WO2004007385A1 - Glass, optical waveguide manufacturing method, and optical waveguide - Google Patents
Glass, optical waveguide manufacturing method, and optical waveguide Download PDFInfo
- Publication number
- WO2004007385A1 WO2004007385A1 PCT/JP2003/009039 JP0309039W WO2004007385A1 WO 2004007385 A1 WO2004007385 A1 WO 2004007385A1 JP 0309039 W JP0309039 W JP 0309039W WO 2004007385 A1 WO2004007385 A1 WO 2004007385A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- optical waveguide
- ion exchange
- content
- less
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 102
- 230000003287 optical effect Effects 0.000 title claims abstract description 91
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 238000005342 ion exchange Methods 0.000 claims abstract description 86
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 abstract 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 abstract 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 abstract 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 abstract 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 abstract 1
- 229910001953 rubidium(I) oxide Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 230000003321 amplification Effects 0.000 description 26
- 238000003199 nucleic acid amplification method Methods 0.000 description 26
- 238000000034 method Methods 0.000 description 13
- 239000000155 melt Substances 0.000 description 10
- 229910000416 bismuth oxide Inorganic materials 0.000 description 7
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 7
- 239000003365 glass fiber Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 101710134784 Agnoprotein Proteins 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000004017 vitrification Methods 0.000 description 4
- 238000004031 devitrification Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000006060 molten glass Substances 0.000 description 3
- ZMRUPTIKESYGQW-UHFFFAOYSA-N propranolol hydrochloride Chemical compound [H+].[Cl-].C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 ZMRUPTIKESYGQW-UHFFFAOYSA-N 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 229910001963 alkali metal nitrate Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000012803 melt mixture Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000075 oxide glass Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical class F* 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- 238000005816 glass manufacturing process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
Definitions
- the present invention relates to a bismuth oxide-based glass suitable for ion exchange, an optical waveguide manufacturing method, and an optical waveguide.
- a glass fiber having a core Z-clad structure is used as an optical waveguide, but various optical waveguides in which an optical waveguide is embedded in glass by ion exchange have been proposed (for example, see Japanese Patent Application Laid-Open No. 2002-202). (See pages 2 to 4 of Japanese Patent Publication No. 288861).
- Bismuth oxide glass used for such a glass fiber is required not to be devitrified when the fiber is applied.
- such a restriction may reduce the optical amplification function or the third-order nonlinear optical effect of bismuth oxide glass.
- the optical waveguide proposed in Japanese Patent Application Laid-Open No. 2000-228681 is manufactured without fiber processing, but has a low refractive index of 1.50 or less. Of rate. Therefore, the third-order nonlinear optical effect is small, and it is difficult to apply it to optical amplification applications.
- the present invention realizes light by performing ion exchange processing without fiber processing.
- An object of the present invention is to provide a bismuth oxide-based glass applicable to an optical waveguide such as an amplifier, such an optical waveguide, and a method for manufacturing the same. Disclosure of the invention
- the present invention in mol% based on the following oxides, B i 2 0 3 6 ⁇ 55% , S i O 2 10 ⁇ 70%, P 2 O 5 3 ⁇ 40%, L i 2 0 + Na 2 0 + K 2 O + Rb 2 O + F r 2 O 5 ⁇ 30%, A l 2 O 3 0 ⁇ 40%, M g O + C a O + S r O + B aO + Z nO 0 ⁇ 30%, B 2 0 3 0 to 20%, Ge 2 0 to 20 T i 0 2 + Zr 0 2 + Sn 0 2 + Y 2 0 3 0 to 20%, CeO 2 0 to 10%, force Essential glass I will provide a.
- the present invention provides a method for producing an optical waveguide, wherein the glass is subjected to two-stage thermal ion exchange, wherein the glass is the glass of the present invention.
- An optical waveguide in which the Ag-containing optical waveguide is embedded by performing two-stage thermal ion exchange on glass having a refractive index of 1.6 or more, and where the Ag-containing optical waveguide has the highest Ag content An optical waveguide characterized in that the shortest distance between the glass and the glass surface is 1 m or more.
- the glass of the present invention is usually made into an optical waveguide by performing a two-stage thermal ion exchange known in JP-A-6-194533 and the like, and the optical waveguide is connected to a silica glass fiber or the like.
- the method for manufacturing the optical waveguide is the method for manufacturing an optical waveguide of the present invention (hereinafter, referred to as the method of the present invention).
- the two-step thermal ion exchange method is a method in which a glass (ion-exchanged glass) on which an ion exchange mask has been formed other than a part to constitute a waveguide is immersed in an ion exchange melt A and the mask is not masked. That is, primary ion exchange is performed to form a high-refractive-index ion-exchange layer (hereinafter, referred to as a high-refractive-index layer) in a portion where a waveguide is to be formed. Another ion replacement for embedding The glass is immersed in the melt B, and secondary ion exchange is performed by applying an electric field.
- a glass ion-exchanged glass
- secondary ion exchange is performed by applying an electric field.
- the glass of the present invention performs a two-stage heat Ion exchange to the glass containing N a, for example, ion exchange melt A AgN_ ⁇ 3 melt
- the melt B ion exchange is NaN ⁇ 3 melt .
- melt A ion exchange may be is not for example L i N0 3 melt limited to AgNO 3 melt, high refractive Oriritsu the or when you want to adjust the refractive index of the layer may be a mixed melt of L i N0 3, NaN0 3 and KN0 3 1 or more selected from the group consisting of Al force Li metal nitrate and a Gno s.
- the ion exchange melt A and the ion exchange melt B are not limited to these.
- the temperature of the ion exchange melt in the primary ion exchange and the secondary ion exchange is preferably 25 Ot or more. If this temperature is lower than 250 ° C, the time required for ion exchange may be prolonged.
- the temperature is more preferably 300 or more, particularly preferably 320 or more. Further, it is preferable that the temperature is below glass transition temperature T e of the ion-exchange glass. The glass surface of the ion after replacing said temperature is higher than T e tends rough.
- the temperature is more preferably (T e —50 ° C.) or less, particularly preferably (T e —100) or less.
- the ion exchange time in the primary ion exchange is preferably from 10 minutes to 48 hours. If the ion exchange time is less than 10 minutes, it becomes difficult to obtain a high refractive index layer having a desired thickness.
- the ion exchange time is more preferably at least 1 hour, particularly preferably at least 2 hours. If the ion exchange time is longer than 48 hours, the glass surface after ion exchange tends to be rough.
- the ion exchange time is more preferably 16 hours or less, particularly preferably 8 hours or less.
- an electric field may be applied in order to obtain a high-refractive-index layer having a desired thickness in a shorter time. The electric energy at this time is, for example, 0.01 to L00W * h.
- the ion exchange time in the secondary ion exchange is preferably 10 minutes or more and 12 hours or less. If the ion exchange time is less than 10 minutes, it becomes difficult to move the high refractive index layer into a glass having a desired depth to form an optical waveguide.
- the ion exchange time is more preferably at least 20 minutes, particularly preferably at least 30 minutes. On the other hand, if the ion exchange time exceeds 12 hours, the glass surface after ion exchange tends to be rough, or the symmetry of the optical waveguide portion is reduced, making single mode propagation difficult.
- the ion exchange time is more preferably 4 hours or less, particularly preferably 2 hours or less.
- the electric energy when applying an electric field in the secondary ion exchange is preferably 0.01 to 100 W-h. If the electric power is less than 0.01 W * h, it becomes difficult to move the high refractive index layer into the glass having a desired depth to form an optical waveguide.
- the electric energy is more preferably 0.1W * h or more.
- the power exceeds 100 W ⁇ h, the symmetry of the optical waveguide is reduced, and it becomes difficult to propagate the sinal mode.
- the electric energy is more preferably 10 W ⁇ h or less.
- the glass of the present invention is suitable for producing an optical waveguide by performing two-stage thermal ion exchange.
- the glass of the present invention may contain at least one rare earth element selected from the group consisting of Er, Tm, Pr and Dy. preferable.
- Refractive index 5 5 of the glass of the present invention the wavelength 1550 nm for light. Is preferably 1.6 or more. If the value of 55Q is less than 1.6, the optical amplification factor or the third-order nonlinear optical effect may be reduced. 5 5 . Is more preferably 1.65 or more, further preferably 1.7 or more, particularly preferably 1.8 or more, and most preferably 1.9 or more. Also, 1 ⁇ 55Q is typically less than 2.5.
- the TG of the glass of the present invention is preferably 360 ° C. or higher. T is 360 ° C If it is less than 1, the temperature of the melt cannot be increased when performing ion exchange, and the ion exchange efficiency may be reduced. May be thermally damaged. Te is preferably at least 400 ° C, more preferably at least 450 ° C, particularly preferably at least 480 ° C.
- Devitrification temperature T D of the glass of the present invention is preferably less than 1150 ° C or less, or 1150 ° C. T D is likely to crystallize when the glass is melted at 1150 ° C or more than 1 0.99 ° C or higher. T D is more preferably 1125 ° C or less, or 1125 ° C less than, particularly preferably 1100 ° C or less, or less than 1100 ° C.
- T D in the present invention is as follows. That is, about 5 pieces of glass placed on a 40 mm ⁇ 40 mm ⁇ 1 mm platinum dish are put into a furnace at a predetermined temperature, and after holding for 2 hours, taken out of the furnace and cooled. The cooled glass sample is observed using a polarizing microscope, and ⁇ is used for Mitutoyo Mesureng fin scone MF200 manufactured by Mitutoyo Co., Ltd. to check for crystal precipitation.
- the predetermined temperature when crystallization is observed below T D the plant constant temperature in the case where crystallization is not observed is higher than T D.
- composition of the glass of the present invention will be described by simply indicating mol% as%.
- B i 2 0 3 is essential a component to increase the refractive index.
- the content of B i 2 0 3 is the refractive index becomes small at less than 6%. This content is preferably at least 10%, more preferably at least 12.5%, particularly preferably at least 15%. If the content is more than 55%, T D becomes high, Te becomes high, or the difference in the refractive index between the ion-exchanged portion, that is, the ion-exchanged layer and the non-ion-exchanged portion becomes small. .
- the content is preferably 40% or less, more preferably 30% or less.
- S i 0 2 is essential is a network follower one Ma.
- the content of S i 0 2 becomes difficult to vitrification is less than 10%, the refractive index becomes small at 70%. This content is preferably at least 20%, more preferably at most 50%, more preferably at most 35%.
- this fluorine organic content is less than 3%, for example, the ion-exchange ToruTomo
- P 2 0 content of 5 preferably 9% or more, more preferably over 11% or more. If the content is more than 40%, the chemical durability becomes poor or the glass becomes difficult.
- P 2 0 content of 5 or less preferably 30%, more preferably 20% or less.
- the total content of S I_ ⁇ 2 and P 2 0 5 is 30% or more.
- Li 20 , Na 20 , K 20 , Rb 2 O, and Fr 2 O are components for ion exchange and must contain at least one of them. If the total content of these alkali metal oxides is less than 5%, the refractive index of the ion exchange layer will be small. The sum of these contents is preferably at least 7.5%. In total 3 0% of these contents, vitrification tends to be difficult, T e is low, or the weather resistance is lowered. It is more preferably at most 25%, particularly preferably at most 20%.
- It preferably contains at least one of Li 2 O and Na 2 O, and more preferably contains Na 2 O.
- yo Ri is preferably 7.5% or more.
- an alkali metal oxide other than Na 2 O may or may not be contained.
- the glass of the present invention In the case of making the glass of the present invention more difficult to devitrify, etc., it is preferable that the glass does not contain ⁇ 2 ⁇ .
- a 1 2 0 3 is not essential, it may have free up to 40% in order to increase the ion exchange efficiency. If it exceeds 40%, it tends to crystallize when the glass is melted, and the transmittance of the glass may decrease. This content is preferably at most 30%, more preferably at most 20%. Its content when they contain A l 2 0 3 is preferably at least 1%, more preferably 5% or more, particularly preferably 8% or more.
- MgO, CaO, Sr ⁇ , BaO and ZnO are all optional, In order to stabilize the glass, it may be contained up to a total of 30%. If the total of these contents exceeds 30%, crystallization may be likely to occur when the glass is melted.
- the total of these contents is preferably 20% or less, more preferably 10% or less.
- 2 0 3 is not essential B, and for ease of glass formation by low T D, or but it may also contain up to 20% in order to increase the wavelength width of the optical amplification gain.
- B 2 0 3 is more than 20%, it may become difficult to fluorescence lifetime Maruchifuonon relaxation is increased is used becomes light amplifying short. This content is preferably less than 7.5%.
- Ge0 2 is not essential, but may be incorporated up to 20% has higher to that effect the refractive index with ease glass formation. If the content exceeds 20%, the glass may be easily crystallized. This content is preferably at most 10%, more preferably at most 5%. When containing ge0 2, its content is preferably 1% or more 0.1, more preferably 1% or more.
- T i0 2, Z R_ ⁇ 2, but Sn_ ⁇ 2 and Y 2 ⁇ 3 is not essential, but 20% in order to suppress devitrification of glass during fabrication, or in total in order to adjust the refractive index It may be contained in the range up to. If the total of these contents exceeds 20%, the glass may be easily crystallized. The total of these contents is preferably 10% or less, more preferably 5% or less.
- C eO a is not essential, in order were suppresses the B i 2 0 3 in the glass composition reduces the transparency of the glass is reduced in the glass melting precipitated as metal bismuth, containing up to 10% May be. Ce0 the content of 2 10%, the vitrification becomes difficult, or there is a risk that a yellow or orange coloration is strong for connexion glass transmittance is reduced.
- This content is preferably at most 1%, more preferably at most 0.5%, particularly preferably at most 0.3%.
- the glass of the preferred present invention may not contain CeO 2 substantially it is essentially It consists of the above components, but may contain other components as long as the object of the present invention is not impaired.
- the total content of the other components is preferably 30% or less, more preferably 20% or less, and particularly preferably 15% or less.
- the following components may be mentioned as preferable ranges of the other components and the following oxide standards. It should be noted that the following components may be contained in a range that does not impair the object of the present invention even when the glass of the present invention is not used for manufacturing an optical amplification waveguide.
- P r 2 0 3, Dy 2 ⁇ 3, E r 2 0 3 and Tm 2 0 3 is a component having an optical amplification function, it is preferable to contain one or more either. If the total content of these four components exceeds 5%, there is a possibility that a desired optical amplification factor cannot be obtained due to concentration quenching, or glass is crystallized. The total of these contents is more preferably from 0.2 to
- C Pando (wavelength: 1,530 to 1,560 nm) or L band (wavelength: 1570 to 1600 nm) for the case of optical amplification in E r (E r 2 ⁇ 3), S + bands (wavelength: 1450 ⁇ 1490nm) Or S band (wavelength: 1490-15
- Tm (Tm 2 0 3)
- P r P r 2 0 3
- Dy a Dy 2 0 3
- These 4 content of the component may cause personal to connexion glass crystallization of high T D is 30 percent.
- the total of these contents is more preferably from 1 to 20%, particularly preferably from 2 to 20%.
- Ga 2 0 3 is the optical amplification factor large especially if it is less 25% B i 2 0 3 content This has the effect of increasing the gain or increasing the wavelength width over which gain can be obtained. Its content when containing Ga 2 0 3 is 2 is preferably 25%. If the content is more than 25%, crystals may precipitate during glass production, and the transmittance of the glass may be reduced. The content of Ga 2 0 3 is more preferably 5-20%, particularly preferably 5-15%.
- Te0 2 has the effect of increasing the optical amplification factor. Its content when they contain te0 2 is preferably 1 to 20%. If the content is more than 20%, crystals may precipitate during glass production, and the transmittance of glass may decrease. The content of Ga 2 0 3 is more preferably from 2 to 5%.
- L a 2 0 3 especially has the effect of preventing concentration quenching raise its dispersibility in the case of containing E r 2 0 3. Its content when they contain L a 2 0 3 is preferably 1-20% der Rukoto 0.5, may decrease the transmittance of the glass to precipitate crystals during glass making is 20 percent.
- L a 2 ⁇ 3 content in the case of containing E r 2 0 3 0. 1 ⁇ 1% 0. 1% or more and less than 1%, more preferably less than 1% 5% or more 0.5.
- L a 2 0 3 content is preferably:! -20%, more preferably 2-5%.
- wo 3 has the effect of increasing the wavelength width over which gain can be obtained.
- its content is preferably 1 to 10%, and if it exceeds 10%, the optical amplification factor may be reduced. This content is more preferably 2-5%.
- the Yb 2 0 3 may have free for such increase the optical amplification factor in case of containing E r 2 0 3. Its content when containing Yb 2 0 3 is preferably 1-5% 0.1.
- the other components in the glass of the present invention are not limited to the components described above, but when CdO is contained, it is preferable that Zn0 + CdO is 5% or less.
- the optical waveguide of the present invention 5 It is manufactured by performing two-stage thermionic exchange on glass with a ⁇ 1.6. Tertiary nonlinear optical effect since 5 5 Q of the glass is at 1.6 or greater. Further, in order to use in an optical amplifier for example, the glass is E r, Tm, one or more rare earth elements selected from the group consisting of P r, and Dy contained, P r 2 0 3 + Dy 2 0 3 + E r If 2 0 3 + Tm 2 0 3 is 1 to 5 mol% 0., it becomes one whose light amplifying properties are excellent. 55 Q is preferably 1.7 or more, more preferably 1.8 or more, and particularly preferably 1.9 or more.
- the glass preferably contains B i 2 0 3, S I_ ⁇ 2, P 2 0 5 and alkali metal oxides.
- Vitrification tends to be difficult and does not contain a S i 0 2.
- the S i 0 2 and more preferably has containing 20 mol% or more.
- P 2 0 5 containing no the efficiency of the two-stage heat ion exchange process to form a Ag-containing light waveguide may be lowered. And more preferably contains P 2 0 5 to 9 mol% or more.
- Na 2 O is contained in an amount of 7.5 mol% or more.
- the glass is preferably the glass of the present invention.
- the Ag-containing optical waveguide in the optical waveguide of the present invention is embedded in the glass by performing two-stage thermal ion exchange, and the two-stage thermal ion exchange is performed by the method of the present invention described above. This is the same as the two-step thermal ion exchange except that the ion exchange melt (ion exchange melt A) used for the primary ion exchange is limited to the Ag-containing melt.
- the ion exchange melt A, AgNO 3 melt, L i N0 3, NaN0 3 Oyo melt mixture of one or more alkali metal nitrate and A g NO 3 selected from the group consisting of beauty KN0 3, Etc. are exemplified.
- the ion exchange melt A is NaN0 3 melt.
- d is preferably 3 m or more, more preferably 5 m or more.
- d can be determined by measuring the Ag concentration profile of the glass cross section using an EPMA (Electron Beam Microanalyzer) and measuring the shortest distance between the Ag concentration peak position and the glass surface.
- EPMA Electro Beam Microanalyzer
- the maximum value CA g of the Ag content of the Ag-containing optical waveguide is preferably 0.5% or more in terms of mass percentage. If the Ag content is less than 0.5%, the refractive index difference between the Ag-containing optical waveguide (corresponding to the core) and the surrounding cladding becomes too small. This content is more preferably at least 1%, particularly preferably at least 2%. When used for the optical amplification waveguide, it is preferred for obtaining the desired optical amplification factor is C A g is 1% or more.
- C Ag is preferably 10% or less. If C Ag exceeds 10%, the refractive index difference becomes too large and it becomes difficult to propagate light in single mode. C Ag is more preferably 7% or less.
- the optical waveguide of the present invention and the optical waveguide manufactured by the method of the present invention are capable of transmitting light in a low-loss wavelength region (approximately 1300 to 1650 nm) of a silica glass fiber in a sinal mode.
- a low-loss wavelength region approximately 1300 to 1650 nm
- pump light having a wavelength of 900 to 1490 nm is typically used, and such pump light can also propagate in a sinal mode. Is preferred.
- the waveguide is patterned, and then the two-stage thermal ion exchange is performed.
- the patterning of the waveguide is performed, for example, as follows. That is, A resist pattern is engraved on the surface of the glass by a photoresist method, and an ion exchange shielding film (for example, an A1 film) is formed on the resist pattern by a sputtering method. Next, the resist is removed by lift-off using an organic solvent, and an ion-exchange mask in which only the ion-exchange shielding film formed on the portion without the resist remains is manufactured.
- the width of the ion exchange mask is preferably 1 to 8 xm. When the width is less than 1 nm, connection with a silica glass fiber or the like becomes difficult. When the width is more than 8 nm, light propagation in single mode becomes difficult. This width is more preferably at least 2 m and at most 62 m.
- Examples of the ion exchange shielding film include an A1 film and a Ti film.
- the thickness is preferably 0.2 to 2 m. If it is less than 0.2 im, a sufficient shielding effect cannot be obtained. Above 2 m, lift-off becomes difficult.
- Table B i 2 0 3 Formulation of raw material so as to have the composition shown in column mol% up Yb 2 0 3 from to prepare a 15 g formulation material and mixed.
- the prepared raw material was put in a platinum rupo and melted while being kept at 1200 ° C. for 1 hour in an air atmosphere, and the obtained molten glass was poured into a plate shape and air-cooled as it was.
- Examples 1 to 8 are Examples and Example 9 is a Comparative Example.
- the glass transition point T e (unit: .C) was determined by differential thermal analysis to determine the devitrification temperature T D (unit: .C) at 1150 ° (:, 1125 ° C, 1100 ° C, 1075).
- the temperature was measured using furnaces at different temperatures of 10 ° C and 1050 ° C. In the case where crystal precipitation was observed at 1125 ° C and no crystal precipitation was observed at 1100 ⁇ , “ ⁇ 1125” precipitation If you have not observed and described in the column of T D of by sea urchin table say, "in the tool 1050".
- Examples 1-3 and 5-9 separately prepare 200 g of the blended raw material, hold it at 1200 ° C for 2 hours, pour the obtained molten glass into a plate shape, and place it in a furnace with a temperature of TG. After keeping the temperature for a while, the temperature was gradually cooled to room temperature. The obtained glass was processed into a plate with a thickness of 2 mm and a size of 2 OmmX 20 mm, and both surfaces were mirror-polished to obtain a sample plate.
- the refractive index n 6 3 3 and the 5 5 0 for light with a wavelength of 633 nm of the sample plate was measured using a Metricon Corporation model 2010 prism force bra.
- Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
- Example 1 is for the case where the melt temperature is 320 ⁇ (example la) and 370 ° C (example lb), and Example 7 is for the case where the melt temperature is 340 ° C (example 7c). For No. 9, each was measured when the melt temperature was 370 ° C. (Example 9b). Table 3 shows the results.
- .DELTA..eta 6 3 3 is the melt temperature is 370 ° C, it is preferred ion exchange time is when 0.0 4 or more 1 hour. Table 3
- an optical amplification waveguide was produced using the glass of Example 7 as follows. That is, 300 g of the prepared raw material is prepared, kept at 1200 ° C for 2 hours, the obtained molten glass is poured into a mold having an inner diameter of 80 mm, kept at 470 ° C for 4 hours, and then cooled to room temperature. Cooling was performed. The obtained glass was processed into a wafer having a thickness of 1.5 mm and a diameter of 76.2 mm, and both surfaces were mirror-polished to obtain a wafer-like glass.
- Waveguide patterning was performed on this wafer-like glass by a photoresist method using an A1 ion-exchange shielding film having a mask width of 3 zm and a thickness of 0.5 m.
- the wafer-shaped glass ion exchange mask is formed which is produced by the lift-off, the temperature is 340 ° C, the molar ratio of 1: 1 was immersed for 3 hours in AgNO 3 -L i N0 3 melt mixture (primary ion-exchange) Then, the ion exchange mask was polished and removed.
- Example 7 With respect to the optical amplification waveguide fabricated in 3), butt-joined both ends of the optical amplification waveguide with bare single mode fiber, and the wavelength when the waveguide length is 1 cm and 2 cm using a parameter meter. The loss for 1300 nm light was measured. As a result, when the waveguide length was 1 cm and 2 cm, the loss was -3.1 dB and -3.6 dB, respectively. The propagation loss calculated from this result was 0.5 dB / cm.
- the signal enhancement SE was measured as follows. That is, the light from the excitation light source with a wavelength of 98 O nm (excitation power: 75 mW) and the light from the signal light source with a wavelength of 1520 to: L 620 nm (signal power: O dBm) are combined by a WDM power bra. After the wave, the light was input into the optical amplification waveguide, and the light emitted from the waveguide was detected by an optical spectrum analyzer, and SE (unit: dB) was measured.
- Tables 5 and 6 show the results for each signal light wavelength (unit: nm) when the waveguide length is 1 cm and 2 cm. If SE is less than 2 dB, it may be noise. From this result, amplification for light with a wavelength of 1520 to 1570 nm is clearly recognized.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Glass Compositions (AREA)
- Optical Integrated Circuits (AREA)
Abstract
A glass substantially comprising 6-55% of Bi2O3, 10-70% of SiO2, 3-40% of P2O5, 5-30% of Li2O+Na2O+K2O+Rb2O+Fr2O, 0-40% of Al2O3, 0-30% of MgO+CaO+SrO+BaO+ZnO, 0-20% of B2O3, 0-20% of GeO2, 0-20% of TiO2+ZrO2+SnO2+Y2O, and 0-10% of CeO2. An optical waveguide manufacturing method characterized in that the glass is subjected to two-stage thermal ion exchange.
Description
ガラス、 光導波路製造方法および光導波路 技術分野 Glass, optical waveguide manufacturing method and optical waveguide
本発明はィオン交換に適した酸化ビスマス系ガラス、 光導波路製造方法および 光導波路に関する。 背景技術 The present invention relates to a bismuth oxide-based glass suitable for ion exchange, an optical waveguide manufacturing method, and an optical waveguide. Background art
波長多重光通信方式において使用される光増幅器への応用等を目的として、 濃 度消光が起りにくく短い長さで所望の光増幅が得られる E r添加酸化ビスマス系 光増幅ガラスファイバが提案されている (たとえば、 特開 2 0 0 1— 1 0 2 6 6 1号公報の第 2〜 4頁を参照) 。 For the purpose of application to optical amplifiers used in wavelength division multiplexing optical communication systems, Er-doped bismuth oxide-based optically amplifying glass fibers that do not easily cause concentration quenching and can achieve desired optical amplification with a short length have been proposed. (See, for example, pages 2 to 4 of JP-A-2001-106261).
また、 三次非線形光学効果が大きく超高速光スィツチや波長変換素子等の三次 非線形光学素子に好適な酸化ビスマス系ガラスフアイバが提案されている (たと えば、 特開 2 0 0 1— 2 1 3 6 4 0号公報の第 2〜 5頁を参照) 。 In addition, bismuth oxide-based glass fibers that have a large third-order nonlinear optical effect and are suitable for a third-order nonlinear optical element such as an ultrahigh-speed optical switch or a wavelength conversion element have been proposed (see, for example, Japanese Patent Application Laid-Open No. 2001-212136). No. 40, pages 2-5).
これらの例においてはコア Zクラッド構造のガラスフアイバを光導波路として 使用するが、 イオン交換によって光導波部をガラスに埋め込んだ光導波路も種々 提案されている (たとえば、 特開 2 0 0 2 _ 2 2 8 8 6 1号公報の第 2〜4頁を 参照) 。 In these examples, a glass fiber having a core Z-clad structure is used as an optical waveguide, but various optical waveguides in which an optical waveguide is embedded in glass by ion exchange have been proposed (for example, see Japanese Patent Application Laid-Open No. 2002-202). (See pages 2 to 4 of Japanese Patent Publication No. 288861).
このようなガラスフアイバに用いられる酸化ビスマス系ガラスにはフアイバ加 ェ時に失透しないことが求められる。 一方、 このような制約は酸化ビスマス系ガ ラスの光増幅機能または三次非線形光学効果を低下させるおそれがある。 Bismuth oxide glass used for such a glass fiber is required not to be devitrified when the fiber is applied. On the other hand, such a restriction may reduce the optical amplification function or the third-order nonlinear optical effect of bismuth oxide glass.
一方、 特開 2 0 0 2— 2 2 8 8 6 1号公報において提案されている光導波路は ファイバ加工することなく製造されるものであるが、 屈折率が 1 . 5 0以下とい う低屈折率のものである。 したがって、 三次非線形光学効果は小さく、 また光増 幅用途への応用も困難である。 On the other hand, the optical waveguide proposed in Japanese Patent Application Laid-Open No. 2000-228681 is manufactured without fiber processing, but has a low refractive index of 1.50 or less. Of rate. Therefore, the third-order nonlinear optical effect is small, and it is difficult to apply it to optical amplification applications.
本発明はフアイバ加工することなく、 ィォン交換処理を行なうことによって光
増幅器等の光導波路に適用できる酸化ビスマス系ガラス、 そのような光導波路お よびその製造方法の提供を目的とする。 発明の開示 The present invention realizes light by performing ion exchange processing without fiber processing. An object of the present invention is to provide a bismuth oxide-based glass applicable to an optical waveguide such as an amplifier, such an optical waveguide, and a method for manufacturing the same. Disclosure of the invention
本発明は、 下記酸化物基準のモル%表示で、 B i 2 03 6〜55%、 S i O 2 10〜70%、 P2 O5 3〜40 %、 L i 2 0 + Na2 0 + K2 O + Rb 2 O + F r 2 O 5〜30%、 A l 2 O3 0〜 40 %、 M g O + C a O + S r O + B aO + Z nO 0〜30%、 B2 03 0〜20%、 Ge〇2 0〜20 T i 02 +Z r02 + Sn02 +Y2 03 0〜20%、 CeO2 0〜1 0%、 力 本質的になるガラスを提供する。 The present invention, in mol% based on the following oxides, B i 2 0 3 6~55% , S i O 2 10~70%, P 2 O 5 3~40%, L i 2 0 + Na 2 0 + K 2 O + Rb 2 O + F r 2 O 5~30%, A l 2 O 3 0~ 40%, M g O + C a O + S r O + B aO + Z nO 0~30%, B 2 0 3 0 to 20%, Ge 2 0 to 20 T i 0 2 + Zr 0 2 + Sn 0 2 + Y 2 0 3 0 to 20%, CeO 2 0 to 10%, force Essential glass I will provide a.
また、 ガラスに 2段階熱イオン交換を行なうことを特徴とする光導波路製造方 法であって、 該ガラスが前記本発明のガラスである光導波路製造方法を提供する また、 波長 1550 nmの光に対する屈折率が 1. 6以上であるガラスに 2段 階熱イオン交換を行なって A g含有光導波部を埋め込んだ光導波路であって、 A g含有光導波部の A g含有量の最も大きい部分とガラス表面との最短距離が 1 m以上であることを特徴とする光導波路を提供する。 発明を実施するための最良の形態 Further, the present invention provides a method for producing an optical waveguide, wherein the glass is subjected to two-stage thermal ion exchange, wherein the glass is the glass of the present invention. An optical waveguide in which the Ag-containing optical waveguide is embedded by performing two-stage thermal ion exchange on glass having a refractive index of 1.6 or more, and where the Ag-containing optical waveguide has the highest Ag content An optical waveguide characterized in that the shortest distance between the glass and the glass surface is 1 m or more. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のガラスは通常、 特開平 6— 194533号公報等によって公知の 2段 階熱ィォン交換を行なつて光導波路とされ、 該光導波路は石英系ガラスファイバ 等と接続される。 なお、 この光導波路の製造方法は本発明の光導波路製造方法 ( 以下、 本発明の方法という。 ) である。 The glass of the present invention is usually made into an optical waveguide by performing a two-stage thermal ion exchange known in JP-A-6-194533 and the like, and the optical waveguide is connected to a silica glass fiber or the like. The method for manufacturing the optical waveguide is the method for manufacturing an optical waveguide of the present invention (hereinafter, referred to as the method of the present invention).
前記 2段階熱イオン交換法とは、 導波路を構成すべき部分以外にイオン交換マ スクをしたガラス (被イオン交換ガラス) をイオン交換用融液 Aに浸潰して前記 マスクをされていない部分すなわち導波路を構成すべき部分に高屈折率イオン交 換層 (以下、 高屈折率層という。 ) を形成する一次イオン交換を行ない、 次に、 高屈折率層をガラス内部に移動させガラス内部に埋め込むベく別のィォン交換用
融液 Bにガラスを浸漬し、 かつ電場を印加する二次イオン交換を行なうものであ る。 The two-step thermal ion exchange method is a method in which a glass (ion-exchanged glass) on which an ion exchange mask has been formed other than a part to constitute a waveguide is immersed in an ion exchange melt A and the mask is not masked. That is, primary ion exchange is performed to form a high-refractive-index ion-exchange layer (hereinafter, referred to as a high-refractive-index layer) in a portion where a waveguide is to be formed. Another ion replacement for embedding The glass is immersed in the melt B, and secondary ion exchange is performed by applying an electric field.
本発明のガラスが N aを含有し当該ガラスに 2段階熱ィォン交換を行なう場合 、 たとえばイオン交換用融液 Aは AgN〇3融液、 イオン交換用融液 Bは NaN 〇3融液である。 If the glass of the present invention performs a two-stage heat Ion exchange to the glass containing N a, for example, ion exchange melt A AgN_〇 3 melt, the melt B ion exchange is NaN 〇 3 melt .
イオン交換用融液 Bがたとえば N a NO 3融液である場合、 イオン交換用融液 Aは AgN03 融液に限られずたとえば L i N03融液であってもよいし、 高屈 折率層の屈折率を調整したい場合等には L i N03 、 NaN03 および KN03 からなる群から選ばれる 1種以上のアル力リ金属硝酸塩と A gNOs の混合融液 であってもよい。 If ion exchange melt B is, for example, N a NO 3 melt, the melt A ion exchange may be is not for example L i N0 3 melt limited to AgNO 3 melt, high refractive Oriritsu the or when you want to adjust the refractive index of the layer may be a mixed melt of L i N0 3, NaN0 3 and KN0 3 1 or more selected from the group consisting of Al force Li metal nitrate and a Gno s.
また、 イオン交換後のガラス表面の荒れを防止するためには、 イオン交換用融 液 Aとして A g NO 3 を含有するものを用いる場合、 AgN03 よりも融点の高 い L iN03 、 NaN03 、 KN03等をあわせて含有するものとすることが好 ましい。 Further, in order to prevent roughening of the glass surface after ion exchange as used those containing A g NO 3 as an ion exchange melt A, AgNO 3 than have high melting points even L iN0 3, NaN0 3 , good Masui be those containing together KN0 3 or the like.
なお、 ィォン交換用融液 Aとィォン交換用融液 Bはこれらに限定されない。 一次ィォン交換および二次ィオン交換におけるィォン交換用融液の温度は 25 Ot以上であることが好ましい。 この温度が 250°C未満ではイオン交換に要す る時間が長くなるおそれがある。 前記温度は、 より好ましくは 300 以上、 特 に好ましくは 320で以上である。 また、 前記温度は被イオン交換ガラスのガラ ス転移温度 Te以下であることが好ましい。 前記温度が Te より高いとイオン交 換後のガラス表面が荒れやすくなる。 前記温度は、 より好ましくは (Te — 50 °C) 以下、 特に好ましくは (Te —100で) 以下である。 The ion exchange melt A and the ion exchange melt B are not limited to these. The temperature of the ion exchange melt in the primary ion exchange and the secondary ion exchange is preferably 25 Ot or more. If this temperature is lower than 250 ° C, the time required for ion exchange may be prolonged. The temperature is more preferably 300 or more, particularly preferably 320 or more. Further, it is preferable that the temperature is below glass transition temperature T e of the ion-exchange glass. The glass surface of the ion after replacing said temperature is higher than T e tends rough. The temperature is more preferably (T e —50 ° C.) or less, particularly preferably (T e —100) or less.
一次イオン交換におけるイオン交換時間は 10分以上 48時間以下であること が好ましい。 このイオン交換時間が 10分未満では所望の厚さの高屈折率層を得 ることが困難になる。 前記イオン交換時間は、 より好ましくは 1時間以上、 特に 好ましくは 2時間以上である。 また前記イオン交換時間が 48時間超ではイオン 交換後のガラス表面が荒れやすくなる。 前記イオン交換時間は、 より好ましくは 16時間以下、 特に好ましくは 8時間以下である。
一次イオン交換においてより短時間で所望の厚さの高屈折率層を得るために電 場を印加してもよい。 その際の電力量はたとえば 0. 01〜; L 00W* hである 二次イオン交換におけるイオン交換時間は 10分以上 12時間以下であること が好ましい。 このイオン交換時間が 10分未満では高屈折率層を所望の深さのガ ラス内部に移動させ光導波部とすることが困難になる。 前記イオン交換時間は、 より好ましくは 20分以上、 特に好ましくは 30分以上である。 また、 前記ィォ ン交換時間が 12時間超ではイオン交換後のガラス表面が荒れやすくなる、 また は光導波部の対称性が低下しシングルモード伝播が困難になる。 前記イオン交換 時間は、 より好ましくは 4時間以下、 特に好ましくは 2時間以下である。 The ion exchange time in the primary ion exchange is preferably from 10 minutes to 48 hours. If the ion exchange time is less than 10 minutes, it becomes difficult to obtain a high refractive index layer having a desired thickness. The ion exchange time is more preferably at least 1 hour, particularly preferably at least 2 hours. If the ion exchange time is longer than 48 hours, the glass surface after ion exchange tends to be rough. The ion exchange time is more preferably 16 hours or less, particularly preferably 8 hours or less. In the primary ion exchange, an electric field may be applied in order to obtain a high-refractive-index layer having a desired thickness in a shorter time. The electric energy at this time is, for example, 0.01 to L00W * h. The ion exchange time in the secondary ion exchange is preferably 10 minutes or more and 12 hours or less. If the ion exchange time is less than 10 minutes, it becomes difficult to move the high refractive index layer into a glass having a desired depth to form an optical waveguide. The ion exchange time is more preferably at least 20 minutes, particularly preferably at least 30 minutes. On the other hand, if the ion exchange time exceeds 12 hours, the glass surface after ion exchange tends to be rough, or the symmetry of the optical waveguide portion is reduced, making single mode propagation difficult. The ion exchange time is more preferably 4 hours or less, particularly preferably 2 hours or less.
二次イオン交換において電場を印加する際の電力量は 0. 01〜100W- h であることが好ましい。 この電力量が 0. 01W* h未満では高屈折率層を所望 の深さのガラス内部に移動させ光導波部とすることが困難になる。 前記電力量は より好ましくは 0. lW* h以上である。 また前記電力量が 100W · h超では 光導波部の対称性が低下しシンダルモード伝播が困難になる。 前記電力量はより 好ましくは 10W · h以下である。 The electric energy when applying an electric field in the secondary ion exchange is preferably 0.01 to 100 W-h. If the electric power is less than 0.01 W * h, it becomes difficult to move the high refractive index layer into the glass having a desired depth to form an optical waveguide. The electric energy is more preferably 0.1W * h or more. On the other hand, if the power exceeds 100 W · h, the symmetry of the optical waveguide is reduced, and it becomes difficult to propagate the sinal mode. The electric energy is more preferably 10 W · h or less.
次に、 本発明のガラスについて説明する。 Next, the glass of the present invention will be described.
本発明のガラスは 2段階熱イオン交換を行なって光導波路を製造するのに好適 である。 The glass of the present invention is suitable for producing an optical waveguide by performing two-stage thermal ion exchange.
本発明のガラスを光増幅導波路の製造に用いる場合等には、 本発明のガラスは E r、 Tm、 P rおよび Dyからなる群から選ばれた 1種以上の希土類元素を含 有することが好ましい。 When the glass of the present invention is used for producing an optical amplification waveguide, the glass of the present invention may contain at least one rare earth element selected from the group consisting of Er, Tm, Pr and Dy. preferable.
本発明のガラスの、 波長 1550 nmの光に対する屈折率 5 5 。 は 1. 6 以上であることが好ましい。 5 5 Q が 1. 6未満では光増幅率または三次非 線形光学効果が小さくなるおそれがある。 5 5 。 は、 より好ましくは 1. 6 5以上、 さらに好ましくは 1. 7以上、 特に好ましくは 1. 8以上、 最も好まし くは 1. 9以上である。 また 1^ 5 5 Q は典型的には 2. 5以下である。 Refractive index 5 5 of the glass of the present invention, the wavelength 1550 nm for light. Is preferably 1.6 or more. If the value of 55Q is less than 1.6, the optical amplification factor or the third-order nonlinear optical effect may be reduced. 5 5 . Is more preferably 1.65 or more, further preferably 1.7 or more, particularly preferably 1.8 or more, and most preferably 1.9 or more. Also, 1 ^ 55Q is typically less than 2.5.
本発明のガラスの TGは 360°C以上であることが好ましい。 T が 360°C
未満ではイオン交換する場合に融液の温度を高くできずイオン交換効率が低下す るおそれがある、 または光増幅導波路に用いる場合励起光として強度の大きいレ 一ザ一光を使用するとガラスが熱的に損傷するおそれがある。 Teは好ましくは 400°C以上、 より好ましくは 450°C以上、 特に好ましくは 480°C以上であ る。 The TG of the glass of the present invention is preferably 360 ° C. or higher. T is 360 ° C If it is less than 1, the temperature of the melt cannot be increased when performing ion exchange, and the ion exchange efficiency may be reduced. May be thermally damaged. Te is preferably at least 400 ° C, more preferably at least 450 ° C, particularly preferably at least 480 ° C.
本発明のガラスの失透温度 TD は 1150°C以下または 1150°C未満である ことが好ましい。 TDが 1150°C超または 1 150°C以上ではガラス溶解時に 結晶化しやすくなる。 TD はより好ましくは 1125°C以下または 1125°C未 満、 特に好ましくは 1100°C以下または 1100°C未満である。 Devitrification temperature T D of the glass of the present invention is preferably less than 1150 ° C or less, or 1150 ° C. T D is likely to crystallize when the glass is melted at 1150 ° C or more than 1 0.99 ° C or higher. T D is more preferably 1125 ° C or less, or 1125 ° C less than, particularly preferably 1100 ° C or less, or less than 1100 ° C.
本発明における TD は次のようなものである。 すなわち、 40mmX40mm X 1 mmの白金皿にのせたガラス小片約 5 を所定温度の炉に入れ、 2時間保持 後に炉から取り出して冷却する。 冷却されたガラスサンプルを偏光顕微鏡、 たと ぇはミッ卜ョ社製 M i t u t o y o Me a s u r i ng f i ne s c o e MF 200を用いて観察し結晶析出の有無を調べる。 結晶析出が認められる 場合には前記所定温度は TD より低く、 結晶析出が認められない場合には前記所 定温度は TD より高いとする。 T D in the present invention is as follows. That is, about 5 pieces of glass placed on a 40 mm × 40 mm × 1 mm platinum dish are put into a furnace at a predetermined temperature, and after holding for 2 hours, taken out of the furnace and cooled. The cooled glass sample is observed using a polarizing microscope, and と is used for Mitutoyo Mesureng fin scone MF200 manufactured by Mitutoyo Co., Ltd. to check for crystal precipitation. Wherein the predetermined temperature when crystallization is observed below T D, the plant constant temperature in the case where crystallization is not observed is higher than T D.
次に、 本発明のガラスの組成についてモル%を単に%と表示して説明する。 Next, the composition of the glass of the present invention will be described by simply indicating mol% as%.
B i 2 03 は屈折率を大きくする成分であり必須である。 B i 2 03 の含有量 が 6%未満では屈折率が小さくなる。 この含有量は好ましくは 10%以上、 より 好ましくは 12. 5%以上、 特に好ましくは 15%以上である。 前記含有量が 5 5%超では TDが高くなる、 Teが高くなる、 または、 イオン交換された部分す なわちイオン交換層とイオン交換されていない部分との屈折率の差が小さくなる 。 前記含有量は好ましくは 40%以下、 より好ましくは 30%以下である。 B i 2 0 3 is essential a component to increase the refractive index. The content of B i 2 0 3 is the refractive index becomes small at less than 6%. This content is preferably at least 10%, more preferably at least 12.5%, particularly preferably at least 15%. If the content is more than 55%, T D becomes high, Te becomes high, or the difference in the refractive index between the ion-exchanged portion, that is, the ion-exchanged layer and the non-ion-exchanged portion becomes small. . The content is preferably 40% or less, more preferably 30% or less.
S i 02 はネットワークフォ一マであり必須である。 S i 02 の含有量が 10 %未満ではガラス化が困難になり、 70 %超では屈折率が小さくなる。 この含有 量は好ましくは 20%以上であり、 また好ましくは 50%以下、 より好ましくは 35 %以下である。 S i 0 2 is essential is a network follower one Ma. The content of S i 0 2 becomes difficult to vitrification is less than 10%, the refractive index becomes small at 70%. This content is preferably at least 20%, more preferably at most 50%, more preferably at most 35%.
P2 〇5 はイオン交換、 特に Ag含有融液を用いてガラス中のアルカリ金属ィ
オンを Agイオンに交換する処理の効率を上げる成分であり必須である。 この含 有量が 3 %未満では、 たとえば前記 2段階熱イオン交換法のイオン交換用融友 A が AgN03融液の場合高屈折率層に銀コロイドが生成し、 イオン交換用融液 B に浸漬して電場を印加することによる高屈折率層のガラス内部への移動が起こり にくくなる。 P2 05 の含有量は好ましくは 9%以上、 より好ましくは 11%以 上である。 またこの含有量が 40%超では化学的耐久性が悪くなる、 またはガラ ス化が困難になる。 P2 05 の含有量は好ましくは 30%以下、 より好ましくは 20 %以下である。 P 2 〇 5 ion exchange, alkali metal I in the glass, especially using the Ag-containing melt It is a component that increases the efficiency of the process of exchanging ON for Ag ions and is essential. In this fluorine organic content is less than 3%, for example, the ion-exchange ToruTomo A two stage thermal ion exchange silver colloid is generated in the high refractive index layer when the AgNO 3 melt, the melt B ion-exchange It becomes difficult for the high refractive index layer to move into the glass by immersion and application of an electric field. P 2 0 content of 5 preferably 9% or more, more preferably over 11% or more. If the content is more than 40%, the chemical durability becomes poor or the glass becomes difficult. P 2 0 content of 5 or less preferably 30%, more preferably 20% or less.
S i〇2 と P2 05 の含有量の合計は 30 %以上であることが好ましい。It is preferable that the total content of S I_〇 2 and P 2 0 5 is 30% or more.
L i 2 0、 Na2 0、 K2 0、 Rb2 Oおよび F r 2 Oはイオン交換のための 成分であり、 いずれか 1種以上を含有しなければならない。 これらアルカリ金属 酸化物の含有量の合計が 5 %未満ではイオン交換層の屈折率が小さくなる。 これ らの含有量の合計は好ましくは 7. 5%以上である。 これらの含有量の合計が 3 0%超では、 ガラス化が困難になる、 Teが低くなる、 または耐候性が低下する 。 より好ましくは 25%以下、 特に好ましくは 20%以下である。 Li 20 , Na 20 , K 20 , Rb 2 O, and Fr 2 O are components for ion exchange and must contain at least one of them. If the total content of these alkali metal oxides is less than 5%, the refractive index of the ion exchange layer will be small. The sum of these contents is preferably at least 7.5%. In total 3 0% of these contents, vitrification tends to be difficult, T e is low, or the weather resistance is lowered. It is more preferably at most 25%, particularly preferably at most 20%.
L i 2 Oおよび Na2 Oの少なくともいずれか一方を含有することが好ましく 、 Na2 Oを含有することがより好ましい。 It preferably contains at least one of Li 2 O and Na 2 O, and more preferably contains Na 2 O.
Na2 Oを含有する場合、 その含有量は 5〜20%であることが好ましく、 よ り好ましくは 7. 5%以上である。 なお、 この場合 Na2 〇以外のアルカリ金属 酸化物を含有してもよいし、 含有しなくてもよい。 When containing Na 2 O, the content thereof is 5 to 20% or preferably, yo Ri is preferably 7.5% or more. In this case, an alkali metal oxide other than Na 2 O may or may not be contained.
本発明のガラスをより失透しにくくしたい、 等の場合には Κ2 Οを含有しない ことが好ましい。 In the case of making the glass of the present invention more difficult to devitrify, etc., it is preferable that the glass does not contain { 2 }.
A 12 03 は必須ではないが、 イオン交換効率を高くするために 40 %まで含 有してもよい。 40 %超ではガラス溶解時に結晶化しやすくなりガラスの透過率 が低下するおそれがある。 この含有量は好ましくは 30%以下、 より好ましくは 20%以下である。 A l 2 03 を含有する場合その含有量は 1 %以上であること が好ましく、 より好ましくは 5%以上、 特に好ましくは 8%以上である。 Although A 1 2 0 3 is not essential, it may have free up to 40% in order to increase the ion exchange efficiency. If it exceeds 40%, it tends to crystallize when the glass is melted, and the transmittance of the glass may decrease. This content is preferably at most 30%, more preferably at most 20%. Its content when they contain A l 2 0 3 is preferably at least 1%, more preferably 5% or more, particularly preferably 8% or more.
MgO、 CaO、 S r〇、 B a Oおよび Z n Oはいずれも必須ではないが、 ガ
ラスを安定化させるために合計で 30%までの範囲で含有してもよい。 これらの 含有量の合計が 30 %超ではガラス溶解時に結晶化しやすくなるおそれがある。 これらの含有量の合計は、 好ましくは 20%以下、 より好ましくは 10 %以下で ある。 MgO, CaO, Sr〇, BaO and ZnO are all optional, In order to stabilize the glass, it may be contained up to a total of 30%. If the total of these contents exceeds 30%, crystallization may be likely to occur when the glass is melted. The total of these contents is preferably 20% or less, more preferably 10% or less.
これら 5成分の中では B aOを 1〜10 %含有することが好ましい。 Among these five components, it is preferable to contain 1 to 10% of BaO.
B2 03 は必須ではないが、 TD を低くしてガラス形成を容易にするために、 または光増幅利得が得られる波長幅を大きくするために 20%まで含有してもよ い。 B2 03 の含有量が 20%超では、 マルチフオノン緩和が増大して蛍光寿命 が短くなり光増幅に使用することが困難になるおそれがある。 この含有量は好ま しくは 7. 5%以下である。 Although 2 0 3 is not essential B, and for ease of glass formation by low T D, or but it may also contain up to 20% in order to increase the wavelength width of the optical amplification gain. When the content of B 2 0 3 is more than 20%, it may become difficult to fluorescence lifetime Maruchifuonon relaxation is increased is used becomes light amplifying short. This content is preferably less than 7.5%.
Ge02 は必須ではないが、 ガラス形成を容易にするとともに屈折率を高くす る効果があり 20 %まで含有してもよい。 この含有量が 20 %超ではかえってガ ラスが結晶化しやすくなるおそれがある。 この含有量は好ましくは 10%以下、 より好ましくは 5%以下である。 Ge02 を含有する場合、 その含有量は 0. 1 %以上であることが好ましく、 より好ましくは 1 %以上である。 Ge0 2 is not essential, but may be incorporated up to 20% has higher to that effect the refractive index with ease glass formation. If the content exceeds 20%, the glass may be easily crystallized. This content is preferably at most 10%, more preferably at most 5%. When containing ge0 2, its content is preferably 1% or more 0.1, more preferably 1% or more.
T i02 、 Z r〇2 、 Sn〇2 および Y2 〇3 はいずれも必須ではないが、 ガ ラス作製時の失透を抑制するために、 または屈折率を調整するために合計で 20 %までの範囲で含有してもよい。 これらの含有量の合計が 20%超ではかえつて ガラスが結晶化しやすくなるおそれがある。 これらの含有量の合計は好ましくは 10%以下、 より好ましくは 5%以下である。 T i0 2, Z R_〇 2, but Sn_〇 2 and Y 2 〇 3 is not essential, but 20% in order to suppress devitrification of glass during fabrication, or in total in order to adjust the refractive index It may be contained in the range up to. If the total of these contents exceeds 20%, the glass may be easily crystallized. The total of these contents is preferably 10% or less, more preferably 5% or less.
C eOa は必須ではないが、 ガラス組成中の B i 2 03 がガラス溶融中に還元 されて金属ビスマスとして析出しガラスの透明性を低下させることを抑制するた めに、 10 %まで含有してもよい。 Ce02 の含有量が 10%超では、 ガラス化 が困難になる、 または、 黄色またはオレンジ色の着色が強くなつてガラスの透過 率が低下するおそれがある。 この含有量は好ましくは 1%以下、 より好ましくは 0. 5%以下、 特に好ましくは 0. 3%以下である。 Although C eO a is not essential, in order were suppresses the B i 2 0 3 in the glass composition reduces the transparency of the glass is reduced in the glass melting precipitated as metal bismuth, containing up to 10% May be. Ce0 the content of 2 10%, the vitrification becomes difficult, or there is a risk that a yellow or orange coloration is strong for connexion glass transmittance is reduced. This content is preferably at most 1%, more preferably at most 0.5%, particularly preferably at most 0.3%.
Ce02 を含有する場合、 その含有量は 0. 01 %以上であることが好ましく 、 より好ましくは 0. 05%以上、 特に好ましくは 0. 1%以上である。
なお、 ガラスの透過率の低下を避けたい場合、 Ce02 の含有量は 0. 15% 未満とすることが好ましく、 Ce02 を実質的に含有しないことがより好ましい 本発明のガラスは本質的に上記成分からなるが、 本発明の目的を損なわない範 囲で他の成分を含有してもよい。 当該他の成分の含有量の合計は、 好ましくは 3 0%以下、 より好ましくは 20 %以下、 特に好ましくは 15%以下である。 たとえば本発明のガラスを光増幅導波路の製造に用いる場合には、 前記他の成 分と下記酸化物基準の好ましい含有量の範囲として以下のようなものが挙げられ る。 なお、 以下に挙げる成分は本発明のガラスが光増幅導波路の製造に用いられ ない場合であっても本発明の目的を損なわない範囲で含有してもよいことはもち ろんである。 When containing ce0 2, preferably it has a content is 0.01% or more, more preferably 0.05% or more, particularly preferably 1% or more 0.1. Incidentally, if it is desired to avoid a reduction in the transmittance of the glass, the content of CeO 2 is preferably set to 0.1 less than 15%, the glass of the preferred present invention may not contain CeO 2 substantially it is essentially It consists of the above components, but may contain other components as long as the object of the present invention is not impaired. The total content of the other components is preferably 30% or less, more preferably 20% or less, and particularly preferably 15% or less. For example, when the glass of the present invention is used for manufacturing an optical amplification waveguide, the following components may be mentioned as preferable ranges of the other components and the following oxide standards. It should be noted that the following components may be contained in a range that does not impair the object of the present invention even when the glass of the present invention is not used for manufacturing an optical amplification waveguide.
P r a 03 +Dy 2 03 +E r 2 03 +Tm2 03 : 0. 1〜5% Pra 0 3 + Dy 2 0 3 + E r 2 0 3 + Tm 2 0 3 : 0.1 to 5%
P r2 03 、 Dy2 〇3 、 E r2 03 および Tm2 03 は光増幅機能を有する 成分であり、 いずれか 1種以上を含有することが好ましい。 これら 4成分の含有 量の合計が 5%超では濃度消光により所望の光増幅率が得られない、 またはガラ スが結晶化するおそれがある。 これらの含有量の合計はより好ましくは 0. 2〜P r 2 0 3, Dy 2 〇 3, E r 2 0 3 and Tm 2 0 3 is a component having an optical amplification function, it is preferable to contain one or more either. If the total content of these four components exceeds 5%, there is a possibility that a desired optical amplification factor cannot be obtained due to concentration quenching, or glass is crystallized. The total of these contents is more preferably from 0.2 to
2 %である。 2%.
Cパンド (波長: 1530〜1560 nm) または Lバンド (波長: 1570 〜1600 nm) において光増幅を行なう場合は E r (E r 2 〇3 ) を、 S +バ ンド (波長: 1450〜1490nm) または Sバンド (波長: 1490〜 15C Pando (wavelength: 1,530 to 1,560 nm) or L band (wavelength: 1570 to 1600 nm) for the case of optical amplification in E r (E r 2 〇 3), S + bands (wavelength: 1450~1490nm) Or S band (wavelength: 1490-15
30 nm) において光増幅を行なう場合は Tm (Tm2 03 ) を、 1300 nm 帯において光増幅を行なう場合は P r (P r 2 03 ) または Dy (Dy2 03 ) を、 それぞれ含有することが好ましい。 The Tm (Tm 2 0 3) When performing optical amplification in 30 nm), the case of performing optical amplification in the 1300 nm band P r (P r 2 0 3 ) or Dy a (Dy 2 0 3), containing respectively Is preferred.
Ga2 03 +Te02 +L a2 Os +WOs : 0. 1〜30% Ga 2 0 3 + Te0 2 + L a 2 O s + WO s: 0. 1~30%
これら 4成分の含有量が 30%超では TDが高くなつてガラスが結晶化するお それがある。 これらの含有量の合計は、 より好ましくは 1〜20%、 特に好まし くは 2〜20 %である。 These 4 content of the component may cause personal to connexion glass crystallization of high T D is 30 percent. The total of these contents is more preferably from 1 to 20%, particularly preferably from 2 to 20%.
Ga2 03 は、 特に B i 2 03含有量が 25 %以下である場合に光増幅率を大
きくする、 または利得が得られる波長幅を大きくする効果を有する。 Ga2 03 を含有する場合その含有量は 2〜 25 %であることが好ましい。 この含有量が 2 5%超ではガラス作製時に結晶が析出しガラスの透過率が低下するおそれがある 。 Ga2 03 の含有量は、 より好ましくは 5〜20 %、 特に好ましくは 5〜 15 %である。 Ga 2 0 3 is the optical amplification factor large especially if it is less 25% B i 2 0 3 content This has the effect of increasing the gain or increasing the wavelength width over which gain can be obtained. Its content when containing Ga 2 0 3 is 2 is preferably 25%. If the content is more than 25%, crystals may precipitate during glass production, and the transmittance of the glass may be reduced. The content of Ga 2 0 3 is more preferably 5-20%, particularly preferably 5-15%.
Te02 は光増幅率を大きくする効果を有する。 Te02 を含有する場合その 含有量は 1〜20 %であることが好ましい。 この含有量が 20%超ではガラス作 製時に結晶が析出しガラスの透過率が低下するおそれがある。 Ga2 03 の含有 量はより好ましくは 2〜 5%である。 Te0 2 has the effect of increasing the optical amplification factor. Its content when they contain te0 2 is preferably 1 to 20%. If the content is more than 20%, crystals may precipitate during glass production, and the transmittance of glass may decrease. The content of Ga 2 0 3 is more preferably from 2 to 5%.
L a2 03 は、 特に E r 2 03 を含有する場合にその分散性を上げ濃度消光を 防ぐ効果を有する。 L a2 03 を含有する場合その含有量は 0. 1〜20%であ ることが好ましく、 20%超ではガラス作製時に結晶が析出しガラスの透過率が 低下するおそれがある。 L a 2 0 3, especially has the effect of preventing concentration quenching raise its dispersibility in the case of containing E r 2 0 3. Its content when they contain L a 2 0 3 is preferably 1-20% der Rukoto 0.5, may decrease the transmittance of the glass to precipitate crystals during glass making is 20 percent.
E r 2 03 を 0. 1〜1 %含有する場合には L a2 〇3含有量は好ましくは 0 . 1%以上1%未満、 より好ましくは 0. 5 %以上 1%未満である。 Preferably L a 2 〇 3 content in the case of containing E r 2 0 3 0. 1~1% 0. 1% or more and less than 1%, more preferably less than 1% 5% or more 0.5.
E r 2 03 を 1 %超 5%以下の範囲で含有する場合には、 L a 2 03含有量は 好ましくは:!〜 20%、 より好ましくは 2〜 5%である。 When containing E r 2 0 3 exceeds 1% 5% range, L a 2 0 3 content is preferably:! -20%, more preferably 2-5%.
wo3 は利得が得られる波長幅を大きくする効果を有する。 wo3 を含有する 場合その含有量は 1〜 10 %であることが好ましく、 10 %超では光増幅率が低 下するおそれがある。 この含有量はより好ましくは 2〜 5%である。 wo 3 has the effect of increasing the wavelength width over which gain can be obtained. When wo 3 is contained, its content is preferably 1 to 10%, and if it exceeds 10%, the optical amplification factor may be reduced. This content is more preferably 2-5%.
E r 2 03 を含有する場合に光増幅率を大きくする等のために Yb 2 03 を含 有してもよい。 Yb 2 03 を含有する場合その含有量は 0. 1〜5%であること が好ましい。 The Yb 2 0 3 may have free for such increase the optical amplification factor in case of containing E r 2 0 3. Its content when containing Yb 2 0 3 is preferably 1-5% 0.1.
本発明のガラスにおける前記他の成分は以上述べた成分に限られないが、 C d Oを含有する場合は Z n 0 + C d Oが 5 %以下であることが好ましい。 The other components in the glass of the present invention are not limited to the components described above, but when CdO is contained, it is preferable that Zn0 + CdO is 5% or less.
次に、 本発明の光導波路について説明する。 Next, the optical waveguide of the present invention will be described.
本発明の光導波路は 5 5 。 が 1. 6以上であるガラスに 2段階熱イオン交 換を行なって製造される。
前記ガラスの 5 5 Q が 1. 6以上であるので三次非線形光学効果が大きい 。 また、 光増幅に用いるべくたとえば前記ガラスが E r、 Tm、 P rおよび Dy からなる群から選ばれた 1種以上の希土類元素を含有し、 P r 2 03 +Dy2 0 3 +E r 2 03 +Tm2 03 が 0. 1〜5モル%である場合、 その光増幅特性が 優れたものになる。 5 5 Q は、 好ましくは 1. 7以上、 より好ましくは 1. 8以上、 特に好ましくは 1. 9以上である。 The optical waveguide of the present invention 5 5. It is manufactured by performing two-stage thermionic exchange on glass with a ≧ 1.6. Tertiary nonlinear optical effect since 5 5 Q of the glass is at 1.6 or greater. Further, in order to use in an optical amplifier for example, the glass is E r, Tm, one or more rare earth elements selected from the group consisting of P r, and Dy contained, P r 2 0 3 + Dy 2 0 3 + E r If 2 0 3 + Tm 2 0 3 is 1 to 5 mol% 0., it becomes one whose light amplifying properties are excellent. 55 Q is preferably 1.7 or more, more preferably 1.8 or more, and particularly preferably 1.9 or more.
また、 前記ガラスは B i 2 03 、 S i〇2 、 P2 05 およびアルカリ金属酸化 物を含有することが好ましい。 Furthermore, the glass preferably contains B i 2 0 3, S I_〇 2, P 2 0 5 and alkali metal oxides.
B i 2 03 を含有しないと 5 5 。 を 1. 6以上にすることが困難になる。 If not containing B i 2 0 3 5 5. It becomes difficult to make it 1.6 or more.
B i 2 03 を 1 0モル%以上含有することがより好ましい。 More preferably contains B i 2 0 3 1 0 mol% or more.
S i 02 を含有しないとガラス化が困難になる。 S i 02 を 20モル%以上含 有することがより好ましい。 Vitrification tends to be difficult and does not contain a S i 0 2. The S i 0 2 and more preferably has containing 20 mol% or more.
P2 05 を含有しないと Ag含有光導波部を形成するための 2段階熱イオン交 換処理の効率が低下するおそれがある。 P2 05 を 9モル%以上含有することが より好ましい。 P 2 0 5 containing no the efficiency of the two-stage heat ion exchange process to form a Ag-containing light waveguide may be lowered. And more preferably contains P 2 0 5 to 9 mol% or more.
アル力リ金属酸化物を含有しないと 2段階熱イオン交換を行なうことが困難に なる。 Na2 Oを 7. 5モル%以上含有することがより好ましい。 If the metal oxide is not contained, it is difficult to perform two-stage thermal ion exchange. More preferably, Na 2 O is contained in an amount of 7.5 mol% or more.
前記ガラスは本発明のガラスであることが好ましい。 The glass is preferably the glass of the present invention.
本発明の光導波路における A g含有光導波部は、 前記ガラスに 2段階熱イオン 交換を行なうことによって埋め込まれたものであるが、 その 2段階熱イオン交換 は先に説明した本発明の方法の 2段階熱イオン交換と、 一次イオン交換に用いら れるイオン交換用融液 (イオン交換用融液 A) が Ag含有融液に限られる点を除 き同じである。 The Ag-containing optical waveguide in the optical waveguide of the present invention is embedded in the glass by performing two-stage thermal ion exchange, and the two-stage thermal ion exchange is performed by the method of the present invention described above. This is the same as the two-step thermal ion exchange except that the ion exchange melt (ion exchange melt A) used for the primary ion exchange is limited to the Ag-containing melt.
イオン交換用融液 Aとしては、 AgN03 融液、 L i N03 、 NaN03 およ び KN03 からなる群から選ばれる 1種以上のアルカリ金属硝酸塩と A g NO 3 との混合融液、 等が例示される。 The ion exchange melt A, AgNO 3 melt, L i N0 3, NaN0 3 Oyo melt mixture of one or more alkali metal nitrate and A g NO 3 selected from the group consisting of beauty KN0 3, Etc. are exemplified.
二次イオン交換に用いられるイオン交換用融液 (イオン交換用融液 B) として は、 NaN〇3 融液、 L i N〇3融液等の他に、 L i NOs 、 NaN〇3および
KN03 からなる群から選ばれる 2種以上のアルカリ金属硝酸塩の混合融液等の 混合融液が例示される。 The ion exchange melt for use in secondary ion exchange (ion exchange melt B), NaN_〇 3 melt, in addition to such L i N_〇 3 melt, L i NO s, NaN_〇 3 and A mixture of two or more melt mixing melt like alkali metal nitrate selected from the group consisting of KN0 3 is exemplified.
典型的には、 イオン交換用融液 A、 Bはそれぞれ A g NO 3融液、 NaN03 融液である。 Typically, the ion exchange melt A, respectively B A g NO 3 melt, is NaN0 3 melt.
A g含有光導波部の A g含有量の最も大きい部分とガラス表面 (本発明の光導 波路の表面) との最短距離 dが 1 xm未満では光をシングルモード伝播すること が困難になる。 dは好ましくは 3 m以上、 より好ましくは 5 m以上である。 dは、 EPMA (電子線マイクロアナライザ) によってガラス断面の A g濃度 プロファイルを測定し、 その A g濃度ピーク位置とガラス表面の最短距離を測定 して求められる。 If the shortest distance d between the portion of the Ag-containing optical waveguide having the highest Ag content and the glass surface (the surface of the optical waveguide of the present invention) is less than 1 xm, it becomes difficult to propagate light in single mode. d is preferably 3 m or more, more preferably 5 m or more. d can be determined by measuring the Ag concentration profile of the glass cross section using an EPMA (Electron Beam Microanalyzer) and measuring the shortest distance between the Ag concentration peak position and the glass surface.
A g含有光導波部の A g含有量の最大値 C A g、 すなわち前記 A g濃度ピーク 位置における A g含有量は、 質量百分率表示で 0. 5%以上であることが好まし い。 Ag含有量が 0. 5 %未満では A g含有光導波部 (コアに相当) とその周囲 のクラッドとの屈折率差が小さくなりすぎる。 この含有量はより好ましくは 1 % 以上、 特に好ましくは 2%以上である。 光増幅導波路に用いる場合は、 所望の光 増幅率を得るためには CA gが 1 %以上であることが好ましい。 The maximum value CA g of the Ag content of the Ag-containing optical waveguide, that is, the Ag content at the Ag concentration peak position is preferably 0.5% or more in terms of mass percentage. If the Ag content is less than 0.5%, the refractive index difference between the Ag-containing optical waveguide (corresponding to the core) and the surrounding cladding becomes too small. This content is more preferably at least 1%, particularly preferably at least 2%. When used for the optical amplification waveguide, it is preferred for obtaining the desired optical amplification factor is C A g is 1% or more.
また、 CA g は好ましくは 10%以下である。 CA gが 10%超では前記屈折 率差が大きくなりすぎて光をシングルモード伝播することが困難になる。 CA g はより好ましくは 7 %以下である。 Also, C Ag is preferably 10% or less. If C Ag exceeds 10%, the refractive index difference becomes too large and it becomes difficult to propagate light in single mode. C Ag is more preferably 7% or less.
本発明の光導波路および本発明の方法によって製造された光導波路は、 石英系 ガラスファイバの低損失波長領域 (概ね 1300〜 1650 nmの波長領域) の 光がシンダルモードで伝播できるものであることが好ましく、 またこれら光導波 路が光増幅導波路である場合典型的には波長が 900〜1490 nmである励起 光が使用されるが、 このような励起光もシンダルモードで伝播できるものである ことが好ましい。 The optical waveguide of the present invention and the optical waveguide manufactured by the method of the present invention are capable of transmitting light in a low-loss wavelength region (approximately 1300 to 1650 nm) of a silica glass fiber in a sinal mode. Preferably, when these optical waveguides are optical amplification waveguides, pump light having a wavelength of 900 to 1490 nm is typically used, and such pump light can also propagate in a sinal mode. Is preferred.
本発明の光導波路の製造または本発明の方法においては、 導波路のパターニン グを行ない、 その後 2段階熱イオン交換が行なわれる。 In the production of the optical waveguide of the present invention or the method of the present invention, the waveguide is patterned, and then the two-stage thermal ion exchange is performed.
導波路のパターニングは、 たとえば次のようにして行なわれる。 すなわち、 ガ
ラス表面上にフォトレジスト法によってレジストパターンを刻み、 該レジス卜パ ターン上にスパッタリング法によってイオン交換遮蔽膜 (たとえば A 1膜) を形 成する。 次に、 有機溶剤を用いるリフトオフによってレジストを除去し、 レジス トのない部分に形成されたイオン交換遮蔽膜のみが残ったイオン交換マスクを作 製する。 The patterning of the waveguide is performed, for example, as follows. That is, A resist pattern is engraved on the surface of the glass by a photoresist method, and an ion exchange shielding film (for example, an A1 film) is formed on the resist pattern by a sputtering method. Next, the resist is removed by lift-off using an organic solvent, and an ion-exchange mask in which only the ion-exchange shielding film formed on the portion without the resist remains is manufactured.
前記イオン交換マスクの幅は 1〜8 xmであることが好ましい。 この幅が 1 n m未満では石英系ガラスファイバ等との接続が困難になり、 8 m超ではシング ルモードでの光伝播が困難になる。 この幅はより好ましくは 2 m以上であり、 また 6 2m以下である。 The width of the ion exchange mask is preferably 1 to 8 xm. When the width is less than 1 nm, connection with a silica glass fiber or the like becomes difficult. When the width is more than 8 nm, light propagation in single mode becomes difficult. This width is more preferably at least 2 m and at most 62 m.
前記イオン交換遮蔽膜としては、 A 1膜、 T i膜等が例示される。 Examples of the ion exchange shielding film include an A1 film and a Ti film.
その厚みは 0. 2〜2 mであることが好ましい。 0. 2 im未満では充分な 遮蔽効果が得られなくなる。 2 m超ではリフトオフが困難になる。 The thickness is preferably 0.2 to 2 m. If it is less than 0.2 im, a sufficient shielding effect cannot be obtained. Above 2 m, lift-off becomes difficult.
(実施例) (Example)
表の B i 2 03から Yb 2 03 までの欄にモル%表示で示す組成となるように 原料を調合、 混合して 15 gの調合原料を作製した。 この調合原料を白金ルツポ に入れ大気雰囲気中で 1200°Cに 1時間保持して溶解し、 得られた溶融ガラス を板状に流し出しそのまま空冷した。 例 1〜8は実施例、 例 9は比較例である。 得られたガラスについて、 ガラス転移点 Te (単位:。 C) を示差熱分析により 、 失透温度 TD (単位:。 C) を 1 150° (:、 1125°C、 1100°C、 1075 °C、 1050°Cの各温度の炉を用いて測定した。 なお、 1125°Cでは結晶析出 が認められ 1100^では結晶析出が認められなかった場合は 「<1125 」 、 1050°Cで結晶析出が認められなかった場合は 「ぐ 1050で」 、 というよ うに表の TD の欄に記載した。 Table B i 2 0 3 Formulation of raw material so as to have the composition shown in column mol% up Yb 2 0 3 from to prepare a 15 g formulation material and mixed. The prepared raw material was put in a platinum rupo and melted while being kept at 1200 ° C. for 1 hour in an air atmosphere, and the obtained molten glass was poured into a plate shape and air-cooled as it was. Examples 1 to 8 are Examples and Example 9 is a Comparative Example. For the obtained glass, the glass transition point T e (unit: .C) was determined by differential thermal analysis to determine the devitrification temperature T D (unit: .C) at 1150 ° (:, 1125 ° C, 1100 ° C, 1075). The temperature was measured using furnaces at different temperatures of 10 ° C and 1050 ° C. In the case where crystal precipitation was observed at 1125 ° C and no crystal precipitation was observed at 1100 ^, “<1125” precipitation If you have not observed and described in the column of T D of by sea urchin table say, "in the tool 1050".
例 1〜3、 5〜9については別に 200 gの調合原料を作製し、 1200°Cに 2時間保持し、 得られた溶融ガラスを板状に流し出し、 温度が TGである炉に 4 時間保持後常温まで冷却する徐冷を行なった。 得られたガラスを厚み 2 mm、 大 きさ 2 OmmX 20 mmの板状に加工後その両面を鏡面研磨しサンプル板とした
サンプル板の波長 633 nmの光に対する屈折率 n 6 3 3および前記 5 5 0 をメトリコン社製モデル 2010プリズム力ブラを用いて測定した。 For Examples 1-3 and 5-9, separately prepare 200 g of the blended raw material, hold it at 1200 ° C for 2 hours, pour the obtained molten glass into a plate shape, and place it in a furnace with a temperature of TG. After keeping the temperature for a while, the temperature was gradually cooled to room temperature. The obtained glass was processed into a plate with a thickness of 2 mm and a size of 2 OmmX 20 mm, and both surfaces were mirror-polished to obtain a sample plate. The refractive index n 6 3 3 and the 5 5 0 for light with a wavelength of 633 nm of the sample plate was measured using a Metricon Corporation model 2010 prism force bra.
表 1 table 1
例 1 例 2 例 3 例 4 例 5 例 6 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
B i 203 14.83 12.48 14.98 14.83 24.95 27.19 B i 20 3 14.83 12.48 14.98 14.83 24.95 27.19
S i 02 24.71 27.46 24.96 29.65 24.96 19.77 S i 0 2 24.71 27.46 24.96 29.65 24.96 19.77
P2O5 14.83 14.98 14.98 12.36 9.99 12.36 P 2 O 5 14.83 14.98 14.98 12.36 9.99 12.36
N a 20 14.83 14.98 14.98 12.36 9.88 9.88 N a 2 0 14.83 14.98 14.98 12.36 9.88 9.88
A 1203 14.83 14.98 14.98 12.36 9.88 12.36 A 1 2 0 3 14.83 14.98 14.98 12.36 9.88 12.36
B aO 4.94 4.99 4.99 7.42 4.94 7.42 B aO 4.94 4.99 4.99 7.42 4.94 7.42
C e〇2 0.15 0.15 0.15 0.15 0.15 0.15 C e〇 2 0.15 0.15 0.15 0.15 0.15 0.15
Ga2Os 9.89 9.98 9.99 9.88 9.88 9.88 Ga 2 O s 9.89 9.98 9.99 9.88 9.88 9.88
E r 203 0.99 0 0 0.99 0.99 0.99 E r 2 0 3 0.99 0 0 0.99 0.99 0.99
Yb203 0 0 0 0 0 0 Yb 2 0 3 0 0 0 0 0 0
TD <1150 <1125 <1100 <1125 <1125 <1150 T D <1150 <1125 <1100 <1125 <1125 <1150
TG 490 495 490 505 480 455 T G 490 495 490 505 480 455
n 633 1.737 1.699 1.732 ― 1.868 1.887 n 633 1.737 1.699 1.732 ― 1.868 1.887
n 1550 1.705 1.673 1.701 ― 1.834 1.852
n 1550 1.705 1.673 1.701-1.834 1.852
表 2 Table 2
例 1、 7、 9のサンプル板については次に述べるようなイオン交換処理を行な つてィォン交換効率を評価した。 The sample plates of Examples 1, 7, and 9 were subjected to the following ion exchange treatment to evaluate the ion exchange efficiency.
すなわち、 サンプル板をモル比 1 : 1の AgN〇3 -L i N03 融液に表 3に 示す時間浸漬し、 n 6 3 3 のイオン交換処理による増加量 Δη 6 3 3 を測定した 。 例 1については前記融液温度が 320^ (例 l a) 、 370°C (例 l b) の場 合について、 例 7については前記融液温度が 340°C (例 7 c) の場合について 、 例 9については前記融液温度が 370°C (例 9 b) の場合について、 それぞれ 測定した。 結果を表 3に示す。 That is, the molar sample plate ratio of 1: 1 and immersion time shown in Table 3 in AgN_〇 3 -L i N0 3 melt was measured increase .DELTA..eta 6 3 3 by ion exchange treatment n 6 3 3. Example 1 is for the case where the melt temperature is 320 ^ (example la) and 370 ° C (example lb), and Example 7 is for the case where the melt temperature is 340 ° C (example 7c). For No. 9, each was measured when the melt temperature was 370 ° C. (Example 9b). Table 3 shows the results.
Δη 6 3 3 が早く飽和に達するほどイオン交換の進行が速いと考えられる。The progress of higher ion exchange Δη 6 3 3 reaches the early saturation is considered to be fast.
Δη 6 3 3 は前記融液温度が 370°C、 イオン交換時間が 1時間の場合 0. 0 4以上であることが好ましい。
表 3 .DELTA..eta 6 3 3 is the melt temperature is 370 ° C, it is preferred ion exchange time is when 0.0 4 or more 1 hour. Table 3
また、 例 7のガラスを用いて次のようにして光増幅導波路を作製した。 すなわ ち、 300 gの調合原料を作製し、 1200°Cに 2時間保持し、 得られた溶融ガ ラスを内径 80mmの型に流し出し、 470 °Cに 4時間保持後常温まで冷却する 徐冷を行なった。 得られたガラスを厚み 1. 5mm、 直径 76. 2mmのウェハ 状に加工後、 その両面を鏡面研磨しウェハ状ガラスとした。 Further, an optical amplification waveguide was produced using the glass of Example 7 as follows. That is, 300 g of the prepared raw material is prepared, kept at 1200 ° C for 2 hours, the obtained molten glass is poured into a mold having an inner diameter of 80 mm, kept at 470 ° C for 4 hours, and then cooled to room temperature. Cooling was performed. The obtained glass was processed into a wafer having a thickness of 1.5 mm and a diameter of 76.2 mm, and both surfaces were mirror-polished to obtain a wafer-like glass.
このウェハ状ガラスに、 マスク幅が 3 zm、 厚みが 0. 5 mの A 1製イオン 交換遮蔽膜を用いてフォトレジスト法により導波路パターニングを行なった。 リフトオフにより作製したイオン交換マスクが形成されたウェハ状ガラスを、 温度が 340°C、 モル比が 1 : 1の AgN03 -L i N03 混合融液に 3時間浸 漬し (一次イオン交換) 、 その後イオン交換マスクは研磨して除去した。 Waveguide patterning was performed on this wafer-like glass by a photoresist method using an A1 ion-exchange shielding film having a mask width of 3 zm and a thickness of 0.5 m. The wafer-shaped glass ion exchange mask is formed which is produced by the lift-off, the temperature is 340 ° C, the molar ratio of 1: 1 was immersed for 3 hours in AgNO 3 -L i N0 3 melt mixture (primary ion-exchange) Then, the ion exchange mask was polished and removed.
次に、 温度が 340°Cの NaN03融液に浸漬し、 当該融液中に浸漬された陽 極 ·陰極間に表 4に示す電力量 (単位: W* h) となるように電場を印加する二 次イオン交換を行なった (例 7 、 7 β、 7 r) Then, the temperature is immersed in NaN0 3 melt 340 ° C, the amount of power shown in Table 4 between the soaked positive electrode-cathode to the melt (unit: W * h) and so as to the electrical field Secondary ion exchange was applied (Example 7, 7β, 7r)
二次イオン交換後のウェハ状ガラス断面の A g濃度プロファイルを EPMAを 用いて測定し、 前記 d (単位: m) および CA g (単位:質量百分率) を求め た。 結果を表 4に示す。
表 4 The Ag concentration profile of the cross section of the wafer-like glass after the secondary ion exchange was measured using EPMA, and the above d (unit: m) and C Ag (unit: mass percentage) were determined. Table 4 shows the results. Table 4
例 7 ]3で作製した光増幅導波路について、 その両端をベアシングルモードファ ィバでバットジョイント接続をし、 パヮ一メータを用いて導波路長が 1 cmおよ び 2 cmの場合の波長 1300 nmの光に対する損失を測定した。 測定の結果、 導波路長が 1 c mおよび 2 c mの場合の損失はそれぞれ— 3. 1 d B、 — 3. 6 dBであった。 また、 この結果から算出した伝播損失は 0. 5 dB/cmであつ た。 Example 7] With respect to the optical amplification waveguide fabricated in 3), butt-joined both ends of the optical amplification waveguide with bare single mode fiber, and the wavelength when the waveguide length is 1 cm and 2 cm using a parameter meter. The loss for 1300 nm light was measured. As a result, when the waveguide length was 1 cm and 2 cm, the loss was -3.1 dB and -3.6 dB, respectively. The propagation loss calculated from this result was 0.5 dB / cm.
また、 例 7 /3で作製した光増幅導波路について、 次のようにしてシグナルェン ハンスメント SEを測定した。 すなわち、 波長 98 O nmの励起光源 (励起パヮ 一: 75mW) 力 らの光と、 波長 1520〜: L 620 nmの信号光源 (信号パヮ —: O dBm) からの光とを WDM力ブラにより合波後当該光増幅導波路に入力 し、 そこから出てきた光を光スペアナにより検出して SE (単位: dB) を測定 した。 For the optical amplification waveguide fabricated in Example 7/3, the signal enhancement SE was measured as follows. That is, the light from the excitation light source with a wavelength of 98 O nm (excitation power: 75 mW) and the light from the signal light source with a wavelength of 1520 to: L 620 nm (signal power: O dBm) are combined by a WDM power bra. After the wave, the light was input into the optical amplification waveguide, and the light emitted from the waveguide was detected by an optical spectrum analyzer, and SE (unit: dB) was measured.
導波路長が 1 cmおよび 2 cmの場合の各信号光波長 (単位: nm) に対する 結果を表 5、 6に示す。 なお、 SEが 2 dB未満はノイズである可能性がある。 この結果から波長が 1520〜 1570 nmの光に対する増幅が明らかに認め られる。 Tables 5 and 6 show the results for each signal light wavelength (unit: nm) when the waveguide length is 1 cm and 2 cm. If SE is less than 2 dB, it may be noise. From this result, amplification for light with a wavelength of 1520 to 1570 nm is clearly recognized.
表 5 Table 5
波長 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 Wavelength 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570
S E ( 1 c m) 2.8 2.9 4.6 5.0 4.2 4.0 2.9 3.0 2.5 3.2 2.9S E (1 cm) 2.8 2.9 4.6 5.0 4.2 4.0 2.9 3.0 2.5 3.2 2.9
S E ( 2 c m) 3.3 5.4 8.6 10.0 7.5 6.4 4.8 3.6 3.5 2.0 2.0
表 6
SE (2 cm) 3.3 5.4 8.6 10.0 7.5 6.4 4.8 3.6 3.5 2.0 2.0 Table 6
産業上の利用の可能性 Industrial potential
本発明によれば、 ファイバ加工することなく、 効率的なイオン交換処理によつ て光増幅器、 三次非線形光学素子等の光導波路に適用できる酸化ビスマス系ガラ スおよびそのような光導波路の製造方法が得られる。 また、 光増幅器、 三次非線 形光学素子等に好適な光導波路が得られる。
According to the present invention, bismuth oxide-based glass applicable to optical waveguides such as optical amplifiers and tertiary nonlinear optical elements by efficient ion exchange processing without fiber processing, and a method for manufacturing such optical waveguides Is obtained. Further, an optical waveguide suitable for an optical amplifier, a tertiary nonlinear optical element, and the like can be obtained.
Claims
請求の範囲 下記酸化物基準のモル%表示で、 Claims In terms of mol% based on the following oxides,
B i 2 03 6〜5 5%、 B i 20 3 6-5 5%,
S i 02 10〜7 0 %、 S i 0 2 10 to 70%,
P2 o5 3〜4 0 %、 P 2 o 5 3-40%,
L i 2 0 + Na2 0 + K2 0 + Rb2 O + F r 2 0 5〜3 0 %、 L i 2 0 + Na 2 0 + K 2 0 + Rb 2 O + F r 2 0 5~3 0%,
A l 2 03 0〜4 0 %、 A l 2 0 3 0 to 40%,
MgO+CaO+S rO+BaO+ZnO 0〜3 0 %、 MgO + CaO + S rO + BaO + ZnO 0-30%,
B 2 03 0〜2 0%、 B 2 0 3 0-20%,
G e 02 0〜2 0 %、 G e 0 20 to 20 %,
T i 02 +Z r 02 +S n02 +Y2 03 0〜 20%、 T i 0 2 + Z r 0 2 + S n0 2 + Y 2 0 3 0 to 20%,
C e 02 0〜 10%、 から本質的になるガラス。 C e 0 2 0-10%, a glass consisting essentially of
2. S i 02 +P2 〇5 が 30 %以上である請求項 1に記載のガラス。 2. S i 0 2 + glass according to claim 1 P 2 〇 5 is 30% or more.
3. E r、 Tm、 P rおよび D yからなる群から選ばれた 1種以上の希土類元 素を含有し、 P r 2 03 +Dy 2 03 +E r 2 03 +Tm2 〇3 が 0. 1〜5モ ル%である請求項 1または 2に記載のガラス。 3. E r, Tm, contain one or more rare-earth element selected from the group consisting of P r and D y, P r 2 0 3 + Dy 2 0 3 + E r 2 0 3 + Tm 2 〇 3. The glass according to claim 1, wherein 3 is 0.1 to 5 mol%.
4. Ga、 Te、 L aおよび Wの中のいずれか 1種以上を含有し、 Ga2 03 + Te02 +L a2 03 +W03 が l.〜 30モル%である請求項 3に記載のガラ ス。 4. Ga, Te, L contains one or more either in a and W, Ga 2 0 3 + Te0 2 + L a 2 0 3 + W0 3 is L.~ 30 mol% claim 3 The glass described in.
5. Ybを含有し、 Yb 2 03 が 0. 1〜5モル%である請求項 3または 4に 記載のガラス。 5. contain Yb, glass according to claim 3 or 4 Yb 2 0 3 is 1 to 5 mol% 0.1.
6. 波長 1550 nmの光に対する屈折率が 1. 6以上である請求項 1〜 5の いずれかに記載のガラス。 6. The glass according to any one of claims 1 to 5, having a refractive index for light having a wavelength of 1550 nm of 1.6 or more.
7. ガラスに 2段階熱ィォン交換を行なうことを特^ [とする光導波路製造方法 であって、 該ガラスが請求項 1〜 6のいずれかに記載のガラスである光導波路製 造方法。
7. A method for producing an optical waveguide, characterized by performing two-stage thermal ion exchange on glass, wherein the glass is the glass according to any one of claims 1 to 6.
8. 波長 1550 nmの光に対する屈折率が 1. 6以上であるガラスに 2段階 熱イオン交換を行なって A g含有光導波部を埋め込んだ光導波路であって、 Ag 含有光導波部の A g含有量の最も大きい部分とガラス表面との最短距離が 1 //m 以上であることを特徴とする光導波路。 8. An optical waveguide in which a Ag-containing optical waveguide is embedded by two-step thermal ion exchange in glass having a refractive index of 1.6 or more for light with a wavelength of 1550 nm. An optical waveguide, wherein the shortest distance between the portion having the largest content and the glass surface is 1 // m or more.
9. A g含有光導波部における A g含有量の最大値が質量百分率表示で 0. 5 %以上である請求項 8に記載の光導波路。 9. The optical waveguide according to claim 8, wherein the maximum value of the Ag content in the Ag-containing optical waveguide is 0.5% or more in terms of mass percentage.
10. 前記ガラスが B i 2 03 、 S i〇2 、 P2 05およびアルカリ金属酸化 物を含有する請求項 7、 8または 9に記載の光導波路。 10. The optical waveguide according to claim 7, 8 or 9, wherein the glass contains B i 2 0 3, S I_〇 2, P 2 0 5 and alkali metal oxides.
11. 前記ガラスが下記酸化物基準のモル%表示で、 B i 2 O 3 6〜 55 % 、 S i 02 10〜70%、 P2 05 3〜40%、 L i 2 0 + Na2 0 + K2 0 + Rb2 O + F r 2 O 5〜30%、 A 12 〇3 0〜40%、 MgO + Ca O+S r O + B aO + Z nO 0〜30%、 B2 03 0〜20%、 Ge02 0〜20%、 T i 02 +Z r 02 +S nOa +Y2 Os 0〜20%、 C e 02 11. The glass in mole% based on the following oxides, B i 2 O 3 6~ 55 %, S i 0 2 10~70%, P 2 0 5 3~40%, L i 2 0 + Na 2 0 + K 2 0 + Rb 2 O + F r 2 O 5~30%, A 1 2 〇 3 0~40%, MgO + Ca O + S r O + B aO + Z nO 0~30%, B 2 0 3 0~20%, Ge0 2 0~20 %, T i 0 2 + Z r 0 2 + S nO a + Y 2 O s 0~20%, C e 0 2
0〜 10 %、 から本質的になる請求項 10に記載の光導波路。 11. The optical waveguide according to claim 10, consisting essentially of 0-10%.
12. 前記ガラスが E r、 Tm、 P rおよび D yからなる群から選ばれた 1種 以上の希土類元素を含有し、 P r2 〇3 +Dy2 03 +E r 2 03 +Tm2 03 が 0. 1〜 5モル%である請求項 8〜 11のいずれかに記載の光導波路。
12. The glass E r, Tm, contain one or more rare earth elements selected from the group consisting of P r and D y, P r 2 〇 3 + Dy 2 0 3 + E r 2 0 3 + Tm 2 0 3 is an optical waveguide according to any one of claims 8-11 is 0.1 to 5 mol%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003280978A AU2003280978A1 (en) | 2002-07-16 | 2003-07-16 | Glass, optical waveguide manufacturing method, and optical waveguide |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-206414 | 2002-07-16 | ||
JP2002206414 | 2002-07-16 | ||
JP2002-332412 | 2002-11-15 | ||
JP2002332412A JP2004102210A (en) | 2002-07-16 | 2002-11-15 | Glass, method for manufacturing optical waveguide and optical waveguide |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004007385A1 true WO2004007385A1 (en) | 2004-01-22 |
Family
ID=30117467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/009039 WO2004007385A1 (en) | 2002-07-16 | 2003-07-16 | Glass, optical waveguide manufacturing method, and optical waveguide |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2004102210A (en) |
AU (1) | AU2003280978A1 (en) |
WO (1) | WO2004007385A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004113244A1 (en) * | 2003-06-20 | 2004-12-29 | Asahi Glass Company, Limited | Lead-free optical glass and optical fiber |
KR100903479B1 (en) * | 2005-07-21 | 2009-06-18 | 쇼오트 아게 | Glass composition exclusively consisting of oxides which already at low temperatures form volatile fluorides by reaction with fluorine and its use |
CN101117271B (en) * | 2007-07-25 | 2010-12-15 | 中国科学院上海光学精密机械研究所 | Phosphate-based optical glass co-doped with ytterbium and bismuth and its preparation method |
CN102276147A (en) * | 2011-05-19 | 2011-12-14 | 昆明理工大学 | Bismuth-doped silicophosphate-based optical glass and preparation method thereof |
US9682885B2 (en) | 2011-11-16 | 2017-06-20 | Corning Incorporated | Ion exchangeable glass with high crack initiation threshold |
CN109399922A (en) * | 2018-10-16 | 2019-03-01 | 东旭科技集团有限公司 | Glass composition, alumina silicate glass and its preparation method and application |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4597794B2 (en) * | 2005-07-01 | 2010-12-15 | アルプス電気株式会社 | Phosphate glass, bonding material using phosphate glass, magnetic head using the bonding material, and plasma display panel |
CN100412583C (en) * | 2006-05-08 | 2008-08-20 | 浙江南方通信集团股份有限公司 | Method for preparing buried glass optical waveguide by single-sided molten salt electric field assisted ion exchange |
JP5850122B2 (en) * | 2014-05-01 | 2016-02-03 | 東洋製罐グループホールディングス株式会社 | Glass substrate, organic EL lighting device, and method for manufacturing glass substrate |
CN108069596A (en) * | 2016-11-15 | 2018-05-25 | 深圳市东丽华科技有限公司 | Low softening point is easy to hot formed chemical strengthening glass substrate and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0948634A (en) * | 1995-08-01 | 1997-02-18 | Res Dev Corp Of Japan | Optical functional glass |
JP2001021745A (en) * | 1999-07-12 | 2001-01-26 | Fuji Elelctrochem Co Ltd | Manufacturing method of embedded optical waveguide |
JP2001102661A (en) * | 1999-09-28 | 2001-04-13 | Asahi Glass Co Ltd | Optical amplifying glass fiber |
JP2003172840A (en) * | 2001-12-06 | 2003-06-20 | Fdk Corp | Optical waveguide device and method of manufacturing the same |
-
2002
- 2002-11-15 JP JP2002332412A patent/JP2004102210A/en active Pending
-
2003
- 2003-07-16 AU AU2003280978A patent/AU2003280978A1/en not_active Abandoned
- 2003-07-16 WO PCT/JP2003/009039 patent/WO2004007385A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0948634A (en) * | 1995-08-01 | 1997-02-18 | Res Dev Corp Of Japan | Optical functional glass |
JP2001021745A (en) * | 1999-07-12 | 2001-01-26 | Fuji Elelctrochem Co Ltd | Manufacturing method of embedded optical waveguide |
JP2001102661A (en) * | 1999-09-28 | 2001-04-13 | Asahi Glass Co Ltd | Optical amplifying glass fiber |
JP2003172840A (en) * | 2001-12-06 | 2003-06-20 | Fdk Corp | Optical waveguide device and method of manufacturing the same |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004113244A1 (en) * | 2003-06-20 | 2004-12-29 | Asahi Glass Company, Limited | Lead-free optical glass and optical fiber |
US7524781B2 (en) | 2003-06-20 | 2009-04-28 | Asahi Glass Company, Limited | Non-lead optical glass and optical fiber |
KR100903479B1 (en) * | 2005-07-21 | 2009-06-18 | 쇼오트 아게 | Glass composition exclusively consisting of oxides which already at low temperatures form volatile fluorides by reaction with fluorine and its use |
CN101117271B (en) * | 2007-07-25 | 2010-12-15 | 中国科学院上海光学精密机械研究所 | Phosphate-based optical glass co-doped with ytterbium and bismuth and its preparation method |
CN102276147A (en) * | 2011-05-19 | 2011-12-14 | 昆明理工大学 | Bismuth-doped silicophosphate-based optical glass and preparation method thereof |
CN102276147B (en) * | 2011-05-19 | 2012-12-19 | 昆明理工大学 | Bismuth-doped silicophosphate-based optical glass and preparation method thereof |
US9682885B2 (en) | 2011-11-16 | 2017-06-20 | Corning Incorporated | Ion exchangeable glass with high crack initiation threshold |
US9783453B2 (en) | 2011-11-16 | 2017-10-10 | Corning Incorporated | Ion exchangeable glass with high crack initiation threshold |
US10562806B2 (en) | 2011-11-16 | 2020-02-18 | Corning Incorporated | Ion exchangeable glass with high crack initiation threshold |
US11724958B2 (en) | 2011-11-16 | 2023-08-15 | Corning Incorporated | Ion exchangeable glass with high crack initiation threshold |
CN109399922A (en) * | 2018-10-16 | 2019-03-01 | 东旭科技集团有限公司 | Glass composition, alumina silicate glass and its preparation method and application |
CN109399922B (en) * | 2018-10-16 | 2022-03-04 | 东旭光电科技股份有限公司 | Composition for glass, aluminosilicate glass, and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2004102210A (en) | 2004-04-02 |
AU2003280978A1 (en) | 2004-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2348615C (en) | Optical amplifying glass, optical amplifying medium and resin-coated optical amplifying medium | |
US5475528A (en) | Optical signal amplifier glasses | |
JP4240721B2 (en) | Optical amplification glass and manufacturing method thereof | |
CA2336619A1 (en) | Tantalum containing glasses and glass ceramics | |
JP4240720B2 (en) | Light amplification glass | |
CA2327297A1 (en) | Antimony oxide glass with optical activity | |
GB2378700A (en) | Tellurite glass | |
KR100848025B1 (en) | Optical amplifying glass and optical waveguide | |
CA2599536A1 (en) | Glass composition containing bismuth and method of amplifying signal light therewith | |
WO2004007385A1 (en) | Glass, optical waveguide manufacturing method, and optical waveguide | |
JPWO2002096818A1 (en) | Crystallized glass for optical filter substrate and optical filter | |
US7341965B2 (en) | Bismuth oxide glasses containing germanium oxide | |
WO2001099241A2 (en) | RARE EARTH ELEMENT-DOPED Bi-Sb-Al-Si GLASS AND ITS USE IN OPTICAL AMPLIFIERS | |
CA2275706A1 (en) | Glass composition and optical device made therefrom | |
JPH0428662B2 (en) | ||
JPWO2010053057A1 (en) | Light amplification glass | |
JP2004277252A (en) | Optical amplification glass and optical waveguide | |
JP4314468B2 (en) | Optical amplification glass and optical waveguide | |
JP4686844B2 (en) | Light amplification glass | |
TW530166B (en) | Interference filter having a glass substrate | |
JP2004168578A (en) | Optical amplification glass and optical waveguide | |
JP2001144358A (en) | Light-amplifying glass | |
US20060083474A1 (en) | Potassium free zinc silicate glasses for ion-exchange processes | |
JP2004002060A (en) | Optical amplifying glass and process for manufacturing optically amplifying waveguide | |
JP2002321938A (en) | Manufacturing method of optical amplification glass and optical amplification waveguide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |