WO2004057367A1 - Radargestrützte sensierung von lage und/oder bewegung des körpers oder im körper von lebewesen - Google Patents
Radargestrützte sensierung von lage und/oder bewegung des körpers oder im körper von lebewesen Download PDFInfo
- Publication number
- WO2004057367A1 WO2004057367A1 PCT/DE2003/003519 DE0303519W WO2004057367A1 WO 2004057367 A1 WO2004057367 A1 WO 2004057367A1 DE 0303519 W DE0303519 W DE 0303519W WO 2004057367 A1 WO2004057367 A1 WO 2004057367A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- living
- information
- frequency
- radar
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 47
- 238000012544 monitoring process Methods 0.000 claims abstract description 10
- 230000029058 respiratory gaseous exchange Effects 0.000 claims abstract description 10
- 238000011156 evaluation Methods 0.000 claims description 25
- 230000005540 biological transmission Effects 0.000 claims description 18
- 238000005070 sampling Methods 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 230000007774 longterm Effects 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000002565 electrocardiography Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 206010009192 Circulatory collapse Diseases 0.000 description 1
- 206010038669 Respiratory arrest Diseases 0.000 description 1
- 230000036626 alertness Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000001121 heart beat frequency Effects 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000036387 respiratory rate Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 206010040560 shock Diseases 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
- A61B5/18—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/0507—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves using microwaves or terahertz waves
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B83/00—Vehicle locks specially adapted for particular types of wing or vehicle
- E05B83/16—Locks for luggage compartments, car boot lids or car bonnets
- E05B83/26—Emergency opening means for persons trapped in the luggage compartment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/52—Discriminating between fixed and moving objects or between objects moving at different speeds
- G01S13/56—Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/415—Identification of targets based on measurements of movement associated with the target
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/113—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
- G01S7/288—Coherent receivers
- G01S7/2886—Coherent receivers using I/Q processing
Definitions
- the invention is based on a method for sensing information about the position and / or movements of the body of a living being or a part of the body inside the body.
- Optical measuring methods with cameras are known in the prior art for detecting the position and movements of the body.
- image evaluation is difficult and requires a lot of evaluation logic, which increases the costs.
- no movements inside the body can be pers such as B. determine the heartbeat.
- Electrocardiography is used to observe such movements inside the body, especially the heart.
- electrocardiography methods have the disadvantage of not being non-contact, because electrodes have to be attached to the body.
- infrared measurement methods are also unsuitable for observing the processes inside the body for the purposes mentioned above.
- the advantage is achieved of detecting the position and / or movements of a body or in a body in a targeted and contactless manner, ie without electrical contact with the body of the living being, and further processing with little effort in terms of material and programming logic, and if necessary to be able to pass it on to a higher-level system.
- the required transmission power of approx. 1 mW is far below the international limit for personal protection.
- the method according to the invention can be used in particular in motor vehicles.
- the present invention is based on the following knowledge about the interaction of the body of a living being with electromagnetic waves from the high-frequency range, in particular the radar frequency range:
- the body consists of numerous different types of tissue. Each tissue has different electrical properties (ie electrical conductivity, dielectric constant, depth of penetration for electromagnetic fields, etc.). These differences create jumps in the properties at the transition points, the so-called butt joints, which lead to partial reflections of penetrating electromagnetic waves from the high-frequency range.
- the wave is not only reflected at a (selective) impact point in the heart.
- the above-mentioned strong reflection at the "blood / tissue" transition applies to all of these locations.
- the signal strength here depends on the depth of penetration of the tissue types and the depth of measurement.
- the heartbeat can be characterized by the present invention.
- the sensor according to the invention not only the pulse frequency but also the “pumping movement” of the heart can be determined and interpreted physiologically.
- Another strong reflection at the transition from the outer area to the chest is used to measure breathing. This signal is determined using the same method according to the invention. This makes it possible to measure breathing and heartbeat simultaneously using the method according to the invention.
- movements of the body or parts of the body inside the body can be determined by evaluating the received signal and transmitted signal by determining the Doppler frequency shift between the two signals. This is a simple and sufficiently accurate method for determining body movements.
- the method according to the invention is preferably designed for radar frequencies in the range between 800 to 5 GHz and in particular for a frequency band of 100 MHz around 2.45 GHz. Electromagnetic waves from this frequency range are particularly well suited for the detection of body movements mainly because of the sufficient depth of penetration into the body. There is also a separate approval not required for frequencies from the ISM band of 100 MHz around 2.45 GHz.
- the method according to the invention can be further developed in an advantageous manner.
- Such situations can be, for example, a heart attack, cardiac arrhythmia, or respiratory arrest.
- the embodiment of the present invention is also advantageous such that the radar field is a pulsed field.
- the distance d between the body and the transmitting / receiving antenna elements can be monitored from the transit time difference between the transmitted and received signals.
- This is useful, for example, for controlling the deployment of an airbag.
- This method can preferably be designed for frequencies in the range between 20 to 120 GHz and in particular in the frequency band of 250 MHz around 24.5 GHz. With such high frequencies, the time difference for determining the distance can be determined very precisely. Furthermore, the radar waves from this frequency range hardly penetrate the body, but are mostly reflected on the surface. As a result, the measured data for the current position and movement of a location on the body surface are particularly precise and clear.
- the short radar pulses are advantageously generated either by switching on and off via a clock generation circuit that controls a signal switch, or by a signal filter of the clock signal.
- the received electromagnetic waves are preferably evaluated either according to the sampling principle by selective sampling of the signal or according to the more economical mixer principle, in which a branched-off part of the Transmitted signal (reference signal) is compared with the received signal and the resulting information is analyzed to determine the body movement.
- An IQ arrangement can be used to avoid evaluation problems when the mixed signal is zeroed.
- Such a signal evaluation arrangement is characterized in that an additional channel in which the reference signal is out of phase by 90 degrees is used, and the complex amplitude of the mixed signal is determined in the sum of the two signal outputs behind the two paths.
- the system which contains devices for carrying out the steps according to one of the methods according to the invention, can preferably be attached for monitoring the driver or front passenger or also for determining the presence of a living being in the trunk in a motor vehicle.
- the information thus obtained can be used in particular for the driver's health monitoring, the control of the deployment of an airbag and for the emergency locking of the trunk.
- Figure 1 is a block diagram of the structure of a system for sensing according to the inventive method in the embodiment of a continuous wave (CW) radar.
- CW continuous wave
- Fig. 2 is a block diagram of a structure of a variant of the signal evaluation according to the mixer principle as Part of a system according to an embodiment of the method according to the invention
- FIG. 3 shows a block diagram of a structure of an extended variant of the signal evaluation according to the mixer principle as part of a system according to an embodiment of the method according to the invention
- FIG. 4 shows a block diagram of a structure of a system for sensing according to the inventive method in an embodiment of a pulse radar
- FIG. 5 shows a block diagram of a structure of a system for sensing according to the inventive method in a further embodiment of a pulse radar
- FIG. 6 shows a block diagram of a structure of a system for sensing according to the inventive method in a further embodiment of a pulse radar
- FIG. 7 schematically shows a sensor device with a sensor area for the method according to the invention in a motor vehicle in a lateral cross section;
- FIG. 1 shows a block diagram of the construction of a system for sensing according to the inventive method in the embodiment of a continuous wave (CW) radar.
- Continuous wave radar uses not pulsed but continuous electromagnetic waves in the radar frequency range.
- a high-frequency, continuous useful signal from the GHz range with, for example, a frequency of 2.45 GHz and an average power of approximately 1 mW is passed from a frequency generator 10 of the VCO type to a 3 dB power divider 12.
- the signal is split into a transmission signal 15 and a reference signal 24 in a ratio of 1: 1.
- the transmission signal 15 passes via a bandpass filter 14, which filters out all frequencies outside the ISM band (2.45 GHz +/- 50 MHz), to the radar transmission antenna 18. From there, a continuous electromagnetic wave is emitted in the direction of the area of the body part to be observed sent.
- the transmitting antenna 18 is installed, for example, in the steering wheel of a motor vehicle, the radar wave being aimed at the driver's chest area, see also FIG for example located in the steering wheel.
- the received signal 22 forwarded by the antenna 20 reaches the signal evaluation device 30, into which the reference signal 24 is also passed.
- the signal depicting the desired movement information is output at signal output 26 of evaluation device 30 and in forwarded an alarm signal generator 38.
- an acoustic or visual alarm signal is generated or the information is forwarded to a higher-level system.
- the signal evaluation device 30 various embodiments are provided for the signal evaluation device 30. Two examples are shown in Figures 2 and 3. Both are based on the mixer principle, in which the received signal 22 and the reference signal 24 are superimposed and, in accordance with the mixer principle, so-called sum or difference signals are generated.
- FIG. 2 shows the simpler embodiment of such a signal evaluation device 30.
- the received signal 22 and the reference signal 24 enter the signal mixer 32, in which the signals are correlated.
- the signal mixer 32 is equipped with a bandpass filter for suppressing the interfering secondary signals - undesired mixed products but also, for example, the 50 Hz interference signal.
- the resulting mixed signal is passed from the signal mixer to a further bandpass filter 34 with a built-in amplifier, which selectively only passes and amplifies the frequencies required for determining the movement information. These frequencies are the Doppler frequencies and their changes over time in the frequency shift from the received signal to the reference signal.
- the frequency for the changes in the Doppler frequencies is, for example, in the case of the chest movement caused by breathing at 0.01 to 0.5 Hz and in the range of 0.5 to 3 Hz for the heartbeat.
- the Doppler frequencies for successful signal evaluation are in the frequency range up to 20Hz. At the signal output 26 these are let through amplified signals to map the desired movement information output.
- FIG. 3 shows an expanded form of a signal evaluation device 30 based on the mixer principle.
- This so-called IQ evaluation essentially contains two instead of one signal mixer 32.
- Both the received signal 22 and the reference signal 24 are each distributed by a 3 dB power divider 29, 31 to the two mixers 32 and 33 in a ratio of 1: 1.
- the part of the received signal 22 which is passed to the one mixer 33 in the power divider 31 is phase-shifted by 90 degrees.
- the resulting signal is then generated in each of the two mixers 32 and 33, as described for FIG. 2, and the frequencies required for determining the movement are selected and amplified further via bandpass filters 34 with amplifiers.
- the signals output at the two signal outputs 26 the complex amplitude of the entire output signal can be used for mapping onto the movement information. This avoids evaluation problems with zeroing of the one mixed signal.
- FIG. 4 shows a block diagram of a structure of a system for sensing according to the method according to the invention in an embodiment of a pulse radar. This is a radar system that uses pulsed electromagnetic waves.
- a high-frequency useful signal with a frequency of, for example, 2.45 GHz is passed from frequency generator 10 of the VCO type to a 3dB power divider 12.
- the signal is split into a transmission signal 15 and a reference signal 24 in a ratio of 1: 1.
- the transmission signal 15 continues to a very fast pin-diode switch 16, the transmission signal 15 only in short pulses (1 to 10ns
- the switch 16 is regulated by means of a control signal that comes from a control signal generator 17.
- the control signal generator 17 can deliver a pulse with the length of the switching period.
- the transmission signal pulses 15 are passed from the switch 16 to the radar transmission antenna 18 via a bandpass filter 14, which filters out all frequencies outside the ISM band (2.45 GHz +/- 50 MHz). From there, electromagnetic wave pulses 15 are emitted in the direction of the area of the body site to be observed.
- the transmission antenna 18 is installed, for example, in the steering wheel of a motor vehicle, the radar shaft being aimed at the driver's chest area.
- the radar wave pulses reflected at the joints of the body, in particular on the chest surface and on the heart wall, are received by the receiving antenna 20, which is also located in the steering wheel, for example.
- the pulsed received signal 22 forwarded by the antenna 20 reaches the signal evaluation device 30, into which the reference signal 24 is also directed.
- the reference signal 24 arriving there is also pulsed, which is done by means of the switch 21.
- This switch 21 is coupled to the switch 16 in such a way that it is controlled via the same control signal by the control signal generator 17, but with a variable time delay 19.
- the time delay is carried out by the delay element 19, which, for example, gradually shifts the time for the opening signal back up the jagged sawtooth voltage of the control signal generator 17.
- the pulses of the reference signal 24 are accordingly delayed compared to those of the transmission signal.
- a superimposition of the reference pulse 24 and reception pulse 22 in the signal evaluation 30 necessary for the result signal at the signal output 26 is achieved with a time delay of the reference pulse 24 which corresponds to the transit time of the emitted and reflected radar wave.
- the value of this delay is transmitted from the delay element 19 to the evaluation device 30 and used as information for the distance d (see FIG. 7) between the body or body part and the transmitting or receiving antenna 18, 20.
- the signal evaluation with regard to the body movements takes place, for example, according to the methods described for FIG. 2 or 3.
- the result at the signal output 26 is forwarded to a higher-level system 39 for further processing, such as a medical evaluation, by wireless data transmission.
- FIGS. 5 and 6 Another equally suitable signal evaluation method is the sampling principle illustrated with FIGS. 5 and 6, in which the received signal 22 is scanned in sampling clock steps.
- a high-frequency useful signal with a frequency of, for example, 24.5 GHz is used by a frequency generator 10 for the sensor design frequency. Pulsed with the help of the switch 16 and filtered by the bandpass filter 14, the transmission signal 15 is emitted by the antenna 18 as a radar wave pulse and the part reflected at the joints is received with the reception antenna 20. Switch 16 is controlled by a control signal generated in control signal generator 17.
- the clock for this signal is a clock generator 23, such as one for high frequencies commercially available clock.
- control pulse generator 25 for sampling is also regulated by the signal of the control signal generator 17.
- a variable time delay is built into this control by an interposed delay element 19 in order to compensate for the delay compensation of the radar wave.
- the value of the delay is transmitted to the sampler 35 to determine the distance d (see FIG. 7) of the body to the antenna elements 18 and 20. (Since the received signal is continuously sampled, the signal is practically converted A / D.
- the transit time can be calculated by comparing the received signal with the transmitted signal and thus determining the time difference.
- the sampler 35 which samples the received signal 22, is controlled with the control pulse 27 then generated in the sampling control pulse generator 25.
- the resulting sampling data are then output for the information analysis at the signal output 26 of the sampler 35.
- the clock signal of the clock generator 23 of the sampling pulse controller 25 is used as the basis for the transmission pulse 15.
- a pulse generator 13 which can be, for example, a diode, from which the corresponding part of its Fourier spectrum broadened by the shortness of the pulse is then transmitted as a transmission pulse 15 in the downstream bandpass filter 14.
- the ISM band can be used for the radar pulse frequencies.
- the frequency band around 24.5 GHz, which is ten times higher, can also be used for more precise distance measurements.
- FIG. 7 schematically shows a sensor device 40 with a sensor area for the method according to the invention in a motor vehicle in a lateral cross section.
- the sensor device 40 is fastened at a point in the permitted angular range 42 in front of the chest section 44 of the driver 46.
- a suitable position within the angular range 42 which is open at approximately 30 degrees, would be in the steering wheel 48, for example.
- the electromagnetic wave can be directed at the heart 50 and / or the measuring range 52 of the breathing movement.
- the distance d between the person 46 and the sensor 40 is also measured. Its radiation pattern has an opening angle 43 of up to 45 degrees.
- control and evaluation elements for the sensor 40 can be located at another location in the motor vehicle, for example in the center console.
- FIG. 8 schematically shows a sensor device 40 for the method according to the invention in the trunk 62 of a motor vehicle 60 in a lateral cross section.
- the sensor 40 is attached under the trunk roof 64 in such a way that the observation area at the radiation opening angle 43 covers the main part of the trunk 62. This makes it possible to determine whether there is a living being there. This can be used for the automatic opening of the. Flap can be used in an accident.
- a radar-based sensor 40 for determining heartbeat and respiratory rate can be used to great advantage in the following tasks or systems in a motor vehicle:
- Presence detection By (seat-related) measurement of the heartbeat, a distinction can be made between a person present and an object. the. Such a system can support airbag deployment. Unnecessary airbag deployment in the event of an accident greatly increases repair costs.
- the airbag control can also be improved by different heartbeat frequencies in children and adults. Children have a higher pulse than adults. However, other parameters such as e.g. Weight and / or size can also be used.
- Driver monitoring for driver condition monitoring, the heartbeat and breathing with the system according to the invention are physiological parameters that are easy to measure and are highly informative. The possible uses for such a system are shown by the increasing numbers of accidents due to heart attacks or circulatory failure when driving a motor vehicle.
- the heartbeat could also provide information about the driver's level of alertness (attention, resilience).
- the pulse rate of a relaxed person is significantly lower than that of a person who is under stress.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Psychology (AREA)
- Hospice & Palliative Care (AREA)
- Educational Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Developmental Disabilities (AREA)
- Child & Adolescent Psychology (AREA)
- Psychiatry (AREA)
- Social Psychology (AREA)
- Radar Systems Or Details Thereof (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/497,870 US7196629B2 (en) | 2002-12-19 | 2003-10-23 | Radar-assisted sensing of the position and/or movement of the body or inside the body of living beings |
JP2004561017A JP2006510880A (ja) | 2002-12-19 | 2003-10-23 | 生物の身体または身体内の位置および/または運動を、レーザ支援してセンシングする方法 |
EP03776814A EP1590685A1 (de) | 2002-12-19 | 2003-10-23 | RADARGESTR TZTE SENSIERUNG VON LAGE UND/ODER BEWEGUNG DES K& Ouml;RPERS ODER IM K RPER VON LEBEWESEN |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10259522.4 | 2002-12-19 | ||
DE10259522A DE10259522A1 (de) | 2002-12-19 | 2002-12-19 | Radargestützte Sensierung von Lage und/oder Bewegung des Körpers oder im Körper von Lebewesen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004057367A1 true WO2004057367A1 (de) | 2004-07-08 |
Family
ID=32403968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2003/003519 WO2004057367A1 (de) | 2002-12-19 | 2003-10-23 | Radargestrützte sensierung von lage und/oder bewegung des körpers oder im körper von lebewesen |
Country Status (5)
Country | Link |
---|---|
US (1) | US7196629B2 (de) |
EP (1) | EP1590685A1 (de) |
JP (1) | JP2006510880A (de) |
DE (1) | DE10259522A1 (de) |
WO (1) | WO2004057367A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9610015B2 (en) | 2011-04-29 | 2017-04-04 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Radar apparatus for detecting multiple life—signs of a subject, a method and a computer program product |
US10473762B2 (en) * | 2016-08-15 | 2019-11-12 | Microsoft Technology Licensing, Llc | Wireless radio module |
Families Citing this family (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8604932B2 (en) * | 1992-05-05 | 2013-12-10 | American Vehicular Sciences, LLC | Driver fatigue monitoring system and method |
US9129505B2 (en) | 1995-06-07 | 2015-09-08 | American Vehicular Sciences Llc | Driver fatigue monitoring system and method |
US7811234B2 (en) * | 2002-08-01 | 2010-10-12 | California Institute Of Technology | Remote-sensing method and device |
DE10254198B4 (de) * | 2002-11-20 | 2006-04-20 | Siemens Ag | Vorrichtung und Verfahren zum Erkennen der Sitzbelegung in einem Fahrzeug |
US7903020B2 (en) | 2005-04-22 | 2011-03-08 | University Of Florida Research Foundation, Inc. | System and methods for remote sensing using double-sideband signals |
DE102005020847A1 (de) * | 2005-05-02 | 2006-11-09 | Carsten Dr. Koch | Vorrichtung zur berührungslosen Positionsbestimmung von Körperteilen von Lebewesen im Kraftfahrzeug |
GB2427692A (en) * | 2005-06-27 | 2007-01-03 | Intelligent Sensors Plc | Non-contact life signs detector |
JP2009513184A (ja) * | 2005-08-09 | 2009-04-02 | ズワーン,ギル | 高分解能無線周波数医療画像化及び治療システム |
US7567200B1 (en) * | 2006-04-27 | 2009-07-28 | Josef Osterweil | Method and apparatus for body position monitor and fall detect ion using radar |
US7916066B1 (en) * | 2006-04-27 | 2011-03-29 | Josef Osterweil | Method and apparatus for a body position monitor and fall detector using radar |
US8630768B2 (en) | 2006-05-22 | 2014-01-14 | Inthinc Technology Solutions, Inc. | System and method for monitoring vehicle parameters and driver behavior |
US9067565B2 (en) | 2006-05-22 | 2015-06-30 | Inthinc Technology Solutions, Inc. | System and method for evaluating driver behavior |
CA2654095C (en) | 2006-06-01 | 2015-12-22 | Biancamed Ltd. | Apparatus, system, and method for monitoring physiological signs |
CN101511268B (zh) | 2006-08-30 | 2011-01-26 | 皇家飞利浦电子股份有限公司 | 监测体内脉动对象的装置 |
US7899610B2 (en) | 2006-10-02 | 2011-03-01 | Inthinc Technology Solutions, Inc. | System and method for reconfiguring an electronic control unit of a motor vehicle to optimize fuel economy |
RU2321341C1 (ru) * | 2006-10-06 | 2008-04-10 | Игорь Яковлевич Иммореев | Импульсный сверхширокополосный датчик |
EP3967219A1 (de) * | 2006-11-01 | 2022-03-16 | ResMed Sensor Technologies Limited | System und verfahren zur überwachung von herz-lungen-parametern |
CN100453043C (zh) * | 2007-01-23 | 2009-01-21 | 武汉理工大学 | 汽车驾驶员疲劳实时监测系统 |
GB2449081B (en) * | 2007-05-08 | 2009-03-18 | Laerdal Medical As | Breathing detection |
US7884727B2 (en) * | 2007-05-24 | 2011-02-08 | Bao Tran | Wireless occupancy and day-light sensing |
US8825277B2 (en) | 2007-06-05 | 2014-09-02 | Inthinc Technology Solutions, Inc. | System and method for the collection, correlation and use of vehicle collision data |
US8666590B2 (en) | 2007-06-22 | 2014-03-04 | Inthinc Technology Solutions, Inc. | System and method for naming, filtering, and recall of remotely monitored event data |
US9129460B2 (en) | 2007-06-25 | 2015-09-08 | Inthinc Technology Solutions, Inc. | System and method for monitoring and improving driver behavior |
US7999670B2 (en) | 2007-07-02 | 2011-08-16 | Inthinc Technology Solutions, Inc. | System and method for defining areas of interest and modifying asset monitoring in relation thereto |
WO2009009722A2 (en) | 2007-07-12 | 2009-01-15 | University Of Florida Research Foundation, Inc. | Random body movement cancellation for non-contact vital sign detection |
US8577703B2 (en) | 2007-07-17 | 2013-11-05 | Inthinc Technology Solutions, Inc. | System and method for categorizing driving behavior using driver mentoring and/or monitoring equipment to determine an underwriting risk |
US9117246B2 (en) | 2007-07-17 | 2015-08-25 | Inthinc Technology Solutions, Inc. | System and method for providing a user interface for vehicle mentoring system users and insurers |
US8818618B2 (en) | 2007-07-17 | 2014-08-26 | Inthinc Technology Solutions, Inc. | System and method for providing a user interface for vehicle monitoring system users and insurers |
WO2009040711A2 (en) | 2007-09-25 | 2009-04-02 | Koninklijke Philips Electronics N.V. | Method and system for monitoring vital body signs of a seated person |
US7876205B2 (en) | 2007-10-02 | 2011-01-25 | Inthinc Technology Solutions, Inc. | System and method for detecting use of a wireless device in a moving vehicle |
EP2051098A1 (de) * | 2007-10-19 | 2009-04-22 | Ford Global Technologies, LLC | Verfahren und System für Anwesenheitsdetektion |
EP2051100A1 (de) * | 2007-10-19 | 2009-04-22 | Ford Global Technologies, LLC | Verfahren und System für Anwesenheitsdetektion |
EP2210126A4 (de) * | 2007-10-24 | 2011-08-31 | Kirsen Technologies Corp | System und verfahren zur raumsteuerung und fernüberwachung |
WO2009083017A1 (en) * | 2007-12-27 | 2009-07-09 | Bea Sa | Movement detector for detecting the movement of a breathing activity |
DE102008006711A1 (de) | 2008-01-30 | 2009-08-13 | Siemens Aktiengesellschaft | Medizinische Diagnose- oder Therapieeinheit und Verfahren zur Verbesserung von Untersuchungs- bzw. Behandlungsabläufen mit einer medizinischen Diagnose- oder Therapieeinheit |
RU2392852C2 (ru) * | 2008-02-19 | 2010-06-27 | Закрытое Акционерное Общество "Нанопульс" | Импульсный сверхширокополосный датчик дистанционного мониторинга дыхания и сердцебиения |
RU2369323C1 (ru) * | 2008-02-20 | 2009-10-10 | Игорь Яковлевич Иммореев | Импульсный сверхширокополосный датчик |
KR101022513B1 (ko) | 2008-05-06 | 2011-03-16 | 이병섭 | 다중 직교 반송파를 이용한 바이오 레이다 시스템 |
RU2511278C2 (ru) * | 2008-05-09 | 2014-04-10 | Конинклейке Филипс Электроникс Н.В. | Бесконтактное наблюдение дыхания у пациента и оптический датчик для измерения методом фотоплетизмографии |
WO2010004496A1 (en) * | 2008-07-11 | 2010-01-14 | Koninklijke Philips Electronics N.V. | Automatic transmission power adjustment for doppler radar |
US8688180B2 (en) | 2008-08-06 | 2014-04-01 | Inthinc Technology Solutions, Inc. | System and method for detecting use of a wireless device while driving |
DE102008039558B4 (de) | 2008-08-25 | 2018-12-20 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Sicherheitseinrichtung für ein Fahrzeug |
CN107506569B (zh) * | 2008-09-24 | 2021-07-13 | 瑞思迈传感器技术有限公司 | 用于评估和干预的生活质量参数的无接触和最小接触监控 |
KR101173944B1 (ko) * | 2008-12-01 | 2012-08-20 | 한국전자통신연구원 | 차량 운전자의 감성 조절 시스템 및 방법 |
TW201025207A (en) * | 2008-12-31 | 2010-07-01 | Ind Tech Res Inst | Drowsiness detection method and apparatus thereof |
US9526429B2 (en) | 2009-02-06 | 2016-12-27 | Resmed Sensor Technologies Limited | Apparatus, system and method for chronic disease monitoring |
US8188887B2 (en) * | 2009-02-13 | 2012-05-29 | Inthinc Technology Solutions, Inc. | System and method for alerting drivers to road conditions |
US20100211301A1 (en) * | 2009-02-13 | 2010-08-19 | Mcclellan Scott | System and method for analyzing traffic flow |
US8963702B2 (en) | 2009-02-13 | 2015-02-24 | Inthinc Technology Solutions, Inc. | System and method for viewing and correcting data in a street mapping database |
US8892341B2 (en) | 2009-02-13 | 2014-11-18 | Inthinc Technology Solutions, Inc. | Driver mentoring to improve vehicle operation |
US8098165B2 (en) * | 2009-02-27 | 2012-01-17 | Toyota Motor Engineering & Manufacturing North America (Tema) | System, apparatus and associated methodology for interactively monitoring and reducing driver drowsiness |
DE102009012109B4 (de) * | 2009-03-06 | 2011-05-12 | Siemens Aktiengesellschaft | Digitales Verfahren zur Kanalreduktion in MR Empfangs-Systemen und entsprechende Vorrichtung |
JP5415110B2 (ja) * | 2009-03-13 | 2014-02-12 | 株式会社デンソーアイティーラボラトリ | 乗員検知装置 |
DE102009021232B4 (de) * | 2009-05-14 | 2017-04-27 | Siemens Healthcare Gmbh | Patientenliege, Verfahren für eine Patientenliege und bildgebendes medizinisches Gerät |
US9019149B2 (en) | 2010-01-05 | 2015-04-28 | The Invention Science Fund I, Llc | Method and apparatus for measuring the motion of a person |
US8884813B2 (en) * | 2010-01-05 | 2014-11-11 | The Invention Science Fund I, Llc | Surveillance of stress conditions of persons using micro-impulse radar |
US20110166937A1 (en) * | 2010-01-05 | 2011-07-07 | Searete Llc | Media output with micro-impulse radar feedback of physiological response |
US9069067B2 (en) | 2010-09-17 | 2015-06-30 | The Invention Science Fund I, Llc | Control of an electronic apparatus using micro-impulse radar |
US20110166940A1 (en) * | 2010-01-05 | 2011-07-07 | Searete Llc | Micro-impulse radar detection of a human demographic and delivery of targeted media content |
US9024814B2 (en) | 2010-01-05 | 2015-05-05 | The Invention Science Fund I, Llc | Tracking identities of persons using micro-impulse radar |
US9603555B2 (en) | 2010-05-17 | 2017-03-28 | Industrial Technology Research Institute | Motion/vibration detection system and method with self-injection locking |
TWI458271B (zh) * | 2010-05-17 | 2014-10-21 | Ind Tech Res Inst | 無線感測裝置與方法 |
PL2407705T3 (pl) * | 2010-07-13 | 2014-02-28 | Joseph Voegele Ag | Maszyna budowlana z systemem wykrywania obecności |
EP2417908A1 (de) * | 2010-08-12 | 2012-02-15 | Philips Intellectual Property & Standards GmbH | Vorrichtung, System und Verfahren zum Messen der Vitalzeichen |
EP2619733B1 (de) * | 2010-09-22 | 2014-02-26 | Koninklijke Philips N.V. | Verfahren und vorrichtung zur identifizierung einer person bei einem sensorbasierten überwachungssystem |
ES2366219B1 (es) * | 2010-12-24 | 2012-09-27 | Fico Mirrors, S.A. | Método y sistema de medida de parámetros fisiológicos. |
US8808190B2 (en) | 2011-02-03 | 2014-08-19 | Koninklijke Philips N.V. | Planar coil arrangement for a magnetic induction impedance measurement apparatus |
US8698639B2 (en) | 2011-02-18 | 2014-04-15 | Honda Motor Co., Ltd. | System and method for responding to driver behavior |
US9292471B2 (en) | 2011-02-18 | 2016-03-22 | Honda Motor Co., Ltd. | Coordinated vehicle response system and method for driver behavior |
SE535666C2 (sv) * | 2011-03-11 | 2012-10-30 | Totalfoersvarets Forskningsins | Metod och anordning för genomsökning av rasmassor |
US8725311B1 (en) | 2011-03-14 | 2014-05-13 | American Vehicular Sciences, LLC | Driver health and fatigue monitoring system and method |
US8740793B2 (en) * | 2011-08-29 | 2014-06-03 | General Electric Company | Radar based systems and methods for monitoring a subject |
WO2013033162A1 (en) | 2011-09-02 | 2013-03-07 | Battelle Memorial Institute | Distributed extravasation detection system |
WO2013037399A1 (en) | 2011-09-12 | 2013-03-21 | Ficomirrors, S.A. | System and method for detecting a vital-related signal pattern |
TWI464710B (zh) * | 2012-06-14 | 2014-12-11 | Univ Nat Sun Yat Sen | 無線感測裝置與無線感測方法 |
CA2885743A1 (en) * | 2012-09-25 | 2014-04-03 | Scoot Networks, Inc. | Systems and methods for regulating vehicle access |
DE102012218112A1 (de) * | 2012-10-04 | 2014-04-10 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Bestimmung des Pulsschlags |
CN102961165A (zh) * | 2012-12-06 | 2013-03-13 | 中国人民解放军第四军医大学 | 一种基于超宽带雷达的音频生命参数探测仪 |
CN103027670A (zh) * | 2012-12-13 | 2013-04-10 | 中国人民解放军第四军医大学 | 一种微功率冲激式生物雷达前端 |
CN102988051B (zh) * | 2012-12-13 | 2014-07-02 | 中国人民解放军第四军医大学 | 用于计算机操作者健康的监测装置 |
CN103054561B (zh) * | 2013-01-15 | 2014-06-18 | 中国计量学院 | 电子体温计自动在线检定系统 |
DE102013201836A1 (de) * | 2013-02-05 | 2014-08-07 | Continental Teves Ag & Co. Ohg | Verfahren und Vorrichtung zur Anwesenheitserkennung von Objekten in einer Fahrgastzelle eines Fahrzeugs |
JP6127602B2 (ja) * | 2013-03-13 | 2017-05-17 | 沖電気工業株式会社 | 状態認識装置、状態認識方法及びコンピュータプログラム |
US9751534B2 (en) | 2013-03-15 | 2017-09-05 | Honda Motor Co., Ltd. | System and method for responding to driver state |
US10499856B2 (en) | 2013-04-06 | 2019-12-10 | Honda Motor Co., Ltd. | System and method for biological signal processing with highly auto-correlated carrier sequences |
DE102013212819A1 (de) * | 2013-07-01 | 2015-01-08 | Siemens Aktiengesellschaft | Radarsystem für den medizinischen Einsatz |
DE102013212820A1 (de) | 2013-07-01 | 2015-01-08 | Siemens Aktiengesellschaft | Bestimmen der Bewegung eines Untersuchungsbereiches |
CN105452898B (zh) * | 2013-08-14 | 2018-02-13 | Iee国际电子工程股份公司 | 车辆乘用的雷达感测 |
US9172477B2 (en) | 2013-10-30 | 2015-10-27 | Inthinc Technology Solutions, Inc. | Wireless device detection using multiple antennas separated by an RF shield |
CN104627030A (zh) * | 2013-11-13 | 2015-05-20 | 光宝科技股份有限公司 | 载具安全系统及应用于其上的安全侦测与处理方法 |
LU92331B1 (en) * | 2013-12-10 | 2015-06-11 | Iee Sarl | Radar sensor with frequency dependent beam steering |
RS20140182A1 (en) | 2014-04-14 | 2015-10-30 | Novelic D.O.O. | RADAR SENSOR FOR DRIVER DETECTION DETECTION OPERATING IN MILLIMETER FREQUENCY AND OPERATION METHOD |
RS20140183A1 (en) * | 2014-04-14 | 2015-10-30 | Novelic D.O.O. | RADAR SENSOR FOR SEAT CONVENIENCE DETECTION OPERATING IN THE MILLIMETER FREQUENCY RANGE AND METHOD OF OPERATION |
CN106793967A (zh) * | 2014-06-11 | 2017-05-31 | 卡迪亚克运动有限责任公司 | 便携式心脏运动监测器 |
PL3000641T3 (pl) * | 2014-09-29 | 2019-09-30 | Joseph Vögele AG | Układarka z modułem operacyjnym i sposób wywoływania funkcji operacyjnej |
US11051702B2 (en) | 2014-10-08 | 2021-07-06 | University Of Florida Research Foundation, Inc. | Method and apparatus for non-contact fast vital sign acquisition based on radar signal |
DE102014222486A1 (de) * | 2014-11-04 | 2016-05-04 | Robert Bosch Gmbh | Verfahren zur Überwachung einer induktiven Übertragungsstrecke und Ladesystem zum induktiven Laden eines Elektrofahrzeuges |
US9891313B2 (en) * | 2015-05-08 | 2018-02-13 | Htc Corporation | Radar device and security monitoring system |
US9833200B2 (en) | 2015-05-14 | 2017-12-05 | University Of Florida Research Foundation, Inc. | Low IF architectures for noncontact vital sign detection |
WO2017184770A1 (en) * | 2016-04-19 | 2017-10-26 | Vitalmetric Llc | Touch-less monitoring of operators in vehicles and other settings |
CN105997086B (zh) * | 2016-06-20 | 2019-07-19 | 北京大学 | 一种呼吸检测方法 |
WO2018127488A1 (en) | 2017-01-09 | 2018-07-12 | Koninklijke Philips N.V. | Magnetic inductive sensing device and method |
KR101935653B1 (ko) | 2017-03-13 | 2019-01-04 | 연세대학교 산학협력단 | 레이더를 이용하여 탑승자의 상태를 인식하는 방법 및 장치 |
KR102338204B1 (ko) | 2017-08-02 | 2021-12-10 | 한국전자통신연구원 | 생체 신호 감지 장치 및 이를 포함하는 생체 신호 감지 시스템 |
WO2019026076A1 (en) * | 2017-08-02 | 2019-02-07 | Caaresys Ltd | SYSTEM FOR NON-CONTACT DETECTION AND MONITORING OF VITAL SIGNS OF OCCUPANTS OF A VEHICLE |
DE102017214008A1 (de) * | 2017-08-10 | 2019-02-14 | Volkswagen Aktiengesellschaft | Verfahren und Vorrichtung zur Erfassung der körperlichen Aktivität von Fahrzeuginsassen eines Kraftfahrzeugs |
CN107358776A (zh) * | 2017-08-23 | 2017-11-17 | 苏州豪米波技术有限公司 | 心跳检测雷达系统 |
DE102017216867A1 (de) * | 2017-09-25 | 2019-03-28 | Robert Bosch Gmbh | Verfahren und Radarsensor zur Reduktion des Einflusses von Störungen bei der Auswertung mindestens eines Empfangssignals |
DE102017128576A1 (de) * | 2017-12-01 | 2019-06-06 | Ilmsens Gmbh | Vorrichtung zur Vitalitätsüberwachung |
KR20240053667A (ko) * | 2017-12-22 | 2024-04-24 | 레스메드 센서 테크놀로지스 리미티드 | 건강 및 의료 감지를 위한 장치, 시스템, 및 방법 |
CN116898406A (zh) | 2017-12-22 | 2023-10-20 | 瑞思迈传感器技术有限公司 | 用于运动感测的设备、系统和方法 |
CN111655135B (zh) * | 2017-12-22 | 2024-01-12 | 瑞思迈传感器技术有限公司 | 用于车辆中的生理感测的设备、系统和方法 |
US11468503B2 (en) | 2018-04-16 | 2022-10-11 | Bird Rides, Inc. | On-demand rental of electric vehicles |
US11378671B1 (en) * | 2018-08-16 | 2022-07-05 | Edge 3 Technologies | Coarse to fine movement detection in vehicles |
US20200094761A1 (en) * | 2018-09-24 | 2020-03-26 | Novelic D.O.O. | Seat occupation, vital signs and safety belt lock sensor system for rear vehicle seats without power supply |
WO2020080569A1 (ko) * | 2018-10-18 | 2020-04-23 | 인지니어스 주식회사 | 레이더 신호를 이용한 운전자 졸음 판별 장치 및 그 동작 방법 |
DE102018008629A1 (de) * | 2018-10-31 | 2020-04-30 | Daimler Ag | Verfahren und Vorrichtung zur Verringerung von kinetosebedingten Störungen eines Insassen und Fahrzeug |
JP7156103B2 (ja) * | 2019-03-08 | 2022-10-19 | 株式会社デンソー | 生体情報検出装置 |
US11402485B2 (en) | 2019-04-30 | 2022-08-02 | Robert Bosch Gmbh | Ultra-wideband intelligent sensing system and method |
DE102019127407A1 (de) * | 2019-10-11 | 2021-04-15 | Valeo Schalter Und Sensoren Gmbh | Verfahren und System zum Anpassen eines Fahrverhaltens eines autonomen Ego-Fahrzeugs |
EP4064976A4 (de) * | 2019-11-25 | 2024-04-17 | Cardiac Motion, LLC | Monitor für die druckveränderung in der lungenarterie |
CN111055731B (zh) * | 2019-12-07 | 2022-04-08 | 浙江吉利汽车研究院有限公司 | 一种安全乘车的控制方法、装置及设备 |
CN113116314B (zh) * | 2021-03-31 | 2024-03-15 | 淮南联合大学 | 一种基于毫米波雷达的舱内生命体征监测系统 |
DE102023110034A1 (de) | 2023-04-20 | 2024-10-24 | Pierburg Gmbh | Fahrzeug-Führungsperson-Überwachungsanordnung |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5790032A (en) * | 1994-01-20 | 1998-08-04 | Selectronic Gesellschaft Fur Scherheitstechnik Und Sonderelektronik Mbh | Method of and apparatus for detecting living bodies |
WO2000058584A1 (en) * | 1999-03-31 | 2000-10-05 | Siemens Automotive Corporation | Automatic automobile trunk release system and method |
US6254127B1 (en) * | 1992-05-05 | 2001-07-03 | Automotive Technologies International Inc. | Vehicle occupant sensing system including a distance-measuring sensor on an airbag module or steering wheel assembly |
WO2003019236A1 (fr) * | 2001-08-24 | 2003-03-06 | Fujitsu Ten Limited | Procede de detection de corps dans un vehicule |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3911899A (en) * | 1973-11-08 | 1975-10-14 | Chemetron Corp | Respiration monitoring method and apparatus |
JPS5442733A (en) * | 1977-09-12 | 1979-04-04 | Nissan Motor Co Ltd | Alarm system for vehicle |
US6820897B2 (en) * | 1992-05-05 | 2004-11-23 | Automotive Technologies International, Inc. | Vehicle object detection system and method |
US4513748A (en) * | 1983-08-30 | 1985-04-30 | Rca Corporation | Dual frequency heart rate monitor utilizing doppler radar |
GB2150725B (en) * | 1983-11-30 | 1988-02-17 | Aisin Seiki | Safety apparatus for a road vehicle |
US5141308A (en) * | 1991-08-12 | 1992-08-25 | Danckwerth Thomas M | Semiconductor laser pulse compression radar system |
DE4492128C2 (de) * | 1993-03-31 | 2003-01-02 | Automotive Tech Int | Positions- und Geschwindigkeitssensor für Fahrzeuginsassen |
FR2745093B1 (fr) * | 1996-02-21 | 1998-04-24 | Legrand Sa | Procede et dispositif de detection de presence d'un etre vivant d'espece particuliere dans un espace surveille par un capteur doppler |
US6275146B1 (en) * | 1996-04-23 | 2001-08-14 | Philip W. Kithil | Vehicle occupant sensing |
US6290255B1 (en) * | 1997-03-07 | 2001-09-18 | Automotive Systems Laboratory, Inc. | Occupant detection system |
US6252240B1 (en) * | 1997-04-25 | 2001-06-26 | Edward J. Gillis | Vehicle occupant discrimination system and method |
US5904368A (en) * | 1997-09-16 | 1999-05-18 | Trw Inc. | Occupant restraint system and control method with variable sensor rate and/or sample rate |
JP3619662B2 (ja) * | 1998-02-18 | 2005-02-09 | パイオニア株式会社 | 生体情報検出装置 |
US6661345B1 (en) * | 1999-10-22 | 2003-12-09 | The Johns Hopkins University | Alertness monitoring system |
GB2364390B (en) * | 2000-07-03 | 2004-11-17 | Yousri Mohammad Tah Haj-Yousef | A method and device for detecting and monitoring concealed bodies and objects |
US6822573B2 (en) * | 2002-01-18 | 2004-11-23 | Intelligent Mechatronic Systems Inc. | Drowsiness detection system |
JP4252268B2 (ja) * | 2002-08-29 | 2009-04-08 | パイオニア株式会社 | 疲労度判別システム、疲労度判別方法、および疲労度判別用プログラム |
-
2002
- 2002-12-19 DE DE10259522A patent/DE10259522A1/de not_active Withdrawn
-
2003
- 2003-10-23 JP JP2004561017A patent/JP2006510880A/ja active Pending
- 2003-10-23 US US10/497,870 patent/US7196629B2/en not_active Expired - Lifetime
- 2003-10-23 WO PCT/DE2003/003519 patent/WO2004057367A1/de active Application Filing
- 2003-10-23 EP EP03776814A patent/EP1590685A1/de not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6254127B1 (en) * | 1992-05-05 | 2001-07-03 | Automotive Technologies International Inc. | Vehicle occupant sensing system including a distance-measuring sensor on an airbag module or steering wheel assembly |
US5790032A (en) * | 1994-01-20 | 1998-08-04 | Selectronic Gesellschaft Fur Scherheitstechnik Und Sonderelektronik Mbh | Method of and apparatus for detecting living bodies |
WO2000058584A1 (en) * | 1999-03-31 | 2000-10-05 | Siemens Automotive Corporation | Automatic automobile trunk release system and method |
WO2003019236A1 (fr) * | 2001-08-24 | 2003-03-06 | Fujitsu Ten Limited | Procede de detection de corps dans un vehicule |
US20040020314A1 (en) * | 2001-08-24 | 2004-02-05 | Choichiro Tsuchihashi | In-vehicle body detection method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9610015B2 (en) | 2011-04-29 | 2017-04-04 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Radar apparatus for detecting multiple life—signs of a subject, a method and a computer program product |
US10473762B2 (en) * | 2016-08-15 | 2019-11-12 | Microsoft Technology Licensing, Llc | Wireless radio module |
Also Published As
Publication number | Publication date |
---|---|
US20050073424A1 (en) | 2005-04-07 |
DE10259522A1 (de) | 2004-07-01 |
US7196629B2 (en) | 2007-03-27 |
JP2006510880A (ja) | 2006-03-30 |
EP1590685A1 (de) | 2005-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004057367A1 (de) | Radargestrützte sensierung von lage und/oder bewegung des körpers oder im körper von lebewesen | |
EP3384323B1 (de) | Bodensensor | |
EP0600571B1 (de) | Elektronisches Lebensdetektionssystem | |
EP3485290B1 (de) | Verfahren und system zur abtastung eines objekts | |
DE69615905T2 (de) | Kompaktes fahrzeuggestütztes System mit Mehrfachantennen zum rückwärtigen und seitlichen Erkennen von Hindernissen | |
EP2799898B1 (de) | Wetterradar | |
EP2953820A1 (de) | Verfahren und vorrichtung zur anwesenheitserkennung von objekten in einer fahrgastzelle eines fahrzeugs | |
DE102008006711A1 (de) | Medizinische Diagnose- oder Therapieeinheit und Verfahren zur Verbesserung von Untersuchungs- bzw. Behandlungsabläufen mit einer medizinischen Diagnose- oder Therapieeinheit | |
EP3145412B1 (de) | Verfahren zur nichtinvasiven optischen messung von eigenschaften von fliessendem blut | |
DE102009032124A1 (de) | Verfahren zum Erkennen eines blockierten Zustands eines Radargeräts und Fahrerassistenzeinrichtung | |
DE102020123474A1 (de) | Sensor, Fahrzeugsitz und entsprechendes Verfahren | |
EP3579020B1 (de) | Verfahren zur erkennung eines hindernisses mit hilfe von reflektierten ultraschallwellen | |
EP0601678B1 (de) | Elektronisches Überwachungssystem | |
EP2150172B1 (de) | Vorrichtung und verfahren zur korrektur eines gemessenen blutdrucks | |
EP3809964B1 (de) | Messvorrichtung und verfahren zur bestimmung zumindest eines respiratorischen parameters | |
DE102011009960A1 (de) | Ultraschallbasiertes Orientierungsgerät und Verwendung des Geräts als Blindenführgerät | |
WO2016050340A1 (de) | Fahrzeugbedienelement sowie verfahren zur nichtinvasiven messung von biomolekülen | |
EP3009858A1 (de) | Wolkenradar | |
EP2280644B1 (de) | Messvorrichtung und verfahren zur mikrowellenbasierten untersuchung | |
DE10349210A1 (de) | System und Verfahren zum vorausschauenden Detektieren eines potentiellen Unfallobjektes im Kraftfahrzeugbereich | |
DE102013221544B4 (de) | Medizingerät mit einem Breitband-Radarsystem und bildgebendes Verfahren | |
WO2019105958A1 (de) | Anordnung zur überwachung von vitalitätsdaten eines fahrzeugführers | |
DE102023121827A1 (de) | Radarsignalverarbeitungsverfahren zur verbesserten überwachung der vitalfunktionen von insassen | |
DE102009026927A1 (de) | Antennensteuerung für einen Radarsensor | |
WO2017025602A1 (de) | Annäherungssensor und verfahren zum erkennen einer annäherung an ein fahrzeuginnenverkleidungsteil eines fahrzeugs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2003776814 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10497870 Country of ref document: US |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004561017 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003776814 Country of ref document: EP |