WO2004013365A1 - Nonoriented magnetic steel sheet, member for rotary machine and rotary machine - Google Patents
Nonoriented magnetic steel sheet, member for rotary machine and rotary machine Download PDFInfo
- Publication number
- WO2004013365A1 WO2004013365A1 PCT/JP2003/009947 JP0309947W WO2004013365A1 WO 2004013365 A1 WO2004013365 A1 WO 2004013365A1 JP 0309947 W JP0309947 W JP 0309947W WO 2004013365 A1 WO2004013365 A1 WO 2004013365A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- oriented electrical
- less
- electrical steel
- annealing
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 77
- 239000010959 steel Substances 0.000 title claims abstract description 77
- 238000000137 annealing Methods 0.000 claims abstract description 124
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 8
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 19
- 239000012535 impurity Substances 0.000 claims description 14
- 229910052718 tin Inorganic materials 0.000 claims description 13
- 229910052720 vanadium Inorganic materials 0.000 claims description 13
- 229910052787 antimony Inorganic materials 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 238000005097 cold rolling Methods 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 2
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 92
- 229910052742 iron Inorganic materials 0.000 abstract description 41
- 230000004907 flux Effects 0.000 abstract description 38
- 230000002401 inhibitory effect Effects 0.000 abstract description 21
- 239000000463 material Substances 0.000 abstract description 21
- 239000000203 mixture Substances 0.000 abstract description 21
- 238000004519 manufacturing process Methods 0.000 abstract description 14
- 229910052710 silicon Inorganic materials 0.000 abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 4
- 239000002245 particle Substances 0.000 abstract description 2
- 230000001747 exhibiting effect Effects 0.000 abstract 2
- 239000013078 crystal Substances 0.000 description 40
- 239000000047 product Substances 0.000 description 29
- 238000005096 rolling process Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 230000002829 reductive effect Effects 0.000 description 14
- 239000011162 core material Substances 0.000 description 13
- 229910052758 niobium Inorganic materials 0.000 description 12
- 150000004767 nitrides Chemical class 0.000 description 10
- 229910052719 titanium Inorganic materials 0.000 description 10
- 230000001276 controlling effect Effects 0.000 description 8
- 238000005098 hot rolling Methods 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000009036 growth inhibition Effects 0.000 description 4
- 238000004080 punching Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005261 decarburization Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- -1 Si and Mn Chemical compound 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000009422 growth inhibiting effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/02—Details of the magnetic circuit characterised by the magnetic material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Definitions
- the present invention relates to a non-oriented electrical steel sheet used for assembling a rotary machine.
- the present invention also relates to a rotating machine member and a rotating machine assembled using the above non-oriented electrical steel sheet.
- BACKGROUND ART To reduce the energy consumption of a rotating machine, it is necessary to increase the magnetic flux density of the iron core of the rotating machine, that is, a rotor (rotor) and a stator (stator), and to reduce iron loss of these iron cores. Is effective.
- means for reducing iron loss means for increasing the electric resistance of the iron core material by increasing the content of Si, Al, Mn, etc., has been generally used.
- the method of adding B disclosed in JP-A-58-151453 and the method of adding Ni disclosed in JP-A-3-281758 are known.
- non-oriented electrical steel sheets manufactured by these means it is possible to manufacture iron cores with high magnetic flux density and low iron loss.
- the non-oriented electrical steel sheet used for the core of the rotating machine is subjected to finish annealing (final annealing) by the steel sheet manufacturer and shipped as a product sheet. Assembled into theta. In this assembling process, after a core plate for a rotor or a core plate for a stator is punched from a steel plate, strain relief annealing is performed as necessary.
- JP-B-58-55210 and JP-A-8-269532 disclose that the amount of Sol.A1 in a steel sheet is reduced to 0.0010% or less and 0.003% or less, respectively, to reduce fine A1N. Suppressing precipitation improves grain growth during strain relief annealing and reduces low iron loss. The techniques obtained are disclosed.
- Japanese Patent Application Laid-Open No. 3-24229 also discloses that the amount of Sol. A 1 is reduced to 0.001% or less, and the product of the N and V contents is suppressed to a predetermined value or less.
- a technique for improving grain growth during annealing and obtaining a low iron loss is disclosed.
- JP-A-63-195217 and JP-A-7-150248 disclose that, in addition to reducing A1, the composition of inclusions composed of a composite oxide of Si, Al, and Mn is controlled. It is disclosed that by preventing ductility, grain growth during strain relief annealing can be improved and low iron loss can be obtained.
- a steel sheet of about 6 W / kg is strain relief-annealed to 5 W / kg.
- it is possible to improve to less than about 4.4 W / kg it is possible to improve the steel sheet to about 5 W / kg after finish annealing (at the time of shipment).
- a rotor core plate and a stator core plate are generally stamped out from the same copper plate by a press in order to maintain a high yield of materials. Then, the rotor core plate and the stator core plate are respectively laminated and assembled into a rotor and a stator.
- the rotor is a rotating member, and is subjected to high stress due to high-speed rotation, so that it must have high strength.
- a rotating machine motor
- a rotor in which a rare-earth magnet is embedded has been developed, and the rotation speed of the rotor has been significantly increased. Therefore, the magnetic steel sheet constituting the rotor is required to have a higher magnetic flux density and strength, for example, a higher yield point (YP) than before.
- YP yield point
- the present invention discloses that a rotor material and a stator material are simultaneously sampled from the same steel plate while a rotor material has a high magnetic flux density and a high strength, and a stator material has a high V magnetic flux density and a low strength.
- An object of the present invention is to propose a high magnetic flux density non-oriented electrical steel sheet capable of achieving iron loss, and to further propose a rotating machine member and a rotating machine using the same.
- the term “grain growth-inhibiting ductile nonmetallic inclusions” refers to the average recrystallized grain size (average grain size of recrystallized grains) of a steel sheet among the ductile nonmetallic inclusions, where D is 3 XD to 9XD.
- the steel sheet refers to the state of the finished annealed product sheet, that is, the steel sheet that has not been subjected to strain relief annealing, and the average recrystallized grain size and the length of ductile nonmetallic inclusions are, of course, the product sheet. It is a value in the state of.
- ductile nonmetallic inclusions refer to relatively coarse nonmetallic inclusions that expand relatively easily by rolling (or expand in product sheets, etc.), but do not expand in steel sheets. Are mostly non-metallic inclusions, henceforth simply referred to as ductile inclusions.
- composition of the non-oriented electrical steel sheet substantially consists of the above Si, Mn, Sol. Al, N, the balance of Fe and inevitable impurities.
- T i, N b and V in mass% are Ti: 0.0020% or less (including 0), b: 0.0050% or less (including 0), and V : The high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to any one of the above-mentioned inventions, which is limited to 0.0060% or less (including 0). .
- S and O are limited by mass% to S: 0.0050% or less (including 0) and O: 0.0100% or less (including 0), respectively.
- the average grain size D of the recrystallized grains is 6 ⁇ ! Above: which is ⁇ 25 m! A high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to any one of the above-described inventions.
- non-oriented electrical steel sheet according to any one of the above-mentioned inventions 1 to 8, wherein the average recrystallized grain size grows twice or more by strain relief annealing at 750 ° C for 2 hours (ie, strain relief annealing).
- a high magnetic flux density non-oriented electrical steel sheet for rotating machines characterized by having a crystal grain growth ratio of 2 or more.
- High magnetic flux density non-oriented electrical steel sheet for rotating machines obtained by subjecting the high magnetic flux density non-oriented electrical steel sheet for rotating machines (product board) according to any one of the above inventions 1 to 9 to strain relief annealing. (Strain relief annealing plate).
- the non-oriented electrical steel according to each of the above-mentioned inventions is obtained by processing a slab for a non-oriented electrical steel sheet by a conventional method to obtain a cold-rolled steel sheet having a final thickness of 700 to 800 ° C. Can be subjected to finish annealing, and further subjected to strain relief annealing at 700 to 800, so that the average recrystallized grain size preferably grows to be at least twice the grain size after finish annealing. .
- a high-flux-density non-oriented electrical steel sheet for a rotating machine according to any one of the above-mentioned inventions, preferably punched and punched out, and then laminated.
- a high-flux-density non-oriented electrical steel sheet for a rotating machine according to any one of the above-described inventions 1 to 9, preferably a punched and laminated stator member for a rotating machine subjected to strain relief annealing.
- a rotating machine comprising the same high magnetic flux density non-oriented electrical steel sheet for a rotating machine as the material and having the rotor member according to the above-described invention 12 and the stator member according to the above-described invention 13.
- the non-oriented electrical steel sheets according to the inventions of the above:! To 9 can be punched and laminated to form a high-strength rotating machine rotor member. Moreover, after punching and laminating, it can be further subjected to strain relief annealing to obtain a low iron loss rotating machine stator member. Furthermore, a high-performance rotating machine can be obtained using a rotor member and a stator member obtained from the same non-oriented electrical steel sheet. BRIEF DESCRIPTION OF THE DRAWINGSFIG.
- 1 shows the grain growth ratio of the non-oriented electrical steel sheet, that is, the ratio of the average grain size of the steel sheet after strain relief annealing to the average grain size of the steel sheet after finish annealing, and the N of the steel sheet.
- 4 is a graph showing the relationship with the content using the number of existing non-metallic inclusions inhibiting grain growth as a parameter.
- the saturation magnetic flux density of non-oriented electrical steel sheets is determined by the iron content (% by mass) of the material.
- the saturation magnetic flux density decreases when the content of elements other than iron, such as Si and Mn, is high. Inevitable.
- the magnetic flux density and strength are governed by the crystal grain size of the steel sheet.
- strain relief annealing is performed by the customer, and the annealing may increase the crystal grain size and reduce iron loss.
- the product sheet after finish annealing should have relatively fine grains and high strength, and ensure high crystal grain growth during strain relief annealing.
- the crystal grain size can be appropriately adjusted in the manufacturing process of the rotor and the stator, so that the rotor and the stator can each have required characteristics.
- the present inventors have further searched for factors governing the growth of the crystal grain size in the strain relief annealing process performed in the process of assembling the stator, and have found that the following methods are combined.
- the Si content is in the range of 0.1 to 1.2%. Mn: 0.005 to 0.30%
- Mn is a component necessary for obtaining good workability in hot rolling, and therefore, it is necessary to contain 0.005% or more. However, when it exceeds 0.30%, the magnetic flux density decreases. Therefore, the content of Mn should be 0.005-0.30%.
- the content must be as low as possible to suppress magnetic aging degradation. Further, in order to sufficiently exhibit the effect of improving the texture under the ultralow A1 conditions employed in the present invention, the content must be reduced to 0.0050% or less. However, this reduction of C does not necessarily have to be achieved at the stage of molten steel or slurp, which is the starting material. That is, it may be achieved by the end of finish annealing in the steel sheet manufacturing process.
- a typical decarburization method is decarburization annealing. When decarburization is performed during the production process, the C content in the starting material is preferably in the range of 0.0050% to 0.1%.
- the A1 content of the steel sheet In order to obtain excellent grain growth and magnetic properties, it is necessary to reduce the A1 content of the steel sheet to 0.0004% or less. If the A1 content exceeds 0.0004%, A1N precipitates in the steel sheet, and the magnetic flux density in the finish-annealed product sheet decreases. Further, the recrystallized grain growth during strain relief annealing is also reduced, and the excellent effect of the present invention of remarkably reducing the iron loss value cannot be obtained.
- N 0.0030% or less (including 0)
- N combines with A1 to cause the precipitation of nitrides (A1N), and combines with Ti and the like to form various nitrides, thereby reducing the magnetic flux density of finish-annealed products.
- A1N nitrides
- Ti and the like nitrides
- it hinders the growth of recrystallized grains during strain relief annealing, which hinders a sufficient decrease in iron loss value. Therefore, it is necessary to reduce the N content to 0.0030% or less. Preferably it is 0.0025% or less.
- the non-oriented electrical steel sheet of the present invention can be added in addition to the basic composition described above, in addition to Sb, Sn, P, Ni, REM, and Ca according to the properties of the steel sheet. These preferred The high content will be described later.
- containing at least one of Cr: 5% or less and Cu: 5% or less does not hinder the effects of the present invention.
- Non-oriented electrical steel sheet of the present invention cannot achieve the object of the present invention only by controlling the force composition having the above basic composition.
- the nonmetallic inclusions dispersed in the finish-annealed steel sheet when the average recrystallized grain size of the steel sheet (finish-annealed product sheet) is D, the ductile inclusion has a length of 3 XD to 9 XD.
- This ductile non-metallic inclusion having a length of 3 XD to 9 XD is hereinafter defined as a grain growth-inhibiting ductile non-metallic inclusion.
- average recrystallization grain size and measure the number of crystal grains present in the area of 0.5 s Awakening 2 of the steel sheet to calculate the average area of crystal grains per unit based on it, the average The diameter used when calculating the diameter of a circle equal to the area was adopted.
- This average crystal grain size is measured by observing a cross section (so-called L cross section) cut perpendicularly to the width direction of the steel sheet with an optical microscope.
- the ductile inclusions are rod-shaped inclusions elongated in the rolling direction and inclusions continuously arranged in the rolling direction. When two or more inclusions within a distance of ⁇ 5 ° are aligned in a direction of ⁇ 5 ° with respect to the rolling direction, these inclusions are considered to be connected and regarded as one ductile inclusion. .
- the inclusions include isolated circular inclusions in addition to the ductile inclusions. This is a non-ductile inclusion and is not counted as a ductile inclusion. Inclusions were classified as circular if the major axis was less than twice the minor axis, and ductile if greater than twice the minor axis.
- Exemplary ductile inclusions Si0 2, A1 2 0 3 , Mn0, CaO or a number thereof; is ⁇ or Ranaru composite oxide (some, however if the non-ductile depending on the composition).
- the length of a ductile inclusion refers to the maximum value of the length of a line segment drawn between any two points at the interface between the base metal (matrix structure) and the inclusion, that is, the distance between both ends of the ductile inclusion. (This is the major axis Do).
- the number of ductile inclusions having a predetermined length was measured by the following procedure.
- a cross section perpendicular to the width direction of the steel sheet was polished, and the as-polished surface (without performing any corrosion treatment, etc.) was observed with an optical microscope, and a small area different in color from the ground iron part was identified as an inclusion.
- the observation field against one sample as 5 Yuzuru 2, the number of the form deemed extended inclusions having a predetermined length of the inclusions was approved by the measuring, the number per 1 cm 2 The number density was converted to the number.
- the resulting slab is 1100. Heated to C, hot rolled to a thickness of 2.3 mm, pickled, cold rolled and finished to a final thickness of 0.35 ram. C, Finished annealing (recrystallization annealing) for 15 seconds to obtain a finished annealed plate (product plate). Adjustment of the amount of ductile inclusions (number density) and the form (length)
- the average grain size of the obtained product was measured and the inclusions were observed to measure the length and the number density of the ductile inclusions. Then, 750 for the above products in an argon (Ar) atmosphere. C, annealing for 2 hours (hereinafter simply referred to as “strain relief annealing”) was performed, and the average crystal grain size was measured as in the case of the finish-annealed sheet.
- the above annealing condition is a condition corresponding to the strain relief annealing at the customer.
- Figure 1 shows the ratio of the average grain size of the steel sheet after strain relief annealing to the average grain size of the steel sheet after finish annealing obtained in this way (hereinafter referred to as the “strain relief annealing grain growth ratio” or simply “grain rate”). It is a graph showing the relationship between the growth ratio) and the N content.
- the average recrystallized grain size after finish annealing is D
- inclusions with a length of 3XD to 9XD grain growth inhibiting ductile nonmetallic inclusions
- the grain growth inhibition ductility If the number density of nonmetallic inclusions is 1000 or less Zcm 2 , the strain growth annealing grain growth ratio Becomes 2 or more. However, the number density of grain growth inhibition ductile nonmetallic inclusions, the number of 1000 / cm 2 even less, when N content exceeds 0030% 0., or grain growth inhibiting ductile nonmetallic inclusions When the density exceeds 1000 / cm 2 , the strain relief annealing crystal grain growth ratio is less than 2.
- the obtained product sheet was subjected to strain relief annealing at 750 ° C for 2 hours in an Ar atmosphere.
- the cross sections perpendicular to the sheet width direction of these product plates (finished annealing plates) and strain relief annealing plates were observed with an optical microscope, and the average crystal grain size was measured.
- the number density of the grain growth-inhibiting ductile nonmetallic inclusions was measured. The results are shown in Table 2. As shown in the table, in the sample in which the number density of the grain growth-inhibiting ductile non-metallic inclusions on the product sheet is 1000 ra2 or less, the strain relief annealing crystal grain growth ratio is large.
- the average crystal grain size of the steel sheet (iron core material assembled into the stator) after strain relief annealing is determined by the finish annealing. It can be twice or more the size of the subsequent particles. This greatly reduces iron loss in the stator.
- the crystal grains are relatively small. State, and the strength, especially the upper yield point (hereinafter abbreviated as YP), can be kept high. Further, by using the rotor and the stator, a high-performance rotating machine for high-speed rotation can be efficiently assembled. Since the strength level required for the rotor varies depending on the characteristics of the rotating machine, the size of the average crystal grain size, which is a factor controlling the steel sheet strength, is designed according to the required strength level of the rotor. Just fine. However, for a general rotating machine, the average crystal grain size after finish annealing of the steel sheet is preferably 6 to 25 ⁇ ra.
- the strength of the steel sheet is about 200 to 400 MPa in YP and about 100 to 170 in Vickers hardness Hv.
- the reason why the strain relief annealing crystal grain growth ratio is controlled by the number density of the grain growth inhibiting ductile non-metallic inclusions is as follows. Conceivable.
- the volume fraction of the steel is considered to be almost constant, so that the crystal grain can be calculated from the Zener equation as shown below. Inclusions that are extremely long compared to the diameter are less likely to inhibit grain growth. In other words, the degree to which the ductile inclusions inhibit the grain growth depends on the length of the inclusions. According to the knowledge of the present inventors, the length of the ductile inclusions is 3 to 9 times the average crystal grain of the finish-annealed sheet. When it is twice, that is, when it is a grain growth-inhibiting ductile nonmetallic inclusion, it becomes the maximum. Therefore, the “strain relief annealing crystal grain growth ratio” is affected by the number density of the ductile inclusions having a length in this range, that is, “grain growth inhibiting ductile nonmetallic inclusions”.
- the Zener's equation is the following equation that indicates the inhibitory force I on the growth of the inhibitor.
- V is the molar volume of the matrix
- ⁇ is the grain boundary energy
- ⁇ is the volume fraction of the precipitate
- r 0 is the average grain radius of the precipitate.
- the content of Si, Mn, C, Sol is controlled to 1,000 or less per cm 2 .
- the effect can be further improved. This was confirmed by the following experiment.
- annealing recrystallization annealing
- the average crystal grain size in each product plate was 10 to 20 tubes. Further, the number density of the grain growth inhibiting ductile nonmetallic inclusions in each product plate was 1,000 / cm 2 or less.
- the magnetic properties after strain relief annealing are further improved by limiting Ti to 0.0020% or less, Nb to 0.0050% or less, and the V content to 0.0060% or less. be able to.
- the iron loss after strain relief annealing can be greatly improved.
- Ti, Nb, and V are both nitride and carbide forming elements, and when these nitrides precipitate finely, it is thought that, similarly to finely precipitated A1N, they have an adverse effect on texture formation and grain growth. Can be Therefore, it is considered that the above harm is prevented by reducing these elements, and as a result, good magnetic properties can be obtained.
- Ti 0.0020% or less (including 0)
- b 0.0050% or less (including 0)
- V 0.0060% or less (including 0)
- Ti, Nb, and V form fine nitrides or carbides and inhibit the growth of texture forming crystal grains.
- the tendency is remarkable in non-oriented electrical steel sheets in which the contents of Sol.
- These elements are respectively Ti: 0.0020% or less, Nb: 0.0050% or less, V: 0.0060 »/. If it is reduced below, the tendency to form nitrides or carbides is suppressed, which contributes to the improvement of iron loss especially after strain relief annealing. Suitable amounts of Sb and Sn are as shown below.
- Sb 0.005-0.10% and Sn: 1 or 2 types selected from 0.005 to 0.2%
- Sb and Sn suppress the fine precipitation of nitride and reduce the grain growth inhibiting effect of the nitride, thereby effectively promoting the formation of a texture advantageous in magnetic properties.
- the effect appears at Sb: 0.005% or more and Sn: 0.005% or more, but exceeds 0.10% and 0.2 ° /, respectively. Above this, the grain growth is rather hindered.
- the characteristics of the steel of the present invention can be more effectively exhibited by limiting or adding the following elements.
- REM and Ca have the effect of increasing (ie reducing) iron loss by coarsening sulfides. Therefore, these elements are expressed in the range of expression of the effect, that is, REM: 0.0001 to 0.10%,
- Ca 0.0001-0. 01 Ca can be added as appropriate.
- a value of 6 to 25 / zm is advantageous in that the above-mentioned strain relief annealing grain growth ratio is relatively large, for example, 3 or more.
- the method for producing the non-oriented electrical steel sheet according to the present invention is not particularly limited. Typically, it can be manufactured by the following process.
- molten steel adjusted to a suitable component composition is formed into a slab by, for example, a continuous mirror manufacturing method. Then, this is hot-rolled into a hot-rolled sheet. After subjecting this to hot-rolled sheet annealing as needed, it is subjected to one or more cold rolling steps with intermediate annealing as necessary to finish to the final sheet thickness. The obtained cold rolled sheet is subjected to continuous annealing (finish annealing), and then an insulating coating is applied as necessary.
- decarburizing annealing is appropriately performed after hot rolling.
- the amount of ductile inclusions among the inclusions is controlled to be 1000 / cm 2 or less.
- Such a con Trolling can be accomplished by any one or combination of the following means.
- the length of nonmetallic inclusions is adjusted by controlling the manufacturing conditions, especially rolling conditions, to reduce the length of non-metallic inclusions to less than 3 times or more than 9 times the average recrystallized grain size of the finish-annealed steel sheet.
- the length of the ductile inclusion in the hot-rolled sheet can be adjusted by increasing or decreasing the rolling reduction in hot rolling by increasing or decreasing the slab thickness or the hot-rolled sheet thickness.
- the length of the ductile inclusion can be changed by increasing or decreasing the rolling reduction in a high-temperature region where the inclusions are stretched.
- the cumulative rolling reduction after hot rolling increases, the ductile inclusions become longer, and if the cumulative rolling reduction decreases, the ductile inclusions tend to become shorter.
- the length of the nonmetallic inclusion can also be adjusted by increasing or decreasing the thickness.
- the conditions of the finish annealing temperature and soaking time are changed to increase or decrease the average grain size, and as a result, the length of the non-metallic inclusions is reduced to less than three times or more than nine times the average grain size. It can also be the main.
- the annealing temperature of the continuous annealing (finish annealing) applied to the cold-rolled sheet cold-rolled to the final sheet thickness was 700 to 800.
- C is preferable for adjusting the average crystal grain size to 6 to 25 / xm or adjusting the hardness of the steel sheet to an appropriate level, for example, the Vickers hardness (Hv) to 100 to 170.
- the Vickers hardness be in the above range in order to secure the strength and punching property of the steel sheet.
- the non-oriented electrical steel sheet thus manufactured can be punched into an iron core for a rotating machine and assembled into a rotor and a stator.
- the core material for the rotor and the stator are simultaneously punched from the same steel plate, laminated and assembled into a rotor and a stator member, and then only the stator member is subjected to strain relief annealing to promote grain growth, The iron loss can be reduced.
- the core material for the rotor is not subjected to strain relief annealing accompanied by grain growth, and maintains high strength. It is better to leave.
- the strain relief annealing temperature is preferably in the range of 700 ° C to 800 ° C.
- the annealing time is preferably about 10 minutes to 3 hours.
- the conditions of the strain relief annealing are more preferably those in which the strain relief annealing grain growth ratio is 2 or more within the above range, but, for example, the temperature is preferably 750 ° C for about 2 hours in an inert gas atmosphere. desirable. Further, it is preferable to perform the strain relief annealing at a temperature equal to or higher than the finish annealing from the viewpoint of ensuring grain growth.
- the non-oriented electrical steel sheet subjected to finish annealing is further subjected to a slight strain, for example, a rolling strain of about 0.5 to 5%, punched out, subjected to a strain relief annealing of 700 to 800, and recrystallized.
- the crystal grain size can be increased to 30 ⁇ : LOO / zm.
- the steel sheet treated in this way can be used particularly for assembling a stator requiring low iron loss. Suitable strain relief annealing conditions in this case are also as described in the previous paragraph.
- a slab having the component composition shown in Table 4 and comprising the balance of iron and inevitable impurities was produced by a continuous production method. Note that the amounts of Ti, Nb, V, S, and 0 were reduced to the above preferable ranges. After heating these slabs at 1110 ° C for 40 minutes, they were hot rolled into hot rolled sheets with a thickness of 2.5 m. The obtained hot-rolled sheet was pickled, the scale was removed, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.50. Then, by volume ratio, hydrogen: 50% _nitrogen: 50 ° /. In the atmosphere of 780 ° C for 10 seconds. A semi-organic coating solution consisting of dichromate and resin was applied to the resulting annealed plate, and baked at 300 ° C to obtain a product plate.
- the amount of grain growth-inhibiting ductile nonmetallic inclusions was varied by changing the slab thickness and changing the rolling schedule in hot rolling.
- a sample was cut out from the obtained product plate, and the magnetic flux density, iron loss, upper yield point (YP), and Vickers hardness (Hv) were measured in accordance with JIS C2550.
- the upper yield point ( ⁇ ) is the average value of the rolling direction and the direction perpendicular to the rolling direction.
- the average crystal grain size and the number density of the grain growth inhibiting ductile nonmetallic inclusions were measured. What The measurement was performed on a plane perpendicular to the width direction. Next, the above product plate was subjected to a strain relief annealing at 50 ° C for 2 hours in an argon atmosphere, and then the iron loss and average crystal grain size were measured in the same manner as performed for the product. Furthermore, the strain relief annealing crystal grain growth ratio was calculated. Table 4
- Table 5 shows the obtained results.
- those having the component composition and the grain growth-inhibiting ductile nonmetallic inclusion number density according to the present invention have a large strain relief annealing crystal grain growth ratio, and particularly iron loss after strain relief annealing. Value is low.
- the rotor and stator of the rotating machine can be stamped out and manufactured at the same time. It is suitable.
- the magnetic flux density is also high enough.
- examples (27, 29) to which Sb and Sn are added the magnetic properties are significantly improved by the strain relief annealing. Table 5
- a continuous steel slab having the composition shown in Table 6 and having a thickness of 210 and consisting of iron and inevitable impurities was manufactured.
- the grain growth inhibition ductile nonmetallic inclusions amount is to fit a range of N 1000 m 2 or less by optimizing optimizing the hot rolling condition of slag composition in steelmaking process.
- Example 2 The obtained slap was treated in the same manner as in Example 1 to obtain a product, and tested in the same manner as in Example 1. However, the finish annealing of steel symbol 58 was performed at 680 ° C, and the finish annealing of steel symbol 59 was performed at 850.
- Table 7 shows the obtained results. As shown in Table 7, those having the component composition and the average crystal grain size according to the present invention have excellent strain relief annealing crystal grain growth ratio and strength and magnetic properties with excellent deviation, and It is suitable for simultaneous stamping production of rotor and stator.
- controlling the finish annealing temperature to 700 to 800 ° C or controlling the average recrystallized grain size of the product sheet to 6 to 25 m increases the strength before strain relief annealing and the strength after strain relief annealing. It can be seen that it is advantageous for achieving both low iron loss values.
- the non-oriented electrical steel sheet according to the present invention has a feature that it is excellent in so-called recyclability as well as the non-oriented electrical steel sheet. That is, when a conventional iron core material having a high A1 content is recycled to form a motor shaft or the like, the surface oxidation of molten steel proceeds and the viscosity increases. For this reason, the fillability of molten steel in the mold is reduced, and a sound solid may not be obtained. Therefore, although scrap containing A1 is generally considered to have poor recyclability, the non-oriented electrical steel sheet according to the present invention is a low-A1 material, and recyclability for manufacturing is extremely high.
- the high magnetic flux density non-oriented electrical steel sheet according to the present invention allows the rotor material and the stator material to be simultaneously sampled from the same steel sheet while providing the rotor material with high magnetic flux density and high strength.
- a high magnetic flux density and low iron loss can be imparted to the stator material.
- the production efficiency and output characteristics of the rotating machine member and, consequently, the rotating machine can be greatly improved.
- the non-oriented electrical steel sheet according to the present invention is excellent in recyclability at the time of forging, and has improved resilience at the time of recycling punched material scrap.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
A nonoriented magnetic steel sheet which has a chemical composition in mass % wherein contents of Si and Mn are 0.1 to 1.2 % and 0.005 to 0.30 %, respectively, and the contents of C, Sol.Al and N are limited to 0.0050 % or less, 0.0004 % or less, and 0.0030 % or less, respectively, all including 0 %, and has a number density of grain growth inhibiting ductile non-metallic inclusions dispersed in the steel sheet of 1000 pieces/cm2 or less including 0, wherein a grain growth inhibiting ductile non-metallic inclusion means an inclusion contained in a steel sheet having been subjected to finishing annealing which has a length of 3 × D to 9 × D, D representing an average particle diameter of re-crystallized grains in the steel sheet. The nonoriented magnetic steel sheet allows the production, from one steel sheet, of a rotor material exhibiting a high magnetic flux density and a high strength and a stator material exhibiting a high magnetic flux density and a low iron loss after it is subjected to strain removing annealing.
Description
明細書 無方向性電磁鋼板、 回転機用部材および回転機 , 技術分野 本発明は、 回転機の組み立てに用いられる無方向性電磁鋼板に関するものである。 本発明はまた、上記の無方向性電磁鋼板を利用して組み立てた回転機用部材、および 回転機に関するものである。 背景技術 回転機のエネルギー消費を低下させるには、回転機の鉄心、すなわち回転子(ロータ) 及ぴ固定子(ステータ)の磁束密度を上げるとともに、これらの鉄心の低鉄損化を図るこ とが効果的である。 鉄損を低減する手段としては、 Si, Al, Mn等の含有量を高めて鉄 心材料の電気抵抗を増加させる手段が一般に用いられてきた。また、 これらの手段のほ 力 \たとえば特開昭 58-151453号公報に開示された Bを添加する方法、特開平 3-281758 号公報に開示された Niを添加する方法等が知られている。 また、 電磁鋼板の集合組織 を、 たとえば {100} (UVW) 方位を有する結晶粒を優先的に成長させたものとすること により、磁気特性を向上させる方法があり、たとえば特開昭 58 - 181822号公報等に提案 されている。 これらの手段により製造された無方向性電磁鋼板を用いることにより、高 磁束密度かつ低鉄損の鉄心の製造が可能になっている。 ところで、回転機の鉄心に使用される無方向性電磁鋼板は、鋼板製造者により仕上焼 鈍(最終焼鈍) を施されて製品板として出荷された後、需要家で回転機のロータ及ぴス テータに組み立てられる。 この組み立て工程においては、鋼板からロータ用鉄心板ある いはステータ用鉄心板を打ち抜いた後、 必要に応じて歪取り焼鈍が施される。 TECHNICAL FIELD The present invention relates to a non-oriented electrical steel sheet used for assembling a rotary machine. The present invention also relates to a rotating machine member and a rotating machine assembled using the above non-oriented electrical steel sheet. BACKGROUND ART To reduce the energy consumption of a rotating machine, it is necessary to increase the magnetic flux density of the iron core of the rotating machine, that is, a rotor (rotor) and a stator (stator), and to reduce iron loss of these iron cores. Is effective. As means for reducing iron loss, means for increasing the electric resistance of the iron core material by increasing the content of Si, Al, Mn, etc., has been generally used. In addition, the method of adding B disclosed in JP-A-58-151453 and the method of adding Ni disclosed in JP-A-3-281758 are known. . Also, there is a method of improving magnetic properties by making the texture of the magnetic steel sheet a crystal grain having a {100} (UVW) orientation preferentially grown, for example, as disclosed in Japanese Patent Application Laid-Open No. 58-181822. It is proposed in the official gazette. By using non-oriented electrical steel sheets manufactured by these means, it is possible to manufacture iron cores with high magnetic flux density and low iron loss. By the way, the non-oriented electrical steel sheet used for the core of the rotating machine is subjected to finish annealing (final annealing) by the steel sheet manufacturer and shipped as a product sheet. Assembled into theta. In this assembling process, after a core plate for a rotor or a core plate for a stator is punched from a steel plate, strain relief annealing is performed as necessary.
この歪取り焼鈍における再結晶粒の成長性を改善することで、さらに優れた低鉄損を 得る技術も提案されている。例えば、特公昭 58- 55210号公報ゃ特開平 8- 269532号公報 などには、鋼板中の Sol. A 1量をそれぞれ 0. 0010%以下、 0. 003%以下に低減し、微細 な A1Nの析出を抑制することにより、歪取り焼鈍における粒成長性を改善し、低鉄損を
得る技術が開示されている。 また特開平 3-24229号公報にも、 Sol. A 1量を 0. 001%以 下に低減し、 N、 Vの含有量の積を所定の値以下に抑制することで、 同様に歪取り焼鈍 における粒成長性を改善し、低鉄損を得る技術が開示されている。特開平 7- 70719号公 報には、 301. 1量を8 111以下に低減し、 さらに Ti+Alの量を 20ppm以下とするなど する、 歪取り焼鈍における粒成長性を改善する方法が開示されている。 A technique has also been proposed to improve the growth of recrystallized grains during the strain relief annealing to obtain even better low iron loss. For example, JP-B-58-55210 and JP-A-8-269532 disclose that the amount of Sol.A1 in a steel sheet is reduced to 0.0010% or less and 0.003% or less, respectively, to reduce fine A1N. Suppressing precipitation improves grain growth during strain relief annealing and reduces low iron loss. The techniques obtained are disclosed. Japanese Patent Application Laid-Open No. 3-24229 also discloses that the amount of Sol. A 1 is reduced to 0.001% or less, and the product of the N and V contents is suppressed to a predetermined value or less. A technique for improving grain growth during annealing and obtaining a low iron loss is disclosed. The JP 7 70719 No. Gazette, 3 0 1. How 1 volume was reduced to 8 111 will be further like to 20ppm or less the amount of Ti + Al, to improve the grain growth property in stress relief annealing Is disclosed.
さらに、 特開昭 63-195217号公報ゃ特開平 7-150248号公報には、 低 A1化に加え、 Si、 Al、 Mnの複合酸化物からなる介在物の組成を制御して同介在物の延性化を防止することで、 歪取り焼鈍における粒成長性が改善され、低鉄損を得ることができることが開示されて いる。 Furthermore, JP-A-63-195217 and JP-A-7-150248 disclose that, in addition to reducing A1, the composition of inclusions composed of a composite oxide of Si, Al, and Mn is controlled. It is disclosed that by preventing ductility, grain growth during strain relief annealing can be improved and low iron loss can be obtained.
しかしながら、 これらの技術をもってしても、歪取り焼鈍による鉄損の改善量は充分 ではなく、 例えば仕上焼鈍後 (出荷時) で 6 W/kg程度の鋼板を歪取り焼鈍して 5 W/kg を下回る程度に改善することは可能でも、 仕上焼鈍後 (出荷時) で約 5 W/kg程度まで 予め低減された鋼板においては歪取り焼鈍して 4. 4W/kg を下回る程度に改善すること は困難であった。 ところで、回転機用の鉄心の製造に当たっては、材料の歩留まりを高く維持するため に、一般に、同一の銅板からロータ用鉄心板とステータ用鉄心板がプレスによって打ち 抜かれる。そして、 これらロータ用鉄心板とステータ用鉄心板をそれぞれ積層してロー タ及ぴステータに組み立てることが行われる。 However, even with these technologies, the amount of improvement in iron loss by strain relief annealing is not sufficient. For example, after finish annealing (at the time of shipment), a steel sheet of about 6 W / kg is strain relief-annealed to 5 W / kg. Although it is possible to improve to less than about 4.4 W / kg, it is possible to improve the steel sheet to about 5 W / kg after finish annealing (at the time of shipment). Was difficult. In manufacturing a core for a rotating machine, a rotor core plate and a stator core plate are generally stamped out from the same copper plate by a press in order to maintain a high yield of materials. Then, the rotor core plate and the stator core plate are respectively laminated and assembled into a rotor and a stator.
このうち、 ロータは、 回転部材であり、高速回転に伴う高い応力が掛かるので強度が 高いことが必要とされる。 特に近年においては、 回転機 (モータ) の効率を上げるため に、希土類磁石を埋め込んだ形式のロータが発達し、 ロータの回転速度は著しく高くな つている。 そのため、 ロータを構成する電磁鋼板に対しては磁束密度及び強度、 たとえ ば上降伏点(YP)、が従来に比べてより高いことが要求されるようになっている。一方、 ステータは、高い磁束密度を有し、力っ鉄損が低いことが回転機の小型化と省エネルギ 一化のため重要である。 このように、同じモータに使用される電磁鋼板であっても、 ロータの組み立てに使用 される鋼板 (以下、 「ロータ材」 という) とステータの組み立てに使用される鋼板 (以 下、 「ステ一タ材」 という) とでは、 要求特性が異なり、 両特性を両立させることは困
難である。従来提案されている技術は、ロータ材あるいはステータ材としての特性を個 別に満たすものであっても、これら双方の特性を満たすように仕向けられたものではな かった。 発明の開示 本 明は、同一の鋼板からロータ材及ぴステータ材の同時採取をしながら、 ロータ材 においては高 ヽ磁束密度及ぴ高強度を、ステータ材においては高 Vヽ磁束密度及ぴ低鉄損 を達成し得る高磁束密度無方向性電磁鋼板を提案し、さらにそれを用いた回転機用部材 および回転機を提案することを目的とする。 本発明は、 Of these, the rotor is a rotating member, and is subjected to high stress due to high-speed rotation, so that it must have high strength. In particular, in recent years, in order to increase the efficiency of a rotating machine (motor), a rotor in which a rare-earth magnet is embedded has been developed, and the rotation speed of the rotor has been significantly increased. Therefore, the magnetic steel sheet constituting the rotor is required to have a higher magnetic flux density and strength, for example, a higher yield point (YP) than before. On the other hand, it is important for the stator to have a high magnetic flux density and a low iron loss in order to reduce the size of the rotating machine and save energy. As described above, even if the magnetic steel sheet is used for the same motor, the steel sheet used for assembling the rotor (hereinafter referred to as “rotor material”) and the steel sheet used for assembling the stator (hereinafter referred to as “steel sheet”) are used. Required material), and it is difficult to balance both characteristics. It is difficult. Conventionally proposed technologies, which individually satisfy the characteristics as a rotor material or a stator material, are not directed to satisfy both of these characteristics. DISCLOSURE OF THE INVENTION The present invention discloses that a rotor material and a stator material are simultaneously sampled from the same steel plate while a rotor material has a high magnetic flux density and a high strength, and a stator material has a high V magnetic flux density and a low strength. An object of the present invention is to propose a high magnetic flux density non-oriented electrical steel sheet capable of achieving iron loss, and to further propose a rotating machine member and a rotating machine using the same. The present invention
1 . 質量比で Si: 0. 1%~1. 2%及ぴ Mn: 0. 005〜0. 30%を含有し、 C: 0. 0050%以下 (0 を含む)、 Sol. A1: 0. 0004%以下 (0を含む)、 N : 0. 0030%以下 (0を含む) に制限され、 残部として Fe及び不可避的不純物を含有し、 鋼板中に分散する粒成長阻害延性非金属 介在物、 deformable non-metallic inclusions with gram growth inhibition)の個数 密度(number of inclusions per unit area)力 S 1000個/ cm2以下 (0を含む) である回 転機用高磁束密度無方向性電磁鋼板である。 1. By mass ratio Si: 0.1% ~ 1.2% and Mn: 0.005 ~ 0.30%, C: 0.0005% or less (including 0), Sol. A1: 0 0004% or less (including 0), N: 0. 0030% or less (including 0), containing Fe and unavoidable impurities as the balance and dispersing in the steel sheet to inhibit grain growth and ductile non-metallic inclusions , is deformable non-metallic inclusions with gram growth inhibition) number density (number of inclusions per unit area) force S 1000 / cm 2 or less (high magnetic flux density non-oriented electrical steel sheet for rotating turning point is including 0) of .
ここに粒成長阻害延性非金属介在物とは延性非金属介在物のうち、鋼板の平均再結晶 粒径(再結晶粒の平均粒径) を Dとしたとき、長さが 3 XD〜9XDの介在物をいう。 な お、 ここで鋼板とは仕上焼鈍された製品板の状態、すなわち歪取り焼鈍されていない状 態の鋼板を指し、平均再結晶粒径および延性非金属介在物の長さも、 当然、製品板の状 態での値である。 また、延性非金属介在物は、圧延により比較的容易に展伸する (ある いは製品板等においては展伸した)比較的粗大な非金属介在物を指すが、鋼板において は展伸するのはほとんどが非金属介在物であるので、 以後単に延性介在物という。 Here, the term “grain growth-inhibiting ductile nonmetallic inclusions” refers to the average recrystallized grain size (average grain size of recrystallized grains) of a steel sheet among the ductile nonmetallic inclusions, where D is 3 XD to 9XD. Refers to inclusions. Here, the steel sheet refers to the state of the finished annealed product sheet, that is, the steel sheet that has not been subjected to strain relief annealing, and the average recrystallized grain size and the length of ductile nonmetallic inclusions are, of course, the product sheet. It is a value in the state of. In addition, ductile nonmetallic inclusions refer to relatively coarse nonmetallic inclusions that expand relatively easily by rolling (or expand in product sheets, etc.), but do not expand in steel sheets. Are mostly non-metallic inclusions, henceforth simply referred to as ductile inclusions.
なお、 上記無方向性電磁鋼板の組成は、 上記 Si、 Mn、 Sol. Al, N、 残部 Fe及ぴ不 可避的不純物から実質的になることが好ましい。 It is preferable that the composition of the non-oriented electrical steel sheet substantially consists of the above Si, Mn, Sol. Al, N, the balance of Fe and inevitable impurities.
2 . 質量%で S b : 0. 005%~0. 10%および S n : 0. 005%~0. 2%から選んだ 1種ま たは 2種をさらに含有する、上記 1の発明に係る回転機用高磁束密度無方向性電磁鋼板。
3 . 質量%で?: 0. 001%〜0. 2%および N i : 0. 001%〜0. 2%から選んだ 1種または2. The invention according to the first aspect, further comprising one or two selected from Sb: 0.005% to 0.10% and Sn: 0.005% to 0.2% by mass%. Such a high magnetic flux density non-oriented electrical steel sheet for rotating machines. 3. In mass%? : 0.001% to 0.2% and N i: One selected from 0.001% to 0.2% or
2種をさらに含有する、上記 1または 2の発明に係る回転機用高磁束密度無方向性電磁 鋼板。 The high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to the invention of the above 1 or 2, further comprising two types.
4 . 質量0 /0で REM: 0. 0001%~0. 10%および C a : 0. 0001%~0. 01%から選んだ 1種 または 2種をさらに含有する、上記 1 ~ 3のいずれかの発明に係る回転機用高磁束密度 無方向性電磁鋼板。 . 4 Mass 0/0 in REM:. 0. 0001% ~ 0 10% and C a:. 0. 0001% ~ 0 one or two species selected from 0.1% further contains any of the above 1 to 3, A high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to the invention.
5 . 上記不可避的不純物のうち T i、 N b及ぴ Vが質量%でそれぞれ T i : 0. 0020% 以下 (0を含む)、 b : 0. 0050%以下 (0を含む)、 および V: 0. 0060%以下 (0を含 む) に制限されている、上記 1〜4のいずれかの発明に係る回転機用高磁束密度無方向 性電磁鋼板。. 5. Among the unavoidable impurities, T i, N b and V in mass% are Ti: 0.0020% or less (including 0), b: 0.0050% or less (including 0), and V : The high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to any one of the above-mentioned inventions, which is limited to 0.0060% or less (including 0). .
6 . 前記不可避的不純物のうち S及ぴ Oが質量%でそれぞれ S : 0. 0050%以下 (0を 含む)、 および O : 0. 0100%以下 (0 を含む) に制限されている、 上記 1 ~ 5のいずれ かの発明に係る回転機用高磁束密度無方向性電磁鋼板。 6. Among the inevitable impurities, S and O are limited by mass% to S: 0.0050% or less (including 0) and O: 0.0100% or less (including 0), respectively. A high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to any one of the inventions of 1 to 5.
7 . 前記再結晶粒の平均粒径 Dが 6 μ π!〜 25 mである、上記:!〜 6のいずれかの発 明に係る回転機用高磁束密度無方向性電磁鋼板。 7. The average grain size D of the recrystallized grains is 6 μπ! Above: which is ~ 25 m! A high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to any one of the above-described inventions.
8 . 少なくとも冷間圧延およびその後の仕上焼鈍により製造される鋼板であって、前 記仕上焼鈍の温度が 700°C〜800°Cである、 上記 1〜 7のいずれかの発明に係る回転機 用高磁束密度無方向性電磁鋼板。 すなわち、無方向性電磁鋼板用スラブを常法により 処理して最終板厚を有する冷延鋼板とした後、 700~800°Cで仕上焼鈍を施してなるもの である。 8. The rotating machine according to any one of the above-mentioned inventions, wherein the steel sheet is manufactured by at least cold rolling and subsequent finish annealing, and the temperature of the finish annealing is 700 ° C to 800 ° C. High magnetic flux density non-oriented electrical steel sheet. That is, a slab for a non-oriented electrical steel sheet is processed by a conventional method to form a cold-rolled steel sheet having a final thickness, and then subjected to finish annealing at 700 to 800 ° C.
9 . 上記 1〜8のいずれかの発明に係る無方向性電磁鋼板であって、 750°Cで 2時間 の歪取焼鈍によって平均再結晶粒径が 2倍以上に成長する(すなわち歪取り焼鈍結晶粒 成長比が 2以上である) ことを特徴とする、 回転機用高磁束密度無方向性電磁鋼板。 9. The non-oriented electrical steel sheet according to any one of the above-mentioned inventions 1 to 8, wherein the average recrystallized grain size grows twice or more by strain relief annealing at 750 ° C for 2 hours (ie, strain relief annealing). A high magnetic flux density non-oriented electrical steel sheet for rotating machines, characterized by having a crystal grain growth ratio of 2 or more.
1 0 . 上記 1〜 9のいずれかの発明に係る回転機用高磁束密度無方向性電磁鋼板(製 品板)に、歪取焼鈍を施してなる回転機用高磁束密度無方向性電磁鋼板 (歪取り焼鈍板)。
1 1 . 前記歪取焼鈍の温度が 700~800 である、 上記 1 0の発明に係る回転機用高 磁束密度無方向性電磁鋼板。 10. High magnetic flux density non-oriented electrical steel sheet for rotating machines obtained by subjecting the high magnetic flux density non-oriented electrical steel sheet for rotating machines (product board) according to any one of the above inventions 1 to 9 to strain relief annealing. (Strain relief annealing plate). 11. The high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to the tenth aspect, wherein the temperature of the strain relief annealing is 700 to 800.
すなわち、上記:!〜 9の各発明に係る無方向性電磁鋼は、無方向性電磁鋼板用スラブ を常法により処理して最終板厚を有する冷延鋼板とした後、 700~800°Cで仕上焼鈍を施 し、 これにさらに 700〜800 で歪取り焼鈍を施して、 好ましくは平均再結晶粒径を仕 上焼鈍後の粒径の 2倍以上に成長させたものとすることもできる。 That is, the non-oriented electrical steel according to each of the above-mentioned inventions:! To 9 is obtained by processing a slab for a non-oriented electrical steel sheet by a conventional method to obtain a cold-rolled steel sheet having a final thickness of 700 to 800 ° C. Can be subjected to finish annealing, and further subjected to strain relief annealing at 700 to 800, so that the average recrystallized grain size preferably grows to be at least twice the grain size after finish annealing. .
1 2 . 上記:!〜 9のいずれかの発明に係る回転機用高磁束密度無方向性電磁鋼板を好 ましくは打,抜いた後、 積層してなる回転機用ロータ部材。 1 2. Above :! A high-flux-density non-oriented electrical steel sheet for a rotating machine according to any one of the above-mentioned inventions, preferably punched and punched out, and then laminated.
1 3 . 上記 1〜 9のいずれかの発明に係る回転機用高磁束密度無方向性電磁鋼板を好 ましくは打抜き、 積層した後、 歪取焼鈍を施してなる回転機用ステータ部材。 13. A high-flux-density non-oriented electrical steel sheet for a rotating machine according to any one of the above-described inventions 1 to 9, preferably a punched and laminated stator member for a rotating machine subjected to strain relief annealing.
1 . 同一の回転機用高磁束密度無方向性電磁鋼板を素材とする、上記 1 2の発明に 係るロータ部材と上記 1 3の発明に係るステータ部材とを有する回転機。 1. A rotating machine comprising the same high magnetic flux density non-oriented electrical steel sheet for a rotating machine as the material and having the rotor member according to the above-described invention 12 and the stator member according to the above-described invention 13.
すなわち、上記:!〜 9の各発明に係る無方向性電磁鋼板は、打ち抜き後、積層して高 強度回転機ロータ部材とすることができる。 また、打ち抜き後、積層した後さらに歪取 り焼鈍を施して低鉄損回転機ステータ部材とすることもできる。 さらに、同一の無方 向性電磁鋼板から得られたロータ部材とステータ部材を用いて、高性能の回転機を得る ことができる。 図面の簡単な説明 図 1は、無方向性電磁鋼板の粒成長比、すなわち、仕上焼鈍後の鋼板の平均結晶粒径 に対する歪取り焼鈍後の鋼板の平均結晶粒径の比と、鋼板の N含有量との関係を、粒成 長阻害延性非金属介在物の存在個数をパラメータとして表したグラフである。 発明を実施するための最良の形態 本発明者は、 まず、 以下の点に着目した。 That is, the non-oriented electrical steel sheets according to the inventions of the above:! To 9 can be punched and laminated to form a high-strength rotating machine rotor member. Moreover, after punching and laminating, it can be further subjected to strain relief annealing to obtain a low iron loss rotating machine stator member. Furthermore, a high-performance rotating machine can be obtained using a rotor member and a stator member obtained from the same non-oriented electrical steel sheet. BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 shows the grain growth ratio of the non-oriented electrical steel sheet, that is, the ratio of the average grain size of the steel sheet after strain relief annealing to the average grain size of the steel sheet after finish annealing, and the N of the steel sheet. 4 is a graph showing the relationship with the content using the number of existing non-metallic inclusions inhibiting grain growth as a parameter. BEST MODE FOR CARRYING OUT THE INVENTION First, the present inventors focused on the following points.
(1) 無方向性電磁鋼板の飽和磁束密度は素材の鉄の含有量(質量%) によって決まるも のであり、 鉄以外の元素、 例えば Siや Mn等の含有量が高いと飽和磁束密度が低下 することは避けられない。
(2) 磁束密度およぴ強度は鋼板の結晶粒径によつて支配される。 (1) The saturation magnetic flux density of non-oriented electrical steel sheets is determined by the iron content (% by mass) of the material. The saturation magnetic flux density decreases when the content of elements other than iron, such as Si and Mn, is high. Inevitable. (2) The magnetic flux density and strength are governed by the crystal grain size of the steel sheet.
(3) 前述のように需要家で歪取り焼鈍が行われ、当該焼鈍により結晶粒径の増大おょぴ 鉄損の低減が生じ得る。 上記を考慮した結果、 本発明者らは、 下記の各方法を組合せることを見出した。 (3) As described above, strain relief annealing is performed by the customer, and the annealing may increase the crystal grain size and reduce iron loss. As a result of considering the above, the present inventors have found that the following methods are combined.
(1) Si含有量および Mn含有量の低い無方向性電磁鋼板を採用することで、 高磁束密度 を確保すること、 (1) High magnetic flux density is ensured by using non-oriented electrical steel sheets with low Si and Mn contents.
(2) 仕上焼鈍後の製品板では比較的細粒で高強度とし、かつ、歪取り焼鈍における結晶 粒の成長性を高く確保すること、 (2) The product sheet after finish annealing should have relatively fine grains and high strength, and ensure high crystal grain growth during strain relief annealing.
(3) ロータ材においては歪取り焼鈍を行なわずに強度を確保し、ステータ材においては 歪取り焼鈍を施して粒成長により低鉄損を実現すること、 (3) To ensure strength without performing strain relief annealing in the rotor material, and to achieve low iron loss by grain growth by performing strain relief annealing in the stator material;
上記の組み合わせにより、結晶粒径を上記ロータおよぴステータの製造プロセスにお いて適正ィ匕してロータおよぴステータにそれぞれ必要な特性を付与できる。 本発明者らはさらに、ステータの組み立て過程で行われる歪取り焼鈍工程で結晶粒径 の成長を支配する要因を探求し、 下記の各方法を組み合わせることを見出した。 With the above combination, the crystal grain size can be appropriately adjusted in the manufacturing process of the rotor and the stator, so that the rotor and the stator can each have required characteristics. The present inventors have further searched for factors governing the growth of the crystal grain size in the strain relief annealing process performed in the process of assembling the stator, and have found that the following methods are combined.
(1) A1の上限値を工業的レベルとしてはかなり厳しく制限して A1Nなどの微細析出物 を抑制すること、 (1) To restrict the upper limit of A1 to a very strict level as an industrial level to suppress fine precipitates such as A1N;
(2) 鋼板中に分散する延性介在物の個数密度を仕上焼鈍された鋼板の平均結晶粒径と 関係付けて所定値以下に制限すること、 すなわち、 特定の寸法範囲の延性介在物が 歪取り焼鈍における結晶粒成長性に支配的に影響することを見出し、 より緻密かつ 効率的な延性介在物制御を実現すること、 (2) Limit the number density of ductile inclusions dispersed in the steel sheet to a specified value or less in relation to the average grain size of the finish-annealed steel sheet. Finding that it has a dominant effect on grain growth during annealing, and realizing more precise and efficient ductile inclusion control,
そして、上記の組合せにより、需要家でのステータの組み立て過程で行われる歪取り 焼鈍工程 (例えば、 750°Cで 2時間程度) で結晶粒径を顕著に成長させることができる ことの知見を得て、 本発明に至った。 以下、 本発明の電磁鋼板に好適な化学組成 (質量%) について述べる。 It has been found that the combination described above can significantly increase the crystal grain size in the strain relief annealing process (for example, at 750 ° C for about 2 hours) performed in the stator assembly process at the customer. Thus, the present invention has been achieved. Hereinafter, the chemical composition (% by mass) suitable for the magnetic steel sheet of the present invention will be described.
Si: 0. 1~1. 2% Si: 0.1 to 1.2%
鋼板の電気抵抗を増大させ、 鉄損を低減するには、少なくとも 0. 1%の Siを含有させ る必要がある。 しかし、 Si含有量が 1. 2%を超えると、 磁束密度が低下し、 硬度が上昇
し、 さらに加工性も劣ィ匕する。 したがって、 Si含有量は 0. 1〜1. 2%の範囲とする。 Mn: 0. 005〜0. 30% To increase the electrical resistance of the steel sheet and reduce iron loss, it is necessary to contain at least 0.1% of Si. However, when the Si content exceeds 1.2%, the magnetic flux density decreases and the hardness increases. In addition, the workability is inferior. Therefore, the Si content is in the range of 0.1 to 1.2%. Mn: 0.005 to 0.30%
Mn は良好な熱間圧延の際の加工性を得るために必要な成分であり、 そのためには 0. 005%以上含有させることが必要である。 しかし、 0. 30%を超えると磁束密度が低下す る。 したがって Mnの含有量は 0. 005-0. 30%とする。 Mn is a component necessary for obtaining good workability in hot rolling, and therefore, it is necessary to contain 0.005% or more. However, when it exceeds 0.30%, the magnetic flux density decreases. Therefore, the content of Mn should be 0.005-0.30%.
C: 0. 0050%以下 (0を含む) C: 0.0050% or less (including 0)
Cは、 磁気時効劣化を抑制するためには極力低くする必要がある。 また、 本発明で採 用される極低 A1 化の条件の下で集合組織の改善効果を十分に発揮させるためには、 0. 0050%以下に低減する必要がある。 しかしながら、 この Cの低減は、 必ずしも出発材 料である溶鋼あるいはスラプの段階で達成されていなければならないものではない。す なわち、鋼板の製造過程で、仕上焼鈍の終了時までに達成されればよい。代表的な脱炭 手段は脱炭焼鈍である。 なお、製造過程で脱炭を行なう場合、 出発材料における C量は 0. 0050%〜0. 1%の範囲内であることが好ましい。 C must be as low as possible to suppress magnetic aging degradation. Further, in order to sufficiently exhibit the effect of improving the texture under the ultralow A1 conditions employed in the present invention, the content must be reduced to 0.0050% or less. However, this reduction of C does not necessarily have to be achieved at the stage of molten steel or slurp, which is the starting material. That is, it may be achieved by the end of finish annealing in the steel sheet manufacturing process. A typical decarburization method is decarburization annealing. When decarburization is performed during the production process, the C content in the starting material is preferably in the range of 0.0050% to 0.1%.
Sol. A1: 0. 0004%以下 (0を含む) Sol. A1: 0.0004% or less (including 0)
優れた粒成長性と磁気特性を得るためには、 鋼板の A1量を 0. 0004%以下に低減する ことが必要である。 A1含有量が 0. 0004%を超えると鋼板中に A1Nが析出し、仕上焼鈍さ れた製品板における磁束密度が低下する。また、歪取り焼鈍の際の再結晶粒成長性も低 下し、鉄損値を顕著に低下させるという本発明の優れた効果を得ることができなくなる。 In order to obtain excellent grain growth and magnetic properties, it is necessary to reduce the A1 content of the steel sheet to 0.0004% or less. If the A1 content exceeds 0.0004%, A1N precipitates in the steel sheet, and the magnetic flux density in the finish-annealed product sheet decreases. Further, the recrystallized grain growth during strain relief annealing is also reduced, and the excellent effect of the present invention of remarkably reducing the iron loss value cannot be obtained.
N: 0. 0030%以下 (0を含む) N: 0.0030% or less (including 0)
Nは A1と結合して窒化物(A1N) の析出原因となるほか、 Ti等と結合して種々の窒化 物を形成し、仕上焼鈍された製品の磁束密度を低下させる原因になる。 また、歪取り焼 鈍の際の再結晶粒成長を阻害し、鉄損値の十分な低下を阻害する原因になる。そのため N量は 0. 0030%以下に低減させることが必要である。 好ましくは 0. 0025%以下である。 本発明の無方向性電磁鋼板は、 以上の基本組成の他、 Sb、 Sn、 P、 Ni、 REM, Caの少 なくともいずれかを目的とする鋼板特性に応じて添加することが出来る。これらの好適
な含有量については後述する。 上記以外に、 Cr : 5 %以下、 Cu : 5 %以下の少なくとも いずれかを含有しても、 本発明の効果を得る支障にはならない。 N combines with A1 to cause the precipitation of nitrides (A1N), and combines with Ti and the like to form various nitrides, thereby reducing the magnetic flux density of finish-annealed products. In addition, it hinders the growth of recrystallized grains during strain relief annealing, which hinders a sufficient decrease in iron loss value. Therefore, it is necessary to reduce the N content to 0.0030% or less. Preferably it is 0.0025% or less. The non-oriented electrical steel sheet of the present invention can be added in addition to the basic composition described above, in addition to Sb, Sn, P, Ni, REM, and Ca according to the properties of the steel sheet. These preferred The high content will be described later. In addition to the above, containing at least one of Cr: 5% or less and Cu: 5% or less does not hinder the effects of the present invention.
また、 その他の不可避的不純物として代表的なものは Ti、 Nb、 V、 S、 0があり、 これ らの好適な範囲については後述する。 さらに、 Cu: 0. 2%以下、 Cr: 0. 08%以下、 Zr: 0. 005%以下、 As: 0. 01%以下、 Mo: 0. 005%以下、 W: 0. 005%以下等の不可避的不純 物も許容される。 本発明の無方向性電磁鋼板は、以上の基本組成を有する力 組成の制御だけでは本発 明の目的を達成し得ない。仕上焼鈍された鋼板中に分散する非金属介在物のうち、鋼板 (仕上焼鈍された製品板) の平均再結晶粒径を Dとしたとき、 長さが 3 X D~9 X Dであ る延性介在物 (延 '14非金属介在物) の個数密度が 1000個ん m2以下 (0を含む) である ことが必要である。 この、 長さが 3 X D〜9 X Dの延性非金属介在物を、 以後、 粒成長阻 害延性非金属介在物と定義する。 Representative examples of other inevitable impurities include Ti, Nb, V, S, and 0, and their preferable ranges will be described later. Further, Cu: 0.2% or less, Cr: 0.08% or less, Zr: 0.005% or less, As: 0.01% or less, Mo: 0.005% or less, W: 0.005% or less, etc. Unavoidable impurities are also acceptable. The non-oriented electrical steel sheet of the present invention cannot achieve the object of the present invention only by controlling the force composition having the above basic composition. Among the nonmetallic inclusions dispersed in the finish-annealed steel sheet, when the average recrystallized grain size of the steel sheet (finish-annealed product sheet) is D, the ductile inclusion has a length of 3 XD to 9 XD. it is necessary as an object (including 0) m 2 or less number density N 1000 (extending '14 nonmetallic inclusions). This ductile non-metallic inclusion having a length of 3 XD to 9 XD is hereinafter defined as a grain growth-inhibiting ductile non-metallic inclusion.
ここに、 平均再結晶粒径とは、 鋼板の 0. 5醒 2の面積中に存在する結晶粒の個数を測 定し、それに基づいて結晶粒 1個あたりの平均面積を算出し、その平均面積に等しい円 の直径を算出した際の該直径を採用した。この平均結晶粒径は鋼板の板幅方向に垂直に 切断した断面 (いわゆる L断面) を光学顕微鏡で観察することにより測定される。 延性介在物とは、圧延方向に長く延びた棒状の介在物、及ぴ圧延方向に連続して並ぶ 介在物をいう。また、 以内の距離にある 2以上の介在物が圧延方向に対して ± 5° 以内の方向に並んでいるときは、これらの介在物を繋がっているものとして 1個の延性 介在物とみなした。 Here, average recrystallization grain size, and measure the number of crystal grains present in the area of 0.5 s Awakening 2 of the steel sheet to calculate the average area of crystal grains per unit based on it, the average The diameter used when calculating the diameter of a circle equal to the area was adopted. This average crystal grain size is measured by observing a cross section (so-called L cross section) cut perpendicularly to the width direction of the steel sheet with an optical microscope. The ductile inclusions are rod-shaped inclusions elongated in the rolling direction and inclusions continuously arranged in the rolling direction. When two or more inclusions within a distance of ± 5 ° are aligned in a direction of ± 5 ° with respect to the rolling direction, these inclusions are considered to be connected and regarded as one ductile inclusion. .
なお、介在物には上記延性介在物のほかに孤立した円形の介在物がある。これは非延 性介在物であって、延性介在物には勘定されない。介在物の長径が短径の 2倍以下の場 合を円形、 2倍を超える場合は延性介在物に分類した。 The inclusions include isolated circular inclusions in addition to the ductile inclusions. This is a non-ductile inclusion and is not counted as a ductile inclusion. Inclusions were classified as circular if the major axis was less than twice the minor axis, and ductile if greater than twice the minor axis.
代表的な延性介在物としては、 Si02、 A1203、 Mn0、 CaOあるいはこれらのいくつ; ^か らなる複合酸化物 (ただし組成により非延性となる場合もある) がある。 延性介在物の長さとは、地鉄(母相組織) と介在物の界面における任意の 2点間で引 いた線分の長さの最大値、すなわち延性介在物の両端部間の距離をいう (これを長径と
する)。 所定の長さの延性介在物の存在個数の測定は、 次の手順で行った。 Exemplary ductile inclusions, Si0 2, A1 2 0 3 , Mn0, CaO or a number thereof; is ^ or Ranaru composite oxide (some, however if the non-ductile depending on the composition). The length of a ductile inclusion refers to the maximum value of the length of a line segment drawn between any two points at the interface between the base metal (matrix structure) and the inclusion, that is, the distance between both ends of the ductile inclusion. (This is the major axis Do). The number of ductile inclusions having a predetermined length was measured by the following procedure.
鋼板の板幅方向に垂直な断面を研磨し、研磨まま (腐食処理等は行わずに) の面を光 学顕微鏡で観察し、 地鉄部分と色が異なる小さな領域を介在物と認定した。 1つの試料 に対しての観察視野を 5讓2として、 上記により認定した介在物のうち所定の長さの延 性介在物と認められる形態のものの個数を計測し、 この個数を 1cm2当たりの個数に換 算して個数密度とした。 A cross section perpendicular to the width direction of the steel sheet was polished, and the as-polished surface (without performing any corrosion treatment, etc.) was observed with an optical microscope, and a small area different in color from the ground iron part was identified as an inclusion. The observation field against one sample as 5 Yuzuru 2, the number of the form deemed extended inclusions having a predetermined length of the inclusions was approved by the measuring, the number per 1 cm 2 The number density was converted to the number.
以下に、延性介在物の粒成長性への影響を調査するために行なつた実験およぴその結 果を示す。 The following is an experiment conducted to investigate the effect of ductile inclusions on grain growth, and the results thereof.
(実験 1 ) (Experiment 1)
C: 0. 002°/。、 Si: 0. 7%、 n: 0. 2%, Sol. A1: 0. 0004%以下、 S: 0. 002%、 残部不可避的 不純物を基本成分とし、 これに Nを 0. 0010~0· 0060%の範囲で変更したスラブを製造し た。 C: 0.002 ° /. , Si: 0.7%, n: 0.2%, Sol. A1: 0.0004% or less, S: 0.002%, remaining unavoidable impurities are the basic components, and N is 0.0010 ~ 0. · Made slabs modified in the range of 0060%.
得られたスラブを 1100。Cに加熱し 2. 3mm厚まで熱延したのち、 酸洗し、 冷間圧延し て 0. 35ramの最終板厚に仕上げ、 さらに、 800。C、 15秒間の仕上焼鈍 (再結晶焼鈍) を 施して仕上焼鈍板 (製品板) とした。 なお、 延性介在物の存在量 (個数密度)、 及ぴ形 態 (長さ) の調整は、 たとえば、 The resulting slab is 1100. Heated to C, hot rolled to a thickness of 2.3 mm, pickled, cold rolled and finished to a final thickness of 0.35 ram. C, Finished annealing (recrystallization annealing) for 15 seconds to obtain a finished annealed plate (product plate). Adjustment of the amount of ductile inclusions (number density) and the form (length)
(1) 酸素含有量と A1含有量の変更による酸化物の量及ぴ組成の制御、 (1) Control of oxide amount and composition by changing oxygen content and A1 content,
(2) スラブ厚みの変更など、熱間圧延での圧下スケジュールの変更による介在物の延伸 量の制御 (2) Controlling the amount of elongation of inclusions by changing the rolling schedule in hot rolling, such as changing the slab thickness
などによって行った。 And so on.
得られた製品について平均結晶粒径の測定を行うとともに介在物の観察を行って延 性介在物の長さ及び個数密度を測定した。 ついで、 上記製品に対し、 アルゴン (Ar) 雰 囲気にて 750。C、 2時間の焼鈍 (以下、 単に 「歪取り焼鈍」 という) を施し、 仕上焼鈍 板と同様平均結晶粒径の測定を行った。 なお、上記焼鈍条件は、需要家での歪取り焼鈍 に相当する条件である。 The average grain size of the obtained product was measured and the inclusions were observed to measure the length and the number density of the ductile inclusions. Then, 750 for the above products in an argon (Ar) atmosphere. C, annealing for 2 hours (hereinafter simply referred to as “strain relief annealing”) was performed, and the average crystal grain size was measured as in the case of the finish-annealed sheet. The above annealing condition is a condition corresponding to the strain relief annealing at the customer.
図 1はこのようにして得られた仕上焼鈍後の鋼板の平均結晶粒径に対する歪取り焼 鈍後の鋼板の平均結晶粒径の比 (以下 「歪取り焼鈍結晶粒成長比」 あるいは単に 「粒成 長比」 という) と N含有量の関係を示したグラフである。 ここで、仕上焼鈍後の平均再 結晶粒径を Dとしたとき、 長さが 3XD〜9XDの介在物 (粒成長阻害延性非金属介在物
という) の個数密度に応じて、 異なるマークを用いた。 図 1から分かるように、 N含有量が 30ppra (質量 Ppm) 以下のとき、 粒成長阻害延性 非金属介在物の個数密度が、 1000個 Zcm2以下であれば、 歪取り焼鈍結晶粒成長比が 2 以上となる。 しかしながら、粒成長阻害延性非金属介在物の個数密度が、 1000個/ cm2 以下であっても、 N含有量が 0. 0030%を超えるとき、 あるいは粒成長阻害延性非金属介 在物の個数密度が、 1000個/ cm2を超えるときは、 歪取り焼鈍結晶粒成長比が 2未満と なる。 Figure 1 shows the ratio of the average grain size of the steel sheet after strain relief annealing to the average grain size of the steel sheet after finish annealing obtained in this way (hereinafter referred to as the “strain relief annealing grain growth ratio” or simply “grain rate”). It is a graph showing the relationship between the growth ratio) and the N content. Here, assuming that the average recrystallized grain size after finish annealing is D, inclusions with a length of 3XD to 9XD (grain growth inhibiting ductile nonmetallic inclusions) Different marks were used depending on the number density. As can be seen from FIG. 1, when the N content is 30 ppra (mass P pm) or less, the grain growth inhibition ductility If the number density of nonmetallic inclusions is 1000 or less Zcm 2 , the strain growth annealing grain growth ratio Becomes 2 or more. However, the number density of grain growth inhibition ductile nonmetallic inclusions, the number of 1000 / cm 2 even less, when N content exceeds 0030% 0., or grain growth inhibiting ductile nonmetallic inclusions When the density exceeds 1000 / cm 2 , the strain relief annealing crystal grain growth ratio is less than 2.
(実験 2 ) (Experiment 2)
同様の結果が次の実験 2からも確かめられる。表 1に示す組成を有し、残部鉄おょぴ 不可避的不純物からなる厚さ 250瞧の 3本のスラブを製造し、これらのスラブから機械 加工により、厚さが 25瞧、 50醒、 100mmおよび 200mmの試料をそれぞれ切り出した。 そ の後、 これらの試料を 1070°Cに加熱後、 熱間圧延にて 2. 5mmとした後、 酸洗してから 冷間圧延によって最終板厚 0. 5腿に仕上げた。ついで、連続焼鈍型の仕上焼鈍(再結晶 焼鈍) の条件を 700〜800°Cの範囲で調整し、 平均再結晶粒径 (実験例、 実施例におい ては単に平均結晶粒径と呼ぶものとする) が 12〃 mまたは である製品板とした。 得られた製品板には Ar雰囲気中で 750°C、 2時間の歪取り焼鈍を施した。 これらの製 品板 (仕上焼鈍板)およぴ歪取り焼鈍板の板幅方向に垂直な断面を光学顕微鏡で観察し、 その平均結晶粒径を測定した。また、製品板については粒成長阻害延性非金属介在物の 個数密度を測定した。 その結果を表 2に示す。 同表に示したように、製品板の粒成長阻 害延性非金属介在物の個数密度が 1000個ん ra2以下である試料では、歪取り焼鈍結晶粒 成長比が大きい。 Similar results can be confirmed from Experiment 2 below. Three slabs, each having the composition shown in Table 1 and having a thickness of 250 mm and consisting of unavoidable impurities, were manufactured.These slabs were machined to a thickness of 25 mm, 50 mm, 100 mm. And 200 mm samples were cut out. Thereafter, these samples were heated to 1070 ° C, hot-rolled to 2.5 mm, pickled, and cold-rolled to a final thickness of 0.5 thigh. Next, the conditions of the finish annealing (recrystallization annealing) of the continuous annealing type were adjusted within the range of 700 to 800 ° C, and the average recrystallized grain size (in the experimental examples and examples, simply referred to as the average grain size). Is 12) m or あ る. The obtained product sheet was subjected to strain relief annealing at 750 ° C for 2 hours in an Ar atmosphere. The cross sections perpendicular to the sheet width direction of these product plates (finished annealing plates) and strain relief annealing plates were observed with an optical microscope, and the average crystal grain size was measured. For the product sheet, the number density of the grain growth-inhibiting ductile nonmetallic inclusions was measured. The results are shown in Table 2. As shown in the table, in the sample in which the number density of the grain growth-inhibiting ductile non-metallic inclusions on the product sheet is 1000 ra2 or less, the strain relief annealing crystal grain growth ratio is large.
鋼 化学組成 (mass%) Steel Chemical composition (mass%)
記号 C Si Mn Sol. Al N 0 Ti N V Symbol C Si Mn Sol. Al N 0 Ti N V
1 0. 0027 0. 50 0. 27 0. 0003 0. 0015 0. 0090 0. 0003 0. 002 0. 00101 0.0027 0.50 0.27 0.0003 0.0015 0.0090 0.0003 0.002 0.0010
2 0. 0021 0. 50 0. 23 0. 0003 0. 0019 0. 0085 0. 0004 0. 002 0. 00102 0.0021 0.50 0.23 0.0003 0.0019 0.0085 0.0004 0.002 0.0010
3 0. 0026 0. 60 0. 22 0. 0001 0. 0018 0. 0070 0. 0003 0. 001 0. 0010
表 2 3 0.0026 0.60 0.22 0.0001 0.0018 0.0070 0.0003 0.001 0.0010 Table 2
上記により組成を制限し、かつ粒成長阻害延性非金属介在物の個数密度を適正に制限 すれば、歪取り焼鈍後の鋼板 (ステータに組み上げられた鉄心材料) の平均結晶粒径を 前記仕上焼鈍後の粒径の 2倍以上とすることができる。これによりステータにおける鉄 損は大きく低減される。 If the composition is restricted as described above and the number density of the grain growth-inhibiting ductile non-metallic inclusions is appropriately restricted, the average crystal grain size of the steel sheet (iron core material assembled into the stator) after strain relief annealing is determined by the finish annealing. It can be twice or more the size of the subsequent particles. This greatly reduces iron loss in the stator.
一方、 ロータは仕上焼鈍された状態で使用することにより、結晶粒が相対的に小さい
状態となり、 強度、 特に上降伏点 (以下 YPと略す) を高く維持することができる。 さらに、上記、 ロータおよぴステータを用いることにより、高速回転用の高性能の回 転機を、 効率的に組み立てることが可能になる。 ロータに要求される強度レベルは、回転機の特性に応じて異なるので、鋼板強度を支 配する因子である平均結晶粒径の大きさは、要求されるロータの強度レベルに応じて設 計すればよい。 しかしながら、一般的な回転機であれば鋼板の仕上焼鈍後における平均 結晶粒径は 6〜25 μ raが好適である。 この場合、 鋼板の強度は YPで 200〜400MPa程度、 ビッカース硬度 Hvで 100~170程度である。 なお、本発明の権利範囲の解釈に影響を与えるものではないが、粒成長阻害延性非金 属介在物の個数密度によつて歪取り焼鈍結晶粒成長比が支配される理由は以下のよう に考えられる。 On the other hand, by using the rotor in the state of finish annealing, the crystal grains are relatively small. State, and the strength, especially the upper yield point (hereinafter abbreviated as YP), can be kept high. Further, by using the rotor and the stator, a high-performance rotating machine for high-speed rotation can be efficiently assembled. Since the strength level required for the rotor varies depending on the characteristics of the rotating machine, the size of the average crystal grain size, which is a factor controlling the steel sheet strength, is designed according to the required strength level of the rotor. Just fine. However, for a general rotating machine, the average crystal grain size after finish annealing of the steel sheet is preferably 6 to 25 μra. In this case, the strength of the steel sheet is about 200 to 400 MPa in YP and about 100 to 170 in Vickers hardness Hv. Although it does not affect the interpretation of the scope of the right of the present invention, the reason why the strain relief annealing crystal grain growth ratio is controlled by the number density of the grain growth inhibiting ductile non-metallic inclusions is as follows. Conceivable.
まず、 結晶粒径と同程度の長さの介在物が、 最も粒成長性を阻害すると考えられる。 なぜなら、延性介在物は一つの、 あるいは二つ以上の結晶粒界を横切って存在し、その 結晶粒の成長性を阻害する確率が高くなるからである。 First, it is thought that inclusions with the same length as the crystal grain size most hinder grain growth. This is because ductile inclusions exist across one or more grain boundaries, increasing the probability of inhibiting the growth of the grains.
しかしながら、電磁鋼板中に存在する非金属介在物の総量が一定の場合は、その鋼中 に占める体積分率はほぼ一定と見られるので、 ツエナー (Zener) の式の示すところに より、 結晶粒径に比べて極端に長い介在物は粒成長性を阻害する可能性が低くなる。 言い換えれば、延性介在物が粒成長性を阻害する程度は、介在物の長さによって異な り、 本発明者等の知見では延性介在物の長さが仕上焼鈍板の平均結晶粒の 3〜9倍であ るとき、すなわち粒成長阻害延性非金属介在物のとき、最大となるのである。 したがつ て、 この範囲の長さの延性介在物、 すなわち 「粒成長阻害延性非金属介在物」 の個数密 度により 「歪取り焼鈍結晶粒成長比」 が影響を受けるのである。 However, when the total amount of non-metallic inclusions present in the magnetic steel sheet is constant, the volume fraction of the steel is considered to be almost constant, so that the crystal grain can be calculated from the Zener equation as shown below. Inclusions that are extremely long compared to the diameter are less likely to inhibit grain growth. In other words, the degree to which the ductile inclusions inhibit the grain growth depends on the length of the inclusions. According to the knowledge of the present inventors, the length of the ductile inclusions is 3 to 9 times the average crystal grain of the finish-annealed sheet. When it is twice, that is, when it is a grain growth-inhibiting ductile nonmetallic inclusion, it becomes the maximum. Therefore, the “strain relief annealing crystal grain growth ratio” is affected by the number density of the ductile inclusions having a length in this range, that is, “grain growth inhibiting ductile nonmetallic inclusions”.
なお、 Zenerの式とは、 インヒビターの粒成長抑制力 Iを示す、 下記の式である。 The Zener's equation is the following equation that indicates the inhibitory force I on the growth of the inhibitor.
I = (3/4) X (V X ff X p / r 0) I = (3/4) X (VX ff X p / r 0 )
ここで、 Vは母相のモル体積、 σは粒界エネルギー、 ρは析出物の体積分率、 r 0は 析出物の平均粒半径である。 上記のように、無方向性電磁鋼板の Si、 Mn、 C、 Sol. A1及ぴ Nの含有量をそれぞれ制
御し、 さらに粒成長阻害延性非金属介在物の個数密度を 1000個 /cm2以下に抑えること によって、歪取り焼鈍結晶粒成長比を大きくすることができ、回転機用に適した高磁束 密度無方向性電磁鋼板とすることができる。 さらに、 鋼板組成において Ti、 Nb及ぴ V の含有量を制限すること、 あるいは Sb、 Snを添加することにより、 その効果を一層向 上させることができる。 そのことは、 以下の実験により確認できた。 Here, V is the molar volume of the matrix, σ is the grain boundary energy, ρ is the volume fraction of the precipitate, and r 0 is the average grain radius of the precipitate. As described above, the content of Si, Mn, C, Sol. In addition, by controlling the number density of grain growth-inhibiting ductile non-metallic inclusions to 1,000 or less per cm 2 , it is possible to increase the crystal growth rate of strain relief annealing grains, and to achieve a high magnetic flux density suitable for rotating machines. It can be a non-oriented electrical steel sheet. Further, by limiting the contents of Ti, Nb and V in the steel sheet composition, or adding Sb and Sn, the effect can be further improved. This was confirmed by the following experiment.
(実験 3 ) (Experiment 3)
表 3に示す組成からなり、残部鉄および不可避的不純物からなる鋼塊を製造し、 これ らの鋼塊を 1070°Cに加熱後、 熱間圧延にて 2. 5ramとした後、 酸洗してから冷間圧延に よって最終板厚 0. 5mmに仕上げた。 ついで、 800°C、 10秒間の仕上焼鈍 (再結晶焼鈍) をおこない製品板としたのち、 750°C、 2時間の歪取り焼鈍を施して歪取り焼鈍板とし た。得られた製品板およぴ歪取り焼鈍板から、圧延方向と平行およぴ圧延方向に直角に、 それぞれ同数のサンプルを切りだし、 JIS C 2550 に準拠して磁束密度およぴ鉄損を測 定した。 測定結果は表 3に併せて示す。 A steel ingot consisting of the composition shown in Table 3 and consisting of the balance of iron and unavoidable impurities was manufactured.These ingots were heated to 1070 ° C, hot-rolled to 2.5 ram, and pickled. After that, the sheet was finished to a final thickness of 0.5 mm by cold rolling. Next, after finishing annealing (recrystallization annealing) at 800 ° C for 10 seconds to obtain a product plate, the plate was subjected to strain relief annealing at 750 ° C for 2 hours to obtain a strain relief annealed plate. From the obtained product sheet and the strain relief annealing sheet, the same number of samples were cut out in parallel to the rolling direction and perpendicular to the rolling direction, and the magnetic flux density and iron loss were determined in accordance with JIS C 2550. It was measured. The measurement results are shown in Table 3.
なお、各製品板における平均結晶粒径は、 10〜20 管であった。 また、各製品板にお ける粒成長阻害性延性非金属介在物の個数密度は、 1000個/ cm2以下であった。
The average crystal grain size in each product plate was 10 to 20 tubes. Further, the number density of the grain growth inhibiting ductile nonmetallic inclusions in each product plate was 1,000 / cm 2 or less.
表 3 Table 3
化学組成 (mass%) Chemical composition (mass%)
¾¾pし 鉄損 ( ¾¾p iron loss (
歪取り 歪取り 号 C Si Mn Sol. Al N 0 Ti Nb V Sn Sb Straightening Straightening C Si Mn Sol. Al N 0 Ti Nb V Sn Sb
姆 HI! MU HI!
11 0.0018 0.90 0.15 0.0001 0.0017 0.0065 0.0024 0.002 0.0010 一 ― 6.7 6.1 11 0.0018 0.90 0.15 0.0001 0.0017 0.0065 0.0024 0.002 0.0010 One-6.7 6.1
12 0.0017 0.90 0.17 0.0002 0.0022 0.0060 0.0006 0.006 0.0020 ― ― 6.2 5.812 0.0017 0.90 0.17 0.0002 0.0022 0.0060 0.0006 0.006 0.0020 ― ― 6.2 5.8
13 0.0025 .0.90 0.16 0.0001 0.0021 0.0065 0.0010 0.001 0.0065 ― 6.4 5.913 0.0025 .0.90 0.16 0.0001 0.0021 0.0065 0.0010 0.001 0.0065 ― 6.4 5.9
14 0.0019 0.90 0.17 0.0002 0.0015 0.0070 0.0009 0.004 0.0020 ― 一 5.3 4.314 0.0019 0.90 0.17 0.0002 0.0015 0.0070 0.0009 0.004 0.0020 ― 5.34.3
15 0.0023 0.90 0.18 0.0001 0.0020 0.0060 0.0015 0.002 0.0020 一 ― 5.2 4.215 0.0023 0.90 0.18 0.0001 0.0020 0.0060 0.0015 0.002 0.0020 One-5.2 4.2
16 0.0021 0.90 0.17 0.0001 0.0017 0.0055 0.0004 0.003 0.0050 5.1 4.216 0.0021 0.90 0.17 0.0001 0.0017 0.0055 0.0004 0.003 0.0050 5.1 4.2
17 0.0018 0.90 0.15 0.0002 0.0015 0.0055 0.0006 0.001 0.0010 0.01 5.2 3.817 0.0018 0.90 0.15 0.0002 0.0015 0.0055 0.0006 0.001 0.0010 0.01 5.2 3.8
18 0.0018 0.90 0.17 0.0001 0.0022 0.0055 0.0005 0.002 0.0010 0.01 5.3 3.718 0.0018 0.90 0.17 0.0001 0.0022 0.0055 0.0005 0.002 0.0010 0.01 5.3 3.7
19 0.0022 0.90 0.17 0.0001 0.0013 0.0060 0.0004 0.001 0.0020 0.02 0.03 5.2 3.619 0.0022 0.90 0.17 0.0001 0.0013 0.0060 0.0004 0.001 0.0020 0.02 0.03 5.2 3.6
20 0.0024 0.90 0.19 0.0002 0.0015 0.0065 0.0004 0.002 0.0020 0.08 5.2 3.720 0.0024 0.90 0.19 0.0002 0.0015 0.0065 0.0004 0.002 0.0020 0.08 5.2 3.7
21 0.0017 0.90 0.15 0.0001 0.0024 0.0065 0.0003 0.001 0.0010 0.19 5.2 3.7
21 0.0017 0.90 0.15 0.0001 0.0024 0.0065 0.0003 0.001 0.0010 0.19 5.2 3.7
表 3から分かるように、 Tiを 0. 0020%以下、 Nbを 0. 0050%以下、および V量を 0. 0060% ,以下に制限することによって歪取り焼鈍後の磁気特性を一層良好にすることができる。 As can be seen from Table 3, the magnetic properties after strain relief annealing are further improved by limiting Ti to 0.0020% or less, Nb to 0.0050% or less, and the V content to 0.0060% or less. be able to.
さらに、 Sbまたは Snの 1種または 2種を添加することによって、 歪取り焼鈍後の鉄 損が大幅に改善できる。 Furthermore, by adding one or two of Sb or Sn, the iron loss after strain relief annealing can be greatly improved.
Ti、 Nbおよび V量を低減することによって、 磁気特性が改善する理由は必ずしも明 らかでないが、 次のように考えられる。 Tiおよび Nb、 そして Vはともに窒化物およ ぴ炭化物形成元素であり、これらの窒化物が微細に析出すると、微細析出 A1Nと同様に、 集合組織形成および結晶粒成長性に悪影響を及ぼすと考えられる。 このため、 これらの 元素を低減することによって前記の害が防止される結果、良好な磁気特性が得られるも のと考えられる。 The reason why the magnetic properties are improved by reducing the amounts of Ti, Nb, and V is not necessarily clear, but is considered as follows. Ti, Nb, and V are both nitride and carbide forming elements, and when these nitrides precipitate finely, it is thought that, similarly to finely precipitated A1N, they have an adverse effect on texture formation and grain growth. Can be Therefore, it is considered that the above harm is prevented by reducing these elements, and as a result, good magnetic properties can be obtained.
Ti、 Nbおよび V量の低減が歪取り焼鈍後の磁気特性に影響を及ぼす理由も明らかで はないが、 次のように考えられる。 Ti、 Nbおよび Vの含有量が多いと、 熱延板焼鈍や 再結晶焼鈍の際に窒化物または炭化物が部分的に固溶するものと考えられる。 そして、 歪取り焼鈍時に窒化物または炭化物が再度析出して磁壁の移動を阻害するので、上記の 各元素が多いと鉄損の劣化が生じるものと考えられる。 また、 Sbまたは Snの 1種または 2種を添加することによって、 歪取り焼鈍後の鉄損 が大幅に改善される理由も明らかではないが、 Sbや Snの偏祈が V等の析出挙動に影響 を与え、 析出の抑制や析出物の粗大化が起こるためであると考えられる。 なお、 V等を 上記の好適範囲に低減した鋼でも、 ある程度の V等の析出は避けられない。 このため、 V等を低減した鋼でも、 Sbや Snを添加する効果が発揮されるものと考えられる。 It is not clear why the reduction of Ti, Nb, and V affects the magnetic properties after strain relief annealing, but it is considered as follows. If the contents of Ti, Nb and V are large, it is considered that nitrides or carbides partially dissolve during hot-rolled sheet annealing or recrystallization annealing. Then, at the time of strain relief annealing, nitride or carbide precipitates again and hinders the movement of the domain wall. Therefore, it is considered that the iron loss is deteriorated when the amount of each of the above elements is large. Also, it is not clear why the addition of one or two types of Sb or Sn significantly improves the iron loss after strain relief annealing. This is thought to be due to the effect of precipitation and suppression of precipitation and coarsening of precipitates. It should be noted that even with steel in which V and the like have been reduced to the above preferred ranges, some precipitation of V and the like is inevitable. For this reason, it is considered that the effect of adding Sb and Sn is exhibited even in steel with reduced V and the like.
なお、従来より無方向性電磁鋼板においては、集合組織などを改善して鉄損を低減す るために Sbや Snを添加することが知られている (例えば特公昭 56 - 54370号公報、 特 開 2000-129409号公報、 . Kubota, T. Nagai; J. Mater. Eng. Perform. 1 (1992) , p. 219 など)。 しカゝし、 Al、 N等を極度に低減し、 延性介在物も制御した無方向性電磁鋼板に おいて、 Sbまたは Snの添加が歪取り焼鈍における鉄損改善効果を顕著に促進すること は、 従来知られていなかった現象である。 このように溶銑や Si原料に混入している Ti, Nbおよび Vの鋼中での量を制限するこ
とによって、上記した Sol. A1の低減による微細析出物防止効果が一層高まるとともに、 磁気特性のさらなる向上が達成される。 特に、 A1を極力低減した成分系では、 Tiおよ ぴ Nb量の制限に加えて、 V量を制限することが有利である。 その効果は、 特に歪取り 焼鈍後の鉄損を改善する点において大きい。上記微量元素の制限についてまとめると以 下のとおりである。 Conventionally, it has been known that in non-oriented electrical steel sheets, Sb or Sn is added to improve the texture and reduce iron loss (for example, Japanese Patent Publication No. 56-54370, JP-A-2000-129409,. Kubota, T. Nagai; J. Mater. Eng. Perform. 1 (1992), p. However, in non-oriented electrical steel sheets in which Al, N, etc. are extremely reduced and ductile inclusions are controlled, the addition of Sb or Sn significantly promotes the iron loss improvement effect in strain relief annealing. Is a phenomenon that was not known before. In this way, the amount of Ti, Nb and V mixed in the hot metal and Si raw material in steel should be limited. Thus, the effect of preventing fine precipitates by reducing the above-mentioned Sol. A1 is further enhanced, and the magnetic properties are further improved. In particular, in a component system in which A1 is reduced as much as possible, it is advantageous to limit the amount of V in addition to the amounts of Ti and Nb. The effect is particularly great in improving iron loss after strain relief annealing. The limitations of the above trace elements are summarized below.
Ti: 0. 0020%以下 (0を含む)、 b: 0. 0050%以下 (0を含む)、 および V: 0. 0060%以下 (0を含む) Ti: 0.0020% or less (including 0), b: 0.0050% or less (including 0), and V: 0.0060% or less (including 0)
Ti、 Nbおよび Vは、 微細な窒化物又は炭化物を形成して、 集合組織の形成おょぴ結 晶粒の成長性を阻害する。 特に本発明にしたがい、 Sol. Al及び N含有量を低く制限し た無方向性電磁鋼板ではその傾向が著しい。 これら元素をそれぞれ Ti: 0. 0020%以下、 Nb: 0. 0050%以下、 V: 0. 0060»/。以下に低減すれば、 その窒化物又は炭化物形成傾向が抑 制されて、 特に歪取り焼鈍後の鉄損の改善に貢献する。 また、 Sb, Snの好適な添加量は下記に示すとおりである。 Ti, Nb, and V form fine nitrides or carbides and inhibit the growth of texture forming crystal grains. In particular, according to the present invention, the tendency is remarkable in non-oriented electrical steel sheets in which the contents of Sol. These elements are respectively Ti: 0.0020% or less, Nb: 0.0050% or less, V: 0.0060 »/. If it is reduced below, the tendency to form nitrides or carbides is suppressed, which contributes to the improvement of iron loss especially after strain relief annealing. Suitable amounts of Sb and Sn are as shown below.
Sb: 0. 005-0. 10%および Sn: 0. 005〜0. 2%から選んだ 1種または 2種 Sb: 0.005-0.10% and Sn: 1 or 2 types selected from 0.005 to 0.2%
Sbおよび Snは、 窒化物の微細析出を抑制するとともに、 該窒化物の粒成長阻害効果 を低減することにより、磁気特性上有利な集合組織の形成を効果的に促進させる。その 効果は Sb: 0. 005%以上、 Sn: 0. 005%以上で現れるが、 それぞれ 0. 10%超え、 0. 2°/。超えで は却って粒成長性を阻害する。 上記のほか、下記の元素を制限あるいは添加することにより、本発明鋼の特性をより 効果的に発揮させることができる。 Sb and Sn suppress the fine precipitation of nitride and reduce the grain growth inhibiting effect of the nitride, thereby effectively promoting the formation of a texture advantageous in magnetic properties. The effect appears at Sb: 0.005% or more and Sn: 0.005% or more, but exceeds 0.10% and 0.2 ° /, respectively. Above this, the grain growth is rather hindered. In addition to the above, the characteristics of the steel of the present invention can be more effectively exhibited by limiting or adding the following elements.
P: 0. 001—0. 2%および Ni: 0. 001-0. 2%から選んだ 1種または 2種 P: 0.001-0.2% and Ni: 0.001-0.2% 1 or 2 types
打ち抜きの際にダレゃつぶれが発生したり、打ち抜き時に発生する力ェリが大きくな つて鋼板の占積率を低下させる等の問題が発生する場合は、 P及ぴ Niの少なくともい ずれかの添加によつて本発明の電磁鋼板の硬度を上昇させることにより、これらの問題 を回避することができる。 したがって、電磁特性、特に磁束密度を害しない範囲内で需 要家の要求に応じこれら元素を添加することができる。
REM: 0. 0001-0. 10%および Ca: 0. 0001-0. 01%から選んだ 1種または 2種 If problems such as sagging during punching or a reduction in the space factor of the steel sheet due to an increase in force generated during punching occur, at least one of P and Ni These problems can be avoided by increasing the hardness of the magnetic steel sheet of the present invention by adding. Therefore, these elements can be added as required by the customer within a range that does not impair the electromagnetic characteristics, particularly the magnetic flux density. REM: One or two selected from 0.0001-0.10% and Ca: 0.0001-0.01%
REMや Caは硫化物を粗大化して鉄損を向上させる (すなわち低減する) 作用を有す る。 したがって、 これらの元素をその効果の発現範囲、すなわち REM : 0. 0001〜0. 10%、 REM and Ca have the effect of increasing (ie reducing) iron loss by coarsening sulfides. Therefore, these elements are expressed in the range of expression of the effect, that is, REM: 0.0001 to 0.10%,
Ca: 0. 0001-0. 01 こおいて適宜添加することができる。 Ca: 0.0001-0. 01 Ca can be added as appropriate.
S: 0. 0050%以下 (0を含む)、 0 : 0· 0100%以下 (0を含む) S: 0.0050% or less (including 0), 0: 0 100% or less (including 0)
Sは、 0. 0050%を超えると、 Mnやトランプエレメント (主にスクラップから混入する 元素) の Cuなどと結合して MnSや Cu2Sを形成する傾向が強くなり、結晶粒成長を妨げ る。 また、 O (酸素) は、 0. 0100%を超えると酸化物が増え、 結晶粒成長を妨げる。 し たがってこれら元素は上記範囲内に制限するのが好ま ΰい。 無方向性電磁鋼板に要求される強度レベルや鉄損レベルは、製造される回転機の特性 によって変化する。 したがって、本努明において、仕上焼鈍された鋼板の結晶粒径は一 律に決定する必要はない。しかしながら、平均再結晶粒径! を 6〜25 /z mとすることは、 先に述べた歪取り焼鈍結晶粒成長比を比較的大きく、 たとえば、 3以上とすることに有 利に作用する。 上記本発明に係る無方向性電磁鋼板の製造方法は、 特に制限されない。 代表的には、 下記のプロセスによって製造することができる。 If S exceeds 0.0050%, the tendency to form MnS or Cu 2 S by combining with Mn and Cu of tramp elements (elements mainly mixed from scrap) becomes strong, which hinders grain growth. . On the other hand, if O (oxygen) exceeds 0.0100%, the amount of oxides increases and hinders crystal grain growth. Therefore, it is preferable to limit these elements to the above range. The strength level and iron loss level required for non-oriented electrical steel sheets vary depending on the characteristics of the rotating machine to be manufactured. Therefore, in this effort, it is not necessary to uniformly determine the crystal grain size of the finish-annealed steel sheet. However, the average recrystallized grain size! A value of 6 to 25 / zm is advantageous in that the above-mentioned strain relief annealing grain growth ratio is relatively large, for example, 3 or more. The method for producing the non-oriented electrical steel sheet according to the present invention is not particularly limited. Typically, it can be manufactured by the following process.
まず、好適成分組成に調整された溶鋼を例えば連続鏡造法によってスラブとする。つ いで、 これを熱間圧延して熱延板とする。 これに必要に応じて熱延板焼鈍を施した後、 1回以上の冷間圧延を、必要に応じて中間焼鈍を挟みつつ施して、最終板厚に仕上げる。 得られた冷延板に連続焼鈍(仕上焼鈍) を施した上で必要に応じて絶縁コーティングを 施す。 また、 スラブの炭素含有量が本発明成分より多い場合は、熱間圧延後に適宜脱炭 焼鈍を施す。 本発明においては介在物のうち延性介在物の量おょぴ存在形態の制御、特に平均結晶 粒径に対する長さが所定範囲内となる延性介在物を低減することが肝要である。すなわ ち、 粒成長阻害延性非金属介在物の量を 1000個/ cm2以下に制御する。 このようなコン
トロールは以下の手段のいずれか一つ又はそれらの組み合わせによって達成すること ができる。 First, molten steel adjusted to a suitable component composition is formed into a slab by, for example, a continuous mirror manufacturing method. Then, this is hot-rolled into a hot-rolled sheet. After subjecting this to hot-rolled sheet annealing as needed, it is subjected to one or more cold rolling steps with intermediate annealing as necessary to finish to the final sheet thickness. The obtained cold rolled sheet is subjected to continuous annealing (finish annealing), and then an insulating coating is applied as necessary. When the carbon content of the slab is larger than that of the present invention, decarburizing annealing is appropriately performed after hot rolling. In the present invention, it is important to control the amount of ductile inclusions among the inclusions, and in particular to reduce the number of ductile inclusions whose length relative to the average crystal grain size is within a predetermined range. That is, the amount of the grain growth-inhibiting ductile nonmetallic inclusions is controlled to be 1000 / cm 2 or less. Such a con Trolling can be accomplished by any one or combination of the following means.
まず、酸素含有量を低減することによりスラブ中の非金属介在物の絶対量を減少させ る手段がある。 First, there is a means to reduce the absolute amount of non-metallic inclusions in the slab by reducing the oxygen content.
また、 スラブ中の非金属介在物を A1や Mn量の増加により延性化させたり、 逆に A1 や Mn量の低減により非延性化 (微細化) させる手段も有効である。 It is also effective to make the non-metallic inclusions in the slab ductile by increasing the amount of A1 or Mn, or conversely, by reducing the amount of A1 or Mn to make it non-ductile (miniaturized).
また、製造条件、 とくに圧延条件を制御して非金属介在物の長さを調整して、仕上焼 鈍された鋼板の平均再結晶粒径の 3倍未満または 9倍超となる延性介在物を主とするこ ともできる。例えば、スラブ厚あるいは熱延板厚の増減により熱間圧延の圧下率を増減 することで、熱延板における延性介在物の長さを調整することができる。 また、熱延圧 下率が同じでも、介在物が展伸しゃすい高温域での圧下率の増減により、延性介在物の 長さを変化させることができる。 さらに、熱延以後の累積圧下率が大きくなれば延性介 在物は長くなり、 該累積圧下率が小さくなれば延性介在物は短くなる傾向にあるので、 熱延板厚みの増減、あるいは製品板厚の増減により非金属介在物の長さを調整すること もできる。 In addition, the length of nonmetallic inclusions is adjusted by controlling the manufacturing conditions, especially rolling conditions, to reduce the length of non-metallic inclusions to less than 3 times or more than 9 times the average recrystallized grain size of the finish-annealed steel sheet. You can also be the Lord. For example, the length of the ductile inclusion in the hot-rolled sheet can be adjusted by increasing or decreasing the rolling reduction in hot rolling by increasing or decreasing the slab thickness or the hot-rolled sheet thickness. Also, even if the hot rolling reduction is the same, the length of the ductile inclusion can be changed by increasing or decreasing the rolling reduction in a high-temperature region where the inclusions are stretched. Furthermore, if the cumulative rolling reduction after hot rolling increases, the ductile inclusions become longer, and if the cumulative rolling reduction decreases, the ductile inclusions tend to become shorter. The length of the nonmetallic inclusion can also be adjusted by increasing or decreasing the thickness.
逆に仕上焼鈍の温度や均熱時間等の条件を変更して平均結晶粒径を増減させ、その結 果として非金属介在物の長さを、平均結晶粒径の 3倍未満または 9倍超を主とすること もできる。 なお、上記製造プロセスにおいて、最終板厚に冷間圧延した冷延板に施す連続焼鈍 (仕 上焼鈍) の焼鈍温度を 700~800。Cとすることは、 平均結晶粒径を 6~25 /x mに調整し、 あるいは鋼板の硬度を適当なレベル、 たとえばビッカース硬さ (Hv) を 100~170に調 整するのに好ましい。 ビッカース硬さを前記範囲とすることは、鋼板の強度や打抜き性 を確保するうえで好適である。 このようにして製造された無方向性電磁鋼板は、回転機用の鉄心に打ち抜き、 ロータ 及ぴステータに組み立てることができる。その際、同一の鋼板からロータとステータ用 の鉄心材料を同時に打ち抜き、それぞれ積層してロータ及ぴステ一タ部材に組み立てた 後、 ステータ部材にのみ歪取り焼鈍を施して、粒成長を促し、 その鉄損を下げることが できる。 ロータ用鉄心部材には粒成長を伴う歪取り焼鈍は行わず、高い強度を保つたま
まにするのがよい。 Conversely, the conditions of the finish annealing temperature and soaking time are changed to increase or decrease the average grain size, and as a result, the length of the non-metallic inclusions is reduced to less than three times or more than nine times the average grain size. It can also be the main. In the above manufacturing process, the annealing temperature of the continuous annealing (finish annealing) applied to the cold-rolled sheet cold-rolled to the final sheet thickness was 700 to 800. C is preferable for adjusting the average crystal grain size to 6 to 25 / xm or adjusting the hardness of the steel sheet to an appropriate level, for example, the Vickers hardness (Hv) to 100 to 170. It is preferable that the Vickers hardness be in the above range in order to secure the strength and punching property of the steel sheet. The non-oriented electrical steel sheet thus manufactured can be punched into an iron core for a rotating machine and assembled into a rotor and a stator. At that time, the core material for the rotor and the stator are simultaneously punched from the same steel plate, laminated and assembled into a rotor and a stator member, and then only the stator member is subjected to strain relief annealing to promote grain growth, The iron loss can be reduced. The core material for the rotor is not subjected to strain relief annealing accompanied by grain growth, and maintains high strength. It is better to leave.
歪取り焼鈍温度は 700°C〜800での範囲で行なうのが好ましい。 また焼鈍時間は 10分 ~ 3時間程度が好適である。 歪取り焼鈍の条件は、上記の範囲の中で、歪取り焼鈍結晶 粒成長比が 2以上になる条件がさらに好ましいが、 たとえば不活性ガス雰囲気中で 750°C、 2時間程度とすることが望ましい。 さらに、 歪取り焼鈍温度は仕上焼鈍温度以 上の温度で行なうことが、 粒成長を確保する観点からは好ましい。 なお、 仕上焼鈍された無方向性電磁鋼板には、 さらに軽度の歪み、 たとえば 0. 5〜5% 程度の圧延歪みを付与し、打ち抜いた後、 700〜800 の歪取り焼鈍を施し、再結晶を促 して結晶粒径を 30〜: LOO/z mに成長させることができる。このように処理された鋼板は、 特に低鉄損が要求されるステータの組み立てに利用することができる。この場合の好適 な歪取り焼鈍条件も、 前段落で述べたとおりである。 The strain relief annealing temperature is preferably in the range of 700 ° C to 800 ° C. The annealing time is preferably about 10 minutes to 3 hours. The conditions of the strain relief annealing are more preferably those in which the strain relief annealing grain growth ratio is 2 or more within the above range, but, for example, the temperature is preferably 750 ° C for about 2 hours in an inert gas atmosphere. desirable. Further, it is preferable to perform the strain relief annealing at a temperature equal to or higher than the finish annealing from the viewpoint of ensuring grain growth. The non-oriented electrical steel sheet subjected to finish annealing is further subjected to a slight strain, for example, a rolling strain of about 0.5 to 5%, punched out, subjected to a strain relief annealing of 700 to 800, and recrystallized. The crystal grain size can be increased to 30 ~: LOO / zm. The steel sheet treated in this way can be used particularly for assembling a stator requiring low iron loss. Suitable strain relief annealing conditions in this case are also as described in the previous paragraph.
(実施例) (Example)
以下、 実施例に基づき本発明の実施形態をより具体的に記載する。 (実施例 1 ) Hereinafter, embodiments of the present invention will be described more specifically based on examples. (Example 1)
表 4に示す成分組成を有し、残部鉄およぴ不可避的不純物からなるスラブを連続铸造 法により製造した。 なお、 Ti、 Nb、 V、 S、 0の量は前記の好適な範囲に低減されていた。 これらのスラブを 1110°Cで 40分間加熱した後、熱間圧延を行い厚さ 2. 5廳の熱延板と した。 得られた熱延板を酸洗し、 スケールを除去してから冷間圧延により厚さ 0. 50腿 の冷延板に仕上げた。 ついで、 容量比で水素: 50%_窒素: 50°/。の雰囲気中で、 780°C、 10秒の仕上焼鈍を施した。 得られた仕上焼鈍板には重クロム酸塩と樹脂からなる半有 機コーティング液を塗布し、 300°Cで焼きつけて製品板とした。 A slab having the component composition shown in Table 4 and comprising the balance of iron and inevitable impurities was produced by a continuous production method. Note that the amounts of Ti, Nb, V, S, and 0 were reduced to the above preferable ranges. After heating these slabs at 1110 ° C for 40 minutes, they were hot rolled into hot rolled sheets with a thickness of 2.5 m. The obtained hot-rolled sheet was pickled, the scale was removed, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.50. Then, by volume ratio, hydrogen: 50% _nitrogen: 50 ° /. In the atmosphere of 780 ° C for 10 seconds. A semi-organic coating solution consisting of dichromate and resin was applied to the resulting annealed plate, and baked at 300 ° C to obtain a product plate.
なお、粒成長阻害延性非金属介在物の量(個数密度) は、 スラブ厚さの変更や熱間圧 延での圧下スケジュールの変更によって変動させた。 The amount of grain growth-inhibiting ductile nonmetallic inclusions (number density) was varied by changing the slab thickness and changing the rolling schedule in hot rolling.
得られた製品板からサンプルを切出し、 JIS C2550に準拠して磁束密度、 鉄損、 上降 伏点 (YP) およぴビッカース硬さ (Hv) を測定した。 なお、 上降伏点 (ΥΡ)は圧延方向と 圧延直角方向との平均値とした。 A sample was cut out from the obtained product plate, and the magnetic flux density, iron loss, upper yield point (YP), and Vickers hardness (Hv) were measured in accordance with JIS C2550. The upper yield point (ΥΡ) is the average value of the rolling direction and the direction perpendicular to the rolling direction.
さらに、平均結晶粒径および粒成長阻害延性非金属介在物の個数密度を測定した。な
お、 測定は幅方向に垂直な面について行った。 ついで、 上記製品板に、 アルゴン雰囲気中にて 50°C、 2時間の歪取り焼鈍を施した のち、前記製品について行ったのと同様にして鉄損おょぴ平均結晶粒径を測定し、 さら に、 歪取り焼鈍結晶粒成長比を算出した。 表 4Furthermore, the average crystal grain size and the number density of the grain growth inhibiting ductile nonmetallic inclusions were measured. What The measurement was performed on a plane perpendicular to the width direction. Next, the above product plate was subjected to a strain relief annealing at 50 ° C for 2 hours in an argon atmosphere, and then the iron loss and average crystal grain size were measured in the same manner as performed for the product. Furthermore, the strain relief annealing crystal grain growth ratio was calculated. Table 4
得られた結果を表 5に示す。表 4及び表 5に示すように、本発明にしたがう成分組成 及び粒成長阻害延性非金属介在物個数密度を有するものは歪取り焼鈍結晶粒成長比が 大きく、 よってとくに歪取り焼鈍後の鉄損値が低い。 そして製品 (仕上焼鈍状態) の上 降伏点 (YP) およぴビッカース硬さ (Hv) が比較的高いことと相俟って、 回転機のロー タ及ぴステータを同時に打ち抜いて製作するのに適したものとなっている。無論、磁束 密度も充分高い。 また、 とくに Sbや Snを添加した発明例 (27、 29) では、歪取り焼鈍 による磁気特性の改善が著しい。
表 5 Table 5 shows the obtained results. As shown in Tables 4 and 5, those having the component composition and the grain growth-inhibiting ductile nonmetallic inclusion number density according to the present invention have a large strain relief annealing crystal grain growth ratio, and particularly iron loss after strain relief annealing. Value is low. Combined with the relatively high yield point (YP) and high Vickers hardness (Hv) of the product (finished annealing state), the rotor and stator of the rotating machine can be stamped out and manufactured at the same time. It is suitable. Of course, the magnetic flux density is also high enough. In particular, in the invention examples (27, 29) to which Sb and Sn are added, the magnetic properties are significantly improved by the strain relief annealing. Table 5
(実施例 2 ) (Example 2)
表 6に示す成分組成を有し、残部鉄おょぴ不可避的不純物からなる厚さ 210匪の連続 铸造スラブを製造した。その際、製鋼プロセスにおけるスラグ組成の適正化と熱延条件 の適正化により粒成長阻害延性非金属介在物量が 1000個ん m2以下の範囲に収まるよう にした。 A continuous steel slab having the composition shown in Table 6 and having a thickness of 210 and consisting of iron and inevitable impurities was manufactured. At that time, the grain growth inhibition ductile nonmetallic inclusions amount is to fit a range of N 1000 m 2 or less by optimizing optimizing the hot rolling condition of slag composition in steelmaking process.
得られたスラプを実施例 1の場合と同様に処理して製品とし、実施例 1の場合と同様 に試験した。 ただし、 鋼記号 58の仕上焼鈍は 680°C、 鋼記号 59の仕上焼鈍は 850 で 行った。 The obtained slap was treated in the same manner as in Example 1 to obtain a product, and tested in the same manner as in Example 1. However, the finish annealing of steel symbol 58 was performed at 680 ° C, and the finish annealing of steel symbol 59 was performed at 850.
得られた結果を表 7に示す。表 7に示したとおり、本発明にしたがう成分組成、平均 結晶粒径を有するものは 、ずれも優れた歪取り焼鈍結晶粒成長比およぴ強度 ·磁気特性 を有し、それにより回転機のロータ及ぴステータの同時打ち抜き製造に適したものとな つている。 Table 7 shows the obtained results. As shown in Table 7, those having the component composition and the average crystal grain size according to the present invention have excellent strain relief annealing crystal grain growth ratio and strength and magnetic properties with excellent deviation, and It is suitable for simultaneous stamping production of rotor and stator.
また、 とくに仕上焼鈍温度を 700〜800°Cに制御し、 あるいは製品板の平均再結晶粒 径を 6〜25 mに制御することが、歪取り焼鈍前における高強度と、歪取り焼鈍後の低 鉄損値の両立に有利となっていることがわかる。
In addition, controlling the finish annealing temperature to 700 to 800 ° C or controlling the average recrystallized grain size of the product sheet to 6 to 25 m, in particular, increases the strength before strain relief annealing and the strength after strain relief annealing. It can be seen that it is advantageous for achieving both low iron loss values.
歪取り焼鈍後 After strain relief annealing
製品特性 (歪取り焼鈍前) 歪取り Product characteristics (before annealing)
特性 Characteristic
鋼 13 焼鈍結 Steel 13 Annealing
平均結 降伏 ビッカ-ス 平均結 備考 号 W15/50 ΰ50 W15/50 Average yield yield Vickers Average result Remarks W 15/50 ΰ 50 W 15/50
晶粒径 点 硬さ 晶粒径 Crystal grain size Point Hardness Crystal grain size
(W/kg) (Τ) (W/kg) 長比 (W / kg) (Τ) (W / kg) Length ratio
(μπι) (MPa) (Hv) (Aim) (μπι) (MPa) (Hv) (Aim)
31 5.3 1.75 14 292 107 4.1 61 4.5 発明例 31 5.3 1.75 14 292 107 4.1 61 4.5 Invention example
32 5.4 1.76 15 294 104 4.3 56 3.8 発明例32 5.4 1.76 15 294 104 4.3 56 3.8 Invention example
33 5.6 1.76 14 300 106 4.1 61 4.3 発明例33 5.6 1.76 14 300 106 4.1 61 4.3 Invention example
34 5.9 1.76 14 295 107 4.7 53 3.8 発明例34 5.9 1.76 14 295 107 4.7 53 3.8 Invention example
35 5.2 1.74 14 298 103 4.1 48 3.5 発明例35 5.2 1.74 14 298 103 4.1 48 3.5 Invention example
36 5.3 1.75 14 302 104 3.8 55 3.8 発明例36 5.3 1.75 14 302 104 3.8 55 3.8 Invention example
37 5.7 1.76 15 292 103 4.8 48 3.2 発明例37 5.7 1.76 15 292 103 4.8 48 3.2 Invention example
38 5.6 1.74 14 301 107 3.9 48 3.5 発明例38 5.6 1.74 14 301 107 3.9 48 3.5 Invention example
39 5.2 1.75 13 294 102 3.8 55 4.1 発明例39 5.2 1.75 13 294 102 3.8 55 4.1 Invention example
40 5.1 1.74 14 298 107 3.6 58 4.1 発明例40 5.1 1.74 14 298 107 3.6 58 4.1 Invention example
41 5.1 1.74 13 293 105 3.9 54 4.0 発明例41 5.1 1.74 13 293 105 3.9 54 4.0 Invention example
42 5.2 L 75 14 297 108 3.7 59 4.2 発明例42 5.2 L 75 14 297 108 3.7 59 4.2 Invention example
43 5.3 1.75 15 295 104 3.9 59 3.9 発明例43 5.3 1.75 15 295 104 3.9 59 3.9 Invention example
44 5.5 1.76 15 328 127 3.9 59 3.9 発明例44 5.5 1.76 15 328 127 3.9 59 3.9 Invention example
45 5.8 1.76 16 311 123 4.6 50 3.2 発明例45 5.8 1.76 16 311 123 4.6 50 3.2 Invention example
46 5.8 1.76 14 305 116 4.5 52 3.6 発明例46 5.8 1.76 14 305 116 4.5 52 3.6 Invention example
47 5.9 1.75 13 331 133 4.5 56 4.4 発明例47 5.9 1.75 13 331 133 4.5 56 4.4 Invention example
48 6.5 1.72 10 303 108 5.9 20 1.9 比較例48 6.5 1.72 10 303 108 5.9 20 1.9 Comparative example
49 6.8 1.71 10 313 110 6.1 19 1.9 比較例49 6.8 1.71 10 313 110 6.1 19 1.9 Comparative example
50 6.9 1.71 10 307 110 6.1 15 1.4 比較例50 6.9 1.71 10 307 110 6.1 15 1.4 Comparative example
51 5.8 1.73 11 311 113 4.8 28 2.5 発明例51 5.8 1.73 11 311 113 4.8 28 2.5 Invention example
52 5.8 1.73 12 307 114 4.8 30 2.5 発明例52 5.8 1.73 12 307 114 4.8 30 2.5 Invention example
53 6.2 1.74 13 305 111 5.1 33 2.5 発明例53 6.2 1.74 13 305 111 5.1 33 2.5 Invention example
54 6.0 1.74 13 308 115 4.9 30 2.3 発明例54 6.0 1.74 13 308 115 4.9 30 2.3 Invention example
55 5.9 1.73 12 311 109 4.8 25 2.1 発明例55 5.9 1.73 12 311 109 4.8 25 2.1 Invention example
56 5.3 1.73 14 297 103 4.2 45 3.2 発明例56 5.3 1.73 14 297 103 4.2 45 3.2 Invention example
57 5.4 1.73 13 295 100 4.5 46 3.5 発明例57 5.4 1.73 13 295 100 4.5 46 3.5 Invention example
58 8.7 1.76 5 341 132 6.2 14 2.8 発明例58 8.7 1.76 5 341 132 6.2 14 2.8 Invention example
59 4.9 1.73 30 272 95 4.4 50 1.7 発明例59 4.9 1.73 30 272 95 4.4 50 1.7 Invention example
60 5.4 1.75 14 330 131 3.7 63 4.5 発明例60 5.4 1.75 14 330 131 3.7 63 4.5 Invention example
61 5.5 1.74 14 315 120 3.9 59 4.2 発明例61 5.5 1.74 14 315 120 3.9 59 4.2 Invention example
62 5.2 1.74 15 295 106 3.7 65 4.3 発明例62 5.2 1.74 15 295 106 3.7 65 4.3 Invention example
63 5.2 1.76 14 304 109 3.8 60 4.3 発明例63 5.2 1.76 14 304 109 3.8 60 4.3 Invention example
64 5.3 1.75 14 305 107 3.9 58 4.1 発明例64 5.3 1.75 14 305 107 3.9 58 4.1 Invention example
65 5.6 1.75 15 301 105 4.0 61 4.1 発明例65 5.6 1.75 15 301 105 4.0 61 4.1 Invention example
66 5.2 1.74 14 297 108 3.7 60 4.3 発明例66 5.2 1.74 14 297 108 3.7 60 4.3 Invention example
67 5.2 1.74 14 298 108 3.6 61 4.4 発明例
2003/009947 上記のように本発明により、回転機用ロータ及ぴステータを製造するのに極めて適し た無方向性電磁鋼板を提供できる。 67 5.2 1.74 14 298 108 3.6 61 4.4 Invention example 2003/009947 As described above, according to the present invention, it is possible to provide a non-oriented electrical steel sheet which is extremely suitable for manufacturing a rotor and a stator for a rotating machine.
さらに、本発明に係る無方向性電磁鋼板は、それに留まらず、いわゆるリサイクル性 が優れているという特徴を有する。 すなわち、 従来の A1含有量が高い鉄心材料をリサ ィクルしてモータのシャフトなどを铸造すると、溶鋼の表面酸化が進行して粘性が増大 する。 このため溶鋼の铸型内充填性が低下し、 健全な鎳物が得られないことがある。 したがって、 一般に A1を含むスクラップはリサイクル性に乏しいとされていたが、 本 発明に係る無方向性電磁鋼板は低 A1材であり、 鎳造のためのリサイクル性は極めて高 い。 産業上の利用の可能性 本発明にしたがう高磁束密度無方向性電磁鋼板により、同一の鋼板からロータ材及ぴ ステータ材の同時採取をしながら、 ロータ材には高い磁束密度及ぴ高強度を、ステータ 材には高い磁束密度及ぴ低鉄損を付与し得る。 これにより、 回転機用部材、ひいては回 転機の製造効率、 出力特性を大幅に向上し得る。併せて、本発明に係る無方向性電磁鋼 板は、铸造の際のリサイクル性に優れ、打ち抜き材のスクラップをリサイクルする場合 の錄造性が改善される。
Further, the non-oriented electrical steel sheet according to the present invention has a feature that it is excellent in so-called recyclability as well as the non-oriented electrical steel sheet. That is, when a conventional iron core material having a high A1 content is recycled to form a motor shaft or the like, the surface oxidation of molten steel proceeds and the viscosity increases. For this reason, the fillability of molten steel in the mold is reduced, and a sound solid may not be obtained. Therefore, although scrap containing A1 is generally considered to have poor recyclability, the non-oriented electrical steel sheet according to the present invention is a low-A1 material, and recyclability for manufacturing is extremely high. Industrial applicability The high magnetic flux density non-oriented electrical steel sheet according to the present invention allows the rotor material and the stator material to be simultaneously sampled from the same steel sheet while providing the rotor material with high magnetic flux density and high strength. In addition, a high magnetic flux density and low iron loss can be imparted to the stator material. As a result, the production efficiency and output characteristics of the rotating machine member and, consequently, the rotating machine can be greatly improved. At the same time, the non-oriented electrical steel sheet according to the present invention is excellent in recyclability at the time of forging, and has improved resilience at the time of recycling punched material scrap.
Claims
1 . 質量0 /0で(以下同様)、 S i :0. 1%~1. 2%、 Mn: 0. 005%〜0. 3%を含有し、 C、 A 1、 Nがそれぞれ C: 0. 0050%以下(0を含む)、 Sol. A 1 : 0. 0004%以下(0を含む)、 N: 0. 0030%以下 (0を含む) に制限され、 残部として F e及び不可避的不純物を含有 し、 再結晶粒の平均粒径 Dに対して長さが 3 D〜 9 Dである介在物の個数密度が 1000 個/ cm2以下である無方向性電磁鋼板。 . 1 Mass 0/0 (the same applies hereinafter), S i:.. 0 1% ~ 1 2%, Mn:. Containing 0. 005% ~0 3%, C , A 1, N , respectively C: 0.005% or less (including 0), Sol. A1: 0.0004% or less (including 0), N: 0.0030% or less (including 0), Fe and unavoidable as the balance A non-oriented electrical steel sheet containing impurities and having a number density of 1000 / cm 2 or less of inclusions having a length of 3D to 9D with respect to an average grain diameter D of recrystallized grains.
2 . 質量%で S b : 0. 005%~0. 10%および S n: 0· 005%〜0· 2%からなるグループ から選ばれる少なくとも 1種をさらに含有する、 請求項 1に記載の無方向性電磁鋼板。 2. The method according to claim 1, further comprising at least one selected from the group consisting of Sb: 0.005% to 0.10% and Sn: 0.005% to 0.2% by mass%. Non-oriented electrical steel sheet.
3 . 質量%で Ρ: 0. 001%〜0. 2%および N i : 0. 001%〜0. 2%からなるグループから 選ばれる少なくとも 1種をさらに含有する、 請求項 1に記載の無方向性電磁鋼板。 3. The method according to claim 1, further comprising at least one member selected from the group consisting of: 0.001% to 0.2% and Ni: 0.001% to 0.2% by mass%. Grain-oriented electrical steel sheet.
4 . 質量0 /。で REM: 0. 0001%~0. 10%および C a : 0. 0001%~0. 01%からなるグルー プから選ばれる少なくとも 1種をさらに含有する、請求項 1に記載の無方向性電磁鋼板。 4. Mass 0 /. 2. The non-directional electromagnetic device according to claim 1, further comprising at least one selected from the group consisting of REM: 0.0001% to 0.10% and C a: 0.0001% to 0.01%. steel sheet.
5 . 前記不可避的不純物のうち T i、 N 及ぴ Vが質量%でそれぞれ T i : 0. 0020% 以下 (0を含む)、 N b : 0. 0050%以下 (0を含む)、 および V: 0. 0060%以下 (0を含 む) に制限されている、 請求項 1に記載の無方向性電磁鋼板。 5. Among the inevitable impurities, T i, N and V in mass% are Ti: 0.0020% or less (including 0), Nb: 0.0050% or less (including 0), and V 2. The non-oriented electrical steel sheet according to claim 1, wherein the non-oriented electrical steel sheet is limited to 0.0060% or less (including 0).
6 . 前記不可避的不純物のうち S及ぴ Oが質量%でそれぞれ S: 0. 0050%以下 (0を 含む)、 および O : 0. 0100%以下 (0 を含む) に制限されている、 請求項 1に記載の無 方向性電磁鋼板。 6. Among the unavoidable impurities, S and O are limited by mass% to S: 0.0050% or less (including 0) and O: 0.0100% or less (including 0), respectively. Item 1. The non-oriented electrical steel sheet according to item 1.
7 . 前記再結晶粒の平均粒径 Dが 6 /X n!〜 25 μ mである請求項 1に記載の無方向性電 磁鋼板。 7. The average grain size D of the recrystallized grains is 6 / Xn! The non-oriented electrical steel sheet according to claim 1, which has a thickness of from 25 to 25 µm.
8 . 少なくとも冷間圧延おょぴその後の仕上焼鈍により製造される鋼板であって、前 記仕上焼鈍の温度が 700°C〜800°Cである、 請求項 1に記載の無方向性電磁鋼板。
8. The non-oriented electrical steel sheet according to claim 1, wherein the steel sheet is manufactured by at least cold rolling followed by finish annealing, wherein the temperature of the finish annealing is 700 ° C to 800 ° C. .
9 . 請求項 1に記載の鋼板であって、 750°Cで 2時間の歪取焼鈍によって再結晶粒の 平均粒径が 2倍以上に成長することを特徴とする、 無方向性電磁鋼板。 9. The non-oriented electrical steel sheet according to claim 1, wherein the average grain size of the recrystallized grains grows twice or more by strain relief annealing at 750 ° C for 2 hours.
1 0 . 請求項 1 ~ 9のいずれかに記載の鋼板に歪取焼鈍を施してなる無方向性電磁鋼 板。 10. A non-oriented electrical steel sheet obtained by subjecting the steel sheet according to any one of claims 1 to 9 to stress relief annealing.
1 1 . 前記歪取焼鈍の温度が 700~800でである、 請求項 1 0に記載の無方向性電磁 鋼板。 11. The non-oriented electrical steel sheet according to claim 10, wherein the temperature of the strain relief annealing is 700 to 800.
1 2 . 請求項:!〜 9のいずれかに記載の無方向性電磁鋼板を積層してなる回転機用口 ータ部材。 1 2. Claim :! A rotating machine rotor member formed by laminating the non-oriented electrical steel sheets according to any one of claims 9 to 9.
1 3 . 請求項 1〜 9のいずれかに記載の無方向性電磁鋼板を積層した後、歪取焼鈍を 施してなる回転機用ステータ部材。 13. A stator member for a rotating machine obtained by stacking the non-oriented electrical steel sheets according to any one of claims 1 to 9 and then performing strain relief annealing.
1 4 . 同一の無方向性電磁鋼板を素材とする、請求項 1 2に記載のロータ部材と請求 項 1 3に記載のステータ部材とを有する回転機。
14. A rotating machine having the rotor member according to claim 12 and the stator member according to claim 13 made of the same non-oriented electrical steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020047004538A KR100567239B1 (en) | 2002-08-06 | 2003-08-05 | Non-oriented electromagnetic steel sheet, rotating member and rotating machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002229251A JP4718749B2 (en) | 2002-08-06 | 2002-08-06 | High magnetic flux density non-oriented electrical steel sheet for rotating machine and member for rotating machine |
JP2002-229251 | 2002-08-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004013365A1 true WO2004013365A1 (en) | 2004-02-12 |
Family
ID=31492289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/009947 WO2004013365A1 (en) | 2002-08-06 | 2003-08-05 | Nonoriented magnetic steel sheet, member for rotary machine and rotary machine |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP4718749B2 (en) |
KR (1) | KR100567239B1 (en) |
CN (1) | CN1277945C (en) |
TW (1) | TWI276693B (en) |
WO (1) | WO2004013365A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1662010A1 (en) | 2004-11-24 | 2006-05-31 | ARVEDI, Giovanni | Hot steel strip particularly suited for the production of electromagnetic lamination packs |
US7470333B2 (en) * | 2003-05-06 | 2008-12-30 | Nippon Steel Corp. | Non-oriented electrical steel sheet excellent in core loss and manufacturing method thereof |
EP2762591A4 (en) * | 2011-09-27 | 2015-07-15 | Jfe Steel Corp | Non-oriented electrical steel |
EP2975152A4 (en) * | 2013-03-13 | 2016-04-06 | Jfe Steel Corp | NON-DIRECTIONAL ELECTROMAGNETIC STEEL PLATE WITH EXCELLENT MAGNETIC CHARACTERISTICS |
EP3358027A4 (en) * | 2015-10-02 | 2018-08-08 | JFE Steel Corporation | Non-oriented electromagnetic steel sheet and manufacturing method of same |
EP3404124A4 (en) * | 2016-01-15 | 2018-12-26 | JFE Steel Corporation | Non-oriented electromagnetic steel sheet and method for producing same |
CN110205462A (en) * | 2019-06-28 | 2019-09-06 | 武汉钢铁有限公司 | Used in high-speed motor method for producing non-oriented silicon steel |
US10526673B2 (en) | 2014-07-31 | 2020-01-07 | Jfe Steel Corporation | Non-oriented electrical steel sheet and method for producing the same, and motor core and method of producing the same |
EP4296392A4 (en) * | 2021-02-19 | 2024-06-05 | Nippon Steel Corporation | HOT PRESSED STEEL SHEET FOR NON-ORIENTED ELECTROMAGNETIC STEEL SHEET, MANUFACTURING PROCESS FOR NON-ORIENTED ELECTROMAGNETIC STEEL SHEET |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2496905C1 (en) * | 2009-07-31 | 2013-10-27 | ДжФЕ СТИЛ КОРПОРЕЙШН | Electrical steel plate with oriented grains |
KR101110257B1 (en) * | 2009-08-07 | 2012-02-16 | 주식회사 포스코 | Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof |
JP5423616B2 (en) * | 2009-09-14 | 2014-02-19 | 新日鐵住金株式会社 | Method for producing non-oriented electrical steel sheet with excellent magnetic properties and method for producing cast steel strip for producing non-oriented electrical steel sheet |
KR101223113B1 (en) * | 2010-12-27 | 2013-01-17 | 주식회사 포스코 | Method for manufacturing non-oriented electrical steel sheets having excellent magnetic properties and high permeability and non-oriented electrical steel sheets thereof |
KR101719231B1 (en) * | 2014-12-24 | 2017-04-04 | 주식회사 포스코 | Grain oriented electical steel sheet and method for manufacturing the same |
JP6048699B2 (en) | 2015-02-18 | 2016-12-21 | Jfeスチール株式会社 | Non-oriented electrical steel sheet, manufacturing method thereof and motor core |
WO2017016604A1 (en) * | 2015-07-29 | 2017-02-02 | Aperam | Feco alloy, fesi alloy or fe sheet or strip and production method thereof, magnetic transformer core produced from said sheet or strip, and transformer comprising same |
EP3333271B1 (en) | 2015-08-04 | 2020-06-17 | JFE Steel Corporation | Method for manufacturing non-oriented electromagnetic steel sheet with excellent magnetic properties |
CN108292866B (en) * | 2015-11-27 | 2021-03-12 | 日本电产株式会社 | Motor and method for manufacturing motor |
KR101728028B1 (en) * | 2015-12-23 | 2017-04-18 | 주식회사 포스코 | Non-oriented electrical steel sheet and method for manufacturing the same |
CN108474070B (en) * | 2015-12-28 | 2021-01-12 | 杰富意钢铁株式会社 | Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet |
JP6627617B2 (en) * | 2016-04-01 | 2020-01-08 | トヨタ自動車株式会社 | Motor manufacturing method |
CN105925884B (en) * | 2016-05-30 | 2018-03-09 | 宝山钢铁股份有限公司 | A kind of high magnetic strength, low iron loss non-oriented silicon steel sheet and its manufacture method |
CN109890994A (en) * | 2016-10-27 | 2019-06-14 | 杰富意钢铁株式会社 | Non orientation electromagnetic steel plate and its manufacturing method |
JP6738047B2 (en) * | 2017-05-31 | 2020-08-12 | Jfeスチール株式会社 | Non-oriented electrical steel sheet and its manufacturing method |
DE102018201618A1 (en) * | 2018-02-02 | 2019-08-08 | Thyssenkrupp Ag | Afterglow, but not nachglühpflichtiges electrical tape |
CN112154221A (en) * | 2018-05-21 | 2020-12-29 | 杰富意钢铁株式会社 | Non-oriented electromagnetic steel sheet and method for producing same |
US12104215B2 (en) | 2018-11-26 | 2024-10-01 | Baoshan Iron & Steel Co., Ltd. | High-magnetic-induction low-iron-loss non-oriented silicon steel sheet and manufacturing method therefor |
JP7284383B2 (en) * | 2019-02-28 | 2023-05-31 | 日本製鉄株式会社 | Non-oriented electrical steel sheet |
KR102683224B1 (en) * | 2019-03-20 | 2024-07-10 | 닛폰세이테츠 가부시키가이샤 | Non-oriented electrical steel sheet |
WO2022113263A1 (en) * | 2020-11-27 | 2022-06-02 | 日本製鉄株式会社 | Non-oriented electromagnetic steel sheet, method for manufacturing same, and hot-rolled steel sheet |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08269532A (en) * | 1995-03-31 | 1996-10-15 | Kawasaki Steel Corp | Method of refining steel for nonoriented silicon steel sheet |
JPH09263908A (en) * | 1996-03-26 | 1997-10-07 | Sumitomo Metal Ind Ltd | Non-oriented electrical steel sheet and manufacturing method thereof |
JPH10212555A (en) * | 1997-01-29 | 1998-08-11 | Sumitomo Metal Ind Ltd | Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same |
JP2001011589A (en) * | 1999-06-24 | 2001-01-16 | Kawasaki Steel Corp | Nonoriented electric steel sheet having high magnetic flux density and low core loss and its production |
JP2002206114A (en) * | 2000-12-28 | 2002-07-26 | Nippon Steel Corp | Manufacturing method of non-oriented electrical steel sheet |
JP7116510B2 (en) * | 2018-03-29 | 2022-08-10 | 曾東斌 | very light bike |
-
2002
- 2002-08-06 JP JP2002229251A patent/JP4718749B2/en not_active Expired - Lifetime
-
2003
- 2003-08-05 WO PCT/JP2003/009947 patent/WO2004013365A1/en active Application Filing
- 2003-08-05 CN CN 03801038 patent/CN1277945C/en not_active Expired - Fee Related
- 2003-08-05 KR KR1020047004538A patent/KR100567239B1/en not_active Expired - Fee Related
- 2003-08-06 TW TW92121498A patent/TWI276693B/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08269532A (en) * | 1995-03-31 | 1996-10-15 | Kawasaki Steel Corp | Method of refining steel for nonoriented silicon steel sheet |
JPH09263908A (en) * | 1996-03-26 | 1997-10-07 | Sumitomo Metal Ind Ltd | Non-oriented electrical steel sheet and manufacturing method thereof |
JPH10212555A (en) * | 1997-01-29 | 1998-08-11 | Sumitomo Metal Ind Ltd | Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same |
JP2001011589A (en) * | 1999-06-24 | 2001-01-16 | Kawasaki Steel Corp | Nonoriented electric steel sheet having high magnetic flux density and low core loss and its production |
JP2002206114A (en) * | 2000-12-28 | 2002-07-26 | Nippon Steel Corp | Manufacturing method of non-oriented electrical steel sheet |
JP7116510B2 (en) * | 2018-03-29 | 2022-08-10 | 曾東斌 | very light bike |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7470333B2 (en) * | 2003-05-06 | 2008-12-30 | Nippon Steel Corp. | Non-oriented electrical steel sheet excellent in core loss and manufacturing method thereof |
EP1662010A1 (en) | 2004-11-24 | 2006-05-31 | ARVEDI, Giovanni | Hot steel strip particularly suited for the production of electromagnetic lamination packs |
US9466411B2 (en) | 2011-09-27 | 2016-10-11 | Jfe Steel Corporation | Non-oriented electrical steel sheet |
EP2762591A4 (en) * | 2011-09-27 | 2015-07-15 | Jfe Steel Corp | Non-oriented electrical steel |
US10102951B2 (en) | 2013-03-13 | 2018-10-16 | Jfe Steel Corporation | Non-oriented electrical steel sheet having excellent magnetic properties |
EP2975152A4 (en) * | 2013-03-13 | 2016-04-06 | Jfe Steel Corp | NON-DIRECTIONAL ELECTROMAGNETIC STEEL PLATE WITH EXCELLENT MAGNETIC CHARACTERISTICS |
US10526673B2 (en) | 2014-07-31 | 2020-01-07 | Jfe Steel Corporation | Non-oriented electrical steel sheet and method for producing the same, and motor core and method of producing the same |
EP3358027A4 (en) * | 2015-10-02 | 2018-08-08 | JFE Steel Corporation | Non-oriented electromagnetic steel sheet and manufacturing method of same |
EP3404124A4 (en) * | 2016-01-15 | 2018-12-26 | JFE Steel Corporation | Non-oriented electromagnetic steel sheet and method for producing same |
US20190017138A1 (en) * | 2016-01-15 | 2019-01-17 | Jfe Steel Corporation | Non-oriented electrical steel sheet and production method thereof |
US11008633B2 (en) * | 2016-01-15 | 2021-05-18 | Jfe Steel Corporation | Non-oriented electrical steel sheet and production method thereof |
CN110205462A (en) * | 2019-06-28 | 2019-09-06 | 武汉钢铁有限公司 | Used in high-speed motor method for producing non-oriented silicon steel |
EP4296392A4 (en) * | 2021-02-19 | 2024-06-05 | Nippon Steel Corporation | HOT PRESSED STEEL SHEET FOR NON-ORIENTED ELECTROMAGNETIC STEEL SHEET, MANUFACTURING PROCESS FOR NON-ORIENTED ELECTROMAGNETIC STEEL SHEET |
Also Published As
Publication number | Publication date |
---|---|
KR20040039438A (en) | 2004-05-10 |
JP4718749B2 (en) | 2011-07-06 |
KR100567239B1 (en) | 2006-04-03 |
TWI276693B (en) | 2007-03-21 |
CN1556869A (en) | 2004-12-22 |
JP2004068084A (en) | 2004-03-04 |
TW200403346A (en) | 2004-03-01 |
CN1277945C (en) | 2006-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004013365A1 (en) | Nonoriented magnetic steel sheet, member for rotary machine and rotary machine | |
KR101682284B1 (en) | Non-oriented electrical steel sheet | |
EP1679386A1 (en) | High-strength magnetic steel sheet and worked part therefrom, and process for producing them | |
CN108368584A (en) | Non-oriented electromagnetic steel sheet and its manufacturing method | |
CN114008224A (en) | Method for manufacturing non-oriented electromagnetic steel sheet, method for manufacturing motor core, and motor core | |
JP7001210B1 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
JPWO2020136993A1 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
TW202104614A (en) | Non-oriented electromagnetic steel sheet, method for producing same and motor core | |
JP4157454B2 (en) | High strength electrical steel sheet and its manufacturing method | |
JP2023554123A (en) | Non-oriented electrical steel sheet and its manufacturing method | |
US9637812B2 (en) | Non-oriented electrical steel sheet | |
JP2001323344A (en) | Nonoriented silicon steel sheet excellent in workability and recyclability | |
JP4259177B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
EP1156128A1 (en) | Non-oriented electromagnetic steel sheet having reduced magnetic anisotropy in high frequency region and excellent press workability | |
US20250059618A1 (en) | Non-oriented electrical steel sheet, method for manufacturing same, and motor core comprising same | |
JP2001335897A (en) | Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability | |
JP2001323347A (en) | Nonoriented silicon steel sheet excellent in workability, recyclability and magnetic property after strain relieving annealing | |
JP2025500985A (en) | Non-oriented electrical steel sheet and motor core including same | |
JP2001323345A (en) | Nonoriented silicon steel sheet having high magnetic flux density and excellent in workability, recyclability and magnetic property after strain relieving annealing | |
JP2008127608A (en) | Non-oriented electrical steel sheet for split core | |
JP2004270011A (en) | Method for producing high magnetic flux density non-directional magnetic steel sheet for rotary machine | |
JP3937685B2 (en) | Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same | |
JP2020094254A (en) | High strength non-oriented electromagnetic steel sheet excellent in caulking property | |
JP4259011B2 (en) | Non-oriented electrical steel sheet | |
JP7469694B2 (en) | Non-oriented electrical steel sheet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038010380 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020047004538 Country of ref document: KR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |