+

WO2005047367A1 - Polyimide precursor, method for producing polyimide precursor, method for producing polyimide precursor solution in organic solvent, method for producing cast film, and method for producing polyimide film - Google Patents

Polyimide precursor, method for producing polyimide precursor, method for producing polyimide precursor solution in organic solvent, method for producing cast film, and method for producing polyimide film Download PDF

Info

Publication number
WO2005047367A1
WO2005047367A1 PCT/JP2004/006414 JP2004006414W WO2005047367A1 WO 2005047367 A1 WO2005047367 A1 WO 2005047367A1 JP 2004006414 W JP2004006414 W JP 2004006414W WO 2005047367 A1 WO2005047367 A1 WO 2005047367A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide precursor
polyimide
producing
film
structural formula
Prior art date
Application number
PCT/JP2004/006414
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoshi Hasegawa
Junichi Ishii
Original Assignee
Sony Chemicals Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003383836A external-priority patent/JP4620946B2/en
Priority claimed from JP2003383835A external-priority patent/JP4538216B2/en
Application filed by Sony Chemicals Corp. filed Critical Sony Chemicals Corp.
Publication of WO2005047367A1 publication Critical patent/WO2005047367A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N

Definitions

  • the present invention relates to a polyimide precursor, a method for producing a polyimide precursor, a method for producing a polyimide precursor organic solvent solution, a method for producing a cast film, and a method for producing a polyimide film.
  • the present invention provides a practically useful polyimide film having a low dielectric constant, a low coefficient of linear thermal expansion, a high glass transition temperature, high transparency, sufficient toughness and film forming processability, and a solution film having excellent solution storage stability.
  • the present invention relates to a method for producing a precursor. Background art
  • polyimide is easily obtained by equimolar reaction of an aromatic tetracarboxylic dianhydride such as pyromellitic anhydride with an aromatic diamine such as diaminodiphenyl ether in an aprotic polar solvent such as dimethylacetamide.
  • the polyimide precursor having a high degree of polymerization is formed into a film or the like and cured by heating. Since such wholly aromatic polyimides have excellent properties such as excellent heat resistance, chemical resistance, radiation resistance, electrical insulation, and mechanical properties, they can be used as substrates for flexible printed wiring circuits, substrates for tape automation bonding, At present, it is widely used in various electronic devices such as protective films for semiconductor devices and interlayer insulating films for integrated circuits.
  • Reducing T electrons by replacing aromatic units with alicyclic units, thereby hindering intramolecular conjugation and formation of charge-transfer complexes is also effective in lowering the dielectric constant. is there.
  • non-aromatic compounds obtained from 1,2,3,4-cyclobutanetetracarponic dianhydride and 4,4'-methylenebis (cyclohexylamine).
  • the aromatic polyimide film has an extremely low dielectric constant of 2.6, which is estimated from the average refractive index.
  • a polyimide In general, it is known that a polyimide must have a low thermal expansion coefficient if its main chain structure is linear, but its internal rotation is constrained and it is rigid (Pomer, 28, 2282 (1987) ).
  • polyimide formed from 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and paraphenylenediamine is the best known low thermal expansion polyimide material.
  • This polyimide film is known to exhibit a very low linear thermal expansion coefficient of 3 to 10 ppm / K, depending on the film thickness and fabrication conditions (Polyimides: Fundamentals and Applications, Marcel Dekker, New York). York, 1996, p 207)).
  • a fluorine group In general, the introduction of a fluorine group into a polyimide structure weakens the intermolecular interaction and tends to hinder the spontaneous molecular orientation during imidization, which is a factor of low thermal expansion. Introduction of a fluorine group is disadvantageous in terms of cost. As described above, a typical example is obtained from 2,2-bis (3,4-carboxyphenyl) hexafluoropropanoic acid dianhydride and 2,2'-bis (trifluoromethyl) benzidine. Although the fluorinated polyimide film has a low dielectric constant as described above, it has a very high linear thermal expansion coefficient of 64 ppm / K and does not exhibit low thermal expansion characteristics (Hi Perform. Polym., 15 , 47 (2 003)). Further, transparency is insufficient.
  • the polyimide film obtained from pyromellitic dianhydride and 2,2'-bis (trifluoromethyl) benzidine has a very low linear thermal expansion coefficient due to the linear and rigid main chain.
  • the film is colored and has a problem in transparency. This is because the use of aromatic monomers for both acid dianhydride and diamine caused intramolecular conjugation and charge transfer interaction (Polym. J., 29, 69 (1997)).
  • the introduction of alicyclic structural units into the polyimide skeleton reduces the number of electrons, is effective in lowering the dielectric constant and making the film transparent.
  • the introduction of alicyclic structural units generally has a problem that the linearity and rigidity of the polyimide main chain skeleton are reduced, and the linear thermal expansion coefficient is increased.
  • a polyimide film obtained from 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 4,4'-methylenebis (cyclohexylamine) has high transparency and low dielectric constant as described above. However, it has a very high linear thermal expansion coefficient of 7 O ppm / K and does not exhibit low thermal expansion characteristics.
  • polyimide films obtained from pyromellitic dianhydride and 4,4'-methylenebis (cyclohexylamine) do not show low thermal expansion characteristics. This is due to the fact that in these polyimides, the in-plane orientation of the polymer chains is not promoted during thermal imidization due to the bent structure of the main chain skeleton.
  • the salt formed will dissolve slightly in the polymerization solvent and can be stirred for a long time at room temperature.
  • the polymerization reaction can be easily advanced by a known method.
  • trans-1,4-diaminocyclohexane is used, the formed salt is very strong and the solubility in the polymerization solvent is almost zero, and the polymerization reaction is often hindered.
  • an alicyclic acid dianhydride having a rigid structure is preferable, but the number of alicyclic acid dianhydrides known so far is limited.
  • the polyimide obtained from pyromellitic dianhydride and trans-1,4-diaminocyclohexane has a linear and rigid molecular structure in the main chain skeleton. There is expected.
  • the use of inexpensive pyromellitic dianhydride is advantageous in terms of cost.
  • a polyimide precursor having a high degree of polymerization can be obtained by heating at a temperature of, for example, 120 ° C. for a short time.
  • the salt formed is extremely strong and the salt does not dissolve at any temperature conditions, so it is difficult to apply this method. .
  • an interfacial polymerization method is disclosed in High Perform. Polym., 10, 11 (1998).
  • tetracarboxylic dianhydride and alcohol are first reacted to form a diester of tetracarboxylic acid, which is then chlorinated and dissolved in an oil layer, and this is mixed with an aliphatic diamine dissolved in an aqueous alkaline solution at an oil / water interface.
  • an alkyl ester of a polyamic acid is obtained by reacting tetracarboxylic dianhydride and alcohol to form a diester of tetracarboxylic acid, which is then chlorinated and dissolved in an oil layer, and this is mixed with an aliphatic diamine dissolved in an aqueous alkaline solution at an oil / water interface.
  • a rigid polyimide based on pyromellitic dianhydride and trans-1,4-diaminocyclohexane may cause serious problems in the film forming process. That is, after the polyimide precursor film is cast, cracking of the film occurs during the thermal imidization process. This is because, in a rigid system, the degree of entanglement between polymer chains is low, so that the toughness of the film is originally low.
  • the reverse reaction of the polymerization reaction passes through around 200 ° C during the imidization of polyamic acid. When the molecular weight decreases, the film toughness further decreases, and the film cannot withstand the film shrinkage during the imidization reaction.
  • a method for producing a polyimide precursor by reacting pyromellitic dianhydride with 1,4-diaminocyclohexane is known (Jourina lof Polymer Science: part A, Vol. 31, 235-2351, (1993)).
  • Jourina lof Polymer Science: part A, Vol. 31, 235-2351, (1993) Jourina lof Polymer Science: part A, Vol. 31, 235-2351, (1993)
  • cis-form and trans-form are mixed in 1,4-diaminocyclohexane, and cis-form 1,4-diaminocyclohexane increases the thermal expansion coefficient of the polyimide film due to its bent structure.
  • a method of using silylated diamine for polyimide synthesis is known.
  • the produced polyimide precursor has low dielectric constant and low thermal expansion characteristics. The two required characteristics were not satisfied at the same time.
  • a common polyimide precursor synthesized from an acid dianhydride and diamine by a known method is polyamic acid, but it is known that the weight average molecular weight decreases due to a reverse reaction of a polymerization reaction during storage of the solution. ing. The change with time in the solution viscosity due to this is a serious problem in controlling the film thickness during the film forming process by spin coating or the like.
  • the main chain skeleton of the precursor is also relatively rigid, and non-uniformity such as gelation and liquid crystal formation during storage of the precursor solution will occur. It often occurs, and it may be difficult to produce good quality polyimide films.
  • the addition of salts such as lithium chloride increases the storage stability, but is preferable for electronic materials. And the use of salts should be avoided.
  • a method for producing a polyimide precursor by reacting 1,2,3,4-cyclobutanecarboxylic anhydride with 1,4-cyclohexanediamine is known.
  • cis-form and trans-form are mixed in 1,4-cyclohexanediamine, and the cis-form 1,4-cyclohexanediamine increases the thermal expansion coefficient of the polyimide film due to its bent structure.
  • Non-patent documents among the related technical documents of the present invention are shown below.
  • patent documents are Japanese Patent Application Laid-Open No. 2002-0216136, Japanese Patent Application Laid-Open No. 2002-3237666, and Japanese Patent Application
  • Japanese Patent No. 27768 Japanese Patent Application Laid-Open No. 64-63070 and Japanese Patent Application Laid-Open No. 2-294
  • the present invention provides a practically useful polyimide film having low dielectric constant, low coefficient of linear thermal expansion, high glass transition temperature, high transparency, sufficient toughness and film forming processability, and a solution storage stability that is excellent. It is intended to provide a method for producing a precursor. Disclosure of the invention
  • the present inventors have determined that using the selected silylating agent Trans, 1,4-diaminocyclohexane silylated in a wide range of silylation rates, and equimolar amounts of 1,2,3,4-cyclobutanetetracarboxylic dianhydride or equimolar pyromellitic dianhydride
  • a limited organic solvent we succeeded in obtaining an all-alicyclic polyimide precursor solution having excellent storage stability and a high degree of polymerization, and completed the first and second inventions. I got it.
  • Figure 1 is a diagram showing an example of the steric structure of 1,4-diaminocyclohexane, which is a diamine monomer.
  • the polyimide film represented by the unit structural formulas (2a) and (2b) described below exhibits low thermal expansion characteristics.
  • both amino groups of 1,4-diaminocyclohexane must be in an equatorial configuration, that is, the steric structure of 1,4-diaminocyclohexane is trans as shown in Figure 1. .
  • the trans configuration at the monomer stage is retained in the polyimide precursor and polyimide skeleton.
  • the use of cis 1,4-diaminocyclohexane during the polymerization may cause a sharp increase in the linear thermal expansion coefficient of the polyimide film due to its bent structure.
  • 1,4-diaminocyclohexane obtained by hydrogenation of parafudinylenediamine is usually obtained as a cis / trans mixture, but this is used as it is.
  • the polymerization proceeds without any problem under known reaction conditions.
  • the diamine component when the diamine component is copolymerized not only with trans 1,4-diaminocyclohexane alone but also with another flexible aliphatic diamine, the polymerization proceeds without any problem under known reaction conditions.
  • the use of the above mixture instead of trans 1,4-diaminocyclohexane alone may cause a rapid increase in the linear thermal expansion coefficient of the obtained polyimide film and a decrease in the glass temperature. Should be avoided.
  • Figure 2 shows the 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride monomer
  • An example of the configuration of the acid dianhydride is shown.
  • 1,2,3,4-Cyclobutanetetracarboxylic dianhydride is particularly preferable to have the anti configuration shown in FIG.
  • the use of syn-type 1,2,3,4-cyclobutanetetracarboxylic dianhydride may lead to an increase in linear thermal expansion coefficient due to its bent structure.
  • a first invention made based on such findings is to produce an intermediate product by reacting trans 1,4-diaminocyclohexane with a silylating agent, and then forming the intermediate product with 1, 2, 3
  • a method for producing a polyimide precursor which comprises reacting 1,4-cyclobutanetetracarboxylic dianhydride to produce an all-alicyclic polyimide precursor having a repeating structural unit represented by the following structural formula (la): .
  • R is H or a silyl group
  • one or both of the substituents R in one unit structural formula are a silyl group.
  • the first invention is a method for producing a polyimide precursor, wherein a non-halogenated silylating agent having no octogen atom in its chemical structure is used as the silylating agent.
  • the first invention is directed to a polyimide precursor using either or both of ⁇ , ⁇ -bis (trimethylsilyl) trifluoroacetamide and ⁇ , ⁇ -bis (trimethylsilyl) acetoamide as the non-halogenated silylating agent. Manufacturing method.
  • R in the unit structural formula (la) is H or Si (CH 3 ) 3 , and the trans 1,4-diaminocyclohexane and the silylating agent are present at a predetermined ratio.
  • a method for producing a polyimide precursor to be reacted wherein, among Rs contained in the entire chemical structure, the number of Rs composed of three Si (CH 3 ) groups is the number of Rs composed of A and H Is B, the silylation agent is reacted with the trans 1,4-diaminocyclohexane at a rate such that the silylation rate represented by the following formula (1) becomes 0.4 or more and 0.9 or less.
  • This is a method for producing a polyimide precursor to be produced.
  • trans 1,4-diaminocyclohexane and a silylating agent are reacted in a polymerization solvent to produce an intermediate product, and then 1,2,3,4-cyclobutane is added to the polymerization solvent.
  • a tetracarboxylic dianhydride is added, the intermediate product is reacted with the 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and a polyimide precursor is dispersed or dissolved in the polymerization solvent.
  • This is a method for producing a polyimide precursor organic solvent solution for producing the obtained polyimide precursor organic solvent solution.
  • the first invention is a method for producing a polyimide film, comprising applying a polyimide precursor organic solvent solution to an object to be coated, forming a cast film, and then imidizing the polyimide precursor in the cast film.
  • the solvent has an affinity for the trans 1,4-diaminocyclohexane, the silylating agent, the 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and the intermediate product.
  • a polyimide film that contains a high-boiling-point solvent has a high affinity for the polymerization solvent, and has a lower boiling point than the polymerization solvent, is brought into contact with the cast film, and after the cast film is washed, the imidization is performed. Is a manufacturing method.
  • the first invention is a method for producing a polyimide film using hexamethylphosphoramide as the high boiling point solvent and using alcohol as the cleaning solution.
  • the first invention is a completely alicyclic compound wherein the repeating structural unit is represented by the unit structural formula (1a), and the substituent R in the unit structural formula (la) is H or Si (CH 3 ) 3 group.
  • the first invention is a polyimide precursor, wherein the stereostructure of each 1,4-cyclohexane residue in the unit structural formula (la) is a trans configuration.
  • the first invention the total chemical structure, the total number of Si (CH 3) consists of 3 groups substituents R A, When B the total number of substituents R consisting of hydrogen, table by the following mathematical formula (1)
  • a polyimide precursor having a silylation rate of 0.4 or more and 0.9 or less.
  • the repeating structural unit is represented by the following structural formula (2a), and the steric structure of each 1,4-cyclohexane residue in the following structural formula (2a) is in a trans configuration.
  • a polyimide characterized by the following.
  • the first invention is a polyimide film containing the above polyimide as a main component.
  • the second invention is to produce an intermediate product by reacting trans 1,4-diaminocyclohexane with a silylating agent, and then reacting the intermediate product with pyromellitic dianhydride, and repeating the process.
  • This is a method for producing a polyimide precursor in which a structural unit is represented by the following unit structural formula (lb).
  • R is H or a silyl group
  • one or both of the substituents R in one unit structural formula are a silyl group.
  • the second invention is a method for producing a polyimide precursor, wherein a non-perogenating silylating agent having no halogen atom in its chemical structure is used as the silylating agent.
  • the second invention is directed to a polyimide precursor using one or both of ⁇ , ⁇ -bis (trimethylsilyl) trifluoroacetamide and ⁇ , ⁇ -bis (trimethylsilyl) acetoamide as the non-halogenated silylating agent. Manufacturing method.
  • a second invention is a method for producing a polyimide precursor in which the trans 1,4-diaminocyclohexane and the silylating agent are reacted at a predetermined ratio, wherein R is contained in the entire chemical structure.
  • the silylation rate of the polyimide precursor represented by the following formula (1) is 0.9 or more and 1.0 or less.
  • the trans 1,4-diaminocyclohexane and the silylating agent are reacted to produce a polyimide precursor.
  • the second invention is a method for producing a polyimide precursor, comprising reacting the trans 1,4-diaminocyclohexane with the silylating agent at a predetermined ratio, wherein the trans 1,4-diaminocyclohexane before the reaction is prepared.
  • the silylation rate of the intermediate product represented by the following formula (2) is 0.9 or more 1
  • a method for producing a polyimide precursor comprising reacting the trans 1,4-diaminocyclohexane with the silylating agent at a ratio that falls within a range of 0.0 or less.
  • trans 1,4-diaminocyclohexane is reacted with a silylating agent in a polymerization solvent to produce an intermediate product, and then pyromellitic dianhydride is added to the polymerization solvent. And reacting the intermediate product with the pyromellitic dianhydride to produce a solution of a polyimide precursor in which the polyimide precursor is dispersed or dissolved in the polymerization solvent.
  • the polyimide precursor organic solvent solution is applied to an object to be coated, a cast film is formed, and then the polyimide precursor in the cast film is removed.
  • a high-boiling-point solvent having a high affinity for the polymerization solvent, a cleaning solution having a high affinity for the polymerization solvent and a boiling point lower than the polymerization solvent is brought into contact with the cast film, and after washing the cast film, the imide This is a method for producing a polyimide film to be converted.
  • a second invention is a method for producing a polyimide film using hexamethylphosphoramide as the high boiling point solvent and using alcohol as the cleaning solution.
  • a second invention is a completely alicyclic polyimide wherein the repeating structural unit is represented by the above-mentioned unit structural formula (lb), and the substituent R in the above-mentioned unit structural formula (lb) is H or Si (CH 3 ) 3.
  • a second invention is a polyimide precursor, wherein the stereostructure of each 1,4-cyclohexane residue in the above-mentioned unit structural formula (lb) is in a trans configuration.
  • the second invention is, in all the chemical structure, the total number of Si (CH 3) consists of 3 groups substituents R A, When B the total number of substituents R consisting of hydrogen, table by the following mathematical formula (1)
  • the polyimide precursor has a silylation rate of 0 to 0.9 inclusive.
  • the repeating structural unit is represented by the following structural formula (2b), and the steric structure of each 1,4-cyclohexane residue in the following structural formula (2b) is in a trans configuration. It is a polyimide characterized by having. Unit structural formula (2b)
  • a second invention is a polyimide film containing the above polyimide as a main component.
  • the silylation rate of the polyimide precursor is not determined from the number of Si (CH 3 ) 3 groups and hydrogen contained only in one structural unit, It is determined from the number of substituents R consisting of three Si (CH 3 ) groups contained in the whole body molecule and the number of substituents R consisting of hydrogen.
  • FIG. 1 is a diagram showing a steric structure of 1,4-diaminocyclohexane.
  • FIG. 2 is a diagram showing the molecular structure of 4,4′-methylenebis (cyclohexylamine).
  • FIG. 3 is a view showing an infrared absorption spectrum of the polyimide precursor film of the first invention.
  • FIG. 4 is a diagram showing an infrared absorption spectrum of the polyimide film of the first invention.
  • FIG. 5 is a diagram showing an infrared absorption spectrum of the polyimide precursor film of the second invention.
  • FIG. 6 is a diagram showing an infrared absorption spectrum of the polyimide film of the second invention.
  • trans 1,4-diaminocycloaliphatic diamine which is a hexane
  • a limited polymerization solvent an appropriate amount of N, 0-bis (trimethylsilyl) is added thereto.
  • Trifluoroacetamide or N, 0-bis (trimethylsilyl) acetamide is added dropwise to carry out silylation to produce an intermediate product consisting of silylated alicyclic diamine.
  • the solution is equimolar 1,2,3,4-cyclobutanetetracarboxylic dianhydride powder or equimolar pyromellitic dianhydride.
  • Add the tetracarboxylic dianhydride powder slowly and stir at room temperature for 1-2 hours to obtain a viscous, clear and homogeneous solution.
  • the trans 1,4-diaminocyclohexane used in the first and second aspects of the present invention completely completes coloring components by repeating recrystallization with n-hexane before silylation or reaction with carboxylic dianhydride. It is preferable to use after removing. Otherwise, coloring of the obtained polyimide film may be caused.
  • silylation method A commonly known silylation method is disclosed in Proceedings of the 49th Symposium on Polymers, p 191 (2000). In this silylation method, a representative silylation agent is used.
  • a hydrogen chloride acceptor such as triethylamine using conventional trimethylsilyl chloride, silylating the aliphatic diamine, isolating and purifying it by distillation, and subjecting it to the polymerization reaction with acid dianhydride Things.
  • hydrogen chloride generated by the reaction between trimethylsilyl chloride and aliphatic diamine is partially added to not only triethylamine as an acceptor but also aliphatic diamine as a polymerization reaction component to form a hydrochloride. Since the hydrochloride of aliphatic diamine not only loses polymerization reactivity but also precipitates due to a decrease in solubility, it is necessary to carry out polymerization by adding an acid dianhydride to the reaction solution without isolating the silylated diamine. Is because the molar balance is broken Impossible.
  • silylated diamines are generally required.
  • silylated diamine easily reacts with a small amount of moisture in the air and is decomposed, so that equipment such as a glove box is required in some cases, and the isolation / production process becomes complicated.
  • the step of producing the polyimide precursor in the first and second inventions does not include such a step of isolating and purifying the silylated diamine.
  • a non-halogenated silylating agent having no halogen atom in its chemical structure is used as a silylating agent
  • hydrogen chloride can be used as a by-product when silylating trans 1,4-diaminocyclohexane, which is an alicyclic diamine. Does not generate hydrogen halide.
  • the key to the success of the polymerization reaction in the all-alicyclic polyimide precursor represented by the unit structural formula (1a) is control of the silylation rate X.
  • the silylation rate X of the alicyclic diamine and the silylation rate X of the polyimide precursor can be controlled by adjusting the amount of the silylating agent added.
  • the hydrogen of the amino group of the alicyclic diamine is replaced by a silyl group (S i (CH 3 ) 3 group).
  • the silylation rate X (average silylation rate of all intermediate products) is represented by the following formula (2).
  • the carboxylic acid dianhydride in an amount equal to or more than the molar amount of the intermediate product is added to the polymerization solvent.
  • the silylation rate X of the polyimide precursor generated in the polymerization solvent is equal to the silylation rate X of the intermediate product.
  • the silylation rate of the intermediate product can be adjusted by the amounts of the alicyclic diamine and the silylating agent added to the polymerization solvent. Since alicyclic diamines have two amino groups in the chemical structure, if the silylating agent has S silyl groups per mole, then silylation using c moles of alicyclic diamines In order to obtain an intermediate product having a ratio X and a polyimide precursor, 2 c ⁇ XZ s mol of the silylating agent may be reacted with the alicyclic diamine.
  • a compound having two silyl groups in one molecule such as N, 0-bis (trimethylsilyl) trifluoroacetamide ⁇ N, 0_bis (trimethylsilyl) acetamide is used as a silylating agent.
  • the silylating agent may be added in an amount of from 0.4 to 0.9 mol.
  • the silylation rate X of the intermediate product is preferably in the range of 0.4 or more and 0.9 or less, and when the silylation rate is in this range, the intermediate product is reacted with the carboxylic dianhydride. After this, a clear, viscous and homogeneous polymerization solution is obtained.
  • X is less than 0.4, salt formation occurs during polymerization with carboxylic dianhydride, and the polymerization does not proceed.
  • X exceeds 0.9, a uniform polymerization solution cannot be obtained, It is difficult to obtain a polyimide precursor having a high degree of polymerization. This is because, when the silylation rate is very high, the solubility of the polyimide precursor in the polymerization solvent is extremely reduced due to hydrogen bonding between the polyimide precursor chains, and the polyimide precursor becomes one before the polymerization reaction sufficiently proceeds. This is due to the partial precipitation.
  • the polyimide precursor When X is in the range of 0.4 or more and 0.9 or less, the polyimide precursor has a moderately strong propyloxy group, which strongly solvates with the polymerization solvent and results in an increase in the solubility of the produced polymer. Has become. Until now, silylation was generally thought to dramatically increase the solubility of the polyimide precursor.However, in the first invention, the silylation rate of the polyimide precursor was rather controlled to 0.4 or more and 0.9 or less. Control led to the solution of the polymerization problem.
  • polymerization solvent is not appropriate, alicyclic diamine and tetracarboxylic dianhydride, intermediate product and tetracarboxylic dianhydride, alicyclic diamine and pyromellitic dianhydride, intermediate product and pyromellitic acid Polymerization may not proceed at all due to salt formation during polymerization with the anhydride, or even if a partial polymerization reaction occurs, a uniform polymerization solution may not be obtained due to precipitation, gelation, etc., and film formation may not be possible.
  • metal salts such as lithium bromide and lithium chloride in the polymerization systems according to the first and second inventions. These metal salts should not be used, since traces of metal ions remaining in the polyimide film significantly reduce the reliability of electronic devices.
  • the polymerization does not proceed as described above when the silylation rate X represented by the above formula (1) is out of the range of 0.4 or more and 0.9 or less, the dissolution of the above salts There is almost no accelerating effect, and the addition of salts cannot improve the polymerization reactivity.
  • Antioxidants, fillers, silane coupling agents, photosensitizers, photopolymerization initiators, sensitizers, etc. are added as necessary to the polyimide films obtained in the first invention and the second invention described below. Things can be mixed.
  • the polyimide precursor solution applied to the substrate to be applied is dried in a forced circulation hot air dryer or vacuum dryer at a temperature of 40 ° C or more and 120 ° C or less. It becomes.
  • a polyimide film is produced by heating a cast film on a substrate to a temperature of 200 ° C or more and 400 ° C or less to imidize a polyimide precursor in the cast film.
  • a polyimide precursor cast film represented by the above-mentioned unit structural formula (la) is thermally imidized according to a known method, the film is severely ruptured and blackened regardless of whether it is in a nitrogen atmosphere or in a vacuum, and the polyimide It becomes difficult to manufacture the membrane.
  • hexamethylphosphoramide used as a solvent is very difficult to volatilize, so it tends to stay in the film during imidization, causing thermal decomposition of hexamethylphosphoramide itself and some reaction with the polyimide precursor. It is thought that it is.
  • the cast film was immersed in a cleaning solution composed of alcohols such as methanol, and the cleaning solution was brought into contact with the cast film to perform cleaning. It was found that shrinkage and peeling from the substrate were suppressed, and at the same time, it was possible to almost completely extract and remove residual solvents such as hexamethylphosphoramide, which led to the solution of problems during film formation.
  • a cleaning solution composed of alcohols such as methanol
  • the alcohol constituting the cleaning solution is not limited to methanol, but may be ethanol, butanol, propanol, or the like. These alcohols may be used alone or as a mixture of two or more.
  • the polyimide precursor film (cast film) formed on the substrate in this manner is heated at a temperature of 200 ° C or more and 400 ° C or less, preferably 300 ° C or more and 350 ° C under reduced pressure (a condition where the pressure is lower than the atmospheric pressure).
  • a tough polyimide film can be obtained by heat treatment at a temperature of less than or equal to ° C.
  • the step of imidizing the polyimide precursor in the cast film is not limited to heat treatment, and the imidation reaction involves reacting the polyimide precursor film with a dehydrating reagent such as a mixture of acetic anhydride and a tertiary amine. It can also be done chemically.
  • a dehydrating reagent such as a mixture of acetic anhydride and a tertiary amine. It can also be done chemically.
  • the polyimide according to the first invention has a wholly alicyclic structure, it has poor long-term thermal stability as compared with a wholly aromatic polyimide containing no alicyclic structure, but has a glass transition temperature and a thermal decomposition temperature in nitrogen. Both are 400 ° C or higher, and the short-term heat resistance such as solder heat resistance is sufficiently high, and there is no problem in application to the above-mentioned industrial fields.
  • the polyimide of the first invention represented by the unit structural formula (2a) not only has a low dielectric constant at 1 MHz of 2.7 or less, but also has a low linear thermal expansion coefficient of 25 ppm or less. It also has high transparency and toughness.
  • the silylation ratio X is adjusted to 0.9 or more and 1.0 or less by adjusting the amount of the silylating agent added. It is preferable to carry out the polymerization within the range of. If X is less than 0.9, salt formation occurs during polymerization and the reaction solution is not uniform.
  • the thus obtained polyimide precursor solution is dropped into an acidic aqueous solution, alcohol, or the like, or, after casting, the polyimide precursor film is immersed in these, so that silyl groups are easily eliminated. At this time, it is possible to obtain a polyimide precursor having a silylation ratio X of 0 to 1.0 by adjusting the acid or alcohol concentration and the reaction time.
  • the monomer concentration for obtaining a uniform and high polymerization degree polyimide precursor solution is preferably from 10 to 13% by weight.
  • the polymerization is carried out at a monomer concentration of 10% by weight or less, the intrinsic viscosity of the obtained polyimide precursor is much lower than the intrinsic viscosity of 2.0 OdL / g, and the finally obtained polyimide film becomes extremely brittle and cracks in the film. Etc. may occur. If the content is 13% by weight or more, the polyimide precursor solution tends to gel and the storage stability may be reduced.
  • a polyimide precursor solution having a uniform and high polymerization degree can be obtained.However, after 24 to 48 hours at room temperature after the polymerization, some gel components are generated. It becomes uneven and hinders the production of high quality polyimide film. This is due to strong intermolecular hydrogen bonding between amide groups based on the rigid structure of this polyimide precursor. To avoid this, after the polymerization is completed, the storage stability can be significantly improved by subjecting this solution to heat treatment at 100 ° C. for 10 minutes or more and 20 minutes or less.
  • the polyimide precursor solution applied on the substrate is dried in a forced circulation hot air dryer or a vacuum dryer at a temperature in the range of 50 ° C to 100 ° C.
  • a forced circulation hot air dryer or a vacuum dryer at a temperature in the range of 50 ° C to 100 ° C.
  • the cast film (polyimide precursor film) becomes cloudy due to the formation of liquid crystal, and a large amount of solvent remains in the film. Bubbles are easily generated by evaporation, which is not preferable for obtaining a high quality polyimide film.
  • the drying is performed at a temperature exceeding 100 ° C., the cast film (polyimide precursor film) is fragile and tends to crack or peel off, which is not preferable for obtaining a high quality polyimide film.
  • a polyimide film is produced by directly heating a cast film on a substrate at a temperature of 200 ° C. or more and 400 ° C. or less, but a polyimide precursor represented by the unit structural formula (lb) according to the second invention
  • the cast film is thermally imidized according to a known method, the film is severely ruptured and blackened regardless of whether it is in a nitrogen atmosphere or in a vacuum, and it becomes difficult to produce a polyimide film. This is because hexamethylphosphoramide used as a solvent is very difficult to volatilize, so it is likely to stay in the membrane during imidization, causing thermal decomposition of hexamethylphosphoramide itself and the decomposition of polyimide precursor.
  • a tough polyimide film is obtained. can get. If the temperature is lower than 200 ° C, imidization may not be completed. If the temperature is higher than 350 ° C, the polyimide film may be colored.
  • the imidization reaction can also be performed chemically by reacting the film of the polyimide precursor with a dehydrating reagent such as a mixture of acetic anhydride and a tertiary amine.
  • the polyimide according to the second invention has an alicyclic structure, it has poor long-term thermal stability as compared with a wholly aromatic polyimide containing no alicyclic structure, but has a glass transition temperature, nitrogen and air. Both thermal decomposition temperatures are 400 ° C or higher, and short-term heat resistance such as solder heat resistance is sufficiently high, and there is no problem in application to the above-mentioned industrial fields.
  • the polyimide of the second invention represented by the above unit structural formula (2b) has not only a low dielectric constant of 3.0 MHz or less at a frequency of 1 MHz but also a linear thermal expansion coefficient of 20 ppm / K or less.
  • it is characterized by having high transparency and sufficient toughness for use as an insulating film in electronic substrates.
  • each embodiment of the first invention is distinguished by adding a suffix a
  • each embodiment of the second invention is distinguished by adding a suffix b.
  • Dielectric constant 1.
  • IX Dielectric constant estimated from the square of the average refractive index 2.65 (corresponding to 1MHz), Linear thermal expansion coefficient 25ppm / K (Average value between 100 ° C and 200 ° C) ), And glass transition temperature 423 ° C, cutoff wavelength 240nm, 5% weight loss temperature in nitrogen atmosphere (heating rate 10 ° C / min) 437, 398 ° C in air. All the characteristics could be satisfied.
  • the synthesized polyimide precursor film and 3 and 4 show the infrared absorption spectra of the polyimide film and the polyimide film, respectively.
  • the peak tables of the polyimide precursor film and the polyimide film are shown in Tables 1a and 2a below.
  • Table 2a Example la Peak table of polyimide film formed in a
  • a recrystallized trans-1,4-diaminocyclohexane 5.710 g (0.05 mol) was placed in a well-dried closed reaction vessel with a stirrer, and polymerized from ⁇ , ⁇ -dimethylacetoamide, which was sufficiently dehydrated. Dissolved in 150 mL of solvent. Without silylation of diamine, 9.806 g (0.05 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride powder was gradually added, followed by stirring at room temperature. However, a strong salt is formed at the beginning of the polymerization, and even if the stirring is continued at room temperature for several weeks to one month, the polymerization proceeds at all. Did not go.
  • Example 1a A solution of the polyimide precursor polymerized in Example 1a was applied to a glass substrate and dried at 60 ° C. for 2 hours to obtain a polyimide precursor film. This was thermally imidized on a substrate at 340 ° C. for 3 hours under reduced pressure without removing the residual solvent, whereby a polyimide film was obtained.
  • the obtained polyimide film was partially blackened, and the film was partially broken. This is because hexamethylphosphoramide used as a solvent is very difficult to volatilize, so it tends to stay in the film during imidization, causing thermal decomposition of hexamethylphosphoramide itself and some reaction with the polyimide precursor. Probably because it was caused.
  • the polyimide film obtained by thermally imidizing the substrate at 300 ° C for 1 hour under reduced pressure has a dielectric constant of 1.
  • the dielectric constant estimated from the square of the IX average refractive index is 2.6, which is a low dielectric constant.
  • the coefficient of linear thermal expansion was 70 ppm / K, indicating no low thermal expansion characteristics. This is because the spontaneous in-plane orientation during thermal imidization was inhibited by the bent structure of the alicyclic diamine used.
  • the polyimide film obtained by thermally imidizing the substrate at 340 ° C for 1 hour under reduced pressure was brittle, but the dielectric constant was 1.
  • the dielectric constant estimated from the square of the IX average refractive index was 2.6.
  • low dielectric constant was 60ppm / K, indicating no low thermal expansion characteristics. This is because spontaneous in-plane orientation during thermal imidization was inhibited because the alicyclic diamine used contained cis 1,4-diaminocyclohexane having a bent structure.
  • the analysis value in each case was determined by the following method.
  • the 0.5 wt% polyimide precursor solution was measured at 30 ° C. using an Ostwald viscometer.
  • the dynamic viscoelasticity was measured from the loss peak at a frequency of 0.1 mm and a heating rate of 5 ° CZ.
  • thermogravimetric change of the polyimide film was measured using a thermobalance, and the temperature at which the weight was reduced by 5% was determined.
  • the linear thermal expansion coefficient was calculated as an average value in the range of 100 to 200 ° C from the elongation of the test piece at a load of 0.5 gZ film thickness l_im and a heating rate of 5 ° CZ. I asked.
  • the visible / ultraviolet transmittance from 200 nm to 100 nm was measured with a spectrophotometer.
  • the wavelength (cutoff wavelength) 'at which the transmittance is 1% or less was used as the index of transparency. The shorter the cutoff wavelength, the better the transparency.
  • the dielectric constant ( ⁇ ) at 1 MHz was calculated by the following equation.
  • a polyimide precursor solution is applied to a glass substrate and vacuum-dried at 60 ° C for 2 to 4 hours.
  • the transparent and high-quality polyimide precursor film is immersed in 1-butanol for 2 hours to remove residual solvent. Removed completely.
  • This is thermally imidized as it is on a substrate under reduced pressure at 300 ° C for 1 hour, peeled off from the substrate, and then heat-treated at 305 ° C for 1 hour to give a 10 m-thick uncolored transparent semi-finished film.
  • An aromatic polyimide film was obtained.
  • the physical properties of the film are: dielectric constant 2.91, coefficient of linear thermal expansion llppm / K, glass transition temperature 442: 5% weight loss temperature in nitrogen atmosphere (heating rate 10 ° C / min) 435 ° C, 425 in air ° C and cutoff wavelength of 320, all of the desired characteristics could be satisfied. Since the birefringence ⁇ n was 0.1771, which was a very high value, Polyimide chains are highly oriented in the plane, which is the reason for the low thermal expansion characteristics.
  • the infrared absorption spectra of the obtained polyimide precursor thin film and polyimide thin film are shown in FIGS. 5 and 6, respectively.
  • the peak tables of the polyimide precursor thin film and polyimide thin film are shown in Tables 1b and 2b below. Table 1b: Peak table of the polyimide precursor of the present invention
  • Example 1b A solution of the polyimide precursor polymerized in Example 1b was applied to a glass substrate, and vacuum-dried at 60 ° C. for 2 hours to obtain a transparent and high-quality polyimide precursor film. This was thermally imidized at 300 ° C. for 1 hour under reduced pressure on the substrate without going through the step of removing the residual solvent.
  • the obtained polyimide film was partially blackened, and the film was partially broken. This is because hexamethylphosphoramide used as a solvent is very difficult to volatilize, so it tends to stay in the membrane during imidization, causing thermal decomposition of hexamethylphosphoramide itself and some reaction with the polyimide precursor. Probably because it was caused.
  • the diamine component contained cis-1,4-diaminocyclohexane with low reactivity.
  • the polyimide film had a linear thermal expansion coefficient of 60 ppm / K and did not exhibit low thermal expansion characteristics. This is because spontaneous in-plane orientation during thermal imidization was inhibited because the alicyclic diamine used contained cis 4-diaminocyclohexane having a bent structure.
  • the polyimide film obtained by thermal imidization at 350 ° (: 1 hour under reduced pressure on the substrate showed an extremely low coefficient of linear thermal expansion of 6. Oppm / K, but a dielectric constant of 3 .5, showing no low dielectric constant, and the polyimide film was markedly colored.
  • a polyimide film having a low dielectric constant, a low coefficient of linear thermal expansion, a high glass transition temperature, high transparency, sufficient toughness, and film forming processability can be produced.
  • the dispersibility in a polymerization solvent is A high polyimide precursor is obtained, and a solution of such a polyimide precursor in an organic solvent has excellent solution storage stability.
  • the production method of the present invention does not require an extra purification step, so that the production cost of polyimide is lower than in the past.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

A polyimide precursor, which has a recurring structure unit represented by the following unit structure formula (1a) or unit structure formula (1b); and a polyimide produced by the imidation of the polyimide precursor. The control of the percentage of the silylation in the process of the formation of the polyimide precursor makes the reaction system less prone to formation of a salt and results in the preparation of a uniform and viscous polyimide precursor solution in an organic solvent. The above polyimide can combine the two desirable characteristics of a low dielectric constant and a low linear thermal expansion coefficient.

Description

. 明細書 ポリイミド前駆体、 ポリイミド前駆体の製造方法、 ポリイミド前駆体有 機溶媒溶液の製造方法、 キャスト膜の製造方法、 及びポリイミド膜の製造 方法 技術分野  TECHNICAL FIELD The present invention relates to a polyimide precursor, a method for producing a polyimide precursor, a method for producing a polyimide precursor organic solvent solution, a method for producing a cast film, and a method for producing a polyimide film.
本発明は低誘電率、 低線熱膨張係数、 高ガラス転移温度、 高透明性、 十 分な強靭さ且つ製膜加工性を併せ持つ実用上有益なポリイミド膜と溶液貯 蔵安定性に優れたその前駆体の製造方法に関する。 背景技術  The present invention provides a practically useful polyimide film having a low dielectric constant, a low coefficient of linear thermal expansion, a high glass transition temperature, high transparency, sufficient toughness and film forming processability, and a solution film having excellent solution storage stability. The present invention relates to a method for producing a precursor. Background art
一般にポリイミドは、 無水ピロメリット酸などの芳香族テトラカルボン 酸二無水物とジァミノジフエ二ルェ一テル等の芳香族ジァミンとをジメチ ルァセトアミド等の非プロトン性極性溶媒中で等モル反応させ容易に得ら れる高重合度のポリイミド前駆体を、 膜などに成形し加熱硬化して得られ る。 このような全芳香族ポリイミドは優れた耐熱性、 耐薬品性、 耐放射線 性、 電気絶縁性、 機械的性質などの性質を併せ持つことから、 フレキシブ ルブリント配線回路用基板、 テープオートメーションボンディング用基材、, 半導体素子の保護膜、 集積回路の層間絶縁膜等、 様々な電子デバイスに現 在広く利用されている。  Generally, polyimide is easily obtained by equimolar reaction of an aromatic tetracarboxylic dianhydride such as pyromellitic anhydride with an aromatic diamine such as diaminodiphenyl ether in an aprotic polar solvent such as dimethylacetamide. The polyimide precursor having a high degree of polymerization is formed into a film or the like and cured by heating. Since such wholly aromatic polyimides have excellent properties such as excellent heat resistance, chemical resistance, radiation resistance, electrical insulation, and mechanical properties, they can be used as substrates for flexible printed wiring circuits, substrates for tape automation bonding, At present, it is widely used in various electronic devices such as protective films for semiconductor devices and interlayer insulating films for integrated circuits.
最近では特にマイクロプロセッサーの演算速度の高速化やクロック信号 の立ち上がり時間の短縮化が情報処理 ·通信分野で重要な課題になってき ているが、 そのためには層間絶縁膜として使用するポリイミド膜の誘電率 を下げることが必要となる。  In recent years, in particular, increasing the operation speed of microprocessors and shortening the rise time of clock signals have become important issues in the information processing and communication fields. It is necessary to lower the rate.
ポリイミドの誘電率を下げるためにはポリイミド構造中へのフッ素基の 導入が有効である (Macromo l ecu l es, 24, 5001 (1991) ) 、 High Per f orm. Po lym. , 15, 47 (2003)で公知のように 2, 2-ビス (3, 4-カルポキシフエ二 ル) へキサフルォロプロパン酸二無水物と 2, 2' -ビス (トリフルォロメチ ル) ベンジジンから得られるフッ素化ポリィミド膜は平均屈折率から見積 もられた誘電率が 2. 8と非常に低い値を示す。 In order to lower the dielectric constant of polyimide, it is effective to introduce a fluorine group into the polyimide structure (Macromolecules, 24, 5001 (1991)), High Perform.Polym., 15, 47 ( 2003), 2,2-bis (3,4-carboxyphene) ) The fluorinated polyimide film obtained from hexafluoropropanoic acid dianhydride and 2,2'-bis (trifluoromethyl) benzidine has a very low dielectric constant of 2.8, estimated from the average refractive index. Indicates a value.
また芳香族単位を脂環族単位に置き換えて T電子を減少することにより、 分子内共役および電荷移動錯体形成を妨害すること (Macromolecules, 32, 4933 (1999)) も低誘電率化に有効である。 Reactive & Functional Polym ers, 30, 61 (1996)で公知のように 1, 2, 3, 4—シクロブタンテトラカルポン 酸二無水物と 4, 4 '-メチレンビス(シクロへキシルァミン)から得られる非芳 香族ポリイミド膜は平均屈折率から見積もられた誘電率が 2. 6と極めて 低い値を示す。  Reducing T electrons by replacing aromatic units with alicyclic units, thereby hindering intramolecular conjugation and formation of charge-transfer complexes (Macromolecules, 32, 4933 (1999)) is also effective in lowering the dielectric constant. is there. As is known from Reactive & Functional Polymers, 30, 61 (1996), non-aromatic compounds obtained from 1,2,3,4-cyclobutanetetracarponic dianhydride and 4,4'-methylenebis (cyclohexylamine). The aromatic polyimide film has an extremely low dielectric constant of 2.6, which is estimated from the average refractive index.
一方、 ポリイミド膜を層間絶縁膜として銅などの金属基板と積層する場 合、 それぞれの線熱膨張係数のミスマッチにより残留応力が発生し、 力一 リング、 膜の剥離、 割れ等の重大な問題を引き起こすことが知られている。 この問題を回避するためにはポリイミド膜の線熱膨張係数を金属基板のそ れに近づけること即ちポリイミドの低熱膨張化が必要となる。 現在知られ ているポリイミドの殆どは 40〜90ppm/Kの線熱膨張係数を持ち、 銅基板の 18 ppra/Kに比べてはるかに高い。 最近では電子回路の高密度化に伴い、 配線基 板の多層化の必要性が高まってきているが、 多層基板における残留応力は デバイスの信頼性を著しく低下させる。  On the other hand, when a polyimide film is laminated on a metal substrate such as copper as an interlayer insulating film, mismatches in the coefficients of linear thermal expansion generate residual stress, causing serious problems such as coiling, film peeling and cracking. It is known to cause. In order to avoid this problem, it is necessary to make the coefficient of linear thermal expansion of the polyimide film close to that of the metal substrate, that is, to reduce the thermal expansion of the polyimide film. Most of the currently known polyimides have a linear thermal expansion coefficient of 40-90 ppm / K, much higher than the copper substrate 18 ppra / K. Recently, as the density of electronic circuits has increased, the necessity for multilayer wiring boards has been increasing. However, residual stress in multilayer boards has significantly reduced device reliability.
ポリイミドの低熱膨張係数発現には一般に、 その主鎖構造が直線的でし かも内部回転が束縛され剛直であることが必要条件であることが知られて いる (Po mer, 28, 2282 (1987)) 。 現在実用的な低熱膨張ポリイミド材 料としては 3, 3' ,4,4'-ビフエニルテトラカルボン酸二無水物とパラフエ二 レンジァミンから形成されるポリイミドが最もよく知られている。 このポ リイミド膜は膜厚や作製条件にもよるが、 3〜10 ppm/Kと非常に低い線熱膨 張係数を示すことが知られている (Polyimides: Fundamentals and Applic ations, Marcel Dekker, New York, 1996, p 207) ) 。  In general, it is known that a polyimide must have a low thermal expansion coefficient if its main chain structure is linear, but its internal rotation is constrained and it is rigid (Pomer, 28, 2282 (1987) ). At present, polyimide formed from 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and paraphenylenediamine is the best known low thermal expansion polyimide material. This polyimide film is known to exhibit a very low linear thermal expansion coefficient of 3 to 10 ppm / K, depending on the film thickness and fabrication conditions (Polyimides: Fundamentals and Applications, Marcel Dekker, New York). York, 1996, p 207)).
しかしながら、 低誘電率と低熱膨張係数を同時に有し、 かつハンダ耐熱 性を保持しているポリイミドを得ることは分子設計上容易ではない。 これ を達成すべくポリイミド以外の低誘電率高分子材料や無機材料も検討され ているが、 誘電率、 線熱膨張係数、 耐熱性および靭性の点で要求特性が十 分に満たされていないのが現状である。 However, it has low dielectric constant and low thermal expansion coefficient at the same time, and has solder heat resistance It is not easy to obtain a polyimide that retains its properties in terms of molecular design. In order to achieve this, low dielectric constant polymer materials and inorganic materials other than polyimide are also being studied, but the required characteristics in terms of dielectric constant, coefficient of linear thermal expansion, heat resistance and toughness are not sufficiently satisfied. Is the current situation.
また近年、 電子デバイスにおける配線基板の多層化の動向に伴って、 絶 縁層にワイヤリング用のスル一ホールをあける等の目的で、 層間絶縁膜自 身に感光性を持たせる試みも行なわれている。 この際ポリイミド絶縁膜自 身による光吸収をできるだけ抑制する必要があるため、 ポリイミド膜その ものが紫外 ·可視全域で高い透明性を有することが望ましい。  In recent years, with the trend of multi-layer wiring boards in electronic devices, attempts have been made to make the interlayer insulating film itself photosensitive, for example, to make through holes for wiring in the insulating layer. I have. In this case, since it is necessary to suppress light absorption by the polyimide insulating film itself, it is desirable that the polyimide film itself has high transparency in the entire range of ultraviolet and visible light.
一般にポリイミド構造中へのフッ素基の導入は分子間相互作用を弱め、 低熱膨張化の要因であるィミド化時の自発的分子配向を妨害する傾向をも たらす。 フッ素基の導入はコスト面でも不利である。 前述のように 2, 2 -ビ ス (3, 4-カルポキシフエニル) へキサフルォロプロパン酸二無水物と 2, 2 ' -ビス (トリフルォロメチル) ベンジジンから得られる代表的なフッ素化ポ リイミド膜は前述のように低誘電率を示すが、 線熱膨張係数は 6 4 ppm/Kと 非常に高く、 低熱膨張特性を示さない (Hi gh Per f orm. Po lym. , 15, 47 (2 003) ) 。 更に透明性の点でも不十分である。  In general, the introduction of a fluorine group into a polyimide structure weakens the intermolecular interaction and tends to hinder the spontaneous molecular orientation during imidization, which is a factor of low thermal expansion. Introduction of a fluorine group is disadvantageous in terms of cost. As described above, a typical example is obtained from 2,2-bis (3,4-carboxyphenyl) hexafluoropropanoic acid dianhydride and 2,2'-bis (trifluoromethyl) benzidine. Although the fluorinated polyimide film has a low dielectric constant as described above, it has a very high linear thermal expansion coefficient of 64 ppm / K and does not exhibit low thermal expansion characteristics (Hi Perform. Polym., 15 , 47 (2 003)). Further, transparency is insufficient.
またピロメリット酸二無水物と 2, 2 ' -ビス (トリフルォロメチル) ベン ジジンから得られるポリイミド膜は主鎖が直線的で剛直であることに起因 して極めて低い線熱膨張係数を示す (Macromo l ecul es, 26, 419 (1993) ) が、 フィルムは着色しており透明性の点で問題がある。 これは酸二無水物、 ジァミンともに芳香族モノマーを使用したため、 分子内共役や電荷移動相 互作用が生じたことによる (Po lym. J. , 29, 69 (1997) ) 。  In addition, the polyimide film obtained from pyromellitic dianhydride and 2,2'-bis (trifluoromethyl) benzidine has a very low linear thermal expansion coefficient due to the linear and rigid main chain. (Macromol ecules, 26, 419 (1993)) However, the film is colored and has a problem in transparency. This is because the use of aromatic monomers for both acid dianhydride and diamine caused intramolecular conjugation and charge transfer interaction (Polym. J., 29, 69 (1997)).
ポリイミド骨格への脂環構造単位の導入は 電子を減少させ、 低誘電率 化と共に膜の透明化に有効である。 しかしながら脂環構造単位の導入は一 般にポリイミド主鎖骨格の直線性および剛直性を低下させ、 線熱膨張係数 の増大を引き起こすという問題がある。  The introduction of alicyclic structural units into the polyimide skeleton reduces the number of electrons, is effective in lowering the dielectric constant and making the film transparent. However, the introduction of alicyclic structural units generally has a problem that the linearity and rigidity of the polyimide main chain skeleton are reduced, and the linear thermal expansion coefficient is increased.
例えば下記化学式 (3 ) に示す 4, 4' -メチレンビス(シクロへキシルアミ ン)の如き屈曲性の高い脂環式ジァミンを用いた場合、 各種酸二無水物と容 易に重合が進行し、 高重合度のポリイミド前駆体を生成するが、 閉環反応 により得られるポリイミド膜は低熱膨張特性を示さない。 For example, 4,4'-methylenebis (cyclohexylamino) represented by the following chemical formula (3) When an alicyclic diamine with high flexibility as in (1) is used, polymerization proceeds easily with various acid dianhydrides to produce a polyimide precursor with a high degree of polymerization, but the polyimide film obtained by the ring closure reaction Do not exhibit low thermal expansion properties.
Figure imgf000006_0001
Figure imgf000006_0001
例えば、 1,2 , 3,4ーシクロブタンテトラ力ルポン酸ニ無水物と 4, 4' -メチ レンビス(シクロへキシルァミン)から得られるポリイミド膜は前述のよう に高透明性で低誘電率を示すが、 線熱膨張係数は 7 O ppm/Kと非常に高く、 低熱膨張特性を示さない。 For example, a polyimide film obtained from 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 4,4'-methylenebis (cyclohexylamine) has high transparency and low dielectric constant as described above. However, it has a very high linear thermal expansion coefficient of 7 O ppm / K and does not exhibit low thermal expansion characteristics.
同様に、 ピロメリット酸ニ無水物と 4, 4' -メチレンビス(シクロへキシル ァミン)から得られるポリイミド膜も低熱膨張特性を示さない。 これはこれ らのポリイミドにおいて主鎖骨格の折れ曲がり構造のため熱イミド化の際 にポリマー鎖の面内配向が促進されないことに起因している。  Similarly, polyimide films obtained from pyromellitic dianhydride and 4,4'-methylenebis (cyclohexylamine) do not show low thermal expansion characteristics. This is due to the fact that in these polyimides, the in-plane orientation of the polymer chains is not promoted during thermal imidization due to the bent structure of the main chain skeleton.
これまで様々な脂肪族ジァミンを用いたポリイミドが報告されているが、 2 5 ppm/Kより低い線熱膨張係数を示す半脂肪族ポリイミド膜はこれまで報 告例が全くない。 これは脂環式ジァミンから生成するポリイミドでは主鎖 骨格の直線性および剛直性の低下を免れないことを意味している。  Although polyimides using various aliphatic diamines have been reported so far, there have been no reports on semi-aliphatic polyimide films exhibiting a linear thermal expansion coefficient lower than 25 ppm / K. This means that the polyimide produced from alicyclic diamine is inevitably reduced in the linearity and rigidity of the main chain skeleton.
直線性および剛直性を保持している唯一の脂環式ジァミンとしてトラン ス- 1 , 4-ジァミノシクロへキサンがあげられる。  The only alicyclic diamine that maintains linearity and rigidity is trans-1,4-diaminocyclohexane.
しかしながら目的とする要求特性即ち低誘電率と低熱膨張特性を同時に 満たすために直線性の高い酸二無水物とトランス- 1, 4-ジアミノシク口へキ サンからポリイミド前駆体を重合しょうとすると合成上重大な問題に直面 する。 即ち公知の芳香族ジァミンの場合とは大きく異なり脂肪族ジァミン ではその高い塩基性に起因して、 重合反応初期段階に生成した低分子量の アミド酸との間で塩形成が起こる。 However, in order to simultaneously satisfy the required characteristics, that is, low dielectric constant and low thermal expansion characteristics, if a polyimide precursor is to be polymerized from highly linear acid dianhydride and trans-1,4-diaminocyclohexane, the synthesis will be difficult. Face serious problems. That is, the aliphatic diamine differs greatly from the known aromatic diamine. In this case, due to its high basicity, salt formation occurs with the low molecular weight amic acid formed in the early stage of the polymerization reaction.
4, 4' -メチレンビス(シクロへキシルァミン)の如き屈曲性の脂環式ジアミ ンを使用するならば、 形成される塩は、 わずかながら重合溶媒に溶解し、 単に室温で長時間攪拌するだけで公知の方法で容易に重合反応を進行させ ることができる。 これに対し、 トランス- 1 , 4-ジアミノシクロへキサンを使 用した場合は形成される塩が非常に強固で重合溶媒に対する溶解度は殆ど ゼロであり、 しばしば重合反応が妨害される。  If a flexible alicyclic diamine such as 4,4'-methylenebis (cyclohexylamine) is used, the salt formed will dissolve slightly in the polymerization solvent and can be stirred for a long time at room temperature. The polymerization reaction can be easily advanced by a known method. In contrast, when trans-1,4-diaminocyclohexane is used, the formed salt is very strong and the solubility in the polymerization solvent is almost zero, and the polymerization reaction is often hindered.
上記要求特性を満たすためには剛直な構造を有する脂環式酸二無水物が 好ましいが、 これまで知られている脂環式酸二無水物自身数が限られてい る。  In order to satisfy the above-mentioned required characteristics, an alicyclic acid dianhydride having a rigid structure is preferable, but the number of alicyclic acid dianhydrides known so far is limited.
以上に述べた分子設計の観点から、 脂環式酸二無水物として 1, 2, 3, 4ーシ クロブタンテトラカルボン酸二無水物、 脂環式ジァミンとしてトランス 1 , 4 -ジァミノシクロへキサンとを組み合わせて合成され、 後述する単位構造式 ( 2 a ) で表される全脂環式ポリイミドが上記の要求特性を全て達成する ことが期待される。 またこの系はフッ素を含まない点でコスト面でも有利 である。  From the viewpoint of molecular design described above, 1,2,3,4-cyclobutanetetracarboxylic dianhydride as an alicyclic dianhydride and trans 1,4-diaminocyclohexane as an alicyclic diamine It is expected that the all alicyclic polyimide represented by the unit structural formula (2a) described below achieves all the above-mentioned required characteristics. This system is also advantageous in terms of cost because it does not contain fluorine.
しかしながらこの系においてはポリイミド前駆体を製造する段階で重大 な問題に直面する。 即ち前述のように強固な塩の形成により重合反応が完 全に妨げられる。 この問題点がこれまでこの系の報告例が全くなかった主 な理由である。  However, in this system, a serious problem is encountered at the stage of producing a polyimide precursor. That is, as described above, the formation of a strong salt completely prevents the polymerization reaction. This is the main reason that there have been no reports of this system so far.
また、 ピロメリット酸ニ無水物とトランス- 1,4-ジアミノシクロへキサン から得られるポリイミドは主鎖骨格が直線的で剛直な分子構造であるため、 分子設計上、 上記要求特性を全て満たすことが期待される。 安価なピロメ リット酸ニ無水物の使用はコスト面でも有利である。  In addition, the polyimide obtained from pyromellitic dianhydride and trans-1,4-diaminocyclohexane has a linear and rigid molecular structure in the main chain skeleton. There is expected. The use of inexpensive pyromellitic dianhydride is advantageous in terms of cost.
しかしながら、 上記のような重合反応性上の問題により、 ピロメリット 酸二無水物とトランス- 1,4-ジァミノシクロへキサンの組み合わせと、 1 , 2, 3 , 4 —シクロブタンテトラカルボン酸二無水物とトランス- 1 , 4-ジァ ミノシクロへキサンの組み合わせから高分子量のポリィミド前駆体を合成 することは極めて困難である。 この問題点がこれまでこの系の報告例が全 くなかった主な理由である。 However, due to the above-mentioned problem of polymerization reactivity, a combination of pyromellitic dianhydride and trans-1,4-diaminocyclohexane and 1,2,3,4-cyclobutanetetracarboxylic dianhydride Trans-1, 4-Zia It is extremely difficult to synthesize a high molecular weight polyimide precursor from a combination of minocyclohexane. This is the main reason why there have been no reports of this system so far.
特開 2 0 0 2— 1 6 1 1 3 6および High Perform. Polym. , 13, S93 (20 01)に開示されているように、 重合反応初期での塩形成後、 重合反応混合物 を適切な温度例えば 120°Cで短時間加熱することにより、 高重合度のポリィ ミド前駆体が得られる例が知られている。  After salt formation at the early stage of the polymerization reaction, as described in JP-A-2002-16-11136 and High Perform. Polym., 13, S93 (2001), the polymerization It is known that a polyimide precursor having a high degree of polymerization can be obtained by heating at a temperature of, for example, 120 ° C. for a short time.
しかしながらピロメリット酸ニ無水物とトランス 1,4-ジァミノシクロへ キサンとの重合反応系では形成される塩が極めて強固であり如何なる温度 条件でも塩は溶解しないためこの方法を適用することは困難である。  However, in the polymerization reaction system of pyromellitic dianhydride and trans 1,4-diaminocyclohexane, the salt formed is extremely strong and the salt does not dissolve at any temperature conditions, so it is difficult to apply this method. .
脂肪族ジァミンを用いる際の塩形成を回避する方法として界面重合法が H igh Perform. Polym., 10, 11 (1998)に開示されている。 この方法はまず テトラカルボン酸二無水物とアルコールを反応させてテトラカルボン酸の ジエステルとし、 次いでこれを塩素化して油層に溶解し、 これとアルカリ 水溶液に溶解した脂肪族ジァミンとを油/水界面で重合させてポリアミド酸 のアルキルエステルを得るものである。  As a method for avoiding salt formation when using an aliphatic diamine, an interfacial polymerization method is disclosed in High Perform. Polym., 10, 11 (1998). In this method, tetracarboxylic dianhydride and alcohol are first reacted to form a diester of tetracarboxylic acid, which is then chlorinated and dissolved in an oil layer, and this is mixed with an aliphatic diamine dissolved in an aqueous alkaline solution at an oil / water interface. To obtain an alkyl ester of a polyamic acid.
しかしこの重合方法では製造工程は煩雑でしかも高重合度のポリイミド 前駆体を得ることは困難であるばかりかバッチごとの分子量のばらつきも 大きくなる。 更に界面重合法では塩素が発生するので電子材料用途として は好ましくない。  However, in this polymerization method, the production process is complicated, and it is difficult to obtain a polyimide precursor having a high degree of polymerization, and also the variation in molecular weight among batches becomes large. Furthermore, chlorine is generated in the interfacial polymerization method, which is not preferable for use in electronic materials.
またピロメリット酸ニ無水物とトランス- 1,4 -ジァミノシクロへキサンか ら得られる剛直なポリイミド系では製膜工程上でも深刻な問題が発生する 恐れがある。 即ちポリイミド前駆体膜をキャスト後、 熱イミド化工程中に 膜の割れが発生する。 これは剛直な系ではポリマー鎖同士の絡み合いの程 度が低いため元々膜の靭性が乏しいことに加えて、 ポリアミド酸の熱イミ ド化中に重合反応の逆反応が特に 200°C付近を通過する際に若干起こり、 分 子量低下を伴って更に膜靭性が低下し、 イミド化反応時の膜収縮に耐え切 れなくなって起こるものである。 ピロメリット酸ニ無水物と 1, 4-ジァミノシクロへキサンとを反応させて ポリイミド前駆体を製造する方法が知られている (J ourna l o f Po lymer Sc i ence : par t A, Vo l . 31 , 2345- 2351,(1 993) )。 しかしながら、 一般に 1,4 - ジアミノシクロへキサンはシス型、 トランス型が混在しており、 シス型 1,4 -ジァミノシクロへキサンはその折れ曲がり構造によりポリィミド膜の熱膨 張係数を増大させてしまう。 In addition, a rigid polyimide based on pyromellitic dianhydride and trans-1,4-diaminocyclohexane may cause serious problems in the film forming process. That is, after the polyimide precursor film is cast, cracking of the film occurs during the thermal imidization process. This is because, in a rigid system, the degree of entanglement between polymer chains is low, so that the toughness of the film is originally low.In addition, the reverse reaction of the polymerization reaction passes through around 200 ° C during the imidization of polyamic acid. When the molecular weight decreases, the film toughness further decreases, and the film cannot withstand the film shrinkage during the imidization reaction. A method for producing a polyimide precursor by reacting pyromellitic dianhydride with 1,4-diaminocyclohexane is known (Jourina lof Polymer Science: part A, Vol. 31, 235-2351, (1993)). However, in general, cis-form and trans-form are mixed in 1,4-diaminocyclohexane, and cis-form 1,4-diaminocyclohexane increases the thermal expansion coefficient of the polyimide film due to its bent structure.
また、 他の方法としては、 シリル化ジァミンをポリイミド合成に用いる 方法が知られている。 しかしながら、 この方法ではジァミンをハロゲン含 有シリル化剤でシリル化した後、 シリル化ジァミンを精製する必要があつ たり、 また、 製造されるポリイミド前駆体も低誘電率と、 低熱膨張特性と いう 2つの要求特性を同時に満たすものではなかった。  As another method, a method of using silylated diamine for polyimide synthesis is known. However, in this method, it is necessary to silylate diamine with a halogen-containing silylating agent, and then to purify the silylated diamine. Also, the produced polyimide precursor has low dielectric constant and low thermal expansion characteristics. The two required characteristics were not satisfied at the same time.
前述のようなポリイミド膜の特性制御やポリィミド前駆体製造上の問題 点の他にも成膜工程上の重大な問題もいくつか残されている。  In addition to the above-mentioned problems in controlling the characteristics of the polyimide film and manufacturing the polyimide precursor, there are still some serious problems in the film formation process.
その一つにはポリイミド前駆体溶液の貯蔵安定性の問題である。 公知の 方法により酸二無水物とジァミンから合成された一般のポリィミド前駆体 はポリアミド酸であるが、 その溶液を貯蔵中に重合反応の逆反応により、 重量平均分子量の低下が起こることが知られている。 これによる溶液粘度 の経時変化はスピンコート等による成膜工程時の膜厚制御の点で重大な問 題である。  One of the problems is the storage stability of the polyimide precursor solution. A common polyimide precursor synthesized from an acid dianhydride and diamine by a known method is polyamic acid, but it is known that the weight average molecular weight decreases due to a reverse reaction of a polymerization reaction during storage of the solution. ing. The change with time in the solution viscosity due to this is a serious problem in controlling the film thickness during the film forming process by spin coating or the like.
ポリアミド酸溶液の粘度を安定化するには低温での貯蔵あるいは溶液を 加熱して故意的に分子量低下を起こさせ、 以後の溶液粘度変化を抑制する 方法がとられている。 特に後者の粘度変化回避策ではポリイミド膜が脆弱 になる恐れがある。  In order to stabilize the viscosity of the polyamic acid solution, a method of storing the solution at a low temperature or heating the solution to intentionally lower the molecular weight to suppress the subsequent change in the solution viscosity has been adopted. In particular, the latter measure for avoiding the change in viscosity may make the polyimide film brittle.
また低熱膨張化を目論んで直線的で剛直なポリイミド系を選択すると、 その前駆体においても主鎖骨格が比較的剛直であり、 前駆体溶液を貯蔵中 にゲル化や液晶形成等不均一化がしばしば起こり、 良質なポリイミド膜の 製造が困難になる場合がある。 そのような場合リチウムクロライドの如き 塩類を添加すると貯蔵安定性が高くなるが、 電子材料用途として好ましく なく、 塩類の使用は避けるべきである。 If a linear and rigid polyimide system is selected for low thermal expansion, the main chain skeleton of the precursor is also relatively rigid, and non-uniformity such as gelation and liquid crystal formation during storage of the precursor solution will occur. It often occurs, and it may be difficult to produce good quality polyimide films. In such a case, the addition of salts such as lithium chloride increases the storage stability, but is preferable for electronic materials. And the use of salts should be avoided.
またそのような剛直な系では殆どの場合製膜工程上で更に深刻な問題が 発生する。 即ちポリイミド前駆体膜をキャスト後、 熱イミド化工程中に膜 の割れが発生する。 これは剛直な系ではポリマー鎖同士の絡み合いの程度 が低いため元々膜の靭性が乏しいことに加えて、 ポリアミド酸の熱イミド 化中に重合反応の逆反応が特に 200°C付近を通過する際に若干起こり、 分子 量低下を伴って更に膜靭性が低下し、 イミド化反応時の膜収縮に耐え切れ なくなって起こるものである。  In addition, in such a rigid system, a more serious problem occurs in most cases in the film forming process. That is, after the polyimide precursor film is cast, cracking of the film occurs during the thermal imidization process. This is because in a rigid system, the degree of entanglement between polymer chains is low, so that the film originally has poor toughness.In addition, when the reverse reaction of the polymerization reaction passes around 200 ° C during the thermal imidization of polyamic acid, The film toughness further decreases with a decrease in molecular weight, and the film cannot withstand film shrinkage during the imidization reaction.
また、 1 , 2, 3, 4ーシクロブタンカルボン酸無水物と、 1, 4ーシ クロへキサンジァミンとを反応させてポリイミド前駆体を製造する方法が 知られている。 しかしながら、 一般に 1 , 4ーシクロへキサンジァミンは シス型、 トランス型が混在しており、 シス型 1 , 4ーシクロへキサンジァ ミンはその折れ曲がり構造によりポリイミド膜の熱膨張係数を増大させて しまう。  Also, a method for producing a polyimide precursor by reacting 1,2,3,4-cyclobutanecarboxylic anhydride with 1,4-cyclohexanediamine is known. However, in general, cis-form and trans-form are mixed in 1,4-cyclohexanediamine, and the cis-form 1,4-cyclohexanediamine increases the thermal expansion coefficient of the polyimide film due to its bent structure.
本発明の関連技術文献のうち、 非特許文献を下記に示す。  Non-patent documents among the related technical documents of the present invention are shown below.
「マクロモルキュ一ルス (Macromolecules) J 、 (米国) 、 アメリカン ケミカルソサエティ一 (Aemrican Chemical society) , 1 9 9 1年、 24 号、 ρ 5001  "Macromolecules J, (USA), American Chemical Society, 1991, 24, ρ 5001
「ハイパフォーマンスポリマーズ (High Performance Polymers) 」 、 (英国) 、 インスチュートォブフィジックス (Institute of Physics;)、 2 0 0 3年、 15巻、 p47  "High Performance Polymers", (UK), Institute of Physics; 2003, Volume 15, p47
「マクロモルキュールス (Macromolecules) 」 、 (米国) 、 アメリカン ケミカルソサエティ一 (Aemrican Chemical society) 、 1 9 9 9年、 3 2 号、 p 4933  "Macromolecules", (USA), American Chemical Society, 1989, No. 32, p. 4933
「リアクティブアンドファンクショナルポリマーズ (Reactive & Functi onal Polymers) 」 、 (オランダ) 、 エルゼビア 'サイエンス (Elsevier S cience) 、 1 9 9 6年、 30巻、 p 6 1  "Reactive & Functional Polymers", (Netherlands), Elsevier 'Science, 1996, Volume 30, p. 61
「ポリマ一 (Polymer) 」 、 (オランダ) 、 エルゼビア 'サイエンス (E1 sevier Science) 、 1 98 7年、 28巻、 p 22 8 2 "Polymer", (Netherlands), Elsevier's Science (E1 sevier Science), 198 7, volume 28, p 22 8 2
「マクロモルキュ一ルス (Macromolecules) 」 、 (米国) 、 アメリカン ケミカルソサエティ一 (Aemrican Chemical society), 1 9 96年、 2 9 号、 p 7897  "Macromolecules", (USA), American Chemical Society, 1996, 29, p 7897
「ハイパフォーマンスポリマーズ (High Performance Polymers) 」 、 (英国) 、 インスチュートォブフィジックス (Institute of Physics), 2 00 1年、 1 3卷、 S93  "High Performance Polymers", (UK), Institute of Physics, 2001, Vol. 13, Volume S93
「ハイパフォーマンスポリマ一ズ (High Performance Polymers) 」 、 (英国) 、 インスチュートォブフィジックス (Institute of Physics), 1 99 8年、 1 0巻、 p 1 1  "High Performance Polymers", (UK), Institute of Physics, 1999, 1998, vol. 10, p. 11
ポリイミド : ファンダメンタルスアンドアプリケーションズ (Po imide s: Fundamentals and Applications) 、 (米国) 、 マーセリレ .デッカー (Marcel Dekker Inc)、 1 9 96年、 ρ 2 0 7  Polyimides: Fundamentals and Applications, (USA), Marcel Dekker Inc., 1996, ρ207
「マクロモルキュールス (Macromolecules) 」 、 (米国) 、 アメリカン ケミカルソサエティ一 (Aemrican Chemical society) ^ 1 9 93年、 26 号、 P 419  "Macromolecules", (USA), American Chemical Society ^ 1993, 26, p. 419
「ポリマ一ジャーナル (Polymer 】ournal)」 、 社団法人高分子学会、 1 99 7年、 2 9卷、 p 6 9  "Polymer Journal", The Society of Polymer Science, Japan, 1999, Vol. 29, p. 69
尚、 本発明の関連技術文献のうち、 特許文献は特開 20 02 - 1 6 1 1 36号公報と、 特開 2 002— 32 37 6 6号公報と、 特開 20 0 1 _ 7 Among the related technical documents of the present invention, the patent documents are Japanese Patent Application Laid-Open No. 2002-0216136, Japanese Patent Application Laid-Open No. 2002-3237666, and Japanese Patent Application
2 7 68号公報と、 特開昭 64— 630 70号公報と、 特開平 2 - 2 94Japanese Patent No. 27768, Japanese Patent Application Laid-Open No. 64-63070 and Japanese Patent Application Laid-Open No. 2-294
3 3 0号公報である。 No. 330 publication.
本発明は低誘電率、 低線熱膨張係数、 高ガラス転移温度、 高透明性、 十 分な強靭さ且つ製膜加工性を併せ持つ実用上有益なポリイミド膜と、 溶液 貯蔵安定性に優れたその前駆体の製造方法を提供するものである。 発明の開示  The present invention provides a practically useful polyimide film having low dielectric constant, low coefficient of linear thermal expansion, high glass transition temperature, high transparency, sufficient toughness and film forming processability, and a solution storage stability that is excellent. It is intended to provide a method for producing a precursor. Disclosure of the invention
以上の問題を鑑み、 本発明者等は、 選択されたシリル化剤を用いて適切 なシリル化率範囲でシリル化したトランス 1 , 4 -ジアミノシクロへキサンと、 等モルの 1 , 2 , 3 , 4-シクロブタンテトラカルボン酸二無水物、 又は、 等モル のピロメリット酸ニ無水物を限定された有機溶媒中で重合反応行わせるこ とにより、 貯蔵安定性に優れ、 高重合度の全脂環式ポリイミド前駆体溶液 を得ることに成功し、 第一、 第二の発明を成し得た。 In view of the above problems, the present inventors have determined that using the selected silylating agent Trans, 1,4-diaminocyclohexane silylated in a wide range of silylation rates, and equimolar amounts of 1,2,3,4-cyclobutanetetracarboxylic dianhydride or equimolar pyromellitic dianhydride By conducting the polymerization reaction in a limited organic solvent, we succeeded in obtaining an all-alicyclic polyimide precursor solution having excellent storage stability and a high degree of polymerization, and completed the first and second inventions. I got it.
さらにそのキャスト膜を限定された条件下でィミド化反応させて製造し た全脂環式ポリイミド膜は上記の要求特性を全て達成できることを見出し、 , 第一、 第二の発明を完成するに至った。  Furthermore, they found that the all-alicyclic polyimide film produced by subjecting the cast film to an imidization reaction under limited conditions can achieve all of the above-mentioned required characteristics, and completed the first and second inventions. Was.
図 1はジァミンモノマ一である 1, 4 -ジァミノシクロへキサンの立体構造 の例を示す図であり、 後述する単位構造式 (2 a ) 、 (2 b ) に示すポリ ィミド膜が低熱膨張特性を発現するためには、 1 , 4-ジアミノシクロへキサ ンの 2つのアミノ基が共にェクアトリアル配置、 即ち、 図 1に示すように 1 , 4 -ジァミノシクロへキサンの立体構造がトランス型である必要がある。  Figure 1 is a diagram showing an example of the steric structure of 1,4-diaminocyclohexane, which is a diamine monomer. The polyimide film represented by the unit structural formulas (2a) and (2b) described below exhibits low thermal expansion characteristics. In order to achieve this, both amino groups of 1,4-diaminocyclohexane must be in an equatorial configuration, that is, the steric structure of 1,4-diaminocyclohexane is trans as shown in Figure 1. .
モノマ一の段階でのトランス配置はポリイミド前駆体およびポリイミド 骨格中でも保持されている。 重合時にシス型 1 , 4 -ジアミノシクロへキサン を使用することはその折曲がり構造に起因してポリイミド膜の線熱膨張係 数の急激な増大を引き起こす恐れがある。  The trans configuration at the monomer stage is retained in the polyimide precursor and polyimide skeleton. The use of cis 1,4-diaminocyclohexane during the polymerization may cause a sharp increase in the linear thermal expansion coefficient of the polyimide film due to its bent structure.
特公昭 5 1 - 481 98号公報に開示されているように、 パラフエ二レンジアミ ンを水添して得られる 1, 4-ジァミノシクロへキサンは通常、 シス/トランス 混合物として得られるが、 これをそのまま重合に供した場合は公知の反応 条件でも問題なく重合が進行する。  As disclosed in JP-B-51-48198, 1,4-diaminocyclohexane obtained by hydrogenation of parafudinylenediamine is usually obtained as a cis / trans mixture, but this is used as it is. When subjected to polymerization, the polymerization proceeds without any problem under known reaction conditions.
また、 ジァミン成分にトランス 1 , 4-ジァミノシクロへキサン単独ではな く他の屈曲性脂肪族ジァミンと共重合するとやはり公知の反応条件でも問 題なく重合が進行する。 しかしながらトランス 1, 4 -ジアミノシクロへキサ ン単独でなく、 上記のような混合物を使用することは、 得られるポリイミ ド膜の線熱膨張係数の急激な増加およびガラス温度の低下を招く恐れがあ り避けるべきである。  In addition, when the diamine component is copolymerized not only with trans 1,4-diaminocyclohexane alone but also with another flexible aliphatic diamine, the polymerization proceeds without any problem under known reaction conditions. However, the use of the above mixture instead of trans 1,4-diaminocyclohexane alone may cause a rapid increase in the linear thermal expansion coefficient of the obtained polyimide film and a decrease in the glass temperature. Should be avoided.
図 2は酸二無水物モノマーである 1, 2 , 3 , 4 -シクロブタンテトラカルボン 酸二無水物の立体配置の例を示しており、 1, 2, 3, 4-シクロブタンテ卜ラ力 ルボン酸二無水物は図 2に示す anti型立体配置のものが特に望ましい。 syn 型 1, 2, 3, 4-シクロブタンテトラカルボン酸二無水物の使用はその折れ曲が り構造に起因して線熱膨張係数の増大を招く恐れがある。 Figure 2 shows the 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride monomer An example of the configuration of the acid dianhydride is shown. 1,2,3,4-Cyclobutanetetracarboxylic dianhydride is particularly preferable to have the anti configuration shown in FIG. The use of syn-type 1,2,3,4-cyclobutanetetracarboxylic dianhydride may lead to an increase in linear thermal expansion coefficient due to its bent structure.
係る知見に基づいてなされた第一の発明は、 トランス 1,4-ジアミノシク 口へキサンと、 シリル化剤とを反応させて中間生成物を生成した後、 前記 中間生成物と 1, 2, 3, 4—シクロブタンテトラカルボン酸二無水物とを反応さ せ、 繰り返し構造単位が下記単位構造式 ( l a) で表される全脂環式ポリ イミド前駆体を製造するポリイミド前駆体の製造方法である。  A first invention made based on such findings is to produce an intermediate product by reacting trans 1,4-diaminocyclohexane with a silylating agent, and then forming the intermediate product with 1, 2, 3 A method for producing a polyimide precursor, which comprises reacting 1,4-cyclobutanetetracarboxylic dianhydride to produce an all-alicyclic polyimide precursor having a repeating structural unit represented by the following structural formula (la): .
-単位構造式 (1a)-Structural formula (1a)
Figure imgf000013_0001
Figure imgf000013_0001
(上記単位構造式 (l a) 中、 Rは H又はシリル基であって、 前記ポリィ ミド前駆体は、 1つの単位構造式中の置換基 Rのうちいずれか一方又は両 方がシリル基である単位構造を少なくとも 1つ有する) (In the above-mentioned unit structural formula (la), R is H or a silyl group, and in the polyimide precursor, one or both of the substituents R in one unit structural formula are a silyl group. Has at least one unit structure)
第一の発明は、 前記シリル化剤として、 化学構造中に八ロゲン原子を有 しない非ハロゲン化シリル化剤を用いるポリイミド前駆体の製造方法であ る。  The first invention is a method for producing a polyimide precursor, wherein a non-halogenated silylating agent having no octogen atom in its chemical structure is used as the silylating agent.
第一の発明は、 前記非ハロゲン化シリル化剤として Ν,Ο-ビス (トリメチ ルシリル) トリフルォロアセトアミドと Ν,Ο-ビス (トリメチルシリル) ァ セトアミドのいずれか一方又は両方を用いるポリイミド前駆体の製造方法 である。  The first invention is directed to a polyimide precursor using either or both of Ν, Ο-bis (trimethylsilyl) trifluoroacetamide and Ν, Ο-bis (trimethylsilyl) acetoamide as the non-halogenated silylating agent. Manufacturing method.
第一の発明は、 前記単位構造式 ( l a) で中の Rは H又は Si(CH3)3基で あり、 前記トランス 1,4 -ジアミノシクロへキサンと、 シリル化剤とを所定 割合で反応させるポリイミド前駆体の製造方法であって、 化学構造全体に 含有される Rのうち、 Si(CH3)3基からなる Rの数を A、 Hからなる Rの数 を Bとすると、 下記数式 ( 1) で表されるシリル化率が 0. 4以上 0. 9 以下になる割り合いで、 前記シリル化剤と前記トランス 1,4 -ジァミノシク 口へキサンとを反応させるポリイミド前駆体の製造方法である。 In the first invention, R in the unit structural formula (la) is H or Si (CH 3 ) 3 , and the trans 1,4-diaminocyclohexane and the silylating agent are present at a predetermined ratio. A method for producing a polyimide precursor to be reacted, wherein, among Rs contained in the entire chemical structure, the number of Rs composed of three Si (CH 3 ) groups is the number of Rs composed of A and H Is B, the silylation agent is reacted with the trans 1,4-diaminocyclohexane at a rate such that the silylation rate represented by the following formula (1) becomes 0.4 or more and 0.9 or less. This is a method for producing a polyimide precursor to be produced.
シリル化率 =AZ (A+B) ……数式 ( 1)  Silylation rate = AZ (A + B) …… Formula (1)
第一の発明は、 トランス 1,4-ジァミノシクロへキサンと、 シリル化剤と を重合溶媒中で反応させて中間生成物を生成した後、 前記重合溶媒中に 1,2, 3, 4ーシクロブタンテトラカルボン酸二無水物を添加し、 前記中間生成物と、 前記 1,2, 3, 4—シクロブタンテトラカルボン酸二無水物とを反応させ、 ポリ イミド前駆体が前記重合溶媒中に分散又は溶解されたポリイミド前駆体有 機溶媒溶液を製造するポリイミド前駆体有機溶媒溶液の製造方法である。 第一の発明は、 ポリイミド前駆体有機溶媒溶液を塗布対象物に塗布し、 キャスト膜を形成した後、 前記キャスト膜中のポリイミド前駆体をイミド 化するポリイミド膜の製造方法であって、 前記重合溶媒に、 前記トランス 1, 4 -ジアミノシクロへキサンと、 前記シリル化剤と、 前記 1,2,3, 4—シクロブ タンテトラカルボン酸二無水物と、 前記中間生成物に対して親和性が高い 高沸点溶媒を含有させ、 前記重合溶媒と親和性が高く、 かつ前記重合溶媒 よりも沸点が低い洗浄液を前記キャスト膜に接触させ、 前記キャスト膜を 洗浄した後、 前記イミド化を行うポリイミド膜の製造方法である。  In the first invention, trans 1,4-diaminocyclohexane and a silylating agent are reacted in a polymerization solvent to produce an intermediate product, and then 1,2,3,4-cyclobutane is added to the polymerization solvent. A tetracarboxylic dianhydride is added, the intermediate product is reacted with the 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and a polyimide precursor is dispersed or dissolved in the polymerization solvent. This is a method for producing a polyimide precursor organic solvent solution for producing the obtained polyimide precursor organic solvent solution. The first invention is a method for producing a polyimide film, comprising applying a polyimide precursor organic solvent solution to an object to be coated, forming a cast film, and then imidizing the polyimide precursor in the cast film. The solvent has an affinity for the trans 1,4-diaminocyclohexane, the silylating agent, the 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and the intermediate product. A polyimide film that contains a high-boiling-point solvent, has a high affinity for the polymerization solvent, and has a lower boiling point than the polymerization solvent, is brought into contact with the cast film, and after the cast film is washed, the imidization is performed. Is a manufacturing method.
第一の発明は、 前記高沸点溶媒としてへキサメチルホスホルアミドを用 い、 前記洗浄液としてアルコールを用いるポリイミド膜の製造方法である。 第一の発明は、 繰り返し構造単位が上記単位構造式 (1 a) で表され、 上記単位構造式 (l a) 中の置換基 Rは Hまたは Si(CH3)3基である全脂環 式ポリイミド前駆体であって、 1つの単位構造式中の置換基 Rのうち、 い ずれか一方又は両方が Si (CH3) 3基である単位構造を少なくとも一つ有し、 かつ固有粘度が 1. 0 d 1 以上であるポリイミド前駆体である。 The first invention is a method for producing a polyimide film using hexamethylphosphoramide as the high boiling point solvent and using alcohol as the cleaning solution. The first invention is a completely alicyclic compound wherein the repeating structural unit is represented by the unit structural formula (1a), and the substituent R in the unit structural formula (la) is H or Si (CH 3 ) 3 group. A polyimide precursor, having at least one unit structure in which one or both of the substituents R in one unit structural formula are Si (CH 3 ) 3 groups, and having an intrinsic viscosity of 1 0 d 1 or more.
第一の発明は、 上記単位構造式 (l a) 中の各 1,4-シクロへキサン残基 の立体構造がトランス配置であることを特徴とするポリィミド前駆体であ る。 第一の発明は、 全化学構造中、 Si (CH3) 3基からなる置換基 Rの合計数を A、 水素からなる置換基 Rの合計数を Bとすると、 下記数式 (1) で表さ れるポリイミド前駆体のシリル化率が 0. 4以上 0. 9以下の範囲である ポリイミド前駆体である。 The first invention is a polyimide precursor, wherein the stereostructure of each 1,4-cyclohexane residue in the unit structural formula (la) is a trans configuration. The first invention, the total chemical structure, the total number of Si (CH 3) consists of 3 groups substituents R A, When B the total number of substituents R consisting of hydrogen, table by the following mathematical formula (1) A polyimide precursor having a silylation rate of 0.4 or more and 0.9 or less.
シリル化率 =AZ (A+B) ……数式 (1)  Silylation rate = AZ (A + B) …… Formula (1)
第一の発明は、 繰り返し構造単位が下記単位構造式 (2 a) で表され、 下記単位構造式 (2 a) 中の各 1,4-シクロへキサン残基の立体構造がトラ ンス配置であることを特徴とするポリイミド。  In the first invention, the repeating structural unit is represented by the following structural formula (2a), and the steric structure of each 1,4-cyclohexane residue in the following structural formula (2a) is in a trans configuration. A polyimide characterized by the following.
-単位構造式 (2a)-Unit structural formula (2a)
Figure imgf000015_0001
Figure imgf000015_0001
第一の発明は、 上記ポリイミドを主成分とするポリイミ ド膜である。 第二の発明は、 トランス 1,4 -ジアミノシクロへキサンと、 シリル化剤と を反応させて中間生成物を生成した後、 前記中間生成物とピロメリット酸 二無水物とを反応させ、 繰り返し構造単位が下記単位構造式 ( l b) で表 されるポリイミド前駆体を製造するポリイミド前駆体の製造方法である。  The first invention is a polyimide film containing the above polyimide as a main component. The second invention is to produce an intermediate product by reacting trans 1,4-diaminocyclohexane with a silylating agent, and then reacting the intermediate product with pyromellitic dianhydride, and repeating the process. This is a method for producing a polyimide precursor in which a structural unit is represented by the following unit structural formula (lb).
-単位構造式 (lb)-Unit structural formula (lb)
Figure imgf000015_0002
Figure imgf000015_0002
(上記単位構造式 (l b) 中、 Rは H又はシリル基であって、 前記ポリィ ミド前駆体は、 1つの単位構造式中の置換基 Rのうちいずれか一方又は両 方がシリル基である単位構造を少なくとも 1つ有する)  (In the unit structural formula (lb), R is H or a silyl group, and in the polyimide precursor, one or both of the substituents R in one unit structural formula are a silyl group. Has at least one unit structure)
第二の発明は、 前記シリル化剤として、 化学構造中にハロゲン原子を含 有しない非 Λロゲン化シリル化剤を用いるポリイミド前駆体の製造方法で ある。 第二の発明は、 前記非ハロゲン化シリル化剤として Ν,Ο-ビス (トリメチ ルシリル) トリフルォロアセトアミドと Ν,Ο -ビス (トリメチルシリル) ァ セトアミドのいずれか一方又は両方を用いるポリイミド前駆体の製造方法 である。 The second invention is a method for producing a polyimide precursor, wherein a non-perogenating silylating agent having no halogen atom in its chemical structure is used as the silylating agent. The second invention is directed to a polyimide precursor using one or both of Ν, Ο-bis (trimethylsilyl) trifluoroacetamide and Ν, Ο-bis (trimethylsilyl) acetoamide as the non-halogenated silylating agent. Manufacturing method.
第二の発明は、 前記トランス 1,4 -ジアミノシクロへキサンと、 前記シリ ル化剤とを所定割合で反応させるポリイミド前駆体の製造方法であって、 化学構造全体に含有される Rのうち、 シリル基からなる Rの数を Α、 Ηか らなる Rの数を Βとすると、 下記数式 (1) で表される前記ポリイミド前 駆体のシリル化率が 0. 9以上 1. 0以下になるように、 前記トランス 1,4 -ジアミノシクロへキサンと、 前記シリル化剤とを反応させるポリイミド前 駆体の製造方法である。  A second invention is a method for producing a polyimide precursor in which the trans 1,4-diaminocyclohexane and the silylating agent are reacted at a predetermined ratio, wherein R is contained in the entire chemical structure. When the number of R consisting of a silyl group is Α, and the number of R consisting of Β is Β, the silylation rate of the polyimide precursor represented by the following formula (1) is 0.9 or more and 1.0 or less. Wherein the trans 1,4-diaminocyclohexane and the silylating agent are reacted to produce a polyimide precursor.
シリル化率 =ΑΖ (Α+Β) ……数式 (1)  Silylation rate = ΑΖ (Α + Β) ...... Formula (1)
第二の発明は、 前記トランス 1,4 -ジアミノシクロへキサンと、 前記シリ ル化剤とを所定割合で反応させるポリイミド前駆体の製造方法であって、 反応前の前記トランス 1, 4-ジァミノシクロへキサンの全部のァミノ基の数 を c、 前記中間生成物全部のシリル基の数を dとすると、 下記数式 (2) で表される前記中間生成物のシリル化率が 0. 9以上 1. 0以下の範囲に なるような割合で前記トランス 1 , 4-ジアミノシクロへキサンと、 前記シリ ル化剤とを反応させるポリイミド前駆体の製造方法である。  The second invention is a method for producing a polyimide precursor, comprising reacting the trans 1,4-diaminocyclohexane with the silylating agent at a predetermined ratio, wherein the trans 1,4-diaminocyclohexane before the reaction is prepared. Assuming that the number of all amino groups of hexane is c and the number of all silyl groups of the intermediate product is d, the silylation rate of the intermediate product represented by the following formula (2) is 0.9 or more 1 A method for producing a polyimide precursor, comprising reacting the trans 1,4-diaminocyclohexane with the silylating agent at a ratio that falls within a range of 0.0 or less.
シリル化率 =d/c……数式 (2)  Silylation rate = d / c… formula (2)
第二の発明は、 トランス 1,4 -ジアミノシクロへキサンと、 シリル化剤と を重合溶媒中で反応させて中間生成物を生成した後、 前記重合溶媒中にピ ロメリット酸二無水物を添加し、 前記中間生成物と、 前記ピロメリット酸 二無水物とを反応させ、 ポリイミド前駆体が前記重合溶媒中に分散又は溶 解されたポリイミド前駆体の溶液を製造するポリイミド前駆体有機溶媒溶 液の製造方法である。  In the second invention, trans 1,4-diaminocyclohexane is reacted with a silylating agent in a polymerization solvent to produce an intermediate product, and then pyromellitic dianhydride is added to the polymerization solvent. And reacting the intermediate product with the pyromellitic dianhydride to produce a solution of a polyimide precursor in which the polyimide precursor is dispersed or dissolved in the polymerization solvent. Is a manufacturing method.
第二の発明は、 上記ポリイミド前駆体有機溶媒溶液を塗布対象物に塗布 し、 キャスト膜を形成した後、 前記キャスト膜中のポリイミド前駆体をィ ミド化するポリイミド膜の製造方法であって、 前記重合溶媒に、 前記トラ ンス 1,4-ジアミノシクロへキサンと、 前記シリル化剤と、 前記ピロメリッ ト酸ニ無水物と、 前記中間生成物に対して親和性が高い高沸点溶媒を含有 させ、 前記重合溶媒と親和性が高く、 かつ前記重合溶媒よりも沸点が低い 洗浄液を前記キャスト膜に接触させ、 前記キャスト膜を洗浄した後、 前記 イミド化を行うポリイミド膜の製造方法である。 In a second aspect, the polyimide precursor organic solvent solution is applied to an object to be coated, a cast film is formed, and then the polyimide precursor in the cast film is removed. A method for producing a polyimide film to be imidized, wherein the polymerization solvent includes the trans 1,4-diaminocyclohexane, the silylating agent, the pyromellitic dianhydride, and the intermediate product. A high-boiling-point solvent having a high affinity for the polymerization solvent, a cleaning solution having a high affinity for the polymerization solvent and a boiling point lower than the polymerization solvent is brought into contact with the cast film, and after washing the cast film, the imide This is a method for producing a polyimide film to be converted.
第二の発明は、 前記高沸点溶媒としてへキサメチルホスホルアミドを用 い、 前記洗浄液としてアルコールを用いるポリイミド膜の製造方法である。 第二の発明は、 繰り返し構造単位が上記単位構造式 (l b) で表され、 上記単位構造式 (l b) 中の置換基 Rは Hまたは Si(CH3)3基である全脂環 式ポリイミド前駆体であって、 1つの単位構造式中の置換基 Rのうち、 い ずれか一方又は両方が Si (CH3) 3基である単位構造を少なくとも一つ有し、 かつ固有粘度が 2. 0 d L/g以上であるポリイミド前駆体である。 A second invention is a method for producing a polyimide film using hexamethylphosphoramide as the high boiling point solvent and using alcohol as the cleaning solution. A second invention is a completely alicyclic polyimide wherein the repeating structural unit is represented by the above-mentioned unit structural formula (lb), and the substituent R in the above-mentioned unit structural formula (lb) is H or Si (CH 3 ) 3. A precursor, having at least one unit structure in which one or both of the substituents R in one unit structural formula are Si (CH 3 ) 3 groups, and having an intrinsic viscosity of 2. It is a polyimide precursor of 0 dL / g or more.
第二の発明は、 上記単位構造式 ( l b) 中の各 1,4-シクロへキサン残基 の立体構造がトランス配置であることを特徴とするポリィミド前駆体であ る。  A second invention is a polyimide precursor, wherein the stereostructure of each 1,4-cyclohexane residue in the above-mentioned unit structural formula (lb) is in a trans configuration.
第二の発明は、 全化学構造中、 Si(CH3)3基からなる置換基 Rの合計数を A、 水素からなる置換基 Rの合計数を Bとすると、 下記数式 (1) で表さ れるポリイミド前駆体のシリル化率が 0以上 0. 9以下の範囲であるポリ イミド前駆体である。 The second invention is, in all the chemical structure, the total number of Si (CH 3) consists of 3 groups substituents R A, When B the total number of substituents R consisting of hydrogen, table by the following mathematical formula (1) The polyimide precursor has a silylation rate of 0 to 0.9 inclusive.
シリル化率 =AZ (A + B) ……数式 (1)  Silylation rate = AZ (A + B) …… Formula (1)
第二の発明は、 繰り返し構造単位が下記単位構造式 (2 b) で表され、 下記単位構造式 (2 b) 中の各 1,4-シクロへキサン残基の立体構造がトラ ンス配置であることを特徴とするポリイミドである。 単位構造式 (2b)
Figure imgf000018_0001
In the second invention, the repeating structural unit is represented by the following structural formula (2b), and the steric structure of each 1,4-cyclohexane residue in the following structural formula (2b) is in a trans configuration. It is a polyimide characterized by having. Unit structural formula (2b)
Figure imgf000018_0001
第二の発明は、 上記ポリイミドを主成分とするポリイミド膜である。 尚、 第一、 第二の発明でポリイミド前駆体のシリル化率とは、 1構造単 位中だけに含まれる S i (CH3) 3基と水素の数から求められるものではなく、 ポリイミド前駆体分子全体に含まれる S i (CH3) 3基からなる置換基 Rの数と、 水素からなる置換基 Rの数から求められるものである。 図面の簡単な説明 A second invention is a polyimide film containing the above polyimide as a main component. In the first and second inventions, the silylation rate of the polyimide precursor is not determined from the number of Si (CH 3 ) 3 groups and hydrogen contained only in one structural unit, It is determined from the number of substituents R consisting of three Si (CH 3 ) groups contained in the whole body molecule and the number of substituents R consisting of hydrogen. Brief Description of Drawings
図 1は 1,4-ジァミノシクロへキサンの立体構造を示す図である。  FIG. 1 is a diagram showing a steric structure of 1,4-diaminocyclohexane.
図 2は 4, 4' -メチレンビス(シクロへキシルァミン)の分子構造を示す図で ある。  FIG. 2 is a diagram showing the molecular structure of 4,4′-methylenebis (cyclohexylamine).
図 3は第一の発明のポリイミド前駆体膜の赤外線吸収スぺクトルを示す 図である。  FIG. 3 is a view showing an infrared absorption spectrum of the polyimide precursor film of the first invention.
図 4は第一の発明のポリイミド膜の赤外線吸収スぺクトルを示す図であ る。  FIG. 4 is a diagram showing an infrared absorption spectrum of the polyimide film of the first invention.
図 5は第二の発明のポリイミド前駆体膜の赤外線吸収スぺクトルを示す 図である。  FIG. 5 is a diagram showing an infrared absorption spectrum of the polyimide precursor film of the second invention.
図 6は第二の発明のポリイミド膜の赤外線吸収スぺクトルを示す図であ る。 発明を実施するための最良の形態  FIG. 6 is a diagram showing an infrared absorption spectrum of the polyimide film of the second invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
前述のように、 1 , 2, 3, 4-シクロブタンテトラカルボン酸二無水物とトラ ンス 1,4-ジァミノシクロへキサンとの重合系、 及びピロメリット酸ニ無水 物とトランス 1 , 4 -ジァミノシクロへキサンとの重合系では反応初期に強固 な塩が形成され、 如何なる溶媒、 温度条件によっても重合を進行せしめる ことが困難である。 そこで塩形成を回避すべくシリル化法を用いることで ポリイミド前駆体製造に関する問題の解決に至った。 As described above, the polymerization system of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and trans 1,4-diaminocyclohexane, and the polymerization of pyromellitic dianhydride and trans 1,4-diaminocyclo Strong in the early stage of the reaction in the polymerization system with xane A salt is formed, and it is difficult to promote polymerization under any solvent and temperature conditions. Thus, the use of a silylation method to avoid salt formation has led to a solution to the problem of producing polyimide precursors.
第一、 第二の発明について説明すると、 先ずトランス 1 , 4-ジアミノシク 口へキサンである脂環式ジァミンを限定された重合溶媒に溶解し、 そこへ 適切量の N,0-ビス (トリメチルシリル) トリフルォロアセトアミドあるい は N,0-ビス (トリメチルシリル) ァセトアミドを滴下してシリル化を行い、 シリル化された脂環式ジァミンからなる中間生成物を生成する。  To explain the first and second inventions, first, trans 1,4-diaminocycloaliphatic diamine, which is a hexane, is dissolved in a limited polymerization solvent, and an appropriate amount of N, 0-bis (trimethylsilyl) is added thereto. Trifluoroacetamide or N, 0-bis (trimethylsilyl) acetamide is added dropwise to carry out silylation to produce an intermediate product consisting of silylated alicyclic diamine.
その後シリル化脂環式ジァミンを単離せずにそのままその溶液に、 等モ ルの 1 , 2,3 , 4 -シクロブタンテトラカルボン酸二無水物粉末、 又は等モルの ピロメリット酸ニ無水物であるテトラカルボン酸二無水物粉末を徐々に加 えて室温で 1〜 2時間攪拌し、 粘稠で透明な均一溶液を得る。  Then, without isolating the silylated alicyclic diamine, the solution is equimolar 1,2,3,4-cyclobutanetetracarboxylic dianhydride powder or equimolar pyromellitic dianhydride. Add the tetracarboxylic dianhydride powder slowly and stir at room temperature for 1-2 hours to obtain a viscous, clear and homogeneous solution.
第一、 第二の発明に用いるトランス 1,4 -ジアミノシクロへキサンは、 シ リル化、 又はカルボン酸二無水物との反応の前に n-へキサンにより再結晶 を繰り返して着色成分を完全に除去してから用いることが好ましい。 さも なければ得られるポリイミド膜の着色を引き起こす恐れがある。  The trans 1,4-diaminocyclohexane used in the first and second aspects of the present invention completely completes coloring components by repeating recrystallization with n-hexane before silylation or reaction with carboxylic dianhydride. It is preferable to use after removing. Otherwise, coloring of the obtained polyimide film may be caused.
一般に知られているシリル化法としては、 第 4 9回高分子討論会予稿集, p 1 91 7 (2000年)に開示されているものがあり、 このシリル化法ではシリ ル化剤として代表的なトリメチルシリルクロライドを用いてトリェチルァ ミンのような塩化水素受容剤の存在化、 脂肪族ジアミンをシリル化したの ち、 蒸留によってこれを単離 ·精製して酸二無水物との重合反応に供する ものである。  A commonly known silylation method is disclosed in Proceedings of the 49th Symposium on Polymers, p 191 (2000). In this silylation method, a representative silylation agent is used. The presence of a hydrogen chloride acceptor such as triethylamine using conventional trimethylsilyl chloride, silylating the aliphatic diamine, isolating and purifying it by distillation, and subjecting it to the polymerization reaction with acid dianhydride Things.
ここでトリメチルシリルクロライドと脂肪族ジァミンとの反応により発 生する塩化水素は受容剤としてのトリエチルァミンだけでなく重合反応成 分としての脂肪族ジァミンにも一部付加し、 塩酸塩を形成する。 脂肪族ジ ァミンの塩酸塩は重合反応性を失うばかりか溶解度の低下によって沈澱し てしまうため、 シリル化ジァミンを単離せずにこの反応溶液に引き続き酸 二無水物を添加して重合をおこなうことはモルバランスが崩れているため 不可能である。 Here, hydrogen chloride generated by the reaction between trimethylsilyl chloride and aliphatic diamine is partially added to not only triethylamine as an acceptor but also aliphatic diamine as a polymerization reaction component to form a hydrochloride. Since the hydrochloride of aliphatic diamine not only loses polymerization reactivity but also precipitates due to a decrease in solubility, it is necessary to carry out polymerization by adding an acid dianhydride to the reaction solution without isolating the silylated diamine. Is because the molar balance is broken Impossible.
一般にシリル化ジァミンの単離 ·精製工程が必要なのはこのためである。 またシリル化ジァミンは空気中の僅かな水分と容易に反応して分解するた め、 場合によってはグロ一ブボックス等の設備が必要となり単離 ·生成ェ 程時が煩雑になる。  This is why the isolation and purification steps of silylated diamines are generally required. In addition, silylated diamine easily reacts with a small amount of moisture in the air and is decomposed, so that equipment such as a glove box is required in some cases, and the isolation / production process becomes complicated.
しかしながら第一、 第二の発明におけるポリイミド前駆体の製造工程は このようなシリル化ジァミンの単離 ·精製工程を一切含まない。 シリル化 剤として化学構造中にハロゲン原子を有しない非ハロゲン化シリル化剤を 用いると、 脂環式ジァミンであるトランス 1 , 4—ジァミノシクロへキサ ンをシリル化するときに副生成物として塩化水素のようなハロゲン化水素 が発生しない。  However, the step of producing the polyimide precursor in the first and second inventions does not include such a step of isolating and purifying the silylated diamine. When a non-halogenated silylating agent having no halogen atom in its chemical structure is used as a silylating agent, hydrogen chloride can be used as a by-product when silylating trans 1,4-diaminocyclohexane, which is an alicyclic diamine. Does not generate hydrogen halide.
例えば、 非ハロゲン化シリル化剤として N,0-ビス (トリメチルシリル) 卜リフルォロアセトアミド又は Ν, Ο-ビス (トリメチルシリル) ァセトアミ ドのいずれか一方又は両方を用いると、 脂環式ジァミンがシリル化剤と反 応してシリル化した後、 副生成物として発生するのは重合反応に無害なァ セトアミド類のみであり、 副生成物として塩化水素を発生することはない ため、 そこへ引き続き酸二無水物を添加してもモルバランスは保持されて いるためである。 なお、 副生成物としてのァセトアミド類は、 ポリイミド 前駆体を製造した後、 該ポリイミド前駆体を熱イミド化反応時に溶媒と共 に揮発するため全く問題がない。  For example, when one or both of N, 0-bis (trimethylsilyl) trifluoroacetamide and Ν, Ο-bis (trimethylsilyl) acetamide are used as a non-halogenated silylating agent, the alicyclic diamine is silylated. After silylation in reaction with the agent, only acetoamides that are harmless to the polymerization reaction are generated as by-products, and do not generate hydrogen chloride as a by-product. This is because the molar balance is maintained even when the substance is added. It should be noted that acetoamides as by-products have no problem at all since the polyimide precursor is volatilized with a solvent during a thermal imidization reaction after the production of the polyimide precursor.
また、 脂環式ジァミンであるトランス 1, 4ージアミノシクロへキサン がシリル化されるときに塩化水素が発生しないから、 本発明では 3級アミ ンのような中和剤を使用せずにすむ。 従って、 形成されるポリイミド膜中 に塩類が残留しない。  In addition, since hydrogen chloride is not generated when trans 1,4-diaminocyclohexane, which is an alicyclic diamine, is silylated, a neutralizing agent such as a tertiary amine is not used in the present invention. Therefore, no salts remain in the formed polyimide film.
先ず、 第一の発明について説明する。 単位構造式 ( 1 a ) で表される全 脂環式ポリイミド前駆体系では重合反応の成功の鍵は、 シリル化率 Xの制 御である。 脂環式ジァミンのシリル化率 Xと、 ポリイミド前駆体のシリル 化率 Xはシリル化剤の添加量を調節することで制御可能である。 脂環式ジァミンとシリル化剤とを反応させると、 脂環式ジァミンのアミ ノ基の水素がシリル基 (S i (CH3) 3基) に置換される。 重合溶媒中で生成さ れ全中間生成物のアミノ基のうち、 シリル基で置換されたァミノ基の数を a、 シリル基で置換されていないァミノ基の数を bとすると、 中間生成物 のシリル化率 X (全中間生成物の平均シリル化率) は下記数式 (2 ) で表 される。 First, the first invention will be described. The key to the success of the polymerization reaction in the all-alicyclic polyimide precursor represented by the unit structural formula (1a) is control of the silylation rate X. The silylation rate X of the alicyclic diamine and the silylation rate X of the polyimide precursor can be controlled by adjusting the amount of the silylating agent added. When an alicyclic diamine is reacted with a silylating agent, the hydrogen of the amino group of the alicyclic diamine is replaced by a silyl group (S i (CH 3 ) 3 group). Assuming that the number of amino groups substituted with a silyl group is a and the number of amino groups not substituted with a silyl group is b, among the amino groups of all intermediate products formed in the polymerization solvent, The silylation rate X (average silylation rate of all intermediate products) is represented by the following formula (2).
x = a / ( a + b ) ……数式 (2 ) x = a / (a + b) ... Formula (2)
1個の脂環式ジァミンは 1個のカルボン酸二無水物と反応して 1個の構 造単位を形成するので、 重合溶媒に中間生成物と等モル以上のカルボン酸 二無水物を添加し、 中間生成物を全てカルボン酸二無水物と反応させた場 合には、 重合溶媒中で生成されるポリイミド前駆体のシリル化率 Xは中間 生成物のシリル化率 Xと等しくなる。  Since one alicyclic diamine reacts with one carboxylic dianhydride to form one structural unit, the carboxylic acid dianhydride in an amount equal to or more than the molar amount of the intermediate product is added to the polymerization solvent. However, when all the intermediate products are reacted with carboxylic dianhydride, the silylation rate X of the polyimide precursor generated in the polymerization solvent is equal to the silylation rate X of the intermediate product.
中間生成物のシリル化率は重合溶媒に添加する脂環式ジァミンとシリル 化剤の量で調整することができる。 脂環式ジァミンは化学構造中に 2個の アミノ基を有するので、 シリル化剤が 1モル当たり S個のシリル基を有す るとすると、 cモルの脂環式ジァミンを用いて、 シリル化率 Xの中間生成 物とポリイミド前駆体を得るためには、 2 c · X Z sモルのシリル化剤を 脂環式ジァミンと反応させればよい。  The silylation rate of the intermediate product can be adjusted by the amounts of the alicyclic diamine and the silylating agent added to the polymerization solvent. Since alicyclic diamines have two amino groups in the chemical structure, if the silylating agent has S silyl groups per mole, then silylation using c moles of alicyclic diamines In order to obtain an intermediate product having a ratio X and a polyimide precursor, 2 c · XZ s mol of the silylating agent may be reacted with the alicyclic diamine.
例えば、 シリル化剤として N,0-ビス (卜リメチルシリル) トリフルォロ ァセトアミドゃ N, 0_ビス (トリメチルシリル) ァセトアミドのように 1分 子中に 2個のシリル基を有するものを用い、 中間生成物及びポリイミド前 駆体のシリル化率を 0 . 4以上 0 . 9以下にするためには、 それらシリル 化剤を 0 . 4 (:モル以上0 . 9 cモル以下添加すればよい。  For example, a compound having two silyl groups in one molecule such as N, 0-bis (trimethylsilyl) trifluoroacetamide ゃ N, 0_bis (trimethylsilyl) acetamide is used as a silylating agent. In order to make the silylation rate of the polyimide precursor from 0.4 to 0.9, the silylating agent may be added in an amount of from 0.4 to 0.9 mol.
中間生成物のシリル化率 Xは 0. 4以上 0. 9以下の範囲であることが好まし く、 シリル化率がこの範囲であれば、 中間生成物とカルボン酸二無水物と を反応させた後に透明で粘稠な均一な重合溶液が得られる。  The silylation rate X of the intermediate product is preferably in the range of 0.4 or more and 0.9 or less, and when the silylation rate is in this range, the intermediate product is reacted with the carboxylic dianhydride. After this, a clear, viscous and homogeneous polymerization solution is obtained.
Xが 0. 4未満であると、 カルボン酸二無水物との重合時に塩形成が起こり、 重合が進行しない。 また Xが 0. 9を超える場合は均一な重合溶液が得られず、 高重合度のポリイミド前駆体を得ることは困難である。 これはシリル化率 が非常に高い場合、 ポリイミド前駆体鎖同士の水素結合により、 ポリイミ ド前駆体の重合溶媒に対する溶解度が極端に低下して、 重合反応が十分進 む前にポリイミド前駆体が一部沈澱してしまうためである。 If X is less than 0.4, salt formation occurs during polymerization with carboxylic dianhydride, and the polymerization does not proceed. When X exceeds 0.9, a uniform polymerization solution cannot be obtained, It is difficult to obtain a polyimide precursor having a high degree of polymerization. This is because, when the silylation rate is very high, the solubility of the polyimide precursor in the polymerization solvent is extremely reduced due to hydrogen bonding between the polyimide precursor chains, and the polyimide precursor becomes one before the polymerization reaction sufficiently proceeds. This is due to the partial precipitation.
Xが 0. 4以上 0. 9以下の範囲ではポリイミド前駆体は適度に力ルポキシ基 を保有することになり、 これが重合溶媒と強く溶媒和して、 生成するポリ マ一の溶解度を高める結果になっている。 これまで一般にシリル化はポリ イミド前駆体の溶解度を飛躍的に高めるとされていたが、 第一の発明にお いてはむしろポリイミド前駆体のシリル化率を 0 . 4以上 0 . 9以下に制 御することで重合に関する問題の解決に至った。  When X is in the range of 0.4 or more and 0.9 or less, the polyimide precursor has a moderately strong propyloxy group, which strongly solvates with the polymerization solvent and results in an increase in the solubility of the produced polymer. Has become. Until now, silylation was generally thought to dramatically increase the solubility of the polyimide precursor.However, in the first invention, the silylation rate of the polyimide precursor was rather controlled to 0.4 or more and 0.9 or less. Control led to the solution of the polymerization problem.
尚、 第一の発明と、 後述する第二の発明においては重合溶媒の選択が極 めて重要である。 重合溶媒としてはへキサメチルホスホルアミド単独、 あ るいはへキサメチルホスホルアミドと N,N-ジメチルァセトアミドの混合溶 媒やへキサメチルホスホルアミドと N-メチル -2-ピロリ ドンの混合溶媒が好 ましい。 重合溶媒が適切でないと、 脂環式ジァミンとテトラカルボン二酸 無水物、 中間生成物とテトラカルボン酸二無水物、 脂環式ジァミンとピロ メリット酸ニ無水物、 中間性生物とピロメリット酸ニ無水物との重合時の 塩形成により重合が全く進まないか、 一部重合反応が起っても沈澱、 ゲル 化などにより均一な重合溶液が得られず成膜ができなくなる恐れがある。 ポリアミド等の重合の際しばしば添加される高分子溶解促進剤即ちリチ ゥムブロマイドやリチウムクロライドの如き金属塩類は、 第一、 第二の発 明に係る重合系では一切使用する必要がない。 これらの金属塩類はポリイ ミド膜中に金属イオンが痕跡量でも残留すると、 電子デバイスとしての信 頼性を著しく低下させるため用いられるべきではない。  In the first invention and the second invention described later, selection of a polymerization solvent is extremely important. Hexamethylphosphoramide alone, or a mixture of hexamethylphosphoramide and N, N-dimethylacetoamide, or a mixture of hexamethylphosphoramide and N-methyl-2-pyrrolidone A mixed solvent of is preferred. If the polymerization solvent is not appropriate, alicyclic diamine and tetracarboxylic dianhydride, intermediate product and tetracarboxylic dianhydride, alicyclic diamine and pyromellitic dianhydride, intermediate product and pyromellitic acid Polymerization may not proceed at all due to salt formation during polymerization with the anhydride, or even if a partial polymerization reaction occurs, a uniform polymerization solution may not be obtained due to precipitation, gelation, etc., and film formation may not be possible. It is not necessary to use any polymer dissolution promoter often added during the polymerization of polyamide or the like, that is, metal salts such as lithium bromide and lithium chloride in the polymerization systems according to the first and second inventions. These metal salts should not be used, since traces of metal ions remaining in the polyimide film significantly reduce the reliability of electronic devices.
第一の発明において、 上述した数式 ( 1 ) で表されるシリル化率 Xが 0. 4 以上 0. 9以下の範囲外では前述のように重合が進行しないが、 これに対する 上記の塩類の溶解促進効果は殆ど見られず、 塩類添加だけで重合反応性を 改善することはできない。 第一の発明と、 後述する第二の発明で得られるポリイミド膜中には必要 に応じて酸化防止剤、 フイラ一、 シランカップリング剤、 感光剤、 光重合 開始剤および増感剤等の添加物が混合されていても差し支えない。 In the first invention, although the polymerization does not proceed as described above when the silylation rate X represented by the above formula (1) is out of the range of 0.4 or more and 0.9 or less, the dissolution of the above salts There is almost no accelerating effect, and the addition of salts cannot improve the polymerization reactivity. Antioxidants, fillers, silane coupling agents, photosensitizers, photopolymerization initiators, sensitizers, etc. are added as necessary to the polyimide films obtained in the first invention and the second invention described below. Things can be mixed.
塗布対象物である基板上に塗布されたポリイミド前駆体溶液は、 強制循 環式熱風乾燥器中あるいは真空乾燥器中 40°C以上 1 20°C以下範囲で乾燥され、 塗布膜 (キャスト膜) となる。  The polyimide precursor solution applied to the substrate to be applied is dried in a forced circulation hot air dryer or vacuum dryer at a temperature of 40 ° C or more and 120 ° C or less. It becomes.
この際 40°C未満では乾燥に長時間を要するばかりか、 膜中に多量の溶媒 が残留し、 イミ ド化時に溶媒の急激な蒸発により気泡が発生しやすく、 良 質なポリイミド膜を得るのに好ましくない。 また 1 20°Cを超える高温での乾 燥ではキャスト膜が脆弱になる傾向があり、 強靭なポリイミド膜を得るの に好ましくない。  In this case, if the temperature is lower than 40 ° C, not only long time is required for drying, but also a large amount of solvent remains in the film, and bubbles are easily generated due to rapid evaporation of the solvent at the time of imidization, so that a good polyimide film is obtained. Not preferred. On the other hand, drying at a temperature higher than 120 ° C tends to make the cast film brittle, which is not preferable for obtaining a tough polyimide film.
公知の方法ではポリイミド膜は基板上のキャスト膜をそのまま 200°C以上 400°C以下の温度に加熱することでキャスト膜中のポリイミド前駆体をイミ ド化して製造されるが、 第一の発明に係る上記単位構造式 ( l a ) で表さ れるポリイミド前駆体のキャスト膜では公知の方法に従って熱イミド化す ると、 窒素雰囲気中あるいは真空中にかかわらず膜は激しく断裂および黒 色化して、 ポリイミド膜を製造することが困難になる。 これは溶媒として 使用したへキサメチルホスホルアミドが非常に揮発しにくいため、 イミド 化時に膜中に滞留しやすく、 へキサメチルホスホルアミド自身の熱分解や、 ポリイミド前駆体と何らかの反応が引き起こされためと考えられる。  In a known method, a polyimide film is produced by heating a cast film on a substrate to a temperature of 200 ° C or more and 400 ° C or less to imidize a polyimide precursor in the cast film. When a polyimide precursor cast film represented by the above-mentioned unit structural formula (la) is thermally imidized according to a known method, the film is severely ruptured and blackened regardless of whether it is in a nitrogen atmosphere or in a vacuum, and the polyimide It becomes difficult to manufacture the membrane. This is because hexamethylphosphoramide used as a solvent is very difficult to volatilize, so it tends to stay in the film during imidization, causing thermal decomposition of hexamethylphosphoramide itself and some reaction with the polyimide precursor. It is thought that it is.
第一、 第二の発明のポリイミド前駆体のキャスト膜を水中に浸漬するこ とで、 へキサメチルホスホルアミド等の水溶性残留溶媒をほぼ完全に抽出 •除去することは可能である。 しかしながら、 水中への浸漬は基板と膜と の間の接着力の低下を招き、 剥れの原因となるばかりか、 膜の激しい収縮 をも引き起こす。 この大きな膜収縮はイミド化時にポリイミド膜の割れを 誘発し、 基板上へのポリイミド膜の形成を困難にする。  By dipping the cast film of the polyimide precursor of the first and second inventions in water, it is possible to almost completely extract and remove water-soluble residual solvents such as hexamethylphosphoramide. However, immersion in water causes a decrease in the adhesive strength between the substrate and the film, causing not only peeling but also severe contraction of the film. This large film shrinkage causes the polyimide film to crack during imidization, making it difficult to form the polyimide film on the substrate.
鋭意研究の結果、 メタノール等のアルコール類からなる洗浄液へキャス ト膜を浸漬し、 該洗浄液をキャスト膜に接触させて洗浄を行うと、 膜の収 縮や基板からの剥れを抑制し、 同時にへキサメチルホスホルアミド等の残 留溶媒をほぼ完全に抽出 ·除去を可能にすることを見出し、 製膜時の問題 解決に至った。 As a result of intensive research, the cast film was immersed in a cleaning solution composed of alcohols such as methanol, and the cleaning solution was brought into contact with the cast film to perform cleaning. It was found that shrinkage and peeling from the substrate were suppressed, and at the same time, it was possible to almost completely extract and remove residual solvents such as hexamethylphosphoramide, which led to the solution of problems during film formation.
洗浄液を構成するアルコールはメタノールに限定されるものではなく、 エタノール、 ブ夕ノール、 プロパノール等を用いることもできる。 また、 これらのアルコールは単独で用いてもよいし、 2種類以上を混合して用い てもよい。  The alcohol constituting the cleaning solution is not limited to methanol, but may be ethanol, butanol, propanol, or the like. These alcohols may be used alone or as a mixture of two or more.
このようにして基板上に形成されたポリイミド前駆体膜 (キャスト膜) を減圧下 (大気圧よりも圧力が低い条件) で 200°C以上 400°C以下、 好まし くは 300°C以上 350°C以下の温度で熱処理することで強靭なポリイミド膜が 得られる。  The polyimide precursor film (cast film) formed on the substrate in this manner is heated at a temperature of 200 ° C or more and 400 ° C or less, preferably 300 ° C or more and 350 ° C under reduced pressure (a condition where the pressure is lower than the atmospheric pressure). A tough polyimide film can be obtained by heat treatment at a temperature of less than or equal to ° C.
キャスト膜を加熱するときの温度が 300°C未満ではィミド化が完結しない 場合があり、 350°Cを超える場合ではポリイミド膜の着色が起る。 キャスト 膜中のポリイミド前駆体をイミド化する工程は熱処理に限定されるもので はなく、 イミド化反応はポリイミド前駆体の膜を無水酢酸と三級アミン等 の混合物等の脱水試薬と反応させて化学的に行うこともできる。  If the temperature at which the cast film is heated is lower than 300 ° C, imidization may not be completed, and if it is higher than 350 ° C, coloring of the polyimide film occurs. The step of imidizing the polyimide precursor in the cast film is not limited to heat treatment, and the imidation reaction involves reacting the polyimide precursor film with a dehydrating reagent such as a mixture of acetic anhydride and a tertiary amine. It can also be done chemically.
第一の発明に係るポリイミドは全脂環構造を有するため、 脂環構造を全 く含まない全芳香族ポリイミドに比べると長期熱安定性に劣るが、 ガラス 転移温度、 窒素中での熱分解温度が共に 400°C以上であり、 ハンダ耐熱性の 如き短期耐熱性は充分高く、 上記産業分野への応用には全く問題がない。  Since the polyimide according to the first invention has a wholly alicyclic structure, it has poor long-term thermal stability as compared with a wholly aromatic polyimide containing no alicyclic structure, but has a glass transition temperature and a thermal decomposition temperature in nitrogen. Both are 400 ° C or higher, and the short-term heat resistance such as solder heat resistance is sufficiently high, and there is no problem in application to the above-mentioned industrial fields.
また、 上記単位構造式 (2 a ) で表される第一の発明のポリイミドは 1 M H zでの誘電率が 2 . 7以下と低いだけではなく、 線熱膨張係数が 2 5 p p m以下と低く、 また高透明性と靭性をも兼ね備えている。  In addition, the polyimide of the first invention represented by the unit structural formula (2a) not only has a low dielectric constant at 1 MHz of 2.7 or less, but also has a low linear thermal expansion coefficient of 25 ppm or less. It also has high transparency and toughness.
次に、 第二の発明について説明する。 後述する単位構造式 (l b ) で表 される高重合度半芳香族ポリイミド前駆体を得るには上記のシリル化剤の 添加量を調節してシリル化率 Xが 0. 9以上 1 . 0以下の範囲で重合を行うことが 好ましい。 Xが 0. 9未満であると、 重合時に塩形成が起こり、 反応溶液は均 一にならない。 このようにして得られたポリイミド前駆体溶液を酸性水溶液やアルコー ル等に滴下するか、 またはキャスト後、 ポリイミド前駆体膜をこれらに浸 漬することでシリル基が容易に脱離する。 この際酸あるいはアルコール濃 度および反応時間を調節することによりシリル化率 Xが 0以上 1. 0以下のポリ イミド前駆体を得ることが可能である。 Next, the second invention will be described. In order to obtain a high polymerization degree semi-aromatic polyimide precursor represented by the unit structural formula (lb) described later, the silylation ratio X is adjusted to 0.9 or more and 1.0 or less by adjusting the amount of the silylating agent added. It is preferable to carry out the polymerization within the range of. If X is less than 0.9, salt formation occurs during polymerization and the reaction solution is not uniform. The thus obtained polyimide precursor solution is dropped into an acidic aqueous solution, alcohol, or the like, or, after casting, the polyimide precursor film is immersed in these, so that silyl groups are easily eliminated. At this time, it is possible to obtain a polyimide precursor having a silylation ratio X of 0 to 1.0 by adjusting the acid or alcohol concentration and the reaction time.
単位構造式 ( l b ) のポリイミド前駆体を重合する際、 重合溶媒や添加 剤等の留意点以外にもモノマ一濃度の設定が重要である。 均一で高重合度 のポリイミド前駆体溶液を得るためのモノマー濃度としては 1 0〜 1 3重 量%が好ましい。 モノマー濃度 1 0重量%以下で重合を行うと、 得られる ポリイミド前駆体の固有粘度は固有粘度 2 . O dL/gを大きく下回り、 最終 的に得られるポリイミド膜が著しく脆弱化して膜中にひび割れ等が生じる 恐れがある。 また 1 3重量%以上では、 ポリイミド前駆体溶液がゲル化す る傾向が強くなり貯蔵安定性が低下する恐れがある。  When polymerizing the polyimide precursor of the unit structural formula (lb), it is important to set the monomer concentration in addition to the points to be considered such as the polymerization solvent and additives. The monomer concentration for obtaining a uniform and high polymerization degree polyimide precursor solution is preferably from 10 to 13% by weight. When the polymerization is carried out at a monomer concentration of 10% by weight or less, the intrinsic viscosity of the obtained polyimide precursor is much lower than the intrinsic viscosity of 2.0 OdL / g, and the finally obtained polyimide film becomes extremely brittle and cracks in the film. Etc. may occur. If the content is 13% by weight or more, the polyimide precursor solution tends to gel and the storage stability may be reduced.
上記のモノマー濃度範囲で重合すると、 均一で高重合度のポリイミド前 駆体溶液を得ることができるが、 重合終了後室温で 2 4時間以上 4 8時間 以下経過すると、 一部ゲル分が生じて不均一になり、 良質なポリイミド膜 の製造に支障をきたす。 これはこのポリイミド前駆体の剛直な構造に基づ くアミ ド基同士の強い分子間水素結合によるものである。 これを回避する ために重合終了後、 1 0 0 °Cで 1 0分以上 2 0分以下この溶液を加熱処理 することで、 貯蔵安定性を大幅に改善することができる。  When the polymerization is carried out in the above monomer concentration range, a polyimide precursor solution having a uniform and high polymerization degree can be obtained.However, after 24 to 48 hours at room temperature after the polymerization, some gel components are generated. It becomes uneven and hinders the production of high quality polyimide film. This is due to strong intermolecular hydrogen bonding between amide groups based on the rigid structure of this polyimide precursor. To avoid this, after the polymerization is completed, the storage stability can be significantly improved by subjecting this solution to heat treatment at 100 ° C. for 10 minutes or more and 20 minutes or less.
基板上に塗布されたポリイミド前駆体溶液は強制循環式熱風乾燥器中ある いは真空乾燥器中 50°C以上 100°C以下の範囲で乾燥される。 この際 50°C未満 では乾燥に長時間を要するばかりか、 キャスト膜 (ポリイミド前駆体膜) が液晶形成により白濁化したり、 膜中に多量の溶媒が残留し、 イミド化時 に溶媒の急激な蒸発により気泡が発生しやすく、 良質なポリイミド膜を得 るのに好ましくない。 また 100°Cを超える温度での乾燥ではキャスト膜 (ポ リイミド前駆体膜) が脆弱になって割れや剥れを生じる傾向があり、 良質 なポリイミド膜を得るのに好ましくない。 公知の方法ではポリイミド膜は基板上のキャスト膜をそのまま 200°C以上 400°C以下で加熱して製造されるが、 第二の発明に係る単位構造式 (l b ) で表されるポリイミド前駆体のキャスト膜では公知の方法に従って熱イミ ド化すると窒素雰囲気中あるいは真空中にかかわらず膜は激しく断裂およ び黒色化して、 ポリイミド膜を製造することが困難になる。 これは溶媒と して使用したへキサメチルホスホルアミドが非常に揮発しにくいため、 ィ ミド化時に膜中に滞留しやすく、 へキサメチルホスホルアミド自身の熱分 解や、 ポリイミド前駆体と何らかの反応が引き起こされためと考えられる。 上述したように、 第二の発明においても、 アルコール類にキャスト膜を 浸漬することで、 膜の収縮や基板からの剥がれを抑制し、 かつ、 残留溶媒 を除去することができる。 洗浄に用いるアルコール類は第一の発明と同じ ものを用いることができる。 The polyimide precursor solution applied on the substrate is dried in a forced circulation hot air dryer or a vacuum dryer at a temperature in the range of 50 ° C to 100 ° C. In this case, if the temperature is lower than 50 ° C, not only long time is required for drying, but also the cast film (polyimide precursor film) becomes cloudy due to the formation of liquid crystal, and a large amount of solvent remains in the film. Bubbles are easily generated by evaporation, which is not preferable for obtaining a high quality polyimide film. Further, if the drying is performed at a temperature exceeding 100 ° C., the cast film (polyimide precursor film) is fragile and tends to crack or peel off, which is not preferable for obtaining a high quality polyimide film. In a known method, a polyimide film is produced by directly heating a cast film on a substrate at a temperature of 200 ° C. or more and 400 ° C. or less, but a polyimide precursor represented by the unit structural formula (lb) according to the second invention When the cast film is thermally imidized according to a known method, the film is severely ruptured and blackened regardless of whether it is in a nitrogen atmosphere or in a vacuum, and it becomes difficult to produce a polyimide film. This is because hexamethylphosphoramide used as a solvent is very difficult to volatilize, so it is likely to stay in the membrane during imidization, causing thermal decomposition of hexamethylphosphoramide itself and the decomposition of polyimide precursor. It is considered that some reaction was caused. As described above, also in the second invention, by immersing the cast film in alcohols, shrinkage of the film and peeling from the substrate can be suppressed, and the residual solvent can be removed. The same alcohol as used in the first invention can be used for washing.
このようにして基板上に形成されたポリイミド前駆体膜を減圧下 200°C以 上 400°C以下、 好ましくは 250°C以上 350°C以下の温度で熱処理することで強 靭なポリイミド膜が得られる。 200°C未満ではイミド化が完結しない恐れが あり、 350°Cを超えるとポリイミド膜の着色が起る。 またイミド化反応はポ リイミド前駆体の膜を無水酢酸と三級アミン等の混合物等の脱水試薬と反 応させて化学的に行うこともできる。  By subjecting the polyimide precursor film thus formed on the substrate to a heat treatment under reduced pressure at a temperature of 200 ° C to 400 ° C, preferably 250 ° C to 350 ° C, a tough polyimide film is obtained. can get. If the temperature is lower than 200 ° C, imidization may not be completed. If the temperature is higher than 350 ° C, the polyimide film may be colored. The imidization reaction can also be performed chemically by reacting the film of the polyimide precursor with a dehydrating reagent such as a mixture of acetic anhydride and a tertiary amine.
第二の発明に係るポリイミドは脂環構造を含有するため、 脂環構造を全 く含まない全芳香族ポリイミドに比べると長期熱安定性に劣るが、 ガラス 転移温度、 窒素中および空気中での熱分解温度が共に 400°C以上であり、 ハ ンダ耐熱性の如き短期耐熱性は充分高く、 上記産業分野への応用には全く 問題がない。  Since the polyimide according to the second invention has an alicyclic structure, it has poor long-term thermal stability as compared with a wholly aromatic polyimide containing no alicyclic structure, but has a glass transition temperature, nitrogen and air. Both thermal decomposition temperatures are 400 ° C or higher, and short-term heat resistance such as solder heat resistance is sufficiently high, and there is no problem in application to the above-mentioned industrial fields.
また、 上記単位構造式 (2 b ) で表される第二の発明のポリイミドは、 周波数 1 M H zの誘電率が 3. 0以下と低いだけではなく、 線熱膨張係数が 20 ppm/K以下と低く、 その上、 高透明性、 且つ電子基板における絶縁膜用途と して十分な靭性を併せ持つことを特徴とする。  In addition, the polyimide of the second invention represented by the above unit structural formula (2b) has not only a low dielectric constant of 3.0 MHz or less at a frequency of 1 MHz but also a linear thermal expansion coefficient of 20 ppm / K or less. In addition, it is characterized by having high transparency and sufficient toughness for use as an insulating film in electronic substrates.
【実施例】 以下に、 第一、 第二の発明について具体的に説明するが、 本発明はこれ に限定されるものではない。 尚、 第一の発明の各実施例には添え字 aを付 し、 第二の発明の各実施例には添え字 bを付して区別する。 【Example】 Hereinafter, the first and second inventions will be specifically described, but the invention is not limited thereto. Each embodiment of the first invention is distinguished by adding a suffix a, and each embodiment of the second invention is distinguished by adding a suffix b.
〔第一の発明〕  [First invention]
<実施例 1 a> <Example 1a>
よく乾燥した攪拌機付密閉反応容器中に再結晶 ·精製済みのトランス - 1, 4 -ジアミノシクロへキサン 5.710g (0.05モル) を入れ、 十分に脱水したへ キサメチルホスホルアミドと Ν,Ν -ジメチルァセトアミドの混合溶媒 (体積 比 3 : 1 ) からなる重合溶媒 150mLに溶解した後、 シリル化剤としてシリン ジにて N,0_ビス (トリメチルシリル) トリフルォロアセトアミド 7. OmL (0. 025モル) をゆっくりと滴下し、 室温で 1時間攪拌してシリル化 (シリル化 率 X=0.5) を行った。  Put recrystallized and purified trans-1,4-diaminocyclohexane 5.710 g (0.05 mol) in a well-dried sealed reaction vessel with a stirrer, and fully dehydrate hexane methylphosphoramide and Ν, Ν- After dissolving in 150 mL of a polymerization solvent consisting of a mixed solvent of dimethylacetamide (3: 1 by volume), N, 0_bis (trimethylsilyl) trifluoroacetamide with a syringe is used as a silylating agent. 025 mol) was slowly added dropwise and stirred at room temperature for 1 hour to perform silylation (silylation rate X = 0.5).
この溶液に 1, 2, 3, 4-シクロブタンテトラカルボン酸二無水物粉末 9.806g (0.05モル) を徐々に加え室温で 2 4時間撹拌した。 得られたポリイミド 前駆体溶液は室温で 2週間放置しても沈澱、 ゲル化は全く起こらず、 また 粘度変化も殆どない極めて高い溶液貯蔵安定を示した。 重合時と同じ溶媒 中、 30°Cで測定した固有粘度は 4.3dL/gと高く、 極めて高重合体のポリイミ ド前駆体が得られたことがわかる。  To this solution, 9,806 g (0.05 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride powder was gradually added, followed by stirring at room temperature for 24 hours. The resulting polyimide precursor solution did not precipitate or gel at all even when left at room temperature for 2 weeks, and showed extremely high solution storage stability with almost no change in viscosity. The intrinsic viscosity measured at 30 ° C in the same solvent as in the polymerization was as high as 4.3 dL / g, indicating that an extremely high-polymer polyimide precursor was obtained.
このポリイミド前駆体溶液を塗布対象物であるガラス基板に塗布し、 60 °C、 2〜4時間で乾燥して得たポリイミド前駆体膜 (キャス卜膜) を、 洗 浄液であるメタノールに 4〜 2 4時間浸漬して残留溶媒を完全に除去した。  The polyimide precursor solution (cast film) obtained by applying the polyimide precursor solution to a glass substrate to be coated and drying at 60 ° C. for 2 to 4 hours is added to methanol, which is a washing solution, for 4 hours. Dipping for ~ 24 hours completely removed the residual solvent.
これを基板上で減圧下 340°C、 3時間で加熱してイミ ド化を行い膜厚 10^ mの透明で強靭な全脂環式ポリイミド膜を得た。  This was heated on a substrate under reduced pressure at 340 ° C for 3 hours to obtain an imidized product, thereby obtaining a transparent and tough all-alicyclic polyimide film having a thickness of 10 m.
膜物性は、 誘電率 =1. IX平均屈折率の 2乗より見積もられた誘電率 2.65 (1MHzに対応) 、 線熱膨張係数 25ppm/K (100°C〜200°Cの間の平均値) 、 お よびガラス転移温度は 423°C、 カットオフ波長 240nm、 窒素雰囲気中の 5 % 重量減少温度 (昇温速度 10°C/min) 437 、 空気中で 398°Cであり、 目的と する特性を全て満足することができた。 合成したポリイミド前駆体膜およ びポリイミド膜の赤外線吸収スペクトルを図 3、 図 4にそれぞれ示し、 ポ リイミド前駆体膜およびポリイミド膜のピークテーブルを下記表 1 a、 表 2 aに記載する。 The physical properties of the film are as follows: Dielectric constant = 1. IX Dielectric constant estimated from the square of the average refractive index 2.65 (corresponding to 1MHz), Linear thermal expansion coefficient 25ppm / K (Average value between 100 ° C and 200 ° C) ), And glass transition temperature 423 ° C, cutoff wavelength 240nm, 5% weight loss temperature in nitrogen atmosphere (heating rate 10 ° C / min) 437, 398 ° C in air. All the characteristics could be satisfied. The synthesized polyimide precursor film and 3 and 4 show the infrared absorption spectra of the polyimide film and the polyimide film, respectively. The peak tables of the polyimide precursor film and the polyimide film are shown in Tables 1a and 2a below.
尚、 図 3、 4中の縦軸は透過率 (%) をそれぞれ示し、 横軸は波数 (c m 1) をそれぞれ示している。 表 1 a:実施例 1 aで形成されたポリイミド前駆体膜のピークテーブル The vertical axes in FIGS. 3 and 4 indicate transmittance (%), respectively, and the horizontal axes indicate wave numbers (cm 1 ). Table 1a: Peak table of the polyimide precursor film formed in Example 1a
No. 波数 (透過率%) No. 波数 (透過率%) No. 波数 (透過率%)  No. Wave number (transmittance%) No. Wave number (transmittance%) No. Wave number (transmittance%)
15 3308.22 3ί„Θ> 3990,24·:: 44.9 > 2941,7  15 3308.22 3ί „Θ> 3990,24 ·: 44.9> 2941,7
2864, 55 < 48-4 5* 2ら 08*ΘΘί: c * ί95Θ.2ί( 75, 7 2864, 55 <48-4 5 * 2 et 08 * ΘΘί: c * ί95Θ.2ί (75, 7
17ίら 88く 21,9) j 1637= 71 < 15,3 9 1548.98-17 pla 88 ku 21,9) j 1637 = 71 <15,3 9 1548.98-
1452: 53< 53,8) lis 1292. 2 < 41»5' 125 38.1)1452: 53 <53,8) lis 1292. 2 <41 »5 '125 38.1)
13; 1ί1ί»18 ら i = 2> i 989, 57 < 63, 1> 982.7 ':: 13; 1ί1ί »18 et al. I = 2> i 989, 57 <63, 1> 982.7 '::
16 6Θ5.7S< 54. i> 表 2a:実施例 l aで形成されたポリイミド膜のピークテーブル  16 6Θ5.7S <54.i> Table 2a: Example la Peak table of polyimide film formed in a
No. 波数 (透過率%) No. 波数 (透過率%) No. 波数 (透過率%) No. Wave number (transmittance%) No. Wave number (transmittance%) No. Wave number (transmittance%)
1: '"'■  1: '"' ■
マ _·· ί » - ι 7ί,8) .c■ 3; 28 ? Λ ) Ma _ · ί »-ι 7ί, 8) .c ■ 3; 28? Λ )
ID76.12( ?  ID76.12 (?
43 2364= 4 ( p:~7 ヽ . ΐ 6: 17Θ C!3". - '·. 43 2364 = 4 (p : ~ 7 ヽ. Ϊ́ 6: 17 Θ C! 3 ".-'·.
r' Λ く i''' 3 « ) 1456.39·: 68» 9) 9z 1369.53 < ii.8> r 'Λ Ku i''' 3 «) 1456.39 ·: 68» 9) 9z 1369.53 <ii.8>
1338, 72< 36.4) i i * 1387, 85く 1 * 1275.06 66, x1338, 72 <36.4) i i * 1387, 85 ku 1 * 1275.06 66, x
•j ;* a 32=4) 145 1093.74':: i c: * 1Θ·47. 4 • j; * a 32 = 4) 145 1093.74 ':: ic: * 1Θ47.4
: L 974, 14!:: 7 7) 175 ' Θ6,ら 3( 7b » b 18ϊ 887.34 76.8): L 974, 14 ! :: 7 7) 175 'Θ6, et al. 3 (7b »b 18 ϊ 887.34 76.8)
1 Q» 810. iS< 7Q, 4> ·1 Q »810. iS <7Q, 4> ·
' · 上 , ·- ,-i· ',■■ フ Qヽ 21: :っ ,J 68.9 ム « 63 .5? '·. 6Θ « 8) : 488. Θ3< 65» 2> 尚、 上記表 l a、 2 a中、 波数の単位は c m—1であり、 透過率の単位は %である。 '· Above, ·-, -i ·', Qf 21:: tsu, J 68.9 «63.5? 6 · «8): 488. Θ3 <65» 2> In the above tables la and 2a, the unit of wave number is cm- 1 and the unit of transmittance is%.
<比較例 1 a> <Comparative Example 1a>
よく乾燥した攪拌機付密閉反応容器中に再結晶 ·精製済みのトランス - 1, 4 -ジアミノシクロへキサン 5.710g (0.05モル) を入れ、 十分に脱水した Ν,Ν -ジメチルァセトアミドからなる重合溶媒 150mLに溶解した。 ジァミンのシ リル化を行わないで 1, 2, 3, 4-シクロブ夕ンテトラカルボン酸二無水物粉末 9. 806g (0.05モル) を徐々に加え室温で撹拌した。 しかし、 重合初期に強固 な塩が形成され、 室温で数週間〜 1ヶ月間攪拌を継続しても、 重合が全く進 行しなかった。 A recrystallized trans-1,4-diaminocyclohexane 5.710 g (0.05 mol) was placed in a well-dried closed reaction vessel with a stirrer, and polymerized from Ν, Ν-dimethylacetoamide, which was sufficiently dehydrated. Dissolved in 150 mL of solvent. Without silylation of diamine, 9.806 g (0.05 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride powder was gradually added, followed by stirring at room temperature. However, a strong salt is formed at the beginning of the polymerization, and even if the stirring is continued at room temperature for several weeks to one month, the polymerization proceeds at all. Did not go.
重合溶媒として N,N-ジメチルァセトアミドの他に Ν, Ν-ジメチルホルムァ ミド、 Ν-メチル- 2-ピロリ ドン、 1,3-ジメチル- 2-イミダゾリジノン、 ジメ チルスルホォキシド、 ァ -ブチロラクトン、 ジグライム、 m—クレゾール、 ァセトアミド混合溶媒、 へキサメチルホスホルアミド /N -メチル -2-ピロリ ドン混合溶媒、 テトラヒドロフラン/メタノール混合溶媒を用いて重合を試 みたが、 あらゆる溶媒系で全く重合は進行しなかった。  In addition to N, N-dimethylacetamide, 溶媒, Ν-dimethylformamide, Ν-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethylsulfoxide, Polymerization was attempted using a-butyrolactone, diglyme, m-cresol, acetamide mixed solvent, hexamethylphosphoramide / N-methyl-2-pyrrolidone mixed solvent, and tetrahydrofuran / methanol mixed solvent. Polymerization did not proceed at all.
またこれらの溶媒系で溶質濃度 1〜 1 5重量%の濃度範囲、 室温〜 150°C の温度範囲で重合反応を試みたが、 同様に全く重合しなかった。 更に、 ピ リジンやトリエチルァミンのような三級アミンあるいはリチウムクロライ ドのような無機塩類も用いたがこれらの添加効果は全く見られず重合は全 く進行しなかった。  Polymerization was attempted in these solvent systems at a solute concentration of 1 to 15% by weight in a temperature range of room temperature to 150 ° C, but no polymerization was observed. Further, tertiary amines such as pyridine and triethylamine or inorganic salts such as lithium chloride were also used, but the effect of adding these was not seen at all and the polymerization did not proceed at all.
(実施例 2 a )  (Example 2a)
よく乾燥した攪拌機付密閉反応容器中に再結晶 ·精製済みのトランス- 1 , 4 -ジアミノシクロへキサン 5. 710g (0. 05モル) を入れ、 十分に脱水したへ キサメチルホスホルアミドと Ν, Ν-ジメチルァセトアミドの混合溶媒 (体積 比 3 : 1 ) からなる重合溶媒 1 50niLに溶解した後、 シリンジにて Ν, Ο-ビス (トリメチルシリル) トリフルォロアセトアミドからなるシリル化剤 14. Ιπι L (0. 05モル) をゆっくりと滴下し、 室温で 1時間攪拌してシリル化 (シリ ル化率 X = 1 . 0) を行った。  Put 5.710 g (0.05 mol) of purified trans-1,4-diaminocyclohexane in a well-dried closed reaction vessel equipped with a stirrer, and fully dehydrate hexanemethylphosphoramide and Ν.重合, 混合 -dimethylacetamide mixed solvent (3: 1 by volume) Polymerization solvent 1 After dissolving in 50 niL, use a syringe to prepare Ν, Ο-bis (trimethylsilyl) trifluoroacetamide silylating agent 14. Ιπι L (0.05 mol) was slowly added dropwise, and the mixture was stirred at room temperature for 1 hour to perform silylation (silylation rate X = 1.0).
この溶液に 1 , 2, 3, 4 -シクロブ夕ンテトラカルボン酸二無水物粉末 9. 806g (0. 05モル) を徐々に加え室温で撹拌した。 この方法では、 ポリイミド前 駆体有機溶媒溶液が得られたものの、 その溶液中にはポリイミド前駆体の 一部が沈殿し、 数週間攪拌を継続しても均一な溶液は得られなかった。 こ れはポリイミド前駆体中のカルボキシ基が全てシリル化されているため、 溶媒和しにくく、 ポリマー鎖間の水素結合により重合途中で一部沈澱した ためである。 シリル化率 X =0. 4よりも低い場合では重合初期に強固な塩が 形成され、 重合が進行しなかった。 To this solution, 9,806 g (0.05 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride powder was gradually added, and the mixture was stirred at room temperature. In this method, although a polyimide precursor organic solvent solution was obtained, a part of the polyimide precursor was precipitated in the solution, and a uniform solution was not obtained even if stirring was continued for several weeks. This is because all the carboxy groups in the polyimide precursor are silylated, so that they are difficult to solvate and partially precipitate during polymerization due to hydrogen bonds between polymer chains. If the silylation ratio X is lower than 0.4, a strong salt Formed and polymerization did not proceed.
ぐ実施例 3 a > Example 3 a>
よく乾燥した攪拌機付密閉反応容器中に再結晶 ·精製済みのトランス - 1 , 4 -ジアミノシクロへキサン 5. 710g (0. 05モル) を入れ、 十分に脱水した Ν, Ν -ジメチルァセトアミドからなる重合溶媒 150mLに溶解した後、 シリンジに て N,0-ビス (トリメチルシリル) トリフルォロアセトアミドからなるシリ ル化剤 7. 0mL ( 0. 025モル) をゆっくりと滴下し、 室温で 1時間攪拌してシリ ル化 (シリル化率 X =0. 5) を行った。  Recrystallized and put 5.710 g (0.05 mol) of purified trans-1,4-diaminocyclohexane in a well-dried closed reaction vessel equipped with a stirrer, and thoroughly dehydrated Ν, Ν-dimethylacetamide Is dissolved in 150 mL of a polymerization solvent consisting of The silylation (silylation rate X = 0.5) was performed by stirring.
この溶液に 1, 2 , 3, 4 -シクロブタンテトラカルボン酸二無水物粉末 9. 806g ( 0. 05モル) を徐々に加え室温で撹拌した。 この方法では、 ポリイミ ド前 駆体有機溶媒溶液が得られたものの、 その溶液中のポリイミド前駆体の一 部が沈殿し、 一ヶ月間攪拌を継続しても粘稠で均一な溶液は得られなかつ た。 これは部分シリル化ポリイミド前駆体の Ν, Ν-ジメチルァセトアミドに 対する溶解度が乏しく、 重合途中で一部沈澱したためである。 重合溶媒と してへキサメチルホスホルアミドを含まない場合はリチウムクロライドの 添加の有無にかかわらず如何なるシリル化率でも同様に、 粘稠で均一な溶 液は得られなかった。  To this solution, 9,806 g (0.05 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride powder was gradually added, followed by stirring at room temperature. In this method, although a polyimide precursor organic solvent solution was obtained, a part of the polyimide precursor in the solution was precipitated, and a viscous and uniform solution was obtained even if stirring was continued for one month. What This is because the partially silylated polyimide precursor had poor solubility in Ν, Ν-dimethylacetamide and partially precipitated during polymerization. When hexamethylphosphoramide was not contained as a polymerization solvent, a viscous and uniform solution could not be obtained at any silylation rate regardless of whether lithium chloride was added or not.
ぐ実施例 4 a > Example 4 a>
実施例 1 aで重合したポリイミド前駆体の溶液をガラス基板に塗布し、 6 0°C、 2時間で乾燥してポリイミド前駆体膜を得た。 残留溶媒を除去するェ 程を経ずに、 これを基板上で減圧下 340°C、 3時間で熱的にイミド化を行つ たところ、 ポリイミド膜が得られた。  A solution of the polyimide precursor polymerized in Example 1a was applied to a glass substrate and dried at 60 ° C. for 2 hours to obtain a polyimide precursor film. This was thermally imidized on a substrate at 340 ° C. for 3 hours under reduced pressure without removing the residual solvent, whereby a polyimide film was obtained.
しかしながら得られたポリイミド膜は部分的に黒色化しており、 また膜 の断裂も一部に見られた。 これは溶媒として使用したへキサメチルホスホ ルアミドが非常に揮発しにくいため、 イミド化時に膜中に滞留しやすく、 へキサメチルホスホルアミド自身の熱分解や、 ポリイミド前駆体と何らか の反応が引き起こされためと考えられる。  However, the obtained polyimide film was partially blackened, and the film was partially broken. This is because hexamethylphosphoramide used as a solvent is very difficult to volatilize, so it tends to stay in the film during imidization, causing thermal decomposition of hexamethylphosphoramide itself and some reaction with the polyimide precursor. Probably because it was caused.
(比較例 2 a ) よく乾燥した攪拌機付密閉反応容器中に 4, 4 '-メチレンビス(シクロへキ シルァミン)からなる脂環式ァミン 10.518g (0.05モル) を入れ、 十分に脱 水した N,N-ジメチルァセトアミドからなる重合溶媒 200mLに溶解した後、 1, 2, 3, 4-シクロブタンテトラカルボン酸二無水物からなるカルボン酸二無水 物の粉末 9.806g (0.05モル) を徐々に加え室温で 2 4時間撹拌した。 この 系では脂環式ジァミンのシリル化なしで公知の方法で容易に重合が進行し た。 (Comparative Example 2a) 10.518 g (0.05 mol) of an alicyclic amine consisting of 4,4'-methylenebis (cyclohexylamine) was placed in a well-dried closed reaction vessel equipped with a stirrer, and N, N-dimethylacetamide was sufficiently dehydrated. After dissolving in 200 mL of a polymerization solvent consisting of 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 9.806 g (0.05 mol) of carboxylic acid dianhydride powder is gradually added, and the mixture is stirred at room temperature for 24 hours. did. In this system, polymerization proceeded easily by a known method without silylation of alicyclic diamine.
基板上で減圧下 300°C、 1時間で熱的にイミド化して得られたポリイミド 膜は誘電率 =1. IX平均屈折率の 2乗より見積もられた誘電率が 2.6と低誘 電率を示したが、 線熱膨張係数が 70ppm/Kと低熱膨張特性を示さなかった。 これは用いた脂環式ジァミンの屈曲構造により熱ィミド化時の自発的面内 配向が阻害されたためである。  The polyimide film obtained by thermally imidizing the substrate at 300 ° C for 1 hour under reduced pressure has a dielectric constant of 1. The dielectric constant estimated from the square of the IX average refractive index is 2.6, which is a low dielectric constant. However, the coefficient of linear thermal expansion was 70 ppm / K, indicating no low thermal expansion characteristics. This is because the spontaneous in-plane orientation during thermal imidization was inhibited by the bent structure of the alicyclic diamine used.
(比較例 3 a)  (Comparative Example 3a)
よく乾燥した攪拌機付密閉反応容器中に 1, 4 -ジァミノシクロへキサン (トランス/シス混合物) からなる脂環式ァミン 5.710g (0.05モル) を入れ、 十分に脱水した N,N-ジメチルァセトアミドからなる重合溶媒 150mLに溶解し た後、 1, 2, 3, 4 -シクロブ夕ンテトラカルボン酸二無水物からなるカルボン 酸二無水物の粉末 9.806g (0.05モル) を徐々に加え室温で 2 4時間撹拌し た。 この系では脂環式ジァミンのシリル化なしで公知の方法で容易に重合 が進行した。 基板上で減圧下 340°C、 1時間で熱的にイミド化して得られた ポリイミド膜は脆弱であつたが誘電率 =1. IX平均屈折率の 2乗より見積も られた誘電率が 2.6と低誘電率を示した。 しかしながら線熱膨張係数が 60pp m/Kと低熱膨張特性を示さなかった。 これは用いた脂環式ジァミンに折曲が り構造のシス 1,4-ジァミノシクロへキサンが含まれていたため熱ィミド化 時の自発的面内配向が阻害されたためである。  5.710 g (0.05 mol) of alicyclic amine consisting of 1,4-diaminocyclohexane (trans / cis mixture) was placed in a well-dried closed reaction vessel equipped with a stirrer, and sufficiently dried N, N-dimethylacetamide After dissolving in 150 mL of a polymerization solvent consisting of 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 9.806 g (0.05 mol) of carboxylic acid dianhydride powder was gradually added, and the solution was added at room temperature. Stirred for 4 hours. In this system, polymerization proceeded easily by a known method without silylation of alicyclic diamine. The polyimide film obtained by thermally imidizing the substrate at 340 ° C for 1 hour under reduced pressure was brittle, but the dielectric constant was 1. The dielectric constant estimated from the square of the IX average refractive index was 2.6. And low dielectric constant. However, the coefficient of linear thermal expansion was 60ppm / K, indicating no low thermal expansion characteristics. This is because spontaneous in-plane orientation during thermal imidization was inhibited because the alicyclic diamine used contained cis 1,4-diaminocyclohexane having a bent structure.
'(比較例 4 a) '(Comparative Example 4a)
よく乾燥した攪拌機付密閉反応容器中にパラフエ二レンジァミンからな る芳香族ジァミン 5.407g (0.05モル) を入れ、 十分に脱水した N,N-ジメチ ルァセトアミドからなる重合溶媒 200mUこ溶解した後、 3,3',4,4'-ビフエ二 ルテトラカルボン酸二無水物からなるカルボン酸二無水物の粉末 14.71 lg5.407 g (0.05 mol) of aromatic diamine consisting of paraphenylenediamine was placed in a well-dried closed reaction vessel equipped with a stirrer, and sufficiently dried N, N-dimethyl was added. After dissolving 200 mU of a polymerization solvent composed of rusacetamide, powder of carboxylic dianhydride composed of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride 14.71 lg
(0.05モル) を徐々に加え室温で 3時間撹拌した。 この系ではジァミンの シリル化なしで公知の方法で容易に重合が進行した。 基板上で減圧下 350°C、 1時間で熱的にイミド化して得られたポリイミド膜では線熱膨張係数は 6.0 PPm/Kと低熱膨張特性を示したが、 誘電率 =1.1 X平均屈折率の 2乗より見 積もられた誘電率が 3.5と低誘電率を示さなかった。 これは芳香族モノマー を用いたことが原因である。 (0.05 mol) was added slowly, and the mixture was stirred at room temperature for 3 hours. In this system, polymerization proceeded easily by a known method without silylation of diamine. The polyimide film obtained by thermal imidization at 350 ° C for 1 hour under reduced pressure on the substrate showed a low linear thermal expansion coefficient of 6.0 PPm / K, but the dielectric constant was 1.1 x the average refractive index. The dielectric constant estimated from the square of was 3.5, indicating no low dielectric constant. This is due to the use of aromatic monomers.
〔第二の発明〕  [Second invention]
各例における分析値は以下の方法により求めた。  The analysis value in each case was determined by the following method.
<固有粘度 >  <Intrinsic viscosity>
0. 5 w t %ポリイミド前駆体溶液を、 ォストワルド粘度計を用いて 3 0°Cで測定した。  The 0.5 wt% polyimide precursor solution was measured at 30 ° C. using an Ostwald viscometer.
<ガラス転移温度 > <Glass transition temperature>
動的粘弾性測定により、 周波数 0. 1 Ηζ、 昇温速度 5 °CZ分における損 失ピークから求めた。 The dynamic viscoelasticity was measured from the loss peak at a frequency of 0.1 mm and a heating rate of 5 ° CZ.
< 5 %重量減少温度 > <5% weight loss temperature>
ポリイミド膜の熱重量変化を熱天秤を用いて測定し、 重量が 5 %減少した 温度を求めた。 The thermogravimetric change of the polyimide film was measured using a thermobalance, and the temperature at which the weight was reduced by 5% was determined.
<線熱膨張係数 > <Linear thermal expansion coefficient>
熱機械分析により、 荷重 0. 5 gZ膜厚 l _im、 昇温速度 5°CZ分にお ける試験片の伸びより、 1 0 0〜200°Cの範囲での平均値として線熱膨 張係数を求めた。  According to thermomechanical analysis, the linear thermal expansion coefficient was calculated as an average value in the range of 100 to 200 ° C from the elongation of the test piece at a load of 0.5 gZ film thickness l_im and a heating rate of 5 ° CZ. I asked.
<カツトオフ波長 (透明性) >  <Cut-off wavelength (transparency)>
分光光度計により 20 0 n mから 1 00 0 nmの可視 ·紫外線透過率を 測定した。 透過率が 1 %以下となる波長 (カットオフ波長)'を透明性の指 標とした。 カットオフ波長が短い程、 透明性が良好であることを意味する。 The visible / ultraviolet transmittance from 200 nm to 100 nm was measured with a spectrophotometer. The wavelength (cutoff wavelength) 'at which the transmittance is 1% or less was used as the index of transparency. The shorter the cutoff wavelength, the better the transparency.
<複屈折 > ポリイミド膜に平行な方向(n in) と垂直な方向 (n。u t)の屈折率をアツ ベ屈折計 (ナトリウムランプ使用、 波長 589mn) で測定し、 これらの屈折率 の差から複屈折 (Δ n = n in— n。u t) を求めた。 <Birefringence> The refractive index in the direction parallel to the polyimide film (n in ) and in the direction perpendicular to the polyimide film (n. Ut ) was measured with an Atsube refractometer (using a sodium lamp, wavelength 589 mn), and the birefringence (Δ n = n in -. n ut ) was determined.
<誘電率 > <Dielectric constant>
ポリイミド膜の平均屈折率 〔n av= ( 2 n m+ n out) Z3〕 に基づいて、 次式により 1MHzにおける誘電率 (ε) を算出した。 Based on the average refractive index [n av = (2 nm + n out) Z3] of the polyimide film, the dielectric constant (ε) at 1 MHz was calculated by the following equation.
ε = 1. 1 X n av2 ( 1 kH z ) ε = 1.1 X n av 2 (1 kHz)
(実施例 1 b)  (Example 1b)
よく乾燥した攪拌機付密閉反応容器中に再結晶 ·精製済みのトランス - 1, 4 -ジアミノシクロへキサン 5.710g (0.05モル) を入れ、 十分に脱水したへ キサメチルホスホルアミドと Ν,Ν-ジメチルァセトアミドの混合溶媒 (体積 比 3 : 1) 130mLに溶解した後、 シリンジにて N,0_ビス (トリメチルシリ ル) トリフルォロアセトアミド 15. OmL (0.05モル) をゆっくりと滴下し、 室温で 1時間攪拌してシリル化 (シリル化率 X =1.0) を行った。  Put 5.710 g (0.05 mol) of re-transformed and purified trans-1,4-diaminocyclohexane in a well-dried closed reaction vessel equipped with a stirrer, and fully dehydrate hexane methylphosphoramide and Ν, Ν- After dissolving in 130 mL of a mixed solvent of dimethylacetamide (volume ratio 3: 1), 15.OmL (0.05 mol) of N, 0_bis (trimethylsilyl) trifluoroacetamide was slowly added dropwise with a syringe. The mixture was stirred at room temperature for 1 hour to perform silylation (silylation rate X = 1.0).
この溶液にピロメリット酸二無水物粉末 10.906g (0.05モル) を徐々に加 え室温で 2時間撹拌し均一で粘稠なポリイミド前駆体溶液 (ポリイミド前 駆体有機溶媒溶液) を得た。 これを 100°Cで 20分加熱して貯蔵安定性を高め る処理を行った。 重合時と同じ溶媒中、 30°Cで測定したポリイミド前駆体 の固有粘度は 3.9dL/gと極めて高重合体であった。  To this solution, 10.906 g (0.05 mol) of pyromellitic dianhydride powder was gradually added and stirred at room temperature for 2 hours to obtain a uniform and viscous polyimide precursor solution (polyimide precursor organic solvent solution). This was heated at 100 ° C for 20 minutes to increase the storage stability. The intrinsic viscosity of the polyimide precursor measured at 30 ° C in the same solvent as in the polymerization was 3.9 dL / g, which was an extremely high polymer.
ポリイミド前駆体溶液をガラス基板に塗布し、 60°C、 2〜4時間で真空 乾燥して得た透明で良質なポリイミド前駆体膜を 1-ブタノ一ルに 2時間浸 漬して残留溶媒を完全に除去した。 これをそのまま基板上で減圧下 300°C、 1時間で熱的にイミド化を行い、 基板から剥がしてから更に 305°C、 1時間で 熱処理を行って膜厚 10 mの無着色透明な半芳香族ポリイミド膜を得た。 膜物性は、 誘電率 2.91、 線熱膨張係数 llppm/K、 ガラス転移温度 442 :、 、 窒素雰囲気中の 5 %重量減少温度 (昇温速度 10°C/min) 435°C、 空気 中で 425°C、 カットオフ波長 320 であり、 目的とする特性を全て満足する ことができた。 複屈折△ nは 0.1771と、 非常に高い値を示したことから、 ポリイミド鎖が高度に面内配向しており、 これが低熱膨張特性発現の理由 である。 得られたポリイミド前駆体薄膜およびポリイミド薄膜の赤外線吸 収スペクトルを図 5、 図 6にそれぞれ示し、 ポリイミド前駆体薄膜および ポリイミド薄膜のピークテーブルを下記表 1 b、 表 2 bに記載する。 表 1b :本発明のポリイミド前駆体のピークテーブル A polyimide precursor solution is applied to a glass substrate and vacuum-dried at 60 ° C for 2 to 4 hours.The transparent and high-quality polyimide precursor film is immersed in 1-butanol for 2 hours to remove residual solvent. Removed completely. This is thermally imidized as it is on a substrate under reduced pressure at 300 ° C for 1 hour, peeled off from the substrate, and then heat-treated at 305 ° C for 1 hour to give a 10 m-thick uncolored transparent semi-finished film. An aromatic polyimide film was obtained. The physical properties of the film are: dielectric constant 2.91, coefficient of linear thermal expansion llppm / K, glass transition temperature 442: 5% weight loss temperature in nitrogen atmosphere (heating rate 10 ° C / min) 435 ° C, 425 in air ° C and cutoff wavelength of 320, all of the desired characteristics could be satisfied. Since the birefringence △ n was 0.1771, which was a very high value, Polyimide chains are highly oriented in the plane, which is the reason for the low thermal expansion characteristics. The infrared absorption spectra of the obtained polyimide precursor thin film and polyimide thin film are shown in FIGS. 5 and 6, respectively. The peak tables of the polyimide precursor thin film and polyimide thin film are shown in Tables 1b and 2b below. Table 1b: Peak table of the polyimide precursor of the present invention
Figure imgf000034_0001
表 2b:本発明のポリイミドのピークテーブル
Figure imgf000034_0001
Table 2b: Peak table of the polyimide of the present invention
Figure imgf000034_0002
Figure imgf000034_0002
(比較例 l b ) (Comparative example l b)
よく乾燥した攪拌機付密閉反応容器中に再結晶 ·精製済みのトランス- 1, 4-ジアミノシクロへキサン 5. 710g (0. 05モル) を入れ、 十分に脱水した Ν, Ν -ジメチルァセトアミド 130mLに溶解した。 ジァミンのシリル化を行わない でピロメリット酸二無水物粉末 10. 906g (0. 05モル) を徐々に加え室温で撹 拌した。 Put 5.710 g (0.05 mol) of recrystallized and purified trans-1,4-diaminocyclohexane in a well-dried closed reaction vessel with a stirrer, and sufficiently dry 脱水, Ν-dimethylacetamide Dissolved in 130 mL. Do not silylate diamine Then, 10.906 g (0.05 mol) of pyromellitic dianhydride powder was gradually added thereto, followed by stirring at room temperature.
しかし、 重合初期に強固な塩が形成され、 室温で数週間〜 1ヶ月間攪拌を 継続しても、 重合が全く進行しなかった。 重合溶媒として Ν, Ν-ジメチルァ セトアミドの他に Ν,Ν -ジメチルホルムアミド、 Ν -メチル -2-ピロリ ドン、 1 However, a strong salt was formed at the beginning of the polymerization, and the polymerization did not proceed at all even if stirring was continued at room temperature for several weeks to one month. Other than Ν, Ν-dimethylacetamide, 溶媒, Ν-dimethylformamide, Ν-methyl-2-pyrrolidone,
3 -ジメチル- 2-イミダゾリジノン、 ジメチルスルホォキシド、 Τ -プチロラ クトン、 ジグライム、 m—クレゾ一ル、 へキサメチルホスホルアミド、 へ キサメチルホスホルアミド /N,N -ジメチルァセトアミド混合溶媒、 へキサメ チルホスホルアミド /N -メチル -2-ピロリ ドン混合溶媒、 テトラヒドロフラ ン /メタノ一ル混合溶媒を用いて重合を試みたが、 あらゆる溶媒系で全く重 合は進行しなかった。 3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, Τ -butyrolactone, diglyme, m-cresol, hexamethylphosphoramide, hexamethylphosphoramide / N, N-dimethylacetamide Polymerization was attempted using a mixed solvent, hexamethylphosphoramide / N-methyl-2-pyrrolidone mixed solvent, and tetrahydrofuran / methanol mixture solvent, but no polymerization proceeded in any solvent system. .
またこれらの溶媒系で溶質濃度 1〜 1 5重量%の濃度範囲、 室温〜 1 50°C の温度範囲で重合反応を試みたが、 同様に全く重合しなかった。 更に、 ピ リジンゃトリエチルァミンのような三級ァミンあるいはリチウムクロライ ドのような無機塩類も用いたがこれらの添加効果は全く見られず重合は全 く進行しなかった。  Polymerization was attempted in these solvent systems in a solute concentration range of 1 to 15% by weight and a temperature range of room temperature to 150 ° C. Furthermore, tertiary amines such as pyridine-triethylamine or inorganic salts such as lithium chloride were also used, but the effect of adding these was not observed at all and the polymerization did not proceed at all.
(実施例 2 b )  (Example 2b)
よく乾燥した攪拌機付密閉反応容器中に再結晶 ·精製済みのトランス - 1, Recrystallized in a well-dried closed reaction vessel with a stirrer
4 -ジアミノシクロへキサン 5. 710g ( 0. 05モル) を入れ、 十分に脱水した N,N -ジメチルァセトアミド 1 30mLに溶解した後、 シリンジにて N, 0_ビス (トリ メチルシリル) トリフルォロアセトアミドからなるシリル化剤 1 5. OmL ( 0. 0 5モル) をゆっくりと滴下し、 室温で 1時間攪拌してシリル化 (シリル化率 X = 1 . 0) を行った。 この溶液にピロメリット酸二無水物粉末 1 0. 906g ( 0. 05 モル) を徐々に加え室温で撹拌した。 Add 5.710 g (0.05 mol) of 4-diaminocyclohexane, dissolve in 30 mL of fully dehydrated N, N-dimethylacetoamide, and use a syringe to add N, 0_bis (trimethylsilyl) trifluoro. A silylating agent composed of oloacetamide (15.0 OmL (0.05 mol)) was slowly added dropwise, and the mixture was stirred at room temperature for 1 hour to perform silylation (silylation rate X = 1.0). To this solution, 10.906 g (0.05 mol) of pyromellitic dianhydride powder was gradually added, followed by stirring at room temperature.
この方法では、 ポリイミド前駆体溶液が得られたものの、 その溶液中の ポリイミド前駆体の一部が沈殿し、 一ヶ月間攪拌を継続しても粘稠で均一 な溶液は得られなかった。 これはシリル化ポリイミド前駆体の N,N-ジメチ ルァセトアミドに対する溶解度が乏しく、 重合途中で一部沈澱したためで ある。 重合溶媒としてへキサメチルホスホルアミドを含まない場合はリチ ゥムクロライドの添加の有無にかかわらず如何なるシリル化率でも同様に、 粘稠で均一な溶液は得られなかった。 In this method, although a polyimide precursor solution was obtained, a part of the polyimide precursor precipitated in the solution, and a viscous and uniform solution was not obtained even if stirring was continued for one month. This is due to the poor solubility of the silylated polyimide precursor in N, N-dimethylacetoamide and partial precipitation during the polymerization. is there. When hexamethylphosphoramide was not contained as a polymerization solvent, a viscous and uniform solution could not be obtained at any silylation rate regardless of whether or not lithium chloride was added.
(実施例 3 b )  (Example 3b)
実施例 1 bで重合したポリイミド前駆体の溶液をガラス基板に塗布し、 6 0°C、 2時間で真空乾燥して透明で良質なポリイミド前駆体膜を得た。 残留 溶媒を除去する工程を経ずに、 これを基板上で減圧下 300°C、 1時間で熱的 にィミド化を行った。  A solution of the polyimide precursor polymerized in Example 1b was applied to a glass substrate, and vacuum-dried at 60 ° C. for 2 hours to obtain a transparent and high-quality polyimide precursor film. This was thermally imidized at 300 ° C. for 1 hour under reduced pressure on the substrate without going through the step of removing the residual solvent.
この方法では、 得られたポリイミド膜が部分的に黒色化しており、 また、 膜の断裂も部分的に見られた。 これは溶媒として使用したへキサメチルホ スホルアミドが非常に揮発しにくいため、 イミド化時に膜中に滞留しやす く、 へキサメチルホスホルアミド自身の熱分解や、 ポリイミド前駆体と何 らかの反応が引 起こされためと考えられる。  In this method, the obtained polyimide film was partially blackened, and the film was partially broken. This is because hexamethylphosphoramide used as a solvent is very difficult to volatilize, so it tends to stay in the membrane during imidization, causing thermal decomposition of hexamethylphosphoramide itself and some reaction with the polyimide precursor. Probably because it was caused.
(比較例 2 b )  (Comparative Example 2b)
よく乾燥した攪拌機付密閉反応容器中に 4, 4' -メチレンビス(シクロへキ シルァミン) 1 0. 51 8g ( 0. 05モル) を入れ、 十分に脱水した Ν, Ν-ジメチルァ セトアミ ド 1 80mLに溶解した後、 ピロメリット酸二無水物粉末 10. 906g ( 0. 0 5モル) を徐々に加え室温で 2 4時間撹拌した。 この系では脂環式ジァミン のシリル化なしで公知の方法で容易に重合が進行した。 しかしながら基板 上で減圧下 300°C、 1時間で熱的にイミド化して得られたポリイミド膜は線 熱膨張係数が 70ppm/Kであり低熱膨張特性を示さなかった。 これは用いた脂 環式ジァミンの屈曲構造により熱ィミド化時の自発的面内配向が阻害され たためである。  Put 4,4'-methylenebis (cyclohexylamine) 10.518 g (0.05 mol) in a well-dried closed reaction vessel equipped with a stirrer, and sufficiently dry 脱水, Ν-dimethylacetamide in 80 mL. After dissolution, 10.906 g (0.05 mol) of pyromellitic dianhydride powder was gradually added, followed by stirring at room temperature for 24 hours. In this system, polymerization proceeded easily by a known method without silylation of alicyclic diamine. However, the polyimide film obtained by thermally imidizing the substrate at 300 ° C for 1 hour under reduced pressure had a linear thermal expansion coefficient of 70 ppm / K and did not show low thermal expansion characteristics. This is because the spontaneous in-plane orientation during thermal imidization was inhibited by the bent structure of the alicyclic diamine used.
(比較例 3 b )  (Comparative Example 3b)
よく乾燥した攪拌機付密閉反応容器中に 1 , 4 -ジァミノシクロへキサン 1,4-Diaminocyclohexane in a well-dried closed reaction vessel with stirrer
(トランス/シス混合物) 5. 710g (0. 05モル) を入れ、 十分に脱水した Ν, Ν - ジメチルァセトアミド 1 30mUこ溶解した後、 ピロメリット酸ニ無水物粉末 10. 906g ( 0. 05モル) を徐々に加え室温で 2 4時間撹拌した。 この系では脂環 式ジァミンのシリル化なしで公知の方法で容易に重合が進行した。 しかし ながら基板上で減圧下 300°C、 1時間で熱的にイミド化して得られたポリイ ミド膜は極めて脆弱であった。 (Trans / cis mixture) 5. Add 710 g (0.05 mol), fully dehydrated 30, Ν-dimethylacetamide (1 30 mU), dissolve, and pyromellitic dianhydride powder 10.906 g (0. (05 mol) was added slowly and the mixture was stirred at room temperature for 24 hours. Alicyclic in this system Polymerization proceeded easily in a known manner without silylation of the formula diamine. However, the polyimide film obtained by thermally imidizing the substrate at 300 ° C for 1 hour under reduced pressure was extremely fragile.
これはジァミン成分に反応性の低いシス- 1 , 4 -ジアミノシクロへキサンが 含まれていたためである。 またこのポリイミド膜は線熱膨張係数が 60ppm/K であり低熱膨張特性を示さなかった。 これは用いた脂環式ジァミンに折曲 がり構造のシス 4-ジァミノシクロへキサンが含まれていたため熱ィミド 化時の自発的面内配向が阻害されたためである。  This is because the diamine component contained cis-1,4-diaminocyclohexane with low reactivity. The polyimide film had a linear thermal expansion coefficient of 60 ppm / K and did not exhibit low thermal expansion characteristics. This is because spontaneous in-plane orientation during thermal imidization was inhibited because the alicyclic diamine used contained cis 4-diaminocyclohexane having a bent structure.
(比較例 4 b )  (Comparative Example 4b)
よく乾燥した攪拌機付密閉反応容器中にパラフエ二レンジァミン 5. 407g ( 0. 05モル) を入れ、 十分に脱水した Ν, Ν-ジメチルァセトアミド 200mLに溶 解した後、 3, 3',4, 4 ' -ビフエニルテトラカルボン酸二無水物の粉末 14. 71 l g Put 5.407 g (0.05 mol) of paraphenylenediamine in a well-dried closed reaction vessel with a stirrer, dissolve in 200 mL of fully dehydrated Ν, Ν-dimethylacetamide, and then add 3,3 ', 4 , 4'-biphenyltetracarboxylic dianhydride powder 14.71 lg
( 0. 05モル) を徐々に加え室温で 3時間撹拌した。 この系ではジァミンの シリル化なしで公知の方法で容易に重合が進行した。 (0.05 mol) was added slowly, and the mixture was stirred at room temperature for 3 hours. In this system, polymerization proceeded easily by a known method without silylation of diamine.
基板上で減圧下 350° (:、 1時間で熱的にイミド化して得られたポリイミド 膜では線熱膨張係数は 6. Oppm/Kと極めて低い熱膨張係数を示したが、 誘電 率は 3. 5であり低誘電率を示さず、 更にこのポリイミド膜は著しく着色した。  The polyimide film obtained by thermal imidization at 350 ° (: 1 hour under reduced pressure on the substrate showed an extremely low coefficient of linear thermal expansion of 6. Oppm / K, but a dielectric constant of 3 .5, showing no low dielectric constant, and the polyimide film was markedly colored.
これは酸二無水物成分、 ジァミン成分共に芳香族モノマーを用いたため に、 分子内共役および電荷移動相互作用が生じたことが原因である。 同様 にピロメリット酸ニ無水物とパラフエ二レンジァミンから得られた棒状構 造のポリイミド膜も低熱膨張特性を示したのみで、 低誘電率と高透明性を 達成することはできなかった。 これも酸二無水物成分、 ジァミン成分共に 芳香族モノマ一を用いたことが原因である。 産業上の利用可能性  This is because the use of aromatic monomers in both the acid dianhydride component and the diamine component caused intramolecular conjugation and charge transfer interaction. Similarly, a polyimide film having a rod-like structure obtained from pyromellitic dianhydride and paraphenylenediamine showed only low thermal expansion characteristics, but could not achieve low dielectric constant and high transparency. This is also due to the use of aromatic monomers for both the acid dianhydride component and the diamine component. Industrial applicability
本発明によれば、 低誘電率、 低線熱膨張係数、 高ガラス転移温度、 高透 明性、 十分な強靭さ、 成膜加工性を併せ持つポリイミド膜を製造すること ができる。 また、 本発明の製造方法によれば、 重合溶媒に対する分散性が 高いポリイミド前駆体が得られ、 そのようなポリイミド前駆体の有機溶媒 溶液は溶液貯蔵安定性に優れている。 また、 本発明の製造方法は余分は精 製工程が必要ないので、 従来に比べてポリイミドの製造コストが安くなる。 According to the present invention, a polyimide film having a low dielectric constant, a low coefficient of linear thermal expansion, a high glass transition temperature, high transparency, sufficient toughness, and film forming processability can be produced. Further, according to the production method of the present invention, the dispersibility in a polymerization solvent is A high polyimide precursor is obtained, and a solution of such a polyimide precursor in an organic solvent has excellent solution storage stability. Further, the production method of the present invention does not require an extra purification step, so that the production cost of polyimide is lower than in the past.

Claims

請求の範囲 The scope of the claims
1 · トランス 1,4 -ジアミノシクロへキサンと、 シリル化剤とを反応させて 中間生成物を生成した後、 前記中間生成物と 1,2,3,4—シクロブタンテトラ カルボン酸二無水物とを反応させ、 繰り返し構造単位が下記単位構造式 (l a) で表される全脂環式ポリイミド前駆体を製造するポリイミド前駆 体の製造方法。 After reacting 1 · trans 1,4-diaminocyclohexane with a silylating agent to produce an intermediate product, the intermediate product is combined with 1,2,3,4-cyclobutanetetracarboxylic dianhydride To produce an all-alicyclic polyimide precursor having a repeating structural unit represented by the following structural formula (la).
Figure imgf000039_0001
Figure imgf000039_0001
(上記単位構造式 (l a) 中、 Rは H又はシリル基であって、 前記ポリィ ミド前駆体は、 1つの単位構造式中の置換基 Rのうちいずれか一方又は両 方がシリル基である単位構造を少なくとも 1つ有する)  (In the above-mentioned unit structural formula (la), R is H or a silyl group, and in the polyimide precursor, one or both of the substituents R in one unit structural formula are a silyl group. Has at least one unit structure)
2. 前記シリル化剤として、 化学構造中にハロゲン原子を有しない非ハロ ゲン化シリル化剤を用いる請求項 1記載のポリイミド前駆体の製造方法。 2. The method for producing a polyimide precursor according to claim 1, wherein a non-halogenated silylating agent having no halogen atom in a chemical structure is used as the silylating agent.
3. 前記非ハロゲン化シリル化剤として Ν,Ο-ビス (トリメチルシリル) ト リフルォロアセトアミドと Ν,0_ビス (トリメチルシリル) ァセトアミドの いずれか一方又は両方を用いる請求項 2記載のポリイミド前駆体の製造方 法。 3. The polyimide precursor according to claim 2, wherein one or both of Ν, Ο-bis (trimethylsilyl) trifluoroacetamide and Ν, 0_bis (trimethylsilyl) acetamide are used as the non-halogenated silylating agent. Production method.
4. 前記単位構造式 (l a) で中の Rは H又は Si(CH3)3基であり、 前記ト ランス 1,4 -ジアミノシクロへキサンと、 シリル化剤とを所定割合で反応さ せる請求項 1乃至請求項 3のいずれか 1項記載のポリイミド前駆体の製造 方法であって、 4. In the unit structural formula (la), R is H or Si (CH 3 ) 3 group, and the trans 1,4-diaminocyclohexane and the silylating agent are reacted at a predetermined ratio. The method for producing a polyimide precursor according to any one of claims 1 to 3, wherein
化学構造全体に含有される Rのうち、 51((113)3基からなる1^の数を八、 Hからなる Rの数を Bとすると、 下記数式 (1) で表されるシリル化率が 0. 4以上 0. 9以下になる割り合いで、 前記シリル化剤と前記卜ランス 1, 4-ジァミノシクロへキサンとを反応させるポリイミド前駆体の製造方法。 シリル化率 =AZ (A + B) ……数式 (1) Assuming that the number of 1 ^ consisting of 51 ((11 3 ) 3 groups is eight and the number of R consisting of H is B among R contained in the entire chemical structure, the silylation represented by the following formula (1) The silylating agent and the trans 1,1 A method for producing a polyimide precursor in which 4-diaminocyclohexane is reacted. Silylation rate = AZ (A + B) …… Formula (1)
5. トランス 1,4-ジアミノシクロへキサンと、 シリル化剤とを重合溶媒中 で反応させて中間生成物を生成した後、 前記重合溶媒中に 1,2, 3, 4ーシクロ ブタンテトラカルボン酸二無水物を添加し、 前記中間生成物と、 前記 1,2,3, 4ーシクロブタンテトラカルボン酸二無水物とを反応させ、 ポリイミド前駆 体が前記重合溶媒中に分散又は溶解されたポリイミド前駆体有機溶媒溶液 を製造するポリイミド前駆体有機溶媒溶液の製造方法。  5. Trans 1,4-diaminocyclohexane and a silylating agent are reacted in a polymerization solvent to produce an intermediate product, and then 1,2,3,4-cyclobutanetetracarboxylic acid is added to the polymerization solvent. Adding a dianhydride, reacting the intermediate product with the 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and dispersing or dissolving the polyimide precursor in the polymerization solvent. A method for producing a polyimide precursor organic solvent solution for producing a body organic solvent solution.
6. 請求項 5記載のポリイミド前駆体有機溶媒溶液を塗布対象物に塗布し、 キャスト膜を形成した後、 前記キャスト膜中のポリイミド前駆体をイミド 化するポリイミド膜の製造方法であって、  6. A method for producing a polyimide film, comprising applying the polyimide precursor organic solvent solution according to claim 5 to an object to be coated, forming a cast film, and then imidizing the polyimide precursor in the cast film.
前記重合溶媒に、 前記トランス 1,4-ジアミノシクロへキサンと、 前記シ リル化剤と、 前記 1,2, 3, 4—シクロブタンテトラカルボン酸二無水物と、 前 記中間生成物に対して親和性が高い高沸点溶媒を含有させ、  In the polymerization solvent, the trans 1,4-diaminocyclohexane, the silylating agent, the 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and the intermediate product High affinity solvent containing high boiling point solvent,
前記重合溶媒と親和性が高く、 かつ前記重合溶媒よりも沸点が低い洗浄 液を前記キャスト膜に接触させ、 前記キャスト膜を洗浄した後、 前記イミ ド化を行うポリイミド膜の製造方法。  A method for producing a polyimide film, comprising: bringing a cleaning liquid having a high affinity with the polymerization solvent and having a boiling point lower than that of the polymerization solvent into contact with the cast film; washing the cast film;
7. 前記高沸点溶媒としてへキサメチルホスホルアミドを用い、  7. Using hexamethylphosphoramide as the high boiling solvent,
前記洗浄液としてアルコールを用いる請求項 6記載のポリイミ ド膜の製 造方法。  7. The method for producing a polyimide film according to claim 6, wherein alcohol is used as the cleaning liquid.
8. 繰り返し構造単位が上記単位構造式 (l a) で表され、 上記単位構造 式 ( l a) 中の置換基 Rは Hまたは Si(CH3)3基である全脂環式ポリイミド 前駆体であって、 8. The repeating structural unit is represented by the unit structural formula (la), and the substituent R in the unit structural formula (la) is an all-alicyclic polyimide precursor in which H or Si (CH 3 ) 3 is a group. hand,
1つの単位構造式中の置換基 Rのうち、 いずれか一方又は両方が Si (CH3) 3基である単位構造を少なくとも一つ有し、 かつ固有粘度が 1. O d l Zg 以上であるポリイミド前駆体。 A polyimide having at least one unit structure in which one or both of the substituents R in one unit structural formula is a Si (CH 3 ) 3 group, and having an intrinsic viscosity of 1.O dl Zg or more precursor.
9. 上記単位構造式 ( l a) 中の各 1,4 -シクロへキサン残基の立体構造が トランス配置であることを特徴とする請求項 8記載のポリイミド前駆体。 9. The polyimide precursor according to claim 8, wherein the stereostructure of each 1,4-cyclohexane residue in the unit structural formula (la) is a trans configuration.
1 0. 全化学構造中、 Si(CH3)3基からなる置換基 Rの合計数を A、 水素か らなる置換基 Rの合計数を Bとすると、 10. In the entire chemical structure, if the total number of substituents R consisting of Si (CH 3 ) 3 groups is A, and the total number of substituents R consisting of hydrogen is B,
下記数式 (1) で表されるポリイミド前駆体のシリル化率が 0. 4以上 0. 9以下の範囲である請求項 8又は請求項 9のいずれか 1項記載のポリ イミド前駆体。  10. The polyimide precursor according to claim 8, wherein a silylation rate of the polyimide precursor represented by the following formula (1) is in a range of 0.4 or more and 0.9 or less.
シリル化率 =AZ (A+B) ……数式 (1)  Silylation rate = AZ (A + B) …… Formula (1)
1 1. 繰り返し構造単位が下記単位構造式 (2 a) で表され、 下記単位構 造式 (2 a) 中の各 1,4-シクロへキサン残基の立体構造がトランス配置で あることを特徴とするポリイミド。  1 1. The repeating structural unit is represented by the following unit structural formula (2a), and the steric structure of each 1,4-cyclohexane residue in the following unit structural formula (2a) is in a trans configuration. Characteristic polyimide.
-単位構造式 (2a)-Unit structural formula (2a)
Figure imgf000041_0001
Figure imgf000041_0001
1 2. 請求項 1 1項記載のポリイミドを主成分とするポリイミド膜。 1 2. A polyimide film comprising the polyimide according to claim 11 as a main component.
1 3. トランス 1,4-ジアミノシクロへキサンと、 シリル化剤とを反応させ て中間生成物を生成した後、 前記中間生成物とピロメリット酸ニ無水物と を反応させ、 繰り返し構造単位が下記単位構造式 (l b) で表されるポリ イミド前駆体を製造するポリイミド前駆体の製造方法。 1 3. Trans 1,4-diaminocyclohexane and a silylating agent are reacted to form an intermediate product, and then the intermediate product is reacted with pyromellitic dianhydride to form a repeating structural unit. A method for producing a polyimide precursor for producing a polyimide precursor represented by the following unit structural formula (lb).
-単位構造式 (lb)-Unit structural formula (lb)
Figure imgf000041_0002
Figure imgf000041_0002
(上記単位構造式 (l b)'中、 Rは H又はシリル基であって、 前記ポリィ ミド前駆体は、 1つの単位構造式中の置換基 Rのうちいずれか一方又は両 方がシリル基である単位構造を少なくとも 1つ有する)  (In the unit structural formula (lb) ′, R is H or a silyl group, and the polyimide precursor is a compound in which one or both of the substituents R in one unit structural formula are a silyl group. Has at least one unit structure)
14. 前記シリル化剤として、 化学構造中にハロゲン原子を含有しない非 ハロゲン化シリル化剤を用いる請求項 1 3記載のポリイミド前駆体の製造 方法。 14. The production of a polyimide precursor according to claim 13, wherein a non-halogenated silylating agent containing no halogen atom in a chemical structure is used as the silylating agent. Method.
1 5. 前記非ハロゲン化シリル化剤として N,0-ビス (トリメチルシリル) トリフルォロアセトアミドと Ν,0_ビス (トリメチルシリル) ァセトアミド のいずれか一方又は両方を用いる請求項 14記載のポリイミド前駆体の製 造方法。  15. The polyimide precursor according to claim 14, wherein one or both of N, 0-bis (trimethylsilyl) trifluoroacetamide and Ν, 0_bis (trimethylsilyl) acetamide are used as the non-halogenated silylating agent. Production method.
1 6. 前記トランス 1,4-ジアミノシクロへキサンと、 前記シリル化剤とを 所定割合で反応させる請求項 1 3乃至請求項 1 5のいずれか 1項記載のポ リイミド前駆体の製造方法であって、  16. The process for producing a polyimide precursor according to any one of claims 13 to 15, wherein the trans 1,4-diaminocyclohexane and the silylating agent are reacted at a predetermined ratio. So,
化学構造全体に含有される Rのうち、 シリル基からなる Rの数を Α、 Η からなる Rの数を Βとすると、 下記数式 ( 1) で表される前記ポリイミド 前駆体のシリル化率が 0. 9以上 1. 0以下になるように、 前記トランス 1, 4-ジアミノシクロへキサンと、 前記シリル化剤とを反応させるポリイミド 前駆体の製造方法。  Assuming that the number of R consisting of a silyl group is Α and the number of R consisting of Η is Β among the Rs contained in the entire chemical structure, the silylation rate of the polyimide precursor represented by the following formula (1) is A method for producing a polyimide precursor, wherein the trans 1,4-diaminocyclohexane is reacted with the silylating agent so that the ratio is 0.9 or more and 1.0 or less.
シリル化率 =ΑΖ (Α+Β) ……数式 ( 1)  Silylation rate = ΑΖ (Α + Β) …… Formula (1)
1 7. 前記トランス 1,4-ジアミノシクロへキサンと、 前記シリル化剤とを 所定割合で反応させる請求項 1 3乃至請求項 1 6のいずれか 1項記載のポ リイミド前駆体の製造方法であって、  17. The method for producing a polyimide precursor according to any one of claims 13 to 16, wherein the trans 1,4-diaminocyclohexane and the silylating agent are reacted at a predetermined ratio. So,
反応前の前記トランス 1,4-ジァミノシクロへキサンの全部のァミノ基の 数を c、 前記中間生成物全部のシリル基の数を dとすると、  When the number of all amino groups of the trans 1,4-diaminocyclohexane before the reaction is c, and the number of silyl groups of all the intermediate products is d,
下記数式 (2) で表される前記中間生成物のシリル化率が 0. 9以上 1. 0以下の範囲になるような割合で前記トランス 1, 4-ジァミノシクロへキサ ンと、 前記シリル化剤とを反応させるポリイミド前駆体の製造方法。  The trans 1,4-diaminocyclohexane and the silylating agent in such a ratio that the silylation rate of the intermediate product represented by the following formula (2) is in the range of 0.9 or more and 1.0 or less. And a method for producing a polyimide precursor.
シリル化率 =dZc……数式 (2)  Silylation rate = dZc …… Equation (2)
1 8. トランス 1,4 -ジアミノシクロへキサンと、 シリル化剤とを重合溶媒 中で反応させて中間生成物を生成した後、 前記重合溶媒中にピロメリット 酸二無水物を添加し、 前記中間生成物と、 前記ピロメリット酸二無水物と を反応させ、 ポリイミド前駆体が前記重合溶媒中に分散又は溶解されたポ リイミド前駆体の溶液を製造するポリイミド前駆体有機溶媒溶液の製造方 法。 1 8. Trans 1,4-diaminocyclohexane and a silylating agent are reacted in a polymerization solvent to produce an intermediate product, and then pyromellitic dianhydride is added to the polymerization solvent. A method for producing a polyimide precursor organic solvent solution, comprising reacting an intermediate product with the pyromellitic dianhydride to produce a solution of a polyimide precursor in which the polyimide precursor is dispersed or dissolved in the polymerization solvent. Law.
1 9. 請求項 1 8記載のポリイミド前駆体有機溶媒溶液を塗布対象物に塗 布し、 キャスト膜を形成した後、 前記キャスト膜中のポリイミド前駆体を イミド化するポリイミド膜の製造方法であって、  19. A method for producing a polyimide film, comprising: applying the polyimide precursor organic solvent solution according to claim 18 to an object to be coated; forming a cast film; and imidizing the polyimide precursor in the cast film. hand,
前記重合溶媒に、 前記トランス 1, 4-ジアミノシクロへキサンと、 前記シ リル化剤と、 前記ピロメリット酸二無水物と、 前記中間生成物に対して親 和性が高い高沸点溶媒を含有させ、  The polymerization solvent contains the trans 1,4-diaminocyclohexane, the silylating agent, the pyromellitic dianhydride, and a high boiling solvent having high affinity for the intermediate product. Let
前記重合溶媒と親和性が高く、 かつ前記重合溶媒よりも沸点が低い洗浄 液を前記キャスト膜に接触させ、 前記キャスト膜を洗浄した後、 前記イミ ド化を行うポリイミド膜の製造方法。  A method for producing a polyimide film, comprising: bringing a cleaning liquid having a high affinity with the polymerization solvent and having a boiling point lower than that of the polymerization solvent into contact with the cast film; washing the cast film;
20. 前記高沸点溶媒としてへキサメチルホスホルアミドを用い、  20. Using hexamethylphosphoramide as the high boiling solvent,
前記洗浄液としてアルコールを用いる請求項 1 9記載のポリイミド膜の 製造方法。  The method for producing a polyimide film according to claim 19, wherein an alcohol is used as the cleaning liquid.
2 1. 繰り返し構造単位が上記単位構造式 (l b) で表され、 上記単位構 造式 (l b) 中の置換基 Rは Hまたは Si(CH3)3基である全脂環式ポリイミ ド前駆体であって、 2 1. The repeating unit is represented by the above-mentioned unit structural formula (lb), and the substituent R in the above-mentioned unit structural formula (lb) is H or Si (CH 3 ) 3 , an all-alicyclic polyimide precursor Body
1つの単位構造式中の置換基 Rのうち、 いずれか一方又は両方が Si (CH3) 3基である単位構造を少なくとも一つ有し、 かつ固有粘度が 2. 0 d L/g 以上であるポリイミド前駆体。 One or more of the substituents R in one unit structural formula have at least one unit structure in which one or both are Si (CH 3 ) 3 groups, and have an intrinsic viscosity of 2.0 dL / g or more. A certain polyimide precursor.
22. 上記単位構造式 (l b) 中の各 1,4-シクロへキサン残基の立体構造 がトランス配置であることを特徴とする請求項 2 1項記載のポリイミド前 駆体。 22. The polyimide precursor according to claim 21, wherein the stereostructure of each 1,4-cyclohexane residue in the unit structural formula (Ib) is a trans configuration.
2 3. 全化学構造中、 Si(CH3)3基からなる置換'基 Rの合計数を A、 水素か らなる置換基 Rの合計数を Bとすると、 2 3. the total chemical structure, Si (CH 3) consists of 3 groups the total number of substituents' groups R A, When B the total number of hydrogen or Ranaru substituent R,
下記数式 ( 1) で表されるポリイミド前駆体のシリル化率が 0以上 0. 9以下の範囲である請求項 2 1又は請求項 22のいずれか 1項記載のポリ イミド前駆体。  23. The polyimide precursor according to claim 21, wherein the silylation rate of the polyimide precursor represented by the following formula (1) is in a range of 0 to 0.9.
シリル化率 =AZ (A+B) ……数式 (1) Silylation rate = AZ (A + B) …… Formula (1)
24. 繰り返し構造単位が下記単位構造式 (2 b) で表され、 下記単位構 造式 (2 b) 中の各 1,4-シクロへキサン残基の立体構造がトランス配置で あることを特徴とするポリイミド。 24. The repeating structural unit is represented by the following structural formula (2b), and each 1,4-cyclohexane residue in the structural formula (2b) is in a trans configuration. Polyimide.
単位構造式 (2b)Unit structural formula (2b)
Figure imgf000044_0001
Figure imgf000044_0001
2 5. 請求項 24記載のポリイミドを主成分とするポリイミド膜 2 5. Polyimide film containing polyimide as a main component according to claim 24
PCT/JP2004/006414 2003-11-13 2004-05-06 Polyimide precursor, method for producing polyimide precursor, method for producing polyimide precursor solution in organic solvent, method for producing cast film, and method for producing polyimide film WO2005047367A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003383836A JP4620946B2 (en) 2003-11-13 2003-11-13 Method for producing polyimide precursor, method for producing polyimide precursor organic solvent solution, method for producing polyimide film, polyimide precursor, method for producing polyimide
JP2003383835A JP4538216B2 (en) 2003-11-13 2003-11-13 A polyimide precursor, a polyimide precursor manufacturing method, a polyimide precursor organic solvent solution manufacturing method, a cast film manufacturing method, and a polyimide film manufacturing method.
JP2003-383836 2003-11-13
JP2003-383835 2003-11-13

Publications (1)

Publication Number Publication Date
WO2005047367A1 true WO2005047367A1 (en) 2005-05-26

Family

ID=34593951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006414 WO2005047367A1 (en) 2003-11-13 2004-05-06 Polyimide precursor, method for producing polyimide precursor, method for producing polyimide precursor solution in organic solvent, method for producing cast film, and method for producing polyimide film

Country Status (1)

Country Link
WO (1) WO2005047367A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782012A (en) * 2010-02-26 2012-11-14 佳能株式会社 Optical member, polyimide, method for manufacturing optical member, and method for producing polyimide
US8980401B2 (en) 2011-01-19 2015-03-17 Canon Kabushiki Kaisha Optical member and method of producing the same
EP3181611A1 (en) * 2015-12-18 2017-06-21 Nexam Chemical AB An alicyclic di-ammonium di-carboxylate salt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072768A (en) * 1999-09-03 2001-03-21 Yoshiyuki Oishi Production of polyimide
JP2002161136A (en) * 2000-09-14 2002-06-04 Sony Chem Corp Polyimide precursor, method of producing the same, and photosensitive resin composition
JP2002167433A (en) * 2000-11-30 2002-06-11 Central Glass Co Ltd Polyimide and method for producing the same
JP2002327056A (en) * 2001-05-07 2002-11-15 Central Glass Co Ltd Polyimide and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072768A (en) * 1999-09-03 2001-03-21 Yoshiyuki Oishi Production of polyimide
JP2002161136A (en) * 2000-09-14 2002-06-04 Sony Chem Corp Polyimide precursor, method of producing the same, and photosensitive resin composition
JP2002167433A (en) * 2000-11-30 2002-06-11 Central Glass Co Ltd Polyimide and method for producing the same
JP2002327056A (en) * 2001-05-07 2002-11-15 Central Glass Co Ltd Polyimide and production method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HASEGAWA M.: "Polimides with Low Dielectric Constant and Low CTE(7) (Abtract IIIPd132)", THE SOCIETY OF POLYMER SCIENCE, vol. 52, no. 4, 28 May 2003 (2003-05-28), JAPAN, pages 925, XP002996291 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782012A (en) * 2010-02-26 2012-11-14 佳能株式会社 Optical member, polyimide, method for manufacturing optical member, and method for producing polyimide
CN102782012B (en) * 2010-02-26 2015-07-29 佳能株式会社 The manufacture method of optics, polyimide, optics and the preparation method of polyimide
US9145473B2 (en) 2010-02-26 2015-09-29 Canon Kabushiki Kaisha Optical member, polyimide, method for manufacturing optical member, and method for producing polyimide
US8980401B2 (en) 2011-01-19 2015-03-17 Canon Kabushiki Kaisha Optical member and method of producing the same
EP3181611A1 (en) * 2015-12-18 2017-06-21 Nexam Chemical AB An alicyclic di-ammonium di-carboxylate salt
WO2017102947A1 (en) * 2015-12-18 2017-06-22 Nexam Chemical Ab An alicyclic di-ammonium di-carboxylate salt

Similar Documents

Publication Publication Date Title
JP3422434B2 (en) Silicate group-containing polyimide
KR102227672B1 (en) Polyamide-imide precursor composition, polyamide-imide film and display device
JP2008001876A (en) Polyesterimide and method for producing the same
JP2009518500A (en) Polyimide film
JPH10182820A (en) Polyimide precursor composition and polyimide film
EP3106487B1 (en) Polyamide acid composition and polyimide composition
KR20150025517A (en) Poly(amide-imide) copolymer, method of preparing poly(amide-imede) copolymer, and article including poly(amide-imide)copolymer
CN107849249A (en) Polyimides polybenzoxazole precursor solution, polyimides polybenzoxazole thin film and preparation method thereof
JP4815690B2 (en) Polyimide, polyimide precursor and method for producing them
JP4627297B2 (en) Polyesterimide and its precursor with low linear thermal expansion coefficient
KR20180018306A (en) Polyamic acid resin, polyamideimide film and method for preparing the same
JP3859984B2 (en) Polyimide and method for producing the same
JP5244303B2 (en) Polyesterimide and method for producing the same
JPWO2005113647A6 (en) Polyesterimide and its precursor with low linear thermal expansion coefficient
WO2018207706A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, flexible device, and production method for polyimide film
JP3247697B2 (en) Low thermal expansion polyimide with improved elongation
KR101259543B1 (en) Polyimide film having excellent heat-stability
KR20210033925A (en) Method for producing polyimide film with excellent transparency and flexibility
WO2005047367A1 (en) Polyimide precursor, method for producing polyimide precursor, method for producing polyimide precursor solution in organic solvent, method for producing cast film, and method for producing polyimide film
JP4538216B2 (en) A polyimide precursor, a polyimide precursor manufacturing method, a polyimide precursor organic solvent solution manufacturing method, a cast film manufacturing method, and a polyimide film manufacturing method.
JP2011148901A (en) Phosphorus-containing diamine and phosphorus-containing polyimide obtained therefrom
JP4620946B2 (en) Method for producing polyimide precursor, method for producing polyimide precursor organic solvent solution, method for producing polyimide film, polyimide precursor, method for producing polyimide
TW202227533A (en) Polyimide film, method of producing the same, flexible metal foil clad laminate and electronic component containing the same
JP4792204B2 (en) Polyimide having both high organic solvent solubility, high thermoplasticity, high toughness and high glass transition temperature, and method for producing the same
JP2843314B2 (en) Fluorine-containing polyimide optical material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载