WO2004035780A1 - Gene expression vector using echinus-origin insulators - Google Patents
Gene expression vector using echinus-origin insulators Download PDFInfo
- Publication number
- WO2004035780A1 WO2004035780A1 PCT/JP2003/013124 JP0313124W WO2004035780A1 WO 2004035780 A1 WO2004035780 A1 WO 2004035780A1 JP 0313124 W JP0313124 W JP 0313124W WO 2004035780 A1 WO2004035780 A1 WO 2004035780A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulator
- dna
- vector
- gene
- derived
- Prior art date
Links
- 239000012212 insulator Substances 0.000 title claims abstract description 125
- 230000014509 gene expression Effects 0.000 title claims abstract description 38
- 239000013604 expression vector Substances 0.000 title description 16
- 239000013598 vector Substances 0.000 claims abstract description 71
- 108020004414 DNA Proteins 0.000 claims description 72
- 241000287828 Gallus gallus Species 0.000 claims description 19
- 239000002773 nucleotide Substances 0.000 claims description 14
- 125000003729 nucleotide group Chemical group 0.000 claims description 14
- 210000000349 chromosome Anatomy 0.000 claims description 12
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 claims description 8
- 238000003780 insertion Methods 0.000 claims description 8
- 230000037431 insertion Effects 0.000 claims description 8
- 108090000623 proteins and genes Proteins 0.000 abstract description 51
- 230000006870 function Effects 0.000 abstract description 15
- 230000002779 inactivation Effects 0.000 abstract description 14
- 210000004748 cultured cell Anatomy 0.000 abstract description 5
- 239000003550 marker Substances 0.000 abstract description 5
- 230000010473 stable expression Effects 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 47
- 238000000034 method Methods 0.000 description 34
- 108090000765 processed proteins & peptides Proteins 0.000 description 31
- 230000000694 effects Effects 0.000 description 24
- 235000013330 chicken meat Nutrition 0.000 description 18
- 108700019146 Transgenes Proteins 0.000 description 13
- 102000017286 Histone H2A Human genes 0.000 description 12
- 108050005231 Histone H2A Proteins 0.000 description 12
- 108060001084 Luciferase Proteins 0.000 description 10
- 239000003623 enhancer Substances 0.000 description 9
- 241000196324 Embryophyta Species 0.000 description 8
- 239000005089 Luciferase Substances 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- 230000009261 transgenic effect Effects 0.000 description 8
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 6
- 210000003899 penis Anatomy 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 241000283707 Capra Species 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 238000004587 chromatography analysis Methods 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 241001275954 Cortinarius caperatus Species 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 238000003752 polymerase chain reaction Methods 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- 241000255789 Bombyx mori Species 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 108700039887 Essential Genes Proteins 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 108010033040 Histones Proteins 0.000 description 3
- 102000006947 Histones Human genes 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 241000208125 Nicotiana Species 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- 210000004102 animal cell Anatomy 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 239000012894 fetal calf serum Substances 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000004544 DNA amplification Effects 0.000 description 2
- 230000007067 DNA methylation Effects 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 101001035782 Gallus gallus Hemoglobin subunit beta Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000006196 deacetylation Effects 0.000 description 2
- 238000003381 deacetylation reaction Methods 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 229950010131 puromycin Drugs 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 102000005720 Glutathione transferase Human genes 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 101100083090 Mus musculus Pgk1 gene Proteins 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000850 deacetylating effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 235000014304 histidine Nutrition 0.000 description 1
- 150000002411 histidines Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000001035 methylating effect Effects 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000012514 protein characterization Methods 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- QGMRQYFBGABWDR-UHFFFAOYSA-N sodium;5-ethyl-5-pentan-2-yl-1,3-diazinane-2,4,6-trione Chemical compound [Na+].CCCC(C)C1(CC)C(=O)NC(=O)NC1=O QGMRQYFBGABWDR-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 108060007951 sulfatase Proteins 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 238000012256 transgenic experiment Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/43504—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
Definitions
- the present invention relates to an expression vector for any DNA having an insulator.
- Eukaryotic genes consist of expression control regions such as enhancers and promoters and amino acid-encoding regions (structural genes). It is strictly determined that the promoter is located upstream of the structural gene. Enhansa, on the other hand, may be located upstream or downstream of a promoter or structural gene, and its position is not exactly determined. Some enhancers regulate gene expression from hundreds of kilobases away. It is known that Enhansa enhances the gene expression activity of the promoter by several times to several hundred times as its function.
- genes on chromosomes When genes on chromosomes do not need to be expressed according to cell type, etc., they are inactivated by chemical modifications such as methylation of DNA and deacetylation of histones, and structural changes such as heterochromatinization. Have been. Insulators protect genes from these inactivating effects.
- a specific example is a housekeeping gene. Housekeeping genes are essential genes for cell survival and are expressed independently of the inactivation of surrounding genes. It has become clear that insulators are present upstream, downstream, or at both ends of these genes and inhibit inactivation.
- This shielding function has the potential to be very effective when performing gene recombination in cells including fertilized eggs. This is because the inactivation of the transgene may be suppressed.
- Genetic recombination in cells requires that genes be introduced into cells and that these vectors be integrated into the chromosome. However, even when the vector is integrated into the chromosome, it is affected by the surrounding DNA, and is inactivated by DNA methylation or deacetylation of histones, or the expression level is extremely small (position ⁇ Effect) has been announced.
- Non-Patent Document 2 Recillas-Targa F, Bell AC, Felsenfeld G. Positional enhancer-blocking activity of the chicken beta-globin insulator in transiently transfected cells.Proc Natl Acad Sci USA 1999 Dec 7; 96 (25): 14354 -9
- Non-Patent Document 3 Yannaki E, Tubb J, Aker M, Stamatoyannopoulos G, Emery DW.
- Non-Patent Document 4 Rivella S, Callegari JA, May C, Tan CW, Sadelain M.
- the c HS4 insulator increases the probaoility of retroviral expression at rando m chromosomal integration sites.J Virol 2000 May; 74 (10): 4679- 87 Disclosure of the Invention
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide an expression vector for an arbitrary DNA having an insulator.
- the present invention relates to an expression vector for an arbitrary DNA having an insulator, and provides the following [1] to [6].
- [1] A vector having an insertion site for an arbitrary DNA, a promoter for controlling the expression of the arbitrary DNA, and an insulator, wherein the insulator is placed on the 3 ′ side of the insertion site for the arbitrary DNA.
- (4) A vector having forward and reverse directions on the 5 'side of a promoter that controls the expression of the arbitrary DNA.
- [6] A transformant in which the vector of [4] has been introduced into a chromosome.
- the present invention provides a vector having an insertion site for an arbitrary DNA, a promoter for controlling the expression of the arbitrary DNA, an insulator, and an insulator, wherein the insulator is 3 ′ to the insertion site for the arbitrary DNA.
- a vector having forward and reverse directions is provided on each side of the promoter that controls the expression of the arbitrary DNA.
- the term “insulator” means a base sequence that functions as a shield for shielding the environment around the integrated genome when the vector is integrated into the genomic DNA of the cell.
- Examples of the insulator according to the present invention include, but are not limited to, ⁇ -derived insulators, chicken-derived insulators, and Drosophila-derived insulators.
- the above-mentioned insulators include a penis ARS gene-derived insulator (SEQ ID NO: 1), a chicken HS4 insulator (SEQ ID NO: 2), a peni-derived histone H2A insulator (SEQ ID NO: 3), and a Drosophila derived gypsy insulator
- the peni ARS gene-derived insulator, the chicken HS4 insulator, the peni-derived histone H2A insulator, or the gypsy insulin-derived gypsy insulator can be prepared by methods known to those skilled in the art. For example, it can be isolated by performing Enhansaab opening screening on a DNA fragment cloned from a genomic genome, a chicken genome, or a Drosophila genome by PCR (Akasaka K, Nishimura A, Takata K, Mitsunaga K, Mibuka F, Ueda H, Hirose S, Tsutsui K, Snimada H. Upstream element of the sea urch in arylsulfatase gene serves as an insulator.Cell Mo ⁇ Biol (Noisy-le-gra nd) 1999 Jul; 45 (5) : 555-65).
- the insulator of the present invention includes DNA functionally equivalent to the DNA consisting of the nucleotide sequence of any one of SEQ ID NOs: 1 to 3.
- “functionally equivalent” means that the target DNA has the same biological function (biological role) as the DNA consisting of the nucleotide sequence described in any of SEQ ID NOs: 1 to 3, and biochemistry.
- Has a functional function (biochemical activity). Examples of such a function include a function of inhibiting inactivation of any DNA introduced into a chromosome and an enhancer blocking activity.
- the expression “inhibits the inactivation of any DNA introduced into the chromosome” means that the expression of any DNA introduced into the chromosome is inhibited by methyl illness or the like.
- blocking activity refers to the activity of interrupting the action of the adjacent gene on the chromosome. Such functions and activities can be measured by enhancer blocking assay and Southern blotting by cleaving the genome of the transfected cells with a restriction enzyme sensitive to DNA methylation (Recillas- Targa F, Bell AC, Felsenfela G. Positional enhancer-blocking activity of the chicken beta-glob in insulator in transiently transfected cells. Proc Natl Aca d Sci USA 1999 Dec 7; 96 (25): 14354-9).
- a penis ARS gene-derived insulator, a chicken HS4 insulator, or a peni-derived histone H2A insulator under stringent conditions. It contains DNA that is functionally equivalent to the insulator or pentone-derived histone H2A insulator.
- the conditions of hybridization for isolating DNA functionally equivalent to the ARS gene-derived insulator, the chicken-derived HS4 insulator, or the chicken-derived histone H2A insulator are appropriately selected by those skilled in the art. can do.
- Hybridization conditions include, for example, low stringency conditions.
- Low stringency conditions include, for example, 42 ° C, 5X SSC, 0.1% SDS in washing after hybridization, and preferably 50 ° C, 5X SSC, 0.1%. This is the condition for SDS. More preferable conditions for the hybridization are high stringency conditions. High stringency conditions For example, the conditions are 65 ° C., 0.1 XSSC and 0.1% SDS. Under these conditions, it can be expected that DNA with higher homology can be obtained more efficiently as the temperature is increased. However, factors that affect the stringency of hybridization can be considered as multiple factors such as temperature and salt concentration, and those skilled in the art can realize the same stringency by appropriately selecting these factors. It is possible.
- the nucleotide sequence of a DNA functionally equivalent to the peni ARS gene-derived insulator, the chicken HS4 insulator one, or the peni-derived histone H2A insulator isolated by these hybridization techniques or gene amplification techniques is SEQ ID NO: 1.
- High homology usually means at least 80% identity, preferably 85% identity, more preferably 90% identity, and even more preferably 95% identity at the base level. Point.
- one or more bases may be mutated (substitution, deletion, addition and Z or insertion) in the ARS gene-derived insulator sequence, the chicken-derived HS4 insulator sequence, or the peni-derived histone H2A insulator sequence.
- DNA functionally equivalent to the peni ARS gene-derived insulator, the chicken derived HS4 insulator, or the ⁇ -derived histone H2A insulator is also included in the present invention.
- Such mutations can occur in nature.
- the number of bases to be mutated is usually within 30 bases, preferably within 15 bases, more preferably within 5 bases, and further preferably within 2 bases.
- a method of introducing a mutation into DNA is known.
- those skilled in the art can use site-directed mutagenesis (Gotoh, T. et al. (1995) Gene 152, 271-275, Zoller, MJ, and Smith, M. (1983) Methods Enzymol. 100, 468-500, Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456, Kramer W, and Fritz HJ (1987) Methods.Enzymol. 154, 350-367, Kunkel, TA (1985) Proc Natl Acad Sci USA.
- the insulator of the present invention may be in any form. That is, it does not matter whether it is genomic DNA or chemically synthesized DNA.
- the vector of the present invention comprises the above-mentioned insulator on the 3 ′ side of the insertion site of any DNA in the DNA expression vector and on the 5 ′ side of the promoter controlling the expression of the arbitrary DNA, respectively, in the forward and reverse directions. It can be manufactured by purchasing. For example, as shown in Fig. 1, cDNA and poly A are added to any promoter such as pGK-LUC_p (A).
- a gene expression force set in which signals were linked was prepared in advance, and it was prepared using pBSK-SmBm (-) (Akasaka K, Nishimura A, TaKata K, Mitsunaga K, Mibuka F, Ueda H, Hirose S, Tsutsui K, Shimada H. Upstream element of the sea urchin arylsulfata se gene serves as an insulator.Cell Mol Biol (Noisy-le-grand) 1999 Jul; 5 (5): 555-65) And put it in the state of FR vector.
- Examples of the arbitrary DNA of the present invention include those encoding any peptide, but the arbitrary DNA of the present invention is not limited thereto.
- the term “peptide” refers to a compound in which amino acids are bound by peptide bonds. Therefore, “peptide” and “protein” which are peptides having a long chain length are also included in the “peptide” of the present invention.
- examples of the arbitrary peptide include an enzyme such as luciferase shown in the present application, a marker protein such as GFP, a cell functional protein such as a transcription factor, and a protein encoding a drug resistance gene. Force Any peptide of the present invention is not limited to these.
- the present invention also provides a transformant in which a vector having any DNA of the present invention has been introduced into a chromosome.
- the host into which the vector is introduced is not particularly limited, and for example, various eukaryotic cells and the like can be used.
- eukaryotic cells e.g., animal cells, plant cells, etc.
- the vesicle can be used as a host.
- Animal cells include mammalian cells, for example, CH0, CO S., NIH3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero, amphibian cells, for example, African oocyte (Valle, et. Al., Nature 291: 358-340, 19981) or insect cells such as Sf9, Sf21 and Tn5.
- CH0 cells DHfr-CHO (Proc. Natl. Acad. Sci.
- CHO K-l Proc. Natl. Acad. Sci. USA, 1968, 60, 1275.
- plant cells include cells derived from Nicotiana tabacum.
- a method for introducing the vector of the present invention into the above host in the case of introducing the vector into host cells such as cultured cells, for example, the calcium phosphate method (Chen, C. and 0kayama, H. Mol. Cell. Biol. , 1987, 7, 2745-2752.), DEAE dextran method (Lop ata, MA et. Al., Nucl. Acid. Res., 1984, 12, 5707-5717.), Sussman, DJ and Milman, G. Mol. Cell. Biol., 1985, 4, 1642-1643.), A method using catonic liposome D0TAP (Boehringer Mannheim), a lipofectin method (Derijard, B.
- a vector into a plant cell various methods known to those skilled in the art, such as a polyethylene glycol method, an electroporation method, a method via an agrobacterium, and a particle gun method, can be used.
- the transformant in the present invention includes not only a transformed cell but also an individual having the transformed cell.
- mammals and insects can be mentioned.
- the mammal is not particularly limited, and for example, goats, puters, sheep, mice, mice, etc. can be used (Vicki Glaser, SPECTRUM Biotechnology Applications, 1993).
- Insects include, for example, silkworms, but are not limited thereto. Also, if you use plants, Tobacco can be used, but is not limited to this.
- the target DNA is prepared as a fusion gene with a gene encoding a polypeptide uniquely produced in milk such as goat 3 casein.
- a transgeneic goat can be produced by injecting a DNA fragment containing the fusion gene into a goat embryo and transplanting the embryo into a female goat (Ebert, KM et al. , Bio / Technology (1994) 12, 699-702).
- transgenic silkworms can be produced, for example, by infecting chicks with a paculovirus into which DNA encoding the peptide of interest has been inserted (Susumu, M. et. Al., Nature, 1985, 315, 592—594.
- a DNA encoding the peptide of interest is introduced into a plant expression vector, for example, pMON530, and this vector is introduced into a pacteria such as Agrobacterium tumefaciens.
- Transgenic plants can be created by infecting this bacterium with tobacco, such as Nicotiana tapacam (Julian K. -C. Ma et. Al., Eur. J. Immunol., 1994, 24, 131-138.).
- the peptide can be obtained, for example, from milk produced by the above-mentioned transjeckey or its progeny. It is also possible to recover peptides from cocoons and transgenic plants of transjeuc silkworms.
- the culture can be performed according to a known method.
- DMEM, MEM, RPMI1640, IMDM, or the like can be used as a culture solution.
- a serum replacement solution such as fetal calf serum (FCS) may be used in combination, or serum-free culture may be performed.
- FCS fetal calf serum
- the pH during the culturing is preferably about 6 to 8.
- Culture is usually carried out at about 30 to 40 ° C for about 15 to 200 hours, and if necessary, the medium is replaced, aerated, and agitated. Add.
- Any peptide can be purified as a substantially pure and homogeneous peptide.
- the separation and purification of the peptide may be carried out by using the separation and purification methods used in ordinary peptide purification, and is not limited at all. For example, chromatographic columns, filters, filtration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc. If selected and combined, peptides can be separated and purified. Alternatively, purification can be performed by further combining a plurality of these columns.
- chromatography examples include affinity chromatography in which an antibody to an arbitrary peptide is immobilized on a column, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, and adsorption chromatography.
- ion exchange chromatography hydrophobic chromatography
- gel filtration reverse phase chromatography
- adsorption chromatography adsorption chromatography
- the peptide can be arbitrarily modified or partially removed by reacting the peptide with a suitable peptide modifying enzyme before or after purification.
- suitable peptide modifying enzymes include, for example, trypsin, chymotrypsin, raised peptidase, protein kinase, dalcosidase and the like.
- any peptide when any peptide is expressed in a host cell as a fusion peptide with glutathione S-transferase or as a recombinant peptide to which multiple histidines are added, the expressed recombinant peptide is daldal.
- a region other than the target peptide in the fusion peptide may be purified using thrombin or a nickel column. It is also possible to cut and remove with factor Xa or the like.
- the present invention also provides a transformant carrying the vector of the present invention.
- a transformant can be used, for example, for amplifying the vector of the present invention.
- the host into which the vector is introduced is not limited to the above eukaryotic cells, and prokaryotic cells can also be used.
- prokaryotic cells include bacterial cells. Examples of the bacterial cells include Escherichia coli (E. coli), for example, J109, DH5a, HB101, XL1 Blue, BL21, and the like, and Bacillus subtilis.
- a method for introducing the vector of the present invention into the above-mentioned host in the case of introducing the vector into a host cell such as Escherichia coli, for example, a calcium chloride method and an electoporation method can be used.
- Figure 1 shows the concept of the construction of a vector to which a peni-derived insulator was ligated.
- the gray arrow indicates the peni ARS gene insulator (580 pb). The direction of the arrow indicates that the insulator was ligated.
- PGK indicates mouse PGK-1 promoter LUC indicates luciferase gene, and SVp (A) indicates SV40 virus-derived polyA addition signal.
- FIG. 2 is a diagram showing a gene expression vector using a penni-derived insulator. Parts constituting the vector are the same as those in FIG. The direction and number of insulators are different.
- FIG. 3 is a diagram showing a gene expression vector using a penni-derived insulator. Parts constituting the vector are the same as those in FIG. The direction and number of insulators are different.
- FIG. 4 is a diagram showing the results of measuring luciferase activity in cells into which the vector has been introduced.
- the luciferase activities of the 12 clones obtained for each vector are averaged and graphed. Luciferase activity of clones transfected with 0L vector It turns out to be very high.
- Example 1 Construction of a gene expression vector using a peni-derived insulator
- a bettater linked with a marker gene, a luciferase gene (LUC) was prepared.
- a method was used to clarify the function of the insulator using the expression level of the as an index.
- the cassette marker gene
- For the obtained clone confirm the direction with Hindlll and analyze the nucleotide sequence, and select the clone in which the PGK-LUC-p (A) cassette is connected in the opposite direction to the direction of the insulator.
- subclone an insulator slice cut out from pBSK-SmBm (-) with Sacl and EcoRI.
- a clone in which an insulator is ligated in the forward direction downstream of the PGK-LUC- P (A) cassette is selected.
- the resulting clone is called the gene expression vector 0L (FIG. 2).
- seven types of FF, FR, RF, RR, IL, SL2, and SL3 were simultaneously constructed for the vectors prepared in the same manner, depending on the orientation and number of the insulators.
- NIH3T3 cell As a mammalian cell, NIH3T3 cell, a mouse established fibroblast, was used as a model. NIH3T3 cells were cultured in DMEM medium (SIGMA) supplemented with 10% fetal calf serum. The NIH3T3 cells were transfected with a setter in which an insulator was linked to a marker gene, PGK-LUC-p (A), and a drug resistance gene, PGK-purop-p (A). Each vector In order to remove the plasmid region, the agarose gel was cut with restriction enzymes and subjected to agarose gel electrophoresis to cut out only the cassette site shown in Figs.
- the recovered cassette was mixed with 1/10 amount of PGK-purop-p (A) and introduced into cells using a gene transfer reagent ribofectamine plus (Invitrogen). 48 hours after the gene transfer, puromycin (SIGMA) was added to the medium at a concentration of 1 ⁇ g / ml, and the cells were cultured for 7 days to isolate recombinant cells. In addition, the recombinant cells were randomly isolated in 12 clones per vector.
- SIGMA puromycin
- genomic DNA was extracted and subjected to PCR to confirm the presence of the luciferase gene.
- the luciferase activity ⁇ 4 was measured using the luciferase Atsusei kit of PR0MEGA. At that time, the fluorescence intensity was measured using a diamond mouth CT-90000D as a measuring device. In addition, the amount of protein contained in each sample used for the measurement was measured using a protein assay kit manufactured by Amersham. For the data, the amount of fluorescence per protein was determined for each clone. In addition, based on these data, the average value of the amount of fluorescence of each vector was determined and simultaneously graphed (Fig. 4).
- PGK-LUC-p an unlinked insulator vector, showed an average of 441 activities, whereas FF, FR, and RF ( Figure 3), each with one copy of an insulator, showed an activity of 441.
- the activity was 4672, 2585, 5687, and the activity was 5.9 to 12.9 times higher than that of PGK-LUC- P (A) ⁇ 4. From these things, just linking one copy of the insulator, Despite the differences depending on the orientation and position of the insulator, it was clear that it had the ability to avoid gene inactivation.
- Genetically modified animals are extremely inefficient in their production because they are produced by directly injecting the gene expression vector DNA solution into the nuclei of fertilized eggs. Generally, the efficiency of obtaining an individual carrying the transgene is about 10% in mice and less than 1% in livestock. In addition, transgenic animals born at low efficiency are subject to inactivation of transgenes including position 'effects, so that only a small percentage of transgenes are expressed. By using a gene expression vector using an insulator, these phenomena can be avoided and the transgene can be expressed with high efficiency in transgenic animals.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
It is attempted to develop a vector which shows stable expression while avoiding the inactivation of a transferred gene by using echinus-origin ARS gene insulators. Namely, vectors expressing a marker gene are constructed and transferred into cultured cells. Then functions of vectors having insulators ligated thereto are analyzed. As a result, it is revealed that, by ligating two insulators in a specific direction to an expression cassette, a gene can be stably expressed and the expression dose can be elevated 130-fold or more compared with the case with the ligation of no insulator. Thus, the efficaciousness of the thus constructed vector is clarified.
Description
明細書 ゥニ由来ィンスレーターを用いた遺伝子発現べクター 技術分野 TECHNICAL FIELD Gene expression vector using an insulator derived from Dini
本発明は、 ィンスレーターを有する任意 DNAの発現べクターに関する。 背景技術 The present invention relates to an expression vector for any DNA having an insulator. Background art
真核生物の遺伝子は、 ェンハンサー、 プロモーターといった発現制御領域とァ ミノ酸をコードする領域 (構造遺伝子) 力 構成されている。 プロモーターは、 構造遺伝子の上流に位置することが厳密に決まっている。 一方ェンハンサ一は、 プロモーターや構造遺伝子の上流あるいは下流に位置することもあり、 厳密に位 置が決まっているわけではない。 中には、 数百キロ塩基離れたところから遺伝子 発現を調節するェンハンサーもある。 ェンハンサ一はその機能として、 プロモー ターが持つ遺伝子発現活性を数倍〜数百倍まで高めることが知られている。 Eukaryotic genes consist of expression control regions such as enhancers and promoters and amino acid-encoding regions (structural genes). It is strictly determined that the promoter is located upstream of the structural gene. Enhansa, on the other hand, may be located upstream or downstream of a promoter or structural gene, and its position is not exactly determined. Some enhancers regulate gene expression from hundreds of kilobases away. It is known that Enhansa enhances the gene expression activity of the promoter by several times to several hundred times as its function.
一般的に一つの染色体上には数千の遺伝子が存在しており、 適切な制御が行わ れそれらの遺伝子は正確に発現している。 すなわち、 隣り合う遺伝子のェンハン サ一が干渉することはなく、 無関係な遺伝子のェンハンサ一の作用は受けない。 このため、 このような無関係な遺伝子のェンハンサ一の作用を断ち切る機能 (ェ ンハンサーブロッキング) を持つ DNA配列が存在する可能性が示唆され解析が行わ れてきた。 1993年に、 アメリカ NIHの Felsenfeld博士らがショウジヨウバエと-ヮ トリから相次いでこのような機能を担う DNA配列を発見し、 「ィンスレーター」 と 命名した。 これまでに、 インスレーターはニヮトリ、 ショウジヨウバエ、 ヒ ト、 ゥニなど様々な真核生物において単離され、 機能について解析がなされてきた。 それらの中で、 インスレーターは先に述べたェンハンサーブロッキング活性に関 与するばかりでなく、 遺伝子の不活性化を阻害するシールドの機能を担うことが
明らかになつてきた。 In general, there are thousands of genes on one chromosome, and these genes are properly expressed with proper control. In other words, adjacent genes do not interfere with each other, and are not affected by unrelated genes. For this reason, it has been suggested that there may be a DNA sequence having a function (enhancer blocking) of cutting off the action of such an unrelated gene as an enhancer, and has been analyzed. In 1993, Dr. Felsenfeld and others at the NIH in the United States discovered DNA sequences responsible for such functions one after another from Drosophila and-ヮ, and named them "insulators." To date, insulators have been isolated from a variety of eukaryotes, including chickens, Drosophila, humans, and peni, and their functions have been analyzed. Among them, the insulator is not only involved in the enhancer blocking activity described above, but also plays the role of a shield that inhibits gene inactivation. It has become clear.
染色体上の遺伝子は、 細胞種などに応じ発現する必要がない場合に、 DNAのメチ ル化ゃヒストンの脱ァセチル化といった化学的修飾や、 ヘテロクロマチン化とい つた構造的変化を受け不活性ィ匕されている。 インスレーターは、 これらの不活性 化作用から遺伝子を保護しているのである。 その具体的な例としてハウスキーピ ング遺伝子が挙げられる。 ハウスキーピング遺伝子は、 細胞の生存に不可欠な遺 伝子であり、 周辺の遺伝子の不活性ィヒとは無関係に発現している。 これらの遺伝 子の上流、 下流、 あるいは両端にインスレーターは存在し不活性化を阻害してい ることが明らかになってきている。 When genes on chromosomes do not need to be expressed according to cell type, etc., they are inactivated by chemical modifications such as methylation of DNA and deacetylation of histones, and structural changes such as heterochromatinization. Have been. Insulators protect genes from these inactivating effects. A specific example is a housekeeping gene. Housekeeping genes are essential genes for cell survival and are expressed independently of the inactivation of surrounding genes. It has become clear that insulators are present upstream, downstream, or at both ends of these genes and inhibit inactivation.
このシールド機能は、 受精卵を含む細胞での遺伝子組換えを行う場合に非常に 有効なものとなる可能性を持っている。 なぜなら、 導入遺伝子の不活性化を抑制 できる可能性があるからである。 細胞での遺伝子組換えは、 細胞に遺伝子べクタ 一を導入し、 それらのベクターが染色体に組み込まれることが必須である。 しか しながら、 ベクターが染色体に組み込まれても周囲の DNAの影響を受け、 DNAのメ チルイ匕あるいはヒストンの脱ァセチル化を受け不活性ィ匕されたり、 発現量がごく 少なくなること (ポジション ·イフェクト) が幸艮告されている。 This shielding function has the potential to be very effective when performing gene recombination in cells including fertilized eggs. This is because the inactivation of the transgene may be suppressed. Genetic recombination in cells requires that genes be introduced into cells and that these vectors be integrated into the chromosome. However, even when the vector is integrated into the chromosome, it is affected by the surrounding DNA, and is inactivated by DNA methylation or deacetylation of histones, or the expression level is extremely small (position · Effect) has been announced.
これまでに、 遺伝子ベクターにインスレーターを連結することで、 遺伝子の不 活性化を回避し、 導入遺伝子の発現を安定化させる可能性が示唆されている。 こ れまでに、 遺伝子発現ベクターに用いられて来たインスレーターは、 ニヮトリ由 来の HS4インスレーターであり、 HS4インスレーターは DNAの長さが 1. 2kbあるため 遺伝子組換えベクターに用いるのには使いにくいものであった (非特許文献 1〜 4 ) 。 また、 遺伝子発現に対し、 インスレーターとベクターとの連結の方向性が 与える影響について、 詳細に解析した報告例はなかった。 So far, it has been suggested that connecting an insulator to a gene vector may avoid gene inactivation and stabilize transgene expression. So far, the insulator used for gene expression vectors is the HS4 insulator from chickens, and the HS4 insulator has a DNA length of 1.2 kb. Was difficult to use (Non-Patent Documents 1 to 4). In addition, there was no report that analyzed in detail the effect of the direction of ligation between an insulator and a vector on gene expression.
尚、 出願の発明に関連する先行技術文献情報を以下に示す。 Prior art document information related to the invention of the application is shown below.
〔非特許文献 1〕 Walters MC, Fiering S, Bouhassira EE, Scalzo D, Goeke S, Magis W, Garrick D, Whitelaw E, Martin DI. The chicken beta— globin 5' HS4
boundary element blocks enhancer-mediated suppression of silencing. Mol C ell Biol 1999 May; 19 (5) : 3714- 26 [Non-patent document 1] Walters MC, Fiering S, Bouhassira EE, Scalzo D, Goeke S, Magis W, Garrick D, Whitelaw E, Martin DI. The chicken beta—globin 5 'HS4 boundary element blocks enhancer-mediated suppression of silencing.Mol Cell Biol 1999 May; 19 (5): 3714- 26
〔非特許文献 2〕 Recillas-Targa F, Bell AC, Felsenfeld G. Positional enhan cer - blocking activity of the chicken beta— globin insulator in transiently transfected cells. Proc Natl Acad Sci U S A 1999 Dec 7 ;96 (25) : 14354 - 9 (Non-Patent Document 2) Recillas-Targa F, Bell AC, Felsenfeld G. Positional enhancer-blocking activity of the chicken beta-globin insulator in transiently transfected cells.Proc Natl Acad Sci USA 1999 Dec 7; 96 (25): 14354 -9
〔非特許文献 3〕 Yannaki E, Tubb J, Aker M, Stamatoyannopoulos G, Emery DW.[Non-Patent Document 3] Yannaki E, Tubb J, Aker M, Stamatoyannopoulos G, Emery DW.
Topological constraints governing the use of the chicken HS4 chromatin i nsulator in oncoretrovirus vectors. Mol Ther 2002 May ;5 (5 Pt 1): 589-98Topological constraints governing the use of the chicken HS4 chromatin insulator in oncoretrovirus vectors.Mol Ther 2002 May; 5 (5 Pt 1): 589-98
〔非特許文献 4〕 Rivella S, Callegari JA, May C, Tan CW, Sadelain M. The c HS4 insulator increases the probaoility of retroviral expression at rando m chromosomal integration sites. J Virol 2000 May ; 74 (10) :4679-87 発明の開示 (Non-Patent Document 4) Rivella S, Callegari JA, May C, Tan CW, Sadelain M. The c HS4 insulator increases the probaoility of retroviral expression at rando m chromosomal integration sites.J Virol 2000 May; 74 (10): 4679- 87 Disclosure of the Invention
本発明は、 このような状況に鑑みてなされたものであり、 その目的は、 インス レーターを有する任意 DNAの発現ベクターを提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an expression vector for an arbitrary DNA having an insulator.
本発明者らは、 上記の課題を解決するために鋭意研究を行った。 1999年に Akasa kaらが報告したゥニ由来の ARS遺伝子ィンスレーターを用いて、 導入遺伝子の不活 性ィ匕を回避し安定な発現をするベクターを開発することを試みた。 このため、 マ 一力一遺伝子を発現するベクターを構築し培養細胞に導入してィンスレーターを 連結したベクターの機能解析を行った。 その結果、 発現カセットに対して特定の 向きにィンスレーターを 2つ連結することで、 安定に遺伝子を発現をさせることが 可能であり、発現量はィンスレーターを連結していない場合に比べ 130倍以上高ま ることが明らかになった。 これにより、 本発明者らが構築したベクターの有効性 が明らかになった。 The present inventors have intensively studied to solve the above-mentioned problems. In 1999, Akasaka et al. Reported the use of a pen-derived ARS gene insulator to develop a vector that could stably express a transgene by avoiding inactivation. For this reason, we constructed a vector that expresses the gene and introduced it into cultured cells, and analyzed the function of the vector linked with an insulator. As a result, the gene can be stably expressed by connecting two insulators to the expression cassette in a specific direction, and the expression level is more than 130 times higher than when no insulator is connected. It became clear that This has clarified the effectiveness of the vector constructed by the present inventors.
即ち、 本発明は、 インスレーターを有する任意 DNAの発現ベクターに関し、 以下 の 〔1〕 〜 〔6〕 を提供するものである。
〔1〕 任意 DNAの揷入部位、 該任意 DNAの発現を制御するプロモーター、 および、 インスレーターを有するベクターであって、 該インスレーターを、 該任意 D NAの揷入部位の 3' 側おょぴ該任意 DNAの発現を制御するプロモーターの 5' 側に、 それぞれ、 順方向おょぴ逆方向に有するベクター。 That is, the present invention relates to an expression vector for an arbitrary DNA having an insulator, and provides the following [1] to [6]. [1] A vector having an insertion site for an arbitrary DNA, a promoter for controlling the expression of the arbitrary DNA, and an insulator, wherein the insulator is placed on the 3 ′ side of the insertion site for the arbitrary DNA. (4) A vector having forward and reverse directions on the 5 'side of a promoter that controls the expression of the arbitrary DNA.
〔2〕 インスレーターがゥュ、 ニヮトリまたはショウジヨウバエ由来のインス レーターである、 〕 に記載のベクター。 [2] The vector according to [1], wherein the insulator is an insulator derived from a tree, a chicken or a Drosophila.
〔3〕 インスレーターが、 以下の (a ) 〜 (c ) のいずれかに記載の DNAである、 〔1〕 または 〔2〕 に記載のベクター。 [3] The vector according to [1] or [2], wherein the insulator is a DNA according to any of the following (a) to (c):
( a ) 配列番号: 1〜 3のいずれかに記載の塩基配列からなる DNA (a) DNA consisting of the nucleotide sequence of any one of SEQ ID NOs: 1 to 3
( b ) 配列番号: 1〜 3のいずれかに記載の塩基配列において 1もしくは複 数の塩基が置換、 欠失、 付加おょぴ Zまたは揷入した塩基配列からな る DNA (b) DNA consisting of the base sequence of any one of SEQ ID NOs: 1 to 3 wherein one or more bases are substituted, deleted, or added Z or inserted
( c ) 配列番号: 1〜3のいずれかに記載の塩基配列からなる DNAにストリ ンジヱントな条件下でハイプリダイズする DNA (c) DNA that hybridizes to a DNA consisting of the nucleotide sequence of any of SEQ ID NOs: 1 to 3 under stringent conditions
〔4〕 任意 DNAが揷入された、 〔1〕 〜 〔3〕 のいずれかに記載のベクター。 〔5〕 〔1〕 〜 〔4〕 のいずれかに記載のベクターを保持する形質転換体。 [4] The vector according to any one of [1] to [3], into which arbitrary DNA has been inserted. [5] A transformant carrying the vector according to any one of [1] to [4].
〔6〕 〔4〕 に記載のベクターが染色体に導入された形質転換体。 [6] A transformant in which the vector of [4] has been introduced into a chromosome.
本発明は、 任意 DNAの揷入部位、 該任意 DNAの発現を制御するプロモーター、 お ょぴ、 インスレーターを有するベクターであって、 該インスレーターを、 該任意 D NAの揷入部位の 3' 側おょぴ該任意 DNAの発現を制御するプロモーターの 5, 側に、 それぞれ、 順方向おょぴ逆方向に有するベクタ を提供する。 このようなベクタ 一を使用することで、 任意 DNAを高い効率で発現する形質転換体を作成することが できる。 The present invention provides a vector having an insertion site for an arbitrary DNA, a promoter for controlling the expression of the arbitrary DNA, an insulator, and an insulator, wherein the insulator is 3 ′ to the insertion site for the arbitrary DNA. A vector having forward and reverse directions is provided on each side of the promoter that controls the expression of the arbitrary DNA. By using such a vector, a transformant that expresses any DNA with high efficiency can be prepared.
本発明において、 インスレーターとは、 ベクターが細胞のゲノム DNAに組み込ま れた場合に組み込まれたゲノムの周辺領域環境を遮断するためのシールドとして 機能する塩基配列を意味する。
本発明におけるインスレーターとしては、 ゥ-由来インスレーター、 ニヮトリ 由来インスレーター、 ショウジヨウバエ由来インスレーターが挙げられるが、 こ れらに限定されない。 In the present invention, the term “insulator” means a base sequence that functions as a shield for shielding the environment around the integrated genome when the vector is integrated into the genomic DNA of the cell. Examples of the insulator according to the present invention include, but are not limited to, ゥ -derived insulators, chicken-derived insulators, and Drosophila-derived insulators.
上記インスレーターとしては、 ゥニ ARS遺伝子由来インスレーター (配列番号: 1 ) 、 ニヮトリ由来 HS4インスレーター (配列番号: 2 ) 、 ゥニ由来ヒストン H2A インスレーター (配列番号: 3 ) 、 ショウジヨウバエ由来 gypsyインスレーター The above-mentioned insulators include a penis ARS gene-derived insulator (SEQ ID NO: 1), a chicken HS4 insulator (SEQ ID NO: 2), a peni-derived histone H2A insulator (SEQ ID NO: 3), and a Drosophila derived gypsy insulator
(Cai HN, Levine M. The gypsy insulator can function as a promoter - specif ic silencer in the Drosophila embryo. EMBO J 1997 Apr 1 ; 16 (7) : 1732 - 41) 力 S 例示できる。 (Cai HN, Levine M. The gypsy insulator can function as a promoter-specific silencer in the Drosophila embryo. EMBO J 1997 Apr 1; 16 (7): 1732-41).
該ゥニ ARS遺伝子由来インスレーター、 ニヮトリ由来 HS4インスレーター、 ゥニ 由来ヒストン H2Aィンスレーター、 またはショウジヨウパェ由来 gypsyィンスレー ターは、 当業者に公知の方法により調製することができる。 例えば、 PCRなどでゥ 二ゲノム、 ニヮトリゲノム、 またはショウジョゥバエゲノムからクローニングを 行った DNA断片に対してェンハンサーブ口ッキングァッセィを行うことにより単離 することができる (Akasaka K, Nishimura A, Takata K, Mitsunaga K, Mibuka F, Ueda H, Hirose S, Tsutsui K, Snimada H. Upstream element of the sea urch in arylsulfatase gene serves as an insulator. Cell Mo丄 Biol (Noisy-le-gra nd) 1999 Jul ;45 (5) : 555-65) 。 The peni ARS gene-derived insulator, the chicken HS4 insulator, the peni-derived histone H2A insulator, or the gypsy insulin-derived gypsy insulator can be prepared by methods known to those skilled in the art. For example, it can be isolated by performing Enhansaab opening screening on a DNA fragment cloned from a genomic genome, a chicken genome, or a Drosophila genome by PCR (Akasaka K, Nishimura A, Takata K, Mitsunaga K, Mibuka F, Ueda H, Hirose S, Tsutsui K, Snimada H. Upstream element of the sea urch in arylsulfatase gene serves as an insulator.Cell Mo 丄 Biol (Noisy-le-gra nd) 1999 Jul; 45 (5) : 555-65).
また、 本発明のインスレーターは、 配列番号: 1〜 3のいずれかに記載の塩基 配列からなる DNAと機能的に同等な DNAを包含する。 ここで 「機能的に同等」 とは、 対象となる DNAが、 配列番号: 1〜 3のいずれかに記載の塩基配列からなる DNAと 同等の生物学的機能 (生物学的役割) 、 生化学的機能 (生化学的活性) を有する ことを指す。 このような機能としては、 染色体に導入される任意 DNAの不活性化を 阻害する機能、 ェンハンサーブロッキング活性が例示できる。 上記 「染色体に導 入される任意 DNAの不活性ィ匕を阻害する」 とは、 染色体に導入される任意 DNAのメ チルイヒなどによる発現抑制を阻害することを意味する。 また、 上記ェンハンサー
プロッキング活性とは、 染色体上の隣り合う遺伝子のェンハンサ一の作用を断ち 切る活性を意味する。 このような機能や活性は、 ェンハンサーブロッキングァッ セィ、 並びに DNAのメチル化感受性のある制限酵素でべクターを導入した細胞のゲ ノムを切断しサザンプロッティングを行うことで測定できる (Recillas - Targa F, Bell AC, Felsenfela G. Positional enhancer-blocking activity of the chic ken beta-glob in insulator in transiently transfected cells. Proc Natl Aca d Sci U S A 1999 Dec 7 ;96 (25) : 14354— 9) 。 In addition, the insulator of the present invention includes DNA functionally equivalent to the DNA consisting of the nucleotide sequence of any one of SEQ ID NOs: 1 to 3. Here, “functionally equivalent” means that the target DNA has the same biological function (biological role) as the DNA consisting of the nucleotide sequence described in any of SEQ ID NOs: 1 to 3, and biochemistry. Has a functional function (biochemical activity). Examples of such a function include a function of inhibiting inactivation of any DNA introduced into a chromosome and an enhancer blocking activity. The expression “inhibits the inactivation of any DNA introduced into the chromosome” means that the expression of any DNA introduced into the chromosome is inhibited by methyl illness or the like. Also, the above Enhancer The term blocking activity refers to the activity of interrupting the action of the adjacent gene on the chromosome. Such functions and activities can be measured by enhancer blocking assay and Southern blotting by cleaving the genome of the transfected cells with a restriction enzyme sensitive to DNA methylation (Recillas- Targa F, Bell AC, Felsenfela G. Positional enhancer-blocking activity of the chicken beta-glob in insulator in transiently transfected cells. Proc Natl Aca d Sci USA 1999 Dec 7; 96 (25): 14354-9).
ある DNAと機能的に同等な DNAを調製する当業者によく知られた他の方法として は、 ヽィプリダイゼーシヨン技術 (Sambrook, J et al. , Molecular Cloning 2nd ed. , 9. 47-9. 58, Cold Spring Harbor Lab. press, 1989) を利用する方法が挙げ られる。 即ち、 当業者においては、 ゥニ ARS遺伝子由来インスレーター (配列番 号: 1 ) 、 ニヮトリ由来 HS4インスレーター (配列番号: 2 ) 、 もしくはゥュ由来 ヒストン H2Aインスレーター (配列番号: 3 ) 、 またはその一部を利用して、 これ と相同性の高い DNAを単離することは、 周知の技術である。 Other methods well known to those skilled in the art for preparing DNA functionally equivalent to certain DNAs include the replication technique (Sambrook, J et al., Molecular Cloning 2nd ed., 9.47-9 58, Cold Spring Harbor Lab. Press, 1989). That is, those skilled in the art are aware of the penis ARS gene-derived insulator (SEQ ID NO: 1), the chicken-derived HS4 insulator (SEQ ID NO: 2), the mouse-derived histone H2A insulator (SEQ ID NO: 3), or It is a well-known technique to isolate DNA having a high homology with this by utilizing a part of the DNA.
本発明には、 ゥニ ARS遺伝子由来ィンスレーター、 ニヮトリ由来 HS4ィンスレー ター、 またはゥニ由来ヒストン H2Aインスレ一ターとストリンジェントな条件下で. ハイブリダイズし、 ゥ二 A S遺伝子由来インスレーター、 ニヮトリ由来 HS4ィンス レーター、 またはゥニ由来ヒストン H2Aインスレーターと機能的に同等な DNAが含 まれる。 ゥュ ARS遺伝子由来インスレーター、 ニヮトリ由来 HS4インスレーター、 またはゥニ由来ヒストン H2Aインスレーターと機能的に同等な DNAを単離するため のハイプリダイゼーシヨンの条件は、 当業者であれば適宜選択することができる。 ハイブリダイゼーションの条件としては、 例えば、 低ストリンジェントな条件が 挙げられる。 低ストリンジェントな条件とは、 ハイプリダイゼーション後の洗浄 において、 例えば 42°C、 5 X SSC、 0. 1%SDSの条件であり、 好ましくは 50°C、 5 X SS C、 0. 1%SDSの条件である。 より好ましいハイプリダイゼーシヨンの条件として は、 高ストリンジェントな条件が挙げられる。 高ストリンジェントな条件とは、
例えば 65°C、 0. 1 XSSC及ぴ 0. 1%SDSの条件である。 これらの条件において、 温度 を上げる程に高い相同性を有する DNAが効率的に得られることが期待できる。 但し、 ハイプリダイゼーションのストリンジエンシーに影響する要素としては温度や塩 濃度など複数の要素が考えられ、 当業者であればこれら要素を適宜選択すること で同様のストリンジエンシーを実現することが可能である。 In the present invention, a penis ARS gene-derived insulator, a chicken HS4 insulator, or a peni-derived histone H2A insulator under stringent conditions. It contains DNA that is functionally equivalent to the insulator or pentone-derived histone H2A insulator. The conditions of hybridization for isolating DNA functionally equivalent to the ARS gene-derived insulator, the chicken-derived HS4 insulator, or the chicken-derived histone H2A insulator are appropriately selected by those skilled in the art. can do. Hybridization conditions include, for example, low stringency conditions. Low stringency conditions include, for example, 42 ° C, 5X SSC, 0.1% SDS in washing after hybridization, and preferably 50 ° C, 5X SSC, 0.1%. This is the condition for SDS. More preferable conditions for the hybridization are high stringency conditions. High stringency conditions For example, the conditions are 65 ° C., 0.1 XSSC and 0.1% SDS. Under these conditions, it can be expected that DNA with higher homology can be obtained more efficiently as the temperature is increased. However, factors that affect the stringency of hybridization can be considered as multiple factors such as temperature and salt concentration, and those skilled in the art can realize the same stringency by appropriately selecting these factors. It is possible.
また、 ゥニ ARS遺伝子由来インスレーター (配列番号: 1 ) 、 ニヮトリ由来 HS4 インスレーター (配列番号: 2 ) 、 またはゥニ由来ヒストン H2Aインスレーター (配列番号: 3 ) の配列情報を基に合成したプライマーを用いる遺伝子増幅法、 例えば、 ポリメラーゼ連鎖反応 (PCR) 法を利用して、 ゥニ ARS遺伝子由来インス レ一ター、 ュヮトリ由来 HS4インスレーター、 またはゥニ由来ヒストン H2Aインス レーターと機能的に同等な DNAを単離することも可能である。 It was also synthesized based on the sequence information of the penis ARS gene-derived insulator (SEQ ID NO: 1), chicken-derived HS4 insulator (SEQ ID NO: 2), or peni-derived histone H2A insulator (SEQ ID NO: 3). Using primer-based gene amplification methods, such as the polymerase chain reaction (PCR) method, it is functionally equivalent to the penis ARS gene-derived insulator, the petri-derived HS4 insulator, or the peni-derived histone H2A insulator DNA can be isolated.
これらハイブリダイゼーション技術や遺伝子増幅技術により単離されるゥニ ARS 遺伝子由来インスレーター、 ニヮトリ由来 HS4インスレータ一、 またはゥニ由来ヒ ストン H2Aィンスレーターと機能的に同等な DNAの塩基配列は、 配列番号: 1〜 3 のいずれかに記載の塩基配列と高い相同性を有する場合がある。 高い相同性とは、 塩基レベルにおいて、 通常、 少なくとも 80%以上の同一性、 好ましくは 85%以上 の同一性、 さらに好ましくは 90%以上の同一性、 さらに好ましくは 95%以上の同 一性を指す。 The nucleotide sequence of a DNA functionally equivalent to the peni ARS gene-derived insulator, the chicken HS4 insulator one, or the peni-derived histone H2A insulator isolated by these hybridization techniques or gene amplification techniques is SEQ ID NO: 1. To 3 in some cases. High homology usually means at least 80% identity, preferably 85% identity, more preferably 90% identity, and even more preferably 95% identity at the base level. Point.
塩基配列の同一性は、 Karlin and Altschulによるアルゴリズム BLAST (Proc. Na tl. Acad. Sci. USA 90 : 5873 - 5877, 1993)によって決定することができる。 この アルゴリズムに基づいて、 BLASTNや BLASTXと呼ばれるプログラムが開発されてい る(Altschul et al. J. Mol. Biol. 215:403- 410, 1990)。 BLASTに基づいて BLASTN によって塩基配列を解析する場合には、 パラメータ一はたとえば score = 100、 wo rdlengt = 12とする。 BLASTと Gapped BLASTプログラムを用いる場合には、 各プ ログラムのデフォルトパラメーターを用いる。 これらの解析方法の具体的な手法 ίま公失口であ (http: //www. ncbi. nlm. nih. gov. )。
また、 ゥュ ARS遺伝子由来ィンスレーター配列、 ニヮトリ由来 HS4ィンスレータ 一配列、 またはゥニ由来ヒストン H2Aインスレーター配列において 1もしくは複数 の塩基が変異 (置換、 欠失、 付加および Zまたは挿入) した塩基配列からなり、 該ゥニ ARS遺伝子由来インスレーター、 ニヮトリ由来 HS4インスレーター、 または ゥ-由来ヒストン H2Aインスレーターと機能的に同等な DNAもまた本発明に含まれ る。 このような変異は自然界においても生じうる。 変異する塩基数は、 通常、 30 塩基以内であり、 好ましくは 15塩基以内であり、 より好ましくは 5塩基以内であり、 さらに好ましくは 2塩基以内である。 The nucleotide sequence identity can be determined by the algorithm BLAST by Karlin and Altschul (Proc. Natl. Acad. Sci. USA 90: 5873-5877, 1993). Based on this algorithm, programs called BLASTN and BLASTX have been developed (Altschul et al. J. Mol. Biol. 215: 403-410, 1990). When a nucleotide sequence is analyzed by BLASTN based on BLAST, one parameter is, for example, score = 100 and wordlengt = 12. When using BLAST and Gapped BLAST programs, use the default parameters of each program. The specific methods of these analysis methods are public excuse (http: // www. Ncbi. Nlm. Nih. Gov.). In addition, one or more bases may be mutated (substitution, deletion, addition and Z or insertion) in the ARS gene-derived insulator sequence, the chicken-derived HS4 insulator sequence, or the peni-derived histone H2A insulator sequence. Thus, DNA functionally equivalent to the peni ARS gene-derived insulator, the chicken derived HS4 insulator, or the ゥ -derived histone H2A insulator is also included in the present invention. Such mutations can occur in nature. The number of bases to be mutated is usually within 30 bases, preferably within 15 bases, more preferably within 5 bases, and further preferably within 2 bases.
また、 ある DNAと機能的に同等な DNAを調製するための、 当業者によく知られた 方法としては、 DNAに変異を導入する方法が知られている。 例えば、 当業者であれ ば、 部位特異的変異誘発法 (Gotoh, T. et al. (1995) Gene 152, 271-275、 Zoll er, MJ, and Smith, M. (1983) Methods Enzymol. 100, 468—500、 Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456、 Kramer W, and Fritz HJ(1987) Methods. Enzymol. 154, 350-367、 Kunkel, TA(1985) Proc Natl Acad Sci USA. 82, 488-492、 Kunkel (1988) Methods Enzymol. 85, 2763-2766) などを用いて、 ゥ -ARS遺伝子由来ィンスレーター配列、 ニヮトリ由来 HS4ィンスレーター配列、 またはゥニ由来ヒストン H2Aィンスレーター配列に適宜変異を導入することにより、 該ゥニ ARS遺伝子由来インスレーター、 ニヮトリ由来 HS4インスレーター、 または ゥニ由来ヒストン H2Aィンスレーターと機能的に同等な DNAを調製することができ る。 As a method well known to those skilled in the art for preparing DNA functionally equivalent to a certain DNA, a method of introducing a mutation into DNA is known. For example, those skilled in the art can use site-directed mutagenesis (Gotoh, T. et al. (1995) Gene 152, 271-275, Zoller, MJ, and Smith, M. (1983) Methods Enzymol. 100, 468-500, Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456, Kramer W, and Fritz HJ (1987) Methods.Enzymol. 154, 350-367, Kunkel, TA (1985) Proc Natl Acad Sci USA. 82, 488-492, Kunkel (1988) Methods Enzymol. 85, 2763-2766), etc. By appropriately introducing a mutation into the sequence, a DNA functionally equivalent to the peni ARS gene-derived insulator, the chicken derived HS4 insulator, or the peni-derived histone H2A insulator can be prepared.
本発明のインスレーターは、 いかなる形態でもよい。 即ち、 ゲノム DNAである力、 化学合成 DNAであるかなどを問わない。 The insulator of the present invention may be in any form. That is, it does not matter whether it is genomic DNA or chemically synthesized DNA.
本発明のベクターは、 DNA発現ベクターにおける任意 DNAの揷入部位の 3' 側およ ぴ該任意 DNAの発現を制御するプロモーターの 5' 側に、 上記インスレーターを、 それぞれ、 順方向および逆方向に揷入することで製造することができる。 例えば、 図 1に示したように、 pGK- LUC_p(A)などの任意のプロモーターに cDNAとポリ A付加
シグナルを連結した遺伝子発現力セットをあらかじめ作製し、 それを pBSK- SmBm (- ) (Akasaka K, Nishimura A, TaKata K, Mitsunaga K, Mibuka F, Ueda H, Hiros e S, Tsutsui K, Shimada H. Upstream element of the sea urchin arylsulfata se gene serves as an insulator. Cell Mol Biol (Noisy-le-grand) 1999 Jul ; 5 (5) : 555-65)の Smalサイトよりも T3プロモーター側の制限酵素サイトに連結し、 F Rベクターの状態にする。 更に、 そのベクターを Kpnlサイトで切断後、 T4DNAポリ メラーゼを用いて Bluntingを行い、 そこに pBSK- SmBm(- )から EcoRI - Saclで切り出 し Bluntingした断片をサブクローニングする。 目的とするプラスミドが得られた ら、 Notlで切断することによって、 インスレーター +発現カセット + インスレータ 一の断片が出現することでインスレーターの向きを確認できる。 また、 任意のプ ライマーでシークェンシングを行いつなぎ目を確認する。 以上の方法でベクター を製作することができる。 また、 既存のベクターであっても、 同様の行程を行う ことによってインスレーターを連結したべクターに変更することが可能となる。 本発明は、 また、 上記ベクターに、 任意 DNAが揷入されたベクターを提供する。 本発明の任意 DNAとしては、 任意のペプチドをコードするものを例示できるが、 本 発明の任意 DNAは、 これに制限されるものではない。 ここで、 「ペプチド」 とは、 アミノ酸同士がペプチド結合により結合した化合物を指す。 従って、 鎖長の長い ペプチドである 「ポリペプチド」 や 「タンパク質」 もまた本発明の 「ペプチド」 に含まれる。 本発明において、 任意のペプチドとしては、 本出願に示したルシフ エラーゼのような酵素、 GFPのようなマーカータンパク質、 転写因子などの細胞機 能タンパク質、 または薬剤耐性遺伝子をコードするタンパク質などが例示できる 力 本発明の任意のペプチドは、 これらに限定されるものではない。 The vector of the present invention comprises the above-mentioned insulator on the 3 ′ side of the insertion site of any DNA in the DNA expression vector and on the 5 ′ side of the promoter controlling the expression of the arbitrary DNA, respectively, in the forward and reverse directions. It can be manufactured by purchasing. For example, as shown in Fig. 1, cDNA and poly A are added to any promoter such as pGK-LUC_p (A). A gene expression force set in which signals were linked was prepared in advance, and it was prepared using pBSK-SmBm (-) (Akasaka K, Nishimura A, TaKata K, Mitsunaga K, Mibuka F, Ueda H, Hirose S, Tsutsui K, Shimada H. Upstream element of the sea urchin arylsulfata se gene serves as an insulator.Cell Mol Biol (Noisy-le-grand) 1999 Jul; 5 (5): 555-65) And put it in the state of FR vector. Furthermore, after cutting the vector at the Kpnl site, Blunting is performed using T4 DNA polymerase, and the pBSK-SmBm (-) is excised with EcoRI-Sacl and the Blunted fragment is subcloned. Once the desired plasmid is obtained, the orientation of the insulator can be confirmed by cutting with Notl, and the appearance of a fragment of insulator + expression cassette + insulator. In addition, perform sequencing with an arbitrary primer to check the joint. Vectors can be produced by the above method. In the case of an existing vector, it is possible to change the vector to a connected vector by performing the same process. The present invention also provides a vector in which an arbitrary DNA has been inserted into the above vector. Examples of the arbitrary DNA of the present invention include those encoding any peptide, but the arbitrary DNA of the present invention is not limited thereto. Here, the term “peptide” refers to a compound in which amino acids are bound by peptide bonds. Therefore, “peptide” and “protein” which are peptides having a long chain length are also included in the “peptide” of the present invention. In the present invention, examples of the arbitrary peptide include an enzyme such as luciferase shown in the present application, a marker protein such as GFP, a cell functional protein such as a transcription factor, and a protein encoding a drug resistance gene. Force Any peptide of the present invention is not limited to these.
また、 本発明は、 本発明の任意 DNAを有するベクターが染色体に導入された形質 転換体を提供する。 The present invention also provides a transformant in which a vector having any DNA of the present invention has been introduced into a chromosome.
ベクターが導入される宿主としては特に制限はなく、 例えば種々の真核細胞等 を用いることが可能である。 真核細胞を使用する場合、 例えば動物細胞、 植物細
胞を宿主に用いることができる。 動物細胞としては、 哺乳類細胞、 例えば CH0、 CO S.、 NIH3T3、 ミエローマ、 BHK (baby hamster kidney) 、 HeLa、 Vero、 両生類細胞、 例えばアフリカッメガエル卵母細胞 (Valle, et. al., Nature 291: 358-340, 1 981) 、 あるいは昆虫細胞、 例えば Sf9、 Sf21、 Tn5が知られている。 CH0細胞とし ては、 特に、 DHFR遺伝子を欠損した CH0細胞である dhfr- CHO (Proc. Natl. Acad. Sci. USA, 1980, 77, 4216-4220. ) や CHO K—l (Proc. Natl. Acad. Sci. USA, 1 968, 60, 1275. ) を好適に使用することができる。 植物細胞としては、 例えば二 コチアナ ·タパカム (Nicotiana tabacum) 由来の細胞が挙げられる。 The host into which the vector is introduced is not particularly limited, and for example, various eukaryotic cells and the like can be used. When using eukaryotic cells, e.g., animal cells, plant cells, etc. The vesicle can be used as a host. Animal cells include mammalian cells, for example, CH0, CO S., NIH3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero, amphibian cells, for example, African oocyte (Valle, et. Al., Nature 291: 358-340, 19981) or insect cells such as Sf9, Sf21 and Tn5. As the CH0 cells, DHfr-CHO (Proc. Natl. Acad. Sci. USA, 1980, 77, 4216-4220.) And CHO K-l (Proc. Natl. Acad. Sci. USA, 1968, 60, 1275.) can be preferably used. Examples of plant cells include cells derived from Nicotiana tabacum.
上記宿主に本発明のベクターを導入するための方法としては、 培養細胞等の宿 主細胞へのベクターの導入の場合、 例えばリン酸カルシウム法 (Chen, C. and 0k ayama, H. Mol. Cell. Biol. , 1987, 7, 2745 - 2752. )、 DEAEデキストラン法 (Lop ata, M. A. et. al. , Nucl. Acid. Res. , 1984, 12, 5707 - 5717·、 Sussman, D. J. and Milman, G. Mol. Cell. Biol. , 1985, 4, 1642—1643. )、 カチォニックリポ ソーム D0TAP (ベーリンガーマンハイム社製) を用いた方法、 リポフエクチン法 (Derijard, B. Cell, 1994, 7, 1025-1037.、 Lamb, B. T. et. al., ature Gene tics, 1993, 5, 22—30.、 Rabindran, S. K. et. al. , Science, 1993, 259, 230— 234. )等の方法を用いることが可能である。 また、 植物細胞へのベクターの導入に は、 ポリエチレングリコール法、 エレクトロポレーシヨン法、 ァグロパクテリゥ ムを介する方法、 パーティクルガン法など、 当業者に公知の種々の方法を用いる ことができる。 As a method for introducing the vector of the present invention into the above host, in the case of introducing the vector into host cells such as cultured cells, for example, the calcium phosphate method (Chen, C. and 0kayama, H. Mol. Cell. Biol. , 1987, 7, 2745-2752.), DEAE dextran method (Lop ata, MA et. Al., Nucl. Acid. Res., 1984, 12, 5707-5717.), Sussman, DJ and Milman, G. Mol. Cell. Biol., 1985, 4, 1642-1643.), A method using catonic liposome D0TAP (Boehringer Mannheim), a lipofectin method (Derijard, B. Cell, 1994, 7, 1025-1037., Lamb, BT et. Al., Nature Genetics, 1993, 5, 22-30, Rabindran, SK et. Al., Science, 1993, 259, 230-234.) And the like. For introducing a vector into a plant cell, various methods known to those skilled in the art, such as a polyethylene glycol method, an electroporation method, a method via an agrobacterium, and a particle gun method, can be used.
本発明における形質転換体には、 形質転換細胞だけでなく形質転換細胞を有す る個体もまた包含される。 例えば、 宿主として動物を使用する場合、 哺乳類動物 や昆虫が挙げられる。 哺乳類動物としては、 特に制限されず、 例えば、 ャギ、 プ タ、 ヒッジ、 マウス、 ゥシ等を用いることができる (Vicki Glaser, SPECTRUM Bi otechnology Applications, 1993) 。 また、 昆虫としては、 例えば、 カイコが挙 げられるが、 これに限定されるものではない。 また、 植物を使用する場合、 例え
ば、 タバコを用いることができるが、 これに制限されない。 The transformant in the present invention includes not only a transformed cell but also an individual having the transformed cell. For example, when using an animal as a host, mammals and insects can be mentioned. The mammal is not particularly limited, and for example, goats, puters, sheep, mice, mice, etc. can be used (Vicki Glaser, SPECTRUM Biotechnology Applications, 1993). Insects include, for example, silkworms, but are not limited thereto. Also, if you use plants, Tobacco can be used, but is not limited to this.
これら動物や植物の形質転換体は、 公知の方法を使用することで作出すること が可能である。 例えば、 目的とする DNAを、 ャギ) 3カゼインのような乳汁中に固有 に産生されるポリぺプチドをコ一ドする遺伝子との融合遺伝子として調製する。 次いで、 この融合遺伝子を含む DNA断片をャギの胚へ注入し、 この胚を雌のャギへ 移植することで、 トランスジエニックャギを作出することが可能である (Ebert, K. M. et al. , Bio/Technology (1994) 12, 699-702) 。 These animal and plant transformants can be produced by using known methods. For example, the target DNA is prepared as a fusion gene with a gene encoding a polypeptide uniquely produced in milk such as goat 3 casein. Then, a transgeneic goat can be produced by injecting a DNA fragment containing the fusion gene into a goat embryo and transplanting the embryo into a female goat (Ebert, KM et al. , Bio / Technology (1994) 12, 699-702).
また、 例えば目的のぺプチドをコードする DNAを挿入したパキュロウィルスを力 ィコに感染させることによりトランスジエニックカイコを作出することができる (Susumu, M. et. al. , Nature, 1985, 315, 592—594. ) 。 In addition, transgenic silkworms can be produced, for example, by infecting chicks with a paculovirus into which DNA encoding the peptide of interest has been inserted (Susumu, M. et. Al., Nature, 1985, 315, 592—594.
また、 例えば目的とするペプチドをコードする DNAを植物発現用ベクター、 例え ば pMON 530に揷入し、 このベクターをァグロパクテリゥム ·ッメファシエンス (A grobacterium tumefaciens) のようなパクテリアに導入する。 このパクテリアを タバコ、 例えばニコチアナ ·タパカムに感染させることでトランスジエニック植 物体を作出することができる (Julian K. -C. Ma et. al. , Eur. J. Immunol. , 19 94, 24, 131-138. ) 。 In addition, for example, a DNA encoding the peptide of interest is introduced into a plant expression vector, for example, pMON530, and this vector is introduced into a pacteria such as Agrobacterium tumefaciens. Transgenic plants can be created by infecting this bacterium with tobacco, such as Nicotiana tapacam (Julian K. -C. Ma et. Al., Eur. J. Immunol., 1994, 24, 131-138.).
任意 DNAが、 任意のペプチドをコードする DNAである場合、 該ペプチドは、 例え ば上記トランスジェエツクャギ又はその子孫が産生する乳汁から得ることができ る。 また、 トランスジェユックカイコの繭やトランスジエニック植物体からぺプ チドを回収することも可能である。 When the arbitrary DNA is a DNA encoding an arbitrary peptide, the peptide can be obtained, for example, from milk produced by the above-mentioned transjeckey or its progeny. It is also possible to recover peptides from cocoons and transgenic plants of transjeuc silkworms.
また、 上記形質転換細胞を培養することにより生産させることも可能である。 培養は公知の方法に従い行うことができる。 例えば、 動物細胞の培養であれば、 一般的に、 培養液としては、 DMEM、 MEM、 RPMI1640、 IMDM等を使用することがで きる。 その際、 牛胎児血清 (FCS) 等の血清補液を併用することもできるし、 無血 清培養してもよい。 培養時の pHは、 通常、 約 6〜8であるのが好ましい。 培養は、 通常、 約 30〜40°Cで約 15〜200時間行い、 必要に応じて培地の交換、 通気、 攪拌を
加える。 It is also possible to produce the above-mentioned transformed cells by culturing them. The culture can be performed according to a known method. For example, when culturing animal cells, generally, DMEM, MEM, RPMI1640, IMDM, or the like can be used as a culture solution. At that time, a serum replacement solution such as fetal calf serum (FCS) may be used in combination, or serum-free culture may be performed. Usually, the pH during the culturing is preferably about 6 to 8. Culture is usually carried out at about 30 to 40 ° C for about 15 to 200 hours, and if necessary, the medium is replaced, aerated, and agitated. Add.
任意のぺプチドは、 実質的に純粋で均一なぺプチドとして精製することができ る。 ペプチドの分離、 精製は、 通常のペプチドの精製で使用されている分離、 精 製方法を使用すればよく、 何ら限定されるものではない。 例えばクロマトグラフ ィーカラム、 フィルター、 限 «過、 塩析、 溶媒沈殿、 溶媒抽出、 蒸留、 免疫沈 降、 SDS-ポリアクリルアミドゲル電気泳動、 等電点電気泳動法、 透析、 再結'晶等 を適宜選択、 組み合わせればペプチドを分離、 精製することができる。 または、 さらにこれらのカラムを複数組み合わせることにより精製することが可能である。 クロマトグラフィーとしては、 例えば任意のぺプチドに対する抗体をカラムに 固定したァフィ二ティークロマトグラフィー、 イオン交換クロマトグラフィー、 疎水性クロマトグラフィー、 ゲル濾過、 逆相クロマトグラフィー、 吸着クロマト グラフィ一等が挙げられる (Strategies for Protein Purification and Charact erization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996) 。 これらのクロマトグラフィーは、 液 相クロマトグラフィー、 例えば HPLC、 FPLC等の液相クロマトグラフィーを用いて 行うことができる。 これらの精製方法を用い、 任意のペプチドを高度に精製する こともできる。 Any peptide can be purified as a substantially pure and homogeneous peptide. The separation and purification of the peptide may be carried out by using the separation and purification methods used in ordinary peptide purification, and is not limited at all. For example, chromatographic columns, filters, filtration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc. If selected and combined, peptides can be separated and purified. Alternatively, purification can be performed by further combining a plurality of these columns. Examples of the chromatography include affinity chromatography in which an antibody to an arbitrary peptide is immobilized on a column, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, and adsorption chromatography. Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). These chromatographys can be performed using liquid phase chromatography, for example, liquid phase chromatography such as HPLC and FPLC. Using these purification methods, any peptide can be highly purified.
なお、 ぺプチドを精製前または精製後に適当なぺプチド修飾酵素を作用させる ことにより、 任意に修飾を加えたり部分的にぺプチドを除去することもできる。 ぺプチド修 ji酵素としては、 例えばトリプシン、 キモトリプシン、 リシ ェンド ぺプチダーゼ、 プロテインキナーゼ、 ダルコシダーゼ等が用いられる。 The peptide can be arbitrarily modified or partially removed by reacting the peptide with a suitable peptide modifying enzyme before or after purification. Examples of peptide repair enzymes include, for example, trypsin, chymotrypsin, raised peptidase, protein kinase, dalcosidase and the like.
また、 任意のペプチドをグ^"タチオン S-トランスフェラーゼとの融合ペプチド として、 あるいはヒスチジンを複数付加させた組換えペプチドとして宿主細胞内 で発現させた場合には、 発現させた組換えぺプチドはダルタチオンカラムあるい はニッケルカラムを用いて精製することができる。 融合ペプチドの精製後、 必要 に応じて融合ペプチドのうち、 目的のペプチド以外の領域を、 トロンビンまたは
ファクター Xa等により切断し、 除去することも可能である。 In addition, when any peptide is expressed in a host cell as a fusion peptide with glutathione S-transferase or as a recombinant peptide to which multiple histidines are added, the expressed recombinant peptide is daldal. After purifying the fusion peptide, if necessary, a region other than the target peptide in the fusion peptide may be purified using thrombin or a nickel column. It is also possible to cut and remove with factor Xa or the like.
また、 本発明は、 本発明のベクターを保持する形質転換体を提供する。 このよ うな形質転換体は、 例えば、 本発明のベクターを増幅するために使用することが できる。 ベクターが導入される宿主としては、 上記の真核細胞に限定されず、 原 核細胞を使用することもできる。 例えば、 原核細胞としては細菌細胞が挙げられ る。 該細菌細胞としては、 大腸菌 coli ) 、 例えば J 109、 DH5 a、 HB101、 XL1 Blue, BL21等が拳げられ、 その他、 枯草菌が知られている。 上記宿主に本発明の ベクターを導入するための方法としては、 大腸菌等の宿主細胞へのベクターの導 入の場合、 例えば塩化カルシウム法、 エレクト口ポレーシヨン法を用いることが できる。 図面の簡単な説明 The present invention also provides a transformant carrying the vector of the present invention. Such a transformant can be used, for example, for amplifying the vector of the present invention. The host into which the vector is introduced is not limited to the above eukaryotic cells, and prokaryotic cells can also be used. For example, prokaryotic cells include bacterial cells. Examples of the bacterial cells include Escherichia coli (E. coli), for example, J109, DH5a, HB101, XL1 Blue, BL21, and the like, and Bacillus subtilis. As a method for introducing the vector of the present invention into the above-mentioned host, in the case of introducing the vector into a host cell such as Escherichia coli, for example, a calcium chloride method and an electoporation method can be used. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ゥニ由来インスレ"ターを連結したベクターの作製概念を示す図であ る。 灰色矢印はゥニ ARS遺伝子インスレーター (580pb)を示す。 また、 矢印の向き はインスレーターの連結されている方向を示す。 PGKはマウス PGK-1プロモーター LUCはルシフエラーゼ遺伝子、 SVp (A)は SV40ゥィルス由来ポリ A付加シグナルを示 してレ、る。 Figure 1 shows the concept of the construction of a vector to which a peni-derived insulator was ligated. The gray arrow indicates the peni ARS gene insulator (580 pb). The direction of the arrow indicates that the insulator was ligated. PGK indicates mouse PGK-1 promoter LUC indicates luciferase gene, and SVp (A) indicates SV40 virus-derived polyA addition signal.
図 2は、 ゥニ由来ィンスレーターを用いた遺伝子発現ベクターを示す図である, ベクターを構成するパーツに関しては、 図 1と同じである。 インスレーターの向 きと数が異なる。 FIG. 2 is a diagram showing a gene expression vector using a penni-derived insulator. Parts constituting the vector are the same as those in FIG. The direction and number of insulators are different.
図 3は、 ゥニ由来ィンスレーターを用いた遺伝子発現ベクターを示す図である, ベクターを構成するパーツに関しては、 図 1と同じである。 インスレーターの向 きと数が異なる。 FIG. 3 is a diagram showing a gene expression vector using a penni-derived insulator. Parts constituting the vector are the same as those in FIG. The direction and number of insulators are different.
図 4は、 べクターを導入した細胞でルシフェラーゼ活性を測定した結果を示す 図である。 各ベクターごとに得られた 12クローンのルシフェラーゼ活性を平均化 してグラフ化してある。 0Lベクターを導入したクローンのルシフェラーゼ活性が
非常に高いことが分かる。 発明を実施するための最良の形態 FIG. 4 is a diagram showing the results of measuring luciferase activity in cells into which the vector has been introduced. The luciferase activities of the 12 clones obtained for each vector are averaged and graphed. Luciferase activity of clones transfected with 0L vector It turns out to be very high. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により、 さらに具体的に説明するが本発明はこれら実施 例に制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[実施例 1 ] ゥニ由来インスレーターを用いた遺伝子発現べクタ一の構築 インスレーターの機能を明らかにするために、 マーカー遺伝子である ンフエ ラーゼ遺伝子 (LUC)を連結したベタターを作製し、 ルシフェラーゼの発現量を指標 としてィンスレーターの機能を明らかにする手法を用いた。 [Example 1] Construction of a gene expression vector using a peni-derived insulator In order to clarify the function of the insulator, a bettater linked with a marker gene, a luciferase gene (LUC), was prepared. A method was used to clarify the function of the insulator using the expression level of the as an index.
図 1に示したように、 ゥニ ARS遺伝子由来インスレーター(580bP)を持つプラス ミド pBSK- SmBm (-)の Sailサイトに、 pGK- lucプラスミドより Sailで切り出した PGK- LUC-p(A)カセット (マーカー遺伝子) をサブクローユングする。 得られたクロー ンについて、 Hindlllによる方向の確認と塩基配列を解析し、 インスレーターの向 きに対して逆向きに PGK- LUC-p (A)カセットが連結されているものを選択する。 得 られたクローンの Kpnlサイトに、 pBSK-SmBm (-)から Saclと EcoRIで切り出したイン スレーター斬片をサブクロー-ングする。 得られたクローンについて Notlによる 方向の確認と塩基配列を読むことで、 PGK- LUC - P (A)カセットの下流に順方向にィ ンスレーターが連結されたクローンを選択する。 得られたクローンを遺伝子発現 ベクター 0L (図 2 ) と呼ぶ。 また、 同様にして作製したベクターについて、 イン スレーターの向きと数により FF、 FR、 RF、 RR、 IL、 SL2、 SL3の 7種類 (図 3 ) も 同時に構築した。 As shown in FIG. 1, plasmid PBSK- SmBM with © two ARS gene derived insulator (580b P) (-) to the Sail site, PGK-cut with Sail than PGK-luc plasmid LUC-p (A ) Subclosing the cassette (marker gene). For the obtained clone, confirm the direction with Hindlll and analyze the nucleotide sequence, and select the clone in which the PGK-LUC-p (A) cassette is connected in the opposite direction to the direction of the insulator. At the Kpnl site of the obtained clone, subclone an insulator slice cut out from pBSK-SmBm (-) with Sacl and EcoRI. By confirming the orientation with Notl and reading the nucleotide sequence of the obtained clone, a clone in which an insulator is ligated in the forward direction downstream of the PGK-LUC- P (A) cassette is selected. The resulting clone is called the gene expression vector 0L (FIG. 2). In addition, seven types of FF, FR, RF, RR, IL, SL2, and SL3 (Fig. 3) were simultaneously constructed for the vectors prepared in the same manner, depending on the orientation and number of the insulators.
[実施例 2 ] 細胞へのベクターの導入 [Example 2] Introduction of vector into cells
哺乳類の細胞として、 マウスの株化繊維芽細胞である NIH3T3細胞をモデルとし て用いた。 NIH3T3細胞は 10%のゥシ胎児血清を添加した DMEM培地 (SIGMA)で培養を 行った。 NIH3T3細胞に、 マーカー遺伝子である PGK- LUC- p(A)にインスレーターを 連結したベタターと、 薬剤耐性遺伝子 PGK- puro- p (A)を導入した。 それぞれのべク
ターは、 プラスミド領域を除くため制限酵素で切断後ァガロースゲル電気泳動を 行い図 1, 2に示したカセット部位分だけを切り出した。 回収したカセットは、 1 /10量の PGK- puro- p (A)と混合し遺伝子導入用試薬リボフヱクトァミンプラス(Invi trogen)を用いて細胞に導入した。 遺伝子導入後 48時間後から培地に 1 β g/mlの濃 度でピューロマイシン (SIGMA)を添加し 7日間培養し組換え細胞を単離した。 なお 組換え細胞は、 1ベクターあたりランダムに 12クローンずつ単離を行った。 As a mammalian cell, NIH3T3 cell, a mouse established fibroblast, was used as a model. NIH3T3 cells were cultured in DMEM medium (SIGMA) supplemented with 10% fetal calf serum. The NIH3T3 cells were transfected with a setter in which an insulator was linked to a marker gene, PGK-LUC-p (A), and a drug resistance gene, PGK-purop-p (A). Each vector In order to remove the plasmid region, the agarose gel was cut with restriction enzymes and subjected to agarose gel electrophoresis to cut out only the cassette site shown in Figs. The recovered cassette was mixed with 1/10 amount of PGK-purop-p (A) and introduced into cells using a gene transfer reagent ribofectamine plus (Invitrogen). 48 hours after the gene transfer, puromycin (SIGMA) was added to the medium at a concentration of 1 βg / ml, and the cells were cultured for 7 days to isolate recombinant cells. In addition, the recombinant cells were randomly isolated in 12 clones per vector.
ピューロマイシンによる選択を行ったところ、 得られた細胞のコロニー数に関 しすべてのベクターに差は認められなか た。 また、 すべてのベクターに関して 1ベクターあたり 12クローンを単離した。 それぞれのクローンは、 24穴のマイク ロタイタ一プレートに単離し、 細胞が増殖したところで 12穴のマイクロタイター プレート 2枚にパッセージしレプリカを作製した。 それらのうち 1枚をルシフエ ラーゼ活性測定に用い、 もう一枚は細胞のゲノミック DNA抽出及び保存用に用いた。 When selection was performed with puromycin, no difference was observed between all vectors in the number of colonies of the obtained cells. In addition, 12 clones were isolated per vector for all vectors. Each clone was isolated on a 24-well microtiter plate, and when the cells grew, it was passed through two 12-well microtiter plates to make replicas. One of them was used for luciferase activity measurement, and the other was used for cell genomic DNA extraction and storage.
[実施例 3 ] ルシフェラ一ゼ ·アツセィ [Example 3] Lucifera Atsushi
それぞれのべクターから得られたクローンに関し、 ゲノム DNAを抽出し PCRを行 ぃルシフェラーゼ遺伝子の存在を確認した。 For the clones obtained from each vector, genomic DNA was extracted and subjected to PCR to confirm the presence of the luciferase gene.
組換え細胞に関して、 PR0MEGA社のルシフェラーゼ ·アツセィキットを用いてル シフェラーゼ活 ^4を測定した。 また、 その際測定装置としてダイアヤト口ン CT- 90 00Dを用いて蛍光強度を測定した。 また、 測定に用いた個々のサンプルに含まれる タンパク量を、 アマシャム社のプロテインアツセィキットを用いて測定した。 デ ータに関しては、 個々のクローンについてタンパク あたりの蛍光量を求めた。 また、 それらのデータをもとにそれぞれのベクターの蛍光量の平均値を求め同時 にグラフ化を行った (図 4 ) 。 For the recombinant cells, the luciferase activity ^ 4 was measured using the luciferase Atsusei kit of PR0MEGA. At that time, the fluorescence intensity was measured using a diamond mouth CT-90000D as a measuring device. In addition, the amount of protein contained in each sample used for the measurement was measured using a protein assay kit manufactured by Amersham. For the data, the amount of fluorescence per protein was determined for each clone. In addition, based on these data, the average value of the amount of fluorescence of each vector was determined and simultaneously graphed (Fig. 4).
ィンスレーターを連結していないべクタ一である PGK- LUC- p (A)は平均 441の活性 を示したのに対し、 インスレーターを 1コピー連結した FF、 FR、 RF (図 3 ) では、 それぞれ 4672、 2585、 5687という活性を示し PGK - LUC - P (A)の 5. 9〜: 12. 9倍という高 い活^ 4を示した。 これらのことから、 インスレーターを 1コピー連結しただけで、
インスレーターの向きと位置によって違いはあるものの、 遺伝子の不活性化を回 避する能力があることが明らかになつた。 PGK-LUC-p (A), an unlinked insulator vector, showed an average of 441 activities, whereas FF, FR, and RF (Figure 3), each with one copy of an insulator, showed an activity of 441. The activity was 4672, 2585, 5687, and the activity was 5.9 to 12.9 times higher than that of PGK-LUC- P (A) ^ 4. From these things, just linking one copy of the insulator, Despite the differences depending on the orientation and position of the insulator, it was clear that it had the ability to avoid gene inactivation.
インスレーターをカセットの上流と下流に 2コピー連結した場合に、 IL、 SL2、 SL3 (図 3 ) では、 それぞれ 3353、 1099、 1377という活性を示した。 これは PGK - LU C-p (A)の活性の 2. 5〜7. 6倍の活性であり、 1コピーのィンスレーターを連結した 場合よりも低いことが明らかになった。 しかしながら、 0L (図 1 ) では、 ルシフ エラーゼ活性は 57800であり、 これは PGK - LUC- p (A)の 131倍に相当する。 これらの ことから、 2コピーのインスレーターをベクターに連結する場合には、 その方向 によって遺伝子の発現量に大きな差が生じることが明らかになった。 中でも、 力 セットの上流と下流に外向きにインスレーターを連結することで非常に高い遣伝 子発現を示すことが明らかになった。 このような結果は、 これまでに報告されて いる他のィンスレーターでは全く見られていないことから、 ゥニ ARSィンスレータ 一が遺伝子の不活性化を回避するシールドとしての能力が極めて高いことを示し ている。 また、 0Lのようにインスレーターを連結することが、 遺伝子組み換えを 行う場合に、 高い効率で遺伝子を発現させる手段として有効であることが明らか になった。 When two copies of the insulator were ligated upstream and downstream of the cassette, IL, SL2, and SL3 (Fig. 3) exhibited activities of 3353, 1099, and 1377, respectively. This activity was 2.5 to 7.6 times the activity of PGK-LU C-p (A), and was found to be lower than when one copy of the insulator was ligated. However, at 0L (FIG. 1), the luciferase activity was 57800, which is 131 times that of PGK-LUC-p (A). From these facts, it became clear that when two copies of the insulator were ligated to the vector, the direction of expression caused a large difference in the gene expression level. In particular, it was found that connecting the insulator outwardly upstream and downstream of the force set showed extremely high transgene expression. These results were not seen at all in the other insulators reported so far, indicating that the penis ARS insulator is extremely effective as a shield to avoid gene inactivation. I have. In addition, it became clear that connecting an insulator such as 0L is effective as a means for expressing a gene with high efficiency when performing gene recombination.
これまでに、 インスレーターがベクターの中に 2コピー存在すると、 インスレ 一ターどうしが結合してループを形成し、 遺伝子の不活性化を阻害する可能性が 示唆されている。 我々の結果では、 2コピー連結したインスレーターの方向によ つて遺伝子発現の差が認められた。 このような差が生じた原因として、 インスレ 一ターの方向によつてループを形成しにくレ、組み合わせがあるのではないかとい う可能性が示唆された。 産業上の利用の可能性 So far, it has been suggested that the presence of two copies of an insulator in a vector may bind the insulators to form a loop, thereby inhibiting gene inactivation. Our results showed a difference in gene expression depending on the orientation of the insulator linked in two copies. It was suggested that the cause of such a difference was that it was difficult to form a loop depending on the direction of the insetter, and that there were combinations. Industrial potential
これまで多くの学術的研究、 あるいは医薬品開発のための基礎研究の領域にお いて培養細胞を用いた遺伝子組換え、 あるいは遺伝子組換え動物の作製がなされ
てきた。 しかしながら、 これらの遺伝子組換え実験において、 遺伝子組換え細胞 あるいは遺伝子組換え動物が得られても、 導入した遺伝子が発現しない現象が起 きることが知られており、 大きく効率を低下させる原因の一つとなっていた。 こ れらの現象の原因の一^ 3として、 導入遺伝子がポジション 'イフェクトを受け不 活性化されてしまうことが明らかにされてきた。 しかしながら、 これまではこの 現象を回避する手だてはなかった。 しかしながら、 本発明において開発されたィ ンスレーターを連結した発現ベクターを用いることで、 遺伝子の不活性ィ匕を回避 でき、 効率よく導入遺伝子を発現させられることが明らかになった。 このべクタ 一は、 以下の研究 ·開発などにおいて非常に有効である。 Genetic recombination using cultured cells or production of transgenic animals has been performed in many academic and basic research areas for drug development. Have been. However, in these transgenic experiments, it has been known that even when transgenic cells or transgenic animals are obtained, a phenomenon in which the introduced gene is not expressed may occur. Had one. As one of the causes of these phenomena, it has been revealed that the transgene is inactivated by receiving a position 'effect. However, until now there was no way to avoid this phenomenon. However, it has been clarified that by using the expression vector linked to the insulator developed in the present invention, inactivation of the gene can be avoided and the transgene can be expressed efficiently. This vector is very effective in the following research and development.
( 1 ) 培養細胞系での遺伝子組換え (1) Genetic recombination in cultured cell lines
脊椎動物の細胞には、 細胞内免疫機能の一つとしてウイルスなどの外来遺伝子 が染色体に組み込まれた場合に、 DNAのメチル化やヒストンの脱ァセチルイ匕を行い その遺伝子を不活性化することが知られている。 このため、 遺伝子組換えのため に遺伝子発現べクターを導入しても、 これらの作用によつて導入遺伝子が発現し ない、 あるいは発現してもその発現量が非常に少ないなどの現象が起きることが 知られている。 インスレーターを連結したベクターを用いることで、 これらを回 避でき効率よく導入遺伝子を発現する組換え細胞が得られる。 When a foreign gene such as a virus is integrated into a chromosome as one of the intracellular immune functions, vertebrate cells can inactivate that gene by methylating DNA or deacetylating histones. Are known. For this reason, even if a gene expression vector is introduced for gene recombination, phenomena such as the fact that the transgene is not expressed or the amount of expression of the transgene is very small due to these effects may occur. It has been known. By using a vector to which an insulator is ligated, these can be avoided and a recombinant cell expressing the transgene efficiently can be obtained.
( 2 ) 遺伝子組換え動物の作出 (2) Genetically modified animals
遺伝子組換え動物は、 遺伝子発現べクター DNA溶液を直接受精卵の核に注入して 作出するため非常に作出効率が悪い。 一般的に、 導入遺伝子を持つ個体が得られ る効率はマウスで 10%程度、 家畜では 1 %未満である。 さらに、 低い効率で生ま れた遺伝子組換え動物であっても、 ポジション 'イフェクトを含む導入遺伝子の 不活性化を受けるため、 導入遺伝子の発現する割合はそのうち数割にすぎない。 ィンスレーターを用いた遺伝子発現べクターを用いることにより、 これらの現象 を回避し遺伝子組換え動物で導入遺伝子を高い効率で発現させられる。
Genetically modified animals are extremely inefficient in their production because they are produced by directly injecting the gene expression vector DNA solution into the nuclei of fertilized eggs. Generally, the efficiency of obtaining an individual carrying the transgene is about 10% in mice and less than 1% in livestock. In addition, transgenic animals born at low efficiency are subject to inactivation of transgenes including position 'effects, so that only a small percentage of transgenes are expressed. By using a gene expression vector using an insulator, these phenomena can be avoided and the transgene can be expressed with high efficiency in transgenic animals.
Claims
1 . 任意 DNAの挿入部位、 該任意 DNAの発現を制御するプロモーター、 および、 インスレーターを有するベクターであって、 該インスレーターを、 該任意 DNA の揷入部位の 3, 側おょぴ該任意 DNAの発現を制御するプロモーターの 5, 側に、 それぞれ、 順方向および逆方向に有するベクター。 1. A vector having an insertion site for an arbitrary DNA, a promoter for controlling the expression of the arbitrary DNA, and an insulator, wherein the insulator is located on the third side of the insertion site of the arbitrary DNA. A vector that has forward and reverse orientations on the 5, side of the promoter that controls DNA expression, respectively.
2 . インスレーターがゥニ、 ニヮトリまたはショウジヨウバエ由来のインスレ 一ターである、 請求項 1に記載のベクター。 2. The vector according to claim 1, wherein the insulator is a pancreatic, chicken or Drosophila derived insulator.
3 . インスレーターが、 以下の (a ) 〜 (c ) のいずれかに記載の DNAである、 請求項 1または 2に記載のべクタ一。 3. The vector according to claim 1, wherein the insulator is a DNA according to any one of the following (a) to (c).
( a ) 配列番号: 1〜 3のいずれかに記載の塩基配列からなる DNA (a) DNA consisting of the nucleotide sequence of any one of SEQ ID NOs: 1 to 3
( b ) 配列番号: 1〜3のいずれかに記載の塩基配列において 1もしくは複 数の塩基が置換、 欠失、 付加および/または挿入した塩基配列からな る DNA (b) DNA consisting of a nucleotide sequence in which one or more nucleotides are substituted, deleted, added and / or inserted in the nucleotide sequence of any one of SEQ ID NOs: 1 to 3
( c ) 配列番号: 1 ~ 3のいずれかに記載の塩基配列からなる DNAにストリ ンジヱントな条件下でハイプリダイズする DNA (c) DNA that hybridizes to a DNA consisting of the nucleotide sequence of any of SEQ ID NOs: 1 to 3 under stringent conditions
4. 任意 DNAが挿入された、 請求項 1〜 3のいずれかに記載のベクター。 4. The vector according to any one of claims 1 to 3, into which arbitrary DNA has been inserted.
5 . 請求項 1〜 4のいずれかに記載のべクターを保持する形質転換体。 5. A transformant carrying the vector according to any one of claims 1 to 4.
6 . 請求項 4に記載のベクターが染色体に導入された形質転換体。
6. A transformant in which the vector according to claim 4 has been introduced into a chromosome.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002301503A JP4300271B2 (en) | 2002-10-16 | 2002-10-16 | Gene expression vector using sea urchin-derived insulator |
JP2002-301503 | 2002-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004035780A1 true WO2004035780A1 (en) | 2004-04-29 |
Family
ID=32105020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/013124 WO2004035780A1 (en) | 2002-10-16 | 2003-10-14 | Gene expression vector using echinus-origin insulators |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4300271B2 (en) |
WO (1) | WO2004035780A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013096056A1 (en) * | 2011-12-21 | 2013-06-27 | Danisco Us Inc. | Improving fungal gene expression using insulator dna sequences |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006054561A1 (en) * | 2004-11-18 | 2006-05-26 | National University Of Corporation Hiroshima University | Method and kit for expressing protein under regulation of the expression from repeated sequence formed by gene amplification and transformant |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998005757A1 (en) * | 1996-08-01 | 1998-02-12 | North Carolina State University | Method for reducing expression variability of transgenes in plant cells |
JPH10191975A (en) * | 1997-01-17 | 1998-07-28 | Norin Suisansyo Chikusan Shikenjo | Transduction of exogenote into cultured cell or fertilized egg |
US6229070B1 (en) * | 1998-12-09 | 2001-05-08 | Nara Institute Of Science And Technology | Method of stable gene expression in a transgenic plant utilizing an insulator nucleotide sequence from the sea urchin arylsulfatase gene |
WO2001092483A1 (en) * | 2000-05-26 | 2001-12-06 | University Of Virginia Patent Foundation | An insulator element having enhancer-blocking properties |
WO2002034035A1 (en) * | 2000-10-20 | 2002-05-02 | University Of Kentucky Research Foundation | Genetic insulator for preventing influence by another gene promoter |
WO2002066635A1 (en) * | 2001-02-23 | 2002-08-29 | Gencom Corporation | Transgenic animal having drug metabolism enzyme gene and utilization thereof |
-
2002
- 2002-10-16 JP JP2002301503A patent/JP4300271B2/en not_active Expired - Fee Related
-
2003
- 2003-10-14 WO PCT/JP2003/013124 patent/WO2004035780A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998005757A1 (en) * | 1996-08-01 | 1998-02-12 | North Carolina State University | Method for reducing expression variability of transgenes in plant cells |
JPH10191975A (en) * | 1997-01-17 | 1998-07-28 | Norin Suisansyo Chikusan Shikenjo | Transduction of exogenote into cultured cell or fertilized egg |
US6229070B1 (en) * | 1998-12-09 | 2001-05-08 | Nara Institute Of Science And Technology | Method of stable gene expression in a transgenic plant utilizing an insulator nucleotide sequence from the sea urchin arylsulfatase gene |
WO2001092483A1 (en) * | 2000-05-26 | 2001-12-06 | University Of Virginia Patent Foundation | An insulator element having enhancer-blocking properties |
WO2002034035A1 (en) * | 2000-10-20 | 2002-05-02 | University Of Kentucky Research Foundation | Genetic insulator for preventing influence by another gene promoter |
WO2002066635A1 (en) * | 2001-02-23 | 2002-08-29 | Gencom Corporation | Transgenic animal having drug metabolism enzyme gene and utilization thereof |
Non-Patent Citations (4)
Title |
---|
EMERY ET AL.: "Development of virus vectors for gene therapy of beta chain hemoglobinopathies: flanking with a chromatin insulator reduces gamma-globin gene silencing in vivo", BLOOD, vol. 100, no. 6, September 2002 (2002-09-01), pages 2012 - 2019, XP001148064 * |
HASEGAWA ET AL.: "Insulators prevent transcriptional interference between two promoters in a double gene construct for transgenesis", FEBS LETTERS, vol. 520, no. 1-3, May 2002 (2002-05-01), pages 47 - 52, XP004361052 * |
MODIN ET AL.: "Lack of shielding of primer binding site silencer-mediated repression of an internal promoter in a retrovirus vector by the putative insulators scs, BEAD-1 and HS4", JOURNAL OF VIROLOGY, 2000, pages 11697 - 11707, XP002972767 * |
WEST ET AL.: "Insulators: many functions, many mechanisms", GENES & DEVELOPMENT, vol. 18, no. 3, February 2002 (2002-02-01), pages 271 - 288, XP002249349 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013096056A1 (en) * | 2011-12-21 | 2013-06-27 | Danisco Us Inc. | Improving fungal gene expression using insulator dna sequences |
Also Published As
Publication number | Publication date |
---|---|
JP2004135532A (en) | 2004-05-13 |
JP4300271B2 (en) | 2009-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112424362B (en) | Integration of nucleic acid constructs into eukaryotic cells using a transposase from Medaka | |
JP7418469B2 (en) | Transfer of nucleic acid constructs into eukaryotic genomes using transposase from amyelois | |
AU2003218382B2 (en) | Methods and compositions for using zinc finger endonucleases to enhance homologous recombination | |
US6150169A (en) | Expression of the heterologous genes according to a targeted expression profile | |
JP5075833B2 (en) | Recombinant expression of multiprotein complexes using polygenes | |
EP4199957A1 (en) | Cells and non-human animals engineered to express adar1 and uses thereof | |
KR20100103810A (en) | Methods for sequential replacement of targeted region by homologous recombination | |
WO2003038049A2 (en) | Method for isolating cell-type specific mrnas | |
JP2007259871A (en) | Compositions and methods for mediating the cell cycle | |
EP1849863A1 (en) | Non-human chimeric animal and use thereof | |
KR20100097123A (en) | Novel recombination sequences | |
EP3863401B1 (en) | Genetically modified sterile avians and method for the reconstitution thereof | |
JP4300271B2 (en) | Gene expression vector using sea urchin-derived insulator | |
Lau et al. | Adaptive evolution of gene expression in Antarctic fishes: Divergent transcription of the 5′-to-5′ linked adult α1-and β-globin genes of the Antarctic teleost Notothenia coriiceps is controlled by dual promoters and intergenic enhancers | |
JP4273230B2 (en) | Gene replacement vectors targeting birds and uses thereof | |
JP2004254681A (en) | Gene transfer vector and gene product production method for insects | |
AU2007201617B2 (en) | Methods and Compositions for using Zinc Finger Endonucleases to Enhance Homologous Recombination | |
EP1402020A2 (en) | Methods, vectors, cell lines and kits for selecting nucleic acids having a desired feature | |
Dhlamini | Introduction to Molecular Biology and Genetic Engineering | |
Zimmer et al. | New Strategies in Developmental Biology: In vivo Mutagenesis as a Tool to Dissect Mammalian Development | |
Van de Putte | Identification of genes essential for early mouse development by gene trapping in embryonic stem cells | |
JP2003310261A (en) | Disruption of redk gene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase |