+

WO2003039725A1 - Compositions emulsifiantes comprenant des nanoparticules minerales de surface modifiee - Google Patents

Compositions emulsifiantes comprenant des nanoparticules minerales de surface modifiee Download PDF

Info

Publication number
WO2003039725A1
WO2003039725A1 PCT/FR2002/003848 FR0203848W WO03039725A1 WO 2003039725 A1 WO2003039725 A1 WO 2003039725A1 FR 0203848 W FR0203848 W FR 0203848W WO 03039725 A1 WO03039725 A1 WO 03039725A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
emulsion
particle
hydrophobic
chains
Prior art date
Application number
PCT/FR2002/003848
Other languages
English (en)
Inventor
Jean-Yves Chane-Ching
David Monin
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Publication of WO2003039725A1 publication Critical patent/WO2003039725A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/14Derivatives of phosphoric acid
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0008Sols of inorganic materials in water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0065Preparation of gels containing an organic phase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/017Mixtures of compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • C11D3/062Special methods concerning phosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/1226Phosphorus containing
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/168Organometallic compounds or orgometallic complexes

Definitions

  • Emulsifying compositions comprising mineral particles of nanometric dimensions of modified surface and surfactants formed by such particles
  • the present invention relates to emulsifying compositions comprising surfactants formed from surface-modified solid particles, to said surfactants, as well as to methods of preparing such compositions.
  • the surfactants currently known are generally molecules or macromolecules of amphiphilic nature, that is to say having on the one hand a hydrophilic region and on the other hand a hydrophobic region. This particular structure induces an orientation of these molecules when they are present at liquid / liquid, liquid / gas or liquid / solid type interfaces.
  • surfactants can adsorb at these interfaces. This adsorption causes a lowering of the interfacial tension ⁇ and thus makes it possible to reduce the free energy of the systems which contain a large interfacial area, which induces their stabilization (foams, emulsions ).
  • the term surfactant comes from this decrease in the interfacial tension that the phenomenon of orientation of the molecules generates.
  • a surfactant is a molecule consisting of one or more ionic or nonionic hydrophilic group (s) and one or more hydrophobic chain (s), most often hydrocarbon (s) ). It is the exact nature of these two groups which determines the surfactant properties of the molecule obtained. It should therefore be emphasized that the structure of a molecular surfactant is generally relatively fixed. Therefore, it is difficult, in the general case, to confer on a surfactant other properties than properties related to its amphiphilic nature.
  • amphiphilic particles do indeed behave in a particular way at water / oil type interfaces, it cannot however be considered that they can replace the conventional molecular surfactants.
  • these particles cannot, for example, be used as emulsifying agents, in particular because of their large size and their weakly marked amphiphilic nature.
  • a first object of the present invention is to provide compositions comprising surfactants having, in more than one marked emulsifying character, interesting physical and / or chemical properties, not linked to this amphiphilic character.
  • the invention also aims to provide compositions comprising surfactants having a sufficient size giving them reduced mobility, and nonetheless capable of replacing conventional molecular surfactants, at least in certain applications, and in particular in processes of emulsification.
  • Another object of the invention is to provide emulsifying compositions based on surfactants of solid nature which can advantageously replace the emulsifying compositions generally used, for example for the production of emulsions, inverse emulsions or d multiple emulsions, ensuring sufficient stabilization of the emulsion while also benefiting from the solid nature and the physico-chemical properties of the surfactants used.
  • the subject of the present invention is an emulsifying composition
  • a emulsifying composition comprising particles of nanometric dimensions based on a metallic compound chosen from a phosphate or a vanadate, to the surface of which organic chains of hydrophobic nature are linked, said composition having specifically an emulsifying nature such that it makes it possible to produce an emulsion of the water in oil or oil in stabilized water type, characterized by a content in dispersed phase greater than or equal to 20%, preferably greater than or equal at 30%, and preferably greater than or equal to 40%, and where the average size of the drops forming the dispersed phase is less than or equal to 20 microns, preferably less than or equal to 10 microns, advantageously less than or equal to 5 microns, and even more advantageously less than or equal to 3 microns, or even less than or equal to 1 micron.
  • stabilized emulsion is meant, within the meaning of the present invention, an emulsion of the water in oil type (reverse emulsion) or oil in water (direct emulsion) where the phenomena of coalescence between the drops of the dispersed phase are reduced enough so that the rupture of the emulsion following storage of said emulsion for a period greater than or equal to 3 days, advantageously for a period at least equal to 7 days, and preferably for a period at least equal to 30 days.
  • a stabilized emulsion within the meaning of the invention is such that its structure remains stable after being subjected to centrifugation carried out at a speed greater than or equal to 4000 revolutions per minute and for a duration of at least twenty minutes.
  • the emulsifying compositions of the present invention have an emulsifying character sufficient to make it possible to produce stabilized emulsions of water in oil type (reverse emulsions) characterized by contents in aqueous phase greater than or equal to 40%, and in which the average size of the drops of the dispersed phase is at most 20 microns, most often at most 10 microns, and advantageously at most 5 microns.
  • the particles of nanometric dimensions based on phosphate or metallic vanadate present in the emulsifying compositions of the present invention, to the surface of which organic chains of hydrophobic nature are linked are such that, on the surface of most of these particles, the links between said chains and the surface are distributed in a non-homogeneous manner, so that each of the surface particles thus modified has an effective amphiphilic character, that is to say that, when it is placed in a two-phase water / oil medium such as a two-phase medium of water / ethyl acetate, water / hexane, or water / octanol type, said particle is localized specifically at the interface between the two phases present.
  • This amphiphilic character can in particular be demonstrated by using a test of the type described by Nakahama et al. in Langmuir, volumel ⁇ , pp. 7882-7886 (2000).
  • the surface-active agents formed by such particles of nanometric dimensions of surface modified by organic chains of hydrophobic character, distributed in a non-homogeneous manner on the surface, by which the modified surface particle has an effective amphiphilic character, are new and constitute, according to a particular aspect, another object of the present invention.
  • the effective amphiphilic nature of the surfactants present in the compositions of the present invention is explained by the fact that these agents have a structure specifically comprising a zone (1) of generally hydrophilic character. , at least partially due to the hydrophilic nature of the surface of the particle, and an area (2) of generally hydrophobic nature, due to the presence of chains of hydrophobic nature.
  • particle of nanometric dimensions is meant, within the meaning of the present invention, an isotropic or anisotropic particle whose dimension (s) characteristic (s) average (s) is or are included (s) between 2 and 300 nm.
  • the particles of nanometric dimensions present in the compositions of the invention can be of isotropic or spherical morphology.
  • the average diameter of the particles is advantageously between 2 and 150 nm, this average diameter being advantageously less than or equal to 100 nm, preferably less than or equal to 50 nm, and particularly advantageously less than or equal to 10 nm .
  • the average diameter of a particle of isotropic or spherical morphology present in a composition of the invention is advantageously between 2 and 6 nm.
  • the particles of nanometric dimensions present in the compositions of the invention can be of anisotropic morphology, and they then generally appear in the form of oblong or acicular particles of average length generally between 5 and 250 nm , and advantageously less than or equal to 100 nm, with an anisotropy ratio generally between 2 and 300.
  • anisotropy ratio of a population of particles of anisotropic morphology, of oblong or acicular type, is meant the ratio the average length of the particles in relation to their average transverse diameter.
  • the particles present in the compositions of the invention are particles capable of having a colloidal character when they are dispersed in an aqueous and / or hydrophobic medium.
  • a dispersion of the particles present in the compositions of the invention in an aqueous medium or in a hydrophobic medium, optionally using mechanical desagglomeration, for example using a disperser of the Ultraturax type advantageously leads to obtaining a dispersion of the particles having an interparticle agglomeration rate (defined by the number of particles in the agglomerated state over the total number of particles) of less than 5%, and advantageously less than 2%, the particles present being the most often essentially all individualized, and the dispersion obtained being preferably stable with respect to decantation, and advantageously having a very low tendency to interparticle re-agglomeration.
  • the particle size distribution of the particles within a dispersion thus obtained is generally monodispersed.
  • the particles of nanometric dimensions present in the compositions of the invention are, typically, particles based on a metal phosphate or a metal vanadate.
  • the particles of nanometric dimensions present in the emulsifying compositions of the invention can be particles based on a metal phosphate, that is to say, within the meaning of the invention, particles comprising, optionally in combination with other constituents, an amorphous or crystalline metallic phosphate or an amorphous or crystalline metallic hydrogen phosphate), or a metallic phosphate (and / or hydrogenophosphate) phase in which the phosphate anions (and / or hydrogenophosphates) can be partially substituted by other types of anions, the phosphate and hydrogen phosphate anions, however, preferably remaining in the majority within this type of phase.
  • a metal phosphate that is to say, within the meaning of the invention, particles comprising, optionally in combination with other constituents, an amorphous or crystalline metallic phosphate or an amorphous or crystalline metallic hydrogen phosphate), or a metallic phosphate (and / or hydrogenophosphate) phase in which the phosphate anions (and / or hydrogenophosphate
  • these particles present in the emulsifying compositions of the invention are based on an alkaline earth metal phosphate or based on a phosphate of one or more rare earth (s) , the term "rare earth” designating, within the meaning of the present description, a metal chosen from yttrium and the lanthanides, the lanthanides being the metallic elements whose atomic number is included, inclusively, between 57 (lanthanum) and 71 (lutetium).
  • rare earth designating, within the meaning of the present description, a metal chosen from yttrium and the lanthanides, the lanthanides being the metallic elements whose atomic number is included, inclusively, between 57 (lanthanum) and 71 (lutetium).
  • the particles of nanometric dimensions present are based on calcium phosphate, or based on a lanthanum, cerium and / or terbium phosphate.
  • these particles are based on calcium phosphate, it is generally preferred that these particles comprise a calcium phosphate having:
  • the particles of nanometric dimensions present in the emulsifying compositions of the invention can be particles based on a metallic vanadate, that is to say, within the meaning of the invention, particles comprising, optionally in association with other constituents, an amorphous or crystalline, and preferably crystalline, metallic vanadate.
  • a metallic vanadate that is to say, within the meaning of the invention, particles comprising, optionally in association with other constituents, an amorphous or crystalline, and preferably crystalline, metallic vanadate.
  • it is advantageously particles based on a vanadate from one or more rare earths, the term rare earth having the abovementioned meaning.
  • it is preferably particles based on yttrium vanadate, or based on yttrium vanadate in which part of the yttrium cations are substituted by cations of europium or of thulium Tm.
  • the particles present in the compositions of the invention generally have, intrinsically, a surface of hydrophilic nature. This hydrophilic character is generally ensured by the presence, on the surface of these particles, of species hydrophilic chemicals. These groups can be neutral (-OH, COOH,
  • the particles can also have surfactants, charged or not, such as citrate ions, acetate ions or amino acids generally bound to the surface of the particle by l 'through a metallic surface cation, most often by complexing bond.
  • the absolute value of the surface charge, expressed relative to the total surface of the particle, is, in the presence of the organic chain (s) linked (s), advantageously greater than 2 micro-coulombs per cm 2 , and preferably more than 5 micro-coulombs per cm 2 .
  • organic chain of hydrophobic nature designates, in general, an organic chain having a hydrophilic / lipophilic balance such that said chain is soluble in a hydrophobic solvent and less soluble, advantageously insoluble, in water.
  • the “organic chains of hydrophobic nature” of the invention are chains within which the chemical groups of hydrophobic nature, of the alkylated chain type for example, represent at least 30% by mass in said chain.
  • the organic chains of hydrophobic nature of the invention may in particular be alkyl chains, or alternatively alkyl chains modified by the presence of hydrophilic groups, of ethoxyl type for example, these groups of hydrophilic nature not representing more than 90 % by mass and advantageously representing less than 70%.
  • the organic chains of hydrophobic nature linked to the surface of the particles present in the compositions of the invention are preferably alkyl chains comprising from 6 to 30 carbon atoms, and preferably from 8 to 18 carbon atoms, or polyoxyethylene-monoalkyl ethers chains, the alkyl chain of which comprises from 8 to 30 carbon atoms, preferably from 8 to 18 carbon atoms, and the polyoxyethylene part of which comprises from 1 to 10 ethoxy groups -CH 2 CH 2 0-.
  • the number of carbon atoms, as well as the number of ethoxyl groups possibly present is to be adapted as a function of the hydrophobic and hydrophilic properties desired respectively for the solid surfactants present in the compositions of the invention.
  • hydrophilic nature is ensured both by the hydrophilic nature of the surface of the particle and by the hydrophilic parts, of ethoxyl group type, possibly present in the organic chains linked to the particle.
  • hydrophobic nature is ensured by the hydrophobic parts, of the alkyl chain type, of the organic chains.
  • bonds between the organic chains and the surface of the particles can vary to a fairly large extent. However, it can be considered that, in the general case, these bonds are of a complexing, electrostatic or hydrogen bonding type.
  • the bond between the organic chains and the surface of the particles is generally ensured by the presence, at one of the ends of each of said chains, of a chemical group, most often of ionic nature, inducing a complexing, electrostatic bond. or of the hydrogen bond type with at least one species present on the surface of the particles (metal cations, ionic chemical group or not, surfactant).
  • the particles present are generally partially complexed by molecular surfactants of ionic type.
  • the generally hydrophobic character of the zone (2) defined above for the solid surfactants present in the compositions of the invention is then ensured by the presence of the hydrophobic chains of the molecular surfactants used, the character at least mainly hydrophilic of the zone (1) being due for its part to the hydrophilic surface of the particle and to the possible residual surface charge not participating in the immobilization of molecular surfactants of ionic type bound to the surface.
  • the coverage rate of the surface of the particles is preferably less than 4 groups linked by nm 2 . It is moreover preferred that at least 2%, advantageously more than 10%, and preferably more than 20% of the surface of the particles, be involved in the complexation of the chains of predominantly hydrophobic character.
  • the coverage rate of the particles present is therefore generally between 0.2 and 3.2 groups linked by nm 2 , preferably between 0.5 and 3 groups linked by nm 2 , and even more advantageously of the order of 2 groups linked by nm 2 , preferably between 1.5 and 2.5 groups linked by nm 2 .
  • the charged particles are, where appropriate, particles of positive charge.
  • the ionic group inducing the bond is then an anionic group.
  • this anionic group is chosen from carboxylate, phosphate, phosphonate, phosphate ester, sulfate, sulfonate or sulfosuccinate groups.
  • the organic chain (s) of hydrophobic nature used in this case are ethoxylated or non-ethoxylated alkyl chains comprising from 8 to 30 carbon atoms and from 0 to 10 ethoxy groups. It is also possible to use amphoteric surfactant molecules such as amino propionates, alkyldimethylbetaines, imidazoline derivatives, alkylamidobetaines, or even alkyglycines.
  • hydrophilicity of the modified surface particles present in the compositions of the invention is often all the more important that the linked chains have a low carbon number, that the number of linked chains is reduced, and that the particle retains a charge. notable in the presence of linked groups.
  • compositions of the invention comprise particles of modified surface where the bonds between hydrophobic chains and the surface of the particles are all provided by the same type of bond, generally by complexing bond.
  • bonds between the surface of the particles and the hydrophobic chains can be of different nature within the same surfactant of solid nature according to the invention.
  • chains fixed by complexing bond can thus coexist for example hydrophobic chains linked in a less strong way to the surface, in particular by electrostatic bonds or by hydrogen bonds, or even, in certain cases, chains linked by covalent bonds.
  • connections between the hydrophobic chains and the particles present in the compositions of the invention are distributed in a non-homogeneous manner over the surface of said particle, so as to define a first zone of generally hydrophilic character and a second zone of generally hydrophobic character.
  • the modified surface particles present in the compositions of the invention are such that they can each be divided by a plane of cross section into two surfaces Si and S2 such that:
  • Each of the surfaces Si and S2 represents at least 20% of the total surface of the particle.
  • the surface density of organic chains linked to S 2 is greater than at least 5 times the surface density of hydrophobic chains linked to Si.
  • compositions of the invention specifically have a pronounced emulsifying character.
  • This marked emulsifying character can be demonstrated by the fact that they are capable of emulsifying water / oil systems in the form of stabilized emulsions having a high content of dispersed phase and a small average drop size.
  • compositions of the invention are generally capable of emulsifying in the form of stabilized reverse emulsions of water / oil systems, and they can in particular be used in this context to form emulsions of the water in vegetable oil or water in oil type.
  • silicone with a high content of dispersed aqueous phase, that is to say having specifically an aqueous phase content at least equal to 40%, advantageously greater than or equal to 50%, or even greater than or equal to 60% in certain cases.
  • compositions of the invention for the emulsification of such water / oil systems in the form of reverse emulsions allows, subject to sufficiently pushing the emulsification conditions, to obtain, for these stabilized reverse emulsions, average drop sizes less than or equal to 5 microns.
  • average drop sizes of the order of 5 microns are generally difficult to access with conventional emulsifying compositions
  • the compositions of the invention make it possible in certain cases to obtain sizes less than or equal to 3 microns, advantageously less than 2 microns and, particularly advantageously, of the order of a micron.
  • the emulsifying compositions of the invention generally make it possible to emulsify water / oil systems in the form of direct emulsions (oil in water) stabilized having a dispersed phase content which may be greater than 40%, preferably greater than 50%, or even greater than 60% or even 70%.
  • the size of the drops present in the direct emulsions obtained using the emulsifying compositions of the invention is generally less than or equal to 10 microns, most often less than or equal to 5 microns.
  • it can be less than or equal to 3 microns, and preferably less than or equal to 2 microns, or even 1 micron.
  • the emulsifying compositions of the invention may be based on several types of particles of nanometric dimensions and / or of chains of hydrophobic nature. Therefore, they can for example comprise a single type of surfactant of solid character as defined above, but they can also comprise a mixture of several types of these surfactants of solid character, and in particular surfactants of solid character having lengths and / or mainly hydrophobic chain natures, or else a mixture of surfactants of solid nature based on solid particles of different chemical natures. In the context of this type of mixture, the association is generally avoided, within the same composition of surfactants formed from solid particles of surface charges of opposite signs, but such an association is not however excluded from the framework of the present invention. Depending on the exact nature of the solid particle and the hydrophobic chains used, the emulsifying compositions of the present invention can be formulated in various ways.
  • the emulsifying compositions comprising these modified surface particles are advantageously, in the general case, in the form of an emulsion of oil-in-water type, or water in oil, said particles of nanometric dimensions to the surface of which the organic chains of hydrophobic nature are linked being located at least partially located at the water / oil type interfaces of said emulsion.
  • the particles of nanometric dimensions of modified surface are mainly located at the water / oil type interfaces of the emulsion, that is to say that at least 50%, preferably at least 60%, advantageously at least 70%, and even more preferably at least 80% of these particles are located at the interfaces.
  • it may be emulsions stabilized by surfactants of solid character according to the invention.
  • the average size of the drops present in the emulsifying compositions of the invention in the form of emulsions is generally between 0.1 ⁇ m and 20 ⁇ m, with a distribution of these homodisperse or polydisperse drops.
  • the average size of the drops is preferably less than or equal to 10 ⁇ m, preferably at most 5 ⁇ m. In a particularly advantageous manner, this average drop size is between 0.5 ⁇ m and 3 ⁇ m, preferably between 0.5 and 2 ⁇ m.
  • the concentration of modified surface solid particles within this emulsion can be characterized by a rate of recovery of the drops of the emulsion.
  • This recovery rate is defined by the ratio of the portion of the total surface of the drops occupied by the particles on the total surface developed by the drops of the emulsion.
  • this recovery rate of the drops of the emulsion is between 20% and 100%. Of preferably, it is greater than 50%, and particularly preferably, greater than 80%.
  • the emulsifying compositions of the invention taking the form of emulsions may also contain surface particles. modified not present at these interfaces, and in particular at interfaces of the water / air or oil / air type, or even within the continuous and dispersed phases.
  • the concentration of modified surface particles within the emulsion is such that this theoretical incorporation rate is between 20% and 300% and advantageously between 50 and 200%.
  • the stability is such that after storage for a period of 7 days, advantageously for a period which can range at least up to 30 days, the composition remains in the form of an emulsion.
  • this stabilized emulsion is specifically a composition which can play the role of a stabilizing composition, to ensure the stabilization of emulsions of the oil in water or water in oil type.
  • these emulsifying compositions in the form of emulsions are, in this case, generally used. work in high proportions, generally at a rate of 10% to 80% by volume relative to the total volume of the emulsion to be stabilized, and advantageously at a rate of 10% to 50% by volume.
  • the surfactants having a solid character of the invention in the form of a concentrated formulation preferably having a solid content greater than 5% by mass, advantageously greater than 8 % by mass, and preferably greater than 10% by mass.
  • This concentrated formulation can for example be formed by an ultracentrifugation pellet obtained for example by ultracentrifugation, or even by concentration by slow evaporation, of an emulsifying composition in the form of an emulsion as defined above.
  • the modified surface particles used in this type of concentrated formulations are preferably particles based on calcium phosphate, vanadium phosphate or rare earth vanadate, advantageously having high surface charges, for which these re-agglomeration phenomena are minimized.
  • the concentrated emulsifying formulations of the invention cannot be limited to these particular compounds.
  • the emulsifying compositions of the invention in the form of concentrated formulations generally contain water and liquid compounds which are not very immiscible with water, such as vegetable oils, silicone oils or hydrocarbons. .
  • the ratio of the content of water and hydrophobic liquid compounds in these compositions is variable to a large extent.
  • this ratio varies according to the nature of said mother emulsion.
  • the volume ratio of the phase initially corresponding to the dispersed phase of the mother emulsion to the phase initially corresponding to the continuous phase of the mother emulsion is between 0.01 and 0.8.
  • this volume ratio is at least equal to 0.2, and preferably at least equal to 0.4.
  • the concentrated formulations defined above have significant emulsifying properties. They are capable of stabilizing water-in-oil or oil-in-water emulsions, or even multiple emulsions with good stability over time.
  • this type of concentrated emulsifying composition is used at a rate of 10 to 200% by mass relative to the mass of the dispersed phase of the emulsion to be stabilized.
  • these formulations are used at a rate of 10 to 100% by mass and preferably at a rate of 10 to 50% by mass relative to the mass of the dispersed phase.
  • the emulsifying compositions comprising the modified surface particles of the invention can also be in the form of dispersions with a high solid content having, where appropriate, a solid content of between 10 and 90% by mass.
  • These concentrated dispersions are generally formed from a dispersion of surface particles modified according to the invention in a continuous phase of hydrophilic or hydrophobic character, where said continuous phase generally represents at least 50% of the volume of the dispersion.
  • the stabilized emulsions obtained by using the emulsifying compositions of the invention can use numerous compounds as hydrophobic phase, such as vegetable oils, mineral oils, aromatic solvents or even water-insoluble ketones.
  • hydrophobic and hydrophilic phases used within the emulsions stabilized by use of an emulsifying composition according to the invention is not necessarily dependent on the nature of the hydrophilic and hydrophobic phases present within the emulsifying composition.
  • an emulsifying composition comprising a particular hydrophobic phase may in particular be used to ensure the stabilization of an emulsion comprising another type of oil, insofar as this oil is soluble to that present in the emulsifying composition.
  • the emulsifying compositions of the invention can be in the form of a solid powder, advantageously essentially consisting of surfactants of solid character according to the invention, said agents solid surfactants in this case preferably based on calcium phosphate, rare earth phosphate or rare earth vanadate, these agents generally being redispersible with a low rate of interparticle agglomeration in aqueous, hydrophobic media, or in biphasic water / oil media.
  • the present invention also relates to a process for the preparation of emulsifying compositions as defined above.
  • This process for preparing an emulsifying composition according to the invention is characterized in that it comprises a step consisting in forming an emulsion from an aqueous phase and a hydrophobic phase in the presence of a molecular surfactant and colloidal particles based on a phosphate or a metallic vanadate, of nanometric dimensions, and capable of associating with said molecular surfactants by complexing bond, by electrostatic bond or by hydrogen bond, these particles generally having a hydrophilic surface, and advantageously a non-zero surface charge.
  • This step of forming the emulsion must specifically be carried out in such a way as to anchor the colloidal particles associated with the molecular surfactants at the water / oil interfaces of the emulsion, while avoiding the transfer of these colloidal particles associated with the molecular surfactant to the hydrophobic phase.
  • This anchoring induces for the particles a zone oriented towards the hydrophobic phase and a zone oriented towards the hydrophilic phase.
  • the specific anchoring of the particles at the interfaces thus produced can be viewed for example by transmission cryo-microscopy on frozen samples, according to the Dubochet method, consisting in producing a thin film of thickness between 50 and 100 nm by immersing a pierced support in the emulsion, and immersing the film thus obtained in liquid ethane or liquid nitrogen, which preserves a state of dispersion of the particles representative of that present in the initial emulsion.
  • the process for preparing an emulsifying composition according to the invention comprises the steps consisting in: (a) forming a hydrophobic phase and a colloidal aqueous dispersion of particles of nanometric dimensions based on 'a metal compound chosen from a phosphate or a vanadate, said hydrophobic phase or said aqueous dispersion comprising a molecular surfactant capable of associating, by complexation, by electrostatic interaction or by hydrogen bonding, with the colloidal particles;
  • the colloidal particles used in this embodiment of the process of the invention are in the form of aqueous colloidal dispersions preferably having monodispersed particle size distributions, and advantageously characterized by an interparticle agglomeration rate of less than 20% by number, preferably less than 5%, and within which the average hydrodynamic diameter of the particles is advantageously between 2 and 100 nm in the case of particles of isotropic morphology and between 5 and 250 nm in the case of particles of anisotropic morphology.
  • the particles of step (a) preferably consist at least partially of a calcium phosphate, a rare earth phosphate or a rare earth vanadate, and they can have various chemical groups on the surface, advantageously groups of metal cation type or of type (Met) -0 (H) ... H + or (Met) -OH ... OH- - (where Met denotes a metal).
  • the particles can also have surfactants such as citrate ions, acetate ions or amino acids, generally linked to the particle by means of a metal cation, most often by complexing bond.
  • the aqueous colloidal dispersions based on calcium phosphate implemented within the framework of the process of the invention can typically be obtained according to a process comprising the steps consisting in: - bringing into contact, in aqueous solution, a source of Ca 2 cations + , a source of PO4 3 "anions and an amino acid, at a pH between 5 and 10, with respective amounts of source of Ca 2+ and source of anions P0 4 3 ⁇ such as the Ca molar ratio / P varies between 1 and 3.5, and with an amount of amino acid such that the amino acid / Ca molar ratio varies between 0.3 and 2.5; and - allow the medium obtained to mature at a temperature between 15 ° C and 150 ° C until a colloidal dispersion is obtained, which can optionally be washed by ultrafiltration.
  • - Form an aqueous mixture comprising a rare earth salt and a complexing agent of said rare earth, having a pK greater than 2.5, preferably at least 3, K being the dissociation constant of the complex, this complexing agent being preferably a polyacid alcohol such as citric acid; and - add a base and a source of phosphate ions, hydrogen phosphates
  • a source of vanadate ions in the medium, until a pH generally between 9 and 12.5 is obtained, then bring the medium to a temperature between 60 and 180 ° C, thereby obtains a colloidal dispersion, which can optionally be washed by ultrafiltration.
  • the hydrophobic phase implemented in the process of the invention consists of a liquid or a mixture of organic liquids at least sparingly soluble in water, and advantageously insoluble in water, and which can be of a nature extremely varied.
  • it may especially be an inert aliphatic and / or cycloaliphatic hydrocarbon, or a mixture of such compounds, such as for example a mineral oil or a petroleum oil which may contain, if necessary, aromatic compounds.
  • Mention may also be made, by way of indication, of hexane, heptane, octane, nonane, decane, cyclohexane, cyclopentane, cycloheptane and liquid naphthenes as particularly suitable compounds.
  • Aromatic solvents such as benzene, toluene, ethylbenzene and xylenes are also suitable, as well as petroleum fractions of the ISOPAR or SOLVESSO type (trademarks registered by the company EXXON), in particular SOLNESSO 100, which essentially contains a mixture of methylethyl - and trimethyl-benzene, and SOLVESSO 150 which contains a mixture of alkyl benzenes, in particular dimethylethyl-benzene and tetramethyl-benzene.
  • chlorinated hydrocarbons such as chloro- or dichlorobenzene, chlorotoluene, as well as aliphatic and cycloaliphatic ethers such as diisopropyl ether, dibutyl ether or aliphatic and cycloaliphatic ketones such as as methyl isobutyl ketone, dibutyl ketone, or mesityl oxide. Ketones immiscible with water can also be used. Esters can also be considered. Mention may be made, as esters which can be used, in particular those resulting from the reaction of acids with alcohols having from 1 to 8 carbon atoms, and in particular palmitates. secondary alcohol such as isopropanol.
  • the acids from which these esters are derived can be aliphatic carboxylic acids, aliphatic sulfonic acids, aliphatic phosphonic acids, alkylarylsulfonic acids, and alkylarylphosphonic acids having about 10 to about 40 carbon atoms, whether natural or synthetic. .
  • tall oil fatty acids coconut oil, soybean, tallow, linseed oil, oleic acid, linoleic acid, stearic acid and its isomers , pelargonic acid, capric acid, lauric acid, myristic acid, dodecylbenzenesulfonic acid, 2-ethylhexanoic acid, naphthenic acid, hexoic acid, toluenesulfonic acid , toluene phosphonic acid, lauryl sulfonic acid, lauryl phosphonic acid, palmityl sulfonic acid, and palmityl phosphonic acid.
  • the mixtures of these different compounds are particularly suitable hydrophobic phases.
  • hydrophobic phase in the context of the invention, mention may be made of vegetable oils, such as soybean oils, linseed oils, rapeseed oils, or even coconut oils.
  • Silicone oils are also hydrophobic compounds advantageously used.
  • the exact nature of the hydrophobic phase used in the process is to be adapted according to the nature of the molecular surfactant used. Indeed, it should in particular be emphasized that, in the process of the invention, the affinity between the hydrophobic phase and the molecular surfactant used must be sufficiently low so that the anchoring of the particles at the interfaces is effectively observed of the emulsion produced.
  • the hydrophobic phase and the molecular ionic surfactant used in the process of the invention are generally chosen so that said molecular surfactant does not lead, in the absence of colloidal particles, to an optimal emulsion, in particular in terms of stability, of a hydrophilic phase with the hydrophobic phase implemented.
  • hydrophobic phase and the hydrophobic chain of the molecular ionic surfactant used are chosen so that said hydrophobic phase has poor compatibility with the hydrophobic chain of the molecular surfactant used.
  • hydrophobic phase and of the molecular surfactant those skilled in the art will therefore be able to use the concept based on the parameters of volume and solubility.
  • a hydrophobic phase can be characterized by three solubility parameters ⁇ D, ⁇ P and ⁇ H, defined from the cohesion energy corresponding to the intermolecular attraction forces.
  • ⁇ D, ⁇ P and ⁇ H represent respectively the parameters corresponding to the energy of dispersion of London, the energy of polarity of Keesom and to a parameter related to the hydrogen bonding forces.
  • J. Hidelbrand in the Journal of the American Chemical Society, volume 38, page 1452, (1916) or to the work by J. Hidelbrand et al., " The solubility of non electrolytes ", 3 rd edition, Reinhold, New York, (1949).
  • a hydrophobic chain will be all the less soluble in a hydrophobic phase as the solubility parameters ⁇ D, ⁇ P and ⁇ H of this chain will be different from those of the hydrophobic phase.
  • the nature of the molecular surfactant used is for its part to be adapted as a function of the nature of the emulsion (direct or reverse) envisaged and of the nature (size, composition, etc.) of the particles used.
  • the molecular surfactants used generally have a molecular mass of 100 g / mol to 10,000 g / mol, and advantageously from 100 g / mol and 5,000 g / mol.
  • These molecular surfactants can, for example, be surfactants of the oligomer or block copolymer type.
  • the molecular surfactants used specifically have a chemical group capable of complexing the metal cations present on the surface of the particles used.
  • the aim of the process of the invention is specifically to formulate an emulsifying composition comprising surfactants with solid character within the meaning of the invention where the attachment of hydrophobic chains to the surface of a particle is ensured by strong complexation.
  • the molecular surfactants used are preferably molecular surfactants with complexing polar head which can, for example, be surfactants with polar head carboxylic acid or carboxylate, surfactants with polar head phosphoric acid or phosphate, surfactants with polar head sulfosuccinic acid or sulfosuccinate, or surfactants with polar head sulfonic acid or sulfonate.
  • these surfactants may be chosen from alkylcarboxylates or carboxylic acids comprising from 4 to 20 carbon atoms, preferably from 6 to 18 carbon atoms, or alkylphosphates comprising from 4 to 20 carbon atoms, and preferably from 6 to 18 carbon atoms.
  • molecular surfactants can also be chosen from polyoxyethylenated alkyl ethers of carboxylic acids of formula Ra- (OC 2 H4) n-0- Rb, where Ra is a linear or branched alkyl having 4 to 20 carbon atoms, n is an integer between 1 and 12 and R is a carboxylic acid group such as CH 2 -COOH, or mixtures of such compounds, such as those marketed under the brand AKIPO ® by the company Kao Chemicals.
  • Ra is a linear or branched alkyl having 4 to 20 carbon atoms
  • n is an integer between 1 and 12
  • R is a carboxylic acid group such as CH 2 -COOH
  • mixtures of such compounds such as those marketed under the brand AKIPO ® by the company Kao Chemicals.
  • the molecular surfactant can also be chosen from polyoxyethylenated alkyl ethers phosphates.
  • polyoxyethylenated alkyl ethers phosphates means the polyoxyethylenated alkyl phosphates of formula: Rc-0- (CH 2 -CH 2 -0) n -P (0) - (OM ⁇ ) 2 or also the poyoxyethylenated dialkoyl phosphates of formula:
  • R c , Rd, Re identical or different represent a linear or branched alkyl radical having from 2 to 20 carbon atoms; a phenyl radical; an alkylaryl radical, more particularly an alkylphenyl radical, with in particular an alkyl chain having from 8 to 12 carbon atoms; an arylalkyl radical, more particularly a phenylaryl radical; n represents an integer which can vary from 2 to 12; Mi represents a hydrogen, sodium or potassium atom.
  • the radicals R, Rd and R e may in particular be hexyl, octyl, decyl, dodecyl, oleyl or nonylphenyl radicals.
  • One example is of this type of amphiphilic compounds marketed under the trademarks ® and Lubrophos Rhodafac ® by Rhodia and especially the products below:
  • the molecular surfactant can also be chosen from diakylsulfosuccinates, that is to say the compounds of formula R 6 -0-C (0) -CH2- CH (S ⁇ 3M2) -C (0) -0-R7 in which R 6 and R7 , identical or different, represent an alkyl radical from to C14 for example and M 2 is an alkali metal or hydrogen.
  • R 6 and R7 identical or different, represent an alkyl radical from to C14 for example and M 2 is an alkali metal or hydrogen.
  • R 6 and R7 identical or different, represent an alkyl radical from to C14 for example and M 2 is an alkali metal or hydrogen.
  • the agents molecular surfactants used are advantageously surfactants whose head polar is a group chosen from a carboxylate group or a phosphate group.
  • the total concentration of molecular ionic surfactant within the hydrophobic or hydrophilic phase is preferably such that the molecular ionic surfactant is used in an amount of 0.2 to 20% by mass relative to the weight of the dispersed phase of the emulsion obtained, and advantageously in an amount of 0.5 to 10% by mass. It is moreover preferred that the total amount of molecular ionic surfactant within the hydrophobic or hydrophilic phase is such that the molar ratio of the amount of molecular ionic surfactant relative to the amount of metal present in the phosphates and / or vanadates constituting the particles. is between 0.02 and 2, and preferably between 0.05 and 1.
  • a hydrophobic phase a molecular surfactant or specific colloidal particles.
  • a first parameter for example the chemical nature of the colloidal particle used, it is the skill of the person skilled in the art to adapt the other parameters, in particular the nature of the hydrophobic phase and of the molecular surfactants used , as well as the different concentrations and the hydrophobic phase / hydrophilic phase ratio used.
  • the concentration of the colloidal dispersion used is generally such that it corresponds to a theoretical coverage rate of the drops in the emulsion obtained at the end of step (c), defined by the ratio of the surface that are theoretically capable of covering the colloidal particles used on the total surface developed by the drops of the emulsion, between 100 and 600%, preferably located between 100 and 400%, and advantageously between 100 and 300%: In other words, an excess of particles of nanometric dimensions is therefore generally used in the process of the invention.
  • the concentration of colloidal particles in the colloidal dispersions used is generally between 10 20 and
  • the ratio of the volume of the dispersed phase to the total volume of the emulsion used is generally between 5 and 90%, preferably between 10 and 80%, and particularly advantageously between 15 and 80%.
  • Step (c) leading to the formation of the emulsion from the hydrophobic and aqueous phases is generally carried out by dispersing or microfluidization at room temperature, in particular by implementation of a rapid disperser type Ultraturrax ®.
  • the emulsion is generally obtained by subjecting the mixture resulting from step (b) to a dispersion under shear, generally carried out for a period of 15 seconds to 1 hour, and preferably for a period of 30 seconds to 2 minutes, with a stirring speed advantageously between 5,000 and 20,000 revolutions per minute.
  • This emulsification step (c) leads to a so-called "raw" emulsion, where, taking into account the preferential implementation of an excess of colloidal particles, a possibly large portion of the colloidal particles may not be located at the interfaces of water / oil type of emulsion. Therefore, the raw emulsion obtained at the end of step (c) can be subjected to a subsequent centrifugation step (d). Where appropriate, this centrifugation is carried out at a speed advantageously between 1,000 and 5,000 revolutions per minute and for a period ranging from 2 minutes to 30 minutes.
  • this centrifugation leads to obtaining 3 phases: the upper phase of the continuous phase type of the raw emulsion of step (c), the lower phase constituting the centrifugation pellet and generally comprising the colloidal particles put in excess, and an intermediate phase consisting of a stabilized emulsion of improved quality. It is this stabilized emulsion constituting the intermediate phase which is, if necessary, recovered at the end of step (d). Whether this centrifugation step is carried out or not, the emulsion obtained can then be subjected to a step (e) of heat treatment aimed at strengthening the interactions between particles and molecular surfactants.
  • a step (e) of heat treatment aimed at strengthening the interactions between particles and molecular surfactants.
  • this heat treatment step is carried out by bringing the emulsion obtained at the end of the preceding steps to a temperature between 40 ° C and 100 ° C, and preferably between 50 ° C and 90 ° C, for a duration ranging from 30 minutes to 24 hours, and advantageously between 2 hours and 5 hours.
  • the emulsion can be brought to said temperature, either directly, or by a gradual rise in temperature ranging, if necessary, from 4 ° C. per minute to 0.2 ° C. per minute.
  • the emulsion obtained at the end of step (c) and any steps (d) and / or (e) can be used as an emulsifying composition according to the invention.
  • this emulsion can also be subjected in certain cases to a step (f) of ultracentrifugation so as to obtain a concentrated emulsifying formulation in the form of an ultracentrifugation pellet.
  • the ultracentrifugation of step (f) is carried out at the rate of 5,000 to 30,000 revolutions per minute, advantageously at the rate of 3,000 to 25,000 revolutions per minute, for a period generally ranging from 1 to 8 hours. , and preferably for a period ranging from 2 to 6 hours.
  • the ultracentrifugation pellet obtained is then generally characterized by a solid content greater than 5% by mass, and preferably greater than 8% by mass.
  • the water and oil contents vary as a function of the nature of the emulsion subjected to the ultracentrifugation.
  • the volume ratio of the phase corresponding to the dispersed phase of the original emulsion to the volume of the phase corresponding to the continuous phase of the original emulsion varies between 0.01 and 0.8 , advantageously between 0.1 and 0.8 and preferably between 0.2 and 0.8.
  • this ultracentrifugation step can lead, within the framework of the use of certain colloidal particles, to phenomena of interparticle agglomerations liable to harm the properties.
  • emulsifiers of the ultracentrifugation pellet obtained Therefore, within the framework of the implementation of step (f), it is preferred that the particles used in the process are particles based on calcium phosphate of apatite structure , or also based on phosphate or rare earth vanadates, and having high surface charges.
  • step (c) The formulations obtained at the end of step (c), and any steps (d), (e) and / or (f) can also be subjected to a step (g) comprising the steps consisting in:
  • this step (g) is carried out several times with successive solvents of increasing polarities, whereby a concentrated dispersion of modified surface particles of the surfactant type solid type is obtained in an essentially hydrophilic phase.
  • solvents of low polarity such as heptane or hexane
  • solvents of greater polarity such as chloroform
  • solvents of even greater polarity such as water-methanol mixtures.
  • step (g) can be carried out several times with successive solvents of increasing hydrophobicities, whereby a concentrated dispersion of surface-modified particles of surfactant type having a solid character is obtained in an essentially hydrophobic phase.
  • obtaining a phase enriched in solid can be carried out, in the stages of type (g 2 ), by filtration, or even by any other solid / liquid separation means known from the skilled in the art.
  • the content of continuous phase in the concentrated dispersion obtained is at least 50% by volume.
  • the solid content is generally between 10 and 90% by mass.
  • the emulsion obtained at the end of step (c) and any steps (d) and / or (e) can also be subjected to a step (f) of drying to low temperature, i.e. below
  • step (f) is generally carried out at a temperature of between 20 and 120 ° C., and it advantageously comprises a step of prior dilution of the emulsion obtained at the end of step (c) and any steps (d ) and / or (e), by adding an aqueous phase and / or a hydrophobic phase.
  • an oil having a low boiling point advantageously less than 120 ° C. and more preferably less than 90 ° C.
  • the particles of nanometric dimensions used to form compositions in the form of a redispersible solid are generally particles having in themselves a redispersible character, such as particles having high surface charges, based on calcium phosphate, or based on phosphate or rare earth vanadates.
  • colloidal particles based on phosphate or metallic vanadate of nanometric dimensions can be used in the process of the invention.
  • the emulsifying compositions of the invention can be used in many areas of application.
  • the emulsifying compositions of the invention can in particular be used for the formulation of detergent compositions especially suitable for cleaning hard surfaces, where the combination of the emulsifying character and the presence of solid particles induces both mechanical abrasion and a emulsification of hydrophobic stains.
  • the emulsifying compositions of the invention can have interesting physicochemical properties due to the presence of solid particles.
  • the emulsifying compositions of the invention can in particular be used for the manufacture of films and materials, in particular packaging films.
  • the compositions based on metal phosphates can thus advantageously be used for the production of encapsulation film for the food industry.
  • the compositions comprising particles based on phosphate or vanadates of rare earths, called doped, that is to say having a small amount of cation of substitutions of europium type for example, can for their part be used for the production of films with properties luminescent.
  • the use of solid particles of amphiphilic nature of the invention can also allow the production of films with high mechanical resistance, or even opacifying films.
  • the solid particle of amphiphilic nature originating from the emulsifying composition plays both a role linked to its intrinsic physicochemical properties and a role of surfactant linked to its character. amphiphilic.
  • the surface-modified particles of the surfactant type of the invention also have the advantage, by their solid nature, of not leading to migration phenomena. generally observed on the surface.
  • Example 1 Preparation of an emulsifying composition comprising lanthanum phosphate particles of amphiphilic nature as surfactants.
  • the solution (S2) thus obtained was added instantaneously to the solution (SI) of lanthanum nitrate previously prepared, with stirring, so as to obtain a medium characterized by a P / La molar ratio. equal to 0.8.
  • the mixture was left stirring for 15 minutes.
  • the pH of the medium obtained was measured equal to 8.76.
  • the dispersion was then washed 4 times with demineralized water with each time a volume equal to the volume of the dispersion. This washing is carried out by ultrafiltration on a 3 KD membrane.
  • the size of the drops determined by optical microscopy within this gel is of the order of 0.8 microns.
  • the emulsion obtained can be diluted with water.
  • water it is noted in particular that, if 50 cm 3 of water are added to 10 cm 3 of said emulsion, and the mixture produced is stirred manually, a stable emulsion is kept.
  • Example 2 Preparation of an emulsifying composition comprising lanthanum phosphate particles of amphiphilic nature as surfactants.
  • the mixture obtained was then emulsified using a rapid disperser (ultraturax) for 1 minute at the rate of 11,000 revolutions per minute.
  • An emulsion was obtained in the form of a stable gel, dilutable with water without loss of stability, where the size of the drops determined by optical microscopy is of the order of 1 micron.
  • Example 3 Preparation of an emulsifying composition comprising lanthanum phosphate particles of amphiphilic nature as surfactants.
  • the colloidal dispersion (Dl) of Example 1 was then diluted to a concentration of 0.2 mol / liter of lanthanum. 20 ml of this diluted dispersion were added to the rapeseed oil solution prepared above.
  • the mixture obtained was then emulsified using a rapid disperser (ultraturax) for 2 minutes at the rate of 11,000 revolutions per minute.
  • the size of the drops determined by optical microscopy is of the order of 5 microns.
  • Example 4 Preparation of an emulsifying composition comprising calcium phosphate particles of amphiphilic nature as surfactants.
  • a solution A was prepared by placing in a beaker 50.8 ml of 0.98 M phosphoric acid (ie 50 millimoles of phosphorus), diluted with demineralized water to a volume of 75 ml. The pH was adjusted to a value of 9 by adding 10.5 M ammonia.
  • a solution B was prepared by mixing, with stirring until complete dissolution, 24.6 g of Ca ( ⁇ 3) 2 (i.e. 150 millimoles of Ca), 43.92 g of lysine (i.e. 300 millimoles), and l demineralized water up to a volume of 75 mL. Solution A was added instantly to the solution
  • colloidal dispersion At the end of this temperature ripening, a colloidal dispersion was obtained, which has a concentration (determined by loss on ignition) of 8.12% in solid.
  • concentration determined by loss on ignition
  • individualized colloids were visualized for this dispersion.
  • colloids consist of a population of objects having an anisotropic morphology with an average length of 50 nm and a second population with a more isotropic morphology, of spheres type, with an average diameter of 10 nm.
  • an ultrafiltration washing was carried out in Amicon type cells equipped with 3 KD membranes. The dispersion is washed with 4 equivalent volumes of demineralized water.
  • the volume of the dispersion is 100 ml and has a concentration of 4.45% in solid.
  • the dispersion was concentrated to a final volume of 50 ml, a dispersion (D2) with a density equal to 1.11 and having a loss on ignition of 7.78% was then obtained.
  • rapeseed oil 0.0145 g was dissolved in 20 ml of rapeseed oil.
  • the mixture obtained was then emulsified using a rapid disperser (ultraturax) for 2 minutes at the rate of 11,000 revolutions per minute.
  • a stable emulsion was obtained, dilutable with water without loss of stability, within which the size of the drops determined by optical microscopy is of the order of 20 microns.
  • Example 5 Preparation of an emulsifying composition comprising calcium phosphate particles of amphiphilic nature as surfactants.
  • RO 90 surfactant sold by Kao Chemicals
  • D2 colloidal dispersion
  • the mixture obtained was then emulsified using a rapid disperser (ultraturax) for 2 minutes at the rate of 11,000 revolutions per minute.
  • a stable emulsion was obtained, where the size of the drops determined by optical microscopy is of the order of 2 microns.
  • This emulsion can be diluted with rapeseed oil without loss of stability: if 25 ml of rapeseed oil is added to 5 ml of the emulsion, a stable emulsion is kept.
  • Example 6 Preparation of an emulsifying composition comprising calcium phosphate particles of amphiphilic nature as surfactants.
  • a solution (A 1 ) was prepared by placing in a beaker 50.8 ml of 0.98 M phosphoric acid (ie 50 millimoles of phosphorus), diluted with demineralized water to a volume of 60 ml. The pH was adjusted to 9.1 by adding 12 mL of 10.5 M ammonia. Then demineralized water was added until a volume of 75 mL was obtained.
  • a solution (B 1 ) was prepared by mixing, with stirring until complete dissolution, 24.6 g of Ca (N ⁇ 3) 2 (i.e. 150 millimoles of Ca), 26.6 g of alanine, and 60 ml of 'water. Adjusted to pH 9 by adding 6 mL of ammonia
  • the solution (A 1 ) was added instantaneously to the solution (B 1 ) at 25 ° C, so as to obtain a medium characterized by a molar ratio (Ca: P) equal to 3 and a pH of 8.85 .
  • the pH was adjusted to 9 with 10.5 M concentrated ammonia, then the medium was allowed to stir for 15 minutes.
  • colloidal dispersion which has a concentration of 1 mole per liter of calcium.
  • transmission cryo-microscopy we visualized for this dispersion well individualized colloids made up of a population of objects having an anisotropic morphology with an average length of 100 nm and an equivalent diameter less than 7 nm.
  • the mixture obtained was then emulsified using a rapid disperser (ultraturax) for 2 minutes at the rate of 11,000 revolutions per minute.
  • a stable emulsion was obtained, dilutable with water without loss of stability, where the size of the drops determined by optical microscopy is of the order of 6 microns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Colloid Chemistry (AREA)

Abstract

La présente invention concerne un agent tensioactif formé d'au moins une particule de dimensions nanométriques à base d'un phosphate ou d'un vanadate métallique, à la surface de laquelle sont liées des chaînes organiques à caractère hydrophobe, les liaisons entre lesdites chaînes et la surface de ladite particule étant reparties de façon non homogène sur ladite surface, de telle sorte que la particule de surface ainsi modifiée possède un caractère amphiphile effectif. L'invention concerne également des compositions émulsifiantes comprenant des particules de dimensions nanométriques de surface modifiée qui peuvent être des agents tensioactifs du type précité, ainsi que le procédé de préparation de telles compositions émulsifiantes.

Description

Compositions émulsifiantes comprenant des particules minérales de dimensions nanométriques de surface modifiée et agents tensioacti s formés par de telles particules
La présente invention a trait à des compositions émulsifiantes comprenant des agents tensioactifs formés de particules solides de surface modifiée, auxdits agents tensioactifs, ainsi qu'à des procédés de préparation de telles compositions.
Les agents tensioactifs actuellement connus sont généralement des molécules ou des macromolécules à caractère amphiphile, c'est à dire possédant d'une part une région hydrophile et d'autre part une région hydrophobe. Cette structure particulière induit une orientation de ces molécules lorsqu'elles sont présentes à des interfaces de type liquide/ liquide, liquide/ gaz ou liquide/ solide.
En d'autres termes, les agents tensioactifs peuvent s'adsorber à ces interfaces. Cette adsorption provoque un abaissement de la tension interfaciale γ et permet ainsi de diminuer l'énergie libre des systèmes qui contiennent une aire interfaciale importante, ce qui induit leur stabilisation (mousses, émulsions...). Le terme tensioactif provient de cette diminution de la tension interfaciale qu'engendre le phénomène d'orientation des molécules. Typiquement, un agent tensioactif est une molécule constituée d'un ou plusieurs groupement(s) hydrophile(s) ionique(s) ou non ioniques et d'une ou plusieurs chaîne(s) hydrophobe(s), le plus souvent hydrocarbonée(s). C'est la nature exacte de ces deux groupements qui détermine les propriétés tensioactives de la molécule obtenue. II est donc à souligner que la structure d'un agent tensioactif moléculaire est généralement relativement figée. De ce fait, il est difficile, dans le cas général, de conférer à un agent tensioactif d'autres propriétés que des propriétés liées à son caractère amphiphile.
Par ailleurs, on observe souvent lors de certaines étapes de concentrations (séchages...) de formulations mettant en œuvre des tensioactifs moléculaires, une ségrégation parasite indésirable de ces agents, liée à leur caractère moléculaire.
De façon à surmonter ces difficultés, on a tenté de développer au cours des dernières années des particules solides présentant à la fois un caractère macroscopique et un caractère amphiphile. Ces particules, parfois désignées par le terme "Janus", présentent, à la manière d'un tensioactif moléculaire, une face hydrophobe et une face hydrophile. Pour plus de détails au sujet de ces solides particuliers, on pourra notamment se reporter à l'article de De Germes et al.
"Nanoparticules and Dendrimers: hopes and illusions", dans Croat. Chem. Acta, 1998, volume 71(4), pages 833-836.
En effet, un des avantages de ces particules solides est que, de par leur caractère macroscopique, elles présentent une mobilité réduite par rapport aux agents tensioactifs moléculaires usuels.
Toutefois, si ces particules à caractère amphiphile se comportent effectivement de façon particulière à des interfaces de type eau/ huile, on ne saurait cependant considérer qu'elles peuvent se substituer aux tensioactifs moléculaires classiques. A ce sujet, il est en particulier à souligner que ces particules ne peuvent par exemple pas être mises en œuvre à titre d'agents émulsifiants, notamment en raison de leur taille importante et de leur caractère amphiphile peu marqué.
Or, les inventeurs ont découvert qu'il est possible de modifier la surface d'une particule solide de dimensions nanométriques par des chaînes organiques à caractère hydrophobes de façon à obtenir un objet solide de faible dimension et possédant un caractère amphiphile suffisamment prononcé pour assurer un rôle d'agent émulsifiant.
De façon particulièrement surprenante, les inventeurs ont mis en évidence qu'une telle modification de surface peut être réalisée sur des particules de nature chimique spécifique, ce qui permet de conférer à l'objet solide obtenu des propriétés autres que des propriétés émulsifiantes. Sur la base de ces découvertes, un premier but de la présente invention est de fournir des compositions comprenant des agents tensioactifs possédant, en plus d'un caractère émulsifiant marqué, des propriétés physiques et/ ou chimiques intéressantes, non liées à ce caractère amphiphile.
L'invention a également pour but de fournir des compositions comprenant des agents tensioactifs possédant une dimension suffisante leur conférant une mobilité réduite, et susceptible néanmoins de se substituer aux tensioactifs moléculaires classiques, au moins dans certaines applications, et en particulier dans des processus d'émulsification.
Un autre but de l'invention est de fournir des compositions émulsifiantes à base d'agents tensioactifs à caractère solide pouvant remplacer de façon avantageuse les compositions émulsifiantes généralement mises en œuvre, par exemple pour la réalisation d'émulsions, d'émulsions inverses ou d'émulsions multiples, en assurant une stabilisation suffisante de l'émulsion tout en bénéficiant par ailleurs de la nature solide et des propriétés physico-chimiques des agents tensioactifs mis en œuvre. Ainsi, selon un premier aspect, la présente invention a pour objet une composition émulsifiante comprenant des particules de dimensions nanométriques à base d'un composé métallique choisi parmi un phosphate ou un vanadate, à la surface desquelles sont liées des chaînes organiques à caractère hydrophobe, ladite composition possédant spécifiquement un caractère émulsifiant tel qu'elle permet de réaliser une émulsion de type eau dans l'huile ou huile dans l'eau stabilisée, caractérisée par une teneur en phase dispersée supérieure ou égale à 20%, de préférence supérieure ou égale à 30%, et de préférence supérieure ou égale à 40%, et où la taille moyenne des gouttes formant la phase dispersée est inférieure ou égale à 20 microns, de préférence inférieure ou égale à 10 microns, avantageusement inférieur ou égal à 5 microns, et de façon encore plus avantageuse inférieure ou égale à 3 microns, voire inférieure ou égale à 1 micron.
Par le terme d'émulsion "stabilisée", on entend, au sens de la présente invention, une émulsion de type eau dans l'huile (émulsion inverse) ou huile dans l'eau (émulsion directe) où les phénomènes de coalescence entre les gouttes de la phase dispersée sont suffisamment réduits pour qu'on n'observe pas la rupture de l'émulsion suite à un stockage de ladite émulsion pendant une période supérieure ou égale à 3 jours, avantageusement pendant une période au moins égale à 7 jours, et de préférence pendant une période au moins égale à 30 jours. De façon particulièrement avantageuse, une émulsion stabilisée au sens de l'invention est telle que sa structure reste stable après soumission à une centrifugation conduite à une vitesse supérieure ou égale à 4000 tours par minutes et pendant une durée d'au moins vingt minutes.
Dans la plupart des cas, les compositions émulsifiantes de la présente invention possèdent un caractère émulsifiant suffisant pour permettre de réaliser des émulsions stabilisées de type eau dans l'huile (émulsions inverses) caractérisées par des teneurs en phase aqueuse supérieure ou égale à 40%, et dans lesquelles la taille moyenne des gouttes de la phase dispersée est au plus de 20 microns, le plus souvent au plus de 10 microns, et avantageusement au plus de 5 microns. De façon préférentielle, les particules de dimensions nanométriques à base de phosphate ou de vanadate métallique présentes dans les compositions émulsifiantes de la présente invention, à la surface desquelles sont liées des chaînes organiques à caractère hydrophobe, sont telles que, à la surface de la plupart de ces particules, les liaisons entre lesdites chaînes et la surface sont reparties de façon non homogène, de telle sorte que chacune des particules de surface ainsi modifiée possède un caractère amphiphile effectif, c'est à dire que, lorsqu'elle est placée dans un milieu biphasique eau/huile tel qu'un milieu biphasique de type eau/ acétate d'éthyle, eau/hexane, ou eau/octanol, ladite particule se localise spécifiquement à l'interface entre les deux phases en présence. Ce caractère amphiphile peut notamment être mis en évidence en utilisant un test du type de celui décrit par Nakahama et al. dans Langmuir, volumelβ, pp. 7882-7886 (2000).
Les agents tensioactifs formés par de telles particules de dimensions nanométriques de surface modifiée par des chaînes organiques à caractère hydrophobe, reparties de façon non homogène sur la surface, ce par quoi la particule de surface modifiée possède un caractère amphiphile effectif, sont nouveaux et constituent, selon un aspect particulier, un autre objet de la présente invention.
Sans vouloir être lié à aucune théorie particulière, il semble que le caractère amphiphile effectif des agents tensioactifs présents dans les compositions de la présente invention s'explique par le fait que ces agents possèdent une structure comprenant spécifiquement une zone (1) à caractère globalement hydrophile, au moins partiellement due au caractère hydrophile de la surface de la particule, et une zone (2) à caractère globalement hydrophobe, due à la présence des chaînes à caractère hydrophobe. Par le terme de "particule de dimensions nanométriques", on entend, au sens de la présente invention, une particule isotrope ou anisotrope dont la ou les dimension(s) caractéristique(s) moyenne(s) est ou sont comprise(s) entre 2 et 300 nm.
Les particules de dimensions nanométriques présentes au sein des compositions de l'invention peuvent être de morphologie isotrope ou sphérique. Dans ce cas, le diamètre moyen des particules est avantageusement compris entre 2 et 150 nm, ce diamètre moyen étant avantageusement inférieur ou égal à 100 nm, de préférence inférieur ou égal à 50 nm, et de façon particulièrement avantageuse inférieur ou égal à 10 nm. Ainsi, le diamètre moyen d'une particule de morphologie isotrope ou sphérique présente au sein d'une composition de l'invention est avantageusement être compris entre 2 et 6 nm.
Selon une autre variante particulière, les particules de dimensions nanométriques présentes au sein des compositions de l'invention peuvent être de morphologie anisotrope, et elles se présentent alors généralement sous la forme de particules oblongues ou aciculaires de longueur moyenne généralement comprise entre 5 et 250 nm, et avantageusement inférieure ou égale à 100 nm, avec un rapport d'anisotropie généralement compris entre 2 et 300. Par "rapport d'anisotropie" d'une population de particules de morphologie anisotrope, de type oblongues ou aciculaires, on entend le rapport de la longueur moyenne des particules rapporté à leur diamètre moyen transversal. Quelle que soit leur morphologie exacte, on préfère que les particules présentes au sein des compositions de l'invention soient des particules susceptibles de présenter un caractère colloïdal lorsqu'elles sont dispersées en milieu aqueux et/ ou hydrophobe. Ainsi, une dispersion des particules présentes au sein des compositions de l'invention en milieu aqueux ou en milieu hydrophobe, mettant éventuellement en œuvre une desagglomération mécanique par exemple à l'aide d'un disperseur de type Ultraturax, mène avantageusement à l'obtention d'une dispersion des particules présentant un taux d'agglomération interparticulaire (défini par le nombre de particules à l'état aggloméré sur le nombre total de particules) inférieur à 5%, et avantageusement inférieur à 2%, les particules présentes étant le plus souvent essentiellement toutes individualisées, et la dispersion obtenue étant de préférence stable vis-à-vis de la décantation, et présentant avantageusement une très faible tendance à la réagglomération interparticulaire. La répartition granulométrique des particules au sein d'une dispersion ainsi obtenue est généralement monodispersée.
Par ailleurs, les particules de dimensions nanométriques présentes au sein des compositions de l'invention sont, de façon caractéristique, des particules à base d'un phosphate métallique ou d'un vanadate métallique.
Ainsi, selon une première variante, les particules de dimensions nanométriques présentes dans les compositions émulsifiantes de l'invention peuvent être des particules à base d'un phosphate métallique, c'est à dire, au sens de l'invention, des particules comprenant, éventuellement en association avec d'autres constituants, un phosphate métallique amorphe ou cristallin ou un hydrogénophosphate métallique amorphe ou cristallin), ou une phase phosphate (et/ ou hydrogénophosphate) métallique au sein de laquelle les anions phosphates (et/ ou hydrogénophosphates) peut être partiellement substitués par d'autres types d'anions, les anions phosphates et hydrogénophosphates restant toutefois de préférence majoritaires au sein de ce type de phase. De préférence, dans ce cas, ces particules présentes dans les compositions émulsifiantes de l'invention sont à base d'un phosphate de métal alcalino-terreux ou à base d'un phosphate d'une ou plusieurs terre(s) rare(s), le terme de "terre rare" désignant, au sens de la présente description, un métal choisi parmi l'yttrium et les lanthanides, les lanthanides étant les éléments métalliques dont le numéro atomique est compris, de façon inclusive, entre 57 (lanthane) et 71 (lutécium).
Avantageusement, selon cette première variante de l'invention, les particules de dimensions nanométriques présentes sont à base de phosphate de calcium, ou à base d'un phosphate de lanthane, de cérium et/ ou de terbium. Lorsque ces particules sont à base de phosphate de calcium, on préfère généralement que ces particules comprennent un phosphate de calcium présentant :
- une structure apatique de formule Caιo-x(HP0 )x(Pθ4)6-x(J)2-x , où x est égal à 0,1, ou 2 ; et J représente un ion OH-, F", CO_2~ ;
- une structure apatique telle que définie ci-dessus, dans laquelle une partie (avantageusement minoritaire) des ions phosphate P04 3~ et/ ou une partie (avantageusement minoritaire) des ions hydrogénophosphates HPO42" est substituée par des ions carbonates ; ou - une structure de formule CaHP04, éventuellement hydratée, de type
CaHP04, 2H20
Selon une autre variante, les particules de dimensions nanométriques présentes dans les compositions émulsifiantes de l'invention peuvent être des particules à base d'un vanadate métallique, c'est à dire, au sens de l'invention, des particules comprenant, éventuellement en association avec d'autres constituants, un vanadate métallique amorphe ou cristallin, et de préférence cristallin. Dans ce cas, il s'agit avantageusement de particules à base d'un vanadate d'une ou plusieurs terres rares, le terme de terre rare ayant le sens précité. Dans ce cas, il s'agit de préférence de particules à base de vanadate d'yttrium, ou à base de vanadate d'yttrium au sein duquel une partie des cations yttrium sont substitués par des cations d'europium ou de thulium Tm.
Quels que soient leurs constituants exacts, les particules présentes au sein des compositions de l'invention possèdent généralement, de façon intrinsèque, une surface à caractère hydrophile. Ce caractère hydrophile est généralement assuré par la présence, à la surface de ces particules, d'espèces chimiques hydrophiles. Ces groupements peuvent être neutres (-OH, COOH,
PO4H, par exemple) ou de préférence chargés, notamment de type cations métalliques, de type (Met)-0(H)...H+ ou (Met)-OH...OH" (où Met désigne un métal), ce qui confère alors à la particule une charge superficielle non nulle. Les particules peuvent également présenter des agents de surface, chargés ou non, tels que des ions citrates, des ions acétates ou des acides aminés généralement liés à la surface de la particule par l'intermédiaire d'un cation métallique de surface, le plus souvent par liaison complexante.
Dans le cas de particules chargées, la valeur absolue de la charge surfacique, exprimée par rapport à la surface totale de la particule, est, en présence de la ou des chaîne(s) organique(s) liée(s), avantageusement supérieure à 2 micro-coulombs par cm2, et de préférence supérieure à 5 micro-coulombs par cm2.
Le terme de "chaîne organique à caractère hydrophobe" désigne quant à lui, de façon générale, une chaîne organique présentant une balance hydrophile/ lipophile telle que ladite chaîne est soluble dans un solvant hydrophobe et moins soluble, avantageusement insoluble, dans l'eau.
De façon préférentielle, les "chaînes organiques à caractère hydrophobes" de l'invention sont des chaînes au sein desquelles les groupements chimiques de nature hydrophobes, de type chaînes alkylées par exemple, représentent au moins 30% en masse dans ladite chaîne. Ainsi, les chaînes organiques à caractère hydrophobes de l'invention peuvent notamment être des chaînes alkyles, ou bien encore des chaînes alkyles modifiées par la présence de groupements hydrophiles, de type éthoxyles par exemple, ces groupements de nature hydrophile ne représentant pas plus de 90% en masse et représentant avantageusement moins de 70%.
Ainsi, les chaînes organiques à caractère hydrophobe liées à la surface des particules présentes au sein des compositions de l'invention sont de façon préférentielle des chaînes alkyles comprenant de 6 à 30 atomes de carbone, et de préférence de 8 à 18 atomes de carbone, ou des chaînes polyoxyéthylène- monoalkyléthers dont la chaîne alkyle comprend de 8 à 30 atomes de carbone, de préférence de 8 à 18 atomes de carbone, et dont la partie polyoxyéthylène comprend de 1 à 10 groupements éthoxyles -CH2CH20-.
Le nombre d'atomes de carbone, ainsi que le nombre de groupements éthoxyles éventuellement présents est à adapter en fonction des propriétés respectivement hydrophobes et hydrophiles recherchées pour les tensioactifs solides présents au sein des compositions de l'invention.
A ce sujet, il est à noter que le caractère hydrophile est assuré à la fois par la nature hydrophile de la surface de la particule et par les parties hydrophiles, de type groupements éthoxyles, éventuellement présentes dans les chaînes organiques liées à la particule. Le caractère hydrophobe est quant à lui assuré par les parties hydrophobes, de type chaîne alkyle, des chaînes organiques.
Quelle que soit la nature des chaînes organiques à caractère hydrophobes mises en œuvre, une de leurs caractéristiques principales est qu'elles sont liées à la surface des particules de dimensions nanométriques.
La nature exacte des liaisons existant entre les chaînes organiques et la surface des particules peut varier en une assez large mesure. Toutefois, on peut considérer que, dans le cas général, ces liaisons sont de nature complexante, électrostatique ou de type liaison hydrogène. Ainsi, la liaison entre les chaînes organiques et la surface des particules est généralement assurée par la présence, à l'une des extrémités de chacune desdites chaînes, d'un groupement chimique, le plus souvent de nature ionique, induisant une liaison complexante, électrostatique ou de type liaison hydrogène avec au moins une espèce présente à la surface des particules (cations métalliques, groupement chimique ionique ou non, agent de surface). Dans ce cas, les particules présentes sont généralement partiellement complexées par des tensioactifs moléculaires de type ionique.
Il semble que le caractère globalement hydrophobe de la zone (2) défini précédemment pour les tensioactifs solides présents dans les compositions de l'invention est alors assuré par la présence des chaînes hydrophobes des tensioactifs moléculaires mis en œuvre, le caractère au moins majoritairement hydrophile de la zone (1) étant dû quant à lui à la surface hydrophile de la particule et à la charge superficielle résiduelle éventuelle ne participant pas à l'immobilisation des tensioactifs moléculaires de type ionique liés à la surface.
Notamment de façon à ce que le caractère amphiphile des agents tensioactifs solides présents soit suffisamment prononcé, on préfère que moins de
90 %, avantageusement moins de 70 %, et de préférence moins de 50 % de la surface des particules soit engagée dans la liaison des chaînes à caractère majoritairement hydrophobes.
De ce fait, le taux de couverture de la surface des particules, exprimé, pour chaque particule, par le rapport du nombre de groupements des tensioactifs moléculaires liés à la surface de ladite particule sur la surface totale de ladite particule, est de préférence inférieur à 4 groupements liés par nm2. On préfère par ailleurs qu'au moins 2 %, avantageusement plus de 10 %, et de préférence plus de 20 % de la surface des particules soit engagée dans la complexation des chaînes à caractère majoritairement hydrophobe. Avantageusement, le taux de couverture des particules présentes est donc généralement compris entre 0,2 et 3,2 groupements liés par nm2, de préférence entre 0,5 et 3 groupements liés par nm2, et encore plus avantageusement de l'ordre de 2 groupements liés par nm2, à savoir de préférence entre 1,5 et 2,5 groupements liés par nm2. Par ailleurs, notamment de façon à assurer une liaison optimale entre les tensioactifs moléculaires et les particules, on préfère généralement mettre en œuvre des particules chargées et des tensioactifs moléculaires présentant un groupement de type ionique de charge opposée. Avantageusement, les particules chargées sont, le cas échéant, des particules de charge positive. Le groupement ionique induisant la liaison est alors un groupement anionique. De préférence, ce groupement anionique est choisi parmi les groupements carboxylate, phosphate, phosphonate, ester phosphate, sulfate, sulfonate ou sulfosuccinate. Avantageusement, la ou les chaîne(s) organique(s) à caractère hydrophobe mises en œuvre dans ce cas sont des chaînes alkyles éthoxylées ou non éthoxylées comprenant de 8 à 30 atomes de carbone et de 0 à 10 groupements éthoxyles. On peut également utiliser des molécules tensioactives amphotères telles que les aminés propionates, les alkyldiméthylbétaines, les dérivés d'imidazoline, les alkylamidobetaines, ou encore les alkyglycines.
La mise en œuvre de particules chargées négativement et complexées par des agents tensioactifs moléculaires de type cationique ou amphotère n'est toutefois pas exclue de l'objet de l'invention. Par ailleurs, il faut souligner qu'en fonction de la nature exacte des chaînes hydrophobes et de la chimie de surface des particules, il est possible de conférer un caractère hydrophile plus ou moins marqué, ou un caractère lipophile plus ou moins marqué, pour les particules de surface modifiée présentes dans les compositions de l'invention. Ainsi, les particules présentent généralement un caractère lipophile d'autant plus fort que chaînes de nature hydrophobe présentent un nombre d'atome de carbone élevé et que le nombre de chaînes liées à la surface des particules est important. On constate également qu'une immobilisation des chaînes hydrophobes sur la surface de la particule induisant une diminution de la charge du système (particule+chaînes) à tendance à augmenter le caractère lipophile des particules. L'hydrophilie des particules de surface modifiée présentes dans les compositions de l'invention est souvent d'autant plus importante que les chaînes liées présentent un nombre de carbone faible, que le nombre de chaînes liées est réduit, et que la particule conserve une charge notable en présence des groupements liés.
De préférence, les compositions de l'invention comprennent des particules de surface modifiée où les liaisons entre chaînes hydrophobes et la surface des particules sont toutes assurées par le même type de liaison, généralement par liaison complexante. Toutefois, les liaisons entre la surface des particules et les chaînes hydrophobes peuvent être de nature différente au sein d'un même agent tensioactif à caractère solide selon l'invention. A côté de chaînes fixées par liaison complexante peuvent ainsi coexister par exemple des chaînes hydrophobes liées de façon moins forte à la surface, notamment par liaisons électrostatiques ou par liaisons hydrogène, ou bien encore, dans certains cas, des chaînes liées par liaisons covalentes. Quelle que soit la nature exacte des liaisons mises en œuvre pour assurer la cohésion entre les chaînes à caractère hydrophobe et la surface des particules, on préfère que les connections entre les chaînes à caractère hydrophobe et les particules présentes au sein des compositions de l'invention soient réparties de façon non homogène sur la surface de ladite particule, de façon à définir une première zone à caractère globalement hydrophile et une seconde zone à caractère globalement hydrophobe.
Ainsi, de façon particulièrement avantageuse, les particules de surface modifiées présentes dans les compositions de l'invention sont telles qu'elle peuvent chacune être divisée par un plan de section droite en deux surfaces Si et S2 telles que :
(i) Chacune des surfaces Si et S2 représente au moins 20 % de la surface totale de la particule ; et
(ii) La densité surfacique de chaînes organiques liées à S2 est supérieure à au moins 5 fois la densité surfacique de chaînes à caractère hydrophobe liées à Si.
Quelle que soit la structure exacte des particules qu'elles contiennent, les compositions de l'invention possèdent spécifiquement un caractère émulsifiant prononcé. Ce caractère émulsifiant marqué peut être mis en évidence par le fait qu'elles sont capables d'émulsionner des systèmes eau/huile sous la forme d'émulsions stabilisées possédant une haute teneur en phase dispersée et une faible taille moyenne de goutte.
Ainsi, les compositions de l'invention sont généralement capables d'émulsionner sous forme d'émulsions inverses stabilisées des systèmes eau/ huile, et elles peuvent notamment être utilisées dans ce cadre pour former des émulsions de type eau dans huile végétale ou eau dans huile de silicone, à haute teneur en phase aqueuse dispersée, c'est à dire présentant spécifiquement une teneur en phase aqueuse au moins égale à 40%, avantageusement supérieure ou égale à 50%, voire supérieure ou égale à 60% dans certains cas. La mise en œuvre des compositions de l'invention pour l'émulsification de tels systèmes eau/huile sous forme d'émulsions inverses permet, sous réserve de pousser suffisamment les conditions d'émulsification, d'obtenir, pour ces émulsions inverses stabilisées, des tailles moyennes de gouttes inférieures ou égales à 5 microns. De façon surprenante, alors que des tailles moyennes de gouttes de l'ordre de 5 microns sont généralement difficilement accessibles avec des compositions émulsifiantes usuelles, les compositions de l'invention permettent dans certains cas d'obtenir des tailles inférieures ou égales à 3 microns, avantageusement inférieures à 2 microns et, de façon particulièrement avantageuse, de l'ordre du micron.
Par ailleurs, les compositions émulsifiantes de l'invention permettent généralement d'émulsionner des systèmes eau/huile sous la forme d'émulsions directes (huile dans l'eau) stabilisées possédant une teneur en phase dispersée qui peut être supérieure à 40%, de préférence supérieure à 50%, voire supérieure à 60% ou même à 70%. Sous réserve de pousser suffisamment les conditions d'émulsification, la taille des gouttes présentes au sein des émulsions directes obtenues en utilisant les compositions émulsifiantes de l'invention est généralement inférieure ou égale à 10 microns, le plus souvent inférieure ou égale à 5 microns. Avantageusement elle peut être inférieure ou égale à 3 microns, et de préférence inférieure ou égale à 2 micron, voire à 1 micron.
Les compositions émulsifiantes de l'invention peuvent être à base de plusieurs type de particules de dimensions nanométriques et/ ou de chaînes à caractère hydrophobe. De ce fait, elles peuvent par exemple comprendre un seul type de tensioactif à caractère solide tel que défini précédemment, mais elles peuvent également comprendre un mélange de plusieurs types de ces tensioactifs à caractère solide, et notamment des tensioactifs à caractère solide possédant des longueurs et/ ou des natures de chaîne majoritairement hydrophobes différentes, ou encore un mélange de tensioactifs à caractère solide à base de particules solides de natures chimiques différentes. Dans le cadre de ce type de mélanges, on évite généralement l'association, au sein d'une même composition de tensioactifs formés de particules solides de charges surfaciques de signes opposés, mais une telle association n'est toutefois pas exclue du cadre de la présente invention. En fonction de la nature exacte de la particule solide et des chaînes à caractère hydrophobe mises en œuvre, les compositions émulsifiantes de la présente invention peuvent être formulées de façons diverses.
Cependant, compte tenu de la spécificité des agents tensioactifs à caractère solide de la présente invention, les compositions émulsifiantes comprenant ces particules de surface modifiée se présentent avantageusement, dans le cas général, sous forme d'une émulsion de type huile dans l'eau, ou eau dans l'huile, lesdites particules de dimensions nanométriques à la surface desquelles sont liées les chaînes organiques à caractère hydrophobe étant localisées au moins partiellement localisées aux interfaces de type eau/ huile de ladite émulsion. Généralement, les particules de dimensions nanométriques de surface modifiée sont majoritairement localisées aux interfaces de type eau/ huile de l'émulsion, c'est à dire qu'au moins 50%, de préférence au moins 60%, avantageusement au moins 70%, et de façon encore plus préférentielle au moins 80% de ces particules sont localisées aux interfaces. Ainsi, il peut s'agir d'émulsions stabilisées par des agents tensioactifs à caractère solides selon l'invention.
La taille moyenne des gouttes présentes au sein des compositions émulsifiantes de l'invention sous forme d'émulsions est généralement comprise entre 0,1 μm et 20 μm, avec une répartition de ces gouttes homodisperse ou polydisperse. La taille moyenne des gouttes est de préférence inférieure ou égale à 10 μm, de préférence au plus de 5 μm. De façon particulièrement avantageuse, cette taille moyenne de goutte est comprise entre 0,5 μm et 3 μm, de préférence entre 0,5 et 2 μm. La concentration en particules solides de surface modifiée au sein de cette émulsion peut quant à elle être caractérisée par un taux de recouvrement des gouttes de l'émulsion. Ce taux de recouvrement est défini par le rapport de la portion de la surface totale des gouttes occupée par les particules sur la surface totale développée par les gouttes de l'émulsion. Avantageusement, ce taux de recouvrement des gouttes de l'émulsion est compris entre 20 % et 100 %. De préférence, il est supérieur à 50 %, et de façon particulièrement préférée, supérieur à 80 %.
Par ailleurs, il est à noter qu'en plus des particules de type agents tensioactifs à caractère solide assurant la stabilisation aux interfaces liquide/ liquide, les compositions émulsifiantes de l'invention prenant la forme d'émulsions peuvent contenir en outre des particules de surface modifiée non présents à ces interfaces, et notamment à des interfaces de type eau/ air ou huile/ air, ou encore au sein des phases continue et dispersée.
Globalement, en tenant compte de la totalité des particules de surface modifiée présentes au sein de l'émulsion, on peut définir un taux d'incorporation théorique des particules, défini par le rapport de la surface totale que sont théoriquement capables de recouvrir les particules solides présentes au sein de l'émulsion sur la surface totale théorique développée par les gouttes de l'émulsion. Pour ce calcul de la surface totale théorique développée par les gouttes de l'émulsion, on suppose que l'émulsion est de répartition monodispersée, avec un diamètre de gouttes égal au diamètre moyen des gouttes présentes. Compte tenu de cette définition, ce taux théorique peut être supérieur à 100 %. De préférence, la concentration en particules de surface modifiée au sein de l'émulsion est telle que ce taux d'incorporation théorique est compris entre 20 % et 300 % et avantageusement entre 50 et 200 % .
La présence de ces particules de surface modifiée aux interfaces liquide/ liquide permet une stabilisation effective de la composition émulsifiante sous forme d'émulsion. Ainsi, on constate généralement que la stabilité est telle qu'après un stockage pendant une durée de 7 jours, avantageusement pendant une durée pouvant aller au moins jusqu'à 30 jours, la composition reste sous la forme d'une émulsion.
Par ailleurs, cette émulsion stabilisée est spécifiquement une composition qui peut jouer le rôle d'une composition stabilisante, pour assurer la stabilisation d'émulsions de type huile dans l'eau ou eau dans l'huile. Toutefois, compte tenu de la dilution introduite dans ce type d'opération, ces compositions émulsifiantes sous forme d'émulsions sont, dans ce cas, généralement mises en œuvre en de fortes proportions, généralement à raison de 10 % à 80 % en volume par rapport au volume total de l'émulsion à stabiliser, et avantageusement à raison de 10 % à 50 % en volume.
De ce fait, lorsque cela est possible, on préfère mettre en œuvre les agents tensioactifs à caractère solide de l'invention sous la forme d'une formulation concentrée ayant de préférence une teneur en solide supérieure à 5 % en masse, avantageusement supérieure à 8 % en masse, et préférentiellement supérieure à 10 % en masse.
Cette formulation concentrée peut par exemple être formée par un culot d'ultracentrifugation obtenu par exemple par ultracentrifugation, ou bien encore par concentration par évaporation lente, d'une composition émulsifiante sous forme d'émulsion telle que définie précédemment.
Toutefois, il est à souligner que ce type de formulation ne peut pas être envisagé avec tous les types de particules de surface modifiée de l'invention. En effet, au sein de ce type de formulation concentrée, les particules solides sont suffisamment rapprochées pour qu'on puisse observer des phénomènes d'agglomération interparticulaires.
De ce fait, les particules de surface modifiée mises en œuvre dans ce type de formulations concentrées sont, de façon préférentielle des particules à base de phosphate de calcium, de phosphate de vanadium ou de vanadate de terre rare, possédant avantageusement des charges surfaciques élevées, pour lesquelles ces phénomènes de réagglomération sont minimisés. Cependant, les formulations émulsifiantes concentrées de l'invention ne sauraient se limiter à ces composés particuliers. Outre ces particules de surface modifiée, les compositions émulsifiantes de l'invention sous forme de formulations concentrées contiennent généralement de l'eau et des composés liquides peu ou non miscibles à l'eau tels que des huiles végétales, des huiles de silicone ou des hydrocarbures. Le rapport de la teneur en eau et en composés liquides hydrophobes dans ces compositions est variable en une large mesure. Ainsi, dans le cas d'une formulation concentrée obtenue par ultracentrifugation ou par concentration par évaporation d'une émulsion mère, ce rapport varie en fonction de la nature de ladite émulsion mère. Généralement, le rapport volumique de la phase correspondant initialement à la phase dispersée de l'émulsion mère sur la phase correspondant initialement à la phase continue de l'émulsion mère est compris entre 0,01 et 0,8. Avantageusement ce rapport volumique est au moins égal à 0,2, et de façon préférentielle au moins égal à 0,4.
Les formulations concentrées définies ci-dessus présentent des propriétés émulsifiantes importantes. Elles sont susceptibles de stabiliser des émulsions de type eau dans l'huile, ou huile dans l'eau, voire des émulsions multiples avec une bonne stabilité dans le temps. De façon générale, ce type de composition émulsifiante concentrée est mise en œuvre à raison de 10 à 200 % en masse par rapport à la masse de la phase dispersée de l'émulsion à stabiliser. Avantageusement, ces formulations sont mises en œuvre à raison de 10 à 100 % en masse et, de préférence à raison de 10 à 50 % en masse par rapport à la masse de la phase dispersée.
Les compositions émulsifiantes comprenant les particules de surface modifiée de l'invention peuvent également se présenter sous forme de dispersions à haute teneur en solide présentant, le cas échéant, une teneur en solide comprise entre 10 et 90 % en masse.
Ces dispersions concentrées sont généralement formées d'une dispersion de particules de surface modifiée selon l'invention dans une phase continue à caractère hydrophile ou hydrophobe, où ladite phase continue représente généralement au moins 50 % du volume de la dispersion. Les émulsions stabilisées obtenues par mise en œuvre des compositions émulsifiantes de l'invention, qu'elles soient sous forme d'émulsions de formulations concentrées ou de dispersion à haute teneur en solide, peuvent mettre en œuvre à titre de phase hydrophobe de nombreux composés, tels que des huiles végétales, des huiles minérales, des solvants aromatiques ou bien encore des cétones non hydrosolubles. La nature des phases hydrophobe et hydrophile mises en œuvre au sein des émulsions stabilisées par mise en œuvre d'une composition émulsifiante selon l'invention n'est pas forcément subordonnée à la nature des phases hydrophile et hydrophobe présentes au sein de la composition émulsifiante. Ainsi, une composition émulsifiante comprenant une phase hydrophobe particulière pourra notamment être mise en œuvre pour assurer la stabilisation d'une émulsion comprenant un autre type d'huile, dans la mesure où cette huile est soluble à celle présente dans la composition émulsifiante.
Enfin, dans le cas de la mise en œuvre de certaines particules, les compositions émulsifiantes de l'invention peuvent se présenter sous la forme d'une poudre solide, avantageusement essentiellement constituée d'agents tensioactifs à caractère solide selon l'invention, lesdits agents tensioactifs solides étant dans ce cas de préférence à base de phosphate de calcium, de phosphate de terre rare ou de vanadate de terre rare, ces agents étant généralement redispersable avec un faible taux d'agglomération interparticulaire dans des milieux aqueux, hydrophobes, ou dans des milieux biphasiques de type eau/ huile.
Selon un autre aspect, la présente invention a également pour objet un procédé de préparation de compositions émulsifiantes telles que définies précédemment.
Ce procédé de préparation d'une composition émulsifiante selon l'invention est caractérisé en ce qu'il comprend une étape consistant à former une émulsion à partir d'une phase aqueuse et d'une phase hydrophobe en présence d'un tensioactif moléculaire et de particules colloïdales à base d'un phosphate ou d'un vanadate métallique, de dimensions nanométriques, et capables de s'associer avec lesdits agents tensioactifs moléculaires par liaison complexante, par liaison électrostatique ou par liaison hydrogène, ces particules présentant généralement une surface hydrophile, et avantageusement une charge superficielle non nulle. Cette étape de formation de l'émulsion doit spécifiquement être conduite de façon à mener à un ancrage des particules colloïdales associées aux tensioactifs moléculaires aux interfaces eau/huile de l'émulsion, tout en évitant le transfert de ces particules colloïdales associées au tensioactif moléculaire vers la phase hydrophobe. Cet ancrage induit pour les particules une zone orientée vers la phase hydrophobe et une zone orientée vers la phase hydrophile. L'ancrage spécifique des particules aux interfaces ainsi réalisé peut être visualisé par exemple par cryo-microscopie à transmission sur des échantillons congelés, selon la méthode Dubochet, consistant à réaliser un film mince d'épaisseur comprise entre 50 et lOOnm en plongeant un support percé dans l'émulsion, et à plonger le film ainsi obtenu dans l'éthane liquide ou l'azote liquide, ce qui préserve un état de dispersion des particules représentatif de celui présent dans l'émulsion initiale.
Ainsi, selon un mode de mise en œuvre avantageux, le procédé de préparation d'une composition émulsifiante selon l'invention comprend les étapes consistant à : (a) former une phase hydrophobe et une dispersion aqueuse colloïdale de particules de dimensions nanométriques à base d'un composé métallique choisi parmi un phosphate ou un vanadate, ladite phase hydrophobe ou ladite dispersion aqueuse comprenant un agent tensioactif moléculaire susceptible de s'associer, par complexation, par interaction électrostatique ou par liaison hydrogène, aux particules colloïdales ;
(b) réaliser un mélange par addition de la phase hydrophobe à la dispersion aqueuse ou par addition de la dispersion aqueuse dans la phase hydrophobe ; et
(c) soumettre le mélange obtenu à un émulsification. Avantageusement, les particules colloïdales mises en œuvre dans ce mode de réalisation du procédé de l'invention sont sous la forme de dispersions colloïdales aqueuses possédant de préférence des distributions granulométriques monodispersées, et avantageusement caractérisées par un taux d'agglomération interparticulaire inférieur à 20 % en nombre, de préférence inférieur à 5 %, et au sein de laquelle le diamètre hydrodynamique moyen des particules est avantageusement compris entre 2 et 100 nm dans le cas de particules de morphologie isotrope et entre 5 et 250 nm dans le cas de particules de morphologie anisotrope.
Les particules de l'étape (a) sont de préférence constituées au moins partiellement d'un phosphate de calcium, d'un phosphate de terre rare ou d'un vanadate de terre rare, et elles peuvent présenter en surface des groupements chimiques variés, avantageusement des groupements de type cations métalliques ou de type (Met)-0(H)...H+ ou (Met)-OH...OH- - (où Met désigne un métal). Les particules peuvent également présenter des agents de surface tels que des ions citrates, des ions acétates ou des acides aminés, généralement liés à la particule par l'intermédiaire d'un cation métallique, le plus souvent par liaison complexante.
Les dispersions colloïdales aqueuses à base de phosphate de calcium mises en œuvre dans le cadre du procédé de l'invention peuvent typiquement être obtenues selon un procédé comportant les étapes consistant à : - mettre en contact, en solution aqueuse, une source de cations Ca2+ , une source d'anions PO43" et un acide aminé, à un pH compris entre 5 et 10, avec des quantités respectives de source de Ca2+ et de source d'anions P04 3~ telles que le rapport molaire Ca/P varie entre 1 et 3,5 , et avec une quantité d'acide aminé telle que le rapport molaire acide aminé / Ca varie entre 0,3 et 2,5 ; et - laisser mûrir le milieu obtenu à une température comprise ente 15°C et 150°C jusqu'à obtention d'une dispersion colloïdale, qu'on peut éventuellement laver par ultrafiltration.
Les dispersions colloïdales à base de phosphate de terre rare
(respectivement de vanadates) de terre rare utilisables dans le cadre de la mise en œuvre du procédé de l'invention peuvent quant à elles typiquement être obtenues selon un procédé comportant les étapes consistant à :
- former un mélange aqueux comprenant un sel de terre rare et un agent complexant de ladite terre rare, présentant un pK supérieur à 2,5, de préférence d'au moins 3, K étant la constante de dissociation du complexe, cet agent complexant étant de préférence un polyacide-alcool tel que l'acide citrique ; et - additionner une base et une source d'ions phosphates, hydrogénophosphates
(respectivement une source d'ions vanadates) au milieu, jusqu'à l'obtention d'un pH généralement compris entre 9 et 12,5, puis porter le milieu à une température comprise entre 60 et 180°C, ce par quoi on obtient une dispersion colloïdale, qu'on peut éventuellement laver par ultrafiltration.
La phase hydrophobe mise en œuvre dans le procédé de l'invention est constituée d'un liquide ou d'un mélange de liquides organiques au moins peu solubles à l'eau, et avantageusement insolubles à l'eau, et qui peuvent être de nature extrêmement variée.
Ainsi, il peut s'agir notamment d'un hydrocarbure aliphatique et/ ou cycloaliphatique inerte, ou d'un mélange de tels composés, tel que par exemple une essence minérale ou une essence de pétrole pouvant contenir, le cas échéant, des composés aromatiques. On peut également citer à titre indicatif l'hexane, l'heptane, l'octane, le nonane, le décane, le cyclohexane, le cyclopentane, le cycloheptane et les naphtènes liquides à titre de composés particulièrement adaptés. Les solvants aromatiques tels que le benzène, le toluène, l'éthylbenzène et les xylènes conviennent également, ainsi que les coupes pétrolières du type ISOPAR ou SOLVESSO (marques déposées par la société EXXON), notamment SOLNESSO 100, qui contient essentiellement un mélange de méthyléthyl- et triméthyl-benzène, et le SOLVESSO 150 qui renferme un mélange d'alcoyl benzènes en particulier de diméthyléthyl-benzène et de tétraméthyl-benzène.
On peut également mettre en œuvre des hydrocarbures chlorés tels que le chloro- ou dichloro-benzène, le chlorotoluène, aussi bien que des éthers aliphatiques et cycloaliphatiques tels que l'éther de diisopropyle, l'éther de dibutyle ou les cétones aliphatiques et cycloaliphatiques telles que la méthylisobutylcétone, la dibutylcétone, ou encore l'oxyde de mésityle. On peut aussi utiliser des cétones non miscibles à l'eau. Les esters peuvent aussi être envisagés. On peut citer comme esters susceptibles d'être utilisés notamment ceux issus de la réaction d'acides avec des alcools possédant de 1 à 8 atomes de carbone, et notamment les palmitates d'alcool secondaire tel que l'isopropanol. Les acides dont sont issus ces esters peuvent être des acides carboxyliques aliphatiques, des acides sulfoniques aliphatiques, des acides phosphoniques aliphatiques, des acides alcoylarylsulfoniques, et des acides alcoylarylphosphoniques possédant environ de 10 à environ 40 atomes de carbone, qu'ils soient naturels ou synthétiques. A titre d'exemple, on peut citer les acides gras de tallol, d'huile de coco, de soja, de suif, d'huile de lin, l'acide oléique, l'acide linoléique, l'acide stéarique et ses isomères, l'acide pélargonique, l'acide caprique, l'acide laurique, l'acide myristique, l'acide dodécylbenzènesulfonique, l'acide éthyl-2 hexanoïque, l'acide naphténique, l'acide hexoïque, l'acide toluène-sulfonique, l'acide toluène- phosphonique, l'acide lauryl-sulfonique, l'acide lauryl-phosphonique, l'acide palmityl-sulfonique, et l'acide palmityl-phosphonique. Les mélanges de ces différents composés sont des phases hydrophobes particulièrement adaptées.
A titre de phase hydrophobe particulièrement avantageuse dans le cadre de l'invention, on peut citer les huiles végétales, telles que les huiles de soja, les huiles de lin, les huiles de colza, ou encore les huiles de coco.
Les huiles de silicones sont également des composés hydrophobes avantageusement mis en œuvre.
Il est à noter que la nature exacte de la phase hydrophobe mise en œuvre dans le procédé est à adapter en fonction de la nature du tensioactif moléculaire utilisé. En effet, il est notamment à souligner que, dans le procédé de l'invention, l'affinité entre la phase hydrophobe et le tensioactif moléculaire mis en œuvre doit être suffisamment faible pour que l'on observe effectivement l'ancrage des particules aux interfaces de l'émulsion réalisée. En d'autres termes, la phase hydrophobe et le tensioactif ionique moléculaire utilisés dans le procédé de l'invention sont généralement choisis de façon à ce que ledit tensioactif moléculaire ne mène pas, en l'absence de particules colloïdales, à une émulsion optimale, notamment en terme de stabilité, d'une phase hydrophile avec la phase hydrophobe mise en œuvre. De façon générale, la phase hydrophobe et la chaîne hydrophobe du tensioactif ionique moléculaire mis en œuvre sont choisis de façon à ce que ladite phase hydrophobe présente une faible compatibilité avec la chaîne hydrophobe du tensioactif moléculaire utilisé. En ce qui concerne le choix de la phase hydrophobe et du tensioactif moléculaire, l'homme du métier pourra de ce fait utiliser le concept basé sur les paramètres de volume et de solubilité. En effet, une phase hydrophobe peut être caractérisée par trois paramètres de solubilité δD, δP et δH, définis à partir de l'énergie de cohésion correspondant aux forces d'attraction intermoléculaires. δD, δP et δH représentent respectivement les paramètres correspondant à l'énergie de dispersion de London, l'énergie de polarité de Keesom et à un paramètre lié aux forces de liaison hydrogène. A ce sujet, on pourra notamment se reporter à l'article de J. Hidelbrand, dans le Journal of the American Chemical Society, volume 38, page 1452, (1916) ou à l'ouvrage de J. Hidelbrand et al., "The solubility of non electrolytes", 3ème édition, Reinhold, New York, (1949).
De façon générale, une chaîne hydrophobe sera d'autant moins soluble dans une phase hydrophobe que les paramètres de solubilité δD, δP et δH de cette chaîne seront différents de ceux de la phase hydrophobe.
La nature de l'agent tensioactif moléculaire mis en œuvre est quant à elle à adapter en fonction de la nature de l'émulsion (directe ou inverse) envisagée et de la nature (taille, composition...) des particules utilisées. Toutefois, dans le cas général, les agents tensioactifs moléculaires mis en œuvre possèdent généralement une masse moléculaire de 100 g/ mol à 10000 g/ mol, et avantageusement de 100 g/ mol et 5 000 g/ mol. Ces agents tensioactifs moléculaires peuvent par exemple être des tensioactifs de type oligomères ou copolymères séquences. Par ailleurs, les tensioactifs moléculaires mis en œuvre possèdent spécifiquement un groupement chimique capable de complexer les cations métalliques présents à la surface des particules utilisées.
En effet, le but du procédé de l'invention est spécifiquement de formuler une composition émulsifiante comprenant des agents tensioactifs à caractère solide au sens de l'invention où la fixation des chaînes hydrophobes à la surface d'une particule est assurée par complexation forte.
Ainsi, dans le cas général, de façon notamment à assurer une cohésion optimale entre la particule et le tensioactif moléculaire au sein de la composition émulsifiante obtenue, les tensioactifs moléculaires mis en œuvre sont préférentiellement des tensioactifs moléculaires à tête polaire complexante pouvant par exemple être des tensioactifs à tête polaire acide carboxylique ou carboxylate, des tensioactifs à tête polaire acide phosphorique ou phosphate, des tensioactifs à tête polaire acide sulfosuccinique ou sulfosuccinate, ou encore des tensioactifs à tête polaire acide sulfonique ou sulfonate. Avantageusement ces tensioactifs pourront être choisis parmi les alkylcarboxylates ou acides carboxyliques comportant de 4 à 20 atomes de carbone, de préférence de 6 à 18 atomes de carbones, ou les alkylsphosphates comportant de 4 à 20 atomes de carbone, et de préférence de 6 à 18 atomes de carbones. Ces tensioactifs moléculaires peuvent également être choisis parmi les alkyl ethers polyoxyethylénés d'acides carboxyliques de formule Ra-(OC2H4)n-0- Rb, où Ra est un alkyl linéaire ou ramifié possédant de 4 à 20 atomes de carbone, n est un entier compris entre 1 et 12 et Rb est un groupement acide carboxylique tel que CH2-COOH, ou les mélanges de tels composés, tels que ceux commercialisés sous la marque AKIPO® par la société Kao Chemicals.
Le tensioactif moléculaire peut être également choisi parmi les alkyl ethers phosphates polyoxyethylénés. Par "alkyl ethers phosphates polyoxyethylénés", on entend les phosphates d'alcoyle polyoxyethylénés de formule : Rc-0-(CH2-CH2-0)n-P(0)-(OMι)2 ou encore les phosphates de dialcoyle poyoxyéthylénés de formule :
R — 0— (CH2-CH2-0)n
Figure imgf000025_0001
Dans les formules ci-dessus, Rc, Rd, Re identiques ou différents représentent un radical alkyl linéaire ou ramifié possédant de 2 à 20 atomes de carbone ; un radical phényle ; un radical alkylaryl, plus particulièrement un radical alkylphényl, avec notamment une chaîne alkyle possédant de 8 à 12 atomes de carbone ; un radical arylalkyle, plus particulièrement un radical phénylaryl ; n représente un nombre entier pouvant varier de 2 à 12 ; Mi représente un atome d'hydrogène, de sodium ou de potassium. Les radicaux R , Rd et Re peuvent être notamment des radicaux hexyle, octyle, décyle, dodécyle, oléyle, ou nonylphényle. On peut citer comme exemple de ce type de composés amphiphiles ceux commercialisés sous les marques Lubrophos® et Rhodafac® par Rhodia, et notamment les produits ci-dessous :
- les poly-oxy-ethylène alkyl (C8-C10) ethers phosphates Rhodafac® RA 600
- les poly-oxy-ethylène tri-decyl ether phosphate Rhodafac® RS 710 ou RS 410 - les poly-oxy-ethylène oleocétyl ether phosphate Rhodafac® PA 35
- les poly-oxy-ethylène nonylphenyl ether phosphate Rhodafac® PA 17
- les poly-oxy-ethylène nonyl(ramifié) ether phosphate Rhodafac® RE 610
Le tensioactif moléculaire peut également être choisi parmi les diakylsulfosuccinates c'est à dire les composés de formule R6-0-C(0)-CH2- CH(Sθ3M2)-C(0)-0-R7 dans laquelle R6 et R7, identiques ou différents représentent un radical alkyl de à C14 par exemple et M2 est un métal alcalin ou un hydrogène. Comme composés de ce type, on peut mentionner ceux commercialisés sous la marque Aérosol® par la société Cyanamid. On peut également utiliser des copolymères séquences Polyacrylate-polystyrène, ou tout copolymère séquence comprenant une partie hydrophile comportant des fonctions complexantes, de préférence carboxylates et/ ou phosphates.
Dans le cadre particulier de la mise en œuvre, dans le procédé de l'invention, de particules à base de phosphate de calcium, à base d'un phosphate de terre rare, ou à base d'un vanadate de terre rare, les agents tensioactifs moléculaires mis en œuvre sont avantageusement des tensioactifs dont la tête polaire est un groupement choisi parmi un groupement carboxylate ou un groupement phosphate.
Par ailleurs, et quelle que soit la nature de l'émulsion et du ou des tensioactif(s) moléculaire(s) mis en œuvre, la concentration totale en tensioactif ionique moléculaire au sein de la phase hydrophobe ou hydrophile est de préférence telle que le tensioactif ionique moléculaire est mis en œuvre à raison de 0,2 à 20 % en masse par rapport au poids de la phase dispersée de l'émulsion obtenue, et avantageusement à raison de 0,5 à 10 % en masse. On préfère par ailleurs que la quantité totale de tensioactif ionique moléculaire au sein de la phase hydrophobe ou hydrophile soit telle que le rapport molaire de la quantité de tensioactif ionique moléculaire rapportée à la quantité de métal présent dans les phosphates et/ ou vanadates constitutifs des particules soit compris entre 0,02 et 2, et de préférence entre 0,05 et 1.
En fonction des propriétés recherchées pour la composition émulsifiante obtenue in fine, on peut être amené à choisir une phase hydrophobe, un tensioactif moléculaire ou des particules colloïdales spécifiques. En fonction du choix d'un premier paramètre, par exemple la nature chimique de la particule colloïdale utilisée, il est des compétences de l'homme du métier d'adapter les autres paramètres, notamment la nature de la phase hydrophobe et des tensioactifs moléculaires utilisés, ainsi que les différentes concentrations et le rapport phase hydrophobe/ phase hydrophile mis en œuvre.
Il est à souligner que ces différents paramètres sont à adapter au cas par cas. Toutefois, dans le cas général, la concentration de la dispersion colloïdale mise en œuvre est généralement telle qu'elle corresponde à un taux de couverture théorique des gouttes dans l'émulsion obtenue à l'issue de l'étape (c), défini par le rapport de la surface que sont théoriquement capables de recouvrir les particules colloïdales mises en œuvre sur la surface totale développée par les gouttes de l'émulsion, compris entre 100 et 600 %, de préférence situé entre 100 et 400 %, et avantageusement entre 100 et 300 %: En d'autres termes, on met donc généralement en œuvre dans le procédé de l'invention un excès de particules de dimensions nanométriques. De ce fait, la concentration en particules colloïdales dans les dispersions colloïdales mises en œuvre est généralement comprise entre 1020 et
4.1021 particules par litre et de préférence entre 2.1020 et 1021 particules par litre.
Le rapport du volume de la phase dispersée sur le volume total de l'émulsion mise en œuvre est quant à lui généralement compris entre 5 et 90 %, de préférence entre 10 et 80 %, et de façon particulièrement avantageuse entre 15 et 80 %.
L'étape (c) menant à la formation de l'émulsion à partir des phases hydrophobe et aqueuse est généralement conduite par dispersion ou microfluidisation à température ambiante, notamment par mise en œuvre d'un disperseur rapide de type Ultraturax®. Dans ce cas, l'émulsion est généralement obtenue en soumettant le mélange résultant de l'étape (b) à une dispersion sous cisaillement, généralement réalisée pendant une durée de 15 secondes à 1 heure, et de préférence pendant une durée de 30 secondes à 2 minutes, avec une vitesse d'agitation avantageusement comprise entre 5 000 et 20 000 tours par minutes.
Cette étape (c) d'émulsification conduit à une émulsion dite "brute", où, compte tenu de la mise en œuvre préférentielle d'un excès de particules colloïdales, une portion éventuellement importante des particules colloïdales peut ne pas être située aux interfaces de type eau/ huile de l'émulsion. De ce fait, on peut soumettre l'émulsion brute obtenue à l'issue de l'étape (c) à une étape ultérieure (d) de centrifugation. Le cas échéant, cette centrifugation est conduite à une vitesse avantageusement comprise entre 1 000 et 5 000 tours par minutes et pendant une durée allant de 2 minutes à 30 minutes.
Généralement, cette centrifugation conduit à l'obtention de 3 phases : la phase supérieure du type de la phase continue de l'émulsion brute de l'étape (c), la phase inférieure constituant le culot de centrifugation et comprenant généralement les particules colloïdales mises en œuvre de façon excédentaire, et une phase intermédiaire constituée par une émulsion stabilisée de qualité améliorée. C'est cette émulsion stabilisée constituant la phase intermédiaire qui est, le cas échéant, récupérée à l'issu de l'étape (d). Que cette étape de centrifugation soit conduite ou non, on peut ensuite soumettre l'émulsion obtenue à une étape (e) de traitement thermique visant à renforcer les interactions entre particules et tensioactifs moléculaires. De préférence, cette étape de traitement thermique est conduite en portant l'émulsion obtenue à l'issu des étapes précédentes à une température comprise entre 40°C et 100°C, et de préférence entre 50°C et 90°C, pendant une durée allant de 30 minutes à 24 heures, et avantageusement comprise entre 2 heures et 5 heures. Lors de cette étape de traitement thermique, l'émulsion peut être portée à ladite température, soit directement, soit par une montée progressive en température allant, le cas échéant, de 4°C par minute à 0,2°C par minute.
L'émulsion obtenue à l'issu de l'étape (c) et des éventuelles étapes (d) et/ ou (e) peut être utilisée à titre de composition émulsifiante selon l'invention. Selon une variante, cette émulsion peut également être soumise dans certains cas à une étape (f) d'ultracentrifugation de façon à obtenir une formulation émulsifiante concentrée sous forme d'un culot d'ultracentrifugation. De préférence, l'ultracentrifugation de l'étape (f) est conduite à raison de 5 000 à 30 000 tours par minute, avantageusement à raison de 3 000 à 25 000 tours par minute, pendant une durée allant généralement de 1 à 8 heures, et de préférence pendant une durée allant de 2 à 6 heures. Le culot d'ultracentrifugation obtenu est alors généralement caractérisé par une teneur en solide supérieure à 5 % en masse, et de préférence supérieure à 8 % en masse. Les teneurs en eau et en huile varient quant à elles en fonction de la nature de l'émulsion soumise à l'ultracentrifugation. De façon générale, le rapport de volume de la phase correspondant à la phase dispersée de l'émulsion d'origine sur le volume de la phase correspondant à la phase continue de l'émulsion d'origine varie entre 0,01 et 0,8, avantageusement entre 0,1 et 0,8 et de préférence entre 0,2 et 0,8.
Toutefois, il est important de noter que, comme cela a déjà été souligné, cette étape d'ultracentrifugation peut mener, dans le cadre de l'utilisation de certaines particules colloïdales, à des phénomènes d'agglomérations interparticulaire susceptibles de nuire aux propriétés émulsifiantes du culot d'ultracentrifugation obtenu De ce fait, dans le cadre de la mise en œuvre de l'étape (f), on préfère que les particules mises en œuvre dans le procédé soient des particules à base de phosphate de calcium de structure apatite, ou encore à base de phosphate ou de vanadates de terres rares, et possédant des charges surfaciques élevées.
Les formulations obtenues à l'issue de l'étape (c), et des éventuelles étapes (d), (e) et/ ou (f) peuvent en outre être soumises à une étape (g) comprenant les étapes consistant à :
(gi) additionner un solvant ou de l'eau à la formulation, la masse du solvant ajouté ou de l'eau ajoutée étant comprise entre 0,1 et 10 fois la masse de la formulation mise en œuvre ; et
(g2) concentrer le mélange obtenu par filtration ou par évaporation, ce par quoi on obtient une phase enrichie en solide.
Avantageusement, cette étape (g) est réalisée plusieurs fois avec des solvants successifs de polarités croissantes, ce par quoi on obtient in fine une dispersion concentrée de particules de surface modifiée de type agents tensioactifs à caractère solide dans une phase essentiellement hydrophile.
De façon avantageuse, on peut utiliser lors de ces traitements successifs d'abord des solvants de polarité faible comme l'heptane ou l'hexane, puis des solvants de polarité plus importante comme le chloroforme et enfin des solvants à polarité encore plus importante comme des mélanges eau-méthanol.
De la même façon, l'étape (g) peut être conduite plusieurs fois avec des solvants successifs d'hydrophobicités croissantes, ce par quoi on obtient une dispersion concentrée de particules de surface modifiée de type agents tensioactifs à caractère solide dans une phase essentiellement hydrophobe.
Au cours de ces différentes étapes successives, l'obtention d'une phase enrichie en solide peut être réalisée, dans les étapes de type (g2), par filtration, ou encore par tout autre moyen de séparation solide/ liquide connu de l'homme du métier. En général, la teneur en phase continue dans la dispersion concentrée obtenue est au minimum de 50 % en volume. La teneur en solide est quant à elle généralement comprise entre 10 et 90 % en masse.
De façon alternative, dans certains cas particuliers, l'émulsion obtenue à l'issu de l'étape (c) et des éventuelles étapes (d) et/ ou (e) peut également être soumise à une étape (f) de séchage à basse température, c'est à dire inférieure à
150°C, ce par quoi on obtient la composition émulsifiante sous la forme d'un solide. Cette étape (f) est généralement conduite à une température comprise entre 20 et 120°C, et elle comporte avantageusement une étape de dilution préalable de l'émulsion obtenue à l'issu de l'étape (c) et des éventuelles étapes (d) et/ ou (e), par ajout de phase aqueuse et/ ou de phase hydrophobe.
Dans ce cadre, on préfère généralement mettre en œuvre à titre de phase hydrophobe dans le procédé de l'invention une huile possédant un faible point d'ébullition, avantageusement inférieur à 120°C et plus préférentiellement inférieur à 90°C. Par ailleurs, les particules de dimensions nanométriques mises en œuvre pour former des compositions sous forme de solide redispersable, sont généralement des particules possédant en soi un caractère redispersable, telles que les particules possédant des charges surfaciques élevées, à base de phosphate de calcium, ou à base de phosphate ou de vanadates de terres rares. Les différentes variantes préférentielles exposées ci-dessus en ce qui concerne le mode de préparation d'une composition émulsifiante selon l'invention ne sauraient en aucun cas limiter le procédé de l'invention à ces variantes particulières.
Ainsi, sous réserve d'adapter la nature de la phase hydrophobe et du tensioactif moléculaire utilisés, la plupart des particules colloïdales à base de phosphate ou de vanadate métallique de dimensions nanométriques peuvent être mises en œuvre dans le procédé de l'invention.
De façon plus générale, en fonction de la nature exacte des particules colloïdales de dimensions nanométriques mises en œuvre et/ ou du tensioactif ionique moléculaire ou de la phase hydrophobe mise en œuvre, il des compétences de l'homme du métier d'adapter les étapes (a), (b) et (c). La seule condition à respecter est de former une émulsion en présence desdites particules et dudit tensioactif moléculaire tout en favorisant les interactions entre particules et tensioactifs moléculaires et en évitant le transfert des particules complexées par les agents tensioactifs moléculaires vers la phase hydrophobe.
Du fait de leur caractère émulsifiant et de la présence de particules solides au sein de leur composition, et quel que soit leur mode d'obtention et la nature exacte de leurs constituants, les compositions émulsifiantes de l'invention peuvent être mises en œuvre dans de nombreux domaines d'applications. Ainsi, les compositions émulsifiantes de l'invention peuvent notamment être utilisées pour la formulation de compositions détergentes notamment adaptées au nettoyage de surfaces dures, où l'association du caractère émulsifiant et de la présence de particules solides induit à la fois une abrasion mécanique et une émulsification des taches à caractère hydrophobe. Par ailleurs, les compositions émulsifiantes de l'invention peuvent présenter des propriétés physico-chimiques intéressantes du fait de la présence des particules solides.
De ce fait, les compositions émulsifiantes de l'invention peuvent notamment être mises en œuvre pour la fabrication de films et de matériaux, notamment de films d'emballages. De façon spécifique, les compositions à base de phosphates métalliques peuvent ainsi avantageusement être utilisées pour la réalisation de film d'encapsulation pour l'industrie agro-alimentaire. Les compositions comprenant des particules à base de phosphate ou vanadates de terres rares, dits dopés, c'est à dire présentant une faible quantité de cation de substitutions de type europium par exemple, peuvent quant à elles être utilisées pour la réalisation de films à propriétés luminescentes. La mise en œuvre des particules solides à caractère amphiphile de l'invention peut permet également la fabrication de films à haute résistance mécanique, ou encore de films opacifiants.
Dans ce type de matériaux, la particule solide à caractère amphiphile provenant de la composition émulsifiante joue à la fois un rôle lié à ses propriétés physico-chimiques intrinsèques et un rôle d'agent tensioactif lié à son caractère amphiphile. Par rapport aux tensioactifs moléculaires classiquement mis en œuvre dans la constitution de tels matériaux, les particules de surface modifiée de type agents tensioactifs de l'invention présente par ailleurs l'intérêt, de par leur caractère solide, de ne pas conduire aux phénomènes de migration en surface généralement observés.
Les exemples illustratifs exposés ci-après concerne la préparation des compositions émulsifiantes comprenant des particules solides à caractère amphiphile selon l'invention.
Exemple 1 : Préparation d'une composition émulsifiante comprenant des particules de phosphate de lanthane à caractère amphiphile à titre d'agents tensioactifs.
(1) préparation d'une dispersion colloïdale (Dl) de phosphate de lanthane
A 204 g d'eau déminéralisée contenus dans un bêcher sous agitation à 25°C, on a dissous 31,4 g d'acide citrique (soit 0,148 mole), puis on a additionné 90,22 g de La(N03)3 à 26,98% en La203 ( ce qui correspond à 0,148 mole de La), de façon à obtenir un rapport molaire (citrate /La) de 1 dans la solution. La solution a été laissée sous agitation pendant une heure. ^^'
On a ensuite additionné, à l'aide d'une pompe doseuse, avec une vitesse d'addition de 2 mL par minute, 202 mL d'une solution d'ammoniaque 3,25 M . On a laissé sous agitation pendant 60 minutes après la fin de l'addition. On a ainsi obtenu une solution (SI) de pH égal à 8,78. On a également préparé une solution aqueuse (S2) de phosphate d'ammonium par addition d'eau déminéralisée à 15,63 g de (NH4)2HP04 (soit 0,118 moles) jusqu'à obtention d'un volume de solution aqueuse de 300 mL.
On a additionné sous agitation et de manière instantanée la solution (S2) ainsi obtenue à la solution (SI) de nitrate de lanthane précédemment préparée, de façon à obtenir un milieu caractérisé par un rapport molaire P/La égal à 0,8. On a laissé 15 minutes sous agitation. Le pH du milieu obtenu a été mesuré égal à 8,76.
Par addition de 238,4 g de solution NaOH 4M, on a ajusté le pH du milieu à 12, puis on a placé ce milieu dans une enceinte fermée (bombe de Parr) qu'on a placé pendant 16 heures dans une étuve préalablement portée à 120°C.
On a refroidi jusqu'à une température de 25°C, et on a recueilli la dispersion colloïdale obtenue. Le pH de la dispersion a alors été ajusté à 10 par addition de 47,8 g d'une solution aqueuse d'acide nitrique 4M.
La dispersion a ensuite été lavée 4 fois par de l'eau déminéralisée avec chaque fois un volume égal au volume de la dispersion. Ce lavage est effectué par ultrafiltration sur une membrane de 3 KD.
La dispersion ainsi obtenue a ensuite été concentrée par ultrafiltration à 0,25 M., ce par quoi on a réalisé une dispersion (Dl) qui possèdent les caractéristiques suivantes : - Densité =1,04
- Concentration en LaP04 = 3,13 % en masse (Détermination par perte au feu), soit une concentration en lanthane de 0,13 mole/kg (ou 0,14 mole/ L).
- Taille moyenne des colloïdes : 3 nm (particules essentiellement toutes individualisées, comme visualisé par cryo-microscopie à transmission).
(2) préparation de la composition émulsifiante
On a dissous, dans 80 ml d'acétate d'éthyle, 0,8 g de RO 20 VG
(mélange de composés de formule générale A- ( OC2H4)2-OCH2COOH où A représente une chaîne alkyle possédant de 16 à 18 atomes de carbone, commercialisé sous ce nom par la société Kao Chemicals. On a mis cette solution sous agitation en enceinte fermée pendant 15 minutes.
On a ensuite additionné 20 ml de la dispersion colloïdale (Dl) à la solution d'acétate d'éthyle ainsi préparée. Le mélange obtenu a alors été émulsionné à l'aide d'un disperseur rapide (ultraturax ) pendant 2 minutes à raison de 11 000 tours par minutes. On a obtenu une émulsion sous la forme d'un gel stable.
La taille des gouttes déterminée par microscopie optique au sein de ce gel est de l'ordre de 0,8 micron.
L'émulsion obtenue est diluable par de l'eau. Ainsi, on constate notamment que, si on ajoute 50 cm3 d'eau à 10 cm3 de ladite émulsion, et qu'on agite manuellement le mélange réalisé, on conserve une émulsion stable.
Exemple 2 : Préparation d'une composition émulsifiante comprenant des particules de phosphate de lanthane à caractère amphiphile à titre d'agents tensioactifs.
On a dissous, dans 400 ml d'octanol, 3,08 g de RO 20 NG. On a mis cette solution sous agitation en enceinte fermée pendant 15 minute. On a ensuite additionné 100 ml de la dispersion colloïdale (Dl) à la solution d'octanol ainsi préparée.
Le mélange obtenu a alors été émulsionné à l'aide d'un disperseur rapide (ultraturax ) pendant 1 minute à raison de 11 000 tours par minutes.
On a obtenu une émulsion sous la forme d'un gel stable, diluable par de l'eau sans perte de la stabilité, où la taille des gouttes déterminée par microscopie optique est de l'ordre de 1 microns.
Une aliquote de l'émulsion obtenue a été diluée par 10 fois son volume d'eau déminéralisée. On a ensuite laissé évaporer le milieu sous hotte aspirante à 25°C. Au bout d'une semaine on a obtenu une poudre sèche. 0,05 g de cette poudre a été introduite dans un mélange contenant 20 mL d'eau et 20mL d'octanol. Par agitation, on a obtenu une émulsion, qu'on a homogénéisé à l'aide d'un disperseur ultraturax pendant une minute à raison de 11 000 tours par minutes. On a obtenu une émulsion stable, au sein de laquelle la taille des gouttes déterminée par microscopie optique est de l'ordre de 8 microns. Exemple 3 : Préparation d'une composition émulsifiante comprenant des particules de phosphate de lanthane à caractère amphiphile à titre d'agents tensioactifs.
On a dissous, dans 80 ml d'huile de colza, 0,17 g de RO 20 NG.
On a ensuite dilué la dispersion colloïdale (Dl) de l'exemple 1 jusqu'à une concentration de 0,2 mole/ litre en lanthane. On a additionné 20 ml de cette dispersion diluée à la solution d'huile de colza préparée précédemment.
Le mélange obtenu a alors été émulsionné à l'aide d'un disperseur rapide (ultraturax ) pendant 2 minutes à raison de 11 000 tours par minutes.
On a obtenu une émulsion diluable par de l'eau sans perte de la stabilité sous la forme d'un gel stable
La taille des gouttes déterminée par microscopie optique est de l'ordre de 5 microns.
Exemple 4 : Préparation d'une composition émulsifiante comprenant des particules de phosphate de calcium à caractère amphiphile à titre d'agents tensioactifs.
(1) préparation d'une dispersion colloïdale (D2) de phosphate de calcium stabilisé par de la lysine
On a préparé une solution A en plaçant dans un bêcher 50,8 ml d'acide phosphorique 0,98 M (soit 50 millimoles de phosphore), dilués par de l'eau déminéralisée jusqu'à un volume de 75 mL. On a ajusté le pH à une valeur de 9 par addition d'ammoniaque 10,5 M.
On a préparé une solution B en mélangeant, sous agitation jusqu'à dissolution complète, 24,6 g de Ca(Νθ3)2 (soit 150 millimoles de Ca), 43,92 g de lysine (soit 300 millimoles), et de l'eau déminéralisée jusqu'à un volume de 75 mL. On a additionné de manière instantanée la solution A dans la solution
B à 25°C, de façon à obtenir un milieu caractérisé par un rapport molaire (Ca:P) égal à 3 . On a ajusté le pH à 9 avec de l'ammoniaque concentrée 10,5 M, puis on a laissé le milieu sous agitation pendant 15 minutes. On a transféré le mélange obtenu dans une enceinte fermée (bombe de
Parr) qu'on a placé pendant 16 heures dans une étuve préalablement mise en température de 80°C .
A l'issu de ce mûrissement en température, on a obtenu une dispersion colloïdale, qui présente une concentration (déterminée par perte au feu) de 8,12 % en solide. Par cryo-microscopie électionique à transmission, on a visualisé pour cette dispersion des colloïdes individualisés . Ces colloïdes sont constitués d'une population d'objets possédant une morphologie anisotrope de longueur moyenne de 50 nm et d'une deuxième population à morphologie plus isotrope , de type sphères, d'un diamètre moyen de 10 nm. Sur une aliquote de 100 mL de la dispersion obtenue, on a réalisé un lavage par ultrafiltration dans des cellules de type Amicon équipées de membranes de 3 KD. Le lavage de la dispersion est effectuée par 4 volumes équivalents d'eau déminéralisée. Après ce lavage, le volume de la dispersion est de 100 mL et possède une concentration de 4,45 % en solide. On a concentré la dispersion jusqu'à un volume final de 50 mL, on a alors obtenu une dispersion (D2) de densité égale à 1,11 et possédant une perte au feu de 7,78%.
(2) préparation de la composition émulsifiante
On a dissous, dans 20 ml d'huile de colza, 0,0145 g de
Figure imgf000037_0001
On a ensuite additionné 5 ml de la dispersion colloïdale (D2) à la solution d'huile de colza ainsi préparée.
Le mélange obtenu a alors été émulsionné à l'aide d'un disperseur rapide (ultraturax ) pendant 2 minutes à raison de 11 000 tours par minutes. On a obtenu une émulsion stable, diluable par de l'eau sans perte de la stabilité, au sein de laquelle la taille des gouttes déterminée par microscopie optique est de l'ordre de 20 microns.
Exemple 5 : Préparation d'une composition émulsifiante comprenant des particules de phosphate de calcium à caractère amphiphile à titre d'agents tensioactifs.
On a dissous, dans 20 ml d'huile de colza, 0,217 g de RO 90 (tensioactif commercialisé par Kao Chemicals). On a ensuite additionné 5 ml de la dispersion colloïdale (D2) à la solution ainsi préparée.
Le mélange obtenu a alors été émulsionné à l'aide d'un disperseur rapide (ultraturax ) pendant 2 minutes à raison de 11 000 tours par minutes.
On a obtenu une émulsion stable, où la taille des gouttes déterminée par microscopie optique est de l'ordre de 2 microns.
Cette émulsion est diluable par de l'huile de colza sans perte de la stabilité : si on additionne 25 mL d'huile de colza à 5 mL de l'émulsion, on conserve une émulsion stable.
Exemple 6 : Préparation d'une composition émulsifiante comprenant des particules de phosphate de calcium à caractère amphiphile à titre d'agents tensioactifs.
(1) préparation d'une dispersion colloïdale (D3) de phosphate de calcium stabilisé par de l'alanine
On a préparé une solution (A1) en plaçant dans un bêcher 50,8 ml d'acide phosphorique 0,98 M (soit 50 millimoles de phosphore), dilués par de l'eau déminéralisée jusqu'à un volume de 60 mL. On a ajusté le pH à une valeur de 9,1 par addition de 12 mL d'ammoniaque 10,5 M. On a ensuite additionné de l'eau déminéralisée jusqu'à l'obtention d'un volume de 75 mL. On a préparé une solution (B1) en mélangeant, sous agitation jusqu'à dissolution complète, 24,6 g de Ca(Nθ3)2 (soit 150 millimoles de Ca), 26,6 g d'alanine, et 60 mL d'eau. On a ajusté à pH 9 par addition de 6 mL d'ammoniaque
10,5 M. On a ensuite additionné de l'eau déminéralisée jusqu'à l'obtention d'un volume de 75 mL.
On a additionné de manière instantanée la solution (A1) dans la solution (B1) à 25°C, de façon à obtenir un milieu caractérisé par un rapport molaire (Ca:P) égal à 3 et un pH de 8,85. On a ajusté le pH à 9 avec de l'ammoniaque concentiée 10,5 M, puis on a laissé le milieu sous agitation pendant 15 minutes.
On a transféré le mélange obtenu dans une enceinte fermée (bombe de
Parr) qu'on a placé pendant 16 heures dans une étuve préalablement mise en température de 50°C.
A l'issu de ce mûrissement en température, on a obtenu une dispersion colloïdale, qui présente une concentiation de 1 mole par litre en calcium. Par cryo-microscopie électronique à transmission, on a visualisé pour cette dispersion des colloïdes bien individualisés constitués d'une population d'objets possédant une morphologie anisotrope de longueur moyenne de 100 nm et de diamètre équivalent inférieur de 7 nm.
(2) préparation de la composition émulsifiante
On a dissous, dans 20 ml d'huile de silicone 47 V 100 (Rhodia), 1,085 g de RO 90.
On a ensuite additionné 5 ml de la dispersion colloïdale (D3) à la solution d'huile de silicone ainsi préparée.
Le mélange obtenu a alors été émulsionné à l'aide d'un disperseur rapide (ultraturax ) pendant 2 minutes à raison de 11 000 tours par minutes.
On a obtenu une émulsion stable, diluable par de l'eau sans perte de la stabilité, où la taille des gouttes déterminée par microscopie optique est de l'ordre de 6 microns.

Claims

Revendications
1. Agent tensioactif formé d'au moins une particule de dimensions nanométriques à base d'un composé métallique choisi parmi un phosphate ou un vanadate, à la surface de laquelle sont liées des chaînes organiques à caractère hydrophobe, les liaisons entre lesdites chaînes et la surface de ladite particule étant reparties de façon non homogène sur ladite surface, ce par quoi la particule de surface ainsi modifiée possède un caractère amphiphile effectif.
2. Agent tensioactif selon la revendication 1, caractérisé en ce que la particule mise en œuvre est une particule isotrope ou sphérique possédant un diamètre moyen compris entre 2 et 150 nm.
3. Agent tensioactif selon la revendication 1, caractérisé en ce que la particule mise en œuvre est une particule anisotrope possédant un diamètre moyen compris entre 5 et 250 nm.
4. Agent tensioactif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite particule est à base d'un phosphate métallique.
5. Agent tensioactif selon la revendication 4, caractérisé en ce que ladite particule est à base d'un phosphate de calcium.
6. Agent tensioactif selon la revendication 4, caractérisé en ce que ladite particule est à base d'un phosphate d'une ou plusieurs terre(s) rare(s).
7. Agent tensioactif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les chaînes organiques à caractère hydrophobe liées à la surface de la particule de dimensions nanométriques sont des chaînes alkyles comprenant de 6 à 30 atomes de carbone ou des chaînes polyoxyéthylène- monoalkyléthers dont la chaîne alkyle comprend de 8 à 30 atomes de carbone et dont la partie polyoxyethylène comprend de 1 à 10 groupement éthoxyles -CH2- CH2-0-.
8. Agent tensioactif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la liaison entre lesdites chaînes organiques et la surface de la particule est assurée par la présence, à l'une des extrémités de chacune desdites chaînes, d'un groupement induisant une liaison complexante, électrostatique ou de type liaison hydrogène avec une espèce présente à la surface de la particule.
9. Agent tensioactif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la surface modifiée de ladite particule est telle qu'elle peut être divisée par un plan de section droite en deux surfaces Si et S2 telles que : (i) Chacune des surfaces Si et S2 représente au moins 20 % de la surface totale de la particule ; et
(il) La densité surfacique de chaînes organiques liées à S2 est supérieure à au moins 5 fois la densité surfacique de chaînes à caractère hydrophobe liées à Si.
10. Composition émulsifiante comprenant au moins un agent tensioactif selon l'une quelconque des revendications 1 à 9.
11. Composition émulsifiante adaptée pour réaliser une émulsion stabilisée, de type eau dans l'huile ou huile dans l'eau, ladite émulsion stabilisée possédant une teneur en phase dispersée supérieure ou égale à 20% et la taille moyenne des gouttes formant la phase dispersée au sein de ladite émulsion étant inférieure ou égale à 20 microns, ladite composition émulsifiante étant caractérisée en ce qu'elle comprend des particules de dimensions nanométriques à base d'un composé métallique choisi parmi un phosphate ou un vanadate, à la surface desquelles sont liées des chaînes organiques à caractère hydrophobe.
12. Composition émulsifiante selon la revendication 11, caractérisée en ce qu'elle se présente sous forme d'une émulsion de type huile dans l'eau ou eau dans l'huile, lesdites particules de dimensions nanométriques à la surface desquelles sont liées les chaînes organiques à caractère hydrophobe étant au moins partiellement localisées aux interfaces de type eau/ huile de ladite émulsion.
13. Composition selon la revendication 11 ou selon la revendication 12, dans laquelle la taille moyenne des gouttes est inférieure ou égale à 10 microns, et de préférence au plus de 5 microns.
14. Composition émulsifiante selon la revendication 11, caractérisée en ce qu'elle se présente sous forme d'une formulation concentrée ayant une teneur en solide supérieure à 5 % en masse.
15. Composition émulsifiante selon la revendication 14, caractérisée en ce qu'elle est formée par un culot d'ultracentrifugation issu de l'ultracentrifugation d'une composition émulsifiante selon la revendication 12.
16. Composition émulsifiante selon la revendication 11, caractérisée en ce qu'elle se présente sous forme d'une dispersion desdites particules de dimensions nanométriques à la surface desquelles sont liées les chaînes organiques à caractère hydrophobe dans une phase continue hydrophile ou hydrophobe, ladite dispersion possédant une teneur en solide comprise entre 10 et 90 % en masse.
17. Composition émulsifiante selon la revendication 11, caractérisée en ce qu'elle se présente sous la forme d'une poudre solide.
18. Composition émulsifiante selon l'une quelconque des revendications 11 à 17, caractérisée en ce qu'elle comprend des agents tensioactifs répondant à la définition de l'une quelconque des revendications 1 à 9.
19. Procédé de préparation d'une composition émulsifiante selon l'une quelconque des revendications 10 à 18, caractérisé en ce qu'il comprend les étapes consistant à :
(a) former une phase hydrophobe et une dispersion aqueuse colloïdale de particules de dimensions nanométriques à base d'un composé métallique choisi parmi un phosphate ou un vanadate, ladite phase hydrophobe ou ladite dispersion aqueuse comprenant un agent tensioactif moléculaire susceptible de s'associer, par complexation, par interaction électrostatique ou par liaison hydrogène, aux particules colloïdales ; (b) Réaliser un mélange par addition de ladite phase hydrophobe à ladite dispersion aqueuse, ou par addition de ladite dispersion aqueuse dans ladite phase hydrophobe ; et
(c) Soumettre le mélange obtenu à un émulsification.
20. Procédé selon la revendication 19, caractérisé en ce que les particules colloïdales de l'étape (A) sont sous la forme d'une dispersion colloïdales possédant une distribution granulométrique monodispersée, avec un taux d'agglomération interparticulaire inférieur à 20 % en nombre.
21. Procédé selon la revendication 19 ou selon la revendication 20, caractérisé en ce que les particules de l'étape (a) sont constituées au moins partiellement d'un phosphate de calcium, d'un phosphate de terre rare ou d'un vanadate de terre rare.
22. Procédé selon l'une quelconque des revendications 19 à 21, caractérisé en ce que l'étape (c) d'émulsification est suivie d'une étape (d) de centrifugation conduite à raison de 1 000 à 5000 tours par minute pendant une durée allant de 2 minutes à 30 minutes.
23. Procédé selon l'une quelconque des revendications 19 à 22, caractérisé en ce que l'émulsion obtenue est en outre soumise à une étape (e) de traitement thermique, conduite en portant l'émulsion à une température comprise entre 40°C et 100°C pendant une durée allant de 30 minutes à 24 heures.
24. Procédé selon l'une quelconque des revendications 19 à 23, caractérisé en ce que l'émulsion obtenue est en outre soumise à une étape (f) d'ultracentrifugation de façon à obtenir une formulation émulsifiante concentrée sous forme d'un culot d'ultracentrifugation.
25. Procédé selon l'une quelconque des revendications 19 à 24, caractérisé en ce que l'émulsion obtenue est en outre soumise à une étape (g) comprenant les étapes consistant à :
(gi) additionner un solvant à la formulation concentrée, la masse du solvant ajouté étant comprise entre 0,1 et 10 fois la masse de la formulation concentrée mise en oeuvre; et
(g2) concentrer le mélange obtenu par filtration ou par évaporation.
26. Procédé selon l'une quelconque des revendications 19 à 25, caractérisé en ce que l'émulsion obtenue est en outre soumise à une étape (f) de séchage à une température inférieure à 150°C, ce par quoi on obtient la composition émulsifiante sous la forme d'un solide.
27. Composition émulsifiante susceptible d'être obtenue selon un procédé répondant à la définition de l'une quelconque des revendications 19 à 26.
28. Utilisation d'une composition émulsifiante selon la revendication 12 ou selon la revendication 13 pour stabiliser une émulsion de type eau dans l'huile ou huile dans l'eau, caractérisée en ce ladite composition émulsifiante est mise en œuvre à raison de 10 à 80 % en masse par rapport à la masse totale de l'émulsion à stabiliser.
29. Utilisation d'une composition émulsifiante sous forme d'une formulation concentrée selon la revendication 14 ou la revendication 15 pour stabiliser une émulsion de type eau dans l'huile ou huile dans l'eau ou une émulsion multiple, caractérisée en ce que ladite formulation concentrée est mise en œuvre à raison de 10 à 200 % en masse par rapport à la masse de la phase dispersée de l'émulsion à stabiliser.
30. Utilisation d'une composition émulsifiante selon l'une quelconque des revendications 10 à 18 ou selon la revendication 27, pour la formulation de compositions détergentes.
31. Utilisation d'une composition émulsifiante selon l'une quelconque des revendications 10 à 18 ou selon la revendication 27, pour la fabrication d'un film d'emballage.
PCT/FR2002/003848 2001-11-09 2002-11-08 Compositions emulsifiantes comprenant des nanoparticules minerales de surface modifiee WO2003039725A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/14560 2001-11-09
FR0114560A FR2832076B1 (fr) 2001-11-09 2001-11-09 Compositions emulsifiantes comprenant des particules minerales de dimensions nanometriques de surface modifiees et agents tensioactifs formes par de telles particules

Publications (1)

Publication Number Publication Date
WO2003039725A1 true WO2003039725A1 (fr) 2003-05-15

Family

ID=8869272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003848 WO2003039725A1 (fr) 2001-11-09 2002-11-08 Compositions emulsifiantes comprenant des nanoparticules minerales de surface modifiee

Country Status (2)

Country Link
FR (1) FR2832076B1 (fr)
WO (1) WO2003039725A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2143776A1 (fr) 2008-06-25 2010-01-13 Commissariat A L'energie Atomique Dispersions de particules d'oxydes de terres rares luminescents, vernis comprenant ces particules, leurs procédés de préparation et procédé de marquage de substrats
WO2016097487A1 (fr) * 2014-12-19 2016-06-23 Kemira Oyj Compositions de démoussage comprenant des particules amphiphiles et leurs procédés de fabrication et d'utilisation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1027424A (fr) * 1947-11-18 1953-05-12 Koppers Co Inc Perfectionnements apportés aux procédés de préparation de polymères perlés
GB1046724A (en) * 1963-01-02 1966-10-26 Lajos Csonka Process for preparing surface treated pigments
FR1532139A (fr) * 1967-07-25 1968-07-05 Fisons Ltd Composition à base de roche phosphatée
GB1152607A (en) * 1967-03-08 1969-05-21 Pfizer Ltd Antigenic Compositions
EP0273756A2 (fr) * 1986-12-29 1988-07-06 Aluminum Company Of America Matériau actif utilisé comme adsorbant comprenant des particules d'un oxyde-hydroxyde de métal ayant réagi avec un ou plusieurs matériaux contenant du phosphore
JPH0770469A (ja) * 1993-09-03 1995-03-14 Ishihara Sangyo Kaisha Ltd 無機化合物の製造方法
JPH0770470A (ja) * 1993-09-03 1995-03-14 Ishihara Sangyo Kaisha Ltd 無機化合物の製造方法
EP0732343A2 (fr) * 1995-03-14 1996-09-18 Mitsubishi Chemical BASF Company Limited Suspension contenant un agent de suspension, méthode de sa préparation et procédé de polymérisation utilisant cette suspension
WO2000000553A1 (fr) * 1998-06-30 2000-01-06 Omya Sa Traitement de charges minerales par un phosphate, ces charges et leur utilisation
JP2001089114A (ja) * 1999-09-21 2001-04-03 Maruo Calcium Co Ltd 無機分散剤、懸濁重合用安定剤、重合体粒子、不飽和ポリエステル樹脂組成物、トナー組成物、並びに無機分散剤の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1027424A (fr) * 1947-11-18 1953-05-12 Koppers Co Inc Perfectionnements apportés aux procédés de préparation de polymères perlés
GB1046724A (en) * 1963-01-02 1966-10-26 Lajos Csonka Process for preparing surface treated pigments
GB1152607A (en) * 1967-03-08 1969-05-21 Pfizer Ltd Antigenic Compositions
FR1532139A (fr) * 1967-07-25 1968-07-05 Fisons Ltd Composition à base de roche phosphatée
EP0273756A2 (fr) * 1986-12-29 1988-07-06 Aluminum Company Of America Matériau actif utilisé comme adsorbant comprenant des particules d'un oxyde-hydroxyde de métal ayant réagi avec un ou plusieurs matériaux contenant du phosphore
JPH0770469A (ja) * 1993-09-03 1995-03-14 Ishihara Sangyo Kaisha Ltd 無機化合物の製造方法
JPH0770470A (ja) * 1993-09-03 1995-03-14 Ishihara Sangyo Kaisha Ltd 無機化合物の製造方法
EP0732343A2 (fr) * 1995-03-14 1996-09-18 Mitsubishi Chemical BASF Company Limited Suspension contenant un agent de suspension, méthode de sa préparation et procédé de polymérisation utilisant cette suspension
WO2000000553A1 (fr) * 1998-06-30 2000-01-06 Omya Sa Traitement de charges minerales par un phosphate, ces charges et leur utilisation
JP2001089114A (ja) * 1999-09-21 2001-04-03 Maruo Calcium Co Ltd 無機分散剤、懸濁重合用安定剤、重合体粒子、不飽和ポリエステル樹脂組成物、トナー組成物、並びに無機分散剤の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199519, Derwent World Patents Index; Class D22, AN 1995-145034, XP002211931 *
DATABASE WPI Section Ch Week 199519, Derwent World Patents Index; Class E13, AN 1995-145035, XP002211932 *
DATABASE WPI Section Ch Week 200170, Derwent World Patents Index; Class A60, AN 2001-608599, XP002211930 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2143776A1 (fr) 2008-06-25 2010-01-13 Commissariat A L'energie Atomique Dispersions de particules d'oxydes de terres rares luminescents, vernis comprenant ces particules, leurs procédés de préparation et procédé de marquage de substrats
US8076653B2 (en) 2008-06-25 2011-12-13 Commissariat A L'energie Atomique Dispersions of luminescent rare-earth oxide particles, varnish comprising these particles, their methods of preparation and method for marking substrates
WO2016097487A1 (fr) * 2014-12-19 2016-06-23 Kemira Oyj Compositions de démoussage comprenant des particules amphiphiles et leurs procédés de fabrication et d'utilisation
CN106999803A (zh) * 2014-12-19 2017-08-01 凯米罗总公司 包含两亲性颗粒的消泡组合物及其制备和使用方法
CN106999803B (zh) * 2014-12-19 2019-09-20 凯米罗总公司 包含两亲性颗粒的消泡组合物及其制备和使用方法

Also Published As

Publication number Publication date
FR2832076B1 (fr) 2004-07-23
FR2832076A1 (fr) 2003-05-16

Similar Documents

Publication Publication Date Title
EP1283744A1 (fr) Agents tensioactifs formes par des nanoparticules minerales de surface modifiee
EP0118379B1 (fr) Micro-émulsions à haute viscosité
EP2129455B1 (fr) Procédé de préparation de nano-émulsions
EP1458471B1 (fr) Dispersion colloidale organique de particules de fer, son procede de preparation et son utilisation comme adjuvant de carburant pour moteurs a combustion interne
EP1208898B1 (fr) Formulation désémulsionnante organique et son utilisation dans le traitement des puits forés en boue à l'huile
FR2916974A1 (fr) Procede de preparation de nanoparticules lipidiques
EP2376218B1 (fr) Procede de preparation de nanoparticules lipidiques
CA2360820A1 (fr) Sol organique et compose solide a base d'oxyde de cerium et d'un compose amphiphile et procede de preparation
WO2009001019A2 (fr) Nanocapsules a coeur lipidique liquide chargees en actifs(s) hydrosoluble(s) ou hydrodispersible(s)
EP2607405A1 (fr) Procédé de synthèse d'un système nanoparticulaire de polyélectrolytes de charges opposées et utilisation pour le traitement de formations géologiques
EP1157072B1 (fr) Sol organique et compose solide a base d'oxyde de titane et d'un compose amphiphile et procedes de preparation
EP0130891B1 (fr) Compositions de biopolymères et leur procédé de préparation
Li et al. Hybrid liposomes composed of hydrophilic emulsifiers and lecithin: Physicochemical, interaction and curcumin loading properties
FR2850017A1 (fr) Composition cosmetique sous forme de mousse
WO2003039724A1 (fr) Emulsions multiples comprenant des nanoparticules de surface modifiee a titre d'agents stabilisants
EP2894978A1 (fr) Procede alternatif de microencapsulation de principes actifs
FR2808703A1 (fr) Procede de preparation d'une emulsion double monodisperse
WO2003039725A1 (fr) Compositions emulsifiantes comprenant des nanoparticules minerales de surface modifiee
EP1872849B1 (fr) Émulsion résistant aux alcools et procédé servant à produire celle-ci
EP1677905B1 (fr) Utilisation d'une dispersion colloidale organique de cerium et d'un element choisi parmi le rhodium et le palladium comme adjuvant de gazoles pour moteurs a combustion interne
EP1244427B1 (fr) Compositions pharmaceutiques destinees a une administration par voie orale
EP1713570B1 (fr) Compositions d huile cristallisable stabilisees par des particules solides colloi dales
US12269955B2 (en) Particulate composition, liquid composition, method for producing particulate composition, surface modifying agent, and method for improving water dispersibility
EP1453889A1 (fr) Particules de structure interne organisee dispersees dans une phase aqueuse, preparation et utilisations.
EP1494795A2 (fr) Preparation d une emulsion par dilution d un concentre emulsionnable comprenant un copolymere amphiphile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载