+

WO2003102974A1 - Platinum thin film and thermal sensor - Google Patents

Platinum thin film and thermal sensor Download PDF

Info

Publication number
WO2003102974A1
WO2003102974A1 PCT/JP2002/005426 JP0205426W WO03102974A1 WO 2003102974 A1 WO2003102974 A1 WO 2003102974A1 JP 0205426 W JP0205426 W JP 0205426W WO 03102974 A1 WO03102974 A1 WO 03102974A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
thin film
platinum
platinum thin
heat
Prior art date
Application number
PCT/JP2002/005426
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiko Tsutsumi
Hiroshi Ohji
Akira Yamashita
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2002/005426 priority Critical patent/WO2003102974A1/en
Priority to JP2004509968A priority patent/JPWO2003102974A1/en
Publication of WO2003102974A1 publication Critical patent/WO2003102974A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/183Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer characterised by the use of the resistive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements

Definitions

  • the present invention relates to a heating element itself for measuring a flow rate or a flow rate of a fluid based on a heat transfer phenomenon from a heating element or a portion heated by the heating element to a fluid, and to a thermal sensor such as a flow rate sensor.
  • the flow rate or the flow rate of the fluid Utilizing a substantially unique functional relationship established between the flow rate or flow rate of the fluid and the heat transfer amount from the heating element disposed in the fluid to the fluid, the flow rate or the flow rate of the fluid is determined based on the heat transfer rate.
  • FIG. 11 is a partial cross-sectional view of a conventional heat-sensitive flow rate detecting element disclosed in, for example, Japanese Patent Application Laid-Open No. 4-29667
  • FIG. 12 is a plan view of a state in which a protective film is removed. It is.
  • 102 is an opening (hollow portion) formed from the back side of a flat substrate 101 made of silicon
  • 103 is a base film provided on the surface of the flat substrate 101
  • Reference numeral 105 denotes a back surface protective film provided on the back surface of the flat substrate 1
  • reference numerals 106 and 107 each denote a thin-film thermal resistor made of platinum disposed on the base film 103.
  • the heat-sensitive antibodies 106, 107 and the base film 103 are covered with an insulating protective film 104.
  • the base film 103, the protective film 104, and the back surface protective film 105 are made of an insulating film made of Si 3 N 4 or SiO 2 .
  • the heat-sensitive resistors 106 and 107 are formed on the flat base material 101 below the film-forming portion.
  • the opening 102 is formed by removing a part of the flat substrate 1 made of silicon using an etching solution that does not damage Si 3 N 4 or SiO 2 .
  • the heating current flowing through the heat-sensitive resistors 106 and 107 is such that the temperature difference between the heat-sensitive resistor 107 and the temperature compensation resistor 108 is constant. In addition, it is kept constant by a control circuit (not shown). Arrow 110 indicates the direction of air flow.
  • the current flowing through the thermal resistor 106 increases by that much, and the thermal resistor 107 and the temperature compensation resistor 108 increase.
  • the current source of the heat-sensitive resistor 106 is controlled so that the temperature difference between them becomes constant. Therefore, the voltage applied to the heat-sensitive resistor 106 to flow a current through the heat-sensitive resistor 106 is such that the more heat transferred from the heat-sensitive resistor 107 to the airflow, In other words, it increases as the airflow velocity increases.
  • the voltage applied to the thermal resistor 106 is a function of the flow velocity of the gas to be measured, so that the flow velocity of the gas or the flow rate of the gas passing through a predetermined passage can be measured. .
  • the measurement principle described above is the case of constant temperature difference control in which the resistance value of the thermal resistor 107 is kept at a predetermined value regardless of the flow velocity.However, the heating current to the thermal resistor 106 is kept constant. In addition, the flow velocity can be detected from the change in the resistance value of the thermal resistor 107 according to the flow velocity.
  • a conventional thermal flow sensor is configured as described above.
  • the TCR of bulk platinum is 3920 ppm / ° C. Despite this, platinum thin films stay at around 3000 ppm / ° C.
  • FIG. 13 shows the TCR of a platinum thin film formed by forming a SiNx insulating base film on a flat silicon substrate and forming a film thereon by sputtering.
  • the platinum film thickness is 0.2 zm
  • the temperature coefficient of resistance becomes the maximum at the heat treatment temperature of 700 ° C and is 3100 ppmZ ° C, but the TCR decreases at the heat treatment temperature higher than that.
  • Fig. 14 shows the results of electron microscopic observation of the surface state of the platinum thin film after heat treatment. In the figure, (a) shows the surface condition after heat treatment at 800 ° C, and (b) shows the surface condition after heat treatment at 1000 ° C.
  • Precipitated particles are observed at 800 ° C as shown in (a) in the figure, and do not exist as a thin film at 100 o ° c as shown in (b) in the figure, and all of the platinum thin film turns into particles. This is thought to be due to the fact that the heat treatment caused the platinum and SiNx in the underlayer to react, and the melting point of the formed silicon-platinum intermetallic compound to be below 850 ° C. In other words, at a heat treatment temperature of 800 ° C, a part of the silicon-platinum intermetallic compound partially melts and starts to precipitate, and at a heat treatment temperature of 1000 ° C, the silicon-platinum intermetallic compound is completely melted and becomes particulate. That's why.
  • in-vehicle thermal sensors are Reducing the number of revolutions during grayed, there is needed Nozomu want to reduce C 0 2 emissions by subtracting the consumption gasoline, there is a need for a flow sensor air flow of 1 g / s can be measured.
  • a platinum thin film is applied to an in-vehicle flow sensor, the sensitivity for measuring the flow rate of lg / s was insufficient when the temperature coefficient of resistance was 310 Opp mZ ° C.
  • the platinum thin film is preferably thin.
  • the present invention has been made in order to solve the above-mentioned conventional problems, and provides a platinum thin film having a larger temperature coefficient of resistance than a conventional one on a flat silicon substrate.
  • An object of the present invention is to provide a highly sensitive thermal sensor by configuring a sensor. Disclosure of the invention
  • the first platinum thin film of the present invention is a platinum thin film formed on an insulating film on a flat silicon substrate, and the temperature coefficient of resistance of the platinum thin film is 350 ppm / ° C or more. However, if a thermal sensor is formed using this platinum thin film, the sensitivity of the sensor is improved.
  • the second platinum thin film of the present invention is a platinum thin film formed on an insulating film on a flat silicon substrate, and a material constituting the insulating film in contact with the platinum thin film among the insulating films is the following material:
  • the material is characterized in that the eutectic point of the intermetallic compound with platinum and platinum is not less than 850 ° C.
  • an insulating film is formed on a flat silicon substrate. Formed and white on it
  • TCR temperature coefficient of resistance
  • the material constituting the insulating film in contact with the platinum thin film in the insulating film is an oxide or nitride of aluminum or zirconium. Even if heat treatment is performed at a high temperature (850 ° C or higher) after the thin film is formed, platinum and aluminum platinum intermetallic compound or part of zirconium platinum intermetallic compound do not melt during the heat treatment, that is, platinum and aluminum platinum Since the eutectic point between the intermetallic compound and the eutectic point between platinum and the zirconium platinum intermetallic compound is not below 850 ° C, stable heat treatment is possible, and the resistance temperature coefficient TCR of the platinum thin film is reduced. 3 It can be controlled to 500 ppm / ° C or more.
  • the second insulating film made of an oxide or nitride of aluminum or zirconium is further formed on the platinum thin film, even if a heat treatment is performed after the formation of the second insulating film, the resistance of the platinum thin film is reduced.
  • Temperature coefficient TCR can be controlled to 3500 ppmZ ° C or more.
  • a thermal sensor includes: an insulating support film disposed on a first surface of a flat silicon substrate; a heat-sensitive resistor made of a heat-sensitive resistance film; and a temperature detecting unit formed on the support film.
  • a thermal sensor in which the base material is partially removed below the region where the thermal resistor is formed and the diaphragm is formed, at least the platinum thin film is used as the thermal resistor, so that the resistance temperature is low.
  • the temperature coefficient TCR can be controlled to 3500 ppm / ° C or more, improving the sensitivity of the thermal sensor. • Brief description of the drawing
  • FIG. 1 is a schematic diagram for explaining a thermal sensor equipped with a platinum thin film according to a first embodiment of the present invention, in which (a) is a partial plan view of a thermal resistor, and (b) is a thermal sensor.
  • FIG. 2 is a view for explaining the manufacturing process of the sensor element of the type sensor, and FIG. 2 is a view for explaining the manufacturing process.
  • (1) to (8) show the order of steps.
  • FIG. 3 is a diagram for explaining the relationship between the resistance temperature coefficient of the platinum thin film on the aluminum oxide base film and the heat treatment temperature in comparison with the conventional one.
  • the horizontal axis is the heat treatment temperature
  • the vertical axis is the resistance temperature coefficient ( TCR).
  • FIG. 4 is a sensor element cross-sectional view for explaining a thermal sensor according to a second embodiment of the present invention.
  • FIG. 5 is a sectional view of a sensor element for explaining a thermal sensor according to a third embodiment of the present invention.
  • FIG. 6 is a sectional view of a sensor element for explaining a thermal sensor according to a fourth embodiment of the present invention.
  • FIG. 5 is a sectional view of a sensor element for explaining a thermal sensor according to a fifth embodiment of the present invention.
  • FIGS. 8 and 9 are views for explaining a flow sensor as a thermal sensor according to a sixth embodiment of the present invention.
  • FIG. 10 is a diagram for explaining the relationship between TCR and the flow rate drift.
  • the horizontal axis represents the temperature coefficient of resistance (TCR), and the vertical axis represents the flow rate drift.
  • FIG. 11 is a cross-sectional view of a sensor element showing the appearance of a conventional thermal sensor
  • FIG. 12 is a plan view for explaining the layout of resistors in the thermal sensor of FIG.
  • Fig. 13 is a diagram showing the relationship between the temperature coefficient of resistance and the heat treatment temperature of platinum thin films of different thicknesses formed on a silicon nitride underlayer, with the horizontal axis representing the heat treatment. The vertical axis is the temperature coefficient of resistance (TCR).
  • Fig. 14 shows the results of electron microscopic observation of the surface state of the platinum thin film on the silicon nitride underlayer. In the figure, (a) shows the precipitated particles on the surface of the platinum thin film after heat treatment at 800 ° C.
  • FIG. 2 (b) is a view showing precipitated particles on the surface of the platinum thin film after heat treatment at 100 ° C.
  • the present invention is based on the finding that a conventional platinum thin film has a temperature of 310 ppm / ° C., which is smaller than the TCR of bulk platinum.
  • the heat treatment can be performed at a temperature exceeding 800 ° C, which is a heat treatment temperature at which the TCR has been reduced, which stably heats at a high temperature.
  • the eutectic point of the intermetallic compound and platinum is set at 850 ° C
  • an oxide or nitride containing a metal material not shown below as an insulating film
  • the insulating film directly above the platinum thin film it is possible to suppress the formation of particles of the platinum thin film during high-temperature heat treatment.
  • a platinum thin film with a TCR of more than 350 ppm Z ° C and a TCR closer to bulk was realized, and the sensitivity of the thermal sensor was improved.
  • FIG. 1 is a view for explaining a platinum thin film and a thermal sensor on which the platinum thin film is mounted according to one embodiment of the present invention.
  • FIG. 1 (a) is a partial plan view of the thermal sensor, and
  • FIG. () Is a partial sectional view.
  • 1 is a flat substrate made of silicon
  • 3 is a base film made of aluminum oxide 3a provided on the surface of the flat substrate 1.
  • It is an insulating film.
  • Reference numeral 6 denotes a thin-film heat-sensitive resistor made of platinum disposed on the insulating film 3.
  • the heat-sensitive resistor 6 or the insulating film 3 is an insulating protective film 4 made of a silicon oxide film 4a. Covered with.
  • the flat substrate 1 below the portion where the thermal resistor 6 is formed is removed to form the cavity 2.
  • the insulating (base) film 3 functions as a support film.
  • FIG. 2 is a diagram showing a manufacturing process flow. (1) to (8) in the figure indicate the order of the steps, which will be described in the order of the steps.
  • An aluminum oxide film 3 a having a thickness of about 2 ⁇ m is formed as a base film 3 on the thermal oxide film 9 by, for example, a sputtering method.
  • a platinum film 6a having a thickness of 0.2 / m is formed on the aluminum oxide film 3a by a sputtering method.
  • the platinum film 6a is patterned as shown in the plan view of (a) in FIG. 1 to form the thermal resistor 6 and the wiring part (wiring is shown in the drawing). Not).
  • a silicon oxide film 4a is formed to a thickness of about 0.5 ⁇ m by a spin coating method, and then a heat treatment for stabilizing the protective film is performed.
  • the heat treatment temperature in the fourth step (4) was set to 900 ° C.
  • Figure 3 shows the relationship between this heat treatment temperature and the temperature coefficient of resistance of the platinum thin film (thickness: 0.2 zm). The result of the examination is shown in comparison with the conventional one.
  • a heat treatment temperature of 900 ° C or higher at least 850 ° C or higher, a TCR of 3500 ppm / ° C or higher was obtained.
  • the TCR of this platinum thin film is obtained as follows. Temperature measurement accuracy A platinum thin film resistor, which is the object to be measured, is energized in a Florinart temperature-controlled by a platinum resistance thermometer at 0.02 ° C, and the resistance value of the platinum thin film is measured by the four-terminal method. Measure. At this time, the resistance of the temperature-stable platinum thin-film resistor at which the temperature change of the measurement temperature (measurement sample temperature) of the Florinato becomes ⁇ 0.02 ° C or less is determined by the amount of current (0. 1mA) is passed through the platinum thin film resistor and measured.
  • the aluminum oxide film was used as the base film 3, but the portion in contact with the thermal resistor 6 was an insulator, and platinum was diffused at the interface between the base film and the platinum thin film during heat treatment. If platinum and a part of the intermetallic compound are not melted during the heat treatment, heat treatment for obtaining a high TCR becomes possible, and therefore, other materials may be used. That is, if the eutectic point between platinum and the intermetallic compound is not below 850 ° C, a platinum thin film having at least TCR 3500 ppm / ° C can be obtained.
  • the material of the base film 3 is, for example, aluminum nitride, zirconium oxide or Zirconium nitride may be used. Example 2.
  • FIG. 4 is a view for explaining a thermal sensor equipped with a platinum thin film according to one embodiment of the present invention, and is a partial cross-sectional view of the thermal sensor.
  • 1 is a flat substrate made of silicon, on which a thermal oxide film 9 is formed
  • 3 is an insulating base film provided on the surface of the flat substrate 1, which is made of aluminum oxide 3a and nitrided. It consists of two layers of silicon 3b.
  • Reference numeral 6 denotes a thin-film heat-sensitive resistor made of platinum disposed on the base film 3.
  • the heat-sensitive resistor 6 or the base film 3 is covered with an insulating protective film 4 made of a silicon oxide film. ing.
  • the flat substrate 1 below the portion where the thermal resistor 6 is formed is removed to form the cavity 2.
  • the insulating (base) film 3 functions as a support film.
  • a platinum film having a thickness of 0.3 zm is formed on the aluminum oxide film 3a by a sputtering method.
  • an oxide silicon film 4a of about 0.5 m is formed by a spin coating method, and then a heat treatment for stabilizing the protective film is performed.
  • the oxide film on the back surface is opened, the silicon substrate is removed by wet etching to form a diaphragm 12, and the silicon oxide film below the diaphragm is removed, and the cavity 2 is formed and completed.
  • the platinum thin-film resistor thus produced has the same effects as those described in the first embodiment, so that the platinum thin film can have a TCR of 350 ppm / 0 C or more.
  • the underlying film is made of two layers and the lower layer is made of silicon nitride for which stress control is easier, stress control of the diaphragm can be more easily performed.
  • aluminum oxide used for the base film 3a immediately below the platinum film is shown here, it goes without saying that the same effect can be obtained by using aluminum nitride or zirconium oxide / zirconium nitride as the aluminum oxide. No. Example 3.
  • FIG. 5 is a view for explaining a thermal sensor equipped with a platinum thin film according to one embodiment of the present invention, and is a partial cross-sectional view of the thermal sensor.
  • This is an example in which the protective film 4 of Example 1 is formed of the aluminum oxide film 4b.
  • 1 is a flat substrate made of silicon, on which a thermal oxide film 9 is formed, and 3 is an insulating base film provided on the surface of the flat substrate 1 and made of aluminum oxide.
  • Reference numeral 6 denotes a thin-film heat-sensitive resistor made of white gold disposed on the base film 3.
  • the ground film 3 is covered with an insulating protective film 4 made of an aluminum oxide film 4b.
  • the flat substrate 1 below the portion where the thermal resistor 6 is formed is removed to form the cavity 2.
  • the insulating (base) film 3 functions as a support film.
  • an aluminum oxide film 3a is formed on the thermal oxide film 9 to a thickness of 2.0 j by a sputtering method.
  • a platinum film is formed on the aluminum oxide film to a thickness of 0.5 zm by a sputtering method.
  • an aluminum oxide film 4b is formed about 1 m by, for example, a sputtering method.
  • the platinum thin film resistor thus produced has the same effect as described in the first embodiment, so that the TCR of the platinum thin film is set to 350 ppmZ ° C More than that.
  • the thermal resistor 6 made of a platinum thin film when used by generating heat, a heat treatment for stabilizing the protective film is required for the reliability of the protective film. Therefore, the heat treatment for stabilizing the protective film can be omitted because the TCR can be increased and the protective film can be stabilized.
  • aluminum oxide is used immediately below and immediately above the platinum thin film. However, it is needless to say that the same effect can be obtained by using aluminum nitride or zirconium oxide / zirconium nitride as the aluminum oxide. Absent. Example 4.
  • FIG. 6 is a view for explaining a thermal sensor equipped with a platinum thin film according to one embodiment of the present invention, and is a partial cross-sectional view of the thermal sensor.
  • 1 is a flat substrate made of silicon, on which a thermal oxide film 9 is formed
  • 3 is an insulating base film provided on the surface of the flat substrate 1 and made of aluminum oxide 3a
  • Reference numeral 6 denotes a thin-film heat-sensitive resistor made of platinum disposed on the base film 3, and these heat-sensitive resistors 6 or the base film 3 is an insulating protective film 4 made of a silicon nitride film 4c. It is covered with.
  • the flat substrate 1 below the portion where the thermal resistor 6 is formed is removed to form the cavity 2.
  • the insulating (base) film 3 functions as a support film.
  • the protective film 4 is once formed of aluminum oxide 4b, and after heat treatment, it is patterned together with the thermal resistor. Another film was formed as a final protective film. Next, the manufacturing process of this embodiment will be briefly described.
  • an aluminum oxide film 3a is formed on the thermal oxide film 9 to a thickness of 2.0 im by a sputtering method.
  • a platinum film is formed to a thickness of 0.5 ⁇ m on the aluminum oxide film by a sputtering method.
  • an aluminum oxide film 4b is formed to a thickness of about 0 by, for example, a sputtering method.
  • the platinum film 6a is patterned together with the aluminum oxide protective film 4b as shown in the plan view of (a) in FIG. 1 to form the thermal resistor 6 and the wiring portion ( The wiring is not shown).
  • a silicon nitride film is formed to a thickness of about 0.8 zm by, for example, a sputtering method so as to cover the base film 3 and the thermal resistor 6.
  • the pad portion 11 for wire bonding is opened by dry etching, and the aluminum oxide 4b of the protective film is removed.
  • the platinum thin film resistor thus produced has the same effect as described in the first embodiment, so that the platinum thin film can have a temperature coefficient of resistance of more than 350 ppm / ° C.
  • FIG. 7 is a view for explaining a thermal sensor equipped with a platinum thin film according to one embodiment of the present invention, and is a partial cross-sectional view of the thermal sensor.
  • 1 is a flat substrate made of silicon, on which a thermal oxide film 9 is formed
  • 3 is an insulating base film provided on the surface of the flat substrate 1, which is made of aluminum oxide 3a and nitrided. It consists of two layers of silicon 3b.
  • Reference numeral 6 denotes a thin-film heat-sensitive resistor made of platinum disposed on the base film 3.
  • the heat-sensitive resistor 6 or the base film 3 is an insulating protective film 4 made of a silicon nitride film 4c. Covered with.
  • the flat substrate 1 below the portion where the thermal resistor 6 is formed is removed to form the cavity 2.
  • the insulating (underlying) film functions as a supporting film.
  • the protective film 4 is formed of aluminum oxide 4b once, heat-treated, and then patterned together with the thermal resistor.
  • a film formed with another film as a protective film can be used.
  • a silicon wafer 1 (thickness: 380 zm) having a plane orientation (100) with a thermal oxide film 9 having a thickness of 0.5 ⁇ m is prepared.
  • a silicon nitride film is formed to a thickness of 1.8 ⁇ m by a sputtering method, an aluminum oxide film is formed on the thermal oxide film 9 to a thickness of 0.2 ⁇ m.
  • a platinum film is formed on the aluminum oxide film to a thickness of 0.2 ⁇ m by, for example, a sputtering method.
  • an aluminum oxide film 4b is formed to a thickness of about 0.2 ⁇ m by, for example, a sputtering method.
  • a silicon nitride film 4 c is formed to a thickness of about 0.8 ⁇ m by, for example, a sputtering method so as to cover the base film 3 and the thermal resistor 6.
  • the pad portion 11 for wire bonding is opened by dry etching, and at this time, the aluminum oxide 4b of the protective film is removed.
  • the platinum thin film resistor thus produced has the same effect as described in the first embodiment, so that the platinum thin film can have a temperature coefficient of resistance of 3500 ppm / ° C or more.
  • aluminum oxide was used just below and directly above the platinum film during the process. Although an example has been shown, it goes without saying that the same effect can be obtained even when the aluminum oxide is aluminum nitride or zirconium oxide / zirconium nitride.
  • a temperature detecting section for compensating the temperature of the sensor is formed near the heat-sensitive resistor as in the past.
  • the platinum thin film of the present invention can also be used as a heat-sensitive resistor for the temperature detecting section.
  • FIG. 8 and FIG. 9 are diagrams illustrating the configuration of a flow sensor in a thermal sensor according to one embodiment of the present invention, and are diagrams arranged in a fluid passage.
  • 21 is a flow detecting element using a platinum thin film resistor having a TCR of 3500 ppm / ⁇ C shown in Examples 1 to 5 above
  • 22 is a detecting pipe
  • 23 is a detecting pipe.
  • 24 is a grid-like rectifier
  • 25 is a case in which a control circuit is housed
  • 26 is a connector for supplying power to the flow sensor and taking out an output.
  • the arrow 10 indicates the direction of the air flow during normal times.
  • the idling flow rate has been reduced in order to reduce gasoline consumption due to environmental concerns, and low flow measurement of lg / s or less is required. If a membrane with a TCR of 310 ppm / ° C is applied to such a flow sensor, the accuracy for detecting a flow rate of 1 g / s will deteriorate due to insufficient sensitivity at low flow rates.
  • FIG. 10 shows the relationship between TCR and flow rate drift.
  • the flow rate and flow rate drift at different resistance temperature coefficients the flow rate measured by forcibly changing the resistance value of the temperature sensing resistor by 1%)
  • Initial measurement flow rate ⁇ [%] the range where the resistance fluctuation after endurance evaluation is 0.1% or less and the flow rate drift at that time is 3% or less can be guaranteed accuracy.
  • the results of investigating the relationship are shown below. This drift amount can be read as sensitivity, and the lower the drift value, the higher the sensitivity. If the flow drift value is about 30% or less, reliability and accuracy can be secured.
  • the flow drift of 2 g / s is 31%, but the TCR is 3500 ppm. In the case of C, the flow drift of lg / s is 30%, which enables measurement of a lower flow rate.
  • the sensitivity of the thermal type flow sensor equipped with the platinum thin film resistor according to the present invention is improved as compared with the related art.
  • thermal type flow sensor has been described here, if the platinum thin film resistors according to Examples 1 to 5 are incorporated in other thermal type sensors such as a pressure sensor, the resistance change with respect to temperature change can be increased. Thus, a thermal sensor with improved sensor sensitivity can be obtained. Industrial applicability
  • the platinum thin film according to the present invention is mounted on a thermal sensor, and this thermal sensor is used for a flow rate sensor or a pressure sensor for measuring an intake air amount of an internal combustion engine for a vehicle or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Thermistors And Varistors (AREA)

Abstract

A platinum thin film having a silicon substrate (1) in a flat plate form and, formed thereon in the following order, an insulating film (3) and a platinum thin film (6), wherein the insulating film (3) comprises an oxide or nitride whose intermetallic compound with platinum has no eutectic point between platinum at a temperature of 850˚C or lower and thus has a TCR of 3500 ppm/˚C or more. A thermal sensor, wherein a heat-sensitive resistor (6) and a temperature detecting portion are formed by using the above platinum thin film as a heat-sensitive resisting film, and the silicon substrate (1) in a flat plate form is partly removed under the region in which the heat-sensitive resistor is formed, to thereby form a diaphram portion (12). The thermal sensor exhibits improved sensitivity.

Description

明 細 書  Specification
白金薄膜および熱式センサ 技術分野 Platinum thin film and thermal sensors
本発明は、 発熱体あるいは発熱体によって加熱された部分から流体へ の熱伝達現象に基づいて、 流体の流速ないしは流量を計測する発熱体自 身並びに流量センサ等の熱式センサに関するものである。 背景技術  The present invention relates to a heating element itself for measuring a flow rate or a flow rate of a fluid based on a heat transfer phenomenon from a heating element or a portion heated by the heating element to a fluid, and to a thermal sensor such as a flow rate sensor. Background art
流体の流速ないしは流量と該流体中に配置された発熱体から流体への 熱伝達量との間に成立するほぼ一義的な関数関係を利用して、 該熱伝達 量に基づいて流体の流速ないしは流量を検出するようにした感熱式流量 素子、 あるいは該流量検出素子を用いた流量センサは、 従来から内燃機 関の吸入空気量の検出等に広く用いられている。  Utilizing a substantially unique functional relationship established between the flow rate or flow rate of the fluid and the heat transfer amount from the heating element disposed in the fluid to the fluid, the flow rate or the flow rate of the fluid is determined based on the heat transfer rate. 2. Description of the Related Art A heat-sensitive flow element configured to detect a flow rate or a flow sensor using the flow rate detection element has been widely used for detecting an intake air amount of an internal combustion engine.
第 1 1図は、 例えば特開平 4 - 2 9 6 7号公報に開示されている従来 の感熱式流量検出素子の一部断面図、 第 1 2図は保護膜を取り除いた状 態における平面図である。 図において、 1 0 2はシリコンよりなる平板 状基材 1 0 1の裏側から形成された開口部 (空洞部)、 1 0 3は平板状 基材 1 0 1の表面に設けられた下地膜、 1 0 5は平板状基材 1の裏面に 設けられた裏面保護膜、 1 0 6及び 1 0 7はそれそれ下地膜 1 0 3の上 に配置された白金よりなる薄膜状の感熱抵抗体であり、 これらの感熱抵 抗体 1 0 6 , 1 0 7ないし下地膜 1 0 3は絶縁性の保護膜 1 0 4で覆わ れている。 ここで、 下地膜 1 0 3、 保護膜 1 0 4、 裏面保護膜 1 0 5は Si3N4または SiO2よりなる絶縁性の膜からなる。 なお、 感熱抵抗体 1 0 6 , 1 0 7の成膜部の下方において平板状基材 1 0 1に形成されてい る開口部 1 0 2は、 Si3N4または SiO2に損傷を与えないエッチング液 を用いてシリコンからなる平板状基材 1の一部を除去して形成されたも のである。 FIG. 11 is a partial cross-sectional view of a conventional heat-sensitive flow rate detecting element disclosed in, for example, Japanese Patent Application Laid-Open No. 4-29667, and FIG. 12 is a plan view of a state in which a protective film is removed. It is. In the figure, 102 is an opening (hollow portion) formed from the back side of a flat substrate 101 made of silicon, 103 is a base film provided on the surface of the flat substrate 101, Reference numeral 105 denotes a back surface protective film provided on the back surface of the flat substrate 1, and reference numerals 106 and 107 each denote a thin-film thermal resistor made of platinum disposed on the base film 103. The heat-sensitive antibodies 106, 107 and the base film 103 are covered with an insulating protective film 104. Here, the base film 103, the protective film 104, and the back surface protective film 105 are made of an insulating film made of Si 3 N 4 or SiO 2 . It should be noted that the heat-sensitive resistors 106 and 107 are formed on the flat base material 101 below the film-forming portion. The opening 102 is formed by removing a part of the flat substrate 1 made of silicon using an etching solution that does not damage Si 3 N 4 or SiO 2 .
上記のような従来の流量検出素子では、 感熱抵抗体 1 0 6 , 1 0 7に 通電する加熱電流が、 感熱抵抗体 1 0 7と温度補償抵抗体 1 0 8の温度 差が一定になるように、 図示していない制御回路によって一定に維持さ れている。 なお、 矢印 1 1 0は空気の流れの方向を示す。  In the conventional flow rate detection element as described above, the heating current flowing through the heat-sensitive resistors 106 and 107 is such that the temperature difference between the heat-sensitive resistor 107 and the temperature compensation resistor 108 is constant. In addition, it is kept constant by a control circuit (not shown). Arrow 110 indicates the direction of air flow.
例えば、 気流が増加して 熱抵抗体 1 0 7の温度が減少すると、 その 分だけ感熱抵抗体 1 0 6に流れる電流が増えて、 感熱抵抗体 1 0 7と温 度補償抵抗体 1 0 8の温度差が一定になるように感熱抵抗体 1 0 6の電 流源が制御される。 したがって、 感熱抵抗体 1 0 6にある電流を流すた めに該感熱抵抗体 1 0 6に印加される電圧は、 感熱抵抗体 1 0 7から気 流に伝達される熱が多ければ多いほど、 すなわち気流の流速が大きいほ ど増す。  For example, when the airflow increases and the temperature of the thermal resistor 107 decreases, the current flowing through the thermal resistor 106 increases by that much, and the thermal resistor 107 and the temperature compensation resistor 108 increase. The current source of the heat-sensitive resistor 106 is controlled so that the temperature difference between them becomes constant. Therefore, the voltage applied to the heat-sensitive resistor 106 to flow a current through the heat-sensitive resistor 106 is such that the more heat transferred from the heat-sensitive resistor 107 to the airflow, In other words, it increases as the airflow velocity increases.
このように感熱抵抗体 1 0 6に印加される電圧は、 計測される気体の 流速の関数となるため、 気体の流速、 あるいは定められた通路内を通過 する気体の流量を計測することができる。  As described above, the voltage applied to the thermal resistor 106 is a function of the flow velocity of the gas to be measured, so that the flow velocity of the gas or the flow rate of the gas passing through a predetermined passage can be measured. .
以上に述べた計測原理は、 感熱抵抗体 1 0 7の抵抗値を流速にかかわ らず所定値に保つ定温度差制御の場合であるが、 感熱抵抗体 1 0 6への 加熱電流を一定にしておいて流速に応じた感熱抵抗体 1 0 7の抵抗値変 化からでも流速を検出することができる。  The measurement principle described above is the case of constant temperature difference control in which the resistance value of the thermal resistor 107 is kept at a predetermined value regardless of the flow velocity.However, the heating current to the thermal resistor 106 is kept constant. In addition, the flow velocity can be detected from the change in the resistance value of the thermal resistor 107 according to the flow velocity.
従来の熱式流量センサは上記のように構成されており、 白金薄膜の抵 抗温度係数 (Temperature Coefficient of Resistance; 以下 と称 する) が大きいほど測定感度が高いため、 TCR の大きな白金薄膜が期 待されている。 しかし、 バルク状白金の TCR は 3 9 2 0 p p m/°Cで あるにもかかわらず、 白金薄膜では 3000 ppm/°C程度にとどまつ ている。 A conventional thermal flow sensor is configured as described above. The higher the temperature coefficient of resistance (Temperature Coefficient of Resistance) of a platinum thin film, the higher the measurement sensitivity. Therefore, a platinum thin film with a large TCR is expected. I have been waiting. However, the TCR of bulk platinum is 3920 ppm / ° C. Despite this, platinum thin films stay at around 3000 ppm / ° C.
第 13図に平板状シリコン基板に S i Nxの絶縁性下地膜を形成し、 その上にスパッ夕により成膜された白金薄膜の T CRを示す。 例えば白 金膜厚 0. 2 zm の場合、 熱処理温度 700 °Cで抵抗温度係数は最大 となり、 3100 p pmZ°Cであるが、 それ以上の熱処理温度では T C Rが低下する。 また、 第 14図には白金薄膜の熱処理後の表面状態を電 子顕微鏡で観察した結果を示す。 図中 (a) は 800°Cで熱処理しだも の、 (b) は 1000°Cで熱処理したものの表面状態である。 図中 (a) のように 800°Cでは析出粒子が観察され、 図中 (b) のように 100 o°cでは薄膜としては存在せず、 白金薄膜すべてが粒子化する。これは、 熱処理によって白金と下地膜の S iNxが反応し、 形成されたシリコン 白金金属間化合物の融点が 850°C以下にあることに起因するものと考 えられる。 すなわち、 熱処理温度 800°Cではシリコン白金金属間化合 物の一部が部分的に融解して析出が起こり始め、 熱処理温度 1000°C ではシリコン白金金属間化合物が完全に融解したために粒子化が起こる ためである。  FIG. 13 shows the TCR of a platinum thin film formed by forming a SiNx insulating base film on a flat silicon substrate and forming a film thereon by sputtering. For example, when the platinum film thickness is 0.2 zm, the temperature coefficient of resistance becomes the maximum at the heat treatment temperature of 700 ° C and is 3100 ppmZ ° C, but the TCR decreases at the heat treatment temperature higher than that. Fig. 14 shows the results of electron microscopic observation of the surface state of the platinum thin film after heat treatment. In the figure, (a) shows the surface condition after heat treatment at 800 ° C, and (b) shows the surface condition after heat treatment at 1000 ° C. Precipitated particles are observed at 800 ° C as shown in (a) in the figure, and do not exist as a thin film at 100 o ° c as shown in (b) in the figure, and all of the platinum thin film turns into particles. This is thought to be due to the fact that the heat treatment caused the platinum and SiNx in the underlayer to react, and the melting point of the formed silicon-platinum intermetallic compound to be below 850 ° C. In other words, at a heat treatment temperature of 800 ° C, a part of the silicon-platinum intermetallic compound partially melts and starts to precipitate, and at a heat treatment temperature of 1000 ° C, the silicon-platinum intermetallic compound is completely melted and becomes particulate. That's why.
同様の報告がセンサーズアンドアクチユエ一夕一ズ A3076(200 1)1-7 (Sensors and Actuators A 3076 (2001) 1-7)でもなされており、 マグネトロンスパッ夕で成膜した白金薄膜抵抗 (膜厚 0.3 111)の11〇1^ は熱処理温度 600 °Cで 3 100 p pm/°Cとなるが熱処理温度 60 0°C以上では熱処理温度を上げても、 TCRは小さくなる。 これらは、 白金薄膜と下地膜の間の拡散によって形成される白金の金属間化合物の 融点が低いためである。 A similar report was also made in Sensors and Actuators A 3076 (2001) 1-7 (A3076 (2001) 1-7), in which a platinum thin film resistor formed by magnetron sputtering ( even 1 1 Rei_1 ^ heat treatment temperature 600 ° C at 3 100 p pm / ° C to become but the heat treatment temperature 60 0 ° C or more film thickness 0.3 111) by increasing the heat treatment temperature, TCR decreases. These are due to the low melting point of the intermetallic compound of platinum formed by diffusion between the platinum thin film and the underlayer.
一方で、 車載用熱式センサにおいては、 環境への対応からアイ ドリン グ時の回転数を下げ、 消費ガソリンを減じ C 0 2排出量を低減したい要 望があり、 1 g / sの空気流量が計測できる流量センサが必要とされて いる。 車載用の流量センサに白金薄膜を適用する場合、 抵抗温度係数が 3 1 0 O p p mZ°Cでは、 l g / sの流量を計測するための感度が不足し ていた。 On the other hand, in-vehicle thermal sensors are Reducing the number of revolutions during grayed, there is needed Nozomu want to reduce C 0 2 emissions by subtracting the consumption gasoline, there is a need for a flow sensor air flow of 1 g / s can be measured. When a platinum thin film is applied to an in-vehicle flow sensor, the sensitivity for measuring the flow rate of lg / s was insufficient when the temperature coefficient of resistance was 310 Opp mZ ° C.
また、 実使用においては、 水滴などによるショートを防ぐために、 白 金膜上に保護膜を形成する必要があるが、 S i 02を主成分とするぺ一 スト剤をスピンコートして保護膜を形成し、 保護膜安定化の熱処理を実 施すると、 白金膜厚 0 . 6 m 以上では保護膜にクラックが入り使用 することができないので、 白金薄膜は薄い方がよい。 In the actual use, in order to prevent a short circuit caused by water droplets, it is necessary to form a protective film on the platinum film, protected by spin coating Bae one strike consisting mainly of S i 0 2 film When a protective film is formed and subjected to a heat treatment for stabilizing the protective film, if the platinum film thickness is more than 0.6 m, the protective film is cracked and cannot be used. Therefore, the platinum thin film is preferably thin.
この発明は、上記従来の問題を解決するためになされたものであって、 平板状シリコン基板上に抵抗温度係数が従来よりも大きな白金薄膜を提 供し、 さらには該白金薄膜を用いて熱式センサを構成することで、 感度 の高い熱式センサを提供することを目的とする。 発明の開示  The present invention has been made in order to solve the above-mentioned conventional problems, and provides a platinum thin film having a larger temperature coefficient of resistance than a conventional one on a flat silicon substrate. An object of the present invention is to provide a highly sensitive thermal sensor by configuring a sensor. Disclosure of the invention
本発明の第 1の白金薄膜は、 平板状シリコン基板上の絶縁膜上に形成 された白金薄膜であって、 該白金薄膜の抵抗の温度係数が 3 5 0 O p p m/°C以上であるので、 この白金薄膜を用いて熱式センサを構成すれば センサの感度が向上する。  The first platinum thin film of the present invention is a platinum thin film formed on an insulating film on a flat silicon substrate, and the temperature coefficient of resistance of the platinum thin film is 350 ppm / ° C or more. However, if a thermal sensor is formed using this platinum thin film, the sensitivity of the sensor is improved.
本発明の第 2の白金薄膜は、 平板状シリコン基板上の絶縁膜上に形成 された白金薄膜であって、 上記絶縁膜のうち上記白金薄膜と接する絶縁 膜を構成する材料は、 この材料と白金との金属間化合物と白金との共晶 点が 8 5 0 °C以下にない材料であることを特徴とするもので、 このよう な材料を選択して、 平板状シリコン基板に絶縁膜を形成し、 その上に白 金薄膜を形成して、 850°C以上で熱処理すると白金薄膜の抵抗の温度 係数 TCRを 3500 ppm/°C以上とすることができ、 この白金薄膜 を用いて熱式センサを構成すればセンサの感度が向上する。 さらに、 白 金薄膜の膜厚を 0. 5 zm 以下としているので、 スピンコート等の手 法により簡便に保護膜を成膜できる。 The second platinum thin film of the present invention is a platinum thin film formed on an insulating film on a flat silicon substrate, and a material constituting the insulating film in contact with the platinum thin film among the insulating films is the following material: The material is characterized in that the eutectic point of the intermetallic compound with platinum and platinum is not less than 850 ° C. By selecting such a material, an insulating film is formed on a flat silicon substrate. Formed and white on it When a gold thin film is formed and heat-treated at 850 ° C or more, the temperature coefficient of resistance (TCR) of the platinum thin film can be set to 3500 ppm / ° C or more.If a thermal sensor is constructed using this platinum thin film, The sensitivity is improved. Further, since the thickness of the platinum thin film is 0.5 zm or less, a protective film can be easily formed by a method such as spin coating.
また、 本発明の第 1または第 2の発明に係る白金薄膜において、 絶縁 膜のうち上記白金薄膜と接する絶縁膜を構成する材料がアルミニウムあ るいはジルコニウムの酸化物もしくは窒化物であるので、 白金薄膜形成 後に高温 ( 8 50°C以上) で熱処理しても、 熱処理中に白金とアルミ二 ゥム白金金属間化合物、 あるいはジルコニウム白金金属間化合物の一部 が融解しないので、 すなわち白金とアルミニウム白金金属間化合物との 共晶点、 あるいは白金とジルコニウム白金金属間化合物との間の共晶点 が 850°C以下にないので、 安定な熱処理が可能となり、 白金薄膜の抵 抗温度係数 T CRを 3 500 ppm/°C以上に制御可能となる。  Further, in the platinum thin film according to the first or second aspect of the present invention, the material constituting the insulating film in contact with the platinum thin film in the insulating film is an oxide or nitride of aluminum or zirconium. Even if heat treatment is performed at a high temperature (850 ° C or higher) after the thin film is formed, platinum and aluminum platinum intermetallic compound or part of zirconium platinum intermetallic compound do not melt during the heat treatment, that is, platinum and aluminum platinum Since the eutectic point between the intermetallic compound and the eutectic point between platinum and the zirconium platinum intermetallic compound is not below 850 ° C, stable heat treatment is possible, and the resistance temperature coefficient TCR of the platinum thin film is reduced. 3 It can be controlled to 500 ppm / ° C or more.
上記発明に係る白金薄膜において、 白金薄膜上にさらにアルミニウム あるいはジルコニウムの酸化物もしくは窒化物からなる第 2の絶縁膜を 形成したので、 第 2の絶縁膜形成後に熱処理を施しても白金薄膜の抵抗 温度係数 T CRを 35 00 ppmZ°C以上に制御可能となる。  In the platinum thin film according to the above invention, since the second insulating film made of an oxide or nitride of aluminum or zirconium is further formed on the platinum thin film, even if a heat treatment is performed after the formation of the second insulating film, the resistance of the platinum thin film is reduced. Temperature coefficient TCR can be controlled to 3500 ppmZ ° C or more.
本発明の熱式センサは、 平板状シリコン基板の第 1の面に配置された 絶縁性の支持膜と、 該支持膜に感熱抵抗膜からなる感熱抵抗体および温 度検知部が形成され、 該感熱抵抗体が形成された領域の下方で上記基材 が部分的に除去されてダイヤフラム部が形成されてなる熱式センサにお いて、 少なくとも感熱抵抗体として上記白金薄膜を用いたので、 抵抗温 度係数 T CRを 3500 ppm/°C以上に制御することができ、 熱式セ ンサの感度が向上する。 • 図面の簡単な説明 A thermal sensor according to the present invention includes: an insulating support film disposed on a first surface of a flat silicon substrate; a heat-sensitive resistor made of a heat-sensitive resistance film; and a temperature detecting unit formed on the support film. In a thermal sensor in which the base material is partially removed below the region where the thermal resistor is formed and the diaphragm is formed, at least the platinum thin film is used as the thermal resistor, so that the resistance temperature is low. The temperature coefficient TCR can be controlled to 3500 ppm / ° C or more, improving the sensitivity of the thermal sensor. • Brief description of the drawing
第 1図は本発明の第 1の実施例による白金薄膜を搭載した熱式センサ を説明するための模式図で、図中(a )は感熱抵抗体の一部平面図、 (b ) は熱式センサのセンサ素子一部'断面図、 第 2図はその製造プロセスを説 明するための図で、 図中 ( 1 ) 〜 (8 ) は工程順を示している。 第 3図 は、 酸化アルミニウム下地膜上の白金薄膜の抵抗温度係数と熱処理温度 の関係を従来のものと対比して説明するための図で、横軸は熱処理温度、 縦軸は抵抗温度係数 (T C R ) である。  FIG. 1 is a schematic diagram for explaining a thermal sensor equipped with a platinum thin film according to a first embodiment of the present invention, in which (a) is a partial plan view of a thermal resistor, and (b) is a thermal sensor. FIG. 2 is a view for explaining the manufacturing process of the sensor element of the type sensor, and FIG. 2 is a view for explaining the manufacturing process. In the figure, (1) to (8) show the order of steps. FIG. 3 is a diagram for explaining the relationship between the resistance temperature coefficient of the platinum thin film on the aluminum oxide base film and the heat treatment temperature in comparison with the conventional one. The horizontal axis is the heat treatment temperature, and the vertical axis is the resistance temperature coefficient ( TCR).
第 4図は、 本発明の第 2の実施例による熱式センサを説明するための センサ素子断面図である。  FIG. 4 is a sensor element cross-sectional view for explaining a thermal sensor according to a second embodiment of the present invention.
第 5図は、 本発明の第 3の実施例による熱式センサを説明するための センサ素子断面図である。  FIG. 5 is a sectional view of a sensor element for explaining a thermal sensor according to a third embodiment of the present invention.
第 6図は、 本発明の第 4の実施例による熱式センサを説明するための センサ素子断面図である。  FIG. 6 is a sectional view of a sensor element for explaining a thermal sensor according to a fourth embodiment of the present invention.
第 Ί図は、 本発明め第 5の実施例による熱式センサを説明するための センサ素子断面図である。  FIG. 5 is a sectional view of a sensor element for explaining a thermal sensor according to a fifth embodiment of the present invention.
第 8図及び第 9図は、 本発明の第 6の実施例による熱式センサとして 流量センサを説明するための図である。  FIGS. 8 and 9 are views for explaining a flow sensor as a thermal sensor according to a sixth embodiment of the present invention.
第 1 0図は、 T C Rと流量ドリフ トの関係を説明するための図で、 横 軸は抵抗温度係数 (T C R )、 縦軸は流量ドリフ トである。  FIG. 10 is a diagram for explaining the relationship between TCR and the flow rate drift. The horizontal axis represents the temperature coefficient of resistance (TCR), and the vertical axis represents the flow rate drift.
第 1 1図は、 従来の熱式センサの外観を示したセンサ素子断面図、 第 1 2図は第 1 1図の熱式センサにおける抵抗体のレイァゥトを説明する 平面図である。 第 1 3図は、 窒化シリコン下地膜上に形成された膜厚の 異なる白金薄膜の抵抗温度係数と熱処理温度との関係図で、 横軸は熱処 理温度、 縦軸は抵抗温度係数 (T CR) である。 第 14図は、 窒化シリ コン下地膜上の白金薄膜の表面状態を示した電子顕微鏡観察結果で、 図 中 (a) は 8 0 0°C熱処理後の白金薄膜の表面の析出粒子を示した図、 (b) は 1 0 00°C熱処理後の白金薄膜の表面の析出粒子を示した図で ある。 発明を実施するための最良の形態 FIG. 11 is a cross-sectional view of a sensor element showing the appearance of a conventional thermal sensor, and FIG. 12 is a plan view for explaining the layout of resistors in the thermal sensor of FIG. Fig. 13 is a diagram showing the relationship between the temperature coefficient of resistance and the heat treatment temperature of platinum thin films of different thicknesses formed on a silicon nitride underlayer, with the horizontal axis representing the heat treatment. The vertical axis is the temperature coefficient of resistance (TCR). Fig. 14 shows the results of electron microscopic observation of the surface state of the platinum thin film on the silicon nitride underlayer. In the figure, (a) shows the precipitated particles on the surface of the platinum thin film after heat treatment at 800 ° C. FIG. 2 (b) is a view showing precipitated particles on the surface of the platinum thin film after heat treatment at 100 ° C. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 従来の白金薄膜がバルク白金の T CRより小さい 3 1 0 0 ppm/°Cあつたため、 これを向上する手法を見出したことによる。 す なわち、 高温で安定に熱処理する、 従来 T CRが低下していた熱処理温 度である 80 0°Cを越える温度で熱処理を達成できるようにしたもので ある。 具体的には、 白金薄膜を高温で安定に熱処理できるように白金薄 膜の直下に、 白金と金属間化合物を形成した時に、 その金属間化合物と 白金との共晶点が 8 5 0°C以下にない金属材料を含む酸化物または窒化 物を絶縁膜として設け、 また同絶縁膜を白金薄膜の直上に設けることで、 高温熱処理時に白金薄膜の粒子化を抑制できるようにした。 その結果、 T CRが 3 5 0 0 ppmZ°C以上の、 よりバルクに近い T C Rを有する 白金薄膜が実現でき、 熱式センサの感度向上が達成できた。  The present invention is based on the finding that a conventional platinum thin film has a temperature of 310 ppm / ° C., which is smaller than the TCR of bulk platinum. In other words, the heat treatment can be performed at a temperature exceeding 800 ° C, which is a heat treatment temperature at which the TCR has been reduced, which stably heats at a high temperature. Specifically, when a platinum and an intermetallic compound are formed directly under the platinum thin film so that the platinum thin film can be stably heat-treated at a high temperature, the eutectic point of the intermetallic compound and platinum is set at 850 ° C By providing an oxide or nitride containing a metal material not shown below as an insulating film, and by providing the insulating film directly above the platinum thin film, it is possible to suppress the formation of particles of the platinum thin film during high-temperature heat treatment. As a result, a platinum thin film with a TCR of more than 350 ppm Z ° C and a TCR closer to bulk was realized, and the sensitivity of the thermal sensor was improved.
以下、 この発明の実施例を図について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施例 1. Example 1.
第 1図は、 この発明の一実施例による白金薄膜及び白金薄膜が搭載さ れた熱式センサを説明するための図で、 図中 (a) は熱式センサの一部 平面図、 (b) は一部断面図である。  FIG. 1 is a view for explaining a platinum thin film and a thermal sensor on which the platinum thin film is mounted according to one embodiment of the present invention. FIG. 1 (a) is a partial plan view of the thermal sensor, and FIG. () Is a partial sectional view.
図において、 1はシリコンよりなる平板状基材であり、 3は平板状基 材 1の表面に設けられた酸化アルミニウム 3 aよりなる下地膜としての 絶縁膜である。 そして、 6は絶縁膜 3の上に配置された白金よりなる薄 膜状の感熱抵抗体であり、 これらの感熱抵抗体 6ないし絶縁膜 3は酸化 シリコン膜 4 aよりなる絶縁性の保護膜 4で覆われている。 さらに、 感 熱抵抗体 6の形成された部位の下方の平板状基材 1は除去されて空洞部 2をなす。 ここで、 絶縁 (下地) 膜 3は支持膜として作用する。 In the figure, 1 is a flat substrate made of silicon, and 3 is a base film made of aluminum oxide 3a provided on the surface of the flat substrate 1. It is an insulating film. Reference numeral 6 denotes a thin-film heat-sensitive resistor made of platinum disposed on the insulating film 3. The heat-sensitive resistor 6 or the insulating film 3 is an insulating protective film 4 made of a silicon oxide film 4a. Covered with. Further, the flat substrate 1 below the portion where the thermal resistor 6 is formed is removed to form the cavity 2. Here, the insulating (base) film 3 functions as a support film.
次に、 本実施例の製造プロセスを図を用いて簡単に説明する。 第 2図 は製造プロセスフローを示した図である。 図中の ( 1) 〜 (8) は工程 順を示し、 この工程順に対応して説明する。  Next, the manufacturing process of this embodiment will be briefly described with reference to the drawings. FIG. 2 is a diagram showing a manufacturing process flow. (1) to (8) in the figure indicate the order of the steps, which will be described in the order of the steps.
( 1) 0. 5〃m厚さの熱酸化膜 9付きの、 面方位 ( 1 00) のシリコ ンウェハ 1 (厚さ 380 zm) を準備する。  (1) Prepare a silicon wafer 1 (thickness: 380 zm) with a (100) plane orientation, with a thermal oxide film 9 having a thickness of 0.5 m.
(2) 下地膜 3として例えばスパヅ夕法により酸化アルミニウム膜 3 a を約 2〃mの厚さ、 熱酸化膜 9上に形成する。  (2) An aluminum oxide film 3 a having a thickness of about 2 μm is formed as a base film 3 on the thermal oxide film 9 by, for example, a sputtering method.
( 3 ) 例えばスパヅ夕法により白金膜 6 aを 0. 2 /m の厚さ、 上記 酸化アルミニウム膜 3 a上に形成する。  (3) For example, a platinum film 6a having a thickness of 0.2 / m is formed on the aluminum oxide film 3a by a sputtering method.
(4) 熱処理炉を用いて、 大気中で 900°Cの温度にて、 1時間熱処理 する。  (4) Heat treatment in air at 900 ° C for 1 hour using a heat treatment furnace.
(5) フォトリソグラフィ一法を用いて、 第 1図中 (a) の平面図のよ うに白金膜 6 aをパ夕一ニングし、 感熱抵抗体 6と配線部分を形成する (配線は図示していない)。  (5) Using a photolithography method, the platinum film 6a is patterned as shown in the plan view of (a) in FIG. 1 to form the thermal resistor 6 and the wiring part (wiring is shown in the drawing). Not).
(6) 保護膜 4として、 酸化シリコン膜 4 aを約 0. 5〃m、 スピンコ ート法で形成し、 その後保護膜安定化の熱処理を行う。  (6) As the protective film 4, a silicon oxide film 4a is formed to a thickness of about 0.5 μm by a spin coating method, and then a heat treatment for stabilizing the protective film is performed.
(7) ドライエッチングによりワイヤボンディング用のパヅド部 1 1を 開口する。  (7) Open the pad portion 11 for wire bonding by dry etching.
(8) 裏面の酸化膜を開口し、 シリコン基材をゥエツトエッチングによ り除去してダイヤフラム 12を形成し、 ダイヤフラム下部のシリコン酸 化膜を除去し、 空洞部 2が形成され完成する。 (8) Open the oxide film on the back surface and remove the silicon base material by jet etching to form the diaphragm 12 and the silicon oxide under the diaphragm. The oxide film is removed, and the cavity 2 is formed and completed.
上記プロセスにおいて、 第 4の工程 (4) の熱処理温度を 9 00°Cと したが、 第 3図にこの熱処理温度と白金薄膜 (厚さ 0. 2 zm) の抵抗 の温度係数との関係を調べた結果を従来のものと対比して示す。 熱処理 温度 9 00°C以上 (少なくとも 850°C以上) で T CRが 3 500 p p m/°C以上を得ることができた。  In the above process, the heat treatment temperature in the fourth step (4) was set to 900 ° C. Figure 3 shows the relationship between this heat treatment temperature and the temperature coefficient of resistance of the platinum thin film (thickness: 0.2 zm). The result of the examination is shown in comparison with the conventional one. At a heat treatment temperature of 900 ° C or higher (at least 850 ° C or higher), a TCR of 3500 ppm / ° C or higher was obtained.
なお、 この白金薄膜の T CRは、 次のようにして求める。 温度測定確 度 0. 02 °Cの白金測温抵抗体で温度制御されたフロリナ一ト中で、 被 測定物である白金薄膜抵抗体に通電し、 白金薄膜の抵抗値を四端子法に より測定する。 この時、 フロリナ一トの測定温度 (測定サンプル温度)の 温度変化が ±0. 02°C以下となる温度安定な白金薄膜抵抗体の抵抗値 を白金薄膜抵抗体が発熱しない電流量 (0. 1mA) を白金薄膜抵抗体 に通電して測定する。 温度範囲一 20°C~80°Cにおいて、 5°C毎に各 温度で 5回測定し、 5回の平均抵抗値と平均温度を計算し、 最小二乗法 により温度範囲一 20°C〜80°Cの白金薄膜抵抗値の直線近似線の傾き と o°cにおける抵抗値を算出し、 この傾きを o°cにおける抵抗値で除し て求める。  The TCR of this platinum thin film is obtained as follows. Temperature measurement accuracy A platinum thin film resistor, which is the object to be measured, is energized in a Florinart temperature-controlled by a platinum resistance thermometer at 0.02 ° C, and the resistance value of the platinum thin film is measured by the four-terminal method. Measure. At this time, the resistance of the temperature-stable platinum thin-film resistor at which the temperature change of the measurement temperature (measurement sample temperature) of the Florinato becomes ± 0.02 ° C or less is determined by the amount of current (0. 1mA) is passed through the platinum thin film resistor and measured. In the temperature range of 20 ° C to 80 ° C, measure 5 times at each temperature every 5 ° C, calculate the average resistance value and the average temperature of 5 times, and calculate the temperature range of 20 ° C to 80 ° by the least square method. Calculate the slope of the linear approximation line of the platinum thin film resistance value at ° C and the resistance value at o ° c, and divide this slope by the resistance value at o ° c.
上記本実施例では、 下地膜 3として酸化アルミニウム膜を用いたが、 感熱抵抗体 6と接触する部分が絶縁体であって、 熱処理中に下地膜と白 金薄膜の界面にて拡散により白金との金属間化合物を形成し、 熱処理中 に、 白金と該金属間化合物の一部が融解しなければ、 高い T CRを得る ための熱処理が可能となるため、 他のものでもよい。 すなわち、 白金と 該金属間化合物との間の共晶点が 85 0°C以下になければ、 少なくとも T CR 35 00 ppm/°Cの白金薄膜を得ることができる。 例えば、 下 地膜 3の材料は、 例えば窒化アルミニウムや酸化ジルコニウムあるいは 窒化ジルコニウムであっても良い。 実施例 2. In the above embodiment, the aluminum oxide film was used as the base film 3, but the portion in contact with the thermal resistor 6 was an insulator, and platinum was diffused at the interface between the base film and the platinum thin film during heat treatment. If platinum and a part of the intermetallic compound are not melted during the heat treatment, heat treatment for obtaining a high TCR becomes possible, and therefore, other materials may be used. That is, if the eutectic point between platinum and the intermetallic compound is not below 850 ° C, a platinum thin film having at least TCR 3500 ppm / ° C can be obtained. For example, the material of the base film 3 is, for example, aluminum nitride, zirconium oxide or Zirconium nitride may be used. Example 2.
第 4図は、 この発明の一実施例による白金薄膜が搭載された熱式セン サを説明するための図で、 熱式センサの一部断面図である。  FIG. 4 is a view for explaining a thermal sensor equipped with a platinum thin film according to one embodiment of the present invention, and is a partial cross-sectional view of the thermal sensor.
図において、 1はシリコンよりなる平板状基材で、 熱酸化膜 9が形成 されており、 3は平板状基材 1の表面に設けられた絶縁性の下地膜で、 酸化アルミニウム 3 aと窒化シリコン 3 bの 2層からなる。 そして、 6は下地膜 3の上に配置された白金よりなる薄膜状の感熱抵抗体であり、 これらの感熱抵抗体 6ないし下地膜 3は酸化シリコン膜よりなる絶縁性 の保護膜 4で覆われている。 さらに、 感熱抵抗体 6の形成された部位の 下方の平板状基材 1は除去されて空洞部 2をなす。 ここで、絶縁(下地) 膜 3は支持膜として作用する。  In the figure, 1 is a flat substrate made of silicon, on which a thermal oxide film 9 is formed, and 3 is an insulating base film provided on the surface of the flat substrate 1, which is made of aluminum oxide 3a and nitrided. It consists of two layers of silicon 3b. Reference numeral 6 denotes a thin-film heat-sensitive resistor made of platinum disposed on the base film 3. The heat-sensitive resistor 6 or the base film 3 is covered with an insulating protective film 4 made of a silicon oxide film. ing. Further, the flat substrate 1 below the portion where the thermal resistor 6 is formed is removed to form the cavity 2. Here, the insulating (base) film 3 functions as a support film.
次に、 本実施例の製造プロセスを簡単に説明する。  Next, the manufacturing process of this embodiment will be briefly described.
( 1) 0. 5 zm厚さの熱酸化膜 9付きの、 面方位 ( 1 00) のシリコ ンウェハ 1 (厚さ 380 Π1) を準備する。  (1) Prepare a silicon wafer 1 (thickness: 380 Π 1) having a plane orientation (100) with a thermal oxide film 9 having a thickness of 0.5 zm.
(2) 例えばスパヅ夕法により窒化シリコンを 1. 8 /Π1成膜した後 に酸化アルミニウム膜を 0. の厚さ、 熱酸化膜 9上に形成する。 (2) For example, after forming silicon nitride by 1.8 / Π1 by a sputtering method, an aluminum oxide film is formed on the thermal oxide film 9 to a thickness of 0.
(3) 例えばスパッ夕法により 0. 3 zm の厚さの白金膜を上記酸化 アルミニウム膜 3 a上に形成する。 (3) For example, a platinum film having a thickness of 0.3 zm is formed on the aluminum oxide film 3a by a sputtering method.
(4) 熱処理炉を用いて、 大気中で 1000°Cの温度にて、 1時間熱処 理する。  (4) Heat treatment in air at 1000 ° C for 1 hour using a heat treatment furnace.
( 5 ) フォトリソグラフィ一法を用いて、 第 1図中 (a) の平面図のよ うに白金膜 6 aをパターニングし、 感熱抵抗体 6と配線部分を形成する (配線は図示していない)。 ( 6 ) 保護膜 4として、 酸'ィ匕シリコン膜 4 aを約 0 . 5 m、 スピンコ ート法で形成し、 その後保護膜安定化の熱処理を行う。 (5) Using a photolithography method, pattern the platinum film 6a as shown in the plan view of (a) in FIG. 1 to form the thermal resistor 6 and the wiring part (wiring not shown) . (6) As the protective film 4, an oxide silicon film 4a of about 0.5 m is formed by a spin coating method, and then a heat treatment for stabilizing the protective film is performed.
( 7 ) ドライエッチングによりワイヤボンディング用のパッド部 1 1を 開口する。  (7) Open the pad portion 11 for wire bonding by dry etching.
( 8 ) 裏面の酸化膜を開口し、 シリコン基材をウエットエッチングによ り除去してダイヤフラム 1 2を形成し、 ダイヤフラム下部のシリコン酸 化膜を除去し、 空洞部 2が形成され完成する。  (8) The oxide film on the back surface is opened, the silicon substrate is removed by wet etching to form a diaphragm 12, and the silicon oxide film below the diaphragm is removed, and the cavity 2 is formed and completed.
このようにして作成されたに白金薄膜抵抗体は、 実施例 1で述べたの と同様の効果が得られるため、 白金薄膜の T C Rを 3 5 0 0 p p m/0C 以上にできる。 The platinum thin-film resistor thus produced has the same effects as those described in the first embodiment, so that the platinum thin film can have a TCR of 350 ppm / 0 C or more.
また、 下地膜を 2層とし、 下層に応力コントロールがより容易な窒化 シリコンを用いたので、ダイヤフラム部の応力制御がより容易にできる。 なお、 ここでは白金膜直下の下地膜 3 aに酸化アルミニウムを用いた 例を示したが、 前記酸化アルミニゥ厶が窒化アルミニウムあるいは酸化 ジルコニウムゃ窒化ジルコニウムを用いても同様の効果が得られること は言うまでもない。 実施例 3 .  In addition, since the underlying film is made of two layers and the lower layer is made of silicon nitride for which stress control is easier, stress control of the diaphragm can be more easily performed. Although an example in which aluminum oxide is used for the base film 3a immediately below the platinum film is shown here, it goes without saying that the same effect can be obtained by using aluminum nitride or zirconium oxide / zirconium nitride as the aluminum oxide. No. Example 3.
第 5図は、 この発明の一実施例による白金薄膜が搭載された熱式セン サを説明するための図で、 熱式センサの一部断面図である。 実施例 1の 保護膜 4を酸化アルミニウム膜 4 bで形成した例である。  FIG. 5 is a view for explaining a thermal sensor equipped with a platinum thin film according to one embodiment of the present invention, and is a partial cross-sectional view of the thermal sensor. This is an example in which the protective film 4 of Example 1 is formed of the aluminum oxide film 4b.
図において、 1はシリコンよりなる平板状基材で、 熱酸化膜 9が形成 されており、 3は平板状基材 1の表面に設けられた絶縁性の下地膜で、 酸化アルミニウムからなる。 そして、 6は下地膜 3の上に配置された白 金よりなる薄膜状の感熱抵抗体であり、 これらの感熱抵抗体 6ないし下 地膜 3は酸化アルミニウム膜 4 bよりなる絶縁性の保護膜 4で覆われて いる。 さらに、 感熱抵抗体 6の形成された部位の下方の平板状基材 1は 除去されて空洞部 2をなす。 ここで、 絶縁 (下地) 膜 3は支持膜として 作用する。 In the figure, 1 is a flat substrate made of silicon, on which a thermal oxide film 9 is formed, and 3 is an insulating base film provided on the surface of the flat substrate 1 and made of aluminum oxide. Reference numeral 6 denotes a thin-film heat-sensitive resistor made of white gold disposed on the base film 3. The ground film 3 is covered with an insulating protective film 4 made of an aluminum oxide film 4b. Further, the flat substrate 1 below the portion where the thermal resistor 6 is formed is removed to form the cavity 2. Here, the insulating (base) film 3 functions as a support film.
次に、 本実施例の製造プロセスを簡単に説明する。  Next, the manufacturing process of this embodiment will be briefly described.
( 1 ) 0. 5 /m厚さの熱酸化膜 9付きの、 面方位 ( 1 0 0) のシリコ ンウェハ 1 (厚さ 3 8 0 m) を準備する。  (1) Prepare a silicon wafer 1 (thickness: 380 m) having a plane orientation (100) with a thermal oxide film 9 having a thickness of 0.5 / m.
( 2 ) 例えばスパヅ夕法により酸化アルミニウム膜 3 aを 2 . 0 j の厚さ、 熱酸化膜 9上に形成する。  (2) For example, an aluminum oxide film 3a is formed on the thermal oxide film 9 to a thickness of 2.0 j by a sputtering method.
( 3 ) 例えばスパヅ夕法により白金膜を 0. 5 zm の厚さ、 上記酸化 アルミニウム膜上に形成する。  (3) For example, a platinum film is formed on the aluminum oxide film to a thickness of 0.5 zm by a sputtering method.
( 4 ) フォトリソグラフィ一法を用いて、 第 1図中 (a) の平面図のよ うに白金膜 6 aをパターニングし、 感熱抵抗体 6と配線部分を形成する (4) Using a photolithography method, pattern the platinum film 6a as shown in the plan view of (a) in FIG. 1 to form the thermal resistor 6 and the wiring part.
(配線は図示していない)。 (Wiring not shown).
( 5 ) 保護膜 4として、 酸化アルミニウム膜 4 bを例えばスパッ夕法で 約 1 m形成する。  (5) As the protective film 4, an aluminum oxide film 4b is formed about 1 m by, for example, a sputtering method.
( 6 ) 熱処理炉を用いて、 大気中で 1 1 0 0°Cの温度にて、 1時間熱処 理する。  (6) Using a heat treatment furnace, perform heat treatment at 110 ° C for 1 hour in air.
( 7 ) ドライェヅチングによりワイャボンディング用のパヅド部 1 1を 開口する。  (7) Open the pad portion 11 for wire bonding by dry etching.
( 8 ) 裏面め酸化膜を開口し、 シリコン基材をゥェヅ トエッチングによ り除去してダイヤフラム 1 2を形成し、 ダイヤフラム下部のシリコン酸 化膜を除去し、 空洞部 2が形成され完成する。  (8) Open the back oxide film, remove the silicon substrate by gate etching to form the diaphragm 12, and remove the silicon oxide film under the diaphragm to form the cavity 2 and complete .
このようにして作成されたに白金薄膜抵抗体は、 実施例 1で述べたの と同様の効果が得られるため、 白金薄膜の T CRを 3 5 0 0 p pmZ°C 以上にできる。 The platinum thin film resistor thus produced has the same effect as described in the first embodiment, so that the TCR of the platinum thin film is set to 350 ppmZ ° C More than that.
また、 白金薄膜からなる感熱抵抗体 6を発熱させて使用する場合は、 保護膜の信頼性のために保護膜の安定化熱処理が必要となるが、 この場 合は一回の熱処理で白金薄膜の T C Rを大きくすることと保護膜の安定 化を兼ねることができるため、 保護膜安定化の熱処理を省略できる。 ここでは白金薄膜の直下、 直上の膜に酸化アルミニゥムを用いた例を 示したが、 前記酸化アルミニゥムが窒化アルミニウムあるいは酸化ジル コニゥムゃ窒化ジルコニウムを用いても同様の効果が得られることは言 うまでもない。 実施例 4 .  In addition, when the thermal resistor 6 made of a platinum thin film is used by generating heat, a heat treatment for stabilizing the protective film is required for the reliability of the protective film. Therefore, the heat treatment for stabilizing the protective film can be omitted because the TCR can be increased and the protective film can be stabilized. Here, an example in which aluminum oxide is used immediately below and immediately above the platinum thin film has been described. However, it is needless to say that the same effect can be obtained by using aluminum nitride or zirconium oxide / zirconium nitride as the aluminum oxide. Absent. Example 4.
第 6図は、 この発明の一実施例による白金薄膜が搭載された熱式セン サを説明するための図で、 熱式センサの一部断面図である。  FIG. 6 is a view for explaining a thermal sensor equipped with a platinum thin film according to one embodiment of the present invention, and is a partial cross-sectional view of the thermal sensor.
図において、 1はシリコンよりなる平板状基材で、 熱酸化膜 9が形成 されており、 3は平板状基材 1の表面に設けられた絶縁性の下地膜で、 酸化アルミニウム 3 aからなる。 そして、 6は下地膜 3の上に配置され た白金よりなる薄膜状の感熱抵抗体であり、 これらの感熱抵抗体 6ない し下地膜 3は窒化シリコン膜 4 cよりなる絶縁性の保護膜 4で覆われて いる。 さらに、 感熱抵抗体 6の形成された部位の下方の平板状基材 1は 除去されて空洞部 2をなす。 ここで、 絶縁 (下地) 膜 3は支持膜として 作用する。  In the figure, 1 is a flat substrate made of silicon, on which a thermal oxide film 9 is formed, and 3 is an insulating base film provided on the surface of the flat substrate 1 and made of aluminum oxide 3a . Reference numeral 6 denotes a thin-film heat-sensitive resistor made of platinum disposed on the base film 3, and these heat-sensitive resistors 6 or the base film 3 is an insulating protective film 4 made of a silicon nitride film 4c. It is covered with. Further, the flat substrate 1 below the portion where the thermal resistor 6 is formed is removed to form the cavity 2. Here, the insulating (base) film 3 functions as a support film.
構造は実施例 1の第 1図で示したものに類似するが、 本実施例では保 護膜 4を一旦酸化アルミニゥム 4 bで形成して熱処理後、 感熱抵抗体と ともにパ夕一ニングし、 最終的な保護膜として他の膜を形成したもので ある。 次に、 本実施例の製造プロセスを簡単に説明する。 Although the structure is similar to that shown in FIG. 1 of Embodiment 1, in this embodiment, the protective film 4 is once formed of aluminum oxide 4b, and after heat treatment, it is patterned together with the thermal resistor. Another film was formed as a final protective film. Next, the manufacturing process of this embodiment will be briefly described.
( 1 ) 0. 5 m厚さの熱酸化膜 9付きの、 面方位 ( 1 0 0 ) のシリコ ンウェハ 1 (厚さ 3 8 0〃m) を準備する。  (1) Prepare a silicon wafer 1 (thickness: 380〃m) having a plane orientation (100) with a thermal oxide film 9 having a thickness of 0.5 m.
( 2 ) 例えばスパッ夕法により酸化アルミニウム膜 3 aを 2. 0 im の厚さ、 熱酸化膜 9上に形成する。  (2) For example, an aluminum oxide film 3a is formed on the thermal oxide film 9 to a thickness of 2.0 im by a sputtering method.
( 3 ) 例えばスパヅ夕法により白金膜を 0. 5〃m の厚さ、 上記酸化 アルミニウム膜上に形成する。  (3) For example, a platinum film is formed to a thickness of 0.5 μm on the aluminum oxide film by a sputtering method.
(4) 保護膜 4として、 酸化アルミニウム膜 4 bを例えばスパヅ夕法で 約 0. 形成する。  (4) As the protective film 4, an aluminum oxide film 4b is formed to a thickness of about 0 by, for example, a sputtering method.
( 5 ) 熱処理炉を用いて、 大気中で 1 2 0 0°Cの温度にて、 1時間熱処 理する。  (5) Using a heat treatment furnace, perform heat treatment in air at a temperature of 1200 ° C for 1 hour.
( 6 ) フォトリソグラフィ一法を用いて、 第 1図中 (a) の平面図のよ うに白金膜 6 aを酸化アルミニウム保護膜 4 bとともにパターニングし、 感熱抵抗体 6と配線部分を形成する (配線は図示していない)。  (6) Using a photolithography method, the platinum film 6a is patterned together with the aluminum oxide protective film 4b as shown in the plan view of (a) in FIG. 1 to form the thermal resistor 6 and the wiring portion ( The wiring is not shown).
( 7 ) 保護膜 4として、 下地膜 3と感熱抵抗体 6を覆うように窒化シリ コン膜を例えばスパッ夕法で約 0. 8 zm形成する。  (7) As the protective film 4, a silicon nitride film is formed to a thickness of about 0.8 zm by, for example, a sputtering method so as to cover the base film 3 and the thermal resistor 6.
( 8 ) ドライエッチングによりワイヤボンディング用のパヅド部 1 1を 開口し、 保護膜の酸化アルミニウム 4 bは除去する。  (8) The pad portion 11 for wire bonding is opened by dry etching, and the aluminum oxide 4b of the protective film is removed.
( 9 ) 裏面の酸化膜を開口し、 シリコン基材をゥエツ トエッチングによ り除去してダイヤフラム 1 2を形成し、 ダイヤフラム下部のシリコン酸 化膜を除去し、 空洞部 2が形成され完成する。  (9) Open the oxide film on the back surface, remove the silicon base material by jet etching to form the diaphragm 12, and remove the silicon oxide film under the diaphragm to form the cavity 2 and complete .
このようにして作成されたに白金薄膜抵抗体は、 実施例 1で述べたの と同様の効果が得られるため、 白金薄膜の抵抗温度係数を 3 5 0 0 p p m/°C以上にできる。  The platinum thin film resistor thus produced has the same effect as described in the first embodiment, so that the platinum thin film can have a temperature coefficient of resistance of more than 350 ppm / ° C.
また、 酸化シリコンであっても応力コントロールは可能であるが、 保 護膜に応力コントロールがより容易な窒化シリコン膜を用いたので、 ダ ィャフラム部の応力制御がより容易にできる。 In addition, although stress control is possible even with silicon oxide, The use of a silicon nitride film, which facilitates stress control for the protective film, makes it easier to control the stress in the diaphragm.
ここではプロセス中に白金膜直下、 直上に酸化アルミニウムを用いた 例を示したが、 前記酸化アルミニゥムが窒化アルミニウムあるいは酸化 ジルコニウムゃ窒化ジルコニウムを用いても同様の効果が得られること は言うまでもない。 実施例 5 .  Here, an example was shown in which aluminum oxide was used immediately under and immediately above the platinum film during the process, but it goes without saying that the same effect can be obtained by using aluminum nitride or zirconium oxide / zirconium nitride as the aluminum oxide. Embodiment 5.
第 7図は、 この発明の一実施例による白金薄膜が搭載された熱式セン サを説明するための図で、 熱式センサの一部断面図である。  FIG. 7 is a view for explaining a thermal sensor equipped with a platinum thin film according to one embodiment of the present invention, and is a partial cross-sectional view of the thermal sensor.
図において、 1はシリコンよりなる平板状基材で、 熱酸化膜 9が形成 されており、 3は平板状基材 1の表面に設けられた絶縁性の下地膜で、 酸化アルミニウム 3 aと窒化シリコン 3 bの 2層からなる。 そして、 6 は下地膜 3の上に配置された白金よりなる薄膜状の感熱抵抗体であり、 これらの感熱抵抗体 6ないし下地膜 3は窒化シリコン膜 4 cよりなる絶 縁性の保護膜 4で覆われている。 さらに、 感熱抵抗体 6の形成された部 位の下方の平板状基材 1は除去されて空洞部 2をなす。ここで、絶縁(下 地) 膜は支持膜として作用する。  In the figure, 1 is a flat substrate made of silicon, on which a thermal oxide film 9 is formed, and 3 is an insulating base film provided on the surface of the flat substrate 1, which is made of aluminum oxide 3a and nitrided. It consists of two layers of silicon 3b. Reference numeral 6 denotes a thin-film heat-sensitive resistor made of platinum disposed on the base film 3. The heat-sensitive resistor 6 or the base film 3 is an insulating protective film 4 made of a silicon nitride film 4c. Covered with. Further, the flat substrate 1 below the portion where the thermal resistor 6 is formed is removed to form the cavity 2. Here, the insulating (underlying) film functions as a supporting film.
構造は実施例 2の第 4図で示したものに類似するが、 本実施例では保 護膜 4を一旦酸化アルミニウム 4 bで形成して熱処理後、 感熱抵抗体と ともにパターニングし、 最終的な保護膜として他の膜を形成したもので める。  Although the structure is similar to that shown in FIG. 4 of Embodiment 2, in this embodiment, the protective film 4 is formed of aluminum oxide 4b once, heat-treated, and then patterned together with the thermal resistor. A film formed with another film as a protective film can be used.
次に、 本実施例の製造プロセスを簡単に説明する。  Next, the manufacturing process of this embodiment will be briefly described.
( 1 ) 0 . 5〃m厚さの熱酸化膜 9付きの、 面方位 ( 1 0 0 ) のシリコ ンウェハ 1 (厚さ 3 8 0 z m) を準備する。 ( 2 ) 例えばスパッ夕法により窒化シリコンを 1. 8〃m成膜した後 に酸化アルミニウム膜を 0. 2〃mの厚さ、 熱酸化膜 9上に形成する。(1) A silicon wafer 1 (thickness: 380 zm) having a plane orientation (100) with a thermal oxide film 9 having a thickness of 0.5 μm is prepared. (2) For example, after a silicon nitride film is formed to a thickness of 1.8 μm by a sputtering method, an aluminum oxide film is formed on the thermal oxide film 9 to a thickness of 0.2 μm.
(3) 例えばスパッ夕法により白金膜を 0. 2〃m の厚さ、 上記酸化 アルミニウム膜上に形成する。 (3) A platinum film is formed on the aluminum oxide film to a thickness of 0.2 μm by, for example, a sputtering method.
(4) 保護膜 4として、 酸化アルミニウム膜 4 bを例えばスパッ夕法で 約 0. 2〃m形成する。  (4) As the protective film 4, an aluminum oxide film 4b is formed to a thickness of about 0.2 μm by, for example, a sputtering method.
(5 ) 熱処理炉を用いて、 大気中で 900°Cの温度にて、 1時間熱処理 する。  (5) Heat treatment in air at 900 ° C for 1 hour using a heat treatment furnace.
(6) フォトリソグラフィ一法を用いて、 第 1図中 (a) の平面図のよ うに白金膜 6 aを酸化アルミニウムの保護膜 4 bとともにパターニング し、 感熱抵抗体 6と配線部分を形成する (配線は図示していない)。 (6) Using a photolithography method, pattern the platinum film 6a together with the protective film 4b of aluminum oxide as shown in the plan view (a) in Fig. 1 to form the thermal resistor 6 and the wiring part (The wiring is not shown).
(7) 保護膜 4として、 下地膜 3と感熱抵抗体 6を覆うように窒化シリ コン膜 4 cを例えばスパヅ夕法で約 0. 8〃m形成する。 (7) As the protective film 4, a silicon nitride film 4 c is formed to a thickness of about 0.8 μm by, for example, a sputtering method so as to cover the base film 3 and the thermal resistor 6.
(8) ドライエッチングによりワイヤボンディング用のパヅド部 1 1を 開口し、 この時保護膜の酸化アルミニウム 4 bは除去する。  (8) The pad portion 11 for wire bonding is opened by dry etching, and at this time, the aluminum oxide 4b of the protective film is removed.
(9) 裏面の酸化膜を開口し、 シリコン基材をゥヱヅトエッチングによ り除去してダイヤフラム 1 2を形成し、 ダイヤフラム下部のシリコン酸 化膜を除去し、 空洞部 2が形成され完成する。  (9) Open the oxide film on the back surface, remove the silicon substrate by photo-etching to form the diaphragm 12, and remove the silicon oxide film under the diaphragm to form the cavity 2. Complete.
このようにして作成されたに白金薄膜抵抗体は、 実施例 1で述べたの と同様の効果が得られるため、 白金薄膜の抵抗温度係数を 35 00 pp m/°C以上にできる。  The platinum thin film resistor thus produced has the same effect as described in the first embodiment, so that the platinum thin film can have a temperature coefficient of resistance of 3500 ppm / ° C or more.
また、 酸化シリコンであっても応力コントロールは可能であるが、 下 地膜、 保護膜に応力コントロールがより容易な窒化シリコン膜を用いた ので、 ダイヤフラム部の応力制御がより容易にできる。  In addition, although stress control is possible even with silicon oxide, the use of a silicon nitride film, which facilitates stress control for the underlying film and the protective film, makes it easier to control the stress in the diaphragm.
ここではプロセス中に白金膜直下、 直上に酸化アルミニウムを用いた 例を示したが、 前記酸化アルミニウムが窒化アルミニウムあるいは酸化 ジルコニウムゃ窒化ジルコニウムを用いても同様の効果が得られること は言うまでもない。 Here, aluminum oxide was used just below and directly above the platinum film during the process. Although an example has been shown, it goes without saying that the same effect can be obtained even when the aluminum oxide is aluminum nitride or zirconium oxide / zirconium nitride.
なお、 以上の実施例 1乃至 5において、 図示しなかったが、 感熱抵抗 体の近傍にはセンサの温度補償のための温度検知部 (温度センサ) が従 来のように形成されており、 本発明においてはこの温度検知部用の感熱 抵抗体としても本発明の白金薄膜を用いることができる。 実施例 6 .  Although not shown in Examples 1 to 5 above, a temperature detecting section (temperature sensor) for compensating the temperature of the sensor is formed near the heat-sensitive resistor as in the past. In the present invention, the platinum thin film of the present invention can also be used as a heat-sensitive resistor for the temperature detecting section. Embodiment 6.
第 8図、 第 9図は、 本発明の一実施例による熱式センサのうち流量セ ンサの構成を説明する図で、 流体の通路に配設した図である。  FIG. 8 and FIG. 9 are diagrams illustrating the configuration of a flow sensor in a thermal sensor according to one embodiment of the present invention, and are diagrams arranged in a fluid passage.
図において、 2 1は流量検出素子で上記実施例 1乃至 5で示した T C Rが 3 5 0 0 p p m/^Cの白金薄膜抵抗体を用いた流量検出素子、 2 2 は検出管路、 2 3は流体の通路である主通路、 2 4は格子状の整流器、 2 5は制御回路が収められたケース、 2 6は該流量センサに電源を供給 したり出力を取り出すためのコネクタである。 なお、 矢印 1 0は通常時 の空気流れの方向を示している。  In the figure, 21 is a flow detecting element using a platinum thin film resistor having a TCR of 3500 ppm / ^ C shown in Examples 1 to 5 above, 22 is a detecting pipe, and 23 is a detecting pipe. Is a main passage which is a fluid passage, 24 is a grid-like rectifier, 25 is a case in which a control circuit is housed, and 26 is a connector for supplying power to the flow sensor and taking out an output. Note that the arrow 10 indicates the direction of the air flow during normal times.
例えば、 車載用の流量センサでは、 対環境の問題から消費ガソリンを 低減するため、 アイ ドリング流量の低流量化が進んでおり、 l g / s以 下の低流量計測が求められているが、 このような流量センサに、 T C R が 3 1 0 0 p p m/°Cの膜を適用した場合には、 低流量の感度不足によ り、 1 g / sの流量を検出するための精度が悪くなる。  For example, in the case of in-vehicle flow sensors, the idling flow rate has been reduced in order to reduce gasoline consumption due to environmental concerns, and low flow measurement of lg / s or less is required. If a membrane with a TCR of 310 ppm / ° C is applied to such a flow sensor, the accuracy for detecting a flow rate of 1 g / s will deteriorate due to insufficient sensitivity at low flow rates.
第 1 0図に、 T C Rと流量ドリフトとの関係を示す。 すなわち、 図に おいて、 異なる抵抗温度係数における、 流量と流量ドリフト (強制的に ヒー夕一温度センシング抵抗の抵抗値を 1 %変化させて計測した流量 初期計測流量 χιοο[%]、 耐久評価後の抵抗値変動が 0. 1%以下で、 その時の流量ドリフトが 3 %以下である領域が精度保証できる範囲。) の関係を調査した結果を示す。 このドリフト量は感度に読み替えること ができ、 ドリフト値が小さいほど感度は高いと言える。 この流量ドリフ ト値が 30%程度以下であれば、 信頼性と精度が確保できる。 TCRが 3 100 ppm/°Cの場合は、 2 g/sの流量ドリフトは 3 1 %である が、 T CRが 3500 p pmノ。 Cの場合は、 l g/sの流量ドリフ トは 30%であり、 より低流量の計測が可能となる。 FIG. 10 shows the relationship between TCR and flow rate drift. In other words, in the figure, the flow rate and flow rate drift at different resistance temperature coefficients (the flow rate measured by forcibly changing the resistance value of the temperature sensing resistor by 1%) Initial measurement flow rate χιοο [%], the range where the resistance fluctuation after endurance evaluation is 0.1% or less and the flow rate drift at that time is 3% or less can be guaranteed accuracy. The results of investigating the relationship are shown below. This drift amount can be read as sensitivity, and the lower the drift value, the higher the sensitivity. If the flow drift value is about 30% or less, reliability and accuracy can be secured. At a TCR of 3 100 ppm / ° C, the flow drift of 2 g / s is 31%, but the TCR is 3500 ppm. In the case of C, the flow drift of lg / s is 30%, which enables measurement of a lower flow rate.
このように、 本発明による白金薄膜抵抗体を搭載した熱式流量センサ は従来と比して感度が向上する。  As described above, the sensitivity of the thermal type flow sensor equipped with the platinum thin film resistor according to the present invention is improved as compared with the related art.
ここでは、 熱式の流量センサについて述べたが、 熱式の他のセンサ、 例えば圧力センサ等にも実施例 1〜 5に係る白金薄膜抵抗体を組み込め ば、 温度変化に対する抵抗変化を大きくできるので、 センサの感度を向 上した熱型センサを得ることができる。 産業上の利用可能性  Although the thermal type flow sensor has been described here, if the platinum thin film resistors according to Examples 1 to 5 are incorporated in other thermal type sensors such as a pressure sensor, the resistance change with respect to temperature change can be increased. Thus, a thermal sensor with improved sensor sensitivity can be obtained. Industrial applicability
この発明による白金薄膜は熱式のセンサに搭載され、 この熱式のセン サは例えば車両用等の内燃機関の吸入空気量計測等の流量センサや圧力 センサに利用される。  The platinum thin film according to the present invention is mounted on a thermal sensor, and this thermal sensor is used for a flow rate sensor or a pressure sensor for measuring an intake air amount of an internal combustion engine for a vehicle or the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . 平板状シリコン基板上の絶縁膜上に形成された白金薄膜であって、 該白金薄膜の抵抗の温度係数が 3 5 0 0 p p m/°C以上であることを特 徴とする白金薄膜。 1. A platinum thin film formed on an insulating film on a flat silicon substrate, wherein the platinum thin film has a temperature coefficient of resistance of 350 ppm / ° C or more.
2 . 平板状シリコン基板上の絶縁膜上に形成された白金薄膜であって、 上記絶縁膜のうち上記白金薄膜と接する絶縁膜を構成する材料は、 該材 料と白金との金属間化合物と白金との共晶点を 8 5 0 °C以下にもたない 材料であることを特徴とする白金薄膜。  2. A platinum thin film formed on an insulating film on a flat silicon substrate, wherein a material of the insulating film that is in contact with the platinum thin film is an intermetallic compound of the material and platinum. A platinum thin film, which is a material having a eutectic point with platinum of less than 850 ° C or less.
3 . 絶縁膜のうち上記白金薄膜と接する絶縁膜を構成する材料がアルミ ニゥムあるいはジルコニウムの酸化物もしくは窒化物であることを特徴 とする請求の範囲第 1項または第 2項に記載の白金薄膜。 3. The platinum thin film according to claim 1 or 2, wherein a material of the insulating film that is in contact with the platinum thin film is aluminum or zirconium oxide or nitride. .
4 . 白金薄膜上にさらにアルミニウムあるいはジルコニウムの酸化物も しくは窒化物からなる第 2の絶縁膜を形成したことを特徴とする請求の 範囲第 1項または第 2項に記載の白金薄膜。 3. The platinum thin film according to claim 1, wherein a second insulating film made of an oxide or a nitride of aluminum or zirconium is further formed on the platinum thin film.
5 . 平板状シリコン基板の第 1の面に配置された絶縁性の支持膜と、 該 支持膜に感熱抵抗膜からなる感熱抵抗体および温度検知部が形成され、 該感熱抵抗体が形成された領域の下方で上記基材が部分的に除去されて ダイヤフラム部が形成されてなる熱式センサにおいて、 少なくとも感熱 抵抗体として請求の範囲第 1項または第 2項に記載の白金薄膜を用いた ことを特徴とする熱式センサ。  5. An insulating support film disposed on the first surface of the flat silicon substrate, a heat-sensitive resistor composed of a heat-sensitive resistive film and a temperature detecting portion were formed on the support film, and the heat-sensitive resistor was formed. In the thermal sensor in which the diaphragm is formed by partially removing the base material below the region, the platinum thin film according to claim 1 or 2 is used as at least a heat-sensitive resistor. A thermal sensor characterized by the following.
PCT/JP2002/005426 2002-06-03 2002-06-03 Platinum thin film and thermal sensor WO2003102974A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2002/005426 WO2003102974A1 (en) 2002-06-03 2002-06-03 Platinum thin film and thermal sensor
JP2004509968A JPWO2003102974A1 (en) 2002-06-03 2002-06-03 Platinum thin film and thermal sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/005426 WO2003102974A1 (en) 2002-06-03 2002-06-03 Platinum thin film and thermal sensor

Publications (1)

Publication Number Publication Date
WO2003102974A1 true WO2003102974A1 (en) 2003-12-11

Family

ID=29606656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005426 WO2003102974A1 (en) 2002-06-03 2002-06-03 Platinum thin film and thermal sensor

Country Status (2)

Country Link
JP (1) JPWO2003102974A1 (en)
WO (1) WO2003102974A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294929A (en) * 2006-03-28 2007-11-08 Mitsui Mining & Smelting Co Ltd Thin film sensor manufacturing method, thin film sensor, and thin film sensor module
CN106679843A (en) * 2016-12-02 2017-05-17 中国科学院计算技术研究所 Film temperature sensor withstanding piezoresistive effects and method for detecting temperature
EP3173749A1 (en) * 2015-11-30 2017-05-31 Azbil Corporation Measuring apparatus and method of manufacturing the measuring apparatus
JP2017521797A (en) * 2014-07-25 2017-08-03 クアルコム,インコーポレイテッド High resolution electric field sensor in cover glass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042967A (en) * 1990-04-20 1992-01-07 Matsushita Electric Ind Co Ltd Flow sensor
JPH11326072A (en) * 1998-05-21 1999-11-26 Matsushita Electric Ind Co Ltd Temperature sensor element and temperature sensor with it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042967A (en) * 1990-04-20 1992-01-07 Matsushita Electric Ind Co Ltd Flow sensor
JPH11326072A (en) * 1998-05-21 1999-11-26 Matsushita Electric Ind Co Ltd Temperature sensor element and temperature sensor with it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294929A (en) * 2006-03-28 2007-11-08 Mitsui Mining & Smelting Co Ltd Thin film sensor manufacturing method, thin film sensor, and thin film sensor module
JP2017521797A (en) * 2014-07-25 2017-08-03 クアルコム,インコーポレイテッド High resolution electric field sensor in cover glass
EP3173749A1 (en) * 2015-11-30 2017-05-31 Azbil Corporation Measuring apparatus and method of manufacturing the measuring apparatus
US10113892B2 (en) 2015-11-30 2018-10-30 Azbil Corporation Measuring apparatus and method of manufacturing the measuring apparatus
CN106679843A (en) * 2016-12-02 2017-05-17 中国科学院计算技术研究所 Film temperature sensor withstanding piezoresistive effects and method for detecting temperature
CN106679843B (en) * 2016-12-02 2019-07-30 中国科学院计算技术研究所 A kind of film temperature sensor of resistance to compression inhibition effect and the method for detecting temperature

Also Published As

Publication number Publication date
JPWO2003102974A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US6349596B1 (en) Thermal type air flow sensor
US4912975A (en) Direct-heated flow measuring apparatus having improved response characteristics
US5801070A (en) High sensitivity, silicon-based, Microcalorimetric gas sensor and fabrication method
CN102735298B (en) Thermal fluid flow sensor
EP0937966A2 (en) Thermal air flow sensor
US7886594B2 (en) Thermal type fluid flow sensor with metal film resistor
US4833912A (en) Flow measuring apparatus
US4705713A (en) Film resistor for flow measuring apparatus
JP4474771B2 (en) Flow measuring device
US4843882A (en) Direct-heated flow measuring apparatus having improved sensitivity response speed
US20010015199A1 (en) Thermal type air flow sensor and control device for a vehicle
JP2006258676A (en) Thermal flow meter
WO2004106863A1 (en) Thermal flow sensor
US6508117B1 (en) Thermally balanced mass air flow sensor
JP3825267B2 (en) Flow measurement device, physical detection device, and engine system
JP2005024400A (en) Thermal flow rate detection element and its manufacturing method
WO2003102974A1 (en) Platinum thin film and thermal sensor
JP2004037302A (en) Measuring element of gas flow rate and temperature
US10989579B2 (en) Thermal detection sensor
JP2001012985A (en) Thermal air flow sensor and internal combustion engine controller
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
US7472591B2 (en) Thermal gas flow and control device for internal-combustion engine using the same
JP2001057358A (en) Method of fabricating sensor with thin film
JP7158369B2 (en) Thermal detection sensor
JP4253976B2 (en) Flow sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004509968

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载