+

WO2003100840A1 - Evaporateur, differents appareils l'incorporant et procede de vaporisation - Google Patents

Evaporateur, differents appareils l'incorporant et procede de vaporisation Download PDF

Info

Publication number
WO2003100840A1
WO2003100840A1 PCT/JP2003/006766 JP0306766W WO03100840A1 WO 2003100840 A1 WO2003100840 A1 WO 2003100840A1 JP 0306766 W JP0306766 W JP 0306766W WO 03100840 A1 WO03100840 A1 WO 03100840A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
raw material
vaporizer
material solution
vaporization
Prior art date
Application number
PCT/JP2003/006766
Other languages
English (en)
French (fr)
Inventor
Masayuki Toda
Masaru Umeda
Original Assignee
Kabushiki Kaisha Watanabe Shoko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Watanabe Shoko filed Critical Kabushiki Kaisha Watanabe Shoko
Priority to AU2003241915A priority Critical patent/AU2003241915A1/en
Priority to EP03733161A priority patent/EP1533835A1/en
Priority to US10/515,888 priority patent/US20060037539A1/en
Priority to JP2004508397A priority patent/JP4391413B2/ja
Publication of WO2003100840A1 publication Critical patent/WO2003100840A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles

Definitions

  • the present invention relates to a vaporizer and a vaporization method suitably used for a film forming apparatus such as M0CVD, a film forming apparatus, and other various apparatuses.
  • DRAM storage capacitance associated with miniaturization. From the point of view of soft errors, etc., the capacitance is required to be about the same as the previous generation, so some countermeasures are required.
  • the cell structure up to 1M was a planar structure, but from 4M a three-dimensional structure called a stack structure or a trench structure was introduced to increase the capacity area.
  • the dielectric film a film formed by laminating a thermal oxide film and a CVD nitride film on the poly Si from the thermal oxide film on the substrate Si (this laminated film is generally called an ON film) has been adopted.
  • a three-dimensional type that uses the side surface and a fin type that also uses the back surface of the plate were adopted for the stack type.
  • the Bi-based layered structure which has a crystal structure very similar to a superconducting material, has a high dielectric constant, has self-polarization of ferroelectric properties, and is excellent as a nonvolatile memory. It has received a lot of attention.
  • M_ ⁇ C VD is done in (metal organic chemical vapor deposition) method with a practical and promising.
  • the raw materials of the ferroelectric thin film are, for example, three kinds of organometallic complexes S r (DPM) B i
  • the reaction unit to perform the S r B i 2 T a O 9 thin film material is a gas phase reaction and surface reaction of the deposition, a S r B i 2 T a 0 9 thin film raw material and oxidizing agent It is composed of a supply unit for supplying to the reaction unit.
  • the supply unit is provided with a vaporizer for vaporizing the thin film raw material.
  • Figure 1 As shown in. 6 (a) is what is called a set of metal filters, used for the purpose of increasing the contact area between the gas and S r B i 2 T a 0 9 ferroelectric thin film material solution existing around This is a method of vaporizing by introducing a raw material solution heated to a predetermined temperature into the obtained metal filter.
  • FIG 1 6 (b) is a technique for vaporizing the raw material solution by applying pressure of 30 kgf / cm 2 in the raw material solution to release the pores or et stock solution 1 0 m expansion.
  • the raw material solution a mixed solution of a plurality of organic metal complexes, e.g., S r (DPM) 2 / THF and B i (C 6 H 5) 3 / THF and T a (OC 2 H 5) 5 / THF in
  • a mixed solution of a plurality of organic metal complexes e.g., S r (DPM) 2 / THF and B i (C 6 H 5) 3 / THF and T a (OC 2 H 5) 5 / THF
  • THF solvent with the highest vapor pressure
  • a problem arises in that it is not possible to supply an adequate raw material. All of these methods shown in FIG. 1 add an amount of heat that can evaporate or change the solvent in a liquid or mist state.
  • a gas passage formed inside, a gas inlet for introducing a carrier gas pressurized into the gas passage, and a raw material solution supplied to the gas passage.
  • a gas outlet for sending a carrier gas containing a raw material solution to a vaporizing section; and a means for cooling the gas passage.
  • a dispersing unit having a radiant heat preventing jet that is cooled so that thermal energy is not applied to the raw material gas in the dispersing unit by radiant heat from the vaporizing unit;
  • This is a vaporizer for MOCVD that has the advantage that heat energy is not added to the raw material gas in the dispersion section.
  • This technology is an MOCVD vaporizer that can be used for a long period of time with very little clogging compared to the past, and that can supply a stable raw material to the reaction section.
  • an inlet for preheated oxygen is provided downstream of the vaporization section.
  • An object of the present invention is to provide a vaporizer that can be used for a long time without causing clogging or the like and that can supply a stable raw material to a reaction section.
  • the present invention provides a vaporizer, a film forming apparatus, other various apparatuses, and a vaporizing method capable of extremely reducing the carbon content in a film even in an azdeposited state and capable of accurately controlling the composition ratio of the film.
  • the purpose is to provide.
  • An object of the present invention is to provide a vaporizer and a vaporization method capable of obtaining a vaporized gas in which a raw material solution is uniformly dispersed.
  • the present invention provides a vaporizer, a disperser, and a film forming apparatus that can continuously and stabilize a raw material adjusted to a stoichiometric ratio and have an effect of reducing a residual amount of carbon in a formed film. Another object is to provide a vaporization method, a dispersion method, and a film formation method. Disclosure of the invention
  • the present invention is to add the following operation in order to further enhance the performance of a vaporizer compatible with MOCVD and the like and to stabilize the vaporization.
  • inert gas or inert gas containing a predetermined amount of oxygen is supplied to each narrow channel of a vaporizer cooled to near room temperature, and high-speed gas flow is performed. Is generated, and each raw material is supplied to the airflow at a predetermined flow rate, thereby converting the raw material into mist.
  • the contact time between the high-speed gas stream and the raw material is extremely short, the flow rate of the inert gas containing a predetermined amount of inert gas or oxygen supplied to the raw material supply amount is large, and the solvent for dissolving or dispersing the raw material is mass-transferred. It is imagined that they will escape into the gas phase. For this reason, there is a concern that the raw material of the organometallic compound may accumulate in the form of a paste in the flow path, which may cause unstable mist formation of the raw material and one cause of the flow path blockage.
  • a gas flow of an inert gas or an inert gas containing a predetermined amount of oxygen is supplied to a vaporizer after being saturated with a solvent used as a raw material.
  • the object can be achieved by bubbling an inert gas stream containing a predetermined amount of inert gas or oxygen into a container containing a solvent and maintained at a predetermined temperature.
  • a sufficient amount of solvent may be supplied to a position immediately before the vaporizer in each raw material line to be supplied to the vaporizer so that the gas flow of the solvent used for the raw material is saturated by the vapor of the solvent.
  • the supply amount of the solvent can be determined by knowing the molecular weight, density, pressure of the air stream, flow rate under standard conditions of the air stream, etc. based on the saturated vapor pressure data of the solvent corresponding to the vaporizer temperature. It is determined by the following simple calculation formula.
  • the vaporizer of the present invention is a vaporizer that vaporizes a raw material solution by including the carrier solution in a carrier gas. And a means for causing the carrier gas before containing the raw material solution to include a solvent for the raw material solution.
  • the disperser according to the present invention is characterized in that, in the disperser in which the raw material solution is contained in the carrier gas, a means for causing the carrier gas before containing the raw material solution to contain the solvent of the raw material solution is provided. It is a disperser.
  • the vaporization method of the present invention is a vaporization method in which a raw material solution is contained in a carrier gas and vaporized, wherein the carrier gas before containing the raw material solution contains a solvent of the raw material solution. It is a vaporization method.
  • FIG. 1 is a cross-sectional view illustrating a main part of a vaporizer for MOCVD according to a first embodiment.
  • FIG. 2 is an overall cross-sectional view of the vaporizer for MOCVD according to the first embodiment.
  • FIG. 3 is a system diagram of M ⁇ C VD.
  • FIG. 4 is a front view of the reserve tank.
  • FIG. 5 is a cross-sectional view illustrating a main part of the vaporizer for MOCVD according to the second embodiment.
  • FIG. 6 is a sectional view showing a main part of a vaporizer for MOCVD according to a third embodiment.
  • FIG. 7 is a cross-sectional view showing a modification of the gas passage of the vaporizer for MOCVD in both (a) and (b) according to the fourth embodiment.
  • FIG. 8 is a sectional view showing a vaporizer for MOCVD according to a fifth embodiment.
  • FIG. 9 shows a rod used in the vaporizer for MOCVD according to Example 5, (a) is a side view, (b) is an XX cross-sectional view, and (c) is a Y_Y cross-sectional view.
  • FIG. 10 is a side view showing a modification of FIG. 9 (a).
  • FIG. 11 is a graph showing experimental results in Example 6.
  • FIG. 12 is a side sectional view showing Example 8.
  • FIG. 13 is a conceptual diagram showing the gas supply system of the eighth embodiment.
  • FIG. 14 is a sectional view showing Embodiment 9.
  • FIG. 15 is a sectional view showing the latest conventional technology.
  • FIG. 16 is a cross-sectional view showing a conventional MOCVD vaporizer in both (a) and (b).
  • FIG. 17 is a graph showing the crystallization characteristics of the SBT thin film.
  • FIG. 18 is a graph showing the polarization characteristics of the crystallized SBT thin film.
  • FIG. 19 is a detailed view of the vaporizer.
  • FIG. 20 is an overall view of the vaporizer.
  • FIG. 21 is a diagram showing an example of an SBT thin film CVD apparatus using a vaporizer.
  • FIG. 22 is a sectional view showing an example of a film forming apparatus.
  • FIG. 23 is a diagram showing the configuration of the heat medium circulation used in FIG.
  • FIG. 24 is a graph showing a film formation rate and a change in composition depending on the flow rate of reactive oxygen when a solvent is contained in a carrier gas.
  • FIG. 25 is a graph showing the carbon content in the film depending on the flow rate of reactive oxygen when the carrier gas contains a solvent.
  • Oxygen introduction means Primary oxygen (oxidizing gas) supply port, 29 Raw material supply inlet,
  • Oxygen introduction means (Secondary oxygen (oxidizing gas) Carrier supply port) 30 1 Upstream ring
  • FIG. 1 shows a MOC VD vaporizer according to the first embodiment.
  • a dispersing unit 8 having means (cooling water) 18 for cooling the carrier gas flowing in the gas passage 2,
  • a vaporization tube 20 having one end connected to the reaction tube of the MOC VD device and the other end connected to the gas outlet 7 of the dispersion section 8;
  • An anti-radiation portion 102 having a pore 101 is provided outside the gas outlet 7.
  • the inside of the dispersion unit main body 1 is a cylindrical hollow portion.
  • a rod 10 is fitted into the hollow portion, and a gas passage 2 is formed by the inner wall of the dispersion portion main body and the rod 10.
  • the hollow portion is not limited to the cylindrical shape, but may have another shape.
  • a conical shape is preferable.
  • the angle of the nest of the conical hollow portion is preferably from 0 to 45 °, and more preferably from 8 to 20 °. The same applies to other embodiments.
  • the cross-sectional area of the gas passage is 0. 1 0 to 0. 5 mm 2 is preferred. If it is less than 0.10 mm 2 , processing is difficult. And the carrier gas to speed exceeds 0. 5 mm 2 Therefore, it is necessary to use a high pressure carrier gas at a large flow rate.
  • a large-capacity large vacuum pump is required to maintain the reaction chamber at a reduced pressure (eg, 1.0 Torr). Since it is difficult to use a vacuum pump whose exhaust capacity exceeds 10,000 liters (Zin) (at, 1.0 Torr), an appropriate flow rate, that is, a gas passage area, is required for industrial practical use. 0.1 to 0.5 mm 2 is preferred.
  • a gas inlet 4 is provided at one end of the gas passage 2.
  • the gas inlet 4 is connected to a carrier gas (eg, N 2 , Ar, He) source (not shown).
  • a carrier gas eg, N 2 , Ar, He
  • a raw material supply hole 6 is provided so as to communicate with the gas passage 2.
  • the raw material solution 5 is introduced into the gas passage 2, and the raw material solution 5 passes through the gas passage 2.
  • the raw material solution 5 can be dispersed in the carrier gas to be used as a raw material gas.
  • a gas outlet 7 communicating with the vaporizing pipe 20 of the vaporizing section 22 is provided.
  • a space 11 for flowing cooling water 18 is formed in the dispersing portion main body 1, and the carrier gas flowing in the gas passage 2 is cooled by flowing the cooling water 8 into this space.
  • a Peltier element or the like may be installed and cooled instead of this space.
  • heat is affected by the heat 21 of the vaporizing unit 22.
  • the solvent of the raw material solution and the organometallic complex do not vaporize at the same time, and only the solvent vaporizes. Therefore, the carrier gas in which the raw material solution flowing in the gas passage 2 is dispersed is cooled to prevent the evaporation of only the solvent.
  • cooling downstream of the raw material supply holes 6 is important, and cooling at least downstream of the raw material supply holes 6 is performed.
  • the cooling temperature is a temperature below the boiling point of the solvent.
  • the temperature is 67 ° C. or less.
  • the temperature at the gas outlet 7 is important.
  • a radiation prevention unit 102 having pores 101 is provided outside the gas outlet 7.
  • 103 and 104 are seal members such as a ring.
  • the radiation preventing section 102 may be made of, for example, Teflon (registered trademark), stainless steel, ceramic, or the like.
  • Teflon registered trademark
  • the heat in the vaporizing section is converted into a gas passage through the gas outlet 7 as radiant heat.
  • the gas in 2 will be overheated. Therefore, cold Even if cooled by recirculating water 18, the low melting point component in the gas will precipitate near the gas outlet 7.
  • the radiation prevention unit is a member for preventing such radiation heat from propagating to the gas. Therefore, it is preferable that the cross-sectional area of the pores 101 is smaller than the cross-sectional area of the gas passage 2. It is preferably 1 Z 2 or less, more preferably 1 3 or less. Further, it is preferable to make the pores fine. In particular, it is preferable that the flow velocity of the gas to be jetted be reduced to a subsonic speed.
  • the length of the pore is preferably at least 5 times, more preferably at least 10 times the dimension of the pore.
  • the dispersion unit main body 1 On the downstream side of the dispersion unit main body 1, the dispersion unit main body 1 is connected to the vaporization tube 20.
  • the connection between the dispersion section main body 1 and the vaporization pipe 20 is made by a joint 24, and this portion becomes a connection section 23.
  • the vaporizing section 22 includes a vaporizing tube 20 and a heating means (heater) 21.
  • the heater 21 is a heater for heating and vaporizing the carrier gas in which the raw material solution flowing in the vaporization tube 20 is dispersed.
  • the heater 21 is configured by attaching a cylindrical heater or a mantle heater to the outer periphery of the vaporization tube 20. The method using liquid or gas having a large heat capacity as the heat medium was the best method, and was adopted.
  • the vaporization tube 20 it is preferable to use stainless steel such as SUS316L.
  • S r B i 2 T a 2 0 9 stock solution 0. 0 4 ccm
  • the downstream end of the vaporization tube 20 is connected to the reaction tube of the MOCVD apparatus.
  • the vaporization tube 20 is provided with an oxygen supply port 25 as an oxygen supply means, and the oxygen heated to a predetermined temperature is provided. Can be mixed into the carrier gas.
  • the raw material supply ports 6 have reserve tanks 3 2 a and 3 2, respectively. b, 32 c, 32 d force, connected via mashu mouth controller 30 a, 30 b, 30 c, 30 d and valves 31 a, 31 b, 31 c, 31 d .
  • Each of the reserve tanks 32a, 32b, 32c, 32d is connected to a carrier gas cylinder 33.
  • Figure 4 shows the details of the reserve tank.
  • the reservoir tanks are filled with the raw material solution, and each reservoir tank
  • a liquid or solid organic metal complex is dissolved at room temperature in a solvent such as THF or the like, and if left as it is, the organic metal complex precipitates due to evaporation of the THF solvent. It becomes solid. Therefore, it is assumed that the inside of the pipe that has come into contact with the stock solution may cause blockage of the pipe. Therefore, in order to suppress the blockage of the piping, it is necessary to clean the inside of the piping and the evaporator after the film formation work with THF or another solvent, and therefore, a cleaning line is provided. Washing is to be a section from the container outlet side to the vaporizer, including the replacement of the raw material containers, and the parts suitable for each operation are washed away with the solvent.
  • valves 3 lb, 31c, and 31d were opened, and the carrier gas was pumped into the reserve tanks 32b, 32c, and 32d.
  • the raw material solution is pumped to a mass flow controller (full scale flow rate 0.2 cc / min made by STEC) where the flow rate is controlled and the raw material solution is transported to the raw material supply hole 6 of the vaporizer.
  • carrier gas was introduced from the gas inlet of the vaporizer.
  • the maximum pressure on the supply port side is preferably 3 kgf Zcm 2 or less. That is 1200 cc / min, and the flow velocity through the gas passage 2 reaches one hundred and several tens of seconds.
  • the raw material solution is introduced into the carrier gas flowing through the gas passage 2 of the vaporizer from the raw material supply hole 6, the raw material solution is sheared by the high-speed flow of the carrier gas to be converted into ultrafine particles. As a result, the raw material solution is dispersed in the carrier gas in the form of ultrafine particles.
  • the carrier gas in which the raw material solution is dispersed in the form of ultrafine particles is atomized and released to the vaporizing section 22 at a high speed.
  • the angle formed by the gas passage and the raw material supply hole is optimized.
  • the carrier flow path and the raw solution inlet are at an acute angle (30 degrees)
  • the solution is drawn by the gas.
  • Above 90 degrees the solution is pushed by the gas.
  • the optimum angle is determined from the viscosity and flow rate of the solution. If the viscosity or flow rate is large, sharper angles will allow the solution to flow more smoothly.
  • hexane is used as a solvent to form an SBT film, the viscosity and the flow rate are small, so that about 84 degrees is preferable.
  • the three kinds of raw material solutions which are controlled at a constant flow rate, flow into the gas passage 2 from the raw material supply holes 6 through the respective raw material supply inlets 29, and move through the gas passage together with the carrier gas that has become a high-speed air flow. It is released to the vaporizer 22. Also in the dispersing section 8, the raw material solution is heated by the heat from the vaporizing section 22 and the evaporation of the solvent such as THF is promoted, so that the section from the raw material supply inlet 29 to the raw material supply hole 6 and the section of the gas passage 2 are provided. Is cooled by water and other refrigerants.
  • the raw material solution released from the dispersing section 8 and dispersed in the form of fine particles in the carrier gas is vaporized during transport inside the vaporization tube 20 heated to a predetermined temperature by the heat source 21 to promote the MOCVD reaction.
  • Oxygen heated to a predetermined temperature from the oxygen supply port 25 provided immediately before reaching the tube is mixed into a gaseous mixture and flows into the reaction tube.
  • the evaluation was performed by analyzing the reaction mode of the vaporized gas instead of forming the film.
  • a vacuum pump (not shown) was connected to the exhaust port 42, and a pressure reduction operation for about 20 minutes was performed to remove impurities such as moisture in the reaction tube 44, and the valve 40 downstream of the exhaust port 42 was closed.
  • Cooling water was flowed through the vaporizer at about 400 cc / min.
  • a carrier gas of 3 kgfcm 2 was flowed at 495 cc / min, and after sufficiently filling the inside of the reaction tube 44 with the carrier gas, the valve 40 was opened.
  • the temperature at gas outlet 7 was lower than 67 ° C.
  • the section from the reaction tube 44 to the gas pack 46 and the gas The reactor was heated to 100 ° C. and the inside of the reaction tube 44 was heated to 300 ° C. to 600 ° C.
  • the inside of the reserve tank was pressurized with carrier gas, and a predetermined liquid was flowed by a mass flow controller.
  • the raw material solution When a raw material solution is prepared by mixing or dissolving a metal as a raw material of a film in a solvent, the raw material solution is generally in a liquid state (complete solvent liquid) in which the metal forms a complex.
  • the present inventor examined the raw material solution in detail, it was found that the metal complex was not always in a discrete molecular state, and the metal complex itself was converted into fine particles having a size of 1 to 100 nm in a solvent. It has been found that they may be present or may be partially present as a solid / liquid state. It is considered that clogging during vaporization is particularly likely to occur in the case of the raw material solution in such a state. However, when the vaporizer of the present invention is used, clogging does not occur even in the case of the raw material solution in such a state.
  • the fine particles tend to settle to the bottom due to the gravity. Therefore, it is preferable from the viewpoint of preventing clogging that the bottom is heated (to the extent less than the evaporation point of the solvent) to generate convection in the stored solution and uniformly disperse the fine particles. It is more preferable to heat the bottom and cool the side surface of the upper surface of the container. Of course, heating is performed at a temperature equal to or lower than the evaporation temperature of the solvent.
  • the heater be set or controlled so that the amount of heating heat in the upper region of the vaporization tube is larger than the amount of heating heat in the downstream region. In other words, since water-cooled gas is ejected from the dispersion part, the amount of heating heat is increased in the upper part of the vaporization tube, It is preferable to provide a heater for setting or controlling the amount of heating heat to be small.
  • a means is provided for causing the carrier gas before containing the raw material solution to contain the solvent of the raw material solution.
  • the means for including the solvent in the carrier gas is configured as follows in this example.
  • the solvent 401 is stored in the container 400, and the carrier gas 403 is bubbled through the solvent.
  • Carrier gas after bubbling is introduced into gas inlet 4.
  • the raw material of SBT is an organometallic complex dissolved in the organic solvent n-hexane C 6 H 14 (boiling point at pressure 760 T 0 rr is 68.7 ° ⁇ melting point is ⁇ 9.5.8 ° C) Hexa ethoxy strontium tantalum S r (0 C 2 H 5 ) 2 , [Ta (OC 2 H 5 ) 5 ] 2 (boiling point at pressure O.1 Torr is 176 ° (:, melting point is 130 ° C) and tree t-Amirokishibisu mass, B i (0- t- C 3 ( pressure 0. 1 T orr in boiling 87 ° C (sublimation)) is.
  • the supply condition of the raw material is 0.02 cc / min for the organometallic complex hexaethoxy strontium tantalum S ⁇ (0 C 2 H 5 ) 2 [T a (OC 2 H 5 ) 5 ] 2 .
  • organometallic complex t-amyloxypismuth B i (Ot-CsH) 3 is also 0.02 cc / min.
  • the supply rate of argon, which is an inert gas, is 200 (NTP) / min, and the supply rate of oxygen is 10 cc (NTP) / min.
  • FIGS. 24 and 25 attached are the results of forming an SBT thin film by changing the supply amount of reactive oxygen under the above operating conditions.
  • the film formation rate should decrease with an increase in the reaction oxygen flow rate.
  • the film formation rate is constant irrespective of the reaction oxygen flow rate, the growth rate of the film is not limited by the number of collisions of the source molecules, but by the reaction on the substrate surface. It is suggested that it is.
  • the operation of saturating a carrier gas (inert gas or an inert gas containing a predetermined amount of oxygen) with a solvent vapor can continuously and stabilize a raw material adjusted to a stoichiometric ratio. It has been shown that it is possible to reduce the amount of carbon remaining in the formed film as well as possible.
  • the above-mentioned conditions are set so that even when different types of thin films are formed by using different raw materials adjusted to the stoichiometric ratio, the solvent used for dissolving the raw materials is the same as the carrier gas. If it is supplied so as to be saturated with the solvent vapor, the vaporizer continuously and stably exposes the raw material, and ensures that the raw material is vaporized in the heating tube (pre-reactor 1), resulting in a thin film with the desired composition ratio. Can be obtained.
  • FIG. 5 shows an MOCVD vaporizer according to the second embodiment.
  • a cooling water passage 106 is formed on the outer periphery of the radiation preventing section 102, and a cooling means 50 is provided on the outer periphery of the connecting section 23 to cool the radiation preventing section 102.
  • a recess 107 was provided around the exit of the pore 101.
  • a solvent introduction passage 402 was provided. The solvent is introduced into the carrier gas 3 downstream of the raw material supply hole 6 in the passage 2.
  • a flow meter is provided upstream of the solvent introduction passage 402. Further, it is preferable to provide a sensor for measuring the temperature of the vaporizing section and a sensor for measuring the flow rate and pressure of the carrier gas in the passage. It is preferable to process the signal from this sensor, calculate the saturated vapor pressure of the solvent, and control the introduction amount of the solvent with a flow meter so that the solvent cannot be tolerated and the solvent is introduced so as to have a saturated vapor pressure.
  • FIG. 6 shows an MOCVD vaporizer according to the third embodiment.
  • the anti-radiation section 102 is provided with a taper 51. Due to the taper 51, a dead zone in that portion is eliminated, and the stagnation of the raw material can be prevented.
  • the other points were the same as in Example 2.
  • FIG. 7 shows a modified embodiment of the gas passage.
  • a groove 70 is formed on the surface of the rod 10, and the outer diameter of the rod 10 is substantially the same as the inner diameter of a hole formed inside the dispersion portion main body 1. Therefore, just by inserting the rod 10 into the hole, the mouth 10 can be arranged in the hole without eccentricity. Also, there is no need to use screws or the like.
  • This groove 70 becomes a gas passage.
  • a plurality of grooves 70 may be formed in parallel with the central axis of the rod 10 in the longitudinal direction, but may be formed spirally on the surface of the rod 10. In the case of the spiral shape, a more uniform source gas can be obtained.
  • FIG. 7B shows an example in which a mixing section is provided at the tip of the rod 10.
  • the largest diameter at the tip is almost the same as the inside diameter of the hole drilled inside the dispersion portion main body 1.
  • the space formed by the tip of the mouth and the inner surface of the hole serves as a gas passage.
  • the examples shown in (a) and (b) are examples in which the surface of the rod 10 is processed.
  • a rod having a circular cross section is used, a concave part is provided in the hole, and a gas passage is formed. Needless to say, it is good.
  • the rod be installed at, for example, about H7Xh6 to JS7 specified in JIS.
  • Example 5 will be described with reference to FIG.
  • a vaporization tube 20 having one end connected to the reaction tube of the MOCVD apparatus and the other end connected to the front gas outlet 7;
  • Heating means for heating the vaporization tube 20 Heating means for heating the vaporization tube 20;
  • the dispersing part 8 includes a dispersing part main body 1 having a cylindrical hollow part, a rod 10 having an outer diameter smaller than the inner diameter of the cylindrical hollow part,
  • the outer periphery of the rod 10 has one or two or more spiral grooves 60 on the vaporizer 22 side, Rod 10 is inserted into the cylindrical hollow part,
  • a radiation preventing portion 101 having pores 101 and having an inner diameter tapered toward the vaporizer 22 side.
  • the raw material solution 5 When the raw material solution 5 is supplied to the gas passage through which the high-speed carrier gas 3 flows, the raw material solution is sheared and atomized. That is, the raw material solution, which is a liquid, is sheared by the high-speed flow of the carrier gas and turned into particles. The particulate raw material solution is dispersed in the carrier gas in the form of particles. This is the same as in the first embodiment.
  • the supply of the raw material solution 5 is preferably performed at 0.05 to 2 cc / min, more preferably at 0.05 to 0.2 cZmin, and more preferably performed at 0.1 to 0.3 cc / min. More preferably, it is performed at cc / min. When multiple raw material solutions (including solvents) are supplied simultaneously, this is the total amount.
  • the carrier gas is preferably supplied at a speed of 10 to 200 m / sec, more preferably 100 to 20 Om / sec.
  • a spiral groove 60 is formed on the outer periphery of the rod 10, and a gap space exists between the dispersion unit main body 1 and the rod 10, so that the atomized state is obtained.
  • the carrier gas containing the resulting raw material solution travels straight through the interstitial space and forms a swirling flow along the spiral groove 60.
  • the present inventor has found that the atomized raw material solution is uniformly dispersed in the carrier gas when the straight flow and the swirl flow coexist.
  • the reason why the uniform dispersion is obtained when the straight flow and the swirl flow coexist is not necessarily clear, but is considered as follows. Due to the presence of the swirling flow, a centrifugal force acts on the flow, and a secondary flow is generated. This secondary flow promotes mixing of the raw material and the carrier gas. In other words, it is considered that a secondary derivative flow is generated in the direction perpendicular to the flow due to the centrifugal effect of the swirling flow, whereby the atomized raw material solution is more uniformly dispersed in the carrier gas.
  • raw material solutions 5a, 5b, 5c, 5d are supplied to the gas passage. It is configured to supply.
  • a carrier gas hereinafter referred to as “raw material gas” containing a raw material solution that has been atomized into ultrafine particles, in this example, a spiral shape is formed in a downstream portion of a portion corresponding to the raw material supply hole 6 of the rod 10.
  • the part without the groove is provided.
  • This part becomes the premixing part 65.
  • the three kinds of organometallic raw material gases are mixed to some extent, and further become a complete mixed raw material gas in the downstream helical structure region.
  • the length of the mixing section 65 is preferably 5 to 20 mm, more preferably 8 to 15 mm. Outside this range, a mixed source gas having a high concentration of only one of the three types of organic metal source gases may be sent to the vaporizer 22.
  • a parallel portion 67 and a tapered portion 58 are provided at an end 66 on the upstream side of the rod 10.
  • the parallel hollow part of the dispersing part body 1 also has a parallel part corresponding to the parallel part 67 and the tapered part 58, the parallel part having the same inner diameter as the outer diameter of the parallel part 67 of the rod 10, and the same tape as the taper of the rod 10.
  • One par taper portion is provided. Therefore, if the rod 10 is inserted from the left side in the drawing, the rod 10 is held in the hollow portion of the dispersion portion main body 1.
  • the rod 10 can be prevented from moving even if a carrier gas having a pressure higher than 3 kgf Zcm2 is used. . That is, if the holding technique shown in FIG. 8 is adopted, the carrier gas can be flowed at a pressure of 3 kg Zcm 2 or more. As a result, the cross-sectional area of the gas passage is reduced, and a higher amount of carrier gas can be supplied with a small amount of gas. That is, a high-speed carrier gas supply of 50 to 300 mm / s can be provided. The same applies to the other embodiments described above if this holding technique is employed.
  • grooves 67a, 67b, 67c, and 67d are formed as passages for the carrier gas in a portion of the rod 10 corresponding to the raw material supply hole 6.
  • the depth of each of the grooves 67a, 67b, 67c, 67 is preferably 0.005 to 0.1 mm. If the thickness is less than 0.005 mm, it is difficult to form a groove. Further, 0.01 to 0.05 is more preferable. With this range, clogging or the like does not occur. In addition, high-speed flow is easily obtained.
  • the configuration shown in FIG. 1 and other configurations in the first embodiment may be adopted.
  • the number of spiral grooves 60 may be one as shown in FIG. 9 (a), but may be plural as shown in FIG. When a plurality of spiral grooves are formed, they may be crossed. When crossed, a more uniformly dispersed source gas is obtained. However, the gas flow velocity for each groove shall be a cross-sectional area that can obtain 1 OmZsec or more.
  • the dimension and shape of the spiral groove 60 are not particularly limited, and the dimension 'shape shown in FIG. 9C is an example.
  • the gas passage is cooled by cooling water 18 as shown in FIG.
  • an extension section 69 is provided independently before the entrance of the dispersion section 22, and a longitudinal radiation prevention section 102 is arranged in this extension section.
  • Pores 101 are formed on the gas outlet 7 side of the radiation prevention part, and the inner diameter is tapered toward the vaporizer side.
  • the expansion part 69 is also a part for preventing the stagnation of the source gas described in the third embodiment.
  • the expansion angle 0 in the expansion section 69 is preferably 5 to 10 degrees.
  • the source gas can be supplied to the dispersion section without breaking the swirling flow.
  • the fluid resistance due to the expansion is minimized, and the existence of dead is minimized, and the existence of eddy current due to the existence of dead zone can be minimized.
  • 6 to 7 degrees is more preferable.
  • the preferred range of 0 is the same in the case of the embodiment shown in FIG.
  • the raw material solution and the carrier gas were supplied under the following conditions, and the uniformity of the raw material gas was examined.
  • Carrier gas Nitrogen gas 10 to 350 m / s
  • the device shown in Fig. 8 was used as the vaporizer. However, as the rod, a rod in which a spiral groove was not formed in the rod shown in Fig. 9 was used.
  • the raw material solution was supplied from the raw material supply hole 6 and the speed of the carrier gas was varied. From the raw material supply hole, Sr (DPM) 2 in groove 67 a, B i (C 6 H 5 ) 3 in groove 67 b, and T a (0 C 2 H 5 ) in groove 67 c 5 ) A solvent such as THF was supplied to the groove 67d.
  • the raw material gas was sampled at the gas outlet 7 without heating in the vaporizing section, and the particle size of the raw material solution in the collected raw material gas was measured.
  • Fig. 11 The results are shown in Fig. 11 as relative values (1 is assumed when the device according to the conventional example shown in Fig. 12 (a) is used).
  • the dispersed particle size is reduced by setting the flow velocity to 5 OmZs or more, and the dispersed particle size is further reduced by setting the flow rate to 10 OmZs or more.
  • the dispersion particle size is saturated even if the dispersion is 20 Om / s or more. Therefore, 100 to 200 mZs is a more preferable range.
  • Example 6 the concentration of the raw material solution supplied to the groove was high at the extension of the groove. That is, S r (DPM) 2 in the extension of the groove 67 a, B i (C 6 H 5 ) 3 in the extension of the groove 67 b, and T a ( OC 2 H 5 ) 5 was higher in each of the other concentrations.
  • each organometallic raw material was uniform in any part.
  • Embodiment 8 is shown in FIG. 12 and FIG.
  • the present inventor has found that this cause is related to the oxygen introduction position.
  • the formed film becomes It has been found that the composition can have a very small difference in composition ratio from the composition in the raw material solution.
  • the carrier gas and oxygen may be mixed in advance, and the mixed gas may be introduced from the gas inlet 4.
  • the conditions of the vaporizer and the conditions of the reaction chamber were controlled as follows, and an SBT thin film was formed on an oxidized silicon substrate on a substrate having platinum 200 nm formed thereon. Specific conditions:
  • First carrier 0 2 10 sccm (enter from gas inlet 4)
  • Second carrier A r 20 s c cm (enter from gas inlet 200)
  • Reactive oxygen ⁇ 2 200 sccm (enter from the lower part of the dispersion outlet 25) Reactive oxygen temperature 216 ° C (with a separate heater before entering from the lower part of the dispersion outlet) Temperature control)
  • composition ratio in the formed film showed a small difference in composition ratio from the composition in the raw material solution, and the deposition rate was about five times that of the conventional film. It can be seen that the effect of introducing a small amount of oxygen together with the carrier gas from the gas inlet 4 is extremely large.
  • the carbon content is as low as 3.5 at%.
  • oxygen is simultaneously introduced downstream of the vaporization section to reduce the amount of oxygen.
  • oxidizing gas such as oxygen is introduced from the gas introduction port 4 or the primary oxygen supply port immediately adjacent to the jet port, as shown in Fig. 2
  • oxygen is simultaneously introduced downstream of the vaporization section to reduce the amount of oxygen.
  • Appropriate control reduces the deviation of the composition ratio and the carbon content. From the viewpoint of reducing the
  • the carbon content in the formed film can be reduced to 5% to 20% of the conventional value.
  • Tri-t-amidoxoxide bismuth B i (0-t-C 5 HH) 3 0.2 molar solution (solvent: hexane) 0.0 2 ml / min.
  • First carrier 0 2 10 sccm (enter from gas inlet 4)
  • the pressure gauge is controlled to 4 T rr by the automatic pressure regulating valve.
  • Tri-t-amido-oxide bismuth B i ( ⁇ -t—C 5 Hn) 3 0.2 molar solution (solvent: hexane) 0.02 ml / min.
  • First carrier 0 2 10 sccm (enter from gas inlet 4)
  • Second carrier A r 20 s c cm (enter from gas inlet 200)
  • Reactive oxygen ⁇ 2 200 sccm (put in from the lower part of the dispersion outlet) 25 Reactive oxygen temperature 2 16 (with a heater installed separately before entering from the lower part of the dispersion outlet) Temperature control)
  • the pressure in the reaction pressure chamber is controlled to lTorr.
  • the reaction chamber is evacuated to a high vacuum to completely remove the reaction gas, and one minute later, the wafer is taken out to the load lock chamber.
  • P t 200 nm
  • No CVD S BT 300 nm
  • P t 175 nm
  • reaction oxygen eg, 200 s ccm
  • the reaction oxygen was stored in a vaporization tube at room temperature.
  • the organometallic gas was cooled and adhered and deposited on the vaporization tube.
  • the oxygen temperature after heating is measured directly with a fine thermocouple to control the heating temperature. To control the oxygen temperature accurately.
  • FIG. 14 shows the tenth embodiment.
  • each of the single raw material solutions is atomized by spraying a gas, and then the raw material solutions atomized are mixed.
  • a plurality of raw material solutions are mixed, Next, it is a device for atomizing the mixed raw material solution.
  • a plurality of solution passages 130a and 13Ob for supplying the raw material solutions 5a and 5b, and a plurality of material passages supplied from the plurality of solution passages 130a and 130b, respectively.
  • a disperser 150 in which a cooling means for cooling the inside is formed;
  • An evaporator tube having one end connected to the reaction tube of the MOCVD apparatus and the other end connected to the outlet 107 of the disperser 150, and heating means 2 for heating the evaporator tube, Having a vaporizing section 22 for heating and vaporizing a gas containing the raw material solution sent from 150,
  • a radiant heat preventive material 102 having pores 101 is arranged outside the outlet 107.
  • the composition is effective for a raw material solution in which the reaction does not proceed even if mixed, and once the mixture is atomized, the composition is more accurate than in the case of mixing after the atomization.
  • a means (not shown) for analyzing the composition of the mixed raw material solution in the mixing section 109 is provided, and if the supply amounts of the raw material solutions 5a and 5b are controlled based on the analysis result, it is further improved. An accurate composition can be obtained.
  • the heat propagated through the rod does not heat the supply passage 110.
  • mix after atomization Therefore, the cross-sectional area of the supply passage 110 can be reduced and the cross-sectional area of the outlet 107 can be reduced, so that the inside of the supply passage 110 is hardly heated by radiation. Therefore, precipitation of crystals and the like can be reduced without providing the radiation preventing portion 102.
  • a radiation preventing section 102 may be provided as shown in FIG.
  • the pores are shown, but a plurality of pores may be used.
  • the diameter of the pores is preferably 2 mm or less. When a plurality is provided, the diameter can be further reduced.
  • the angle is preferably 30 to 90 °.
  • the optimum angle is determined from the viscosity and flow rate of the solution.
  • the viscosity is large or the flow rate is large, the sharper angle allows the solution to flow smoothly. Therefore, in practice, the optimum angle corresponding to the viscosity and flow rate may be determined in advance by experiments and the like.
  • a liquid mass flow controller for controlling the flow rate of the raw material solution, and to provide a deaeration means for deaeration upstream of the liquid mass flow controller. If the raw material solution is introduced into the mass flow controller without degassing, variations in the formed film occur on the same wafer or between other wafers. By introducing the raw material solution into the mass flow controller after degassing helium or the like, the above-mentioned variation in the film thickness is significantly reduced.
  • Variations in film thickness can be further prevented by providing a raw solution and a pressure pumping vessel, a liquid mass flow controller, and means for controlling the temperature of the front and rear pipes to a constant temperature.
  • the deterioration of the chemically unstable raw material solution can be prevented.
  • it is precisely controlled in the range of 5 ° C to 20 ° C. In particular, 12 ° C ⁇ 1 ° C is desirable.
  • a substrate surface treatment apparatus for spraying a predetermined gas onto a substrate surface such as a silicon substrate as shown in FIGS.
  • the upstream ring 310 connected to the heat medium inlet 320, the downstream ring 302 connected to the heat medium outlet 32 1 of the predetermined heat medium, and the upstream ring 1 and the downstream ring 2.
  • at least two heat transfer passages 303a and 303b that form a flow path for the heat medium by connecting the heat transfer passages in parallel with each other. It is preferable that the direction of the flow path from the upstream ring 1 to the downstream ring 302 between 303 b is alternated, and that a heat medium circulation path for keeping the gas at a predetermined temperature is configured. preferable.
  • the substrate surface treatment apparatus may further include: a heat medium circulating passage that is disposed within a predetermined plane in the heat medium circulating path and a plane in which the heat medium flow path in the parallel direction is formed. It is preferable that a heat conversion plate 304 be connected to the heat conversion plate 304, and that the inside of the plane of the heat conversion plate 304 be heated to a substantially uniform temperature by the heat medium.
  • a plurality of ventilation holes for passing the predetermined gas in a direction perpendicular to the plane are formed, and the predetermined gas passing through the ventilation holes is It is preferable to be able to heat to a substantially uniform temperature in a plane.
  • the flow direction from the upstream ring to the downstream ring between the heat transfer paths adjacent to the heat medium circulation path is alternately configured.
  • the temperature difference in the area adjacent to the heat transfer path is configured as high Z low Z high / low.
  • the heat conversion plate can be uniformly heated or cooled.
  • a heat conversion plate thermally connected to the heat medium circulation path is provided in a plane where the flow path of the heat medium in the parallel direction is formed. Therefore, it is possible to heat the inside of the plane of the heat conversion plate to a substantially uniform temperature by the heat medium.
  • the present invention is applicable to all vaporizers.
  • the solvent contained in the carrier gas may be a gas or a liquid, and may be the same solvent as the solvent of the raw material solution or a different solvent.
  • a vaporizer for a film forming apparatus or the like for MOCVD or the like which can be used for a long time without causing clogging or the like and can supply a stable raw material to a reaction section. be able to.
  • a vaporized gas in which an organometallic material is uniformly dispersed can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Description

明 細 書 気化器及びそれを用いた各種装置並びに気化方法 技術分野
本発明は、例えば M 0 C V Dなどの成膜装置に好適に用いられる気化器及びの気 化方法並びに成膜装置その他の各種装置に関する。 背景技術
D R A Mの開発において問題となるのは、微細化にともなう記憶キャパシタンス である。ソフトエラーなどの点からはキャパシタンスは前の世代と同程度が要求さ れるため何らかの対策を必要としている。この対策として 1 Mまでのセル構造はプ レーナ構造であったものが、 4Mからスタック構造、 トレンチ構造と称される立体 構造が取り入れられ、 キャパシ夕面積の増加を図ってきた。 また誘電膜も基板 S i の熱酸化膜からポリ S i上で熱酸化膜と CVD窒化膜を積層する膜(この積層され た膜を一般に ON膜という。 ) が採用された。 1 6MDRAMでは、 さらに容量に 寄与する面積を増加させるため、 スタック型では側面を利用する立体型、 プレート の裏面も利用するフィン型などが取り入れられた。
しかし、このような立体構造ではプロセスの複雑化による工程数の増加ならびに 段差の増大による歩留りの低下が問題視され、 256 Mビッ ト以降の実現は困難で あるとされている。そのため現在の DRAMの構造を変えずに更に集積度を増加さ せるための 1つの道として、キャパシタンスの誘電体は高い誘電率のものに切り替 えていく方法が考え出された。 そして、 誘電率の高い誘電体薄膜として T a 205、 Y203、 H f 〇2などが高誘電率単金属常誘電体酸化物の薄膜がまず注目された。 それぞれの比誘電率は T a 205が 28、 Y 203が 1 6、 H f 02が 24程度であり、 S i〇 2の 4〜 7倍である。
しかし 2 56 MDR AM以降での適用には、立体キヤバシタ構造が必要である。 これらの酸化物よりさらに髙い比誘電率をもち、 DRAMへの適用が期待される材 料として、 (B axS r卜 J T i 03、 P b (Z r yT i ,_y) 03、 (P b a L ! _a) (Z r hT i ^,) 〇3の 3種類が有力視されている。
また、超電導材料と非常によく似た結晶構造を持つ B i系の層状構造は高誘電率 を有し、 強誘電体特性の自己分極を持ち、不揮発性メモリーとして優れている点か ら、 近年大きく注目されている。
一般に S r B i 2T a09強誘電体薄膜形成は、 実用的かつ将来性のある M〇 C VD (有機金属気相成長) 法で行われている。
強誘電体薄膜の原料は、 例えば、 3種類の有機金属錯体 S r (DPM) B i
(C CH5) 3及び T a ( O C 2 H 5 ) 5であり、 それぞれ THF (テトラヒドロフラ ン) 、 へキサンその他の溶剤に溶かし、 原料溶液として使用されている。 S r (T a (OE t) 6) 2や、 B i (O t Am) 3もへキサンその他の溶剤に溶かし、 原 料溶液として使用されている。 なお、 DPMはジビバロイメタンの略である。 それぞれの材料特性を表 1に示す。
強誘電体薄膜の原材料の特性。
Figure imgf000004_0001
MO CVD法に用いる装置は、 S r B i 2 T a O 9薄膜原料を気相反応及び表面 反応させ成膜を行わせる反応部、 S r B i 2T a 09薄膜原料並びに酸化剤を反応 部へ供給する供給部から構成される。
そして、 供給部は薄膜原料を気化させるための気化器が設けられている。
従来、 気化器に関する技術としては、 図 1 6に示す各方法が知られている。 図 1 6 (a) に示すものはメタルフィルタ一式と称されるものであり、 周囲に存在する 気体と S r B i 2T a 09強誘電体薄膜原料溶液との接触面積を増加させる目的で 用いられたメタルフィルターに、所定の温度に加熱された原料溶液を導入すること により気化を行う方法である。
しかし、 この技術においては、 数時間の気化でメタルフィルターが目詰まりを起 すので、 長期使用に耐えられないという問題を有している。 その原因は、 溶液が加 熱され気化温度の低いものから蒸発するためであると本発明者は推測した。
図 1 6 (b) は原料溶液に 30 k g f /c m2の圧力をかけて 1 0 mの細孔か ら原料溶液を放出させ膨張によって原料溶液を気化させる技術である。
しかし、 この技術においては、 数時間の使用により細孔が詰まり、 やはり長期の 使用に耐えられないという問題を有している。
また、 原料溶液が、 複数の有機金属錯体の混合溶液、 例えば、 S r (DPM) 2/ THFと B i ( C 6 H 5 ) 3/THFと T a (OC2H5) 5/THFの混合 溶液であり、この混合溶液を加熱によって気化する場合、蒸気圧の最も高い溶剤(こ の場合 THF) がいち早く気化し、 加熱面上には有機金属錯体が析出付着するため 反応部への安定な原料供給ができないという問題が生ずる。図 1に示すこれらの方 法は全て液体又はミスト状態に於いて溶剤の蒸発又は変化しうる熱量が加えられ てしまう。
さらに、 MOC VDにおいて、 均一性に優れた膜を得るためには原料溶液が均一 に分散した気化ガスを得ることが要請される。 しかし、 上記従来技術では必ずしも かかる要請に応えきれていない。
かかかる要請に応えるべく、 本発明者は、 別途、 次なる技術を提供している。 すなわち、 図 1 5に示す通り、 ①内部に形成されたガス通路と、 該ガス通路に加 圧されたキャリアガスを導入するためのガス導入口と、該ガス通路に原料溶液を供 給するための手段と、原料溶液を含むキヤリァガスを気化部に送るためのガス出口 と、 該ガス通路を冷却するための手段と、
気化部よりの輻射熱により原料ガスに分散部内で熱エネルギーが加わらない様に 冷却された輻射熱防止噴出部、 を有する分散部と ;
②一端が MOCVD装置の反応管に接続され、他端が前記ガス出口に接続された気 化管と、
該気化管を加熱するための加熱手段と、 を有し、 前記分散部から送られてきた、 原 料溶液を含むキヤリアガスを加熱して気化させるための気化部と;気化部よりの輻 射熱により原料ガスに分散部内で熱エネルギ一が加わらぬ用を有する M O C V D 用気化器である。
この技術は、 従来に比べ目詰まりが極めて少なく、 長期使用が可能であり、 かつ、 反応部への安定的な原料供給が可能な M O C V D用気化器である。
また、 この技術は、 予め加熱された酸素の導入口が、 気化部下流に設けられてい る。
しかし、 この技術によってもまだ、 ガスの通路に結晶の析出がみられ、 目詰まり が生じることがある。
また、 形成された膜中には大量の炭素 (3 0〜4 0 a t % ) が含有されている。 この炭素を除去するためには成膜後高温においてァニールを行う (例: 8 0 0 °:、 6 0分、 酸素雰囲気) 必要が生じてしまう。
さらに成膜を行う場合においては、 組成比のバラツキが大きく生じてしまう。 本発明は、 目詰まりなどを起こすことがなく長期使用が可能であり、 かつ、 反応 部への安定的な原料供給が可能な気化器を提供することを目的とする。
本発明は、ァズデポ状態においても膜中における炭素の含有量が極めて少なくす ることができ、 膜の組成比を正確に制御することが可能な気化器、 成膜装置その他 の各種装置及び気化方法を提供することを目的とする。
本発明は、原料溶液が均一に分散した気化ガスを得ることができる気化器及び気 化方法を提供することを目的とする。
本発明は、化学量論比に調整された原料を連続的にしかも安定することができる と共に成膜された膜内の炭素の残留量を低減させる効果のある気化器、分散器及び 成膜装置並びに気化方法、 分散方法及び成膜方法を提供すること目的とする。 発明の開示
本発明は、 M O C V D等対応の気化器の性能をより高めると共に気化の安定化を 図るために次の操作を加えるものである。 有機金属化合物を気化させるために、 現在、 室温付近に冷却された気化器のそれ ぞれの狭い流路に不活性ガス或いは酸素を所定の量含む不活性ガスを供給し、それ ぞれ高速気流を発生させ、 その気流に所定の流量でそれぞれの原料を供給し、 原料 のミスト化を図っている。高速気流と原料の接触時間は極めて少ないものの原料供 給量に対して供給する不活性或いは酸素を所定の量含む不活性ガスの流量が多い ため、原料を溶解或いは分散させるための溶媒が物質移動によって気相中へ逸散し てしまうことが想像される。このため有機金属化合物の原料が流路にのり状となつ て堆積し、原料ミスト化の不安定ゃ流路閉塞の一つの原因となることが懸念される。 この原因を取り除くためには、予め不活性ガス或いは酸素を所定の量を含む不活 性ガスの気流を原料に使用されている溶剤によって飽和状態にし然る後に気化器 に供給する。この場合は溶剤を含み所定の温度に保たれた容器に不活性ガス或いは 酸素を所定の量を含む不活性ガスの気流をバブリングすることにより目的を達成 できる。 或いは、 気化器に供給されるそれぞれの原料ラインの気化器直前の位置に 原料に使用されている溶剤を気流が溶剤の蒸気によって飽和されるに十分な量の 溶剤を供給すれば良い。 この場合にも溶剤の供給量については、 気化器の温度に対 応した溶剤の飽和蒸気圧データを下に、 溶剤の分子量、 密度、 気流の圧力、 気流の 標準状態における流量などを知ることによって以下に示す簡単な計算式によって 求められるものである。
VHC 25 C' , am (L i q . ) - (MHC/PHC) { P„c/ (P t - Ρπ. c) J { 1 (RT25) } (V。 0 25 + V。2. 25) [m o 1 Zm i n] ここで、 MH. cは溶剤 (H. C) の分子量は [g/mo 1 ] 、 P„. cは溶剤 (H. C) の密度 [gZc m 3] 、 P tは気化器流路内の混合気体の全圧 [T o r r] 、 PH. cは気化器の温度 T [Κ] における溶剤 (H. C) の飽和蒸気圧 [T o r r] 気体定数 (= 0. 0 8 2 4 [ 1 a t / (K mo 1 ) ] ) 、 T25は 2 5°C絶対温度 (= ( 2 7 3. 1 5 2 5 ) [K] ) 、 VQ 0. 25は 2 5°C、 1 c mにおけるアルゴンガスの流量 [ 1 /m i n] 、 VQ 2. 25は 2 5°C、 1 a t mにおける酸素の流量 [ 1 /m i n] であ る。 ただし、 P t = PAR + P02 + PHCである。 P ARはアルゴンの分圧 [T o r r ] 、 P02は酸素の分圧 [T o r r ] 、 PHCは溶剤の分圧 [T o r r] である。
本発明の気化器は、原料溶液をキヤリァガスに含ませて気化させる気化器におい て、 該原料溶液を含む前の該キャリアガスに、該原料溶液の溶媒を含ませるための 手段を設けたことを特徴とする気化器である。
本発明の分散器は、原料溶液をキャリアガスに含ませる分散器において、該原料 溶液を含む前の該キャリアガスに、該原料溶液の溶媒を含ませるための手段を設け たことを特徴とする分散器である。
本発明の気化方法は、原料溶液をキヤリァガスに含ませて気化させる気化方法に おいて、 該原料溶液を含む前の該キャリアガスに、 該原料溶液の溶媒を含ませてお くことを特徴とする気化方法である。 図面の簡単な説明
第 1図は、 実施例 1に係る MOCVD用気化器の要部を示す断面図である。 第 2図は、 実施例 1に係る MOCVD用気化器の全体断面図である。
第 3図は、 M〇 C VDのシステム図である。
第 4図は、 リザーブタンクの正面図である。
第 5図は、 実施例 2に係る MOCVD用気化器の要部を示す断面図である。 第 6図は、 実施例 3に係る MOCVD用気化器の要部を示す断面図である。 第 7図は、 (a) , (b) ともに、 実施例 4に係り、 MOCVD用気化器のガス 通路の変形例を示す断面図である。
第 8図は、 実施例 5に係る MOCVD用気化器を示す断面図である。
第 9図は、 実施例 5に係る MOCVD用気化器に使用するロッドを示し、 (a) は側面図 (b) は X— X断面図、 (c) は Y_Y断面図である。
第 1 0図は、 図 9 (a) の変形例を示す側面図である。
第 1 1図は、 実施例 6における実験結果を示すグラフである。
第 1 2図は、 実施例 8を示す側断面図である。
第 1 3図は、 実施例 8のガス供給システムを示す概念図である。
第 14図は、 実施例 9を示す断面図である。
第 1 5図は、 直近の従来技術を示す断面図である。
第 1 6図は、 (a) , (b) ともに従来の MOCVD用気化器を示す断面図であ る。 第 1 7図は、 SBT薄膜の結晶化特性を示すグラフである。
第 1 8図は、 結晶化した S BT薄膜の分極特性を示すグラフである。
第 1 9図は、 気化器の詳細図である。
第 20図は、 気化器の全体図である。
第 2 1図は、 気化器を用いる S BT薄膜 CVD装置の例を示す図である。
第 22図は、 成膜装置例を示す断面図である。
第 23図は、 図 22において用いられる熱媒体循環の構成を示す図である。 第 24図は、 キャリアガスに溶媒を含ませた場合における、 反応酸素流量による 成膜速度及び組成変化を示すグラフである。
第 2 5図は、 キャリアガスに溶媒を含ませた場合における、 反応酸素流量による 膜中のカーボン含有量を示すグラフである。
(符号の説明)
1 分散部本体、
2 ガス通路、
3 キャリアガス、
4 ガス導入口、
5 原料溶液、
6 原料供給孔、
7 ガス出口、
8 分散部、
9 a, 9 b, 9 c, 9 d ビス、
1 0 ロッド、
1 8 冷却するための手段 (冷却水) 、
20 気化管、
2 1 加熱手段 (ヒータ) 、
22 気化部、
23 接続部、
24 継手、
25 酸素導入手段 (一次酸素 (酸化性ガス) 供給口、 ) 、 29 原料供給入口、
30 a, 30 b, 30 c 30 d マスフローコントローラ
3 1 a, 3 1 , 3 1 c 3 1 d バルブ、
32 a, 32 b, 32 c 32 d リザーブタンク、
3 3 キヤリァガスボンベ、
42 排気口、
40 バルブ、
44 反応管、
46 ガスパック、
5 1 テーパー、
70 溝、
1 0 1 細孔、
1 02 輻射防止部、
20 0 酸素導入手段 (2次酸素 (酸化性ガス) キャリア供給口、 ) 30 1 上流環
302 下流環
30 3あ、 303 b 熱伝達路
304 熱変換板
304 a ガス通気孔ガスノズル
30 6 排気口
30 8 オリフィス
3 1 2 基板加熱ヒー夕
32 0 熱媒体入口
32 1 熱媒体出口
39 0 入熱媒体
39 1 出熱媒体
3 1 00 シリコン基板
40 0 容器
40 1 溶媒 402 溶媒導入通路 ¥
403 キャリアガス 発明を実施するための最良の形態
(実施例 1)
図 1に実施例 1に係る MOC VD用気化器を示す。
本例では、 分散部を構成する分散部本体 1の内部に形成されたガス通路 2と、 ガ ス通路 2に加圧されたキヤリァガス 3を導入するためのガス導入口 4と、
ガス通路 2を通過するキヤリアガスに原料溶液 5を供給し、原料溶液 5をミスト 化するための手段 (原料供給孔) 6と、
ミスト化された原料溶液 5を含むキャリアガス (原料ガス) を気化部 22に送る ためのガス出口 7と、
ガス通路 2内を流れるキャリアガスを冷却するための手段 (冷却水) 1 8と、 を 有する分散部 8と、
一端が MO C V D装置の反応管に接続され、他端が分散部 8のガス出口 7に接続 された気化管 20と、
気化管 20を加熱するための加熱手段 (ヒータ) 2 1と、
を有し、 前記分散部 8から送られてきた、 原料溶液が分散されたキヤリァガスを加 熱して気化させるための気化部 22と、
を有し、
ガス出口 7の外側に細孔 1 01を有する輻射防止部 1 02を設けてある。
以下実施例をより詳細に説明する。
図に示す例では、 分散部本体 1の内部は円筒状の中空部となっている。 該中空部 内にロッド 1 0がはめ込まれており、分散部本体の内壁とロッド 1 0とによりガス 通路 2が形成されている。 なお、 中空部は円筒状に限らず、 他の形状でもよい。 例 えば円錐状が好ましい。 円錐状の中空部の 巣の角度としては、 0〜45° が好ま しく、 8〜20° がより好ましい。 他の実施例においても同様である。
なお、 ガス通路の断面積は 0. 1 0〜0. 5mm2が好ましい。 0. 1 0mm2 未満では加工が困難である。 0. 5 mm2を超えるとキャリアガスを高速化するた めに高圧のキヤリァガスを大流量用いる必要が生じてしまう。
大流量のキヤリァガスを用いると、 反応チヤンバ一を減圧(例: 1 . 0 T o r r ) に維持するために、 大容量の大型真空ポンプが必要になる。 排気容量が、 1万リツ トル Zm i n . ( a t , 1 . 0 T o r r ) を超える真空ポンプの採用は困難である から、 工業的な実用化を図るためには、 適正な流量即ちガス通路面積 0 . 1 0〜0 . 5 mm 2が好ましい。
このガス通路 2の一端にはガス導入口 4が設けられている。ガス導入口 4にはキ ャリアガス (例えば N 2, A r , H e ) 源 (図示せず) が接続されている。
分散部本体 1のほぼ中央の側部には、ガス通路 2に連通せしめて原料供給孔 6を 設けてあり、 原料溶液 5をガス通路 2に導入して、 原料溶液 5をガス通路 2を通過 するキヤリァガスに原料溶液 5を分散させ原料ガスとすることができる。
ガス通路 2の一端には、気化部 2 2の気化管 2 0に連通するガス出口 7が設けら れている。
分散部本体 1には、 冷却水 1 8を流すための空間 1 1が形成されており、 この空 間内に冷却水 8を流すことによりガス通路 2内を流れるキヤリァガスを冷却する。 あるいはこの空間の代わりに例えばペルチェ素子等を設置し冷却してもよレ 分散 部 8のガス通路 2内は気化部 2 2のヒ一夕 2 1による熱影響を受けるためガス通 路 2内において原料溶液の溶剤と有機金属錯体との同時気化が生ずることなく、溶 剤のみの気化が生じてしまう。 そこで、 ガス通路 2内を流れる原料溶液が分散した キャリアガスを冷却することにより溶剤のみの気化を防止する。 特に、 原料供給孔 6より下流側の冷却が重要であり、少なくとも原料供給孔 6の下流側の冷却を行う。 冷却温度は、 溶剤の沸点以下の温度である。 例えば、 T H Fの場合 6 7 °C以下であ る。 特に、 ガス出口 7における温度が重要である。
本例では、 さらに、 ガス出口 7の外側に細孔 1 0 1を有する輻射防止部 1 0 2を 設けてある。 なお、 1 0 3 , 1 0 4は〇リングなどのシール部材である。 この輻射 防止部 1 0 2は、 例えば、 テフロン (登録商標) 、 ステンレス、 セラミックなどに より構成すればよい。 また、 熱伝導性の優れた材料により構成することが好ましレ^ 本発明者の知見によれば、 従来技術においては、 気化部における熱が、 輻射熱と してガス出口 7を介してガス通路 2内におけるガスを過熱してしまう。従って、 冷 却水 1 8により冷却したとしてもガス中の低融点成分がガス出口 7近傍に析出し てしまう。
輻射防止部は、かかる輻射熱がガスに伝播することを防止するための部材である。 従って、 細孔 1 0 1の断面積は、 ガス通路 2の断面積より小さくすることが好まし い。 1 Z 2以下とすることが好ましく、 1ノ3以下とすることがより好ましい。 ま た、 細孔を微小化することが好ましい。 特に、 噴出するガス流速が亜音速となる寸 法に微小化することが好ましい。
また、 前記細孔の長さは、 前記細孔寸法の 5倍以上であることが好ましく、 1 0 倍以上であることがより好ましい。
また、分散部を冷却することにより、長期間にわる使用に対してもガス通路内(特 にガス出口) における炭化物による閉塞を生ずることがない。
分散部本体 1の下流側において、分散部本体 1は気化管 2 0に接続されている。 分散部本体 1と気化管 2 0との接続は継手 2 4により行われ、この部分が接続部 2 3となる。
全体図を図 2に示す。 気化部 2 2は気化管 2 0と加熱手段 (ヒータ) 2 1とから 構成される。ヒータ 2 1は気化管 2 0内を流れる原料溶液が分散したキヤリァガス を加熱し気化させるためのヒー夕である。 ヒータ 2 1としては、 従来は円筒型ヒー 夕やマントルヒーターを気化管 2 0の外周に貼り付けることにより構成するが、 気化管の長さ方向に対して、 均一な温度になるよう加熱するには、 熱容量が大きい 液体や気体を熱媒体に用いる方法が最も優れていたため、 これを採用した。
気化管 2 0としては、例えば S U S 3 1 6 Lなどのステンレス鋼を用いることが 好ましい。 気化管 2 0の寸法は、 気化ガスの温度が、 十分に加熱される長さに、 適 宜決定すればよいが、 例えば、 S r B i 2 T a 2 0 9原料溶液 0 . 0 4 c c mを気化 する場合には、 外径 3 / 4インチ、 長さ数百 mmのものを用いればよい。
気化管 2 0の下流側端は M O C V D装置の反応管に接続されるが、本例では気化 管 2 0に酸素供給手段として酸素供給口 2 5を設けてあり、所定の温度に加熱され た酸素をキヤリァガスに混入せしめ得るようにしてある。
まず、 気化器への原料溶液の供始について述べる。
図 3に示すように、 原料供給口 6には、 それぞれ、 リザーブタンク 3 2 a , 3 2 b, 3 2 c, 32 d力、 マスフ口一コントローラ 30 a, 30 b, 30 c, 3 0 d 及びバルブ 3 1 a, 3 1 b, 3 1 c, 3 1 dを介して接続されている。
また、 それぞれのリザーブタンク 32 a, 32 b, 32 c, 32 dにはキャリア ガスボンベ 33に接続されている。
リザーブタンクの詳細を図 4に示す。
リザーブタンクには、 原料溶液が充填されており、 それぞれのリザーバータンク
(内容積 300 c c、 S US製に例えば 1. 0〜3. 0 k g f /cm2のキャリア ガス (例えば不活性ガス A r, He, N e) を送り込む。 リザーブタンク内はキヤ リアガスにより加圧されるため、原料溶液は溶液と接している側の管内を押し上げ られ液体用マスフローコントローラ (S TE C製、 フルスケール流量 0. 2 C C , m i n) まで圧送され、 ここで流量が制御され、 気化器の原料供給入口 29から原 料供給孔 6に輸送される。
マスフローコントローラで一定流量に制御されたキヤリァガスによって反応部 へ輸送される。 同時にマスフローコントローラ (S TEC製、 フルスケール流量 2 LZm i nで一定流量に制御された酸素 (酸化剤) も反応部へ輸送する。
原料溶液は、溶剤である THFその他の溶媒に常温で液体または固体状の有機金 属錯体を溶解しているため、そのまま放置しておくと THF溶剤の蒸発によって有 機金属錯体が析出し、 最終的に固形状になる。 したがって原液と接触した配管内が、 これによつて配管の閉塞などを生ずることが想定される。よって配管の閉塞を抑制 するためには、成膜作業終了後の配管内および気化器内を THFその他の溶媒で洗 浄すればよいと考え、 洗浄ラインを設けてある。 洗浄は、 原料容器交換作業も含め 容器出口側より気化器までの区間とし、各作業に適合した部分を溶剤にて洗い流す ものである。
バルブ 3 l b, 3 1 c , 3 1 dを開とし、 リザーブタンク 32 b, 3 2 c , 32 d内にキヤリアガスを圧送した。 原料溶液は、 マスフ口一コントローラ (STEC 製フルスケール流量 0. 2 c c/m i n) まで圧送され、 ここで流量が制御され、 溶液原料を気化器の原料供給孔 6に輸送される。
一方、 キヤリァガスを気化器のガス導入口から導入した。供給口側の最大圧力は 3 k g f Zcm2以下とすることが好ましく、 このとき通過可能な最大流量はおよ そ 1 2 0 0 c c /m i nであり、ガス通路 2の通過流速は百数十 sまで達する。 気化器のガス通路 2を流れるキヤリアガスに原料供給孔 6から原料溶液が導入 すると原料溶液はキヤリァガスの高速流により剪断され、 超微粒子化される。 その 結果原料溶液はキヤリァガス中に超微粒子状態で分散する。原料溶液が超微粒子状 態で分散したキャリアガス (原料ガス) は高速のまま気化部 2 2に霧化され放出さ れる。 ガス通路と原料供給孔が形成する角度を最適化する。 キャリア流路と原料溶 液導入口が鋭角 (3 0度) の場合、 溶液はガスに引かれる。 9 0度以上であれば、 溶液はガスに押される。 溶液の粘度,流量から、 最適な角度が決まる。 粘度や流量 が大きい場合は、 より鋭角にすることによって、 溶液が円滑に流れる。 へキサンを 溶媒に用いて、 S B T膜を形成する場合、 粘度 ·流量ともに小さいため、 約 8 4度 が好ましい。
一定流量に制御された 3種の原料溶液は、それぞれの原料供給入口 2 9を介して 原料供給孔 6からガス通路 2に流入し、高速気流となったキャリアガスとともにガ ス通路を移動した後、 気化部 2 2に放出される。 分散部 8においても、 原料溶液は 気化部 2 2からの熱によって加熱され T H Fなどの溶剤の蒸発が促進されるため、 原料供給入口 2 9から原料供給孔 6までの区間及びガス通路 2の区間を水その他 の冷媒によって冷却する。
分散部 8から放出された、 キャリアガス中に微粒子状に分散した原料溶液は、 ヒ 一夕 2 1によって所定の温度に加熱された気化管 2 0内部を輸送中に気化が促進 され M O C V Dの反応管に到達する直前に設けられた酸素供給口 2 5からの所定 の温度に加熱された酸素の混入によって混合気体となり、 反応管に流入する。 なお、 本例では、 成膜に代え気化ガスの反応形態の解析を行うことにより評価した。
排気口 4 2から真空ポンプ (図示せず) を接続し、 約 2 0分間の減圧操作により 反応管 4 4内の水分などの不純物を取り除き、排気口 4 2下流のバルブ 4 0を閉じ た。
気化器に冷却水を約 4 0 0 c c /m i nで流した。 一方、 3 k g f c m 2のキ ャリァガスを 4 9 5 c c /m i nで流し、反応管 4 4内をキヤリァガスで十分満た した後、 バルブ 4 0を開放した。 ガス出口 7における温度は 6 7 °Cより低かった。 気化管 2 0内を 2 0 0 °C、反応管 4 4からガスパック 4 6までの区間及びガスパ ックを 1 0 0 °C、 反応管 4 4内を 3 0 0 °C〜 6 0 0 °Cに加熱した。
リザーブタンク内をキヤリァガスで加圧し、マスフローコントローラで所定の液 体を流した。
S r ( D P M) 2、 B i ( C 6 H 5 ) 3、 T a (〇C 2 H 5 ) 5、 T H Fをそれぞれ 0 . 0 4 c c / i n、 0 . 0 8 c c /m i n、 0 . 0 8 c c / i n、 0 . 2 c c /m i nの流量で流した。
2 0分後ガスパック 4 6直前のバルブを開きガスパック 4 6内に反応生成物を 回収し、 ガスクロマトグラフにて分析し、検出された生成物と反応理論に基づき検 討した反応式中の生成物が一致するかどうかを調べた。 その結果、 本例においては、 検出された生成物と反応理論に基づき検討した反応式中の生成物はよく一致した。 また、分散部本体 1のガス出口 7側の外面における炭化物の付着量を測定した。 その結果、 炭化物の付着量はごくわずかであり、 図 1 4に示す装置を用いた場合よ りさらに少なかった。
なお、 溶媒に膜原料となる金属を混合あるいは溶解させ原料溶液とした場合、 該 原料溶液は、 金属は錯体となり、 液体ノ液体状態 (完全溶媒液) となるのが一般的 である。 しかし、 本発明者は原料溶液を綿密に調べたところ、 必ずしも金属錯体は バラバラの分子状態のものとはならず、 金属錯体そのものが溶媒中で、 1〜 1 0 0 n mの大きさの微粒子として存在する場合もあり、固体/液体状態として一部存在 する場合もあることを知見した。気化時の目詰まりはかかる状態の原料溶液の時に 特に生じやすいと考えられるが、 本発明の気化器を用いた場合には、 かかる状態の 原料溶液の場合であっても目詰まりは生じない。
また、 原料溶液の保存する溶液中では、 微粒子がその重力のために底部に沈降し やすい。 そこで、 底部を加熱 (あくまでも溶媒の蒸発点以下に) することにより保 存溶液内において対流を生じせしめ微粒子を均一分散せしめることが目詰まり防 止上好ましい。 また、 底部を加熱するとともに容器上面の側面は冷却することがよ り好ましい。 もちろん溶剤の蒸発温度以下の温度で加熱を行う。
なお、気化管上部領域の加熱熱量が下流領域の加熱熱量よりも大きくなるように 加熱ヒータが設定ないし制御することが好ましい。 すなわち、 分散部から、 水冷さ れたガスが噴出するので、 気化管上部領域では、 加熱熱量を大きくし、 下流領域で は、 加熱熱量を小さく設定あるいは制御する加熱ヒータを設けることが好ましい。 上記の基本的構成に加え本例では、原料溶液を含ませる前のキヤリアガスに原料 溶液の溶媒を含ませる手段を設けてある。
キャリアガスに溶媒を含ませる手段は、 本例では次ぎのように構成される。 容器 400に溶媒 40 1を収納しておき、キヤリァガス 403を溶媒にバブリングする。 バブリング後のキヤリァガスをガス導入口 4に導入するようにする。
溶媒を含ませる手段を使用して S B T強誘電体薄膜形成について実施した場合 の例について記す。
S BTの原料は、 有機溶剤 n—へキサン C6H14 (圧力 7 60 T 0 r r於ける沸 点は 68. 7°< 融点はー 9 5. 8 °C) に溶解された有機金属錯体へキサ エトキシ ストロンチウムタンタル S r (0 C2H5) 2、 [T a (O C 2H5) 5] 2 (圧力 O. 1 T o r r於ける沸点は 1 7 6° (:、 融点は 1 30 °C) とトリー t—アミロキシビス マス、 B i (0— t— C 3 (圧力 0. 1 T o r r於ける沸点は 87 °C (昇華)) である。
原料の供給条件は、有機金属錯体へキサ エトキシ ストロンチウムタンタル S τ (0 C 2H5) 2 [T a (OC 2H5) 5] 2は 0. 02 c c /m i nである。 一方、 有機金属錯体トリー tアミロキシピスマス B i (O— t—CsH ) 3も同様 0. 02 c c/m i nである。 また、 不活性ガスであるアルゴンの供給量は 200 (N TP) /m i n、 酸素の供給量は 1 0 c c (NT P) /m i nある。 この混合ガス を気化器の温度における n—へキサン C6H14の蒸気で満たすために溶剤 n—へ キサン C6H14をそれぞれのラインに 0. 143 m i nづっ供給した。 こうする ことによってそれぞれの気流は溶剤の蒸気で飽和されることになる。
以上のように条件を設定して実験を実施したところ、気化器に何らトラブルの発 生は認められず、 安定したミスト化並びに気化が行われた。 また、 添付した図 24 及び図 25は上記操作条件の下に反応酸素の供給量を変化させて S B T薄膜を成 膜した結果である。
図から明らかなように膜組成については反応酸素供給量を変化させてもその組 成には変化がなく、概ね S r B i 2T a22の組成が得られることが理解される。 また、反応酸素量を大きく変化させても得られる S BT薄膜の厚みが 20分で約 2 0 0 O A程度であることが分かる。 反応装置の圧力を一定に保ち、 反応酸素の流量 を増加させると、装置内の酸素分圧は増加するが原料の分圧は滅少することになる。 これは装置内の原料分子の数密度が滅少すると同時に基板に対する原料分子の衝 突回数の現象を意味するものである。従って膜の成長速度が原料分子の衝突数で規 定されるのであれば、反応酸素流量の増加は伴って成膜速度は減少するはずである。 しかし、図からも明らかなように反応酸素流量に関係なく成膜速度が一定であるこ とから、膜の成長速度が原料分子の衝突回数によって律速されているのではなく、 基板表面における反応によって律速されていることを示唆するものである。
また、 キャリアガス (不活性ガス、 或いは、 所定の酸素を含む不活性ガス) を溶 剤蒸気で飽和にする操作は、化学量論比に調整された原料を連続的にしかも安定す ることができると共に成膜された膜内の炭素の残留量を低減させる効果のあるこ とが示された。
また、反応酸素流量を増加させることによって膜内の炭素量を低下させることが 可能であることが示唆された。添付した図の中央の図 (酸素流量と炭素残存量の関 係) より、 膜中の炭素量をゼロにするには酸素流量を 1 4 3 0 [ c c ( N T P ) ノ m i n ] 程度供給すれば良いことが分かる。
以上で述べた条件の設定は、 化学量論比に調整された異なった原料を用いて、 種 類の異なる薄膜を形成する場合でも原料を溶解するために用いられている溶剤を 同様にキヤリアガスが溶剤蒸気で飽和されるように供給すれば、気化器は連続的に しかも安定して原料を露化し、 確実に加熱管 (プレリアクタ一) において原料は蒸 発され、 目的とする組成比の薄膜を得ることができるものである。
(実施例 2 )
図 5に実施例 2に係る M O C V D用気化器を示す。
本例では、 輻射防止部 1 0 2の外周に冷却水通路 1 0 6を形成し、 また、 接続部 2 3の外周には冷却手段 5 0を設け、 輻射防止部 1 0 2の冷却を行った。
また、 細孔 1 0 1の出口周辺にくぼみ 1 0 7を設けた。
他の点は実施例 1と同様とした。
本例においては、検出された生成物と反応理論に基づき検討した反応式中の生成 物は実施例 1の場合よりも良好な一致が見られた。 また、分散部本体 1のガス出口 7側の外面における炭化物の付着量を測定した結 果は、 炭化物の付着量は実施例 1の場合の約 1 / 3倍であつた。
さらに、 溶媒導入通路 4 0 2を設けた。 溶媒は、 通路 2の原料供給孔 6の下流に おいてキヤリアガス 3に導入される。
なお、 溶媒導入通路 4 0 2の上流に流量計を設けておくことが好ましい。 また、 気化部の温度を測定するセンサ、 通路におけるキャリアガスの流量、 圧力を測定す るセンサを設けておくことが好ましい。 これセンサからの信号を処理し、 溶媒の飽 和蒸気圧を演算し、 流量計により溶媒の導入量を制御することにより耐えず、 飽和 蒸気圧となるように溶媒を導入することが好ましい。
本例において、 溶媒をキヤリアガスに導入することにより、 導入しない場合に比 ベ、 化学量論比に近い組成の膜が得られた。 また、 カーボン量もより少なかった。 さらに、 目詰まりの発生頻度が激減した。
なお、 以下の全ての実施例において、 溶媒をキヤリァガスに導入することにより 同様の向上が見られた。
(実施例 3 )
図 6に実施例 3に係る M O C V D用気化器を示す。
本例では、 輻射防止部 1 0 2にテーパー 5 1を設けてある。かかるテーパー 5 1 のためその部分のデッドゾーンが無くなり、 原料の滞留を防止することができる。 他の点は実施例 2と同様とした。
本例においては、検出された生成物と反応理論に基づき検討した反応式中の生成 物は実施例 2の場合よりも良好な一致が見られた。
また、分散部本体 1のガス出口 7側の外面における炭化物の付着量を測定した結 果は、 炭化物の付着量は皆無に近かった。
(実施例 4 )
図 7にガス通路の変形実施例を示す。
図 7 ( a ) ではロッド 1 0の表面に溝 7 0を形成してあり、 ロッド 1 0の外径を 分散部本体 1の内部にあけた孔の内径とほぼ同一としてある。従って、 ロッド 1 0 を孔にはめ込むだけで、偏心することなく孔内に口ッ ド 1 0を配置することができ る。 また、 ビスなどを用いる必要もない。 この溝 7 0がガス通路となる。 なお、溝 7 0はロッド 1 0の長手方向中心軸と平行に複数本形成してもよいが、 ロッ ド 1 0の表面に螺旋状に形成してもよい。螺旋状の場合にはより均一性に優れ た原料ガスを得ることができる。
図 7 ( b ) はロッド 1 0の先端部に混合部を設けた例である。 先端部の最も大き な径を分散部本体 1の内部にあけた孔の内径とほぼ同一としてある。口ッド先端部 と孔の内面とで形成される空間がガス通路となる。
なお、 (a ) , (b ) に示した例は、 ロッド 1 0の表面に加工を施した例である が、 ロッドとして断面円形のものを用い、 孔の方に凹部を設けてガス通路としても よいことはいうまでもない。 なお、 ロッドの設置は、 例えば、 J I Sに規定する H 7 X h 6〜 J S 7程度で行うことが好ましい。
(実施例 5 )
図 8に基づき実施例 5を説明する。
本例の M O C V D用気化器は、
内部に形成されたガス通路と、
ガス通路に加圧されたキヤリアガス 3を導入するためのガス導入口 4と、 ガス通路に原料溶液 5 a , 5 bを供給するための手段と、
原料溶液 5 a、 5 bを含むキヤリァガスを気化部 2 2に送るためのガス出口 Ίと、 を有する分散部 8と、
一端が M O C V D装置の反応管に接続され、他端が前ガス出口 7に接続された気 化管 2 0と、
気化管 2 0を加熱するための加熱手段と、
を有し、
分散部 8から送られてきた、原料溶液を含むキヤリアガスを加熱して気化させる ための気化部 2 2と、
を有し、
分散部 8は、 円筒状中空部を有する分散部本体 1と、 円筒状中空部の内径より小 さな外径を有するロッド 1 0と、
を有し、
ロッド 1 0の外周の気化器 2 2側に 1又は 2以上の螺旋状の溝 6 0を有し、 ロッ ド 1 0は該円筒状中空部に挿入され、
ガス出口 7の外側に、 細孔 1 0 1を有し、 気化器 2 2側に向かい内径がテーパー 状に広がる輻射防止部 1 0 1を設けてある。
高速のキヤリァガス 3が流れるガス通路に原料溶液 5が供給されると、原料溶液 は剪断 ·霧化される。 すなわち、 液体である原料溶液は、 キャリアガスの高速流に より剪断され、 粒子化される。粒子化した原料溶液は粒子状態でキヤリァガス中に 分散する。 この点は、 実施例 1と同様である。
なお、 剪断 ·霧化を最適に行うためには、 次ぎの条件が好ましい。
原料溶液 5の供給は、 0 . 0 0 5〜2 c c /m i nで行うことが好ましく、 0 . 0 0 5〜0 . 0 2 c Zm i nで行うことがより好ましく、 0 . 1〜0 . 3 c c /m i nで行うことがさらに好ましい。 複数の原料溶液 (溶剤を含む) を同時に供給す る場合には、 そのトータル量である。
また、 キャリアガスは、 1 0〜2 0 0 m/ s e cの速度で供給することが好まし く、 1 0 0〜2 0 O m/ s e cがより好ましい。
原料溶液流量とキヤリァガス流量は相関関係が有り、 最適なせん断 ·霧化を実現 し、超微粒子ミス卜が得られる流路断面積と形状を選択することは言うまでのない。 本例では、 ロッド 1 0の外周には、 螺旋状の溝 6 0が形成してあり、 かつ、 分散 部本体 1とロッド 1 0との間には隙間空間が存在するため、霧化状態となった原料 溶液を含むキヤリァガスはこの隙間空間を直進流として直進するとともに、螺旋状 の溝 6 0に沿って旋回流を形成する。
このように、直進流と旋回流とが併存する状態において霧化した原料溶液はキヤ リァガス中に一様に分散することを本発明者は見いだしたのである。直進流と旋回 流とが併存すると何故に一様の分散が得られるのかの理由は必ずしも明らかでは ないが、 次のように考えられる。 旋回流の存在により、 流れに遠心力が働き、 二次 の流れが生じる。 この二次の流れにより、 原料及びキャリアガスの混合が促進され る。 すなわち、 旋回流の遠心効果により流れに対して直角方向に 2次的な派生流が 生じ、これによつて霧化した原料溶液がキヤリァガス中により一様に分散するもの と思われる。
以下、 本実施例をより詳細に説明する。 本実施例では、 一例として 4種類の原料溶液 5 a, 5 b, 5 c, 5 d (5 a, 5 b, 5 cは有機金属原料、 5 dは THFなどの溶剤原料) をガス通路に供給するよ うに構成されている。
それぞれ霧化し、超微粒子状となった原料溶液を含むキヤリァガス(「原料ガス」 という) を混合するために、 本例では、 ロッド 1 0の原料供給孔 6に対応する部分 の下流部分に螺旋状の溝のない部分を設けてある。この部分はプレミキシング部 6 5となる。 プレミキシング部 6 5において、 3種類の有機金属の原料ガスはある程 度混合され、 さらに、 下流の螺旋構造の領域において完全な混合原料ガスとなる。 均一な混合原料ガスを得るためには、 このミキシング部 6 5の長さは、 5〜20m mが好ましく、 8〜 1 5mmがより好ましい。 この範囲外の場合、 3種類の有機金 属の原料ガスのうち 1種類のみの濃度が高い混合原料ガスが気化部 22に送られ てしまうことがある。
本例では、 ロッド 1 0の上流側の端部 66には、 平行部 67とテーパー部 58と を設けてある。分散部本体 1の円筒中空部にも平行部 67とテーパー部 58に対応 した、 ロッド 1 0の平行部 67の外径と同じ内径の平行部と、 ロッド 1 0のテ一パ 一と同じテ一パーのテーパー部とを設けてある。従って、 ロッド 1 0を図面上左側 から挿入すれば、 ロッ ド 10は分散部本体 1の中空部内に保持される。
本例では、 実施例 1の場合とは異なり、 ロッド 10にテーパーを設けて保持して いるため、 3 k g f Zcm2よりも高圧のキヤリアガスを用いてもロッド 1 0の移 動を防止することができる。 すなわち、 図 8に示す保持技術を採用すれば、 3 k g Zcm2以上の圧力でキャリアガスを流すことができる。 その結果、 ガス通路の断 面積を小さくして、 少量のガスでより高速のキヤリァガスの供給が可能となる。す なわち、 50〜 300 mm/ sの高速のキヤリァガスの供給も可能となる。前記し た他の実施例においてもこの保持技術を採用すれば同様である。
なお、 ロッド 1 0の原料供給孔 6に対応する部分には、 図 9 (b) に示すように、 キャリアガスの通路として溝 67 a, 67 b, 67 c , 67 dを形成しておく。 各 溝 6 7 a, 6 7 b, 67 c, 6 7の深さとしては、 0. 00 5〜0. 1 mmが好ま しい。 0. 00 5mm未満では溝の成形加工が困難となる。 また、 0. 0 1〜0. 0 5がより好ましい。この範囲とすることにより目詰まりなどの発生がなくなる。 また、 高速流が得られやすい。
ロッド 1 0の保持、 ガス通路の形成については、 実施例 1における図 1に示す構 成その他の構成を採用してもかまわない。
螺旋状の溝 60は、 図 9 (a) に示すように、 1本でもよいが、 図 1 0に示すよ うに複数本でもよい。 また、 螺旋状の溝を複数本形成する場合には、 クロスさせて もよい。 クロスさせた場合には、 より均一に分散した原料ガスが得られる。 但し、 各溝に対するガス流速は 1 OmZs e c以上が得られる断面積とする。
螺旋状の溝 60の寸法 ·形状には特に限定されず、 図 9 (c) に示した寸法 '形 状が一例としてあげられる。
なお、 本例では、 図 8に示すとおり、 ガス通路は、 冷却水 18により冷却してい る。
また、 本例では、 分散部 22の入口手前において、 拡張部 69を独立して設けて あり、 この拡張部に長手の輻射防止部 1 02が配置してある。
輻射防止部のガス出口 7側は細孔 1 0 1が形成され、気化器側に向かい内径がテ —パー状に広がっている。
この拡張部 69は実施例 3において、述べた原料ガスの滞留を防止するための部 分でもある。 もちろん、 拡張部 69を独立して設ける必要はなく、 図 6に示したよ うに一体化した構成としてもよい。
拡張部 69における拡張角度 0としては、 5〜 1 0度が好ましい。 0がこの範囲 内の場合、 旋回流を壊すことなく原料ガスを分散部に供給することができる。 また、 がこの範囲内の場合、 拡大による流体抵抗が最小となり、 また、 デッドの存在が 最小となり、 デッドゾーンの存在による渦流の存在を最小にすることができる。な お、 Θとしては、 6〜7度がより好ましい。 なお、 図 6に示した実施例の場合にお いても好ましい 0の範囲は同様である。
(実施例 6)
図 8に示す装置を用い、次ぎなる条件で原料溶液及びキヤリァガスの供給を行い、 原料ガスにおける均一性を調べた。
原料溶液導入量: S r (DPM) 2 0. 04 c c /m i n
B i (CfiH5) 。 0. 08 c c /m i n T a (O C 2H 5) 5 0. 08 c c /m i n
TH F 0. 2 c c /m i n キャリアガス :窒素ガス 1 0〜350m/s
気化装置としては図 8に示す装置を用いた。 ただ、 ロッ ドとしては、 図 9に示す ロッ ドにおいて螺旋溝が形成されていないロッ ドを用いた。
原料溶液を原料供給孔 6から供給するとともにキャリアガスをその速度を各種 変化させた。 なお、 原料供給孔からは、 溝 67 aには S r (DPM) 2、 溝 6 7 b には B i (C6H5) 3、 溝 6 7 cには T a (0 C 2H5) 5、 溝 6 7 dには THFな どの溶剤をそれぞれ供給した。
気化部における加熱を行わず、 ガス出口 7において原料ガスを採取し、 採取した 原料ガスにおける原料溶液の粒子径の測定を行つた。
その結果を相対値 (図 1 2 (a) に示す従来例に係る装置を用いた場合を 1とす る) として図 1 1に示す。 図 1 1からわかるように、 流速を 5 OmZs以上とする ことにより分散粒子径は小さくなり、 1 0 OmZs以上とすることにより分散粒子 径はさらに小さくなる。 ただ、 2 0 Om/s以上としても分散粒子径は飽和する。 従って、 1 00〜 200 mZ sがより好ましい範囲である。
(実施例 7)
本例では、 ロッ ドとして螺旋溝を形成したロッ ドを使用した。
他の点は実施例 6と同様とした。
実施例 6では、 溝の延長部において、 溝に供給された原料溶液の濃度が濃かった。 すなわち、 すなわち、 溝 67 aの延長部では、 S r (DPM) 2が、 溝 6 7 bの延 長部では B i ( C 6 H 5 ) 3が、 溝 67 cの延長部では T a (OC2H5) 5がそれぞ れ他の濃度が高かった。
しかし、 本例では、 螺旋溝の端において得られた混合原料ガスはどの部分におい ても各有機金属原料が均一であった。
(実施例 8)
図 1 2及び図 1 3に実施例 8を示す。
従来、 酸素の導入は、 図 2に示すように、 気化部 22の下流においてのみ行われ ていた。従来の技術において形成された膜中に炭素が大量に含有されていることは 従来の技術の欄において述べて通りである。 また、 原料における組成配分と成膜さ れた膜中における組成配分とにはズレが生じていた。 すなわち、 原料を化学量論比 通りの組成比に調整して気化、 成膜を行った場合、実際に成膜された膜は化学量論 比からずれた組成の膜となってしまっていた。 特に、 ビスマスが殆んど含有されな レゝ (0. 1 a t %程度) 現象が観察された。
本発明者はこの原因が酸素の導入位置に関係することを見いだした。すなわち、 図 20に示すように、酸素をガス導入口 4及び噴出口直近二次酸素供給口 200及 び酸素導入口 (一次酸素供給口) 25からキャリアガスとともに導入すれば、 形成 された膜中の組成は、原料溶液中の組成との間の組成比のずれは極めて小さなもの とすることができることがわかった。
なお、 予めキヤリァガスと酸素とを混合しておき、その混合ガスをガス導入口 4 から導入してもよい。
(実施例 9)
図 1 9、 20に示す気化器、 図 2 1に示す CVD装置を用いて、 S BT膜を形成 し、 さらに分極特性等を評価した。
具体的には気化器の条件及び反応室の条件は下記のように制御し、酸化したシリ コン基板上に、 白金 2 00 nmを形成した基板上に、 SBT薄膜を形成した。 具体的条件:
へキサエトキシ ' ストロンチウムタンタル S r [T a (O C2H5) 6] 2 0. 1 モル溶液 (溶媒 : へキサン)
0. 02m l /m i n .
トリ— !;—アミ口キシドビスマス B i ( 0 - t - C 5 H , J ) 3 0. 2モル溶液 (溶媒: へキサン) 0. O Sm l Zm i n.
第一キヤリア A r = 200 s c cm (ガス導入口 4から入れる)
第一キャリア 02= 1 0 s c c m (ガス導入口 4から入れる)
第 2キャリア A r = 20 s c cm (ガス導入口 20 0から入れる)
2= 1 0 s c c m (ガス導入口 200から入れる)
反応酸素 〇2 = 200 s c cm (分散噴出部下部 2 5から入れる) 反応酸素温度 2 16°C (分散噴出部下部から入れる前に別途設けたヒ一夕で 温度制御)
ゥエーハ温度 47 5 °C
空間温度 299。C
空間距離 30 mm
シャワーへッド温度 20 1 °C
反応圧力 1 To
成膜時間 20分 その結果
SS BB TT膜膜厚厚ささ 約約 330000 nnmm (堆積速度約 1 50 n mZm i n . )
S B T組成 S r 5. 4 a t %
B i 1 6. 4 a t %
T a 1 3. 1 a t %
O 6 1. 4 a t %
CC 3. 5 a t %
形成された膜中の組成は、 原料溶液中の組成との間の組成比のずれは小さく、堆 積速度も従来比約 5倍になった。少量の酸素をガス導入口 4からキヤリァガスとと もに導入する効果は極めて大きい事がわかる。カーボン含有量も 3. 5 a t %と 少ない。
反応酸素 200 c c/m i n. を、分散噴出部下部から入れる前に別途設けたヒ 一夕で正確に温度制御(2 1 6°C)したため、気化した、有機金属化合物の再凝縮 · 昇華 (固化) を抑制する効果が大きい事が、 気化管下部の汚れが無くなった事から 確認できた。
この S BT薄膜形成後、 酸素雰囲気で 750 °C、 30分の結晶化処理を行い、 上 部電極を形成して測定評価した所、 優れた結晶化特性と分極特性を示した。 これを 図 1 7 , 1 8に示した。
ガス導入口 4または噴出口直近の一次酸素供給口から酸素等の酸化性ガスを導 入しさえすれば、 図 2に示すように、気化部の下流において同時に酸素を導入して 酸素の量を適宜制御することが、 より組成比のズレを小さくし、 また、 炭素含有量 を減少させる上から好ましい。
形成された膜中における炭素の含有量を従来の 5 %〜 20 %に減少させること ができる。
図 20を用いて、 S BT薄膜堆積プロセスの実施例を説明する。
バルブ 2を開き、 バルブ 1を閉じて、 反応チャンバ一を高真空に引き、 数分後に 口一ドロツクチャンバーから、 反応チャンバ一へゥェ一ハを移載する。
この時、 気化器には、
へキサエトキシ 'ストロンチウムタンタル S r [T a (〇C2H5) 6] 2 0. 1モル溶液 (溶媒 : へキサン) 0. 02m l Zm i n.
トリ— t—アミ口キシドビスマス B i (0— t一 C 5HH) 3 0. 2モル溶液 (溶媒 : へキサン) 0. 0 2m l /m i n.
第一キヤリア A r = 200 s c cm (ガス導入口 4から入れる)
第一キャリア 02= 1 0 s c c m (ガス導入口 4から入れる)
が流れており、 バルブ 2及び圧力自動調整弁を経由して、 真空ポンプへ引かれてい る。
この時、 圧力計は、 圧力自動調整弁によって、 4T o r rに制御される。
ゥエーハを移載し数分後、 温度が安定したら、
バルブ 1を開き、 バルブ 2を閉じて、 反応チャンバ一へ下記のガスを流して、 堆積 を開始する。
へキサエトキシ ' ストロ チウムタンタル S r [T a (O C 2H5) 6] 2 0. 1 モル溶液 (溶媒: へキサン) 0. 02m l Zm i n.
トリ— t—アミ口キシドビスマス B i (〇— t— C 5Hn) 3 0. 2モル溶液 (溶媒: へキサン) 0. 02m l /m i n.
第一キヤリア A r = 200 s c cm (ガス導入口 4から入れる)
第一キャリア 02= 1 0 s c c m (ガス導入口 4から入れる)
第 2キャリア A r = 20 s c c m (ガス導入口 200から入れる)
02= 1 0 s c c m (ガス導入口 200から入れる)
反応酸素 〇2=200 s c cm (分散噴出部下部 2 5から入れる) 反応酸素温度 2 1 6 (分散噴出部下部から入れる前に別途設けたヒータで 温度制御)
ゥェ一ハ温度 4 7 5°C
反応圧力チャンバ一圧力は、 l T o r rに制御する。
(記載されていない圧力自動調整弁による)
所定の時間 (此処では 2 0分) が経過したら、
バルブ 2を開き、 バルブ 1を閉じて、 堆積を終了する。
反応チャンバ一を高真空に引いて反応ガスを完全に除去して、 1分後にロードロッ クチャンバーへゥェ一ハを取り出す。 P t ( 2 0 0 nm) ノ CVD S BT ( 3 0 0 nm) ノ P t ( 1 7 5 nm) ノ T i ( 3 0 nm) /S i〇2/S i
キャパシタ作成プロセス
下部電極形成 P t ( 1 7 5 nm) /Ύ I ( 3 0 nm) C VD S B T膜形成 (3 0 0 n m)
S B T膜結晶化処理 (拡散炉ァニール: ゥエーハ 7 5 0 ° (:、 3 0m i n、 〇2雰 囲気)
上部電極形成 P t ( 2 0 0 nm)
ァニール: 6 5 0 °C、 〇 2、 3 0 m i n
従来 反応酸素 (例。 2 0 0 s c c m) は、 室温状態で、 気化管に入れていたた め、
有機金属ガスが、 冷却されて、 気化管に付着 ·堆積していた。
気化部下部から供給する、 反応酸素の温度制御を行う場合従来、 ステンレス管 ( 1 /4 - 1 / 1 6 i n c h外形、長さ 1 0— 1 0 0 c m) の外部にヒータを巻きつけ て、 ステンレス管外壁の温度を制御 (例 : 2 1 9°C) していた。
ステンレス管外壁の温度 (例: 2 1 9°C) =内部を流れる酸素 (流量 2 0 0 s c c m) の温度と考えて居た。
ところが、 酸素温度を微細な熱伝対で測定したら、 上記例では、 約 3 5°Cにし力 昇温されていなかった。
そこで、 加熱後の酸素温度を、 直接微細な熱伝対で測定し、 加熱ヒー夕温度を制 御して、 酸素温度を正確に制御した。
管を流れる酸素等ガスを昇温することは容易ではなく、加熱管内に充填物をいれ て、 熱交換効率の向上を図り、 加熱された酸素ガス温度を測定して加熱ヒー夕温度 を適正に制御した。かかる制御のための手段が図 2 0に示すヒートエクスチェンジ ヤーである。
(実施例 1 0 )
図 1 4に実施例 1 0を示す。
前記実施例は、単一の原料溶液のそれぞれにガスを吹き付けることにより噴霧化 し、 その後噴霧化した原料溶液を混合するものであつたが、 本例は、 複数の原料溶 液を混合し、 次いで、 混合原料溶液を噴霧化するための装置である。
本例は、 原料溶液 5 a, 5 bを供給する複数の溶液通路 1 3 0 a, 1 3 O bと、 複 数の溶液通路 1 3 0 a, 1 3 0 bから供給される複数の原料溶液 5 a, 5 bを混合 する混合部 1 0 9と、 一端が混合部 1 0 9に連通し、 気化部 2 2側となる出口 0 1 7を有する供給通路 1 1 0と、 供給通路 1 1 0内において、 混合部 1 0 9から出た 混合原料溶液に、 キャリアガスあるいは、 キャリアガスと酸素との混合ガスを吹き 付けるように配置されたガス通路 1 2 0と、供給通路 1 1 0内を冷却するための冷 却手段とが形成されている分散器 1 5 0と、
一端が M O C V D装置の反応管に接続され、他端が分散器 1 5 0の出口 1 0 7に 接続された気化管と、 気化管を加熱するための加熱手段 2とを有し、 前記分散器 1 5 0から送られてきた、原料溶液を含むガスを加熱して気化させるための気化部 2 2とを有し、
出口 1 0 7の外側に細孔 1 0 1を有する輻射熱防止材 1 0 2が配置されている。 本例では、 混合しても反応が進行しない原料溶液に有効であり、 一旦混合後噴霧 化するため、 噴霧化後混合する場合に比べ組成が正確となる。 また、 混合部 1 0 9 における混合原料溶液の組成を分析するための手段 (図示せず) を設けておき、 分 析結果に基づき原料溶液 5 a , 5 bの供給量を制御すればより一層正確な組成を得 ることが可能となる。
また、 本例では、 ロッド (図 1の 1 0 ) を用いる必要がないため、 ロッドを伝播 した熱が供給通路 1 1 0内を加熱するということがない。 さらに、 噴霧化後混合す る場合に比べ供給通路 1 1 0の断面積を小さくでき、ひいては出口 1 0 7の断面積 を小さくすることができるため輻射により供給通路 1 1 0内を加熱するというこ とも少ない。従って、輻射防止部 1 0 2を設けずとも結晶の析出などを少なくする ことができる。 ただ、 より一層結晶の析出などを防止したい場合は図 1 4に示した ように輻射防止部 1 0 2を設けてもよい。
なお、 以上の実施例において、細孔は一つの例を示したがもちろん複数でもよい。 また、 細孔の径としては 2 mm以下が好ましい。複数設ける場合にはさらに小さい 径とすることも可能である。
また、 以上の実施例において、 キャリア流路と原料溶液導入口が鋭角 (3 0度) の場合、 溶液はガスに引かれる。 9 0度以上であれば、 溶液はガスに押される。 従 つて, 3 0〜9 0 ° が好ましい。 具体的には、 溶液の粘度 ·流量から、 最適な角度 が決まる。粘度が大きい場合や流量が大きい場合はより鋭角にすることによって、 溶液が円滑に流れる。 従って, 実施にあたっては、 粘度 ·流量に対応する最適角度 を予め実験などにより求めておけばよい。
また、 以上の実施例において、 シャワーへッドとサセプターとの間の空間の距離 を任意の距離に制御するための機構を設けることが好ましい。
さらに、原料溶液の流量を制御するための液体マスフローコントローラを設ける とともに、該液体マスフローコントローラの上流側に脱気するための脱気手段を設 けることが好ましい。脱気せず、 マスフローコントローラに原料溶液を導入すると 成膜された膜のばらつきが同一ゥェ一ハ上あるいは他のゥエーハ同士との間で生 じる。ヘリウムなどを脱気後にマスフ口一コントローラに原料溶液を導入すること により上記膜厚のばらつきが著しく減少する。
原料溶液およびへリゥム圧送容器及び液体マスフローコントローラおよび前後 の配管の温度を一定温度に制御するための手段を設けることによりより一層膜厚 のばらつきを防止することができる。 また、化学的に不安定な原料溶液の変質を防 ぐこともできる。 S B T薄膜を形成する際は、 5 °C〜2 0 °Cの範囲で、 精密に制御 する。 特に 1 2 °C ± 1 °Cが望ましい。
また、 図 2 2 、 2 3に示すようなシリコン基板等の基板表面へ所定のガスを吹き 付け該基板表面へ表面処理を施す基板表面処理装置において、熱媒体の貫流の為の 熱媒体入口 3 2 0と接続された上流環 3 0 1と、前記所定の熱媒体の熱媒体出口 3 2 1と接続された下流環 3 0 2と、前記上流環 1と下流環 2との間を互いに平行方 向に接続し前記熱媒体の流路を形成する少なくとも 2個の熱伝達路 3 0 3 a、 3 0 3 bとを有し、 隣接する前記熱伝達路 3 0 3 a、 3 0 3 b間の前記上流環 1から下 流環 3 0 2への流路方向を交互とし、前記ガスを所定の温度とするための熱媒体循 環路が構成されたものとすることが好ましい。
また、 前記基板表面処理装置は、 さらに、 前記熱媒体循環路内の所定平面内であ り、前記平行方向の前記熱媒体の流路の形成された平面内に前記熱媒体循環路と熱 的に接続された熱変換板 3 0 4を有し、該熱変換板 3 0 4の前記平面内を前記熱媒 体により略均一温度に熱することを可能とすることが好ましい。
さらに、 前記熱変換板 3 0 4の前記平面内には、 該平面の垂直方向へ前記所定の ガスを通過させる複数の通気孔が形成され、該通気孔を通過する前記所定のガスを、 前記平面内において略均一温度に熱することを可能とすることが好ましい。
これにより、熱媒体循環路の隣接する熱伝達路間の上流環から下流環への流路方 向を交互として構成される。 このため、 熱伝達路に隣接する領域の温度差が高 Z低 Z高/低 · · · · と構成される。 本構成により、 熱変換板を均一に加熱、 あるいは 冷却することが可能となる。 また、 さらに、 平行方向の熱媒体の流路の形成された 平面内に熱媒体循環路と熱的に接続された熱変換板を有している。 よって、 この熱 変換板の平面内を熱媒体により略均一温度に熱することを可能となる。
本発明は全ての気化器に適用できる。 また、 キャリアガスに含ませる溶媒は気体 でも液体でもよいし、 原料溶液の溶媒と同じ溶媒でも異なる溶媒でもよい。 産業上の利用可能性
本発明によれば、 目詰まりなどを起こすことがなく長期使用が可能であり、 かつ、 反応部への安定的な原料供給が可能な M O C V D用などの成膜装置その他装置用 気化器を提供することができる。
本発明によれば、 有機金属材料が均一分散された気化ガスを得ることができる。

Claims

請求の範囲
1 . 原料溶液をキヤリァガスに含ませて気化させる気化器において、 該原料溶液 を含む前の該キヤリアガスに、該原料溶液の溶媒を含ませるための手段を設けたこ とを特徴とする気化器。
2 . 該溶媒は、 該気化器の温度において飽和状態となるように含ませることを特 徴とする請求項 1記載の気化器。
3 . 気化器のキャリアガス導入口の前に、 溶媒を含む容器を設け、 該容器内をキ ャリァガスを通過させるようにしたことを特徴とする請求項 1または 2記載の気 化器。
4 . 前記原料溶液に前記キャリアガスを含ませる部分の下流側に、 溶媒を導入す るための溶媒導入通路を設けたことを特徴とする請求項 1または 2記載の気化器。
5 .前記溶媒導入通路にマスフローコントローラを設けたことを特徴とする請求 項 4記載の気化器。
6 . ①内部に形成されたガス通路と、
該ガス通路にキヤリァガスを導入するためのガス導入口と、
該ガス通路に原料溶液を供給するための手段と、
原料溶液を含むキヤリァガスを気化部に送るためのガス出口と、
を有する分散部と ;
②一端が成膜その他の各種装置の反応部に接続され、他端が前記ガス出口に接続 された気化管と、
該気化管を加熱するための加熱手段と、
を有し、
前記分散部から送られてきた、霧化された原料溶液を含むキヤリアガスを加熱し て気化させるための気化部と ;
を有することを特徴とする請求項 1ないし 5のいずれか 1項記載の気化器。
7 .該ガス通路を冷却するための手段を設けたことを特徴とする請求項 1ないし 6のいずれか 1項記載の気化器。
8 .該ガス出口の外側に細孔を有する輻射防止部を設けたことを特徴とする請求 項 6または 7記載の気化器。
9 .前記分散部と前記気化部とを接続する部分を冷却するための冷却手段を設け たことを特徴とする請求項 6ないし 8のいずれか 1項記載の気化器。
1 0 . 前記輻射防止部は、 分散部側から気化部側に向かい内径が大きくなるテー パーを有していることを特徴とする請求項 6ないし 9のいずれか 1項記載の気化 器。
1 1 . 前記分散部は、 円筒状或いは円錐状の中空部を有する分散部本体と、 該円 筒状或いは円錐状中空部の内径より小さな外径を有するロッドとを有し、
該ロッドは該円筒状或いは円錐状中空部に挿入されていることを特徴とする請 求項 6ないし 1 1のいずれか 1項記載の気化器。
1 2 . 前記円錐状の中空部の円錐の角度は、 0〜4 5度であることを特徴とする 請求項 1 1項記載の気化器。
1 3 . 前記円錐状の中空部の円錐の角度は、 8〜 2 0度であることを特徴とする 請求項 1 1または 1 2項記載の気化器。
1 4 . 前記分散部は、 円筒状或いは円錐状の中空部を有する分散部本体と、 該円 筒状或いは円錐状中空部の内径とほぼ同じ外径を有するロッドとを有し、
該ロッドの外周には 1又は 2以上の溝が形成され、
該ロッドは該円筒状或いは円錐状の中空部に挿入されていることを特徴とする 請求項 6ないし 1 3のいずれか 1項記載の気化器。
1 5 . 前記溝は直線状の溝であることを特徴とする請求項 1 4記載の気化器。
1 6 . 前記溝は螺旋状の溝であることを特徴とする請求項 1 4記載の気化器。
1 7 . 前記原料溶液は、 均一溶液または 1〜 1 0 0 n mの大きさの微粒子を含有 する液であることを特徴とする請求項 1ないし 1 6のいずれか 1項に記載の気化 器。
1 8 .前記原料溶液の容器の底面に加熱手段を設けたことを特徴とする請求項 1 ないし 1 7のいずれか 1項に記載の気化器。
1 9 . ①内部に形成されたガス通路と、
該ガス通路に加圧されたキヤリァガスを導入するためのガス導入口と、 該ガス通路に原料溶液を供給するための手段と、
原料溶液を含むキヤリァガスを気化部に送るためのガス出口と、 を有する分散部と ;
②一端が成膜その他の各種装置の反応部に接続され、他端が前記ガス出口に接続 された気化管と、
該気化管を加熱するための加熱手段と、
を有し、
前記分散部から送られてきた、原料溶液を含むキヤリァガスを加熱して気化させ るための気化部と ;
を有し、
③前記分散部は、 円筒状或いは円錐状中空部を有する分散部本体と、 該円筒状或 いは円錐状中空部の内径より小さな外径を有するロッ ドとを有し、
該ロッドは、 その外周の気化器側に 1又は 2以上の螺旋状の溝を有し、 かつ、 該 円筒状或いは円錐状中空部に挿入され、気化器側に向かい内径がテーパー状に広が ることを特徴とする請求項 1ないし 5のいずれか 1項記載の気化器。
2 0 . 該ガス出口の外側に、 ガス出口側に細孔を有し、 気化器側に向かい内径が テーパー状に広がる輻射防止部を設けたことを特徴とする請求項 1 9記載の気化
2 1 . 前記細孔は、 噴出するガス流速が亜音速となる寸法を有することを特徴と する請求項 2 0記載の気化器。
2 2 . 前記細孔の断面積は、 前記ガス通路の断面積より小さいことを特徴とする 請求項 2 0または 2 1記載の気化器。
2 3 . 前記細孔の断面積は、 前記ガス通路の断面積の 1 Z 2以下であることを特 徵とする請求項 2 0ないし 2 2のいずれか 1項記載の気化器。
2 4 . 前記細孔の断面積は、 前記ガス通路の断面積の 1 3以下であることを特 徴とする請求項 2 0ない 2 3のいずれか 1項記載の気化器。
2 5 . 前記細孔を構成する材料は、 熱伝導性の良い材料から構成されることを特 徴とする請求項 2 0ないし 2 4のいずれか 1項記載の気化器。
2 6 . 前記細孔の長さは、 前記細孔寸法の 5倍以上であることを特徴とする請求 項 2 0ないし 2 5のいずれか 1項記載の気化器。
2 7 . 前記細孔の長さは、 前記細孔寸法の 1 0倍以上であることを特徴とする請 求項 2 0ないし 2 6のいずれか ]項記載の気化器。
2 8 .前記ガス通路を冷却するための手段を設けたことを特徴とする請求項 2 0 ないし 2 7のいずれか 1項記載の気化器。
2 9 .前記分散部と前記気化部とを接続する接続部を冷却するための冷却手段を 設けたことを特徴とする請求項 2 0ないし 2 8のいずれか 1項記載の気化器。
3 0 .前記ロッド表面は電解研磨又は複合電解研磨された表面であることを特徴 とする請求項 2 0ないし 2 9のいずれか 1項記載の気化器。
3 1 .該ガス通路を冷却するための手段を設けたことを特徴とする請求項 2 0な いし 3 0のいずれか 1項記載の気化器。
3 2 .前記分散部と前記気化部とを接続する部分を冷却するための冷却手段を設 けたことを特徴とする請求項 2 0ないし 3 1のいずれか 1項記載の気化器。
3 3 . 前記原料溶液は、完全溶媒液または 1〜 1 0 0 n mの大きさの微粒子を含 有する液であることを特徴とする請求項 2 0ないし 3 2のいずれか 1項に記載の 気化器。
3 4 . 前記原料溶液の容器の底面に加熱手段を設けたことを特徴
とする請求項 2 0ないし 3 3のいずれか 1項に記載の気化器。
3 5 . ①内部に形成されたガス通路と、
該ガス通路にキャリアを導入するためのガス導入口と、
該ガス通路に原料溶液を供給するための手段と、
原料溶液を含むキヤリァガスを気化部に送るためのガス出口と、
該ガス通路を冷却するための手段と、
を有する分散部と ;
②一端が成膜その他の各種装置の反応部に接続され、他端が前記ガス出口に接続 された気化管と、
該気化管を加熱するための加熱手段と、
を有し、 ,
前記分散部から送られてきた、原料溶液を含むキヤリアガスを加熱して気化させ るための気化部と ;
を有し 前記ガス導入口からキヤリァガスに酸化性ガスを添加又は一次酸素供給口より 酸化性ガスを導入し得るようにしたことを特徴とする請求項 1ないし 5のいずれ か 1項記載の気化器。
3 6.前記分散部直近に第二のキヤリァガス及び Z又は酸化性ガスを導入し得る ようにしたことを特徴とする請求項 3 5記載の気化器。
3 7.前記分散部と前記気化部とを接続する部分を冷却するための冷却手段を設 けたことを特徴とする請求項 35または 36に記載の気化器。
3 8. 前記分散部と前記気化部とを接続する部分は、 分散部側から気化部側に向 かい内径が大きくなるテーパーをなしていることを特徵とする請求項 3 5ないし 3 7のいずれか 1項に記載の気化器。
3 9. 前記分散部は、 円筒状或いは円錐状中空部を有する分散部本体と、 該円筒 状或いは円錐状中空部の内径より小さな外径を有するロッドとを有し、
該ロッドは該円筒状或いは円錐状中空部に挿入されていることを特徴とする請 求項 3 5ないし 38のいずれか 1項記載の気化器。
40. 前記分散部は、 円筒状或いは円錐状中空部を有する分散部本体と、 該円筒 状或いは円錐状中空部の内径とほぼ同じ外径を有するロッドとを有し、
該ロッ ドの外周には 1又は 2以上の溝が形成され、
該ロッドは該円筒状或いは円錐状中空部に挿入されていることを特徴とする請 求項 3 5ないし 39のいずれか 1項記載の気化器。
4 1. 前記溝は直線状の溝であることを特徴とする請求項 40記載の気化器。
42. 前記溝は螺旋状の溝であることを特徴とする請求項 40記載の気化器。
43. 前記溝に流れるガス等の流速は、 1 Om/s e c. 以上であることを特徴 とする請求項 40ないし 42のいずれか 1項記載の気化器。
44. 前記溝に流れるガス等の流速は、 I SmZs e c. 以上であることを特徴 とする請求項 3 5ないし 43のいずれか 1項記載の気化器。
45. 前記原料溶液は、 完全溶媒液または 1〜 1 00 nmの大きさの微粒子を含 有する液であることを特徴とする請求項 35ないし 44のいずれか 1項に記載の 気化器。
46.前記原料溶液の容器の底面に加熱手段を設けたことを特徴とする請求項 3 5ないし 4 4のいずれか 1項に記載の気化器。
4 7 . 前記酸化性ガスは 0 2 , N 2 O , N O 2のいずれか一種以上であることを 特徴とする請求項 3 5ないし 4 6のいずれか 1項に記載の気化器。
4 8 . ①内部に形成されたガス通路と、
該ガス通路にキヤリアを導入するためのガス導入口と、
該ガス通路に原料溶液を供給するための手段と、
原料溶液を含むキヤリァガスを気化部に送るためのガス出口と、
該ガス通路を冷却するための手段と、
を有する分散部と ;
②一端が成膜その他の各種装置の反応部に接続され、他端が前記ガス出口に接続 された気化管と、
該気化管を加熱するための加熱手段と、
を有し、
前記分散部から送られてきた、原料溶液を含むキヤリアガスを加熱して気化させ るための気化部と ;
を有し、
該ガス出口の外側に細孔を有する輻射防止部を設け、
前記ガス導入口からキャリアガスと酸化性ガスとを導入し得るようにしたこと を特徴とする請求項 1ないし 5のいずれか 1項記載の気化器。
4 9 .前記分散部直近にキヤリァガス及び Z又は酸化性ガスを導入し得るように したことを特徴とする請求項 4 8記載の気化器。
5 0 .前記分散部と前記気化部とを接続する部分を冷却するための冷却手段を設 けたことを特徴とする請求項 4 8または 4 9記載の気化器。
5 1 . 前記輻射防止部には、分散部側から気化部側に向かい内径が大きくなるテ ーパ一を有していることを特徴とする請求項 4 8ないし 5 0のいずれか 1項に記 載の気化器。
5 2 . 前記分散部は、 円筒状或いは円錐状中空部を有する分散部本体と、 該円筒 状或いは円錐状中空部の内径より小さな外径を有するロッドとを有し、
該ロッドは該円筒状或いは円錐状中空部に挿入されていることを特徴とする請 求項 4 8ないし 5 1のいずれか 1項記載の気化器。
5 3 . 前記原料溶液は、 完全溶媒液または 1〜 1 0 0 n mの大きさの微粒子を含 有する液であることを特徴とする請求項 4 8ないし 5 2のいずれか 1項に記載の 気化器。
5 4 .前記原料溶液の容器の底面に加熱手段を設けたことを特徴とする請求項 4 8ないし 5 3のいずれか 1項に記載の気化器。
5 5 . 前記分散部は、 円筒状或いは円錐状中空部を有する分散部本体と、 該円筒 状或いは円錐状中空部の内径とほぼ同じ外径を有するロッドとを有し、
該ロッドの外周には 1又は 2以上の溝が形成され、
該ロッ ドは該円筒状或いは円錐状中空部に挿入されていることを特徴とする請 求項 4 8ないし 5 4のいずれか 1項記載の気化器。
5 6 .前記溝は円筒或いは円錐状の中空部に設けられた直線状の溝であることを 特徴とする請求項 5 5記載の気化器。
5 7 . 原料溶液をキャリアガスに含ませる分散器において、 該原料溶液を含む前 の該キヤリァガスに、該原料溶液の溶媒を含ませるための手段を設けたことを特徴 とする分散器。
5 8 . 該溶媒は、 該気化器の温度において飽和状態となるように含ませることを 特徴とする請求項 5 7記載の分散器。
5 9 . 分散器のキャリアガス導入口の前に、 溶媒を含む容器を設け、 該容器内を キヤリァガスを通過させるようにしたことを特徴とする請求項 5 7または 5 8記 載の分散器。
6 0 . 前記原料溶液に前記キャリアガスを含ませる部分の下流側に、 溶媒を導入 するための溶媒導入通路を設けたことを特徴とする請求項 5 7または 5 8記載の 分散器。
6 1 .前記溶媒導入通路にマスフローコントロ一ラを設けたことを特徴とする請 求項 6 0記載の分散器。
6 2 . 原料溶液を供給する複数の溶液通路と、
該複数の溶液通路から供給される複数の原料溶液を混合する混合部と、 一端が混合部に連通し、 気化部側となる出口を有する供給通路と、 該供給通路内において、 該混合部から出た混合原料溶液に、 キヤリァガスあるい は、キヤリァガスと酸素との混合ガスを吹き付けるように配置されたガス通路とが 形成されていることを特徴とする請求項 5 7ないし 6 1のいずれか 1項記載の分 散気化器。
6 3 .該供給通路を冷却するための冷却手段が形成されていることを特徴とする 請求項 6 2記載の分散器。
6 4 . 原料溶液を供給する複数の溶液通路と、
該複数の溶液通路から供給される複数の原料溶液を混合する混合部と、 一端が混合部に連通し、 気化部側となる出口を有する供給通路と、
該供給通路内において、 該混合部から出た混合原料溶液に、 キャリアガスあるい は、キヤリァガスと酸化性ガスとの混合ガスを吹き付けるように配置されたガス通 路と、
該供給通路を冷却するための冷却手段と、
が形成されている分散器と、
一端が成膜その他の各種装置の反応部に接続され、他端が前記分散器の出口に接 続された気化管と、
該気化管を加熱するための加熱手段と ;
を有し、
前記分散部から送られてきた、原料溶液を含むキヤリアガスを加熱して気化させ るための気化部と ;
を有し、
該出口の外側に細孔を有する輻射防止部を設け、
該分散噴出部直近に酸化性ガスを導入し得る一次酸素供給口を設けたことを特徴 とする請求項 1ないし 5のいずれか 1項記載の気化器。
6 5 . 前記気化部の下部に、 高精度に温度制御した、 加熱した酸化性ガスを導入 し得る一次酸素供給口を設けたことを特徴とする請求項 6 4記載の気化器。
6 6 . 加熱して高精度に温度制御した、 酸化性ガスの温度は、 加熱管 (気化管) 温度土 3 0 °Cに制御できるようにしてあることを特徴とする請求項 6 4または 6 5記載の気化器。
6 7 . 加熱して高精度に温度制御した、 酸化性ガスの温度は、 加熱管 (気化管) 温度土 1 0 °Cに制御できるようにしてあることを特徴とする請求項 6 4ないし 6 6のいずれか 1項記載の気化器。
6 8 .管壁温度が均一になるよう加熱するための手段を設けたことを特徴とする 請求項 6 4ないし 6 7のいずれか 1項記載の気化器。
6 9 .気化管上部領域の加熱熱量が下流領域の加熱熱量よりも大きくなるように 加熱ヒータが設定ないし制御されていることを特徴とする請求項 6 4ないし 6 8 のいずれか 1項記載の気化器。
7 0 . 気化管内部のガス温度が、設定温度近辺まで上昇するのに必要な長さを有 することを特徴とする請求項 6 4ないし 6 8のいずれか 1項記載の気化器。 -
7 1 .キヤリァ流路と原料溶液導入口が形成する角度を 3 0〜 9 0 ° としたこと を特徴とする請求項 6 4ないし 7 0のいずれか 1項記載の気化器。
7 2 .請求項 1ないし 7 0のいずれか 1項記載の気化器または分散器を有するこ とを特徴とする成膜装置。
7 3 .前記成膜装置は C V D装置であることを特徴とする請求項 7 2記載の成膜
7 4 . 前記成膜装置は、 M O C V D装置であることを特徴とする請求項 7 2また は 7 3記載の成膜装置。
7 5 . 加熱され、 ガス化された反応ガスを、 大面積に均一に分散する、 加熱され たシャワーへッドを有することを特徴とする請求項 7 2ないし Ί 4のいずれか 1 項記載の成膜装置装置。
7 6 . 加熱した高温気体 (空気、 アルゴン等) を用いて、 上記シャワーヘッドを 一定温度に、均一に加熱するための手段を設けたことを特徴とする請求項 7 5記載 の成膜装置。
7 7 .前記膜は S B T薄膜であることを特徴とする請求項 7 2ないし 7 6のいず れか 1項記載の成膜装置。
7 8 . シャワーへッドとサセプターとの間の空間の温度を精密に制御する機構を 設けたことを特徴とする請求項 7 4ないし 7 7のいずれか 1項記載の成膜装置。
7 9 .シャワーへッドとサセプターとの間の空間の距離を任意の距離に制御する ための機構を設けたことを特徴とする請求項 7 4ないし 7 8のいずれか 1項記載 の成膜装置。
8 0 .原料溶液の流量を制御するための液体マスフローコントローラを設けると ともに、該液体マスフローコントローラの上流側に脱気するための脱気手段を設け たことを特徴とする請求項 7 2ないし 7 9のいずれか 1項記載の成膜装置。
8 1 .原料溶液およびヘリゥム圧送容器及び液体マスフローコントローラおよび 前後の配管の温度を一定温度に制御するための手段を設けたことを特徴とする請 求項 8 0記載の成膜装置。
8 2 . 原料溶液をキャリアガスに含ませて気化させる気化方法において、 該原料 溶液を含む前の該キヤリァガスに、該原料溶液の溶媒を含ませておくことを特徴と する気化方法。
8 3 . 該溶媒は、 該気化器の温度において飽和状態となるように含ませることを 特徴とする請求項 8 2記載の気化方法。
8 4 . 気化器のキャリアガス導入口の前に、 溶媒を含む容器を設け、 該容器内を キャリアガスを通過させることを特徴とする請求項 8 2または 8 3記載の気化方 法。
8 5 . 前記原料溶液に前記キャリアガスを含ませる部分の下流側に、 溶媒を導入 することを特徴とする請求項 8 2または 8 3記載の気化方法。
8 6 . 前記溶媒導入通路にマスフローコントローラを設けておき、 溶媒の圧力と、 流量を制御して導入することを特徴とする請求項 8 5記載の気化方法。
8 7 . ガス通路に原料溶液を導入し、 該導入した原料溶液に向けてキャリアガス を噴射させることにより該原料溶液を剪断 ·霧化させて原料ミストとし、 次いで、 該原料ミストを気化部に供給し気化させる気化方法において、キヤリァガス中に酸 素を含有せしめておくことを特徴とする請求項 8 2ないし 8 6のいずれか 1項記 載の気化方法。
8 8 . 前記キャリアガスの噴射速度は、 1 0〜 2 0 O m/ sであることを特徴と する請求項 8 6記載の気化方法。
8 9 . 原料溶液を 0 . 0 0 5〜 2 c c /m i nで導入することを特徴とする請求 項 8 7または 8 8載の気化方法。
9 0 . 原料溶液を導入した部分から下流においては、 キャリアガスないし原料ガ スを、螺旋流と該螺旋流上層を流れる直進流とを併存させて流すことを特徴とする 請求項 8 7ないし 8 9のいずれか 1項記載の気化方法。
9 1 . 原料溶液を導入した部分から前記気化部までの間において、 原料ガスを冷 却することを特徴とする請求項 8 7ないし 9 0のいずれか 1項記載の原料溶液の 気化方法。
9 2 . 熱容量が大きい液体または気体からなる熱媒体に用いて、 気化管の壁を均 一に加熱することを特徴とする請求項 8 8ないし 9 1のいずれか 1項記載の気化 方法
9 3 . 原料溶液を、 気体溶解度の小さいヘリウムを用いて、 圧送することを特徴 とする請求項 8 7ないし 9 2のいずれか 1項記載の気化方法。
9 4 . 僅かに溶解しているガスを脱気してから、 液体マスフローコントローラ等 を用いて原料溶液流量を精密に制御することを特徴とする請求項 8 7ないし 9 3 のいずれか 1項記載の気化方法。
9 5 .原料溶液およびヘリウム圧送容器及び液体マスフローコントローラおよび 前後の配管の温度を一定温度に制御することを特徴とする請求項 8 7ないし 9 4 のいずれか 1項記載の気化方法。
9 6 . S B T薄膜を形成する際は、 5 °C〜 2 0 °Cの範囲で制御することを特徴と する請求項 9 5記載の気化方法。
9 7 . S B T薄膜を形成する際は、 1 2 °C ± 1 °Cの範囲で制御することを特徴と する請求項 9 5または 9 6記載の気化方法。
9 8 .原料溶液およびヘリゥム圧送容器及び液体マスフローコントローラおよび 前後の配管の温度を一定温度に制御することを特徴とする請求項 8 7ないし 9 7 のいずれか 1項記載の気化方法。
9 9 .請求項 8 2ないし 9 8のいずれか 1項記載の気化方法を用いたことを特徴 とする成膜方法。
1 0 0 . 反応待ち時間に、 堆積ガスを気化器を経由してベント側に流し続ける事 により、反応ガスを反応チヤンバ一に流した時の流量変動を抑制させることを特徴 とする請求項 9 9記載の成膜方法。
10 1. 反応待ち時間に、反応ガスを気化器を経由してベント側に流し続ける際 に、 気化器の圧力を制御し、反応ガスを反応チャンバ一に流した時の圧力変動と流 量変動を抑制させることを特徴とする請求項 98または 99記載の成膜方法。
1 02. 加熱されたシャワーヘッドを用い、 加熱され、 ガス化された反応ガスを、 大面積に均一に分散することを特徴とする請求項 99ないし 1 0 1のいずれか 1 項記載の成膜方法。
10 3. 加熱した高温気体 (空気、 アルゴン等) を用いて、 上記シャワーヘッド を一定温度に、 均一に加熱することを特徴とする請求項 102記載の成膜方法。
1 04.前記膜は S BT薄膜であることを特徴とする請求項 9 9ないし 1 03の いずれか 1項記載の成膜方法。
1 0 5. シャワーへッドの温度は、 1 80〜250 °Cに制御することを特徴とす る請求項 1 02ないし 1 04のいずれか 1項記載の成膜方法。
1 06. シャワーへッドの温度は、 200〜220 °Cに制御することを特徴とす る請求項 1 02ないし 1 05のいずれか 1項記載の成膜方法。
PCT/JP2003/006766 2002-05-29 2003-05-29 Evaporateur, differents appareils l'incorporant et procede de vaporisation WO2003100840A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003241915A AU2003241915A1 (en) 2002-05-29 2003-05-29 Vaporizer, various apparatuses including the same and method of vaporization
EP03733161A EP1533835A1 (en) 2002-05-29 2003-05-29 Vaporizer, various apparatuses including the same and method of vaporization
US10/515,888 US20060037539A1 (en) 2002-05-29 2003-05-29 Vaporizer, various apparatuses including the same and method of vaporization
JP2004508397A JP4391413B2 (ja) 2002-05-29 2003-05-29 気化器、分散器、成膜装置、及び、気化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002156521 2002-05-29
JP2002-156521 2002-05-29

Publications (1)

Publication Number Publication Date
WO2003100840A1 true WO2003100840A1 (fr) 2003-12-04

Family

ID=29561488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006766 WO2003100840A1 (fr) 2002-05-29 2003-05-29 Evaporateur, differents appareils l'incorporant et procede de vaporisation

Country Status (7)

Country Link
US (1) US20060037539A1 (ja)
EP (1) EP1533835A1 (ja)
JP (1) JP4391413B2 (ja)
KR (1) KR20050113549A (ja)
AU (1) AU2003241915A1 (ja)
TW (1) TW200401841A (ja)
WO (1) WO2003100840A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126677A1 (ja) * 2005-05-27 2006-11-30 Kirin Beer Kabushiki Kaisha ガスバリア性プラスチック容器の製造装置、その容器の製造方法及びその容器
WO2009047151A1 (en) 2007-10-10 2009-04-16 Basf Se Sulphonium salt initiators
JP2016191155A (ja) * 2011-02-28 2016-11-10 株式会社渡辺商行 気化器および気化方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196479A (ja) * 2007-02-09 2008-08-28 Sulzer Chemtech Ag 排気ガス浄化システム
JP5427344B2 (ja) 2007-05-23 2014-02-26 株式会社渡辺商行 気化装置、及び、気化装置を備えた成膜装置
KR101234409B1 (ko) * 2009-09-30 2013-02-18 시케이디 가부시키가이샤 액체 기화 시스템
CN103648974B (zh) * 2011-09-13 2015-10-21 东芝三菱电机产业系统株式会社 氧化膜成膜方法及氧化膜成膜装置
JP6695701B2 (ja) * 2016-02-03 2020-05-20 株式会社Screenホールディングス 処理液気化装置と基板処理装置
KR102483924B1 (ko) * 2016-02-18 2023-01-02 삼성전자주식회사 기화기 및 이를 구비하는 박막 증착 장치
FR3050254B1 (fr) * 2016-04-13 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de conversion d'un liquide en vapeur
US10147597B1 (en) * 2017-09-14 2018-12-04 Lam Research Corporation Turbulent flow spiral multi-zone precursor vaporizer
EP3846886A4 (en) 2018-09-06 2022-06-08 Bergstrom Innovations, LLC VAPORIZATION DEVICES AND VAPORATION METHODS
US11413556B2 (en) 2018-11-29 2022-08-16 Tsi Incorporated Reducing or eliminating liquid de-gassing
WO2020251696A1 (en) 2019-06-10 2020-12-17 Applied Materials, Inc. Processing system for forming layers
TW202146701A (zh) * 2020-05-26 2021-12-16 荷蘭商Asm Ip私人控股有限公司 氣相沉積系統、在基材上形成氮化釩層之方法、直接液體注入系統
WO2022190711A1 (ja) * 2021-03-11 2022-09-15 株式会社フジキン 気化器および気化供給装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216150A (ja) * 1999-01-22 2000-08-04 Watanabe Shoko:Kk Mocvd用気化器及び原料溶液の気化方法
JP2000345345A (ja) * 1999-06-04 2000-12-12 Mitsubishi Electric Corp Cvd装置およびcvd装置用気化装置
US20010029090A1 (en) * 1999-06-14 2001-10-11 Mitsubishi Denki Kabushiki Kaisha Method of forming high dielectric constant thin film and method of manufacturing semiconductor device
JP2002289556A (ja) * 2001-03-27 2002-10-04 Fujitsu Ltd 成膜用治具及びその製造方法並びに半導体装置の製造装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776254A (en) * 1994-12-28 1998-07-07 Mitsubishi Denki Kabushiki Kaisha Apparatus for forming thin film by chemical vapor deposition
JP3612839B2 (ja) * 1996-02-13 2005-01-19 三菱電機株式会社 高誘電率薄膜構造、高誘電率薄膜形成方法および高誘電率薄膜形成装置
TW346676B (en) * 1996-05-14 1998-12-01 Matsushita Electron Co Ltd Method of manufacturing layered ferroelectric Bi containing film
US5835677A (en) * 1996-10-03 1998-11-10 Emcore Corporation Liquid vaporizer system and method
US6271498B1 (en) * 1997-06-23 2001-08-07 Nissin Electric Co., Ltd Apparatus for vaporizing liquid raw material and method of cleaning CVD apparatus
US6267820B1 (en) * 1999-02-12 2001-07-31 Applied Materials, Inc. Clog resistant injection valve
EP1211333A3 (en) * 2000-12-01 2003-07-30 Japan Pionics Co., Ltd. Vaporizer for CVD apparatus
CN1966762B (zh) * 2001-01-18 2015-01-21 株式会社渡边商行 汽化器、使用汽化器的各种装置以及汽化方法
JP2003268552A (ja) * 2002-03-18 2003-09-25 Watanabe Shoko:Kk 気化器及びそれを用いた各種装置並びに気化方法
JP2004273766A (ja) * 2003-03-07 2004-09-30 Watanabe Shoko:Kk 気化装置及びそれを用いた成膜装置並びに気化方法及び成膜方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216150A (ja) * 1999-01-22 2000-08-04 Watanabe Shoko:Kk Mocvd用気化器及び原料溶液の気化方法
JP2000345345A (ja) * 1999-06-04 2000-12-12 Mitsubishi Electric Corp Cvd装置およびcvd装置用気化装置
US20010029090A1 (en) * 1999-06-14 2001-10-11 Mitsubishi Denki Kabushiki Kaisha Method of forming high dielectric constant thin film and method of manufacturing semiconductor device
JP2002289556A (ja) * 2001-03-27 2002-10-04 Fujitsu Ltd 成膜用治具及びその製造方法並びに半導体装置の製造装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126677A1 (ja) * 2005-05-27 2006-11-30 Kirin Beer Kabushiki Kaisha ガスバリア性プラスチック容器の製造装置、その容器の製造方法及びその容器
US8186301B2 (en) 2005-05-27 2012-05-29 Kirin Beer Kabushiki Kaisha Apparatus for manufacturing gas barrier plastic container, method for manufacturing the container, and the container
CN101184669B (zh) * 2005-05-27 2012-06-06 麒麟麦酒株式会社 阻气性塑料容器的制造装置、该容器的制造方法及该容器
JP5260050B2 (ja) * 2005-05-27 2013-08-14 麒麟麦酒株式会社 ガスバリア性プラスチック容器の製造装置及びその容器の製造方法
WO2009047151A1 (en) 2007-10-10 2009-04-16 Basf Se Sulphonium salt initiators
JP2016191155A (ja) * 2011-02-28 2016-11-10 株式会社渡辺商行 気化器および気化方法

Also Published As

Publication number Publication date
AU2003241915A1 (en) 2003-12-12
KR20050113549A (ko) 2005-12-02
JP4391413B2 (ja) 2009-12-24
US20060037539A1 (en) 2006-02-23
JPWO2003100840A1 (ja) 2005-09-29
EP1533835A1 (en) 2005-05-25
TW200401841A (en) 2004-02-01

Similar Documents

Publication Publication Date Title
JP4986163B2 (ja) Mocvd用気化器及び成膜装置
WO2004079806A1 (ja) 気化装置及びそれを用いた成膜装置並びに気化方法及び成膜方法
WO2003079422A1 (fr) Vaporisateur, differents dispositifs dans lesquels il intervient, et procede de vaporisation
US6931203B2 (en) Vaporizer for MOCVD and method of vaporizing raw material solutions for MOCVD
WO2003100840A1 (fr) Evaporateur, differents appareils l&#39;incorporant et procede de vaporisation
WO2003079421A1 (fr) Procede de depot de couche mince cvd
US20060070575A1 (en) Solution-vaporization type CVD apparatus
JP5016416B2 (ja) 気化器及び気化方法
WO2002058129A1 (en) Ferroelectric thin film, metal thin film or oxide thin film, and method and apparatus for preparation thereof, and electric or electronic device using said thin film
JP2008205506A (ja) 気化器及びそれを用いた各種装置並びに気化方法
JP5185726B2 (ja) 気化器、薄膜形成装置及びmocvd装置
JP2019183284A (ja) Mocvd装置による窒化膜を成膜する成膜方法及び成膜装置、並びにシャワーヘッド
JP2005328085A (ja) Mocvd用気化器及び原料溶液の気化方法
JP2007258733A (ja) 気化方法及び成膜方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020047019138

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004508397

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003733161

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003733161

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006037539

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10515888

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020047019138

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10515888

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载