequency higher than the resonance frequency to a predetermined end frequency lower than the starting frequency and sweeps the detection voltage. , Sweep the variable power up or down.
  • the current detection circuit detects a current flowing through the resonance circuit and outputs a detection current.
  • the control circuit reduces or increases the variable power to equalize the detected current to a predetermined current for shifting the operating frequency to a middle'range frequency between the start frequency and the end frequency.
  • the predetermined current is set so that the detection voltage at the middle range frequency is lower than the detection voltage at the end frequency.
  • the suppression means starts suppressing the operation of the control circuit when starting the electrodeless discharge lamp, and holds the suppression at least during the starting mode.
  • the control circuit includes an error amplifier circuit for increasing or decreasing the current of the variable power so as to make the detected current equal to the predetermined current
  • the suppressing means includes the error amplifier circuit at least during the start-up mode. Force The current to the drive circuit is suppressed to zero or a predetermined level.
  • the drive circuit adjusts the drive frequency according to the increase or decrease of the variable power current.
  • the starting circuit sweeps down / up the variable power current so as to sweep down the operating frequency to the starting frequency and ending frequency and sweep the detection voltage.
  • each circuit can be configured without using a microcomputer.
  • the error amplification circuit includes an operational amplifier having a non-inverting input terminal, an inverting input terminal, and an output terminal
  • the suppressing means includes a circuit between one of the two input terminals and the output terminal.
  • the operational amplifier receives the reference voltage corresponding to the predetermined current and the detection voltage corresponding to the detection current at both input terminals, and adjusts the variable power so that the detection voltage corresponding to the detection current is equal to the reference voltage. Increase or decrease the current.
  • the integrating circuit has a time constant set to at least a value larger than a value corresponding to the period of the start mode. In this configuration, since the operational amplifier substantially operates after the electrodeless discharge lamp is turned on, stable starting and lighting of the electrodeless discharge lamp can be achieved.
  • the error amplifier circuit includes an operational amplifier having a non-inverting input terminal, an inverting input terminal, and an output terminal, and the suppression means sets the output current of the operational amplifier to substantially zero at least during a start-up mode. Adjust the reference voltage as described above.
  • the operational amplifier receives the reference voltage corresponding to the predetermined current and the detection voltage corresponding to the detection current at both input terminals, and makes the detection voltage corresponding to the detection current equal to the reference voltage after the suppression unit cancels the suppression. So that the current of the variable power is increased.
  • the starting circuit operates at least during the starting mode, so that the electrodeless discharge lamp can be stably started and lit.
  • the drive circuit may be substantially controlled only by the control circuit after the operating frequency reaches the end frequency. In this case, control of the control circuit in the lighting mode is simplified.
  • the end frequency may be set to a frequency near the peak of the second resonance curve.
  • the start frequency and end frequency should be adjusted so that environmental changes such as ambient temperature can be handled.
  • the sweep range of the wave number can be set appropriately.
  • the starting circuit includes a sweep circuit and an operational amplifier.
  • the sweep circuit outputs a sweep voltage that sweeps up or down from the time when the electrodeless discharge lamp is started.
  • the operational amplifier has a non-inverting input terminal, an inverting input terminal, and an output terminal, receives the sweep voltage and the detection voltage from the voltage detection circuit at both input terminals, and changes the detection voltage to be equal to the sweep voltage. Reduce or increase power current. With this configuration, stable starting and lighting of the electrodeless discharge lamp can be achieved.
  • a lighting fixture of the present invention includes the electrodeless discharge lamp lighting device and the electrodeless discharge lamp.
  • the present invention it is possible to stably start the electrodeless discharge lamp, and to suppress the stress on the circuit after the electrodeless discharge lamp is successfully started.
  • FIG. 1 is a circuit diagram of an electrodeless discharge lamp lighting device according to a first embodiment of the present invention.
  • FIG. 2 is a resonance characteristic diagram of the electrodeless discharge lamp lighting device of FIG. 1.
  • FIG. 3 is a time chart showing an operation of the electrodeless discharge lamp lighting device of FIG. 1.
  • FIG. 4 is a resonance characteristic diagram of an alternative embodiment for the electrodeless discharge lamp lighting device of FIG. 1.
  • FIG. 5 is a circuit diagram showing a part of an electrodeless discharge lamp lighting device according to a second embodiment of the present invention.
  • FIG. 6 is a time chart showing an operation of the electrodeless discharge lamp lighting device of FIG. 5.
  • FIG. 7 is a circuit diagram showing a part of an alternative embodiment of the electrodeless discharge lamp lighting device of FIG. 5.
  • FIG. 8 is a circuit diagram showing a part of an electrodeless discharge lamp lighting device according to a third embodiment of the present invention.
  • FIG. 9 is a time chart showing the operation of the electrodeless discharge lamp lighting device of FIG.
  • FIG. 10 is a resonance characteristic diagram of the electrodeless discharge lamp lighting device of FIG.
  • FIG. 11 is a circuit diagram showing a part of an alternative embodiment for the electrodeless discharge lamp lighting device of FIG. 8.
  • FIG. 12 is a time chart showing the operation of the electrodeless discharge lamp lighting device of FIG.
  • FIG. 13 is a circuit diagram showing a part of an electrodeless discharge lamp lighting device according to a fourth embodiment of the present invention.
  • FIG. 14 is a time chart showing the operation of the electrodeless discharge lamp lighting device of FIG. 13.
  • FIG. 15 is a resonance characteristic diagram of the electrodeless discharge lamp lighting device of FIG. 13.
  • FIG. 1 shows an electrodeless discharge lamp lighting device 1 according to a first embodiment of the present invention.
  • the electrodeless discharge lamp lighting device 1 is mounted on a lighting fixture (not shown) equipped with the electrodeless discharge lamp 13.
  • the electrodeless discharge lamp lighting device 1 includes a DC power supply 14, a DCZAC conversion circuit 15, a resonance circuit 16, an induction coil 17, a driving circuit 18, and a starting circuit 19, similarly to the device described in JP-A-2003-332090. Is provided.
  • the electrodeless discharge lamp lighting device 1 further includes a voltage detection circuit 11, a current detection circuit 12, and a control circuit 10 as features of the present embodiment.
  • the electrodeless discharge lamp 13 includes a bulb such as a transparent glass bulb, a transparent glass bulb, a glass bulb having a phosphor applied to the inner wall surface, or a glass bulb having a phosphor applied to the inner wall surface.
  • a discharge gas eg, a mercury vapor and a rare gas
  • an inert gas and a metal vapor is sealed in the bulb.
  • the DC power supply 14 is configured to convert AC power from the AC power supply AC into DC power by a boost converter, for example, and supply the DC power to the DCZAC conversion circuit 15.
  • the boost converter includes a driving circuit 140, and includes a rectifier 141, an inductor 142, a switching element 143 disposed on a low side between the two output terminals of the rectifier 141 via the inductor 142, and a diode 144. And a smoothing capacitor 145 disposed on the low side between both ends of the switching element 143 via the diode 144 in the forward direction.
  • the drive circuit 140 outputs the output (DC voltage V) of the boost converter
  • the DCZAC conversion circuit 15 converts the DC power from the DC power supply 14 into an operating frequency (for example, several tens of) in accordance with the drive signal having the drive frequency by, for example, a half-bridge inverter. It is configured to convert high-frequency power (KHz to several hundred MHz).
  • the inverter is composed of a switching element (for example, FET) 151 and a switching element (for example, FET) 152 disposed on the low side between both output terminals of the DC power supply 14 via the switching element 151.
  • the switching elements 151 and 152 are turned on and off alternately according to the square wave norse drive signals V and V from the drive circuit 18.
  • the resonance circuit 16 has a resonance curve RC having a resonance peak at a predetermined resonance frequency f in a starting mode before the electrodeless discharge lamp 13 is turned on.
  • It is configured to have resonance characteristics that switch to the resonance curve RC.
  • the resonance circuit 16 includes an inductor 161 and a capacitor 162 disposed on the low side between both ends of the switching element 152 via the inductor 161.
  • the resonance circuit 16 receives high-frequency power from the DCZAC conversion circuit 15, Possible according to operating frequency f based on resonance characteristics
  • Resonant circuit 16 further includes a capacitor 163 combined with capacitor 162 to form a matching circuit.
  • the induction coil 17 generates a high-frequency electromagnetic field in accordance with the high-frequency power supplied by the resonance circuit 16, and applies (links) the high-frequency electromagnetic field to the electrodeless discharge lamp 13 to generate a high-frequency power. It is arranged near the electrodeless discharge lamp 13 so as to guide the electrodeless discharge lamp 13. As a result, the electrodeless discharge lamp 13 generates a high-frequency plasma current in the bulb and emits ultraviolet light or visible light.
  • the drive circuit 18 supplies drive signals V 1, V 2 having a drive frequency to the starting circuit 19 and the control circuit 10 with variable power by, for example, a VCO (Voltage-Controlled Oscillator).
  • VCO Voltage-Controlled Oscillator
  • the drive circuit 18 connects the output of the starter circuit 19 with the constant voltage source V.
  • a resistor 181 connected between the resistor 181, a resistor 182 connected between the resistor 181 and the negative terminal of the DC power supply 14, and a VCO 180 for inputting the voltage of the resistor 182 as an input voltage.
  • the drive frequency is adjusted according to. That is, the drive circuit 18 increases the input voltage of the VCO due to the increased voltage drop and increases the drive frequency of the drive signals V and V.
  • the drive circuit 18 lowers the input voltage of the VCO by the reduced voltage drop, and lowers the drive frequency of the drive signals V 1 and V 2.
  • the constant voltage of the above constant voltage source is the starting frequency
  • the constant voltage is equal to the desired start frequency f
  • the starting circuit 19 When starting the electrodeless discharge lamp 13, the starting circuit 19 changes the operating frequency f to the resonance frequency.
  • the VP is configured to sweep 'down.
  • the present invention is not limited to this, and the drive circuit 18 supplies the VCO to the VCO in accordance with the increase or decrease of the current I.
  • the starting circuit 19 If configured to reduce or increase the input voltage, the starting circuit 19
  • the starting circuit 19 includes a sweep up circuit composed of a switch 190, a reference resistor 191, a capacitor 192, and a temperature-sensitive resistor 193, and includes an operational amplifier (operational amplifier) 194 and a feedback resistor 195. , An input resistor 196, an output resistor 197, and a diode 198.
  • Switch 190 is connected in parallel with reference resistor 191 and capacitor 192, while the parallel set of switch 190, reference resistor 191 and capacitor 192 is connected in series with temperature sensitive resistor 193.
  • the series set of reference resistor 191 and temperature sensitive resistor 193 receive a DC voltage supplied from DC power supply 14 via a voltage regulator or directly.
  • the capacitor 192 applies a voltage to the non-inverting input terminal of the operational amplifier 194 and has a time constant mainly given by the capacitor 192 and the temperature-sensitive resistor 193. , Sweeping that voltage up to the reference voltage of reference resistor 191.
  • the temperature-sensitive resistor 193 corrects the reference voltage of the reference resistor 191 according to the ambient temperature. Since the reference voltage of the reference resistor 191 is a voltage that determines the end frequency f, the reference voltage is , The desired end frequency f
  • the feedback resistor 195 is connected between the inverting input terminal of the operational amplifier 194 and its output terminal.
  • the input resistor 196 is connected between its inverting input terminal and the output of the voltage detection circuit 11.
  • the output resistor 197 is connected between the output terminal of the operational amplifier 194 and the input of the drive circuit 18.
  • Diode 198 is connected between output resistor 197 and the input of drive circuit 18, while its power source is connected to output resistor 197.
  • This error amplifier circuit uses the detection voltage V from the voltage detection circuit 11 as the same as the sweep-up voltage V of the capacitor 192.
  • the sweep range of the output voltage V depends on the electrodeless discharge lamp.
  • Is set to a range including the output voltage V corresponding to the output voltage V required for starting the motor.
  • the voltage detection circuit 11 detects the voltage V applied to the induction coil 17 by the high-frequency power from the resonance circuit 16 and outputs the detection voltage V so as to output the detection voltage V.
  • the voltage detection circuit 11 includes a resistor 110, a capacitor 111, diodes 112 and 113, and a discharge resistor 114.
  • the resistor 110 and the capacitor 111 form an RC integration circuit and receive the voltage V and output a detection voltage V.
  • Diodes 112 and 113 are
  • Discharge resistor 114 discharges capacitor 111 with a time constant given by capacitor 111 and discharge resistor 114.
  • the current detection circuit 12 detects a resonance current flowing through the resonance circuit 16 by using, for example, a resistor 120 connected between the source of the switching element 152 and the negative terminal of the DC power supply 14, and indicates the detected current. It is configured to output the detection voltage V.
  • control circuit 10 activates the detection current indicated by the detection voltage V.
  • the predetermined current is the detection voltage V at the middle range frequency f.
  • the value is set to a value corresponding to the rated current of the electrode discharge lamp 13.
  • control circuit 10 includes an error amplifier circuit including an operational amplifier 100, a reference power supply 101, a feedback resistor 102, an input resistor 103, an output resistor 104, and a diode 105. It has a capacitor 106 that is combined to form an integration circuit.
  • the reference power supply 101 supplies a reference voltage for setting the middle range frequency f to the operational amplifier 100.
  • the feedback resistor 102 is connected between the inverting input terminal of the operational amplifier 100 and its output terminal.
  • Input resistor 103 is connected between its inverting input terminal and the source of switching element 152.
  • the output resistor 104 is connected between the output terminal of the operational amplifier 100 and the input of the drive circuit 18.
  • the diode 105 is connected between the output resistor 104 and the input of the drive circuit 18, while its power source is connected to the output resistor 104.
  • the capacitor 106 is connected in parallel with the feedback resistor 102.
  • the time constant of the integrating circuit including the capacitor 106 is a value for substantially delaying the effective output of the error amplifier circuit of the control circuit 10 to a predetermined time point t3 (see FIG. 3) after the electrodeless discharge lamp 13 is turned on. Is set to. Specifically, the voltage V output from the control circuit 10 is lower than the constant voltage in the drive circuit 18 until the sweep-up of the sweep-up circuit ends, as described above.
  • the voltage V output from the control circuit 10 becomes a value equal to the constant voltage of the drive circuit 18.
  • control circuit 10 also substantially operates at the time t3 after the electrodeless discharge lamp 13 is turned on, and subsequently, detects the detection voltage V from the current detection circuit 12 with the reference voltage of the reference power supply 101.
  • the current I consisting of the output current I
  • the driving circuit 18 is controlled by the driving circuit 18 so that the driving circuit 18 Number to the starting frequency f
  • the driving circuit 18 is controlled by the current I obtained by adding
  • the driving circuit 18 has a driving frequency corresponding to the starting frequency f.
  • the drive signals V 1 and V 2 are supplied to the DCZAC conversion circuit 15. Next, DCZAC conversion
  • the resonance circuit 16 Since the circuit 15 and the resonance circuit 16 operate at the starting frequency f, the resonance circuit 16
  • a voltage V corresponding to the starting frequency f in the curve RC is applied to the induction coil 17.
  • the drive frequency of the dynamic signals V and V is changed from the frequency corresponding to the start frequency f to the end frequency
  • FIG. 3 shows an example in which the electrodeless discharge lamp 13 was successfully turned on at t2.
  • F is the point at which the electrodeless discharge lamp 13
  • the error amplifier circuit of the control circuit 10 substantially operates at the time t3 after the electrodeless discharge lamp 13 is turned on, so that the drive circuit 18 determines the drive frequency of the drive signals V 1 and V 2
  • the error amplifier circuit of the control circuit 10 substantially operates at the time t3 after the electrodeless discharge lamp 13 is turned on, so that the electrodeless discharge lamp 13 is stably started by the starting circuit 19. be able to. After the electrodeless discharge lamp 13 is turned on, the period during which the output of the resonance circuit 16 becomes excessive can be limited to the period of t2-3, so that stress on the circuit can be suppressed.
  • the potential difference between the detection voltage V of the voltage detection circuit 11 and the output voltage V of the starting circuit 19 is determined by the driving circuit 18.
  • control of the control circuit 10 in the lighting mode can be simplified.
  • the end frequency f is, as shown in FIG.
  • the sweep range can be set appropriately. Also, the end frequency f at the resonance force RC is lower than the resonance peak frequency of the resonance curve RC.
  • FIG. 5 shows a part of an electrodeless discharge lamp lighting device 2 according to a second embodiment of the present invention.
  • the electrodeless discharge lamp lighting device 2 is characterized by a control circuit 20.
  • the control circuit 20 further includes a diode 206a and a fixed circuit 206b instead of the capacitor 106. Is different.
  • the control circuit 20 includes an operational amplifier 200, a reference power supply 201, and a feedback resistor. It has a resistor 202, an input resistor 203, an output resistor 204 and a diode 205.
  • the power source of diode 206a is connected to the output terminal of operational amplifier 200, while its anode is connected to the output of fixed circuit 206b.
  • the diode 206a receives the voltage V from the fixed circuit 206b and applies the voltage V to the output of the operational amplifier 200 when the voltage V is at the high level.
  • the fixed circuit 206b applies the voltage V to the drive circuit during the period tl-t3.
  • the error amplifier circuit of the control circuit 20 also substantially operates at a predetermined time (t3) after the electrodeless discharge lamp is turned on.
  • the fixed circuit 206b After the electrodeless discharge lamp is turned on at t2, the fixed circuit 206b returns the voltage V to 0V at t3.
  • the error amplifier circuit of the control circuit 20 substantially starts operating.
  • the drive circuit sets the drive frequency of the drive signals V, V to the frequency corresponding to the end frequency f.
  • the error amplifier circuit of the control circuit 20 since the error amplifier circuit of the control circuit 20 substantially operates at the time t3 after the electrodeless discharge lamp is turned on, the starting circuit can stably start the electrodeless discharge lamp. . After the electrodeless discharge lamp is turned on, the period during which the output of the resonance circuit becomes excessive can be limited to the period of t2-3, so that stress on the circuit can be suppressed. Further, the operation of the error amplifier circuit of the control circuit 20 can be substantially and reliably stopped for a desired period.
  • the fixed circuit 206b applies a high-level voltage V to the output terminal of the operational amplifier 200 via the diode 206a for at least a period of t1 and t2.
  • the output of the control circuit 20 is fixed at the voltage V.
  • electrodeless discharge lamp lighting equipment LEDless discharge lamp lighting equipment
  • the device 2 further includes a timer for measuring the period.
  • the electrodeless discharge lamp lighting device 2 is not limited to this, and if the period is t1-t2, the electrodeless discharge lamp lighting device 2 further includes a circuit such as a detection circuit for detecting lighting of the electrodeless discharge lamp to detect t2. May be provided.
  • Electrodeless discharger The lamp lights when the detection voltage V of the voltage detection circuit decreases or the start circuit
  • the electrodeless discharge lamp lighting device 2 includes a diode 207 connected between the reference power supply 201 and the non-inverting input terminal of the operational amplifier 200, as shown in FIG. Further prepare.
  • the power source of diode 207 is connected to the non-inverting input terminal of operational amplifier 200.
  • the power source of diode 206a is connected to the inverting input terminal of operational amplifier 200, while its anode is connected to the output of fixed circuit 206b.
  • the diode 206a receives the voltage V from the fixed circuit 206b and changes the voltage V when the voltage V is at the high level.
  • the high level of the voltage V of the fixed circuit 206b is set so that the output current I becomes almost zero.
  • the reference voltage of the reference power supply 201 is adjusted by the fixed circuit 206b.
  • FIG. 8 shows a part of an electrodeless discharge lamp lighting device 3 according to a third embodiment of the present invention.
  • the electrodeless discharge lamp lighting device 3 is characterized by a control circuit 30.
  • the control circuit 30 further includes a diode 308a, a resistor 308b, and a lighting detection circuit 308c. Is different.
  • the control circuit 30 includes an operational amplifier 300, a reference power supply 301, a feedback resistor 302, an input resistor 303, an output resistor 304, a diode 305, and a capacitor 306.
  • the anode of the diode 308a is connected to the output terminal of the operational amplifier 300, while its power source is connected to the output of the lighting detection circuit 309 via the resistor 308b.
  • the diode 308a receives the voltage V from the lighting detection circuit 308c via the resistor 308b,
  • V is applied to the output terminal of the operational amplifier 300 when the voltage is low.
  • the lighting detection circuit 308c outputs a voltage V from tl at a normal High level.
  • DV TH1 TH2 Detects the lighting of the electrodeless discharge lamp when it falls first after exceeding them, and lowers the voltage V to Low (zero) level only for a predetermined period T1 from the time of lighting.
  • the drive frequency f is changed to the end frequency after the electrodeless discharge lamp is successfully turned on.
  • the wave number f can be avoided.
  • the output current I during the period t2-3 is
  • V is s
  • the lighting detection circuit 308c outputs the voltage V at a high level. This allows
  • the output current I of the control circuit 30 is fixed at zero until the electrodeless discharge lamp is turned on
  • the current I increases by the current I during the power T1 period.
  • the driving frequency f is terminated after the electrodeless discharge lamp is successfully turned on.
  • Frequency f can be avoided, so that stress on the circuit can be reduced appropriately.
  • control circuit 30 further includes a diode 308a and a lighting detection circuit 308c as compared to the first embodiment.
  • the power source of the diode 308a is connected to the inverting input terminal of the operational amplifier 300, while its anode is connected to the output of the lighting detection circuit 308c.
  • the diode 308a receives the voltage V from the lighting detection circuit 308c and changes the voltage V to a high level.
  • the circuit 308c outputs the voltage V from tl at a normally low (zero) level, and outputs the voltage V from the voltage detection circuit.
  • the detection voltage V falls below the threshold voltages V, V after exceeding them in advance.
  • the output current I during the period T1 is set to a predetermined level in the same way as I in Fig. 9.
  • FIG. 13 shows a part of an electrodeless discharge lamp lighting device 4 according to a fourth embodiment of the present invention.
  • the electrodeless discharge lamp lighting device 4 is mainly characterized by a control circuit 40.
  • the starting circuit 49 further includes a diode 499
  • the control circuit 40 includes a diode 409a and a sweep stop.
  • a circuit 409b is further provided.
  • the starting circuit 49 includes a reference resistor 491, a capacitor 492, a temperature-sensitive resistor 493, an operational amplifier 494, a feedback resistor 495, an input resistor 496, an output resistor 497, and a diode 498, as in the first embodiment.
  • Prepare. Switch 490 is connected in parallel with capacitor 492.
  • the anode of diode 499 is connected between reference resistor 491 and temperature sensitive resistor 493, while its cathode is connected to the non-inverting input terminal of operational amplifier 494.
  • the control circuit 40 includes an operational amplifier 400, a reference power supply 401, a feedback resistor 402, an input resistor 403, an output resistor 404, a diode 405, and a capacitor 406, as in the first embodiment.
  • the anode of diode 409a is connected between reference resistor 491 and temperature sensitive resistor 493, while its power source is connected to the output terminal of sweep stop circuit 409b. This diode 409a receives the voltage V from the sweep stop circuit 409b and changes the voltage V to the voltage V
  • the sweep stop circuit 409b changes the voltage V from tl to the normal high level ss
  • the electrodeless discharge lamp is lit when it falls below the threshold after exceeding it, and then the voltage V is set to the low (zero) level only during the specified period T1 from the time of lighting.
  • the sweep stop circuit 409b stops the operation of the sweep-up circuit in the start circuit 49 at t2 as shown in FIGS.
  • the sweep stop circuit 409b outputs the voltage V at a high level. To this ss, the electrodeless discharge lamp lighting device 4 starts at tl, the sweep stop circuit 409b outputs the voltage V at a high level. To this ss, the electrodeless discharge lamp lighting device 4 starts at tl, the sweep stop circuit 409b outputs the voltage V at a high level. To this ss, the electrodeless discharge lamp lighting device 4 starts at tl, the sweep stop circuit 409b outputs the voltage V at a high level. To this ss
  • the diode 409a is kept off, and the starting circuit 49 operates in the same manner as in the first embodiment.
  • the detection voltage V exceeds the S threshold voltage V, V. Then, the detection voltage
  • the sweep stop circuit 409b outputs the force voltage V at the high level.
  • the driving frequency f after the electrodeless discharge lamp successfully lights up, the driving frequency f

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

 無電極放電ランプ点灯装置。始動回路19は、駆動回路18およびDC/AC変換回路15を介して、共振回路16の動作周波数を開始周波数から共振周波数サイドの終了周波数にスイープして、無電極放電ランプ13を始動する。制御回路10は、動作周波数を開始周波数と終了周波数との間のミドル・レンジ周波数にシフトするための所定電流に検出電流を等しくするように、回路18への可変電力を増大ないし低減する。所定電流は、ミドル・レンジ周波数の場合の検出電圧が終了周波数の場合の検出電圧よりも低くなるように設定される。積分回路を構成するキャパシタ106は、ランプ13を始動するときに回路10の動作の抑制を開始し、少なくとも始動モードの間、その抑制を保持する。これにより、ランプ13を安定的に始動し、またランプ13が首尾よく始動した後、回路へのストレスを抑制することができる。

Description

明 細 書
無電極放電ランプ点灯装置および照明器具
技術分野
[0001] 本発明は、無電極放電ランプ点灯装置および照明器具に関するものである。
背景技術
[0002] 無電極放電ランプ点灯装置は、電力増幅器で高周波電力を生成し、誘導コイルを 介して高周波電力を無電極放電ランプに供給するように構成されるが、高周波電力 の電圧と電流との位相差の変動で発生する各種問題がある。このため、誘導コイル に供給される高周波電力を好適に制御する各種装置が提案されている。
[0003] 例えば、特開平 6— 76971号公報に記載された従来技術の装置は、誘導コイルと、 電力増幅器を構成するハーフ'ブリッジ 'インバータと、この出力点からの高周波数矩 形波電圧を検出して検出電圧を出力するコンデンサ 'デバイダと、上記出力点からの 高周波数矩形波電流を検出して検出電流を出力する電流トランスとを備える。この装 置では、検出電圧と検出電流との位相差が縮小するとき、インバータに入力される直 流電圧が低減される一方、位相差が拡大するとき、直流電圧が増大される。位相差 が縮小したとき、負荷インピーダンスがかなり低下するので、直流電圧を低減すること によってインバータへの過入力を防止することができる。
[0004] 特開平 8 - 45684号公報に記載された従来技術の装置は、誘導コイルと、電力増 幅器を構成するハーフ'ブリッジ 'インバータと、この各制御端子への電圧を検出して 検出電圧を出力するトランスと、上記インバータの出力点力 の高周波数矩形波電 流を検出して検出電流を出力する電流トランスとを備える。この装置では、検出電圧 が検出電流と比較して遅れた位相であるとき、その矩形波のオン幅が縮小されるとと もに、電力増幅器の動作周波数が低減される。検出電圧が検出電流と比較して進ん だ位相であるとき、矩形波のオン幅が拡大されるとともに、電力増幅器の動作周波数 が増大される。この装置によれば、高周波電力の電圧と電流との位相差が低減され るので、無効電流を低減することができる。
[0005] 無電極放電ランプを始動するとき、動作周波数が低いほど誘導コイルに流れる始 動電流を増大する必要がある。動作周波数範囲内のいずれの周波数でも無電極放 電ランプが始動するようにするためには、始動電流の目標値は、その範囲の最低周 波数で必要な電流にマージンを加えて得られる電流値に設定される。この場合、そ の範囲の最高周波数に対するマージンが大きくなりすぎるという問題が発生する。
[0006] この問題は、特開 2003— 332090号公報に記載された装置により解決することが できる。この装置は、誘導コイルと、電力増幅器と、この出力からの高周波電流を検 出して検出電流を出力する電流トランスと、動作周波数に対応する電力増幅器の駆 動周波数を検出する F— Vコンバータとを備えるとともに、設定値変化手段と、制御手 段とを備える。設定値変化手段は、 F— Vコンバータによって検出される周波数が高く なるほど始動電流の目標値をより小さな値に設定する。制御手段は、検出電流が設 定値変化手段によって設定された値に等しくなるように駆動周波数を制御する。この 装置によれば、上記範囲の最高周波数サイドのマージンを小さくすることができる。 発明の開示
[0007] ところで、誘導コイルに印加する始動電圧をスイープ ·アップすることによって、無電 極放電ランプを安定的に首尾よく始動する場合、電力増幅器は、例えば、ハーフ'ブ リッジ'インバータなどの DCZAC変換回路と、共振回路とにより構成される。
[0008] し力しながら、この構成では、所定の開始周波数から所定の終了周波数に動作周 波数をスイープ 'ダウンする必要があるので、終了周波数の設定によっては回路に大 きな負荷が力かるという問題がある。すなわち、共振回路は、無電極放電ランプが点 灯する前の始動モードにおいて所定の共振周波数で共振ピークを持つ第 1共振力 ーブ力 その無電極放電ランプが点灯している間の点灯モードにおいてその第 1共 振カーブよりも低い第 2共振カーブに切り替わる共振特性を持つ。このため、無電極 放電ランプが点灯する時点で、共振回路の共振特性が変化するので、終了周波数 が第 2共振カーブの高電圧付近に設定される場合には、回路に大きなストレスがかか ることになる。また、第 2共振カーブにおける終了周波数の電圧が不足すれば、無電 極放電ランプが立ち消えするという問題がある。
[0009] 本発明の目的は、無電極放電ランプを安定的に始動し、また無電極放電ランプが 首尾よく始動した後、回路へのストレスを抑制することにある。 [0010] 本発明の無電極放電ランプ点灯装置は、 DCZAC変換回路、共振回路、誘導コィ ル、電圧検出回路、駆動回路、始動回路、電流検出回路、制御回路および抑制手 段を備える。 DCZAC変換回路は、駆動周波数を持つ駆動信号に応じて、直流電 力を、駆動周波数に対応する動作周波数の高周波電力に変換する。共振回路は、 無電極放電ランプが点灯する前の始動モードにおいて所定の共振周波数で共振ピ ークを持つ第 1共振カーブが、その無電極放電ランプが点灯している間の点灯モー ドにおいてその第 1共振カーブよりも低い第 2共振カーブに切り替わる共振特性を持 つ。また、共振回路は、 DCZAC変換回路力も高周波電力を受けて、共振特性に基 づいて動作周波数に応じて可変する高周波電力を出力する。誘導コイルは、共振回 路によって出力される高周波電力に応じて高周波電磁界を発生し、この高周波電磁 界を無電極放電ランプに印加することによって高周波電力を無電極放電ランプに誘 導する。電圧検出回路は、共振回路力もの高周波電力によって誘導コイルに印加さ れる電圧を検出して検出電圧を出力する。駆動回路は、駆動周波数を持つ駆動信 号を、可変電力に応じてその駆動周波数を調整しながら DCZAC変換回路に供給 する。始動回路は、無電極放電ランプを始動するとき、動作周波数を共振周波数より も高い所定の開始周波数力 この開始周波数よりも低い所定の終了周波数にスィー プ'ダウンするとともに検出電圧をスイープするように、可変電力をスイープ 'ダウンな いしアップする。電流検出回路は、共振回路に流れる電流を検出して検出電流を出 力する。制御回路は、動作周波数を開始周波数と終了周波数との間のミドル'レンジ 周波数にシフトするための所定電流に検出電流を等しくするように、可変電力を低減 ないし増大する。所定電流は、ミドル'レンジ周波数の場合の検出電圧が終了周波数 の場合の検出電圧よりも低くなるように設定される。抑制手段は、無電極放電ランプ を始動するときに制御回路の動作の抑制を開始し、少なくとも始動モードの間、その 抑制を保持する。
[0011] この構成では、無電極放電ランプを始動するとき、誘導コイルに印加する電圧がス ィープ ·アップされるので、無電極放電ランプの安定な始動および点灯が可能になる 。また、点灯モードにおいて、誘導コイルに印加する電圧が終了周波数のそれよりも 低減されるので、回路のストレスを低減することができる。 [0012] 好ましくは、制御回路は、検出電流を所定電流に等しくするように、可変電力の電 流を増大ないし低減する誤差増幅回路を含み、抑制手段は、少なくとも始動モード の間、誤差増幅回路力 駆動回路への電流をゼロまたは所定レベルに抑制する。駆 動回路は、可変電力の電流の増減に応じて駆動周波数を調整する。始動回路は、 動作周波数を開始周波数力 終了周波数にスイープ 'ダウンするとともに検出電圧を スイープするように、可変電力の電流をスイープ ·ダウンないしアップする。この構成 では、マイコンによらずに各回路を構成することができる。
[0013] 好ましくは、誤差増幅回路は、非反転入力端子、反転入力端子および出力端子を 持つ演算増幅器を含み、抑制手段は、両入力端子のうちの一の入力端子と出力端 子との間に接続される積分回路を構成する。演算増幅器は、両入力端子で所定電 流に相当する基準電圧および検出電流に相当する検出電圧を受けて、その検出電 流に相当するその検出電圧をその基準電圧に等しくするように可変電力の電流を増 大ないし低減する。積分回路は、少なくとも始動モードの期間に相当する値よりも大 きな値に設定される時定数を持つ。この構成では、無電極放電ランプが点灯した後 に演算増幅器が実質動作するので、無電極放電ランプの安定な始動および点灯が 可會 になる。
[0014] 好ましくは、誤差増幅回路は、非反転入力端子、反転入力端子および出力端子を 持つ演算増幅器を含み、抑制手段は、少なくとも始動モードの間、演算増幅器の出 力電流を実質ゼロにするように、基準電圧を調整する。演算増幅器は、両入力端子 で所定電流に相当する基準電圧および検出電流に相当する検出電圧を受け、抑制 手段が抑制を解除した後に検出電流に相当するその検出電圧をその基準電圧に等 しくするように可変電力の電流を増大する。この構成では、少なくとも始動モードの間 、始動回路が動作するので、無電極放電ランプの安定な始動および点灯が可能に なる。
[0015] 駆動回路は、動作周波数が終了周波数に達した後、制御回路のみによって実質 制御されてもよい。この場合、点灯モードにおける制御回路の制御が簡単になる。
[0016] 終了周波数は、第 2共振カーブのピーク近傍の周波数に設定されてもょ 、。この場 合、周囲温度などの環境変化に対処することができるように、開始周波数一終了周 波数のスイープ範囲を好適に設定することができる。
[0017] 好ましくは、始動回路は、スイープ回路と、演算増幅器とを備える。スイープ回路は 、無電極放電ランプを始動する時点からスイープ ·アップないしダウンするスイープ電 圧を出力する。演算増幅器は、非反転入力端子、反転入力端子および出力端子を 持ち、両入力端子でスイープ電圧および電圧検出回路からの検出電圧を受けて、そ の検出電圧をそのスイープ電圧に等しくするように可変電力の電流を低減ないし増 大する。この構成では、無電極放電ランプの安定な始動および点灯が可能になる。
[0018] 本発明の照明器具は、上記無電極放電ランプ点灯装置と、上記無電極放電ランプ とを備える。
[0019] 本発明によれば、無電極放電ランプを安定的に始動し、また無電極放電ランプが 首尾よく始動した後、回路へのストレスを抑制することができる。
図面の簡単な説明
[0020] 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利 点は、以下の詳細な記述および添付図面に関連して一層良く理解されることになる であろう。
[図 1]本発明による第 1実施形態の無電極放電ランプ点灯装置の回路図である。
[図 2]図 1の無電極放電ランプ点灯装置の共振特性図である。
[図 3]図 1の無電極放電ランプ点灯装置の動作を示すタイムチャートである。
[図 4]図 1の無電極放電ランプ点灯装置に対する一代替実施形態の共振特性図であ る。
[図 5]本発明による第 2実施形態の無電極放電ランプ点灯装置の一部を示す回路図 である。
[図 6]図 5の無電極放電ランプ点灯装置の動作を示すタイムチャートである。
[図 7]図 5の無電極放電ランプ点灯装置に対する一代替実施形態の一部を示す回路 図である。
[図 8]本発明による第 3実施形態の無電極放電ランプ点灯装置の一部を示す回路図 である。
[図 9]図 8の無電極放電ランプ点灯装置の動作を示すタイムチャートである。 [図 10]図 8の無電極放電ランプ点灯装置の共振特性図である。
[図 11]図 8の無電極放電ランプ点灯装置に対する一代替実施形態の一部を示す回 路図である。
[図 12]図 11の無電極放電ランプ点灯装置の動作を示すタイムチャートである。
[図 13]本発明による第 4実施形態の無電極放電ランプ点灯装置の一部を示す回路 図である。
[図 14]図 13の無電極放電ランプ点灯装置の動作を示すタイムチャートである。
[図 15]図 13の無電極放電ランプ点灯装置の共振特性図である。
発明を実施するための最良の形態
[0021] 図 1は本発明による第 1実施形態の無電極放電ランプ点灯装置 1を示す。
[0022] 無電極放電ランプ点灯装置 1は、無電極放電ランプ 13を装備される照明器具(図 示せず)に搭載される。無電極放電ランプ点灯装置 1は、特開 2003— 332090号公 報に記載された装置と同様に、直流電源 14、 DCZAC変換回路 15、共振回路 16、 誘導コイル 17、駆動回路 18および始動回路 19を備える。また、無電極放電ランプ点 灯装置 1は、本実施形態の特徴として、電圧検出回路 11、電流検出回路 12および 制御回路 10をさらに備える。
[0023] 無電極放電ランプ 13は、透明なガラスバルブ、透明なガラス球、内壁面に塗布され た蛍光体を持つガラスバルブまたは内壁面に塗布された蛍光体を持つガラス球など のバルブを備え、不活性ガスおよび金属蒸気などの放電ガス (例えば、水銀蒸気お よび希ガス)をそのバルブ内に封入する。
[0024] 直流電源 14は、例えば昇圧型コンバータによって、交流電源 ACからの交流電力 を直流電力に変換してその直流電力を DCZAC変換回路 15に供給するように構成 される。その昇圧コンバータは、駆動回路 140を備えることにカ卩えて、整流器 141と、 インダクタ 142と、インダクタ 142を介して整流器 141の両出力端間のローサードに配 置されるスイッチング素子 143と、ダイオード 144と、ダイオード 144を順方向に介し てスイッチング素子 143の両端間のローサイドに配置される平滑キャパシタ 145とを 備える。駆動回路 140は、昇圧型コンバータの出力(直流電圧 V )を、その出力を
DC
検出しながら、所定の出力と等しくなるようにスイッチング素子 143のオン Zオフ状態 を制御する。
[0025] DCZAC変換回路 15は、例えばハーフ ·ブリッジ 'インバータによって、駆動周波 数を持つ駆動信号に応じて、直流電源 14からの直流電力を、その駆動周波数に対 応する動作周波数 (例えば数十 KHzから数百 MHz)の高周波電力に変換するよう に構成される。そのインバータは、スイッチング素子(例えば FET) 151と、このスイツ チング素子 151を介して直流電源 14の両出力端間のローサイドに配置されるスイツ チング素子 (例えば FET) 152とにより構成される。スイッチング素子 151, 152は、駆 動回路 18からの矩形波ノルスの駆動信号 V , V に応じて交互にオンおよびオフ
DH DL
する。スイッチング素子 151への駆動信号 V およびスイッチング素子 152への駆動
DH
信号 V の間には、約 180度の位相差がある。
DL
[0026] 共振回路 16は、図 1,図 2に示すように、無電極放電ランプ 13が点灯する前の始動 モードにおいて所定の共振周波数 f で共振ピークを持つ共振カーブ RC 力 無電
R S
極放電ランプ 13が点灯している間の点灯モードにおいて共振カーブ RC よりも低い
S
共振カーブ RC に切り替わる共振特性を持つように構成される。
L
[0027] 例えば、共振回路 16は、インダクタ 161と、このインダクタ 161を介してスイッチング 素子 152の両端間のローサイドに配置されるキャパシタ 162とを備え、 DCZAC変換 回路 15からの高周波電力を受けて、共振特性に基づいて動作周波数 f に応じて可
OP
変する高周波電力を誘導コイル 17に供給する。また、共振回路 16は、キャパシタ 16 2と組み合わされて整合回路を構成するキャパシタ 163をさらに含む。
[0028] 誘導コイル 17は、共振回路 16によって供給される高周波電力に応じて高周波電 磁界を発生し、この高周波電磁界を無電極放電ランプ 13に印加(リンク)することによ つて高周波電力を無電極放電ランプ 13に誘導するように、無電極放電ランプ 13の近 傍に配置される。これにより、無電極放電ランプ 13は、バルブ内に高周波プラズマ電 流を発生して紫外線または可視光を放射する。
[0029] 駆動回路 18は、例えば VCO(Voltage- Controlled Oscillator)などによって、駆動 周波数を持つ駆動信号 V , V を、始動回路 19および制御回路 10への可変電力
DH DL
の電流 I に応じてその駆動周波数を調整しながら DCZAC変換回路 15に供給する
VP
ように構成される。例えば、駆動回路 18は、定電圧源 V と始動回路 19の出力との 間に接続される抵抗 181と、抵抗 181と直流電源 14の負極端子との間に接続される 抵抗 182と、抵抗 182の電圧を入力電圧として入力する VCO180とを備え、抵抗 18 2の電圧降下に応じて駆動周波数を調整する。すなわち、駆動回路 18は、増大され た電圧降下により VCOの入力電圧を上げて、駆動信号 V , V の駆動周波数を上
DH DL
げる。また、駆動回路 18は、減少された電圧降下により VCOの入力電圧を下げて、 駆動信号 V , V の駆動周波数を下げる。上記定電圧源の定電圧は、開始周波数
DH DL
f
Sを定める電圧となるので、その定電圧は、所望の開始周波数 f
Sに基づいて設定さ れる。
[0030] 始動回路 19は、無電極放電ランプ 13を始動するとき、動作周波数 f を共振周波
OP
数 f
Rよりも高い所定の開始周波数 f
Sカゝら開始周波数 f
Sよりも低い所定の終了周波数 f にスイープ 'ダウンするとともに電圧検出回路 11からの検出電圧 V をスイープ'ァ
E DV
ップするように、可変電力の電流 I
VPをスイープ 'ダウンするように構成される。なお、こ れに限らず、駆動回路 18が、電流 I の増大または減少に応じてそれぞれ VCOへの
VP
入力電圧を下げるまたは上げるように構成される場合には、始動回路 19は、電流 I
VP
をスイープ ·アップするように構成されてもよ!、。
[0031] 例えば、始動回路 19は、スィッチ 190、基準抵抗 191、キャパシタ 192および感温 抵抗 193により構成されるスイープ 'アップ回路を備え、また、オペ'アンプ (演算増幅 器) 194、帰還抵抗 195、入力抵抗 196、出力抵抗 197およびダイオード 198により 構成される誤差増幅回路を備える。
[0032] スィッチ 190は、基準抵抗 191およびキャパシタ 192と並列に接続される一方、そ の並列の組のスィッチ 190、基準抵抗 191およびキャパシタ 192は、感温抵抗 193と 直列に接続される。その直列の組の基準抵抗 191および感温抵抗 193は、直流電 源 14から電圧調整器を介してまたは直接供給される直流電圧を受ける。この状態で 、スィッチ 190がオフにされるとき、キャパシタ 192は、オペ'アンプ 194の非反転入 力端子に電圧を印加するとともに、主としてキャパシタ 192および感温抵抗 193によ つて与えられる時定数で、基準抵抗 191の基準電圧までその電圧をスイープ 'アップ する。感温抵抗 193は、周囲温度に応じて基準抵抗 191の基準電圧を補正する。基 準抵抗 191の基準電圧は、終了周波数 f を定める電圧となるので、その基準電圧は 、所望の終了周波数 f
Eに基づいて設定される。
[0033] 帰還抵抗 195は、オペ'アンプ 194の反転入力端子とその出力端子との間に接続 される。入力抵抗 196は、その反転入力端子と電圧検出回路 11の出力との間に接 続される。出力抵抗 197は、オペ'アンプ 194の出力端子と駆動回路 18の入力との 間に接続される。ダイオード 198は、出力抵抗 197と駆動回路 18の入力との間に接 続される一方、その力ソードは出力抵抗 197と接続される。この誤差増幅回路は、電 圧検出回路 11からの検出電圧 V をキャパシタ 192のスイープ 'アップ電圧 V と等
DV SU
しくするように、その出力電圧 V を、 OVの電圧から基準抵抗 191の基準電圧に対応
SC
する電圧にスイープ 'アップする。これにより、駆動回路 18での定電圧と誤差増幅回 路の出力電圧 V との電位差がスイープ 'ダウンするので、誤差増幅回路の出力電流
SC
I
SCは、開始周波数 f
Sに対応する所定の開始電流から終了周波数 f
Eに対応する所定 の終了電流にスイープする。出力電圧 V のスイープ範囲は、無電極放電ランプ 13
SC
の始動に必要な出力電圧 V に対応する出力電圧 V を含む範囲に設定される。
OUT SC
[0034] 電圧検出回路 11は、共振回路 16からの高周波電力によって誘導コイル 17に印加 される電圧 V を検出して検出電圧 V を出力するように、誘導コイル 17の近傍に
OUT DV
設けられる。
[0035] 例えば、電圧検出回路 11は、抵抗 110、キャパシタ 111、ダイオード 112, 113お よび放電抵抗 114により構成される。抵抗 110およびキャパシタ 111は、 RC積分回 路を構成し、電圧 V を受けて検出電圧 V を出力する。ダイオード 112, 113は、
OUT DV
半波整流回路を構成し、電圧 V を半波の電圧に変換してキャパシタ 111に印加
OUT
する。放電抵抗 114は、キャパシタ 111および放電抵抗 114で与えられる時定数で キャパシタ 111を放電する。
[0036] 電流検出回路 12は、例えばスイッチング素子 152のソースと直流電源 14の負極端 子との間に接続される抵抗 120によって、共振回路 16に流れる共振電流を検出して 、検出電流を示す検出電圧 V を出力するように構成される。
DI
[0037] 制御回路 10は、点灯モードにおいて、検出電圧 V により示される検出電流を、動
DI
作周波数 f
OPを開始周波数 f
Sと終了周波数 f
Eとの間の所定のミドル'レンジ周波数 f
MR
にシフトするための所定電流に等しくするように、可変電力の電流 I
VPを増大ないし低 減するように構成される。所定電流は、ミドル'レンジ周波数 f の場合の検出電圧 V
MR
が終了周波数 f の場合の検出電圧 V よりも低くなるように設定されるとともに、無
DV E DV
電極放電ランプ 13の定格電流に対応する値に設定される。
[0038] 例えば、制御回路 10は、オペ ·アンプ 100、基準電源 101、帰還抵抗 102、入力抵 抗 103、出力抵抗 104およびダイオード 105により構成される誤差増幅回路を備え、 また、帰還抵抗 102と組み合わされて積分回路を構成するキャパシタ 106を備える。
[0039] 基準電源 101は、ミドル'レンジ周波数 f を設定する基準電圧を、オペ'アンプ 100
MR
の非反転入力端子に印加する。帰還抵抗 102は、オペ'アンプ 100の反転入力端子 とその出力端子との間に接続される。入力抵抗 103は、その反転入力端子とスィッチ ング素子 152のソースとの間に接続される。出力抵抗 104は、オペ'アンプ 100の出 力端子と駆動回路 18の入力との間に接続される。ダイオード 105は、出力抵抗 104 と駆動回路 18の入力との間に接続される一方、その力ソードは出力抵抗 104と接続 される。
[0040] キャパシタ 106は、帰還抵抗 102と並列に接続される。このキャパシタ 106を含む 積分回路の時定数は、制御回路 10の誤差増幅回路の実効的出力を無電極放電ラ ンプ 13が点灯した後の所定時点 t3 (図 3参照)に実質遅延するための値に設定され る。具体的には、キャパシタ 106は、上述のスイープ 'アップ回路のスイープ 'アップが 終了するまで、制御回路 10から出力される電圧 V が駆動回路 18での定電圧よりも
CC
高くなる一方で、スイープ'アップ回路のスイープ 'アップが終了した後の所定時点 t3 で、制御回路 10から出力される電圧 V が駆動回路 18での定電圧と等しくなる値に
CC
設定される。
[0041] 要するに、制御回路 10は、無電極放電ランプ 13が点灯した後の時点 t3力も実質 動作し、続いて、電流検出回路 12からの検出電圧 V を基準電源 101の基準電圧と
DI
等しくするように、その出力電圧 V を増大ないし低減する。駆動回路 18での定電圧
CC
と制御回路 10の出力電圧 V との電位差が増大するとき、制御回路 10の出力電流 I
CC
CCが増大する一方、そ 電位差が減少するとき、出力電流 I
CCが減少する。
[0042] 制御回路 10の誤差増幅回路が実質動作する前、出力電流 I からなる電流 I によ
SC VP
つて駆動回路 18が制御されるので、駆動回路 18は、駆動信号 V , V の駆動周波 数を、開始周波数 f
Sに対応する周波数から終了周波数 f
Eに対応する周波数にスィ ープする。制御回路 10の誤差増幅回路が実質動作した後、出力電流 I と出力電流
SC
I とを足して得られる電流 I によって駆動回路 18が制御されるので、駆動回路 18
CC VP
は、駆動信号 V , V の駆動周波数を、終了周波数 f に対応する周波数からミドル
DH DL E
'レンジ周波数 f に対応する周波数にスイープする。
MR
[0043] 次に、図 3を参照して無電極放電ランプ点灯装置 1の動作について説明する。時点
1で、無電極放電ランプ点灯装置 1が始動すると同時にスィッチ 190がオンになると き、始動回路 19のキャパシタ 192の電圧 V および電圧検出回路 11の検出電圧 V
SU DV
の各々が OVであるので、駆動回路 18は、開始周波数 f に対応する駆動周波数を持
S
つ駆動信号 V , V を、 DCZAC変換回路 15に供給する。続いて、 DCZAC変換
DH DL
回路 15および共振回路 16が開始周波数 f で動作するので、共振回路 16は、共振
S
カーブ RC における開始周波数 f に対応する電圧 V を、誘導コイル 17に印加す
S S OUT
る。
[0044] 続いて、キャパシタ 192の電圧 V がスイープ 'アップするので、駆動回路 18は、駆
SU
動信号 V , V の駆動周波数を、開始周波数 f に対応する周波数から終了周波数 f
DH DL S
に対応する周波数にスイープするとともに、 DCZAC変換回路 15および共振回路
E
16は、その駆動周波数のスイープに応じて、動作周波数 f を開始周波数 f 力も終
OP S
了周波数 f イ
Eにス ープする。これにより、共振回路 16が、電圧 V
OUTを、開始周波数 f
S
に対応する電圧から終了周波数 f
Eに対応する電圧にスイープするので、無電極放 電ランプ 13は、そのスイープの間に点灯することができる。図 3は、 t2で無電極放電 ランプ 13が首尾よく点灯した例を示す。また、 f は、無電極放電ランプ 13が t2で点
TO
灯したときの周波数である。
[0045] 無電極放電ランプ 13が t2で点灯したとき、共振回路 16の共振特性が共振カーブ R C から共振カーブ RC に切り替わるので、共振回路 16は、共振カーブ RC にお
SM L S
ける周波数 f に対応する電圧を、共振カーブ RC における周波数 f に対応する電
TO LM TO
圧に低減する。このとき、電圧検出回路 11の検出電圧 V が下がるので、共振回路 1
DV
6は続いて、キャパシタ 192のスイープ 'アップ電圧 V に応じて、周波数 f よりも高い
SU TO
周波数に対応する電圧から終了周波数 f
Eに対応する電圧にスイープする。 [0046] この動作の後、制御回路 10の誤差増幅回路が、無電極放電ランプ 13が点灯した 後の時点 t3で実質動作するので、駆動回路 18は、駆動信号 V , V の駆動周波数
DH DL
を、終了周波数 f
Eに対応する周波数カゝらミドル'レンジ周波数 f
MRに対応する周波数 にスイープする。これにより、共振回路 16が、電圧 V を、開始周波数 f に対応する
OUT S
電圧からミドル'レンジ周波数 f に対応する電圧にスイープする。
MR
[0047] この実施形態では、制御回路 10の誤差増幅回路が、無電極放電ランプ 13が点灯 した後の時点 t3で実質動作するので、始動回路 19によって無電極放電ランプ 13を 安定的に始動することができる。無電極放電ランプ 13が点灯した後、共振回路 16の 出力が過大となる期間を t2— 3の期間に制限することができるので、回路へのストレ スを抑制することができる。
[0048] 一代替実施形態において、無電極放電ランプ 13が t2で点灯したときに、電圧検出 回路 11の検出電圧 V と始動回路 19の出力電圧 V との電位差は、駆動回路 18で
DV SC
の定電圧よりも高電圧となる。この場合、始動回路 19のキャパシタ 192の電圧が終了 周波数 f に対応する電圧になった後、駆動回路 18の駆動周波数は、制御回路 10の
E
みによって制御される。これにより、点灯モードにおける制御回路 10の制御を簡単に することができる。
[0049] 別の代替実施形態において、終了周波数 f は、図 4に示すように、共振カーブ RC
E
の共振周波数 f 近傍の周波数および共振カーブ RC の共振ピークの周波数に設
S R L
定される。この場合、周囲温度などの環境変化に対処することができるように、開始周 波数 f
S一終了周波数 f の
E スイープ範囲を好適に設定することができる。また、共振力 ーブ RC における終了周波数 f が共振カーブ RC の共振ピークの周波数よりも低
LM E L
くならないので、終了周波数 f に対応する電圧 を最も高くすることができる。これ
E VOUT
により、無電極放電ランプ 13が点灯した後の立消えを防止することができる。
[0050] 図 5は本発明による第 2実施形態の無電極放電ランプ点灯装置 2の一部を示す。
[0051] 無電極放電ランプ点灯装置 2は、制御回路 20によって特徴付けられ、第 1実施形 態と比較して、制御回路 20が、キャパシタ 106に代えてダイオード 206aおよび固定 回路 206bをさらに備える点で相違する。
[0052] 制御回路 20は、第 1実施形態と同様に、オペ'アンプ 200、基準電源 201、帰還抵 抗 202、入力抵抗 203、出力抵抗 204およびダイオード 205を備える。ダイオード 20 6aの力ソードは、オペ'アンプ 200の出力端子に接続される一方、そのアノードは、 固定回路 206bの出力に接続される。このダイオード 206aは、固定回路 206bから電 圧 Vを受け、電圧 Vを、電圧 Vが Highレベルであるときに、オペ'アンプ 200の出
F F F
力端子に印加するスィッチとして動作する。
[0053] 固定回路 206bは、図 6に示すように、 tl一 t3の期間の間、電圧 Vを駆動回路で
F
の定電圧以上の Highレベルで出力し、そして t3の後、電圧 Vを Low (ゼロ) 'レベル
F
に落とすように構成される。したがって、制御回路 20の誤差増幅回路は、無電極放 電ランプが点灯した後の所定時点 (t3)力も実質的に動作することになる。
[0054] 次に、制御回路 20の動作について説明する。無電極放電ランプ点灯装置 2が tlで 始動したとき、制御回路 20の出力は、 t3まで Highレベルの電圧 V に固定される。こ
F
れにより、制御回路 20の出力電流 I は t3までゼロに固定される。
CC
[0055] 無電極放電ランプが t2で点灯した後、固定回路 206bが t3で電圧 Vを 0Vに戻す
F
と同時に、制御回路 20の誤差増幅回路が実質的に動作を開始する。これにより、駆 動回路が、駆動信号 V , V の駆動周波数を、終了周波数 f に対応する周波数か
DH DL E
らミドル'レンジ周波数 f に対応する周波数にスイープする。
MR
[0056] この実施形態では、制御回路 20の誤差増幅回路が、無電極放電ランプが点灯した 後の時点 t3で実質動作するので、始動回路によって無電極放電ランプを安定的に 始動することができる。無電極放電ランプが点灯した後、共振回路の出力が過大とな る期間を t2— 3の期間に制限することができるので、回路へのストレスを抑制するこ とができる。また、制御回路 20の誤差増幅回路の動作を、所望期間の間、実質的か つ確実に停止することができる。
[0057] 一代替実施形態において、固定回路 206bは、少なくとも tl一 t2の期間の間、ダイ オード 206aを介して Highレベルの電圧 Vをオペ ·アンプ 200の出力端子に印加し
F
て、制御回路 20の出力をその電圧 V に固定する。また、無電極放電ランプ点灯装
F
置 2は、その期間を計測するタイマをさらに備える。なお、これに限らず、その期間が t 1一 t2である場合、無電極放電ランプ点灯装置 2は、 t2を検出するために無電極放 電ランプの点灯を検出する検出回路などの回路をさらに備えてもよい。無電極放電ラ ンプの点灯は、 t2での、電圧検出回路の検出電圧 V の減少または始動回路の電
DV
圧 V の増加などの変化を監視することによって検出することができる。
SC
[0058] 別の代替実施形態において、無電極放電ランプ点灯装置 2は、図 7に示すように、 基準電源 201とオペ ·アンプ 200の非反転入力端子との間に接続されるダイオード 2 07をさらに備える。ダイオード 207の力ソードは、オペ'アンプ 200の非反転入力端 子に接続される。ダイオード 206aの力ソードは、オペ'アンプ 200の反転入力端子に 接続される一方、そのアノードは、固定回路 206bの出力に接続される。このダイォー ド 206aは、固定回路 206bから電圧 Vを受け、電圧 Vを、電圧 Vが Highレベルで
F F F
あるときに、オペ ·アンプ 200の出力端子に印加するスィッチとして動作する。固定回 路 206bの電圧 V のハイレベルは、出力電流 I がほぼゼロになるように、基準電源 2
F CC
01の基準電圧よりも十分に高いレベルに設定される。この場合、基準電源 201の基 準電圧は、固定回路 206bによって調整される。
[0059] 図 8は本発明による第 3実施形態の無電極放電ランプ点灯装置 3の一部を示す。
[0060] 無電極放電ランプ点灯装置 3は、制御回路 30によって特徴付けられ、第 1実施形 態と比較して、制御回路 30が、ダイオード 308a、抵抗 308bおよび点灯検出回路 30 8cをさらに備える点で相違する。
[0061] 制御回路 30は、第 1実施形態と同様に、オペ'アンプ 300、基準電源 301、帰還抵 抗 302、入力抵抗 303、出力抵抗 304、ダイオード 305およびキャパシタ 306を備え る。ダイオード 308aのアノードは、オペ'アンプ 300の出力端子に接続される一方、 その力ソードは、抵抗 308bを介して点灯検出回路 309の出力に接続される。このダ ィオード 308aは、抵抗 308bを介して点灯検出回路 308cから電圧 Vを受け、電圧
S
Vを、電圧 V力Lowレベルであるときに、オペ ·アンプ 300の出力端子に印加する
S S
スィッチとして動作する。
[0062] 点灯検出回路 308cは、図 9に示すように、 tlから電圧 Vを通常 Highレベルで出 s
力し、電圧検出回路力もの検出電圧 V 力、所定のしきい電圧 V , V を、あらか
DV TH1 TH2 じめそれらを超えた後に下回ったときに、無電極放電ランプの点灯を検出し、そして その点灯の時から所定期間 T1の間のみ、電圧 Vを Low (ゼロ)レベルに落とすよう
S
に構成される。つまり、点灯検出回路 308cは、図 9,図 10に示すように、 t2で、所定 レベルの出力電流 I を流して、周波数 f を所定の高い周波数 f にシフトするので
CC TO TOS
ある。これにより、無電極放電ランプが首尾よく点灯した後に駆動周波数 f が終了周
OP
波数 f に至るのを回避することができる。期間 t2— 3の間の出力電流 I は、出力抵
E CC
抗 304および抵抗 308bによって設定される。電圧 V の Highレベルは、駆動回路で s
の定電圧以上のレベルに設定される。
[0063] 次に、制御回路 30の動作について説明する。無電極放電ランプ点灯装置 3が tlで 始動したとき、点灯検出回路 308cは電圧 Vを Highレベルで出力する。これにより、
S
制御回路 30の出力電流 I は、無電極放電ランプが点灯するまでゼロに固定され、
CC
誘導コイルの電圧および電圧検出回路の検出電圧 V 1S 始動回路の動作によって
DV
増大する。
[0064] この動作の後、検出電圧 V 力 Sしきい電圧 V , V を超える。検出電圧 V がし
DV TH1 TH2 DV きい電圧 V
TH1を超える場合、始動回路の動作が正常であることが確認される。続いて
、検出電圧 V がしきい電圧 V , V を下回った時点 t2で、電圧 V力 SLowレベル
DV TH1 TH2 S
に落ちる。これにより、無電極放電ランプが首尾よく点灯した直後、周波数 f
TOが周波 数 f にシフトされる。続いて、駆動周波数 f は、周波数 f カゝら終了周波数 f 側に
TOS OP TOS E
スイープするが、電流 I 力T1期間の電流 I だけ増大するので、駆動周波数 f は、
VP CC OP
終了周波数 f
Eよりも高い周波数でスイープするのを止める。続いて、点灯検出回路 3
08cは、 t3で電圧 Vを Highレベルで出力する。この後の動作は、第 1実施形態のそ
S
れと同じである。
[0065] この実施形態では、無電極放電ランプが首尾よく点灯した後に駆動周波数 f が終
OP
了周波数 f に至るのを回避することができるので、回路へのストレスを好適に低減す
E
ることがでさる。
[0066] 一代替実施形態において、制御回路 30は、図 11に示すように、第 1実施形態と比 較して、ダイオード 308aおよび点灯検出回路 308cをさらに備える。ダイオード 308a の力ソードは、オペ'アンプ 300の反転入力端子に接続される一方、そのアノードは、 点灯検出回路 308cの出力に接続される。このダイオード 308aは、図 12に示すよう に、点灯検出回路 308cから電圧 Vを受け、電圧 Vを、電圧 Vが Highレベルであ
S S S
るときに、オペ'アンプ 300の出力端子に印加するスィッチとして動作する。点灯検出 回路 308cは、 tlから電圧 Vを通常 Low (ゼロ)レベルで出力し、電圧検出回路から
S
の検出電圧 V 力 しきい電圧 V , V を、あらカゝじめそれらを超えた後に下回つ
DV TH1 TH2
たときに、無電極放電ランプの点灯を検出し、そしてその点灯の時力も所定期間 T1 の間のみ、電圧 Vを Highレベルに上げるように構成される。電圧 Vの Highレベル
S S
は、期間 T1における出力電流 I 力 図 9の I と同様に、所定レベルになるように設
CC CC
定される。
[0067] 図 13は本発明による第 4実施形態の無電極放電ランプ点灯装置 4の一部を示す。
[0068] 無電極放電ランプ点灯装置 4は、主として制御回路 40によって特徴付けられ、第 1 実施形態と比較して、始動回路 49がダイオード 499をさらに備え、制御回路 40がダ ィオード 409aおよびスイープ停止回路 409bをさらに備える点で相違する。
[0069] 始動回路 49は、第 1実施形態と同様に、基準抵抗 491、キャパシタ 492、感温抵抗 493、オペ'アンプ 494、帰還抵抗 495、入力抵抗 496、出力抵抗 497およびダイォ ード 498を備える。スィッチ 490は、キャパシタ 492と並列に接続される。ダイオード 4 99のアノードは、基準抵抗 491と感温抵抗 493との間に接続される一方、そのカソー ドは、オペ ·アンプ 494の非反転入力端子に接続される。
[0070] 制御回路 40は、第 1実施形態と同様に、オペ'アンプ 400、基準電源 401、帰還抵 抗 402、入力抵抗 403、出力抵抗 404、ダイオード 405およびキャパシタ 406を備え る。ダイオード 409aのアノードは、基準抵抗 491と感温抵抗 493との間に接続される 一方、その力ソードは、スイープ停止回路 409bの出力端子に接続される。このダイォ ード 409aは、スイープ停止回路 409bから電圧 V を受け、電圧 V を、電圧 V 力Lo
SS SS SS
wレベルであるときに、基準抵抗 491と感温抵抗 493との間に印加するスィッチとして 動作する。
[0071] スイープ停止回路 409bは、図 14に示すように、 tlから電圧 V を通常 Highレベル ss
で出力し、電圧検出回路力もの検出電圧 V 力 所定のしきい電圧 V , V を、あ
DV TH1 TH2 らカじめそれらを超えた後に下回ったときに、無電極放電ランプの点灯を検出し、そ してその点灯の時から所定期間 T1の間のみ、電圧 V を Low (ゼロ)レベルに落とす
SS
ように構成される。つまり、スイープ停止回路 409bは、図 14,図 15に示すように、 t2 で、始動回路 49におけるスイープ 'アップ回路の動作を停止して、動作周波数 f の スイープ ·ダウンを周波数 f で停止するのである。電圧 V の Highレベルは、基準抵
TO SS
抗 491の基準電圧以上のレベルに設定される。
[0072] 次に、制御回路 40の動作について説明する。無電極放電ランプ点灯装置 4が tlで 始動したとき、スイープ停止回路 409bは、電圧 V を Highレベルで出力する。これに ss
より、ダイオード 409aがオフに保持され、始動回路 49が第 1実施形態と同様に動作 する。
[0073] この動作の後、検出電圧 V 力 Sしきい電圧 V , V を超える。続いて、検出電圧
DV TH1 TH2
V がしきい電圧 V , V を下回った時点 t2で、電圧 V 力 owレベルに落ちる。
DV TH1 TH2 SS
これにより、感温抵抗 493からキャパシタ 492に流れる電流力 ダイオード 409aサイ ドに引き込まれるので、始動回路 49におけるスイープ ·アップ回路の動作 (キャパシタ 492の充電)が停止し、動作周波数 f のスイープ ·ダウンが周波数 f で停止する。
OP TO
[0074] この動作の後の t3で、スイープ停止回路 409b力 電圧 V を Highレべノレで出力す
SS
ると同時に、スイープ 'アップ回路が動作を再開する。このとき、始動回路 49から出力 される電圧 V は、スイープ ·アップ回路の動作停止によって、制御回路 40から出力
SC
される電圧 V よりも低くなるので、電圧 V と電圧 V とが等しくなるまで電流 I がス
CC SC CC SC
ィープ ·ダウンする。この後の動作は、第 1実施形態のそれと同じである。
[0075] この実施形態では、無電極放電ランプが首尾よく点灯した後に駆動周波数 f
OPが終 了周波数 f
Eに至るのを回避することができるので、回路へのストレスを好適に低減す ることがでさる。
[0076] 本発明を幾つかの好ましい実施形態について記述した力 この発明の本来の精神 および範囲を逸脱することなぐ当業者によって様々な修正および変形が可能である

Claims

請求の範囲
駆動周波数を持つ駆動信号に応じて、直流電力を、前記駆動周波数に対応する 動作周波数の高周波電力に変換する DCZAC変換回路と、
無電極放電ランプが点灯する前の始動モードにおいて所定の共振周波数で共振 ピークを持つ第 1共振カーブが、その無電極放電ランプが点灯している間の点灯モ ードにおいてその第 1共振カーブよりも低い第 2共振カーブに切り替わる共振特性を 持ち、前記高周波電力を受けて、前記共振特性に基づいて前記動作周波数に応じ て可変する高周波電力を出力する共振回路と、
前記共振回路によって出力される前記高周波電力に応じて高周波電磁界を発生し 、この高周波電磁界を前記無電極放電ランプに印加することによって高周波電力を 前記無電極放電ランプに誘導する誘導コイルと、
前記共振回路からの前記高周波電力によって前記誘導コイルに印加される電圧を 検出して検出電圧を出力する電圧検出回路と、
前記駆動周波数を持つ前記駆動信号を、可変電力に応じてその駆動周波数を調 整しながら前記 DCZAC変換回路に供給する駆動回路と、
前記無電極放電ランプを始動するとき、前記動作周波数を前記共振周波数よりも 高い所定の開始周波数力 この開始周波数よりも低い所定の終了周波数にスイープ •ダウンするとともに前記検出電圧をスイープするように、前記可変電力をスイープ- ダウンな 、しアップする始動回路と
を備える無電極放電ランプ点灯装置であって、
前記共振回路に流れる電流を検出して検出電流を出力する電流検出回路と、 前記動作周波数を前記開始周波数と前記終了周波数との間のミドル'レンジ周波 数にシフトするための所定電流に前記検出電流を等しくするように、前記可変電力を 増大ないし低減する制御回路と、
抑制手段と
を備え、
前記所定電流は、前記ミドル'レンジ周波数の場合の前記検出電圧が前記終了周 波数の場合の前記検出電圧よりも低くなるように設定され、 前記抑制手段は、前記無電極放電ランプを始動するときに前記制御回路の動作の 抑制を開始し、少なくとも前記始動モードの間、その抑制を保持する
ことを特徴とする無電極放電ランプ点灯装置。
[2] 前記駆動回路は、前記可変電力の電流の増減に応じて前記駆動周波数を調整し 前記始動回路は、前記動作周波数を前記開始周波数力 前記終了周波数にスィ 一プ*ダウンするとともに前記検出電圧をスイープするように、前記可変電力の電流を スイープ.ダウンないしアップし、 前記制御回路は、前記検出電流を前記所定電流に等しくするように、前記可変電 力の電流を増大ないし低減する誤差増幅回路を含み、
前記抑制手段は、少なくとも前記始動モードの間、前記誤差増幅回路から前記駆 動回路への前記電流をゼロまたは所定レベルに抑制する
ことを特徴とする請求項 1記載の無電極放電ランプ点灯装置。
[3] 前記誤差増幅回路は、非反転入力端子、反転入力端子および出力端子を持つ演 算増幅器を含み、この演算増幅器は、前記両入力端子で前記所定電流に相当する 基準電圧および前記検出電流に相当する検出電圧を受けて、その検出電流に相当 するその検出電圧をその基準電圧に等しくするように前記可変電力の電流を増大な いし低減し、
前記抑制手段は、前記両入力端子のうちの一の入力端子と前記出力端子との間 に接続される積分回路を構成し、この積分回路は、少なくとも前記始動モードの期間 に相当する値よりも大きな値に設定される時定数を持つ
ことを特徴とする請求項 2記載の無電極放電ランプ点灯装置。
[4] 前記誤差増幅回路は、非反転入力端子、反転入力端子および出力端子を持つ演 算増幅器を含み、この演算増幅器は、前記両入力端子で前記所定電流に相当する 基準電圧および前記検出電流に相当する検出電圧を受け、前記抑制手段が前記抑 制を解除した後に前記検出電流に相当するその検出電圧をその基準電圧に等しく するように前記可変電力の電流を増大し、
前記抑制手段は、少なくとも前記始動モードの間、前記演算増幅器の出力電流を 実質ゼロにするように、前記基準電圧を調整する
ことを特徴とする請求項 2記載の無電極放電ランプ点灯装置。
[5] 前記駆動回路は、前記動作周波数が前記終了周波数に達した後、前記制御回路 のみによって実質制御されることを特徴とする請求項 2記載の無電極放電ランプ点灯 装置。
[6] 前記終了周波数は、前記第 2共振カーブのピーク近傍の周波数に設定されること を特徴とする請求項 2記載の無電極放電ランプ点灯装置。
[7] 前記始動回路は、
前記無電極放電ランプを始動する時点からスイープ 'アップないしダウンするスィー プ電圧を出力するスイープ回路と、
非反転入力端子、反転入力端子および出力端子を持ち、前記両入力端子で前記 スイープ電圧および前記電圧検出回路からの前記検出電圧を受けて、その検出電 圧をそのスイープ電圧に等しくするように前記可変電力の電流を低減な!/、し増大す る演算増幅器と
を備えることを特徴とする請求項 2記載の無電極放電ランプ点灯装置。
[8] 請求項 1記載の無電極放電ランプ点灯装置と、前記無電極放電ランプとを備えるこ とを特徴とする照明器具。
PCT/JP2004/017451 2003-11-25 2004-11-25 無電極放電ランプ点灯装置および照明器具 WO2005053364A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2004800338629A CN1883235B (zh) 2003-11-25 2004-11-25 无极放电灯点亮装置及照明设备
DE602004030148T DE602004030148D1 (de) 2003-11-25 2004-11-25 Leuchtvorrichtung und beleuchtungsvorrichtung mit elektrodenloser entladungslampe
EP04819385A EP1689215B1 (en) 2003-11-25 2004-11-25 Electrodeless discharge lamp lighting apparatus and illuminating apparatus
US10/577,717 US7365498B2 (en) 2003-11-25 2004-11-25 Electrodeless discharge lamp lighting device and luminaire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003394685A JP4186801B2 (ja) 2003-11-25 2003-11-25 無電極放電灯点灯装置並びに無電極放電灯装置
JP2003-394685 2003-11-25

Publications (1)

Publication Number Publication Date
WO2005053364A1 true WO2005053364A1 (ja) 2005-06-09

Family

ID=34631463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017451 WO2005053364A1 (ja) 2003-11-25 2004-11-25 無電極放電ランプ点灯装置および照明器具

Country Status (6)

Country Link
US (1) US7365498B2 (ja)
EP (1) EP1689215B1 (ja)
JP (1) JP4186801B2 (ja)
CN (1) CN1883235B (ja)
DE (1) DE602004030148D1 (ja)
WO (1) WO2005053364A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103623A1 (en) * 2005-03-28 2006-10-05 Matsushita Electric Works, Ltd. Electrodeless discharge lamp lighting device and lighting apparatus

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772783B2 (en) * 2005-09-28 2010-08-10 Panasonic Electric Works Co., Ltd. Dimmable electronic ballast for electrodeless discharge lamp and luminaire
JP4747925B2 (ja) * 2006-04-19 2011-08-17 パナソニック電工株式会社 無電極放電灯点灯装置及び照明器具
US7528558B2 (en) * 2007-05-11 2009-05-05 Osram Sylvania, Inc. Ballast with ignition voltage control
JP4966122B2 (ja) * 2007-07-26 2012-07-04 パナソニック株式会社 放電灯点灯装置及び照明器具
JP2009032471A (ja) * 2007-07-26 2009-02-12 Panasonic Electric Works Co Ltd 放電灯点灯装置及び照明器具
KR101088974B1 (ko) * 2008-06-25 2011-12-01 파나소닉 전공 주식회사 무전극방전등 점등장치 및 조명 기구
DE102008064399A1 (de) * 2008-12-22 2010-06-24 Tridonicatco Gmbh & Co. Kg Verfahren und Betriebsgerät zum Betreiben eines Leuchtmittels mit geregeltem Strom
JP5353528B2 (ja) * 2009-07-27 2013-11-27 ウシオ電機株式会社 放電ランプ点灯装置
US8310162B2 (en) 2009-08-19 2012-11-13 Panasonic Corporation Lighting apparatus and lighting fixture
CN101790275B (zh) * 2010-03-30 2014-09-17 威海东兴电子有限公司 定时选择可变功率无极灯控制模块
US8487544B2 (en) * 2010-09-29 2013-07-16 Osram Sylvania Inc. Power splitter circuit for electrodeless lamp
CN102088814B (zh) * 2010-12-02 2013-07-31 山东柏斯莱特照明电器有限公司 一种具有开路保护的低频无极灯驱动电路
WO2012125953A2 (en) * 2011-03-16 2012-09-20 Lindsey William Arthur Luminescent devices
JP6244806B2 (ja) 2013-10-17 2017-12-13 セイコーエプソン株式会社 放電ランプ点灯装置、放電ランプ点灯方法及びプロジェクター

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827370A2 (en) 1996-09-03 1998-03-04 Hitachi, Ltd. Resonance type power converter unit, lighting apparatus for illumination using the same and method for control of the converter unit and lighting apparatus
JP2001515650A (ja) * 1998-01-07 2001-09-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電子安定器
JP2001338789A (ja) * 2000-05-26 2001-12-07 Matsushita Electric Works Ltd 放電灯点灯装置
JP2003332089A (ja) * 2002-05-15 2003-11-21 Matsushita Electric Works Ltd 無電極放電灯点灯装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187414A (en) * 1988-07-15 1993-02-16 North American Philips Corporation Fluorescent lamp controllers
JPH0676971A (ja) 1992-08-31 1994-03-18 Toshiba Lighting & Technol Corp インバータ回路及びそれを用いた無電極放電ランプ点灯装置
JP3465758B2 (ja) 1994-07-29 2003-11-10 東芝ライテック株式会社 無電極放電灯点灯装置およびそれを用いた装置
US6124680A (en) * 1996-09-03 2000-09-26 Hitachi, Ltd. Lighting device for illumination and lamp provided with the same
DE19650110A1 (de) * 1996-12-03 1998-06-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Betriebsschaltung für eine elektrodenlose Niederdruckentladungslampe
CN1201639C (zh) * 1998-01-05 2005-05-11 国际整流器有限公司 全集成镇流器集成电路
US7064494B2 (en) * 2001-04-12 2006-06-20 Matsushita Electric Industrial Co., Ltd. Discharge lamp operating apparatus and self-ballasted electrodeless discharge lamp
JP2003332090A (ja) 2002-05-15 2003-11-21 Matsushita Electric Works Ltd 無電極放電灯点灯装置
US6906473B2 (en) * 2003-08-26 2005-06-14 Osram Sylvania Inc. Feedback circuit and method of operating ballast resonant inverter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827370A2 (en) 1996-09-03 1998-03-04 Hitachi, Ltd. Resonance type power converter unit, lighting apparatus for illumination using the same and method for control of the converter unit and lighting apparatus
JP2001515650A (ja) * 1998-01-07 2001-09-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電子安定器
JP2001338789A (ja) * 2000-05-26 2001-12-07 Matsushita Electric Works Ltd 放電灯点灯装置
JP2003332089A (ja) * 2002-05-15 2003-11-21 Matsushita Electric Works Ltd 無電極放電灯点灯装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1689215A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103623A1 (en) * 2005-03-28 2006-10-05 Matsushita Electric Works, Ltd. Electrodeless discharge lamp lighting device and lighting apparatus
US7545107B2 (en) 2005-03-28 2009-06-09 Panasonic Electric Works Co., Ltd. Electrodeless discharge lamp lighting device and lighting apparatus

Also Published As

Publication number Publication date
EP1689215A1 (en) 2006-08-09
EP1689215A4 (en) 2008-12-10
EP1689215B1 (en) 2010-11-17
US20070132399A1 (en) 2007-06-14
DE602004030148D1 (de) 2010-12-30
JP4186801B2 (ja) 2008-11-26
CN1883235A (zh) 2006-12-20
CN1883235B (zh) 2011-11-30
US7365498B2 (en) 2008-04-29
JP2005158464A (ja) 2005-06-16

Similar Documents

Publication Publication Date Title
US6975077B2 (en) High intensity discharge lamp ballast apparatus
WO2005053364A1 (ja) 無電極放電ランプ点灯装置および照明器具
EP1768468A2 (en) High intensity discharge lamp lighting device and illumination apparatus
US7265498B2 (en) Dimmer control system and controlling method thereof
KR20040063940A (ko) 가스 방전 램프를 구동시키는 방법 및 장치
JP2002063993A (ja) 放電灯駆動装置
CA2347542A1 (en) Hid ballast circuit with arc stabilization
US8247987B2 (en) Induction lamp lighting device and illumination apparatus
EP1466508B1 (en) Circuit for a gas-discharge lamp
KR101114490B1 (ko) 방전 램프용 전자 밸러스트
JP2004527896A (ja) 高効率高力率電子安定器
JP4186788B2 (ja) 無電極放電灯点灯装置
JPH11262256A (ja) 電源装置及び放電灯点灯装置
JPH0554990A (ja) 放電灯点灯装置
JP5227112B2 (ja) 無電極放電灯点灯装置及びそれを用いた照明器具
JP3329172B2 (ja) 放電ランプ点灯装置
JP2004288375A (ja) 高圧放電灯点灯装置
JP2002051548A (ja) 電源装置および放電灯点灯装置
JP4697114B2 (ja) 無電極放電灯点灯装置及びその照明器具
JP4608804B2 (ja) 無電極放電灯点灯装置
JP4239800B2 (ja) 無電極放電灯点灯装置
KR100977464B1 (ko) 가스 방전 램프용 전자식 안정기의 안정화 제어 회로
JP2006252907A (ja) 無電極放電灯点灯装置およびそれを用いる照明器具
KR100860851B1 (ko) 고압방전등 램프 구동회로
JPH10228989A (ja) 無電極放電灯点灯装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480033862.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004819385

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007132399

Country of ref document: US

Ref document number: 10577717

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004819385

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10577717

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载