+

WO2004057525A1 - Procede d'authentification et d'identification optique d'objets et dispositif de mise en oeuvre - Google Patents

Procede d'authentification et d'identification optique d'objets et dispositif de mise en oeuvre Download PDF

Info

Publication number
WO2004057525A1
WO2004057525A1 PCT/EP2003/050975 EP0350975W WO2004057525A1 WO 2004057525 A1 WO2004057525 A1 WO 2004057525A1 EP 0350975 W EP0350975 W EP 0350975W WO 2004057525 A1 WO2004057525 A1 WO 2004057525A1
Authority
WO
WIPO (PCT)
Prior art keywords
objects
optical
parameters
image
authentication
Prior art date
Application number
PCT/EP2003/050975
Other languages
English (en)
Inventor
Joseph Colineau
Jean-Claude Lehureau
Renaud Binet
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to EP03796091A priority Critical patent/EP1573661A1/fr
Priority to AU2003298351A priority patent/AU2003298351A1/en
Priority to US10/539,767 priority patent/US20060104103A1/en
Publication of WO2004057525A1 publication Critical patent/WO2004057525A1/fr

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/121Apparatus characterised by sensor details
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/003Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements
    • G07D7/0032Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements using holograms
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/004Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using digital security elements, e.g. information coded on a magnetic thread or strip
    • G07D7/0043Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using digital security elements, e.g. information coded on a magnetic thread or strip using barcodes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0454Arrangement for recovering hologram complex amplitude
    • G03H2001/0458Temporal or spatial phase shifting, e.g. parallel phase shifting method

Definitions

  • the present invention relates to a method of authentication and optical identification of objects and to a device for implementing this method.
  • a mark that is difficult to reproduce or falsify such as a holographic label
  • one can structure in a particular way its support material for example, or alternatively, one can include in the material of one of the parts of the object particles or components which can only be detected by physical observation using special devices.
  • the subject of the present invention is a method of authenticating and / or identifying objects which does not require any modification of these objects, which makes it possible to authenticate them without fail, which makes it possible to easily recognize counterfeit objects, and which either easy to set up.
  • the present invention also relates to an authentication and or identification device for objects which is easy to make and use, which can be easily adapted to any kind of object and which is as inexpensive as possible.
  • the method according to the invention consists in illuminating in coherent light an at least partially diffusing surface in volume of control objects under precise lighting conditions, in recording the speckle patterns thus obtained for different nominal values of illumination parameters. and in a range of values around these nominal values, then, when checking other objects or these same objects, to illuminate these objects under the same nominal conditions and to compare each time the figure of scab marks thus obtained with those who have been registered and to retain the objects if their scab figure corresponds to one of those which have been registered.
  • the device according to the invention comprises an optical recording device with laser source, a storage device and an optical reading device with laser source, parameters of these optical devices being modifiable.
  • the modifiable parameters of the optical devices are at least one of the following parameters: wavelength of the laser source, direction of emission of the laser beam, focusing of the laser beam, position of the source laser, tilt and position of the object relative to the laser beam.
  • FIGS. 1 and 2 are block diagrams of two different embodiments of the optical device for reading the authentication and identification device according to the invention
  • - Figure 3 is a block diagram of an embodiment of the optical recording device of the authentication and identification device according to the invention
  • - Figure 4 is a simplified view of a spectral range d '' images used to constitute the references during the recording of scab figures according to the method of the invention
  • - Figure 5 is a simplified block diagram of an embodiment of an optical device according to the invention for recording references to electronic holography.
  • the invention is aimed both at authentication and at identifying objects with the same recording and reading devices. Thereafter, for simplification purposes only authentication will be involved, it being understood that the same apparatus and methods apply to identification.
  • the reading device If the device used for checking (here called the reading device) is the same as the one used for recording, one can hope for good reproducibility. On the other hand, if one wants to develop a system comprising several readers of low cost, it is necessary to solve this problem.
  • the complexity of the scab structure and its sensitivity to the various observation parameters depend on the characteristics of the scattering medium: its mean scattering wavelength, its abso ⁇ tion, the number and the geometric characteristics of the inhomogeneities.
  • the invention provides, by construction of the reading system, for reducing the number of parameters on which the result depends.
  • an optical configuration tolerant to tilt is advantageously chosen.
  • the first of these characteristics consists in recording the speckle patterns for the different values that these uncontrolled parameters can take, for example when the wavelength of the coherent beam of illumination can differ from one reader to another, the speckle patterns of an object are recorded for the various wavelengths possible in reading.
  • This process requires a complex and expensive recording system, but the recording operation is unique, or carried out with a small number of recording systems, while the readers are generally numerous and must be inexpensive.
  • scab figures cannot be saved for a large number of parameter values, as the reference database for a given object would increase rapidly and could lead to a reduction in performance during the recognition step.
  • the second of these characteristics consists, in the reading phase, in varying the parameter considered within the range of admissible values.
  • the value of the current of the read laser diode is a small range of wavelengths.
  • the parameters which the invention provides for varying the value there are in particular: the focusing of the reading beam, the position of the illumination source, the inclination of the object relative to this beam.
  • the system is made interactive by verifying that, for a given parameter, drawn randomly in the range of authorized values (for example in the case of a particular position of the reading system in relation to the object), the signal observed is indeed that which is expected. It is thus possible to choose the level of security that one wishes: one can privilege with the same system the speed of identification or authentication, or the security by multiplying the number of verifications. This characteristic makes the process of the invention both more robust and more difficult to violate.
  • Recognition performance is linked to the amount of information collected during the acquisition stage.
  • This quantity I of information can be defined by the relation:
  • I Log (posterior probability / a priori probability) the posterior probability being the probability that the recognized object is the right one, taking into account the observation made, and the a priori probability is the probability that the observation that we made it happen.
  • the comparison method of the invention takes into account the nature of the acquisitions which are in the form of images.
  • a classic method of image comparison is the correlation of raw images or those from pre-processing intended to normalize them.
  • a correlation is a global comparison of the images, and it is decided that two images are identical if the maximum correlation is greater than a given threshold.
  • the choice of the threshold has an important impact on the a priori probability: for example if we work on binary signals of length 1000 bits and we set the threshold at 0.5, the a priori probability goes from 10 ⁇ -301 to 10 ⁇ -58. In practice, and for reasons of robustness, it is often necessary to set the decision threshold at a significantly lower value, ie to tolerate a much higher percentage of error.
  • This reader 1 comprises a laser source 2, for example a single-mode laser diode, considered as a point source 2a, followed by a lens 3 at the image focal point 4 from which the image of the source 2a is formed.
  • Focus 4 coincides with the target focus a second lens 5 of short focal length (for example 4 mm) whose optical axis is pe ⁇ endicular to that of the lens 3.
  • the image focal point of the lens 5 coincides with the surface of the object 6 to be examined.
  • the lens 5 is immediately followed by a diaphragm 7.
  • the focal point 4 is brought to the oblique separation face of a cube 8 for polarization separation. Pe ⁇ endicular to the optical axis of the lens 5, opposite the object 6 relative to the cube 8, there is a detector 9.
  • the lens 3 forms an image of the source point 2a at the focus object of the lens 5.
  • the beam 10 of illumination of the object 6 is collimated, and its section is determined by the diaphragm 7.
  • the lens 5 forms an image of the lit area of the object 6 on the detector 9.
  • the cube 8 reflects on the go the polarized illumination beam towards the object 6, while it does not let pass (without reflecting it ) in the opposite direction as the polarized beam orthogonal to the first.
  • the specular reflection of the object 6 is eliminated or greatly reduced.
  • the digital aperture of the reading system 1 and the value of its optical magnification are chosen so that the grain size of the speckles is greater than that of the pixels of the detector 9, so as to avoid aliasing phenomena which would harm the quality of recognition.
  • an object field having dimensions of the order of 500 ⁇ m x 500 ⁇ m. If the useful surface of the detector 9 is 5mm x 5mm, the optical magnification can be 10 times. If the detector 9 has a matrix of 256 x 256 pixels, it will only be possible to sample correctly 10.e4 grains of speckles.
  • the resolution of the reading system is deliberately limited to 5 ⁇ m in the object plane, for example by limiting the numerical aperture to 0.1 using the diaphragm 7.
  • the reader 1 also includes precise positioning means (not shown) of the object 6 as well as calculation means (not shown) making it possible to compare the digital image observed with the expected image (recorded) for the object to be check.
  • the system 1 also includes means for reading (not shown) the information contained on the surface or inside of the object 6 (magnetic strip, electronic chip, optical storage area, bar code, etc.). .).
  • FIG. 2 shows another embodiment 10 of the optical device of the reading system of the invention. In this figure, elements similar to those of FIG. 1 are given the same reference numbers. The main difference compared to the device of FIG.
  • the laser source 2 directly illuminates the oblique face of the cube 8, and it is located at the focal point of the lens 3 (taking into account the reflection of the laser beam on the oblique face of the cube 8).
  • Figure 3 an embodiment of the scab pattern recording system according to the invention. In general, the recording system is similar to the playback system.
  • the device 11 of FIG. 3 comprises the same optical imaging device as that of FIG. 2, namely the lenses 3 and 5 with optical optical axes combined and placed on either side of the separating cube 8.
  • the laser source 2 is placed at the object focus of the lens 3.
  • the diaphragm 7 is placed immediately after (in the forward direction of the beam from the laser source) the lens 3.
  • the object 6a (we seek to check whether it is actually authentic (i.e. object 6 itself, which was used to build the database) is placed in the same way as object 6.
  • FIG. 3 shows the same optical imaging device as that of FIG. 2, namely the lenses 3 and 5 with optical optical axes combined and placed on either side of the separating cube 8.
  • the laser source 2 is placed at the object focus of the lens 3.
  • the diaphragm 7 is placed immediately after (in the forward direction of the beam from the laser source) the lens 3.
  • the object 6a (we seek to check whether it is actually authentic (i.e. object 6 itself, which was used to build the database) is
  • the 3 shows an actuator 12 which is used to vary very finely (by a few microns or tens of microns, for example) the focusing distance of the laser beam on the object 6a, by varying, for example, the position of the lens 3. It is also possible to vary the aperture of the diaphragm 7. Of course, other means (not shown) make it possible to vary the other critical parameters of the system recording (laser wavelength, etc., as specified above).
  • the images recorded in the database can be raw images supplied by the detector of the recording system.
  • the invention provides for recording pre-processed images, preferably in compressed form, in particular when the database must include a large number of images. Pretreatment can be done in many ways. Because the Fourier transform of the image (obtained for example by FFT) is well suited to recognition in reading, it is one of the preferred preprocessing methods of the invention. In order to normalize the reference image thus obtained, it is divided by its module, that is to say that only its phase information is kept, which amounts to carrying out an operation of "whitening" the spectrum. of the image.
  • the values corresponding to the low spatial frequencies are suppressed, which include terms related to the object (at medium reflectivity), to the illumination (to avoid inhomogeneities of the illumination beam), and which may also contain aliasing residues.
  • the values corresponding to the high spatial frequencies, whose signal to noise ratio is lower, are also suppressed.
  • the retained values are coded with as few bits as possible, without however reducing the probability of recognition too much. It is necessary to find, according to the level of security sought, and according to the maximum desired volume of the database, a compromise between the number of values retained for each reference and the dynamic of the references.
  • FIG. 4 shows an example of the spectral domain chosen to constitute a reference database. In this FIG.
  • the coordinate axes are graduated in normalized values of spatial frequencies of the speckle figures, in x and in y.
  • Contour 13 defined for frequencies lower than half of the normalized spatial frequency, includes all the spatial frequencies of the image, and delimits a closed surface 14 (in gray) inside which one has drawn an example of spectral domain retained 15 (hatched) contained in the surface 14.
  • Other image transformations leading to a reduction in the size of the database with a reduced loss of information can be implemented within the framework of the invention, by example the transforms in wavy heads or the transforms in cosine. As in the conventional image compression methods, only a certain number of the most significant transform coefficients are retained.
  • the method of the invention proceeds as follows for local authentication.
  • the reading system has the public key which allows it to read and decrypt the signature of the speckle image on the card.
  • a comparison is made between the optical signature observed and the signature stored on the card. This comparison can be made according to a conventional method called “pattern matching”, for example by a correlation between the observed image and the reference image, as specified above.
  • the comparison operation essentially consists in taking the Fourier transform of the observed image and to make the product of the spectral components retained by those of the reference. The result of the operation is then compared to a threshold to decide on authenticity.
  • the decision of authenticity is preferably made using a hybrid criterion weighing several results, for example:
  • a variant of the authentication method according to the invention consists in practicing authentication on a site remote from the readers, for example at the location of a server connected to the different readers and to a recorder.
  • the authentication step is done from the database recorded during the recording step.
  • the optical signature of the speckle image and the reference of the object are provided, as well as the parameters of the reader.
  • the server makes the comparison between the optical image as read by a reader and the reference image of the object corresponding to the parameters supplied to the server.
  • the invention provides for performing, periodically or each time a reader is used, calibrations of the various parameters necessary for authentication, in particular of the critical parameters. These calibrations are done using one or more speckle images of calibration objects.
  • the calibration object can be the support of the reading system.
  • the parameters of the reader used are determined locally or by the server to which it is connected.
  • the authentication is carried out on the basis of an interrogation of a reader.
  • the reader in question comprises a focusing lens (lens 5 of the embodiments described above) mounted on actuators allowing displacements in one or two directions from the plane pe ⁇ endicular to the optical axis of the lens.
  • actuators allow automatic and precise adjustment of the focus.
  • a scab image of the observed area of the object is formed on the two-dimensional sensor of the detector (detector 9).
  • the object observed for example an access card to a protected place, is pre-positioned under the lens of the optical reader, thanks to an appropriate mechanical guiding device.
  • the speckle image is transmitted to the validation device at the same time as the identification data carried by the card or supplied by the card holder.
  • the validation device compares the scab image received with the image corresponding to the reference of the object (stored in the validation device or transmitted from a database). If the object is the one declared, the result of the comparison is positive. If the comparison is based on a correlation, data for positioning the object relative to the sensor are supplied to the validation device. This data is a measure of the positioning error of the object under the sensor. They can be supplied to the object positioning devices to allow correction of the position of the object. In this case, a second measurement, carried out after such a position correction, must improve the quality of recognition and allow the authentication of the object to be practically certain.
  • the second measurement gives inconsistent results with those of the first (for example if the new position error found is not close to zero or if the result has not improved significantly), there is a high probability that the object examined is not the correct one.
  • the “zero” position having been determined in accordance with the steps set out above, the reader can be asked to position himself on a point whose coordinates will have been drawn at random from a determined set of values. The reader must then be able to provide an image of speckles corresponding to that recorded in the database for these observation coordinates and this object. The probability of false acceptance is thus significantly reduced.
  • the coordinates explored can be those of a plane pe ⁇ endicuiaire to the optical axis of the focusing lens (lens 5) or the coordinate along this optical axis (i.e. a translation of the focusing plane parallel to itself, depending on the number of degrees of freedom of said actuators.
  • This method of authentication has several advantages. The first is that the system is made more tolerant of positioning errors or deformations of the object.
  • the second is that the comparison is made on a larger area of the object, which makes it more difficult to copy, and keeps the system from operating problems related to focal degradation of the object (which can happen with frequently handled objects, which can be scratched)
  • the third is that the reader is able to respond to an unpredictable request from the system (which randomly draws the coordinates of the point to be observed), which makes the pir more complex. reading device by a hardware or software device that would respond in its place. In this case, the hacker should have access to all of the data on the surface or in the active volume of the object.
  • the focusing device can use an auxiliary beam focused on the surface of the object to be examined.
  • the focus error detector can, in this case, be of a known type, such as the astigmatic sensor often used in the read heads of optical discs. However, it may be easier to directly observe the speckle signal used to authenticate the object.
  • One possible method consists in placing the objective in its most probable focusing position, in carrying out the comparison with the expected speckle pattern, then in slightly varying this position. The variation in the result of the comparison makes it possible to evaluate the correction to be made to the position of the objective in order to increase the quality of the result, and therefore to approach the position of best focus, which is similar to the gradient method. .
  • the optical device was designed so as to produce on the detector an image of the useful area of the object.
  • This device can, as a variant, operate if the detector is not in the image plane of the optical device.
  • the detector can then be in a conjugate plane of the plane of the pupil of the optical device, which is the plane of Fourier of the illuminated object.
  • the spatial filtering of the speckles, respecting Shannon's sampling conditions can be done either by limiting the size of the illumination spot on the object, or by applying a diaphragm on an intermediate image plane.
  • the arrangement of the sensor on an “intermediate” plane may represent a better compromise in system design vis-à-vis the adaptation of the grain size of speckles at the spatial resolution of the detector.
  • the illumination of the object was considered to be uniform and collimated.
  • the system of the invention also works even when these conditions are not met.
  • FIG. 5 shows the simplified diagram of a recording device according to the invention, in which the recording is done by an electronic holography process.
  • the laser source 17 is placed at the focal point of a collimating lens 18 which is followed by a separating cube 19 of which it illuminates the oblique semi-reflecting face.
  • Part of the parallel beam coming from the lens 18 crosses this oblique face and arrives perpendicularly on a mirror 20 driven by a piezoelectric actuator.
  • the beam reflected by the mirror 20 arrives on the oblique face of the cube 19, on which it is reflected towards a detector 21.
  • the detector 21 therefore receives an illumination consisting of the combination of the reference beam and a beam backscattered by the object 22 (which passes directly through the cube 19).
  • several holograms thus obtained are recorded, each time varying the length of the optical path of the reference beam using the actuator of the mirror 20.
  • the advantage of this process is to record a holographic image of the object, which makes it possible to recalculate the image as it would be seen by an observation device with characteristics slightly different from the nominal characteristics.
  • the illuminated medium of the object is very diffusing, it will still be necessary to record holograms corresponding to the various possible wavelengths for the observation, because, the paths of light being multiple, the field backscattered does not simply depend on the observation wavelength.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Collating Specific Patterns (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Holo Graphy (AREA)

Abstract

Le procédé conforme à l'invention consiste à illuminer en lumière cohérente une surface au moins partiellement diffusante en volume d'objets témoins dans des conditions d'illumination précises, à enregistrer les figures de tavelures ainsi obtenues pour différentes valeurs nominales de paramètres d'illumination et dans une fourchette de valeurs autour de ces valeurs nominales, puis, lors de la vérification d'autres objets ou de ces mêmes objets, à illuminer ces objets dans les mêmes conditions nominales et à comparer à chaque fois la figure de tavelures ainsi obtenue avec celles qui ont été enregistrées et à retenir les objets si leur figure de tavelures correspond à l'une de celles qui ont été enregistrées.

Description

PROCEDE D'AUTHENTIFICATION ET D'IDENTIFICATION OPTIQUE D'OBJETS ET DISPOSITIF DE MISE EN OEUVRE
La présente invention se rapporte à un procédé d'authentification et d'identification optique d'objets et à un dispositif de mise en oeuvre de ce procédé.
Pour authentifier un objet, on peut lui incorporer une marque difficile à reproduire ou à falsifier, telle qu'une étiquette holographique, ou bien on peut structurer de façon particulière son matériau de support, par exemple, ou bien encore, on peut inclure dans le matériau d'une des parties de l'objet des particules ou des composants qui ne sont décelables que par une observation physique à l'aide d'appareils spéciaux.
On connaît d'après le brevet GB 2 221 870 un procédé d'authentification d'objets basé sur l'observation du « speckle » (tavelures) rétrodiffusé par une structure embossée sur ces objets, ou bien par la superposition de deux matériaux d'indices de réfraction différents, ou encore par des objets de phase qui leur sont incorporés et qui créent une diffusion dans le volume d'une de leurs couches.
Par ailleurs, on a proposé et utilisé pour l'authentification des billets de banque l'utilisation directe de la structure aléatoire de leur support, observée en lumière incohérente et associée à une signature électronique basée sur l'encodage de l'image par un algorithme d 'encodage à clé publique.
Les procédés d'authentification cités ci-dessus nécessitent la modification des objets à authentifier, ce qui n'est pas toujours possible (oeuvres d'art, objets fragiles,...) ou ne peuvent s'appliquer qu'à certaines catégories d'objets (billets de banque,...).
La présente invention a pour objet un procédé d'authentification et/ou d'identification d'objets qui ne nécessite aucune modification de ces objets, qui permette de les authentifier à coup sûr, qui permette de reconnaître facilement des objets contrefaits, et qui soit facile à mettre en oeuvre.
La présente invention a également pour objet un dispositif d'authentification et ou d'identification d'objets qui soit facile à réaliser et à utiliser, qui puisse être facilement adapté à toute sorte d'objet et qui soit le moins onéreux possible. Le procédé conforme à l'invention consiste à illuminer en lumière cohérente une surface au moins partiellement diffusante en volume d'objets témoins dans des conditions d'illumination précises, à enregistrer les figures de tavelures ainsi obtenues pour différentes valeurs nominales de paramètres d'illumination et dans une fourchette de valeurs autour de ces valeurs nominales, puis, lors de la vérification d'autres objets ou de ces mêmes objets, à illuminer ces objets dans les mêmes conditions nominales et à comparer à chaque fois la figure de tavelures ainsi obtenue avec celles qui ont été enregistrées et à retenir les objets si leur figure de tavelures correspond à l'une de celles qui ont été enregistrées.
Le dispositif conforme à l'invention comporte un dispositif optique d'enregistrement à source laser, un dispositif de mémorisation et un dispositif de lecture optique à source laser, des paramètres de ces dispositifs optiques étant modifiables. Selon une caractéristique de l'invention, les paramètres modifiables des dispositifs optiques sont l'un au moins des paramètres suivants : longueur d'onde de la source laser, direction d'émission du faisceau laser, focalisation du faisceau laser, position de la source laser, inclinaison et position de l'objet par rapport au faisceau laser. La présente invention sera mieux comprise à la lecture de la description détaillée de plusieurs modes de réalisation, pris à titre d'exemples non limitatifs et illustrés par le dessin annexé, sur lequel :
- les figures 1 et 2 sont des blocs-diagrammes de deux différents modes de réalisation du dispositif optique de lecture du dispositif d'authentification et d'identification conforme à l'invention,
- la figure 3 est un bloc-diagramme d'un mode de réalisation du dispositif optique d'enregistrement du dispositif d'authentification et d'identification conforme à l'invention, - la figure 4 est une vue simplifiée d'un domaine spectral d'images servant à constituer les références lors de l'enregistrement des figures de tavelures selon le procédé de l'invention, et - la figure 5 est un bloc-diagramme simplifié d'un mode de réalisation d'un dispositif optique conforme à l'invention pour l'enregistrement de références à holographie électronique.
L'invention s'adresse aussi bien à l'authentification qu'à l'identification d'objets avec les mêmes dispositifs d'enregistrement et de lecture. Par la suite, il ne sera question, pour simplifier, que d'authentification, étant bien entendu que les mêmes appareils et procédés s'appliquent à l'identification.
Si l'on appliquait un procédé connu de formation de tavelures à la surface d'un objet tel qu'un objet opaque ou un écran de phase, en respectant à la lecture approximativement les mêmes conditions d'illumination qu'à l'enregistrement, on obtiendrait les mêmes figures. Cependant, la contrefaçon d'un tel objet est relativement aisée et peut se faire par différents procédés (moulage, copie optique,...). Pour assurer une très bonne protection contre la contrefaçon, l'invention prévoit d'illuminer des objets diffusants ou partiellement diffusants dans leur volume. Ainsi, la copie de ces objets est rendue très difficile. Cependant, la structure de la lumière diffusée devient beaucoup plus sensible à toute variation de chacun des paramètres d'observation. C'est ainsi que si la longueur d'onde utilisée lors du contrôle est différente de celle de l'enregistrement, par suite des dispersions naturelles des diodes laser des sources d'illumination, la figure observée est complètement différente de celle enregistrée. Si le dispositif servant au contrôle ( appelé ici dispositif de lecture) est le même que celui qui a servi à l'enregistrement, on peut espérer une bonne reproductibilité. Par contre, si l'on veut développer un système comportant plusieurs lecteurs de faible coût, il est nécessaire de résoudre ce problème. La complexité de la structure des tavelures et sa sensibilité aux divers paramètres d'observation dépendent des caractéristiques du milieu diffusant : sa longueur d'onde moyenne de diffusion, son absoφtion, le nombre et les caractéristiques géométriques des inhomogénéités. Si l'on a la maîtrise de la conception de l'objet à protéger, on peut choisir selon l'application un milieu faiblement 3D (c'est-à-dire fortement absorbant et faiblement diffusant) ou, au contraire un milieu dans lequel une onde d'illumination subit un trajet complexe, avec de nombreuses diffusions, afin de rendre faible la probabilité de copie ou de fausse décision. On peut également jouer sur l'épaisseur de la (des) zone(s) où se produit la diffusion.
L'invention prévoit, par construction du système de lecture, de réduire le nombre de paramètres dont dépend le résultat. Ainsi, on choisit avantageusement une configuration optique tolérante à l'inclinaison. Pour réduire l'effet des paramètres que l'on ne peut complètement maîtriser, on met en oeuvre les caractéristiques suivantes :
-La première de ces caractéristiques consiste à enregistrer les figures de tavelures pour les différentes valeurs que peuvent prendre ces paramètres non contrôlés, par exemple lorsque la longueur d'onde du faisceau cohérent d'illumination peut différer d'un lecteur à l'autre, on enregistre les figures de tavelures d'un objet pour les diverses longueurs d'onde possibles en lecture. Ce procédé nécessite un système d'enregistrement complexe et coûteux, mais l'opération d'enregistrement est unique, ou réalisée avec un petit nombre de systèmes d'enregistrement, alors que les lecteurs sont généralement nombreux et doivent être peu coûteux. Cependant, on ne peut enregistrer les figures de tavelures pour un grand nombre de valeurs de paramètres, car la base de données de référence pour un objet donné augmenterait rapidement et pourrait entraîner une réduction des performances lors de l'étape de reconnaissance.
La deuxième de ces caractéristiques consiste, en phase de lecture, à faire varier le paramètre considéré dans la plage de valeurs admissibles. C'est ainsi que l'on peut, en modifiant la valeur du courant de la diode laser de lecture, balayer une petite plage de longueurs d'onde. Parmi les paramètres dont l'invention prévoit de faire varier la valeur, se trouvent en particulier : la focalisation du faisceau de lecture, la position de la source d'illumination, l'inclinaison de l'objet par rapport à ce faisceau. Bien entendu, il est préférable de maintenir à un minimum le nombre de ces paramètres à ajuster et le nombre de valeurs différentes qu'ils peuvent prendre, car la complexité du lecteur et la durée de l'opération de lecture augmentent rapidement en fonction du nombre de paramètres et de leurs différentes valeurs.
Selon un deuxième mode de mise en œuvre de l'invention, on rend le système interactif en vérifiant que, pour un paramètre donné, tiré de manière aléatoire dans la plage de valeurs autorisées (par exemple dans le cas d'une position particulière du système de lecture par rapport à l'objet), le signal observé soit bien celui que l'on attend. Il est ainsi possible de choisir le niveau de sécurité que l'on souhaite : on peut privilégier avec un même système la rapidité d'identification ou d'authentification, ou la sécurité en multipliant le nombre de vérifications. Cette caractéristique rend le procédé de l'invention à la fois plus robuste et plus difficile à violer.
On va décrire maintenant un mode de réalisation du dispositif de l'invention pour l'application à un lecteur de badges ou de tickets permettant l'accès à des zones protégées. Bien entendu, l'invention n'est pas limitée à cette application, et peut être mise en œuvre dans de nombreuses autres applications nécessitant une identification ou une authentification d'objets très divers (œuvres d'art, chèques, billets de banque,...).
La performance en reconnaissance est liée à la quantité d'informations recueillie lors de l'étape d'acquisition. Cette quantité I d'informations peut être définie par la relation :
I = Log (probabilité a posteriori / probabilité a priori) la probabilité a posteriori étant la probabilité pour que l'objet reconnu soit le bon, compte tenu de l'observation faite, et la probabilité a priori est la probabilité que l'observation que l'on a faite se produise. Pour maximiser la quantité d'information des acquisitions, il faut :
1) que la probabilité a priori soit aussi faible que possible, ce qui s'obtient en choisissant un nombre de pixels illuminés aussi grand que possible, et en s'assurant que les valeurs d'intensité de ces pixels soient aussi indépendantes que possible entre elles (ce qui n'est pas le cas si la taille des pixels est sensiblement plus faible que celle des grains de tavelures).
2) Que la probabilité a posteriori soit aussi grande que possible. Il faut pour cela que les conditions de mesure soient suffisamment reproductibles pour qu'un objet ne donne pas des résultats trop différents au cours du temps ou selon les lecteurs.
On comprend que ces deux contraintes jouent en sens inverses. Concevoir un système admettant un grand nombre de pixels indépendants suppose que l'on maîtrise parfaitement la reproductibilité du système et la stabilité de l'objet. En pratique, si l'on sait acquérir 10 000 pixels indépendants et si l'on définit par seuillage pour chacun de ces pixels deux états possibles, après un pré-traitement adéquat (destiné justement à les rendre indépendants), la probabilité a priori est de 1/(2Λ10 000), soit de l'ordre de e-3000, ce qui revient à dire qu'il est théoriquement possible de reconnaître 10Λ3000 objets différents. En pratique, on ne pourra pas utiliser pleinement cette performance, car prétendre reconnaître chacun de ces objets supposerait que l'on soit sûr de chacun des pixels de l'acquisition, ou que la probabilité a posteriori soit égale à 1. Ce n'est pas le cas puisque l'on accède à une information analogique, assez dépendante des conditions d'observation, et qu'il faut donc prévoir une méthode de comparaison et un seuil de décision adaptés à l'acquisition faite.
La méthode de comparaison de l'invention tient compte de la nature des acquisitions qui se présentent sous forme d'images. Une méthode classique de comparaison d'images est la corrélation des images brutes ou issues d'un pré-traitement destiné à les normaliser. Une corrélation est une comparaison globale des images, et l'on décide que deux images sont identiques si le maximum de corrélation est supérieur à un seuil donné. Le choix du seuil a une incidence importante dans la probabilité a priori : par exemple si l'on travaille sur des signaux binaires de longueur 1000 bits et que l'on fixe le seuil à 0,5, la probabilité a priori passe de 10Λ -301 à 10Λ -58. En pratique, et pour des questions de robustesse, il faut souvent fixer le seuil de décision à une valeur sensiblement plus faible, c'est-à-dire tolérer un pourcentage beaucoup plus important d'erreur. Toujours pour l'exemple de signaux de 1000 bits de longueur, une corrélation avec un seuil fixé à 0,1 conduit à une probabilité a priori de 10Λ -3. On voit donc qu'avec ces procédés, il n'est pas déraisonnable de partir d'images comportant environ 10 000 pixels indépendants. Un autre facteur réduisant la performance est le fait que la localisation de l'image n'est pas parfaitement définie. On est donc conduit à considérer non seulement le produit de corrélation « central », mais également les produits de corrélation correspondant à des translations d'images dans une gamme donnée.
On va décrire en référence à la figure 1 un premier mode de réalisation d'un lecteur conforme à l'invention. Ce lecteur 1 comporte une source laser 2, par exemple une diode laser monomode, considérée comme une source ponctuelle 2a, suivie d'une lentille 3 au foyer image 4 de laquelle est formée l'image de la source 2a. Le foyer 4 coïncide avec le foyer objet d'une deuxième lentille 5 de courte focale (par exemple 4 mm) dont l'axe optique est peφendiculaire à celui de la lentille 3. Le foyer image de la lentille 5 coïncide avec la surface de l'objet 6 à examiner. La lentille 5 est immédiatement suivie d'un diaphragme 7. Le foyer 4 est amené sur la face oblique de séparation d'un cube 8 de séparation de polarisations. Peφendiculairement à l'axe optique de la lentille 5, à l'opposé de l'objet 6 par rapport au cube 8, on dispose un détecteur 9.
Dans ce dispositif 1, la lentille 3 forme une image du point source 2a au foyer objet de la lentille 5. Ainsi, le faisceau 10 d'illumination de l'objet 6 est collimaté, et sa section est déterminée par le diaphragme 7. La lentille 5 forme une image de la zone éclairée de l'objet 6 sur le détecteur 9. Le cube 8 réfléchit à l'aller le faisceau d'illumination polarisé vers l'objet 6, tandis qu'il ne laisse passer (sans le réfléchir) dans le sens contraire que le faisceau à polarisation orthogonale à la première. Ainsi, on élimine ou on réduit fortement la réflexion spéculaire de l'objet 6.
L'ouverture numérique du système de lecture 1 et la valeur de son grandissement optique sont choisies de telle façon que la taille des grains des tavelures soit supérieure à celle des pixels du détecteur 9, de manière à éviter des phénomènes d'aliasing qui nuiraient à la qualité de la reconnaissance. A titre d'exemple, on peut travailler sur un champ objet ayant des dimensions de l'ordre 500μm x 500μm. Si la surface utile du détecteur 9 est de 5mm x 5mm, le grandissement optique peut être de 10 fois. Si le détecteur 9 comporte une matrice de 256 x 256 pixels, on ne pourra échantillonner correctement que 10.e4 grains de tavelures. La résolution du système de lecture est volontairement limitée à 5μm dans le plan objet, par exemple en limitant l'ouverture numérique à 0,1 à l'aide du diaphragme 7.
Le lecteur 1 comporte également des moyens de positionnement précis (non représentés) de l'objet 6 ainsi que des moyens de calcul (non représentés) permettant de comparer l'image numérique observée avec l'image attendue (enregistrée) pour l'objet à vérifier. De façon avantageuse, le système 1 comporte également des moyens de lecture (non représentés) des informations contenues à la surface ou à l'intérieur de l'objet 6 (piste magnétique, puce électronique, zone de stockage optique, code à barres,..). On a représenté en figure 2 un autre mode de réalisation 10 du dispositif optique du système de lecture de l'invention. Sur cette figure, des éléments similaires à ceux de la figure 1 sont affectés des mêmes références numériques. La différence principale par rapport au dispositif de la figure 1 réside dans le fait que les axes optiques des lentilles 3 et 5 sont confondus, ces deux lentilles étant disposées de part et d'autre du cube séparateur 8, entre l'objet 6 et le détecteur 9. La source laser 2 éclaire directement la face oblique du cube 8, et elle est située au foyer objet de la lentille 3 (compte tenu de la réflexion du faisceau laser sur la face oblique du cube 8). On va décrire en référence à la figure 3 un mode de réalisation du système d'enregistrement de figures de tavelures conforme à l'invention. De façon générale, le système d'enregistrement est similaire au système de lecture. La différence entre eux réside principalement dans les moyens permettant de faire varier, lors de l'enregistrement, divers paramètres critiques qui peuvent différer d'un système de lecture à l'autre (ces systèmes de lecture doivent généralement être bon marché, car produits à un grand nombre d'exemplaires, et donc leurs caractéristiques ne sont pas identiques d'un système à l'autre). Ces paramètres critiques sont en particulier la longueur d'onde de la source laser, la distance de focalisation, le positionnement de l'objet à examiner. Ce système d'enregistrement, qui est unique, ou produit à un faible nombre d'exemplaires, doit être de meilleure qualité que les systèmes de lecture. Il sert à enregistrer autant d'images de tavelures de référence qu'il y a de combinaisons de paramètres critiques à considérer et susceptibles de varier. L'ensemble de ces figures constitue la base de données de référence permettant de mener à bien une authentification ou une identification.
Sur la figure 3, des éléments similaires à ceux des figures 1 et 2 sont affectés des mêmes références numériques. Le dispositif 11 de la figure 3 comporte le même dispositif d'imagerie optique que celui de la figure 2, à savoir les lentilles 3 et 5 à axes optiques optiques confondus et disposées de part et d'autre du cube séparateur 8. La source laser 2 est disposée au foyer objet de la lentille 3. Le diaphragme 7 est disposé tout de suite après (dans le sens aller du faisceau de la source laser) la lentille 3. L'objet 6a (on cherche à vérifier s'il est effectivement authentique, c'est-à-dire l'objet 6 lui- même, qui a servi à réaliser la base de données) est placé de la même façon que l'objet 6. En outre, on a représenté sur la figure 3 un actuateur 12 qui sert à faire varier de façon très fine (de quelques microns ou dizaines de microns, par exemple) la distance de focalisation du faisceau laser sur l'objet 6a, en faisant varier, par exemple, la position de la lentille 3. On peut également faire varier l'ouverture du diaphragme 7. Bien entendu, d'autres moyens (non représentés) permettent de faire varier les autres paramètres critiques du système d'enregistrement (longueur d'onde laser, etc, comme précisé ci-dessus).
Les images enregistrées dans la base de données peuvent être des images brutes fournies par le détecteur du système d'enregistrement. Cependant, l'invention prévoit d'enregistrer des images pré-traitées, de préférence sous forme compressée, en particulier lorsque la base de données doit comporter un grand nombre d'images. Le pré-traitement peut être réalisé de nombreuses façons. Du fait que la transformée de Fourier de l'image (obtenue par exemple par F.F.T.) est bien adaptée à la reconnaissance en lecture, elle est une des méthodes de pré-traitement préférées de l'invention. Afin de normaliser l'image de référence ainsi obtenue, on la divise par son module, c'est-à-dire que l'on ne conserve que son information de phase, ce qui revient à effectuer une opération de "blanchiment" du spectre de l'image. De plus, afin de ne garder que la partie reproductible de l'information, on supprime les valeurs correspondant aux fréquences spatiales basses, qui comportent des termes liés à l'objet (à réflectivité moyenne), à l'illumination (pour éviter des inhomogénéités du faisceau d'illumination), et qui peuvent également comporter des résidus de repliement de spectre. On supprime également les valeurs correspondant aux fréquences spatiales élevées, dont le rapport signal à bruit est plus faible. Les valeurs retenues sont codées avec un nombre de bits aussi faible que possible, sans toutefois trop réduire la probabilité de reconnaissance. Il faut trouver, selon le niveau de sécurité recherché, et selon le volume maximal désiré de la base de données, un compromis entre le nombre de valeurs retenues pour chaque référence et la dynamique des références. On a représenté en figure 4 un exemple de domaine spectral retenu pour constituer une base de données de références. Sur cette figure 4, les axes de coordonnées sont gradués en valeurs normalisées de fréquences spatiales des figures de tavelures, en x et en y. Le contour 13, défini pour des fréquences inférieures à la moitié de la fréquence spatiale normalisée, englobe l'ensemble des fréquences spatiales de l'image, et délimite une surface fermée 14 (en grisé) à l'intérieur de laquelle on a tracé un exemple de domaine spectral retenu 15 (hachuré) contenu dans la surface 14. D'autres transformations d'images, conduisant à une réduction de la taille de la base de données avec une perte d'informations réduite peuvent être mises en œuvre dans le cadre de l'invention, par exemple les transformées en ondele ttes ou les transformées en cosinus. Comme dans les méthodes classiques de compression d'images, on ne retient qu'un certain nombre de coefficients de la transformée, parmi les plus significatifs. Compte tenu du spectre de ces images, assez uniforme, et très différent de celui des images naturelles, on peut choisir a priori les composantes à retenir, comme précisé pour le procédé décrit ci-dessus, et contrairement à ce qui se fait classiquement en codage-compression d'images. Le procédé de l'invention procède de la façon suivante pour l'authentification locale. Le système de lecture possède la clé publique qui lui permet de lire et de décrypter sur la carte la signature de l'image de tavelures. Après un pré-traitement destiné à isoler la zone utile de l'image, une comparaison est faite entre la signature optique observée et la signature stockée sur la carte. Cette comparaison peut être faite selon une méthode classique dite de « pattern matching », par exemple par une corrélation entre l'image observée et l'image de référence, comme précisé ci-dessus. Compte tenu des propriétés bien connues de la corrélation, si l'image de référence a été stockée sous la forme de composantes spectrales, comme précisé ci- dessus, l'opération de comparaison consiste essentiellement à prendre la transformée de Fourier de l'image observée et de faire le produit des composantes spectrales retenues par celles de la référence. Le résultat de l'opération est ensuite comparé à un seuil pour décider de l'authenticité.
Selon une forme alternative du procédé de l'invention, la décision d'authenticité est prise de préférence à l'aide d'un critère hybride pondérant plusieurs résultats, par exemple :
- le logarithme de l'écart entre l'amplitude du pic de corrélation et un seuil prédéfini, - la distance entre la position actuelle du pic de corrélation et la position nominale,
- la variance de ces données sur plusieurs mesures successives. La détermination de la position du pic de corrélation nécessite de prendre la transformée de Fourier inverse du produit de l'image et de la référence, ce qui est plus coûteux en termes de puissance de calcul. En revanche, l'utilisation conjointe de ces diverses données permet d'éviter les fausses alarmes et d'évaluer la vraisemblance de la mesure avant la prise de décision. Si la comparaison échoue, le lecteur peut recommencer l'opération après avoir modifié un paramètre, par exemple la longueur d'onde de la source laser.
Une variante du procédé d'authentification selon l'invention consiste à pratiquer l'authentification sur un site éloigné des lecteurs, par exemple à l'emplacement d'un serveur relié aux différents lecteurs et à un enregistreur. L'étape d'authentification se fait à partir de la base de données enregistrée lors de l'étape d'enregistrement. Selon cette variante, la signature optique de l'image de tavelures et la référence de l'objet sont fournies, ainsi que les paramètres du lecteur. Le serveur effectue la comparaison entre l'image optique telle que lue par un lecteur et l'image de référence de l'objet correspondant aux paramètres fournis au serveur.
De façon avantageuse, l'invention prévoit d'effectuer périodiquement ou à chaque utilisation d'un lecteur des calibrations des divers paramètres nécessaires à l'authentification, en particulier des paramètres critiques. Ces calibrations se font à l'aide d'une ou de plusieurs images de tavelures d'objets de calibration. En variante, l'objet de calibration peut être le support du système de lecture. Les paramètres du lecteur utilisé sont déterminés localement ou par le serveur auquel il est relié.
Selon un autre aspect du procédé de l'invention, l'authentification est effectuée à partir d'une interrogation d'un lecteur. Dans ce cas, le lecteur en question comporte une lentille de focalisation (lentille 5 des modes de réalisation décrits ci-dessus) montée sur des actuateurs permettant des déplacements dans une ou deux directions du plan peφendiculaire à l'axe optique de la lentille. De façon avantageuse, ces actuateurs permettent un réglage automatique et précis de la focalisation. Une image de tavelures de la zone observée de l'objet se forme sur le capteur bidimensionnel du détecteur (détecteur 9). Le processus d'authentification est alors mis en œuvre de la façon suivante.
L'objet observé, par exemple une carte d'accès à un lieu protégé, est pré-positionné sous la lentille du lecteur optique, grâce à un dispositif mécanique de guidage approprié. L'image de tavelures est transmise au dispositif de validation en même temps que les données d'identification portées par la carte ou fournies par le porteur de la carte. Le dispositif de validation compare l'image de tavelures reçue à l'image correspondant à la référence de l'objet (mémorisée dans le dispositif de validation ou transmise depuis une base de données). Si l'objet est bien celui qui est déclaré, le résultat de la comparaison est positif. Si la comparaison est basée sur une corrélation, des données de positionnement de l'objet par rapport au capteur sont fournies au dispositif de validation. Ces données constituent une mesure de l'erreur de positionnement de l'objet sous le capteur. Elles peuvent être fournies aux dispositifs de positionnement de l'objet pour permettre d'effectuer une correction de la position de l'objet. Dans ce cas, une deuxième mesure, effectuée après une telle correction de position, doit améliorer la qualité de reconnaissance et permettre de manière pratiquement certaine l'authentification de l'objet.
Si la deuxième mesure fournit des résultats incohérents avec ceux de la première (par exemple si la nouvelle erreur de position trouvée n'est pas proche de zéro ou si le résultat ne s'est pas amélioré notablement), il y a de fortes probabilités que l'objet examiné ne soit pas le bon. Afin d'augmenter la robustesse du procédé d'authentification, il est possible d' « interroger » le lecteur. La position « zéro » ayant été déterminée conformément aux étapes exposées ci-dessus, on peut demander au lecteur de se positionner sur un point dont les coordonnées auront été tirées au hasard parmi un ensemble déterminé de valeurs. Le lecteur doit alors pouvoir fournir une image de tavelures correspondant à celle enregistrée dans la base de données pour ces coordonnées d'observation et cet objet. La probabilité de fausse acceptation est ainsi sensiblement diminuée. Inversement, on peut mettre en œuvre ce même processus pour confirmer l'acceptation d'un objet sur un premier résultat de reconnaissance douteux. Les coordonnées explorées peuvent être celles d'un plan peφendicuiaire à l'axe optique de la lentille de focalisation (lentille 5) ou la coordonnée selon cet axe optique (c'est-à-dire une translation du plan de focalisation parallèlement à lui-même, selon le nombre de degrés de liberté desdits actuateurs. Cette façon de procéder à l'authentification présente plusieurs avantages. Le premier est que le système est rendu plus tolérant aux erreurs de positionnement ou aux déformations de l'objet. Le deuxième est que la comparaison se fait sur une zone plus étendue de l'objet, ce qui rend plus difficile sa copie, et préserve le système des problèmes de fonctionnement liés à une dégradation focale de l'objet ( ce qui peut se produire avec des objets manipulés fréquemment, qui peuvent être rayés, poinçonnés,..). Le troisième est que le lecteur est en mesure de répondre à une sollicitation imprévisible du système (qui tire au hasard les coordonnées du point à observer), ce qui rend plus complexe le piratage du dispositif de lecture par un dispositif matériel ou logiciel qui répondrait à sa place. Il faudrait dans ce cas que le pirate puisse avoir accès à l'ensemble des données sur la surface ou dans le volume actif de l'objet.
En variante du procédé de l'invention, le dispositif de focalisation peut utiliser un faisceau auxiliaire focalisé sur la surface de l'objet à examiner. Le détecteur d'erreur de focalisation peut, dans ce cas, être d'un type connu, tel que le senseur astigmatique souvent utilisé dans les têtes de lecture de disques optiques. Cependant, il peut être plus simple d'observer directement le signal de tavelures qui sert à authentifier l'objet. Un procédé possible consiste à mettre l'objectif dans sa position de focalisation la plus probable, à effectuer la comparaison avec la figure de tavelures attendue, puis à faire varier légèrement cette position. La variation du résultat de la comparaison permet d'évaluer la correction à apporter à la position de l'objectif pour augmenter la qualité du résultat, et donc d'approcher la position de meilleure focalisation, ce qui s'apparente à la méthode du gradient.
Dans ce qui précède, on a considéré que le dispositif optique était conçu de manière à produire sur le détecteur une image de la zone utile de l'objet. Ce dispositif peut, en variante, fonctionner si le détecteur n'est pas dans le plan image du dispositif optique. Le détecteur peut alors être dans un plan conjugué du plan de la pupille du dispositif optique, qui est le plan de Fourier de l'objet illuminé. Dans ce cas, le filtrage spatial des tavelures, respectant les conditions d'échantillonnage de Shannon peut se faire soit en limitant la dimension de la tache d'illumination sur l'objet, soit en appliquant un diaphragme sur un plan image intermédiaire. Il a été constaté que la disposition du capteur sur un plan « intermédiaire » (entre le plan image et le plan de Fourier) peut représenter un meilleur compromis de conception du système vis-à-vis de l'adaptation de la taille des grains de tavelures à la résolution spatiale du détecteur.
Dans ce qui a été exposé ci-dessus, on a considéré que l'illumination de l'objet était uniforme et collimatée. Le système de l'invention fonctionne également même lorsque ces conditions ne sont pas respectées.
On a représenté en figure 5 le schéma simplifié d'un dispositif d'enregistrement conforme à l'invention, dans lequel l'enregistrement se fait par un procédé d'holographie électronique. Dans ce dispositif 16, la source laser 17 est placée au foyer objet d'une lentille 18 de collimation qui est suivie d'un cube séparateur 19 dont elle illumine la face oblique semi- réfléchissante. Une partie du faisceau parallèle issu de la lentille 18 traverse cette face oblique et arrive perpendiculairement sur un miroir 20 mû par un actuateur piézoélectrique. Le faisceau réfléchi par le miroir 20 arrive sur la face oblique du cube 19, sur laquelle il se réfléchit en direction d'un détecteur 21. La partie du faisceau, issu de la lentille 18, qui ne traverse pas la face oblique du cube 19, se réfléchit en direction de l'objet à examiner 22 un diaphragme 23. La partie du faisceau parallèle, issu de là lentille 18, et qui est renvoyée vers le détecteur 21, sert de faisceau de référence pour le dispositif de détection holographique. Le détecteur 21 reçoit donc une illumination constituée de la combinaison du faisceau de référence et d'un faisceau rétrodiffusé par l'objet 22 (qui passe directement par le cube 19). Selon une technique bien connue, on enregistre plusieurs hologrammes ainsi obtenus, en faisant varier à chaque fois la longueur du chemin optique du faisceau de référence grâce à l'actuateur du miroir 20. Selon la technique utilisée, on enregistre trois ou quatre images d'intensité correspondant à des variations de marche de k.2π/3 ou de k.π/2. A partir de ces acquisitions, il est possible d'extraire le champ complexe diffusé par l'objet. Il est alors possible, en appliquant les lois bien connues de formation des images, de calculer des images d'intensité correspondant à ce qu'observerait un dispositif optique conventionnel comportant une lentille simple et un détecteur d'intensité, tel qu'un CCD, placés à des positions bien définies.
L'intérêt de ce procédé est d'enregistrer une image holographique de l'objet, ce qui permet de recalculer l'image telle qu'elle serait vue par un dispositif d'observation de caractéristiques légèrement différentes des caractéristiques nominales. Cependant, si le milieu illuminé de l'objet est très diffusant, il sera quand même nécessaire d'enregistrer des hologrammes correspondant aux diverses longueurs d'onde possibles pour l'observation, car, les trajets de la lumière étant multiples, le champ rétrodiffusé ne dépend pas de manière simple de la longueur d'onde d'observation.

Claims

REVENDICATIONS
1. Procédé d'authentification et d'identification optique d'objets, caractérisé en ce qu'il consiste à illuminer en lumière cohérente une surface au moins partiellement diffusante en volume d'objets de référence dans des conditions d'illumination précises, à enregistrer les figures de tavelures ainsi obtenues pour différentes valeurs nominales de paramètres d'illumination ainsi que dans une fourchette de valeurs autour de ces valeurs nominales, puis, lors de la vérification d'autres objets ou de ces mêmes objets, à illuminer ces objets dans les mêmes conditions nominales et à comparer à chaque fois la figure de tavelures ainsi obtenue avec celles qui ont été enregistrées et à retenir les objets si leur figure de tavelures correspond à l'une de celles qui ont été enregistrées.
2. Procédé selon la revendication 1, caractérisé en ce que les paramètres sont l'un au moins des paramètres suivants : longueur d'onde d'illumination des objets, distance de focalisation sur l'objet de référence, position de la source d'illumination, orientation des objets.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les figures de tavelures sont pré-traitées avant enregistrement
4. Procédé selon la revendication 3, caractérisé en ce que le pré- traitement consiste à compresser les images.
5. Procédé selon la revendication 4, caractérisé en ce que la compression consiste à effectuer l'une au moins des opérations suivantes : transformée de Fourier, transformée rapide de Fourier, transformée en. ondelettes, transformée cosinus.
6. Procédé selon la revendication 5, caractérisé en ce que l'on normalise l'image en ne conservant que son information de phase.
7. Procédé selon la revendication 5 ou 6, caractérisé en ce que le prétraitement consiste également à supprimer dans les images les valeurs correspondant aux fréquences spatiales basses et aux fréquences spatiales élevées.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce que la comparaison des figures de tavelures est faite par corrélation.
9. Procédé selon la revendication 8, caractérisé en ce que la décision d'une comparaison est prise à partir de critères pondérant au moins un des résultats suivants : - le logarithme de l'écart entre l'amplitude du pic de corrélation et un seuil prédéfini,
- la distance entre la position actuelle du pic de corrélation et la position nominale,
- la variance de ces données sur plusieurs mesures successives.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on constitue une base de données de figures de référence et que l'authentification ou l'identification est effectuée à partir de cette base de données.
11. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on effectue une calibration des lecteurs à l'aide d'une image de calibration pour déterminer les paramètres critiques.
12. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on procède à l'authentification ou à l'identification par interrogation d'un lecteur.
13. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'enregistrement des figures de tavelures se fait en holographie.
14. Procédé selon l'une des revendications précédentes, caractérisé en ce que les caractéristiques de la partie optique du lecteur sont ajustables et que l'on corrige l'erreur de positionnement éventuelle de l'objet en tendant à réduire son erreur de mesure.
15. Procédé selon la revendication 14, caractérisé en ce que la position « zéro » du lecteur ayant été déterminée, on positionne le lecteur selon des coordonnées tirées au hasard et on compare l'image de tavelures obtenue avec l'image qui devrait être théoriquement obtenue.
16. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on enregistre, en plus des images de tavelures, des informations d'identification de l'objet d'une autre nature.
17. Procédé selon la revendication 16, caractérisé en ce que les informations d'identification sont contenues à la surface ou à l'intérieur de l'objet.
18. Procédé selon la revendication 17, caractérisé en ce que les informations d'identification sont portées par l'un au moins des supports suivants : piste magnétique, puce électronique, zone de stockage optique, code à barres.
19. Dispositif d'authentification et d'identification optique d'objets caractérisé en ce qu'il comporte : un dispositif optique d'enregistrement à source laser (2, 17), un dispositif de mémorisation et un dispositif de lecture optique (1 , 10) à source laser (2), des paramètres de ces dispositifs optiques étant modifiables.
20. Dispositif selon la revendication 19, caractérisé en ce que les paramètres modifiables sont l'un au moins des paramètres suivants : longueur d'onde de la source laser, direction d'émission du faisceau laser, focalisation du faisceau laser, position de la source laser, inclinaison et position de l'objet par rapport au faisceau laser.
PCT/EP2003/050975 2002-12-20 2003-12-10 Procede d'authentification et d'identification optique d'objets et dispositif de mise en oeuvre WO2004057525A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03796091A EP1573661A1 (fr) 2002-12-20 2003-12-10 Procede d'authentification et d'identification optique d'objets et dispositif de mise en oeuvre
AU2003298351A AU2003298351A1 (en) 2002-12-20 2003-12-10 Method for optical authentication and identification of objects and device therefor
US10/539,767 US20060104103A1 (en) 2002-12-20 2003-12-10 Method for optical authentication and identification of objects and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0216366 2002-12-20
FR0216366A FR2849245B1 (fr) 2002-12-20 2002-12-20 Procede d'authentification et d'identification optique d'objets et dispositif de mise en oeuvre

Publications (1)

Publication Number Publication Date
WO2004057525A1 true WO2004057525A1 (fr) 2004-07-08

Family

ID=32406294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/050975 WO2004057525A1 (fr) 2002-12-20 2003-12-10 Procede d'authentification et d'identification optique d'objets et dispositif de mise en oeuvre

Country Status (6)

Country Link
US (1) US20060104103A1 (fr)
EP (1) EP1573661A1 (fr)
CN (1) CN1745387A (fr)
AU (1) AU2003298351A1 (fr)
FR (1) FR2849245B1 (fr)
WO (1) WO2004057525A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005048256A2 (fr) * 2003-11-14 2005-05-26 Koninklijke Philips Electronics N.V. Support de donnees possedant un marquage de securite, et appareil de manipulation d'un tel support de donnees
WO2005100926A1 (fr) * 2004-04-19 2005-10-27 Giesecke & Devrient Gmbh Dispositif pour verifier des billets de banque
WO2006016114A1 (fr) * 2004-08-13 2006-02-16 Ingenia Technology Limited Vérification de l’authenticité d’articles employant une banque de données
GB2417707A (en) * 2004-08-13 2006-03-08 Ingenia Technology Ltd Printer with integral scanner for authenticatable document creation and verification.
WO2006120398A1 (fr) * 2005-05-11 2006-11-16 Ingenia Technology Limited Verification de l'authenticite au moyen d'une diffusion optique
WO2007012816A1 (fr) * 2005-07-27 2007-02-01 Ingenia Technology Limited Procédé de vérification d’authenticité
WO2007012815A1 (fr) * 2005-07-27 2007-02-01 Ingenia Technology Limited Verification d'authenticite
EP1851678A2 (fr) * 2005-02-08 2007-11-07 Koninklijke Philips Electronics N.V. Analyse de figure de speckle optique
US7812935B2 (en) 2005-12-23 2010-10-12 Ingenia Holdings Limited Optical authentication
US7853792B2 (en) 2004-03-12 2010-12-14 Ingenia Holdings Limited Authenticity verification methods, products and apparatuses
US8615475B2 (en) 2008-12-19 2013-12-24 Ingenia Holdings Limited Self-calibration
US8682076B2 (en) 2008-12-19 2014-03-25 Ingenia Holdings Limited Signature generation for use in authentication and verification using a non-coherent radiation source
US8699088B2 (en) 2004-03-12 2014-04-15 Ingenia Holdings Limited Methods and apparatuses for creating authenticatable printed articles and subsequently verifying them
US8892556B2 (en) 2009-11-10 2014-11-18 Ingenia Holdings Limited Optimisation
US9818249B1 (en) 2002-09-04 2017-11-14 Copilot Ventures Fund Iii Llc Authentication method and system

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608919B1 (en) 1999-11-10 2003-08-19 Digimarc Corporation Method and apparatus for encoding paper with information
EP1784796A1 (fr) 2004-08-23 2007-05-16 Koninklijke Philips Electronics N.V. Detection de position et d'orientation pour identificateur optique
DE102004042187B4 (de) * 2004-08-31 2021-09-09 Infineon Technologies Ag Chipkartenmodul für eine kontaklose Chipkarte mit Sicherheitsmarkierung
EP1825419A4 (fr) 2004-11-09 2008-08-06 Digimarc Corp Authentification de documents d'identification et de securite
US20060294583A1 (en) * 2005-05-11 2006-12-28 Ingenia Holdings (U.K.) Limited Authenticity Verification
US8219940B2 (en) * 2005-07-06 2012-07-10 Semiconductor Insights Inc. Method and apparatus for removing dummy features from a data structure
RU2008107340A (ru) * 2005-07-27 2009-09-10 Инджениа Текнолоджи Лимитед (Gb) Аутентификация рецепта с использованием спекл-структур
EP1911003A1 (fr) * 2005-07-27 2008-04-16 Ingenia Technology Limited Vérification de la signature d'un article créé à partir de signaux obtenus depuis la dispersion de radiation optique cohérente venant de la surface d'un article
GB2429950B (en) * 2005-09-08 2007-08-22 Ingenia Holdings Copying
GB2434442A (en) * 2006-01-16 2007-07-25 Ingenia Holdings Verification of performance attributes of packaged integrated circuits
US8224018B2 (en) 2006-01-23 2012-07-17 Digimarc Corporation Sensing data from physical objects
WO2007087498A2 (fr) 2006-01-23 2007-08-02 Digimarc Corporation Procedes, systemes et sous-combinaisons utiles avec des articles physiques
KR101408959B1 (ko) * 2006-03-14 2014-07-02 프라임센스 엘티디. 삼차원 감지를 위한 깊이 가변 광 필드
CN101501442B (zh) * 2006-03-14 2014-03-19 普莱姆传感有限公司 三维传感的深度变化光场
CN100389427C (zh) * 2006-04-13 2008-05-21 湖南童森科技有限公司 增强可机读标签中文字与图形的抗损性方法和装置
RU2477522C2 (ru) 2006-06-01 2013-03-10 Эдванст Трэк Энд Трэйс Способ и устройство для обеспечения безопасности документов
GB2440386A (en) * 2006-06-12 2008-01-30 Ingenia Technology Ltd Scanner authentication
EP1898365A1 (fr) * 2006-08-23 2008-03-12 E.I. Dupont de Nemours and Company Procédé et appareil pour vérifier l'authenticité d'un article par la détection de marqueurs de sécurité luminescents codés
US7643147B2 (en) * 2006-11-03 2010-01-05 Neuropace, Inc. Method and system for device identification
EP1990779B1 (fr) * 2007-05-07 2016-09-14 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Dispositif de sécurité pour l'identification ou l'authentification de marchandises et procédé pour sécuriser des marchandises en utilisant un tel dispositif de sécurité
GB2450131B (en) * 2007-06-13 2009-05-06 Ingenia Holdings Fuzzy Keys
GB2460625B (en) * 2008-05-14 2010-05-26 Ingenia Holdings Two tier authentication
FR2931979B1 (fr) * 2008-06-02 2014-02-28 Advanced Track & Trace Procede et dispositif d'identification d'une plaque d'impression d'un document
DE102009017986A1 (de) * 2009-04-21 2010-10-28 Beb Industrie-Elektronik Ag Vorrichtung und Verfahren zur Merkmalserkennung von Wertscheinen
TW201137762A (en) * 2010-04-23 2011-11-01 Chung Shan Inst Of Science System and method for determining whether an individual to be identified as a registered individual
IL240872A (en) 2015-08-27 2016-11-30 Elbit Systems Land & C4I Ltd A method and system for discovering object authenticity
IL245932A (en) 2016-05-30 2017-10-31 Elbit Systems Land & C4I Ltd System and methods for determining the authenticity of an object that includes a reference image acquisition and a user unit
CN109443705B (zh) * 2018-10-25 2019-09-20 南京大学 一种基于计算成像的光学镜头数值孔径测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2221870A (en) * 1988-05-31 1990-02-21 De La Rue Co Plc Security device
WO2001086589A1 (fr) * 2000-05-08 2001-11-15 European Community Methode d'identification d'un objet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1392448A (en) * 1971-06-22 1975-04-30 Nat Res Dev Optical indpection
FR2235448B1 (fr) * 1973-06-29 1976-05-07 Thomson Brandt
GB1593284A (en) * 1977-03-15 1981-07-15 Nat Res Dev Optical inspection
JPS60263807A (ja) * 1984-06-12 1985-12-27 Dainippon Screen Mfg Co Ltd プリント配線板のパタ−ン欠陥検査装置
FR2699289B1 (fr) * 1992-12-15 1995-01-06 Thomson Csf Ecran de projection holographique et procédé de réalisation.
FR2751398B1 (fr) * 1996-07-16 1998-08-28 Thomson Csf Dispositif d'eclairage et application a l'eclairage d'un ecran transmissif
US5650855A (en) * 1996-10-04 1997-07-22 The United States Of America As Represented By The Secretary Of The Army Off-axis joint tranform correlator
FR2793566B1 (fr) * 1999-05-11 2002-07-12 Thomson Csf Separateur de polarisations
US6970236B1 (en) * 2002-08-19 2005-11-29 Jds Uniphase Corporation Methods and systems for verification of interference devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2221870A (en) * 1988-05-31 1990-02-21 De La Rue Co Plc Security device
WO2001086589A1 (fr) * 2000-05-08 2001-11-15 European Community Methode d'identification d'un objet

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAVIKANTH P S: "Physical One-way Functions", PHD THESIS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, SCHOOL OF ARCHITECTURE AND PLANNING, March 2001 (2001-03-01), Boston, Massachusetts, USA, pages 1 - 154, XP002251679 *
VAN RENESSE R L: "3DAS: a 3-dimensional-structure authentication system", EUROPEAN CONVENTION ON SECURITY AND DETECTION (CONF. PUBL. NO.408), EUROPEAN CONVENTION ON SECURITY AND DETECTION (CONF. PUBL. NO.408), BRIGHTON, UK, 16-18 MAY 1995, 1995, London, UK, IEE, UK, pages 45 - 49, XP002251680, ISBN: 0-85296-640-7 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9818249B1 (en) 2002-09-04 2017-11-14 Copilot Ventures Fund Iii Llc Authentication method and system
WO2005048256A2 (fr) * 2003-11-14 2005-05-26 Koninklijke Philips Electronics N.V. Support de donnees possedant un marquage de securite, et appareil de manipulation d'un tel support de donnees
WO2005048256A3 (fr) * 2003-11-14 2005-07-28 Koninkl Philips Electronics Nv Support de donnees possedant un marquage de securite, et appareil de manipulation d'un tel support de donnees
US8421625B2 (en) 2004-03-12 2013-04-16 Ingenia Holdings Limited System and method for article authentication using thumbnail signatures
US8502668B2 (en) 2004-03-12 2013-08-06 Ingenia Holdings Limited System and method for article authentication using blanket illumination
US8757493B2 (en) 2004-03-12 2014-06-24 Ingenia Holdings Limited System and method for article authentication using encoded signatures
US8749386B2 (en) 2004-03-12 2014-06-10 Ingenia Holdings Limited System and method for article authentication using signatures
US9019567B2 (en) 2004-03-12 2015-04-28 Ingenia Holdings Limited Methods and apparatuses for creating authenticatable printed articles and subsequently verifying them
US8766800B2 (en) 2004-03-12 2014-07-01 Ingenia Holdings Limited Authenticity verification methods, products, and apparatuses
US8699088B2 (en) 2004-03-12 2014-04-15 Ingenia Holdings Limited Methods and apparatuses for creating authenticatable printed articles and subsequently verifying them
US8896885B2 (en) 2004-03-12 2014-11-25 Ingenia Holdings Limited Creating authenticatable printed articles and subsequently verifying them based on scattered light caused by surface structure
US7853792B2 (en) 2004-03-12 2010-12-14 Ingenia Holdings Limited Authenticity verification methods, products and apparatuses
WO2005100926A1 (fr) * 2004-04-19 2005-10-27 Giesecke & Devrient Gmbh Dispositif pour verifier des billets de banque
JP2008509498A (ja) * 2004-08-13 2008-03-27 インゲニア・テクノロジー・リミテッド データベースを使用した物品の信頼性認証
US8103046B2 (en) 2004-08-13 2012-01-24 Ingenia Holdings Limited Authenticity verification of articles using a database
GB2417707B (en) * 2004-08-13 2006-07-26 Ingenia Technology Ltd Methods and apparatuses for creating authenticatable printed articles and subsequently verifying them
GB2417707A (en) * 2004-08-13 2006-03-08 Ingenia Technology Ltd Printer with integral scanner for authenticatable document creation and verification.
WO2006016114A1 (fr) * 2004-08-13 2006-02-16 Ingenia Technology Limited Vérification de l’authenticité d’articles employant une banque de données
CN101116087B (zh) * 2005-02-08 2011-08-31 皇家飞利浦电子股份有限公司 光散斑样式勘查
EP1851678A2 (fr) * 2005-02-08 2007-11-07 Koninklijke Philips Electronics N.V. Analyse de figure de speckle optique
WO2006120398A1 (fr) * 2005-05-11 2006-11-16 Ingenia Technology Limited Verification de l'authenticite au moyen d'une diffusion optique
US8078875B2 (en) 2005-07-27 2011-12-13 Ingenia Holdings Limited Verification of authenticity
KR101223204B1 (ko) 2005-07-27 2013-01-17 인제니아 홀딩스 리미티드 진품 검증
WO2007012815A1 (fr) * 2005-07-27 2007-02-01 Ingenia Technology Limited Verification d'authenticite
WO2007012816A1 (fr) * 2005-07-27 2007-02-01 Ingenia Technology Limited Procédé de vérification d’authenticité
US8497983B2 (en) 2005-12-23 2013-07-30 Ingenia Holdings Limited Optical authentication
US7812935B2 (en) 2005-12-23 2010-10-12 Ingenia Holdings Limited Optical authentication
US8682076B2 (en) 2008-12-19 2014-03-25 Ingenia Holdings Limited Signature generation for use in authentication and verification using a non-coherent radiation source
US8615475B2 (en) 2008-12-19 2013-12-24 Ingenia Holdings Limited Self-calibration
US8892556B2 (en) 2009-11-10 2014-11-18 Ingenia Holdings Limited Optimisation

Also Published As

Publication number Publication date
AU2003298351A1 (en) 2004-07-14
CN1745387A (zh) 2006-03-08
US20060104103A1 (en) 2006-05-18
FR2849245B1 (fr) 2006-02-24
FR2849245A1 (fr) 2004-06-25
EP1573661A1 (fr) 2005-09-14

Similar Documents

Publication Publication Date Title
WO2004057525A1 (fr) Procede d'authentification et d'identification optique d'objets et dispositif de mise en oeuvre
EP1281161B1 (fr) Methode d'identification d'un objet
KR100874294B1 (ko) 인증 시스템 및 방법
US5629764A (en) Prism fingerprint sensor using a holographic optical element
EP1933309A1 (fr) Procédé de recherche
FR2921012A1 (fr) Procede et dispositif de marquage d'une surface par nanostructures periodiques controlees
EP3388975A1 (fr) Dispositif de capture d'une empreinte d'une partie corporelle
CH620535A5 (fr)
FR2932588A1 (fr) Procede et dispositif de lecture d'une caracteristique physique sur un objet
EP3268901A1 (fr) Système et procédé de détection de l'authenticité d'un objet
CA3000153A1 (fr) Procede d'analyse d'un document structure susceptible d'etre deforme
FR2923006A1 (fr) Dispositif optique pour l'observation de details structurels millimetriques ou submillimetriques d'un objet a comportement speculaire
FR2868156A1 (fr) Procede et dispositif de controle non destructif de structure et de caracterisation des endommagements de structure par le principe de moire d'ombre
EP3388976B1 (fr) Procede de detection de fraude
EP3039377A1 (fr) Methode et dispositif de determination de la position et de l'orientation d'une surface speculaire formant un dioptre
WO2020029237A1 (fr) Procédé et système de détection
FR3078793A1 (fr) Procede d'authentification d'un visage base sur la reflectance
EP2823279A1 (fr) Procede et appareil de mesure de la structure geometrique d'un composant optique
FR2836575A1 (fr) Procede de mesure de la localisation d'un objet par detection de phase
EP3614305A1 (fr) Authentification par indice optique
Horner et al. Correlation System for Security Validation and Verification Using An Encoded Phase Mask
WO2009110094A1 (fr) Système de récupération d'informations d'image et système de récupération d'enregistrement d'informations d'image
EP4413356A1 (fr) Dispositif et procede opto-informatique d'analyse en lumiere traversante d'un recipient en materiau transparent ou translucide a l'aide d'une camera numerique polarimetrique
Chao Optical joint transform correlator using high-speed holographic photopolymer film
EP2175260A1 (fr) Dispositif de test pour la caractérisation de materiaux utilisés pour l'enregistrement optique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003796091

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006104103

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10539767

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A9386X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003796091

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003796091

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10539767

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载