+

WO2003036771A1 - Laser a semi-conducteurs a base de nitrure et procede de production de ce laser - Google Patents

Laser a semi-conducteurs a base de nitrure et procede de production de ce laser Download PDF

Info

Publication number
WO2003036771A1
WO2003036771A1 PCT/JP2002/011136 JP0211136W WO03036771A1 WO 2003036771 A1 WO2003036771 A1 WO 2003036771A1 JP 0211136 W JP0211136 W JP 0211136W WO 03036771 A1 WO03036771 A1 WO 03036771A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
semiconductor laser
face
laser device
layer
Prior art date
Application number
PCT/JP2002/011136
Other languages
English (en)
French (fr)
Inventor
Robert Dwilinski
Roman Doradzinski
Jerzy Garczynski
Leszek Sierzputowski
Yasuo Kanbara
Original Assignee
Ammono Sp.Zo.O.
Nichia Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PL35037501A external-priority patent/PL350375A1/xx
Priority claimed from PL02354739A external-priority patent/PL354739A1/xx
Application filed by Ammono Sp.Zo.O., Nichia Corporation filed Critical Ammono Sp.Zo.O.
Priority to JP2003539145A priority Critical patent/JP4097601B2/ja
Priority to EP02775396A priority patent/EP1453158A4/en
Priority to US10/493,746 priority patent/US7057211B2/en
Priority to KR1020047006130A priority patent/KR100679387B1/ko
Publication of WO2003036771A1 publication Critical patent/WO2003036771A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/005Epitaxial layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/32025Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth non-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/12Pendeo epitaxial lateral overgrowth [ELOG], e.g. for growing GaN based blue laser diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0213Sapphire, quartz or diamond based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0218Substrates comprising semiconducting materials from other groups of the Periodic Table than the materials of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0281Coatings made of semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Definitions

  • the present invention relates to a nitride semiconductor laser device in which an end face film made of a single crystal A 1 x Ga (0 ⁇ x ⁇ 1) is formed on a cavity end face.
  • Semiconductor laser devices using GaAs semiconductors that have been widely used in the past have made it possible to extend the life of the laser device by using a window structure in which a protective film is formed on the cavity end face.
  • the cavity end face formed by RIE (reactive ion etching) or cleavage of nitride semiconductor has a small bandgap energy, so that the absorption of the emitted light occurs at the end face. Heat is generated at the end face, and the problem of lifetime characteristics arises in order to realize a high-power laser of 100 mW or more.
  • the present invention provides an end face made of a single crystal A 1 X G a ⁇ .. N (0 ⁇ x ⁇ 1) at a low temperature that does not damage the active layer and does not cause the problem.
  • An object of the present invention is to provide a nitride semiconductor laser device having a film.
  • a nitride semiconductor laser device includes a resonator including an active layer made of a nitride semiconductor containing In between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer.
  • a single crystal A 1 X G a (0 formed at a low temperature that does not damage the active layer at least at the exit end face of the cavity facing the laser element and having a larger band gap energy than the active layer. It is characterized by having an end face film consisting of ⁇ x ⁇ 1).
  • the low temperature that does not damage the active layer made of a nitride semiconductor containing In means a temperature lower than the formation temperature of the active layer made of a nitride semiconductor containing In. Since the active layer made of a nitride semiconductor containing In is normally grown at a growth temperature of 90 ° C., the active layer is not damaged by decomposition or the like at a temperature lower than the growth temperature. Therefore, the growth temperature of the end face film is preferably 900 ° C. or lower, preferably 60 ° C. or lower, and more preferably 500 ° C. or lower.
  • a resonator including an active layer made of a nitride semiconductor containing In refers to an optical waveguide region, and is usually composed of an active layer and a light guide layer. Therefore, the end face film in the present invention may be formed so as to cover at least the resonator end face region.
  • the active layer includes at least one InGaN well layer or an InAlGaN well layer and has a single or multiple quantum well structure.
  • the end face film of the present invention is composed of a single crystal A l x G 3 l — x N (0 ⁇ x ⁇ 1) force.
  • This mixed crystal ratio is determined by the relationship with the function of the end face film. In other words, the bandgap energy of the emission end face of the active layer is narrowed by etching or cleavage performed at the time of formation of the emission end face. The mixed crystal ratio is determined as much as possible.
  • the A 1 mixed crystal ratio is 0.3 or less, and preferably 0.15 or less.
  • the film thickness of the end face film is preferably 50 angstroms or more. However, in order to ensure the uniformity of the end face film, it is 1 micron or less, preferably 200 mm. 0 A is Good.
  • the AMMONO method is applied to form the single crystal A 1 x Ga 2 — X N (0 ⁇ x ⁇ 1) at the low temperature.
  • Supercritical state of ammonia 1 x Ga 1 --X N (0 ⁇ x ⁇ l) This is a method for forming a single crystal layer on a predetermined seed surface (in the present invention, the resonator end face of the laser element), and adopting the AMMONO method
  • the single crystal end face film can be formed at 900 ° C. or less, preferably 600 ° C. or less, more preferably 500 ° C. or less.
  • the end face film is at least one selected from the group consisting of Ni, Cr, Co, Ti, Fe, A, Si, and Mn. May be contained. Further, the end face film contains at least one of the elements of Group No. 1 (IUPAC. 1989), Li, K :, Na or Cs used as a mineralizer as a feature of the AMMO NO method. Since the end face film does not absorb light emitted from the nitride semiconductor laser element, heat absorption at the emission end face is eliminated, and generation of COD is suppressed even in a nitride semiconductor laser element of 10 OmW or more.
  • the nitride semiconductor laser element is formed by lateral growth of GaN on a dissimilar substrate such as a GaN substrate, sapphire substrate, spinel substrate, ZnO substrate, SiC substrate, or other sapphire substrate.
  • the ELO growth substrate is formed on a substrate selected from the group consisting of a substrate on which a nitride semiconductor having surface irregularities is grown.
  • the ELO (Epitaxial-Latera1-Overgrowth) substrate is a substrate that uses the lateral growth of G a N and has a reduced dislocation defect.
  • a G a N substrate is preferred.
  • a nitride semiconductor laser device using a heterogeneous substrate having a composition different from that of the end face film it is mixed in the semiconductor of the end face film that is dissolved and recrystallized in the supercritical ammonia during the formation of the end face film. This is to avoid as much as possible.
  • the G a N substrate is a G a N substrate grown in supercritical ammonia. Nitride semiconductor laser elements grown on a different substrate from the nitride semiconductor were difficult to cleave in the device process. This is because the heterogeneous substrate on which GaN is grown does not have cleavage.
  • the G a N substrate has a cleavage property, it is excellent in obtaining a mirror surface when forming the resonator end face. This is because the end face can be formed by cleavage. Moreover, since it is homoepitaxial growth, warpage of the substrate can be suppressed after growing the laser element. This eliminates the occurrence of cracks. Furthermore, the growth surface on which the GaN substrate normally forms a laser element is the C plane. This is because a GaN substrate obtained by vapor deposition is obtained. According to the AMMONO method, a bulk single crystal of GaN in supercritical ammonia is grown in the direction of the C-axis to a thickness of 2.5 cm or more, and if cut, the diameter is 1 inch or more.
  • a GaN substrate with the M surface as the main surface can be obtained. Since the A-plane or M-plane is non-polar, there is no polarization effect on the active layer. Moreover, a defect density of about 10 4 Zcm 2 or less can be obtained. In addition, by changing the polarity of the GaN substrate with the (000-1) plane as the principal plane, it is the C plane (0
  • the surface can be the main surface.
  • the end surface film is formed on the M surface or the A surface, and can be an end surface film having no polarity.
  • the active layer of the laser device is not polarized, and the cavity exit surface becomes the M surface.
  • An M-plane end face film is formed on the M-plane, which is advantageous for cleavage.
  • the present invention provides a method for manufacturing a nitride semiconductor laser device, wherein an active layer made of a nitride semiconductor containing In is provided between an n-type nitride semiconductor layer and a P-type nitride semiconductor layer.
  • a nitride semiconductor laser device having a resonator including the first step of etching or cleaving the laser device to form an opposing resonator end surface, and at least a resonator end surface facing the laser device,
  • the second step by forming the end face film in supercritical ammonia, single crystal A 1 X G a (0 ⁇ 1) can be obtained at a low temperature that does not damage the active layer. .
  • a mask having a solubility equal to or lower than that of the end face film with respect to supercritical ammonia is formed on at least the upper surface of the p-type contact layer of the resonator, and then the end face film is formed. .
  • this mask it is possible to prevent the resonator of the laser element from being melted from the corner between the upper surface and the end surface of the p-type contact layer when forming the end face film of the nitride semiconductor laser element in supercritical ammonia, which is highly soluble. can do.
  • the mask may be selected from the group consisting of silicon oxide, silicon nitride, aluminum nitride, molybdenum, and tungsten. Since these mask materials are more stable in supercritical ammonia than GaN, dissolution can be suppressed on the contact surface in the region covered with the mask material. The mask can be easily removed during the formation of the ridge in a later process.
  • the end face film has a film forming temperature in a supercritical ammonia of not less than 100 ° C. and not more than 90 ° C. Since the nitride semiconductor laser device has a quantum well structure including InGaN, the active layer is decomposed when grown on the active layer at a temperature higher than 90 ° C. There is a fear. According to the present invention, the end face film can be grown at a temperature of 90 ° C. or lower, preferably 60 ° C. or lower.
  • FIG. 1 is a cutaway view of an end face of a nitride semiconductor laser device according to the present invention.
  • FIGS. 2A to 2D are cross-sectional views showing a manufacturing process in the case where an end face film is formed on both end faces without a mask.
  • 3A to 3E are cross-sectional views showing the steps of manufacturing the end face film of the nitride semiconductor laser device according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a wafer according to an embodiment in which the present invention is applied with a protective film formed on a substrate.
  • 5A to 5E are process explanatory diagrams when the present invention is applied to a method for manufacturing a nitride semiconductor laser device by cleavage.
  • BEST MODE FOR CARRYING OUT THE INVENTION Embodiments according to the present invention will be described below.
  • FIG. 1 is a cross-sectional view of a semiconductor laser according to the present invention, in which an n-type nitride semiconductor layer 2 and a p-type nitride semiconductor layer 4 are stacked on a sapphire substrate 1, and a nitride containing In is interposed therebetween.
  • An active layer 3 having a single or multiple quantum well structure made of a semiconductor is formed. This makes it possible to obtain a laser element with excellent luminous efficiency in the wavelength region from near ultraviolet to visible green (from 370 nm to 5500 nm).
  • the n-type nitride semiconductor layer 2 includes an n-contact layer 21, a crack prevention layer 22, an n-type cladding layer 23, and an n-type optical guide layer 24.
  • the p-type nitride semiconductor layer 4 includes a cap layer 41, a p-type light guide layer 42, a p-type cladding layer 43, and a p-contact layer 44.
  • the n-contact layer 21 may be formed on the sapphire substrate 1 through an A 1 GaN layer for the purpose of reducing pits as an ELO layer as a dislocation defect reducing layer.
  • the resonator of the semiconductor laser element is composed of the active layer 3, the p-type layer and the n-type light guide layers 24 and 42, and the cap layer 41.
  • An end face film 5 made of 1) is formed. If this end face film is also formed on the light reflecting side of the resonator end face (FIG. 2), the end face deterioration due to the reflected light can be suppressed.
  • Figures 2A to D show the process of providing end face films on both end faces of the resonator without forming a mask.
  • Figures 3A to E show the process of forming a mask on the exit end face of the resonator and forming the end face film on the exit end face.
  • Figures 5A to E show that the exit end face of the resonator is the VT plane, and the exit end face is formed by cleavage after forming the ridge and electrode.
  • a process for forming a laser element by providing a mask on the end face side, forming an M-face end face film on the emission end face, and then cleaving by cleavage or the like will be shown.
  • a buffer layer 11 is grown on a sapphire substrate 1 at a low temperature of 700 ° C. or lower, and an n-type nitride half-layer is formed on the buffer layer 11.
  • a wafer is prepared by sequentially growing a conductor layer 2, an active layer 3, and a p-type nitride semiconductor layer 4 (FIG. 2A).
  • FOG. 2A p-type nitride semiconductor layer 4
  • the cavity end face and the n-contact layer 21 are exposed by etching the wafer (FIG. 2B). Thereafter, the end face film 5 is formed by applying the AMMO N 2 O method to the wafer with the resonator end face exposed.
  • the wafer is set in an autoclave with a feedstock that is a raw material for the end face film and a mineralizer that is a reaction accelerator. Ammonia is added and the temperature is controlled to a supercritical state.
  • a wafer in which an n-type nitride semiconductor layer 2, an active layer 3, and a p-type nitride semiconductor layer 4 are sequentially grown on a sapphire substrate 1 is used. Instead, a heterogeneous substrate such as a sapphire substrate is removed.
  • a material that does not enter the end face film even if it melts for example, a wafer masked with Ag, etc.6, a wafer that masks the entire surface other than the exit end face of the resonator with Ag, etc.6, masks only the substrate
  • the wafer (Fig. 4) can be used.
  • the solubility of G a N is high, and if a mask is not formed on the surface of the p-type nitride semiconductor layer 4, the nitride semiconductor element is dissolved from the corner between the outermost surface and the emission end face. Therefore, the p-type contact layer that is the outermost surface of the p-type nitride semiconductor layer 4 is masked.
  • the mask material is selected from silicon oxide, silicon nitride, aluminum nitride, molybdenum, and tungsten. Since these mask materials are more stable than G a N in supercritical ammonia, dissolution of G a N can be suppressed.
  • a material that can be easily removed in the step after forming the end face film is preferable.
  • the film pressure of this mask is 1 m or more.
  • the end face film on the p-type semiconductor layer 4 is taken, the protective film is formed on the output end face, and the reflection film is formed on the opposite side, and cut out at the groove to obtain a laser element.
  • the above protective film and the reflective film may be the same material, S I_ ⁇ 2 and T i 0 2 having a protective action and reflecting action, or formed by the plurality films.
  • an n-type nitride semiconductor layer 2 that is, an n-contact layer 2 1, a crack prevention layer 2 2, and an n-type cladding layer 2 3 are formed on the C surface of the GaN substrate 1.
  • active layer 3 p-type nitride semiconductor layer 4, i.e. cap layer 41, p-type light guide layer 42, p-type ground layer 4 3, and p-contact layer 44.
  • Figure 3A the epi layer can be obtained without growing the n-type nitride semiconductor layer 2 via the ELO layer on the low temperature buffer layer 11 as in the first method. Can be reduced.
  • the cavity facet and the n-contact layer 21 are exposed by etching the wafer, and a mask 7 is formed except for the exit face side of the cavity facet (FIG. 3B).
  • the end face film 5 is formed by applying the AMMONO method to the wafer where the end face of the resonator is exposed (FIG. 3C).
  • a ridge is formed by a normal device process (FIG. 3D).
  • the ridge stripe that performs optical waveguide is formed in the cavity direction.
  • the width of the ridge is from 1.O to 20 // m, and the depth of the ridge reaches the p-type cladding layer or the p-type guide layer.
  • a ⁇ -ohmic electrode 80 is formed so as to contact the ⁇ -type contact layer 43 at the top of the ⁇ - ridge that forms the buried layer 70 made of a ZrO 2 film so as to cover the ridge.
  • the number of ridges is not limited to one, and a plurality of ridges can be formed to form a multi-stripe laser element.
  • a ⁇ electrode 90 is formed on the surface of the ⁇ -type contact layer 21 in parallel with the ⁇ electrode.
  • ⁇ -pad electrode 110 and ⁇ -pad electrode 120 are formed. Furthermore, with S i ⁇ 2
  • the S i ⁇ 2 / ⁇ io 2 insulating film is a reflective film for laser oscillation so as to cover the entire element except for the top of the p and n electrodes. It is formed to function as 0 0.
  • the wafer is divided into individual nitride semiconductor laser elements by scribing. Nitride as above Semiconductor laser devices can be fabricated (Fig. 3E, Fig. 1).
  • a protective film for efficiently performing resonance may be provided on the end face film.
  • the protective film has a refractive index difference from A] G a N which is an end face film.
  • A] G a N which is an end face film.
  • Nb Ni, Cr, Ti, Cu, Fe, Zr, Hf, W, Rh, Ru, Mg, Al, Sc, Y, Mo, Ta, Co, Pd, Ag, Au, Pt, Ga, and compounds such as oxides, nitrides, and fluorides.
  • FIGS. 5A to 5E show a third method in which a laser element is obtained by cleaving using the A surface of the GaN substrate 1 as the substrate and using the emission end surface as the M surface.
  • a nitride semiconductor laser device is formed on the GaN substrate 1 in the same manner as in the second method.
  • the same members are denoted by the same reference numerals and description thereof is omitted.
  • the n-type contact layer 21 is exposed by etching (FIG. 5A).
  • a ridge is formed (FIG. 5B), and a p-type electrode 80 is formed so as to be in contact with the p-type contact layer 43 at the top of the ridge.
  • an n electrode 90 is formed on the surface of the n- type contag layer 21.
  • the p-pad electrode 110 and the n-pad electrode 120 are formed (FIG. 5C).
  • the emission end face is formed by cleavage.
  • the wafer becomes a bar shape.
  • end face film 5 is formed in supercritical ammonia (Fig. 5D). This can be cleaved to produce a laser device (Fig. 5E).
  • the AMMONO method using supercritical ammonia is a nitride semiconductor growth method that utilizes the negative solubility curve of gallium nitride compounds in supercritical ammonia. — 350375) and PCT application (PCTZI B02 / 04185), which are described in detail, and those skilled in the art can easily implement the present invention with reference to the following summary and examples.
  • the above negative solubility curve means that the solubility of the nitride semiconductor in the high temperature region is low and the solubility of the nitride semiconductor is high in the low temperature region in the reaction system, and in the autoclave
  • the temperature difference is appropriately controlled by forming a high temperature region and a low temperature region, nitride dissolution occurs in the low temperature region, while nitride recrystallization occurs in the high temperature region, and convection is performed from the low temperature region to the high temperature region.
  • the wafer is placed in the high temperature region in the autoclave reaction system, and the feedstock is placed in the low temperature region.
  • the feedstock in the low temperature region first melts and forms a supersaturated state.
  • convection occurs in the reaction system, and the dissolved feedstock flows into the high temperature region. Since this high temperature region has low solubility, the melted feed stock recrystallizes on the seed wafer. By this recrystallization, the present invention forms an end face film.
  • this method does not grow a nitride semiconductor at 90 ° C. or more like the vapor phase growth of a nitride semiconductor.
  • nitride semiconductor It is characterized by growing nitride semiconductor at a low temperature of 0 ° C. or lower, preferably 60 ° C. or lower, more preferably 500 ° C. or lower.
  • the active layer containing 1 n does not decompose by heat.
  • the feed stock varies depending on the composition of the end face film.
  • G a N generally, a single crystal or polycrystal of G a N is used, or a precursor of G a N or G Using a metal, G a N single crystal or polycrystal can be formed once and recrystallized.
  • GaN can be formed by HVPE method or MOC VD vapor phase growth method, AMMONO method, flux method or high pressure method.
  • As the precursor of GaN gallium azide, gallium imide, gallium amide, or a mixture thereof can be used.
  • the power to use A 1 N single crystal or polycrystal, or A 1 N precursor or A 1 metal is used to form A 1 N single crystal or polycrystal once. This can be recrystallized.
  • A] G a N it is a eutectic of A] N and G a N, so the feedstock of both is mixed appropriately and used, but metal and single crystal or polycrystal (for example, A 1 meta And a G a N single crystal or polycrystal), and preferably two or more mineralizers can be used to obtain a predetermined composition.
  • metal and single crystal or polycrystal for example, A 1 meta And a G a N single crystal or polycrystal
  • two or more mineralizers can be used to obtain a predetermined composition.
  • an alkali metal Li, Na, K :, C s
  • an alkali metal complex alkali metal amide, alkali metal imide
  • the alkali metal has a molar ratio with ammonia of 1:20 to 1: 2, and Li is preferably used.
  • L i is a mineralizer with low solubility Therefore, dissolution of the exposed end face can be suppressed, and it is convenient for forming a thin end face film of 5 OA or more and 1 m or less. .
  • the autoclave is mainly composed of an alloy composed of Ni, Cr, and Co, but additionally contains Ti, Fe, Al, Si, Mn, and the like.
  • the thickness of the end faces film 5 of single crystal A ⁇ chi Ga ⁇ N is preferably set to 5 .theta..alpha more. This is because if the film thickness is thinner than 5 OA, the effect of flattening the etching end face is reduced. Further, the upper limit of the film thickness may be a film thickness that can be implemented by those skilled in the art.
  • the end face film is grown on the side surface and the end face of the stripe and the surface of the n- type contact layer 21, but at least the film grown on the surface of the n-type contact layer 21 is a stripe-shaped film. It is preferable to stop the growth at 1 ⁇ or less so as not to fill the active layer.
  • the mixed crystal of A 1 in order to effectively planarize the end face film 5.
  • the A 1 mixed crystal may be zero, and the end face film 5 is A 1 X G a, more preferably O x O. 3, more preferably
  • the side face and end face of the stripe can be made a surface close to a smooth mirror surface. That is, immediately after etching, the side surface and end surface of the stripe are relatively uneven surfaces, but by growing the end surface film, the unevenness is eliminated and the surface becomes smooth.
  • the end face film may be a single film or a multilayer film composed of a plurality of layers having different compositions of A1. Examples according to the present invention are shown below.
  • this invention is not limited to a following example.
  • a sapphire substrate 1 with a 2 inch ⁇ and C surface as the main surface is set in a MOCVD reactor, and the temperature is set to 5 10 ° C. Hydrogen is used as the carrier gas, ammonia and TMG (trimethylgallium) as the source gas.
  • a Low-temperature growth buffer layer 11 consisting of N is grown to a thickness of 200 angstroms.
  • an Si layer I n 0. 05Ga 0.95 N barrier layer 1 00 A and an undoped I n 0 0.1 Ga 0.99 N well layer 40 A are alternately stacked.
  • N layers are stacked in order, 15 OA.
  • the MOCVD reactor is placed in a nitrogen atmosphere and the wafer is annealed at 700 ° C to further reduce the resistance of the p-type nitride semiconductor layer.
  • a protective film (mask) made of striped SiO2 is formed on the surface of the uppermost p-type contact layer, and etched by RIE to form a stripe Then, the resonator end face and the surface of the n-type contact layer are exposed, and the Si 0 2 protective film (mask) formed on the surface of the p-type contact layer is removed by wet etching.
  • the wafer is placed in a reaction vessel (autoclave) where the system is supercritical ammonia.
  • autoclave a reaction vessel
  • 0.5 g of G a N as a feedstock, 14.7 g of ammonia, and 0.03 6 g of Li as one mineralizer are prepared. And seal.
  • the temperature inside the autoclave is 500, which is below, forming a high temperature region and a low temperature region. 5 Place the wafer in the high temperature region of 50 ° C, 4 In the low temperature region of 50 ° C,
  • Ga metal is placed. Leave the autoclave sealed for 3 days.
  • an end face film made of single crystal G a N in supercritical ammonia in low temperature conditions is formed with a thickness of 100 A.
  • the end face and side face of the stripe, the exposed surface of the n-type contact layer, and the surface of the p-type contact layer To grow.
  • the single crystal G N formed on the upper surface of the uppermost p-type contact layer is removed by etching, and then the width of the upper surface of the p-type contact layer is increased.
  • a ridge with a width of 1.5 / m is formed as described above.
  • a buried layer 70 made of a Zr 0 2 film is formed on the side surface of the ridge portion and on the surface of the p-cladding layer on both sides of the ridge portion on the upper surface of the stripe portion.
  • the transverse mode at the time of laser oscillation can be stabilized by Z r 0 2 film this.
  • a p-electrode 80 made of NiZAu is formed so as to make an ohmic contact with the p-type contact layer, and an n-electrode 90 made of Ti / A ⁇ is formed on the n-type contact layer. .
  • Pad electrodes composed of (1 000 A) — Ti (1 000 A) -Au (8000 A) are formed. Then, after forming a reflection film 100 made of S i 0 2 and T i 0 2 , finally, the wafer is divided into individual nitride semiconductor laser elements by scribing. If each nitride semiconductor laser element obtained as described above is provided with a heat sink and laser oscillation is performed, the threshold level is improved by improving the COD level. 2.
  • OkAZ cm 2 100 mW, preferably 200 mW
  • the continuous oscillation time at an oscillation wavelength of 405 nm can be expected to improve.
  • Example 1 an end face film made of single crystal GaN is grown at a film thickness of 1 / m only on one outgoing end face of the stripe portion, and the other aspects are the same as in Example 1, and a nitride semiconductor laser device is manufactured. did.
  • the oscillation wavelength was 405 with the output of threshold 2.0 kA / cm 2 and 100 mW, as in Example 1. Long life with continuous oscillation of nm can be expected.
  • Example 1 after a buffer layer is formed on a sapphire substrate, GaN with a film thickness of 100 m is formed by HVPE. Thereafter, as in Example 1, an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer are formed, and the sapphire substrate is removed to form a single GaN substrate. Otherwise, the cavity facet is formed in the same manner as in Example 1, and then single crystal GaN is formed on the facet film with a thickness of 10 OA in supercritical ammonia.
  • the manufactured nitride semiconductor laser device can be expected to have the same effect as in Example 1.
  • Example 1 after forming a buffer layer on a sapphire substrate, GaN with a film thickness of 100 m is formed by HVPE method via an ELO layer. After that, as in Example 1, an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer are formed, and the sapphire substrate is removed to form a nitride semiconductor laser device on a single GaN substrate. Is done. Since the single GaN substrate has a cleavage property, the end face film formation surface can be obtained by cleavage. After that, a single crystal GaN is formed as an end face film in supercritical ammonia with a film thickness of 1 / im on the output end face. Otherwise, the cavity facet is formed in the same manner as in Example 1, and the other points are the same as in Example 1 to fabricate a nitride semiconductor laser device.
  • the manufactured nitride semiconductor laser device can be expected to have the same effect as in Example 1.
  • Example 5 The manufactured nitride semiconductor laser device can be expected to have the same effect as in Example 1.
  • Example 5 The manufactured nitride semiconductor laser device can be expected to have the same effect as in Example 1.
  • Example 5 The manufactured nitride semiconductor laser device can be expected to have the same effect as in Example 1.
  • Example 5 The manufactured nitride semiconductor laser device can be expected to have the same effect as in Example 1.
  • Example 5 Example 5.
  • Example 1 Ag coating is performed on the sapphire substrate. Otherwise, the nitride semiconductor laser device is fabricated in the same manner as in Example 1.
  • Example 1 a lattice-patterned Si is formed on the surface of the uppermost p-type contact layer.
  • the oscillation wavelength was as follows: threshold 2.0 k A / cm 2 , 100 mW as in Example 1. Long life with continuous oscillation at 405 nm can be expected.
  • Example 1 a single crystal GaN substrate having a thickness of 10 O / zm is used as the substrate. Also, exposed by cleavage of the end faces to form the resonator end face, a mask Ru S I_ ⁇ 2 Tona, then growing the end face film. Otherwise, a nitride semiconductor laser device was fabricated in the same manner as in Example 1.
  • the threshold value was 2. OkA / cm 2 , with an output of 100 mW and an oscillation wavelength of 405 nm. Long life with continuous oscillation can be expected.
  • the nitride semiconductor laser device includes a resonator including an active layer made of a nitride semiconductor containing In between an n-type nitride semiconductor layer and a P-type nitride semiconductor layer.
  • a single crystal A 1 X G formed at a lower temperature than an active layer made of a nitride semiconductor containing In at least on an emission end face of a cavity facet facing the laser element. Since it has an end face film composed of a, _ x N (0 ⁇ x ⁇ 1), the band gap energy of the output end face can be increased. Therefore, light absorption at the end face can be suppressed and COD level can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

明 細 書 窒化物半導体レーザ素子、 及びその製造方法 技術分野
本発明は、 共振器端面に単結晶 A 1 x G a ( 0≤x≤ 1 ) からなる端面 膜を形成してなる窒化物半導体レーザ素子に関する。
背景技術
従来から広く使用されている G a A s系の半導体を用いた半導体レーザ素子は、 その共振器端面に保護膜を形成するウィンドウ構造によってレーザ素子の長寿命 化を可能とした。 窒化物半導体レーザ素子においても、 窒化物半導体は R I E (反応性ィオンエッチング) やへき開によつて形成された共振器端面はバンドギ ヤップエネルギーが小さいため、 出射光の吸収が端面で起こり、 この吸収により 端面には熱が発生し、 1 0 0 mW以上の高出力レーザを実現するには寿命特性の 問題が生じる。 このため、 窒化物半導体レーザ素子におけるウィンドウ構造を形 成することが提案され、 保護膜としては、 A 1 G a I n N半導体膜を形成する方 法 (特開平 7— 2 4 9 8 3 0 ) 、 A 1 N等の保護膜を形成する方法 (特開 2 0 0
2 - 2 6 4 4 2 ) が提案されている。
発明の開示
(発明が解決しょうとする技術的課題)
しかしながら、 上記に示す保護膜を気相成長法により単結晶で形成するには 1 0 0 0 °C以上の成長温度が必要であり、 かかる成長温度では I nを含む活性層が 損傷を受ける。 そのため、 この保護膜を活性層が損傷しない温度で形成すること になると保護膜はアモルファスとなる。 このアモルファスの保護膜を半導体レー ザ素子のウィンドウ構造に用いると、 単結晶ではないため出射光の散乱が生じ、 レーザのビーム形状が均一にならない、 またアモルファスは色を持っため光吸収 が生じると端面での発熱により端面劣化が起こるという問題点がある。
そこで、 本発明は、 上記問題を解決するために活性層に損傷を与えない低温で、 しかも上記問題の生じない単結晶 A 1 X G a ^.. N ( 0≤x≤ 1 ) からなる端面 膜を備えた窒化物半導体レーザ素子を提供することを目的とする。
(その解決手段)
本発明に係る窒化物半導体レーザ素子は、 n型窒化物半導体層と p型窒化物半 導体層との間に、 I nを含む窒化物半導体からなる活性層を含む共振器を有する 窒化物半導体レーザ素子において、 前記レーザ素子の対向する共振器端面の少な くとも出射端面に、 前記活性層に損傷を与えない低温で形成され活性層よりバン ドギャップエネルギーの大きい単結晶 A 1 X G a ( 0≤x≤ 1 ) からなる 端面膜を有することを特徴とする。
ここで、 I nを含む窒化物半導体からなる活性層に損傷を与えない低温とは、 I nを含む窒化物半導体からなる活性層の形成温度以下をいう。 I nを含む窒化 物半導体からなる活性層は通常成長温度 9 0 0 °Cで成長させるので、 その成長温 度以下の温度であれば、 上記活性層が分解等により損傷を受けない。 したがって、 端面膜の成長温度が 9 0 0 °C以下、 好ましくは 6 0 0 °C以下、 より好ましくは 5 0 0 °C以下であるのがよい。
また、 本発明に係る窒化物半導体レーザ素子において、 I nを含む窒化物半導 体からなる活性層を含む共振器とは光導波領域を言い、 通常活性層と光ガイド層 により構成される。 したがって、 本発明における端面膜は少なくとも上記共振器 端面領域を覆うように形成されればよい。 前記活性層は、 少なくとも 1つの I n G a N井戸層または I n A 1 G a N井戸層を含み、 単一または多重量子井戸構造 により構成される。
本発明の端面膜は、 単結晶 A l x G 3 l _ x N ( 0≤ x≤ 1 ) 力 構成される。 この混晶比率は端面膜の機能との関係によって決定される。 つまり、 活性層の出 射端面のバンドギヤップエネルギーは出射端面形成時に行うエッチングやへき開 によって狭くなつているので、 端面膜により該端而のバンドギヤップエネルギー を光吸収がなくなるバンドギャップエネルギーまで広げることができるように混 晶比が決定される。 端面膜の結晶性を考慮すると、 A 1混晶比は 0 . 3以下、 好 ましくは 0 . 1 5以下がよい。 本宪明に係る窒化物半導体レーザ素子において、 前記端面膜の膜厚は 5 0オングストローム以上であることが好ましいが、 端面膜 の均一性を確保するためには 1ミクロン以下、 好ましくは 2 0 0 0 Aであるのが よい。
本発明では、 上記単結晶の A 1 xG a 2_XN (0≤x≤ 1 ) を上記低温で形成 するために AMMONO法が適用される。 アンモニアの超臨界状態 1 xGa 1 --XN (0≤ x≤ l) 単結晶層を所定のシード面 (本発明ではレーザ素子の共振 器端面) に形成する方法であり、 AMMONO法の採用により上記単結晶端面膜 は 900°C以下、 好ましくは 600°C以下、 より好ましくは 5 00で以下で単結 晶端面膜を形成することができる。 AMMO NO法を採用すると、 通常オートク レイブ組成の影響を受け、 前記端面膜は N i、 C r、 C o, T i、 F e、 Aし S i、 Mnから成る群から選ばれる少なくとも 1つを含有する場合がある。 また 前記端面膜は AMMO NO法の特徴としてミネラライザ一として使用する族番号 1 (IUPAC. 1989) 元素、 L i , K:、 N aまたは C sを少なくとも 1つを含有す る。 前記端面膜が前記窒化物半導体レーザ素子からの出射光を吸収しないため出 射端面での熱吸収もなくなり、 1 0 OmW以上の窒化物半導体レーザ素子におい ても C O Dの発生は抑制される。
また、 前記窒化物半導体レーザ素子は G a N基板、 サファイア基板、 スピネ ル基板、 Z nO基板、 S i C基板、 その他にはサファイア基板等の異種基板上に G a Nの横方向成長により形成した E LO成長基板、 表面に凹凸を有する窒化物 半導体を成長させた基板からなる群より選ばれる基板上に形成される。 ここで、 E L O (E p i t a x i a l — L a t e r a 1 — O v e r g r o w t h) 基板と は G a Nの横方向成長を利用した基板であって、 転位欠陥を低减させた基板であ る。 超臨界アンモニア中で A 1 XG a (0≤ χ≤ 1) を端面膜として成長 させる本発明においては G a N基板が好ましい。 端面膜と異なる組成の異種基板 を使用している窒化物半導体レーザ素子の場合、 端面膜の形成中に超臨界アンモ ニァ中に溶解して再結晶する端面膜の半導体中に混在し、 不純物となる場合を極 力避けるためである。 前記 G a N基板は超臨界アンモニア中で成長させた G a N 基板等である。 窒化物半導体と異なる基板上に成長させた窒化物半導体レーザ素 子はデバイス工程において、 へき開を行うのが困難であった。 これは、 Ga Nを 成長させる異種基板がへき開性を有しないためである。 しカゝしながら、 G a N基 板はへき開性を有するため、 共振器端面を形成する際に、 鏡面を得ることに優れ たへき開による端面形成が可能になるからである。 且つホモェビタキシャル成長 であるから、 前記レーザ素子を成長後に基板の反りを抑制できる。 これにより、 クラックの発生はなくなる。 さらに、 前記 GaN基板は通常レーザ素子を形成す る成長面が C面となる。 気相成長法により得られる GaN基板を得るからである。 AMMONO法によれば、 超臨界アンモニア中で G a Nのバルク単結晶を C軸方 向に厚さ 2. 5 cm以上で成長させた後、 カッティングすれば φ 1インチ以上で あって A面や M面を主面とした GaN基板を得ることができる。 A面または M面 は極性がない (non-polar) ため、 活性層に分極作用を及ぼすことがなくなる。 しかも欠陥密度が 1 04Zcm2程度またはそれ以下のものが得られる。 その他に (000-1) 面を主面とする G a N基板を極性転換することで C面である (0
001) 面を主面とすることができる。
前記窒化物半導体レーザ素子が G a N基板の C面上に形成されると、 前記端面 膜が M面または A面上に形成され、 極性のない端面膜とすることができる。 前記 窒化物半導体レーザ素子が超臨界アンモニア中で成長させた G a N基板の A面上 に形成されると、 レーザ素子の活性層に分極作用を与えず、 しかも共振器出射面 が M面となり、 M面上に M面端面膜が形成され、 へき開に有利である。 前記窒化 物半導体レーザ素子が超臨界アンモニア中で成長させた G a N基板の M面上に形 成されると、 活性層に分極作用が及ばず、 しかも共振器出射面に極性のない A面 端面膜を形成することができる。
本発明は、 窒化物半導体レーザ素子の製造方法を提供するものであり、 n型 窒化物半導体層と P型窒化物半導体層との間に、 I nを含む窒化物半導体からな る活性層を含む共振器を有する窒化物半導体レーザ素子の製造方法において、 前 記レーザ素子にエッチング又はへき開を行い対向する共振器端面を形成する第 1 の工程と、 前記レーザ素子の対向する共振器端面の少なくとも出射端面に、 前記 活性層に損傷を与えない低温で形成される単結晶 A 1 XG a ,_ΧΝ (0≤χ≤ 1) 力 らなる端面膜を形成する第 2の工程とを備えたことを特徴とする。
前記第 2の工程は、 超臨界アンモニア中で前記端面膜を形成することにより、 活性層に損傷を与えない低温で単結晶の A 1 XG a (0≤ χ≤ 1) とする ことができる。 前記第 2の工程において、 少なくとも共振器の p型コンタク卜層の上面に超 臨界アンモニアに対して溶解度が端面膜と同等または低いマスクを形成した後、 前記端面膜を形成することを特徴とする。 このマスクを形成することで溶解性の 強い超臨界アンモニア中において窒化物半導体レーザ素子の端面膜形成時にレー ザ素子の共振器が p型コンタクト層の上面と端面との角から溶解することを抑制 することができる。 前記マスクは、 酸化ケィ素、 窒化ケィ素、 窒化アルミニウム 、 モリブデン、 タングステンから成る群から選ばれるのがよい。 これらのマスク 材は超臨界アンモニア中で G a Nに比べて安定であるため、 該マスク材で覆われ た領域のコンタクト表面では溶解を抑制することができる。 マスクは後工程でリ ッジの形成時には除去が容易である。
前記窒化物半導体レーザ素子の製造方法において、 前記端面膜は、 超臨界アン モニァ中での成膜温度が 1 0 0 °C以上 9 0 0 °C以下である。 窒化物半導体レーザ 素子は活性層を I n G a Nを含んだ量子井戸構造をしているため、 9 0 0 °Cより 高レヽ温度で活性層上に層成長すれば該活性層は分解する恐れがある。 本発明によ れば、 9 0 0 °C以下、 好ましくは 6 0 0 °C以下の温度で端面膜を成長させること ができる。 図面の簡単な説明
図 1は、 本発明に係る窒化物半導体レーザ素子の端面切断図である。
図 2 A〜2 Dは、 両端面に端面膜をマスクなしで形成する場合の製造工程を示 す断面図である。
図 3 A〜 3 Eは、 本発明に係る実施の形態の窒化物半導体レーザ素子の端面膜 の製造工程を示す断面図である。
図 4は、 基板に保護膜を形成して本発明を適用する場合の実施の形態のウェハ の断面図である。
図 5 A〜5 Eは、 へき開による窒化物半導体レーザ素子の製造方法に本発明を 適用した場合の工程説明図である。 発明を実施するための最良の形態 以下、 本発明に係る実施の形態について説明する。
図 1は本発明に係る半導体レーザの断面図で、 サファイア基板 1上に n型窒ィ匕 物半導体層 2と p型窒化物半導体層 4とが積層され、 その間に、 I nを含む窒化 物半導体からなる単一、 または多重量子井戸構造の活性層 3が形成されている。 これにより、 近紫外から可視光の緑色までの波長領域 (3 7 0 n m以上 5 5 0 n m以下) で発光効率に優れたレーザ素子が得られる。 n型窒化物半導体層 2は、 n—コンタク ト層 2 1、 クラック防止層 2 2、 n型クラッド層 2 3及び n型光ガ イ ド層 2 4とからなる。 また、 前記クラック防止層 2 2は G a N基板を用いた場 合にはウェハーの反りが抑制されるために省略可能となる。 p型窒化物半導体層 4はキャップ層 4 1、 p型光ガイド層 4 2、 p型クラッド層 4 3、 pコンタクト 層 4 4からなる。 ここで、 前記サファイア基板 1上に転位欠陥低減層として E L O層ゃピット低减を目的とした A 1 G a N層を介して n—コンタクト層 2 1を形 成してもよい。 前記上記実施態様では、 半導体レーザ素子の共振器は上記活性層 3と p型層および n型層の光ガイド層 2 4 , 4 2、 またキャップ層 4 1から構成 されている。 共振器端面の出射端面には、 単結晶 A l x G a i _ x N ( 0≤x≤
1 ) からなる端面膜 5が形成されている。 この端面膜は共振器端面の光反射側に も形成すれば (図 2 ) 、 反射光による端面劣化を抑制することができる。
以下、 本実施の形態に係る窒化物半導体レーザ素子の代表的な 3つの製造方法 を説明する。
図 2 A〜Dはマスクを形成することなく、 端面膜を共振器両端面に設ける工程 を示し、
図 3 A〜Eは共振器の出射端面側以外にマスクを設け、 出射端面に端面膜を形 成する工程を示し、
図 5 A〜Eは共振器の出射端面を] VT面とし、 リッジ、 電極を形成後にへき開で 出射端面を形成する。 次に、 その端面側以外にマスクを設け、 出射端面に M面端 面膜を形成し、 その後へき開等によりチップィヒすることでレーザ素子を形成する 工程を示す。
図 2に示す第 1の方法では、 まず、 サファイア基板 1上に 7 0 0 °C以下の低温 で成長させたバッファ層 1 1を形成し、 そのバッファ層 1 1の上に n型窒化物半 導体層 2、 活性層 3及び p型窒化物半導体層 4を順次成長させたウェハを準備す る (図 2 A) 。 ここで、 低温バッファ層 1 1上に E L O層を介して n型窒化物半 導体層 2を成長させると欠陥が低減させることができる。
次に、 上記ゥヱハをエッチングによって共振器端面、 及び n—コンタクト層 2 1を露出する (図 2 B ) 。 その後、 共振器端面を露出したウェハに AMMO N O 法を適用して端面膜 5を形成する。
オートクレイブ內に端面膜の原料となるフィードストック、 反応促進剤となる ミネラライザ一と共に上記ウェハをセットし、 アンモニアを投入し、 所定の温度 管理を行うことにより超臨界状態とする。
前記ウェハはサファイア基板 1に n型窒化物半導体層 2、 活性層 3及び p型窒 化物半導体層 4を順次成長させたウェハを用いるが、 これに代えて、 サファイア 基板のような異種基板を除去したウェハ、 基板 1に n型窒化物半導体層 2、 活性 層 3及び p型窒化物半導体層 4を順次成長させたウェハであって、 共振器端面の 反射光側のみを超臨界ァンモユアに溶解しないか溶解しても端面膜中に混入しな い材料、 たとえば A g等でマスキング 6したウェハ、 共振器端面の出射端面以外 の全面を前記 A g等でマスキング 6したウェハ、 前記基板のみをマスキングした ウェハ (図 4 ) を用いることができる。
前記超臨界アンモニア中では G a Nの溶解度も高く、 p型窒化物半導体層 4 の表面にマスクを形成しなければ、 最表面と出射端面との角部から窒化物半導体 素子が溶解する。 そのため、 p型窒化物半導体層 4の最表面である p型コンタク 卜層をマスキングをする。 該マスク材は、 酸化ケィ素、 窒化ケィ素、 窒化アルミ 二ゥム、 モリブデン、 タングステンから選ばれる。 これらのマスク材は超臨界ァ ンモニァ中で G a Nに比べて安定であるため、 G a Nの溶解を抑制することがで きる。 これにより p型コンタクト層上にマスクを形成すると p型コンタクト層と 出射端面との角部が溶解するのを抑制できることを意味する。 また端面膜を形成 した後の工程で除去が容易なものが好ましい。 このマスクの膜圧は 1 m以上と する。
上記に示したウェハをオートクレイブ内で反応させた後のウェハは窒化物半導 体層の露出面に単結晶 A 1 X G a ^.. N ( 0≤x≤ 1 ) からなる端面膜を形成し ている (図 2 C ) 。
ついで、 p型半導体層 4上の端面膜を取り、 出射端面に上記保護膜を、 反対側 には反射膜を形成し、 溝部で切り出してレーザ素子を得る。 ここで: 上記保護膜 と反射膜とは同一材料であってもよく、 保護作用と反射作用を有する S i〇2や T i 02、 又はこれらの複数膜で形成される。
図 3に示す第 2の方法では、 まず、 G a N基板 1の C面上に n型窒化物半導体 層 2、 すなわち n—コンタクト層 2 1、 クラック防止層 2 2、 n型クラッド層 2 3及び n型光ガイ ド層 2 4、 次いで活性層 3、 p型窒化物半導体層 4、 すなわち キャップ層 4 1、 p型光ガイド層 4 2、 p型クランド層 4 3、 pコンタクト層 4 4を順次成長させたウェハを準備する (図 3 A) 。 ここで、 G a N基板を使用す るので、 第 1法のように低温バッファ層 1 1上に E L O層を介して n型窒化物半 導体層 2を成長させることなく、 ェピ層の欠陥を低减させることができる。
次に、 上記ウェハをエッチングによって共振器端面、 及び n—コンタクト層 2 1を露出し、 共振器端面の出射面側を除いてマスク 7を形成する (図 3 B) 。 そ の後、 共振器端面を露出したウェハに AMMON O法を適用して端面膜 5を形成 する (図 3 C ) 。
次に、 端面膜を形成した後、 マスク 7を取って、 通常のデバイス工程によりリ ッジを形成する (図 3 D) 。 光導波を行うリッジストライプは共振器方向に形成 される。 リッジの幅は 1 . O〜2 0 // mであって、 リッジの深さは p型クラッド 層または p型ガイド層まで到達している。 その後、 リッジを覆うように、 Z r O 2膜からなる埋め込み層 7 0を形成する π リッジの最上部の ρ型コンタクト層 4 3に接触するように ρォーミック電極 8 0を形成する。 前記リッジの数は単数だ けでなく、 複数形成してマルチストライプ型レーザ素子とすることもできる。 次 に、 η型コンタク ト層 2 1の表面に η電極 9 0を ρ電極と平行に形成する。 次に、 ρ—パット電極 1 1 0、 η—パッド電極 1 2 0を形成する。 さらに、 S i〇2
T i 02とを交互に形成しパターンニングすることにより p電極及び n電極の上 を除く素子全体を覆うように、 S i ο 2/τ i o 2絶縁膜をレーザ発振のための 反射膜 1 0 0として機能するように形成する。 最後に、 ウェハからスクライビン グにより、 個々の窒化物半導体レーザ素子に分割する。 以上のようにして窒化物 半導体レーザ素子を作製することができる (図 3E, 図 1) 。
また、 前記端面膜上に共振を効率よく行うための保護膜を設けてもよい。 該保 護膜は端面膜である A】 G a Nと屈折率差を有するものである。 具体的には Nb、 N i、 C r、 T i、 Cu、 Fe、 Z r、 Hf 、 W、 Rh、 Ru、 Mg、 A l、 S c、 Y、 Mo、 Ta、 Co、 Pd、 Ag、 Au、 P t、 Ga、 更にはこれらの酸 化物、 窒化物、 フッ化物などの化合物である。
図 5 A〜Eは第 3の方法として、 基板として G a N基板 1の A面を用い、 出射 端面を M面としてへき開によりレーザ素子を得る工程を示す。 この G a N基板 1 上に第 2法と同様に窒化物半導体レーザ素子を形成する。 同一部材には同一番号 を付して説明を省略する。 次に、 エッチングにより n型コンタク ト層 21を露出 させる (図 5A) 。 その後、 リッジを形成し (図 5B) 、 さらにリッジの最上部 の p型コンタク ト層 43に接触するように pォーミック電極 80を形成する。 次 に、 n型コンタグト層 21の表面に n電極 90を形成する。 次に、 p—パット電 極 1 10、 n—パッド電極 120を形成する (図 5C) 。 次に、 出射端面をへき 開により形成する。 これにより、 ウェハ一はバー状になる。 その後、 超臨界アン モニァ中で端面膜 5を形成する (図 5D) 。 これをへき開してレーザ素子を作製 することができる (図 5 E) 。
超臨界アンモニアを使用した AMMONO法とは、 超臨界状態のアンモニア中 で窒化ガリゥム系化合物が負の溶解度曲線を示すことを利用した窒化物半導体の 成長方法で、 ポーランド出願 (P— 347918号および P— 350375号) および PC T出願 (PCTZI B02/04185) に詳細が記載してあり、 当 業者は以下の要約および実施例を参照して容易に本件発明を実施することができ る。
かかる方法について、 要約すると、 上記負の溶解度曲線とは反応系內において、 高温領域における窒化物半導体の溶解度が低く、 低温領域は窒化物半導体の溶解 度が高いことを意味し、 オートクレープ中において高温領域と低温領域を形成し てその温度差を適切に管理すると、 低温領域では窒化物の溶解が生じる一方、 高 温領域では窒化物の再結晶が起き、 低温領域から高温領域に対流を行わせること により高温領域で窒化物を所定の濃度に維持し、 窒化物成長をシード上に選択的 に行うものである。
したがって、 上記ウェハは上記ォ一トクレーブ反応系内において高温領域に配 置され、 フィードストックは低温領域に配置される。 これにより、 まず低温領域 のフィードストックが溶解し、 過飽和状態を形成する。 次に反応系内では対流が 起こり、 溶解したフィードス トックは高温領域に流れる。 この高温領域は溶解度 が低いため、 溶解したフィードストツクはシードであるウェハ上に再結晶する。 この再結晶によって、 本発明は端面膜を形成する。 また、 この方法は窒化物半導 体の気相成長のような 9 0 0 °C以上で窒化物半導体を成長させるのではなく、 9
0 0 °C以下、 好ましくは 6 0 0 °C以下、 より好ましくは 5 0 0 °C以下の低温で窒 化物半導体を成長させることが特徴であるため、 高温領域に配置されたウェハの
1 nを含む活性層は熱による分解は発生しない。
上記フィードストツクには端面膜の組成によって変るが、 端面膜を G a Nで形 成する場合は一般に、 G a N単結晶または多結晶を用いるか、 または G a Nの前 駆体や G aメタルを用い、 一旦 G a N単結晶または多結晶を形成し、 これを再結 晶させることができる。 G a Nは HV P E法や MO C VD法の気相成長法によつ て形成されたものや AMMO N O法、 フラックス法や高圧法によって形成された ものを用いることができる。 G a Nの前駆体にはガリウムアジド、 ガリウムイミ ド、 ガリウムアミ ドまたはこれらの混合物を用いることができる。
A I Nの場合は、 G a Nと同様に A 1 N単結晶または多結晶を用いる力、、 また は A 1 Nの前駆体や A 1メタルを用い、 一旦 A 1 N単結晶または多結晶を形成し、 これを再結晶させることができる。
A】 G a Nの場合は、 A】 Nと G a Nの共晶であるから、 両者のフィードスト ックを適宜混合して用いるが、 メタルと単結晶または多結晶 (例えば、 A 1メタ ルと G a N単結晶または多結晶) を用い、 好ましくはミネラライザ一を 2種以上 用いるなどにより所定の組成を得ることが可能である。
上記ミネラライザ一には、 アルカリ金属 (L i、 N a、 K:、 C s ) または、 ァ ルカリ金属錯体 (アルカリ金属アミド、 アルカリ金属イミド) を用いることがで きる。 ここで、 前記アルカリ金属はアンモニアとのモル比が 1 : 2 0 0〜1 : 2 であって、 好ましくは L iを用いる。 L iは溶解度が低いミネラライザ一である ため、 露出させた端面が溶解することを抑制することができ、 しかも 5 OA以上 1 m以下という薄い端面膜形成に都合が良い。 。
上記オートクレイブは主に N i、 C r、 C oからなる合金で構成されているが、 その他には、 T i、 F e、 A l、 S i、 Mn等を含有している。
ここで、 単結晶 A〗 χ Ga丄 Nからなる端面膜 5の膜厚は、 5 θΑ以上と することが好ましい。 この膜厚が 5 OAより薄いとエッチング端面を平坦化する 効果が小さくなるためである。 また、 膜厚の上限としては、 当業者が実施可能な 膜厚であればよい。 尚、 本発明では、 端面膜は、 ストライプの側面と端面、 及び n型コンタク ト層 2 1の表面に成長させるが、 少なくとも n型コンタク ト層 2 1 の表面上に成長する膜が、 ストライプの活性層を埋めることがないように 1 μπ 以下で成長を中止することが好ましい。
また、 端面膜 5において、 効果的に平坦化するために A 1の混晶を低くするこ とが好ましい。 しカ しながら、 本発明のように窓構造の効果を高めるには A 1を 少量だけ混晶させる。 そのため、 A 1混晶がゼロでもよく、 端面膜 5は A 1 XG a であり、 より好ましくは、 O x O. 3であり、 さらに好ましくは、
0≤x≤0. 1 5である。
また、 エッチング後のストライプの側面と端面に端面層を成長させると、 スト ライプの側面と端面を滑らかなミラー面に近い状態の面にできる。 すなわち、 ェ ツチング直後において、 ストライプの側面と端面は比較的凹凸の多い面であるが、 端面膜を成長させることによりその凹凸が解消され滑らかな面になる。 尚、 端面 膜は単一膜であっても良いし、 A 1の組成の異なる複数の層からなる多層膜であ つてもよレヽ。 以下に本発明に係る実施例を示す。
尚、 本発明は以下の実施例に限定されるものではない。
実施例 1.
まず、 2インチ φ、 C面を主面としたサファイア基板 1を MOCVD反応容器 内にセットし、 温度を 5 1 0°Cにして、 キャリアガスとして水素、 原料ガスとし てアンモニアと TMG (トリメチルガリウム) を用いて、 サファイア基板上に G a Nよりなる低温成長バッファ層 1 1を 200オングス卜ロームの膜厚で成長さ せる。
バッファ層を成長させた後、
(1) n型コンタクト層として S iを 3 X 1018/cm3ドープした G a Nを 4 μ m、
(2) クラック防止層としてアンドープ I n。.06Ga。. g4Nを 1. 5 w m、
(3) n型クラッド層として、 アンド一プ A 10 a 0 9Nを 25 Aと、 S iを 1 X 1 O19 cm3ドープした n型 G a N層とを交互に繰り返し積層して総 膜厚 1. 2 mの超格子、
(4) n型光ガイド層としてアンドープ G a Nを 0. 2; m、
(5) 活性層として S i ド一プ I n 0. 05Ga 0. 95 Nよりなる障壁層 1 00 Aとアンドープ I n 0. 1 Ga 0. 9 Nよりなる井戸層 40 Aとを交互に積 層した、 障壁層/井戸層ノ障壁層ノ井戸層 Z障壁層からなる総膜厚 38 OAの量 子井戸層、
(6) p型キャップ層として Mgを 1 X 102。/cm3ドープした p型 A I 0.
3G a。 7Nを 300 A、
(7) p型光ガイド層としてアンドープ G a N層を 0. 2 //m、
(8) p型クラッド層としてアンドープ A I 0 16Ga0. 84N25Aとアンド ープ GaN25Aとを交互に積層した総膜厚 0. 6 μ mの超格子層、
(9) p型コンタク ト層として Mgを 1 X 1020Zc m3ドープした p型 G a
N層を 15 OA、 順次積層する。
積層後、 MOCVD反応装置内を窒素雰囲気として、 700°Cでウェハをァニ 一リ ングし、 p型の窒化物半導体層を更に低抵抗化する。
アニーリング後、 ウェハを反応容器から取り出し、 最上層の p型コンタク ト層 の表面にストライプ状の S i 0„よりなる保護膜 (マスク) を形成して、 R I E によりエッチングを行いス卜ライプを形成して共振器端面及び n型コンタクト層 の表面を露出させる。 p型コンタクト層の表面に形成された S i 02保護膜 (マ スク) はウエットエッチングにより除去する。
次に、 ウェハを系内が超臨界アンモニアである反応容器 (ォ一トクレーブ) 内 に配置させる。 オートクレーブ (36 cm3) 内には、 ウェハの他にはフィード ストックとして G a Nを 0. 5 g、 アンモニアを 1 4. 7 g、 またミネラライザ 一として L iを 0. 0 3 6 g、 準備して密閉する。 このオートクレーブ内の温度 は 5 00で以下であって、 高温領域と低温領域とを形成する。 5 50°Cの高温領 域にはウェハを配置させ、 4 50°Cの低温領域にはフィードス トックの G a N、
G aメタルを配置させる。 このオートクレーブ内を密閉した状態で 3日間放置す る。
以上より、 低温条件で超臨界アンモニア中で単結晶 G a Nよりなる端面膜を 1 00 Aの膜厚でストライプの端面と側面及び露出された n型コンタクト層の表面、 p型コンタクト層の表面に成長させる。
次に、 単結晶 G a Nからなる端面膜を形成した後、 最上層の p型コンタクト層 の上面に形成した単結晶 G a Nをエッチング除去した後、 この p型コンタク 卜層 の上面に幅 1. 5 /zmのストライプ形状の S i 02マスクを形成し、 p型クラッ ド層の途中までエッチングすることにより、 ストライプ部においてさらにリッジ を形成する。 このエッチングは、 エッチング後のリッジの両側の p型クラッド層 の膜厚が 0. l mになるように行う。
以上のようにして幅 1. 5 / mのリッジ を形成する。
次に、 スパッタ法を用いて、 S i〇2マスクの上から、 ストライプ部の上面を 覆うように Z r 02膜を 0. 5 /imの膜厚で形成する。
その熱処理後、 ストライプ部の上面において、 リッジ部の側面及びリッジ部の 両側の pクラッド層の表面に Z r 02膜から成る埋め込み層 70を形成する。 こ の Z r 02膜によってレーザ発振時の横モードを安定させることができる。
次に、 p型コンタクト層にォ一ミック接触するように N i ZAuからなる p電 極 8 0を形成し、 n型コンタク ト層の上に T i /A〗からなる n電極 90を形成 する。 次に、 ゥエーハを 600でで熱処理する。 その後、 p , n電極上に N i
(1 000 A) — T i ( 1 000 A) -Au (8000 A) からなるパッド電極 をそれぞれ形成する。 そして、 S i 02と T i 02からなる反射膜 1 00を形成 した後、 最後に、 ウェハからスクライビングにより、 個々の窒化物半導体レーザ 素子に分割する。 以上のようにして得られる窒化物半導体レーザ素子にそれぞれヒートシンクを 設けて、 レーザ発振を行えば、 CODレベルの向上によりしきいィ直 2. OkAZ cm 2、 100mW、 好ましくは 200 mWの出力での発振波長 405 n mの連 続発振時間の向上が期待できる。
実施例 2.
実施例 1において、 ストライプ部の一方の出射端面のみに、 単結晶 GaNから なる端面膜を膜厚 1 / mで成長させ、 その他の点は実施例 1と同様にして窒化物 半導体レーザ素子を作製した。
以上のようにして得られたレーザ素子にそれぞれヒートシンクを設けて、 レー ザ発振させたところ、 実施例 1と同様、 しきい値 2. 0 k A/cm2, 100m Wの出力で発振波長 405 nmの連続発振での長寿命を期待できる。
実施例 3.
実施例 1において、 サファイア基板上にバッファ層を形成した後、 HVPE法 によって、 膜厚 100 mの G a Nを形成する。 その後、 実施例 1と同様に n型 窒化物半導体層、 活性層、 p型窒化物半導体層を形成し、 サファイア基板を除去 することで単体 G a N基板となる。 その他の点は実施例 1と同様にして共振器端 面を形成し、 その後、 超臨界アンモニア中で単結晶 GaNを 10 OAの膜厚で端 面膜に形成する。
作製された窒化物半導体レーザ素子は、 実施例 1と同様の効果が期待できる。 実施例 4.
実施例 1において、 サファイア基板上にバッファ層を形成した後、 ELO層を 介して HVPE法によって、 膜厚 100 mの G a Nを形成する。 その後、 実施 例 1と同様に n型窒化物半導体層、 活性層、 p型窒化物半導体層を形成し、 サフ ァィァ基板を除去することで単体 G a N基板上に窒化物半導体レーザ素子が形成 される。 前記単体 GaN基板はへき開性を有するため、 端面膜の形成面をへき開 で得る。 その後、 端面膜として単結晶 G a Nを超臨界アンモニア中で膜厚 1 /im で出射端面に形成する。 その他の点は実施例 1と同様にして共振器端面を形成し、 その他の点は実施例 1と同様にして窒化物半導体レーザ素子を作製する。
作製された窒化物半導体レーザ素子は、 実施例 1と同様の効果が期待できる。 実施例 5.
実施例 1において、 サファイア基板に A gコートを行う。 その他の点は実施例 1と同様にして窒化物半導体レーザ素子を作製する。
実施例 6.
実施例 1において、 最上層の p型コンタク ト層の表面に格子パターン状の S i
02よりなる保護膜を形成して、 R I Eによりエッチングを行い共振器端面及び n型コンタクト層の表面を露出させる。 次に、 p型コンタクト層の表面に形成さ れた前記 S i 02マスクを膜厚 0. 5μπιで有する状態で、 ウェハを系内が超臨 界アンモニアである反応容器 (オートクレーブ) 内に配置させる。 その他の点は 実施例 1と同様にして窒化物半導体レーザ素子を作製した。
以上のようにして得られたレーザ素子にそれぞれヒートシンクを設けて、 レ 一ザ発振させたところ、 実施例 1と同様、 しきい値 2. 0 k A/cm2, 100 mWの出力で発振波長 405 nmの連続発振での長寿命を期待できる。
実施例 7.
実施例 1において、 基板に厚さが 10 O/zmの単結晶 Ga N基板を用いる。 ま た、 共振器端面を形成するために端面をへき開により露出させ、 S i〇2からな るマスクを形成し、 その後、 端面膜を成長させる。 その他の点は実施例 1と同様 にして窒化物半導体レーザ素子を作製した。
以上のようにして得られたレーザ素子にそれぞれヒートシンクを設けて、 レー ザ発振させたところ、 実施例 1と同様、 しきい値 2. OkA/cm2、 100m Wの出力で発振波長 405 nmの連続発振での長寿命を期待できる。
産業上の利用可能性
以上説明したように、 本発明に係る窒化物半導体レーザ素子は、 n型窒化物半 導体層と P型窒化物半導体層の間に I nを含む窒化物半導体からなる活性層を備 える共振器を有する窒化物半導体レーザ素子において、 前記レーザ素子の対向す る共振器端面の少なくとも出射端面に、 前記 I nを含む窒化物半導体からなる活 性層より低温で形成される単結晶 A 1 XG a , _x N (0≤x < 1) からなる端面 膜を有しているので、 出射端面のバンドギャップエネルギーを広げることができ る。 そのため端面での光吸収を抑制し、 CODレべレを向上することができる。 これにより、 本発明によれば信頼性が高く寿命特性がよく出力 1 OOmW以上の 窒化物半導体レーザ素子を提供することができる。

Claims

請 求 の 範 囲
1. n型窒化物半導体層と p型窒化物半導体層との問に、 I nを含む窒化物半 導体からなる活性層を含む共振器を有する窒化物半導体レーザ素子
において、 前記レーザ素子の対向する共振器端面の少なくとも出射端面に、 活性 層よりバンドギャップエネルギーの大きい単結晶 A I XG a ,—χΝ (0≤χ≤
1 ) からなる端面膜を前記活性層に損傷を与えない低温で形成してなることを特 徴とする窒化物半導体レーザ素子。
2. 前記端面膜の膜厚が 50オングストローム以上 1 μπι以下であることを特. 徴とする請求項 1記載の窒化物半導体レーザ素子。
3. 前記共振器端面に超臨界アンモニア中で単結晶 A 1 XG a ^,Ν (O X
≤ 1) からなる端面膜を形成してなる請求項 1記載の窒化物半導体レーザ素子。
4. 前記共振器の p型コンタクト層を少なくともマスキングして超臨界アンモ ニァ中で単結晶 A 1 xGa (0≤x≤l) からなる端面膜を前記共振器端 面に形成してなる請求項 3記載の窒化物半導体レーザ素子。
5. 前記端面膜は族番号 1 (I1JPA 1989) 元素を少なくとも 1つを含有する ことを特徴とする請求項 3記載の窒化物半導体レーザ素子。
6. 前記活性層は、 少なくとも 1つの I n G a N井戸層または I n A 1 G a N 井戸層を含む量子井戸構造である請求項 1記載の窒化物半導体レーザ素子。
7. 前記窒化物半導体レーザ素子が G a N基板、 サファイア基板、 スピネル基 板、 ZnO基板、 S i C基板、 ELO成長基板、 表面に凹凸を有する窒化物半導 体を成長させた基板からなる群より選ばれる基板上に形成されている請求項 1な いし 6のレ、ずれかに記載の窒化物半導体レーザ素子。
8. 前記窒化物半導体レーザ素子が G a N基板の C面、 A面、 または M面上に 形成されている請求項 1ないし 7のいずれかに記載の窒化物半導体レーザ素子。
9. 前記窒化物半導体レーザ素子が G a N基板の C面上に形成され、 前記端面 膜が M面または A面上で成長したものである請求項 1記載の窒化物半導体レ一ザ 素子。
10. 前記窒化物半導体レーザ素子が G a N基板の A面上に形成され、 共振器 出射面が M面で、 該 M面に前記端面膜が形成されている請求項 1に記載の窒化物 半導体レーザ素子。
11. 前記窒化物半導体レーザ素子が超臨界アンモニア中で成長させた G a N 基板の M面上に形成され、 共振器出射面が A面で、 該 A面上に前記端面膜が形成 されている請求項 1に記載の窒化物半導体レーザ素子。
12. n型窒化物半導体層と p型窒化物半導体層との間に、 I nを含む窒化物 半導体からなる活性層を含む共振器を有する窒化物半導体レーザ素子の製造方法 において、 前記レーザ素子にエッチング又はへき開を行い、 対向する共振器端面 を形成する第 1の工程と、 前記 L ^一ザ素子の対向する共振器端面の少なくとも出 射端面に、 前記活性層に損傷を与えない低温で形成される単結晶 A 1 xGa ,_x N (0≤x≤ l) 力 らなる端面膜を形成する第 2の工程とを備えたことを特徵と する窒化物半導体レーザ素子の製造方法。
13. 前記第 2の工程は、 超臨界アンモニア中で前記端面膜を形成することを 特徴とする請求項 12に記載の製造方法。
14. 前記第 2の工程において、 少なくとも共振器の!)型コンタクト層の上面 に超臨界アンモニアに対して溶解度が端面膜組成と同等又は低レ、マスクを形成し た後、 前記端面膜を形成することを特徴とする請求項 13に記載の窒化物半導体 レーザ素子の製造方法。
15. 前記マスクは、 酸化ケィ素、 窒化ケィ素、 窒化アルミニウム、 モリブデ ン、 タングステンから成る群から選ばれることを特徴とする請求項 14に記載の 窒化物半導体レーザ素子の製造方法。
16. 前記端面膜は、 超臨界アンモニア中での成膜温度が 900°C以下、 好ま しくは 600°C以下であって、 単結晶で形成されることを特徴とする請求項 12 に記載の窒化物半導体レーザ素子の製造方法。
PCT/JP2002/011136 2001-10-26 2002-10-28 Laser a semi-conducteurs a base de nitrure et procede de production de ce laser WO2003036771A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003539145A JP4097601B2 (ja) 2001-10-26 2002-10-28 窒化物半導体レーザ素子、及びその製造方法
EP02775396A EP1453158A4 (en) 2001-10-26 2002-10-28 NITRIDE SEMICONDUCTOR LASER ELEMENT AND MANUFACTURING METHOD THEREFOR
US10/493,746 US7057211B2 (en) 2001-10-26 2002-10-28 Nitride semiconductor laser device and manufacturing method thereof
KR1020047006130A KR100679387B1 (ko) 2001-10-26 2002-10-28 질화물 반도체 레이저 소자 및 이의 제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PLP-350375 2001-10-26
PL35037501A PL350375A1 (en) 2001-10-26 2001-10-26 Epitaxial layer substrate
PL02354739A PL354739A1 (en) 2002-06-26 2002-06-26 Nitride semiconductor laser
PLP-354739 2002-06-26

Publications (1)

Publication Number Publication Date
WO2003036771A1 true WO2003036771A1 (fr) 2003-05-01

Family

ID=26653408

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2002/011136 WO2003036771A1 (fr) 2001-10-26 2002-10-28 Laser a semi-conducteurs a base de nitrure et procede de production de ce laser
PCT/IB2002/004441 WO2003043150A1 (fr) 2001-10-26 2002-10-28 Structure d'element electoluminescent a couche monocristalline non epitaxiee de nitrure

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/IB2002/004441 WO2003043150A1 (fr) 2001-10-26 2002-10-28 Structure d'element electoluminescent a couche monocristalline non epitaxiee de nitrure

Country Status (8)

Country Link
US (3) US7057211B2 (ja)
EP (2) EP1453158A4 (ja)
JP (2) JP4097601B2 (ja)
KR (2) KR100679387B1 (ja)
CN (2) CN1263206C (ja)
PL (2) PL374180A1 (ja)
TW (1) TWI263387B (ja)
WO (2) WO2003036771A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081075A (ja) * 2005-09-14 2007-03-29 Sharp Corp 窒化物半導体レーザ素子およびその製造方法
JP2007103814A (ja) * 2005-10-07 2007-04-19 Sharp Corp 窒化物半導体発光素子およびその製造方法
JP2007258364A (ja) * 2006-03-22 2007-10-04 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
JP2008147363A (ja) * 2006-12-08 2008-06-26 Sharp Corp 窒化物系半導体素子
US7408199B2 (en) 2004-04-02 2008-08-05 Nichia Corporation Nitride semiconductor laser device and nitride semiconductor device
JP2008182208A (ja) * 2006-12-28 2008-08-07 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
JP2009027018A (ja) * 2007-07-20 2009-02-05 Sharp Corp 窒化物半導体レーザ素子およびその製造方法
JP2009206526A (ja) * 2004-12-20 2009-09-10 Sharp Corp 窒化物半導体発光素子の製造方法
JP2009253047A (ja) * 2008-04-07 2009-10-29 Sumitomo Electric Ind Ltd Iii族窒化物発光素子及びエピタキシャルウエハ
US7646798B2 (en) 2006-12-28 2010-01-12 Nichia Corporation Nitride semiconductor laser element
US7668218B2 (en) 2007-02-20 2010-02-23 Nichia Corporation Nitride semiconductor laser element
US7701995B2 (en) 2007-07-06 2010-04-20 Nichia Corporation Nitride semiconductor laser element
US7764722B2 (en) 2007-02-26 2010-07-27 Nichia Corporation Nitride semiconductor laser element
US7773648B2 (en) 2005-07-13 2010-08-10 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
WO2010134229A1 (ja) * 2009-05-20 2010-11-25 パナソニック株式会社 窒化物半導体発光装置
US7939354B2 (en) 2008-03-07 2011-05-10 Sumitomo Electric Industries, Ltd. Method of fabricating nitride semiconductor laser
JP2012044230A (ja) * 2011-11-30 2012-03-01 Sharp Corp 窒化物半導体発光素子
JP2019009348A (ja) * 2017-06-27 2019-01-17 住友電気工業株式会社 量子カスケード半導体レーザ
JP2020047635A (ja) * 2018-09-14 2020-03-26 旭化成株式会社 窒化物半導体レーザダイオード

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596079B1 (en) * 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
TWI277666B (en) 2001-06-06 2007-04-01 Ammono Sp Zoo Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
EP1453158A4 (en) 2001-10-26 2007-09-19 Ammono Sp Zoo NITRIDE SEMICONDUCTOR LASER ELEMENT AND MANUFACTURING METHOD THEREFOR
JP4693351B2 (ja) * 2001-10-26 2011-06-01 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン エピタキシャル成長用基板
US8545629B2 (en) 2001-12-24 2013-10-01 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US7091514B2 (en) * 2002-04-15 2006-08-15 The Regents Of The University Of California Non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices
US8809867B2 (en) * 2002-04-15 2014-08-19 The Regents Of The University Of California Dislocation reduction in non-polar III-nitride thin films
US20060138431A1 (en) 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
AU2002354467A1 (en) * 2002-05-17 2003-12-02 Ammono Sp.Zo.O. Light emitting element structure having nitride bulk single crystal layer
EP1590509B1 (en) 2002-12-11 2014-02-12 Ammono S.A. Process for obtaining bulk monocrystalline gallium-containing nitride
DE60329713D1 (de) 2002-12-11 2009-11-26 Ammono Sp Zoo Schabloneartiges substrat und verfahren zu seiner herstellung
AU2003259125A1 (en) * 2002-12-16 2004-07-29 The Regents Of The University Of California Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy
US7186302B2 (en) * 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US7427555B2 (en) * 2002-12-16 2008-09-23 The Regents Of The University Of California Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy
CN1894771B (zh) * 2003-04-15 2012-07-04 加利福尼亚大学董事会 非极性(Al,B,In,Ga)N量子阱
KR101034055B1 (ko) 2003-07-18 2011-05-12 엘지이노텍 주식회사 발광 다이오드 및 그 제조방법
JP3841092B2 (ja) * 2003-08-26 2006-11-01 住友電気工業株式会社 発光装置
US7323256B2 (en) 2003-11-13 2008-01-29 Cree, Inc. Large area, uniformly low dislocation density GaN substrate and process for making the same
US7118813B2 (en) * 2003-11-14 2006-10-10 Cree, Inc. Vicinal gallium nitride substrate for high quality homoepitaxy
JP2005191530A (ja) * 2003-12-03 2005-07-14 Sumitomo Electric Ind Ltd 発光装置
KR100576856B1 (ko) * 2003-12-23 2006-05-10 삼성전기주식회사 질화물 반도체 발광소자 및 제조방법
JP2005340765A (ja) * 2004-04-30 2005-12-08 Sumitomo Electric Ind Ltd 半導体発光素子
US7504274B2 (en) * 2004-05-10 2009-03-17 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
KR101365604B1 (ko) * 2004-05-10 2014-02-20 더 리전트 오브 더 유니버시티 오브 캘리포니아 유기금속 화학기상증착법을 이용한 비극성 질화인듐갈륨 박막들, 이중 구조들 및 소자들의 제조
US7846757B2 (en) 2005-06-01 2010-12-07 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,A1,In,B)N thin films, heterostructures, and devices
US7956360B2 (en) * 2004-06-03 2011-06-07 The Regents Of The University Of California Growth of planar reduced dislocation density M-plane gallium nitride by hydride vapor phase epitaxy
US7575947B2 (en) 2005-09-09 2009-08-18 The Regents Of The University Of California Method for enhancing growth of semi-polar (Al,In,Ga,B)N via metalorganic chemical vapor deposition
KR100848380B1 (ko) 2004-06-11 2008-07-25 암모노 에스피. 제트오. 오. 갈륨 함유 질화물의 벌크 단결정 및 그의 어플리케이션
US8754449B2 (en) * 2004-06-11 2014-06-17 Ammono Sp. Z O.O. High electron mobility transistor (HEMT) made of layers of Group XIII element nitrides and manufacturing method thereof
EP1652586B2 (en) * 2004-10-26 2016-03-16 FLSmidth A/S Pulse generating system for electrostatic precipitator
PL371405A1 (pl) 2004-11-26 2006-05-29 Ammono Sp.Z O.O. Sposób wytwarzania objętościowych monokryształów metodą wzrostu na zarodku
JP4451371B2 (ja) * 2004-12-20 2010-04-14 シャープ株式会社 窒化物半導体レーザ素子
CN100352116C (zh) * 2005-01-18 2007-11-28 北京大学 自然解理腔面的GaN基激光二极管的制备方法
KR101145755B1 (ko) * 2005-03-10 2012-05-16 재팬 사이언스 앤드 테크놀로지 에이젼시 평면의 반극성 갈륨 질화물의 성장을 위한 기술
ES2287827T3 (es) * 2005-03-10 2007-12-16 Nanogate Advanced Materials Gmbh Pantalla plana.
TWI377602B (en) 2005-05-31 2012-11-21 Japan Science & Tech Agency Growth of planar non-polar {1-100} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd)
TW200703463A (en) * 2005-05-31 2007-01-16 Univ California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
WO2007008394A1 (en) * 2005-07-11 2007-01-18 Cree, Inc. Laser diode orientation on mis-cut substrates
KR100706952B1 (ko) * 2005-07-22 2007-04-12 삼성전기주식회사 수직 구조 질화갈륨계 발광다이오드 소자 및 그 제조방법
US7635874B2 (en) * 2005-09-26 2009-12-22 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Edge-emitting LED assembly
JP5281408B2 (ja) 2005-12-02 2013-09-04 クリスタル・イズ,インコーポレイテッド ドープされた窒化アルミニウム結晶及びそれを製造する方法
JP4535997B2 (ja) * 2005-12-09 2010-09-01 シャープ株式会社 窒化物半導体レーザ素子およびその製造方法
JP5191650B2 (ja) * 2005-12-16 2013-05-08 シャープ株式会社 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
KR100853241B1 (ko) * 2005-12-16 2008-08-20 샤프 가부시키가이샤 질화물 반도체 발광소자 및 질화물 반도체 레이저 소자의제조방법
TWI490918B (zh) 2006-01-20 2015-07-01 Univ California 半極性氮化(鋁,銦,鎵,硼)之改良成長方法
JP2007266574A (ja) * 2006-02-28 2007-10-11 Sanyo Electric Co Ltd 半導体レーザ素子及び半導体レーザ素子の製造方法
CN101609961B (zh) * 2006-03-06 2012-06-06 夏普株式会社 氮化物半导体器件及其制备方法
JP5004597B2 (ja) * 2006-03-06 2012-08-22 シャープ株式会社 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
JP5430826B2 (ja) 2006-03-08 2014-03-05 シャープ株式会社 窒化物半導体レーザ素子
JP4694395B2 (ja) * 2006-03-22 2011-06-08 日本オプネクスト株式会社 窒化物半導体発光素子及びその製造方法
US9034103B2 (en) 2006-03-30 2015-05-19 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them
JP4444304B2 (ja) * 2006-04-24 2010-03-31 シャープ株式会社 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
US7488384B2 (en) * 2006-05-03 2009-02-10 Ohio University Direct pyrolysis route to GaN quantum dots
JP5250856B2 (ja) * 2006-06-13 2013-07-31 豊田合成株式会社 窒化ガリウム系化合物半導体発光素子の製造方法
JP5008911B2 (ja) * 2006-07-04 2012-08-22 ローム株式会社 半導体発光素子およびその製造方法
GB2439973A (en) * 2006-07-13 2008-01-16 Sharp Kk Modifying the optical properties of a nitride optoelectronic device
US20080025037A1 (en) * 2006-07-28 2008-01-31 Visteon Global Technologies, Inc. LED headlamp
JP2008109066A (ja) * 2006-09-29 2008-05-08 Rohm Co Ltd 発光素子
CN101522962A (zh) * 2006-10-16 2009-09-02 三菱化学株式会社 氮化物半导体的制造方法、结晶生长速度增加剂、氮化物单晶、晶片及器件
US8193020B2 (en) * 2006-11-15 2012-06-05 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition
JP2010509177A (ja) * 2006-11-15 2010-03-25 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 有機金属化学気相成長法による、高品質のN面GaN、InNおよびAlNならびにそれらの合金のヘテロエピタキシャル成長の方法
WO2008073385A1 (en) * 2006-12-11 2008-06-19 The Regents Of The University Of California Metalorganic chemical vapor deposition (mocvd) growth of high performance non-polar iii-nitride optical devices
WO2008073414A1 (en) * 2006-12-12 2008-06-19 The Regents Of The University Of California Crystal growth of m-plane and semipolar planes of(ai, in, ga, b)n on various substrates
KR100920915B1 (ko) * 2006-12-28 2009-10-12 서울옵토디바이스주식회사 초격자 구조의 장벽층을 갖는 발광 다이오드
US9771666B2 (en) 2007-01-17 2017-09-26 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
WO2008088838A1 (en) 2007-01-17 2008-07-24 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
US8080833B2 (en) 2007-01-26 2011-12-20 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
EP1976031A3 (en) * 2007-03-29 2010-09-08 Seoul Opto Device Co., Ltd. Light emitting diode having well and/or barrier layers with superlattice structure
US7843980B2 (en) * 2007-05-16 2010-11-30 Rohm Co., Ltd. Semiconductor laser diode
EP2154272A4 (en) 2007-05-17 2011-04-27 Mitsubishi Chem Corp METHOD FOR PRODUCING A SEMICONDUCTOR CRYSTAL FROM A NITRIDE OF A GROUP III ELEMENT, A SEMICONDUCTOR SUBSTRATE MADE FROM A NITRIDE OF AN ELEMENT OF GROUP III, AND A LIGHT EMITTING SEMICONDUCTOR DEVICE
JP2008300540A (ja) * 2007-05-30 2008-12-11 Sumitomo Electric Ind Ltd 半導体発光素子の製造方法
JP4310352B2 (ja) * 2007-06-05 2009-08-05 シャープ株式会社 発光デバイスおよび発光デバイスの製造方法
JP5118392B2 (ja) * 2007-06-08 2013-01-16 ローム株式会社 半導体発光素子およびその製造方法
KR100872717B1 (ko) * 2007-06-22 2008-12-05 엘지이노텍 주식회사 발광 소자 및 그 제조방법
KR100877774B1 (ko) 2007-09-10 2009-01-16 서울옵토디바이스주식회사 개선된 구조의 발광다이오드
JP5415433B2 (ja) * 2007-10-25 2014-02-12 コーニンクレッカ フィリップス エヌ ヴェ 偏光発光装置
JP5014967B2 (ja) * 2007-12-06 2012-08-29 シャープ株式会社 発光素子及び発光素子の製造方法
KR100998008B1 (ko) 2007-12-17 2010-12-03 삼성엘이디 주식회사 소자 형성용 기판의 제조방법 및 질화물계 반도체 레이저다이오드의 제조방법
US8673074B2 (en) * 2008-07-16 2014-03-18 Ostendo Technologies, Inc. Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE)
WO2010051537A1 (en) 2008-10-31 2010-05-06 The Regents Of The University Of California Optoelectronic device based on non-polar and semi-polar aluminum indium nitride and aluminum indium gallium nitride alloys
JP2010135516A (ja) * 2008-12-03 2010-06-17 Panasonic Corp 窒化物半導体発光装置
KR100999695B1 (ko) * 2009-02-16 2010-12-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
US8247886B1 (en) 2009-03-09 2012-08-21 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US8299473B1 (en) 2009-04-07 2012-10-30 Soraa, Inc. Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors
US8791499B1 (en) 2009-05-27 2014-07-29 Soraa, Inc. GaN containing optical devices and method with ESD stability
TWI478381B (zh) * 2009-06-08 2015-03-21 Epistar Corp 發光元件及其製造方法
EP2267197A1 (en) * 2009-06-25 2010-12-29 AMMONO Sp.z o.o. Method of obtaining bulk mono-crystalline gallium-containing nitride, bulk mono-crystalline gallium-containing nitride, substrates manufactured thereof and devices manufactured on such substrates
US9000466B1 (en) 2010-08-23 2015-04-07 Soraa, Inc. Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening
CN102630349B (zh) * 2009-09-18 2017-06-13 天空公司 功率发光二极管及利用电流密度操作的方法
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US8629065B2 (en) * 2009-11-06 2014-01-14 Ostendo Technologies, Inc. Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE)
US8399948B2 (en) 2009-12-04 2013-03-19 Lg Innotek Co., Ltd. Light emitting device, light emitting device package and lighting system
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8740413B1 (en) 2010-02-03 2014-06-03 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US9450143B2 (en) * 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
WO2012003304A1 (en) 2010-06-30 2012-01-05 Crystal Is, Inc. Growth of large aluminum nitride single crystals with thermal-gradient control
KR200458355Y1 (ko) * 2010-07-16 2012-02-15 안수철 변신만화액자
JP5113305B2 (ja) * 2011-01-21 2013-01-09 パナソニック株式会社 窒化ガリウム系化合物半導体発光素子および当該発光素子を備える光源
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
JP5069386B1 (ja) * 2011-04-06 2012-11-07 パナソニック株式会社 半導体発光デバイス
US8962359B2 (en) 2011-07-19 2015-02-24 Crystal Is, Inc. Photon extraction from nitride ultraviolet light-emitting devices
US8686431B2 (en) 2011-08-22 2014-04-01 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
CN104247052B (zh) 2012-03-06 2017-05-03 天空公司 具有减少导光效果的低折射率材料层的发光二极管
US9800016B1 (en) 2012-04-05 2017-10-24 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US10559939B1 (en) 2012-04-05 2020-02-11 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US8971368B1 (en) 2012-08-16 2015-03-03 Soraa Laser Diode, Inc. Laser devices having a gallium and nitrogen containing semipolar surface orientation
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
US8802471B1 (en) 2012-12-21 2014-08-12 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US9299880B2 (en) 2013-03-15 2016-03-29 Crystal Is, Inc. Pseudomorphic electronic and optoelectronic devices having planar contacts
US8994033B2 (en) 2013-07-09 2015-03-31 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
JP6211087B2 (ja) 2013-08-22 2017-10-11 日本碍子株式会社 13族元素窒化物の製造方法および融液組成物の製造方法
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
WO2015093447A1 (ja) 2013-12-18 2015-06-25 日本碍子株式会社 複合基板および機能素子
US9246311B1 (en) 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US10381508B2 (en) 2014-11-19 2019-08-13 National Sun Yat-Sen University Light emitting element with an enhanced electroluminescence effect
TWI560905B (en) * 2014-11-19 2016-12-01 Univ Nat Sun Yat Sen A light emitting element and manufacturing method thereof
US10505072B2 (en) * 2016-12-16 2019-12-10 Nichia Corporation Method for manufacturing light emitting element
JP6931827B2 (ja) 2017-04-07 2021-09-08 日本製鋼所M&E株式会社 結晶製造用圧力容器
JP6939120B2 (ja) 2017-06-19 2021-09-22 住友電気工業株式会社 量子カスケード半導体レーザ、発光装置、半導体レーザを作製する方法
JP6939119B2 (ja) 2017-06-19 2021-09-22 住友電気工業株式会社 量子カスケード半導体レーザ、発光装置、半導体レーザを作製する方法
JP6911567B2 (ja) 2017-06-22 2021-07-28 住友電気工業株式会社 量子カスケード半導体レーザ
US10476235B2 (en) 2017-06-22 2019-11-12 Sumitomo Electric Industries, Ltd. Quantum cascade laser
US10404038B2 (en) * 2017-06-22 2019-09-03 Sumitomo Electric Industries, Ltd. Quantum cascade laser
US10476237B2 (en) 2017-06-22 2019-11-12 Sumitomo Electric Industries, Ltd. Quantum cascade laser
FR3105586B1 (fr) * 2019-12-23 2023-07-21 Commissariat Energie Atomique Procédé de fabrication d’une diode électroluminescente comportant une étape de dimensionnement d’une couche semiconductrice
US11909172B2 (en) * 2020-01-08 2024-02-20 Asahi Kasei Kabushiki Kaisha Method for manufacturing optical device and optical device
US20210313760A1 (en) * 2020-04-06 2021-10-07 Asahi Kasei Kabushiki Kaisha Method for manufacturing semiconductor laser diode and semiconductor laser diode
US12191626B1 (en) 2020-07-31 2025-01-07 Kyocera Sld Laser, Inc. Vertically emitting laser devices and chip-scale-package laser devices and laser-based, white light emitting devices
CN113437187B (zh) * 2021-08-26 2022-01-25 北京大学深圳研究生院 一种发光二极管超临界处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070338A (ja) * 1997-08-07 1998-03-10 Sharp Corp 半導体レーザ素子の製造方法
JP2000082863A (ja) * 1998-09-04 2000-03-21 Sony Corp 半導体発光素子の製造方法
US6067310A (en) * 1996-09-06 2000-05-23 Sumitomo Electric Industries, Ltd. Semiconductor laser and method of making the same

Family Cites Families (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047170A1 (fr) 1997-04-11 1998-10-22 Nichia Chemical Industries, Ltd. Procede assurant la croissance de semi-conducteurs de nitrure, substrat semi-conducteur de nitrure et dispositif semi-conducteur au nitrure.
JPH0722692B2 (ja) 1988-08-05 1995-03-15 株式会社日本製鋼所 水熱合成用容器
JPH02137287A (ja) 1988-11-17 1990-05-25 Sanyo Electric Co Ltd 半導体レーザ装置
CN1014535B (zh) 1988-12-30 1991-10-30 中国科学院物理研究所 利用改进的矿化剂生长磷酸钛氧钾单晶的方法
US5096860A (en) * 1990-05-25 1992-03-17 Alcan International Limited Process for producing unagglomerated single crystals of aluminum nitride
KR920004181B1 (ko) * 1990-09-13 1992-05-30 한국과학기술연구원 입방정질화붕소의 제조방법
US5190738A (en) * 1991-06-17 1993-03-02 Alcan International Limited Process for producing unagglomerated single crystals of aluminum nitride
US5156581A (en) * 1991-06-21 1992-10-20 Chow John W Finger conditioning device
US5306662A (en) * 1991-11-08 1994-04-26 Nichia Chemical Industries, Ltd. Method of manufacturing P-type compound semiconductor
US5456201A (en) * 1992-01-16 1995-10-10 Bobst; Glen L. Air bubble lubricated boat hull
CN1065289A (zh) 1992-04-28 1992-10-14 抚顺石油学院 洁厕灵
CN1036414C (zh) 1992-11-03 1997-11-12 程大酉 改进的回热并联复合双流体燃气轮机装置及其操作方法
US5456204A (en) 1993-05-28 1995-10-10 Alfa Quartz, C.A. Filtering flow guide for hydrothermal crystal growth
JP3184717B2 (ja) 1993-10-08 2001-07-09 三菱電線工業株式会社 GaN単結晶およびその製造方法
US5679152A (en) * 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
JPH07249830A (ja) * 1994-03-10 1995-09-26 Hitachi Ltd 半導体発光素子の製造方法
JP3293035B2 (ja) * 1994-04-08 2002-06-17 株式会社ジャパンエナジー 窒化ガリウム系化合物半導体結晶の成長方法及び窒化ガリウム系化合物半導体装置
US5599520A (en) 1994-11-03 1997-02-04 Garces; Juan M. Synthesis of crystalline porous solids in ammonia
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
JPH08250802A (ja) 1995-03-09 1996-09-27 Fujitsu Ltd 半導体レーザ及びその製造方法
US5679965A (en) * 1995-03-29 1997-10-21 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same
US5670798A (en) * 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
JP3728332B2 (ja) * 1995-04-24 2005-12-21 シャープ株式会社 化合物半導体発光素子
DE19680872B4 (de) * 1995-08-31 2009-01-08 Kabushiki Kaisha Toshiba, Kawasaki Verfahren zur Herstellung eines Licht emittierenden Elements
DE69633203T2 (de) * 1995-09-18 2005-09-01 Hitachi, Ltd. Halbleiterlaservorrichtungen
JPH09134878A (ja) 1995-11-10 1997-05-20 Matsushita Electron Corp 窒化ガリウム系化合物半導体の製造方法
US5981980A (en) 1996-04-22 1999-11-09 Sony Corporation Semiconductor laminating structure
JPH107496A (ja) 1996-06-25 1998-01-13 Hitachi Cable Ltd 窒化物結晶の製造方法およびその装置
CN1065289C (zh) 1996-07-22 2001-05-02 中国科学院物理研究所 一种制备掺杂钒酸盐单晶的水热生长方法
JP3179346B2 (ja) * 1996-08-27 2001-06-25 松下電子工業株式会社 窒化ガリウム結晶の製造方法
JP4018177B2 (ja) * 1996-09-06 2007-12-05 株式会社東芝 窒化ガリウム系化合物半導体発光素子
US6031858A (en) * 1996-09-09 2000-02-29 Kabushiki Kaisha Toshiba Semiconductor laser and method of fabricating same
WO1998019375A1 (fr) * 1996-10-30 1998-05-07 Hitachi, Ltd. Machine de traitement optique de l'information et dispositif a semi-conducteur emetteur de lumiere afferent
US6177292B1 (en) * 1996-12-05 2001-01-23 Lg Electronics Inc. Method for forming GaN semiconductor single crystal substrate and GaN diode with the substrate
US6677619B1 (en) * 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
EP1017113B1 (en) * 1997-01-09 2012-08-22 Nichia Corporation Nitride semiconductor device
US5868837A (en) * 1997-01-17 1999-02-09 Cornell Research Foundation, Inc. Low temperature method of preparing GaN single crystals
PL184902B1 (pl) * 1997-04-04 2003-01-31 Centrum Badan Wysokocisnieniowych Pan Sposób usuwania nierówności i obszarów silnie zdefektowanych z powierzchni kryształów i warstw epitaksjalnych GaN i Ga AL In N
JP3491492B2 (ja) * 1997-04-09 2004-01-26 松下電器産業株式会社 窒化ガリウム結晶の製造方法
US5888389A (en) * 1997-04-24 1999-03-30 Hydroprocessing, L.L.C. Apparatus for oxidizing undigested wastewater sludges
PL186905B1 (pl) 1997-06-05 2004-03-31 Cantrum Badan Wysokocisnieniow Sposób wytwarzania wysokooporowych kryształów objętościowych GaN
PL183687B1 (pl) 1997-06-06 2002-06-28 Ct Badan Sposób wytwarzania półprzewodnikowych związków grupy A-B o przewodnictwie elektrycznym typu p i typu n
GB2333521B (en) 1997-06-11 2000-04-26 Hitachi Cable Nitride crystal growth method
TW519551B (en) 1997-06-11 2003-02-01 Hitachi Cable Methods of fabricating nitride crystals and nitride crystals obtained therefrom
US6270569B1 (en) * 1997-06-11 2001-08-07 Hitachi Cable Ltd. Method of fabricating nitride crystal, mixture, liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method
JP3239812B2 (ja) 1997-08-07 2001-12-17 日本電気株式会社 InGaN層を含む窒化ガリウム系半導体層の結晶成長方法および窒化ガリウム系発光素子およびその製造方法
DE19855476A1 (de) * 1997-12-02 1999-06-17 Murata Manufacturing Co Lichtemittierendes Halbleiterelement mit einer Halbleiterschicht auf GaN-Basis, Verfahren zur Herstellung desselben und Verfahren zur Ausbildung einer Halbleiterschicht auf GaN-Basis
US6593589B1 (en) * 1998-01-30 2003-07-15 The University Of New Mexico Semiconductor nitride structures
JPH11307813A (ja) 1998-04-03 1999-11-05 Hewlett Packard Co <Hp> 発光装置、その製造方法およびディスプレイ
US6249534B1 (en) * 1998-04-06 2001-06-19 Matsushita Electronics Corporation Nitride semiconductor laser device
JPH11340576A (ja) * 1998-05-28 1999-12-10 Sumitomo Electric Ind Ltd 窒化ガリウム系半導体デバイス
TW428331B (en) * 1998-05-28 2001-04-01 Sumitomo Electric Industries Gallium nitride single crystal substrate and method of producing the same
JP4005701B2 (ja) * 1998-06-24 2007-11-14 シャープ株式会社 窒素化合物半導体膜の形成方法および窒素化合物半導体素子
JP2000031533A (ja) 1998-07-14 2000-01-28 Toshiba Corp 半導体発光素子
TW413956B (en) * 1998-07-28 2000-12-01 Sumitomo Electric Industries Fluorescent substrate LED
US6335546B1 (en) * 1998-07-31 2002-01-01 Sharp Kabushiki Kaisha Nitride semiconductor structure, method for producing a nitride semiconductor structure, and light emitting device
JP2000091637A (ja) * 1998-09-07 2000-03-31 Rohm Co Ltd 半導体発光素子の製法
US6423984B1 (en) * 1998-09-10 2002-07-23 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride compound semiconductor
US6252261B1 (en) * 1998-09-30 2001-06-26 Nec Corporation GaN crystal film, a group III element nitride semiconductor wafer and a manufacturing process therefor
JP3592553B2 (ja) 1998-10-15 2004-11-24 株式会社東芝 窒化ガリウム系半導体装置
CN1260409A (zh) 1998-10-23 2000-07-19 黄石市皂素厂 L-半胱氨酸盐酸盐一水物生产工艺
DE69941921D1 (de) * 1998-11-06 2010-03-04 Panasonic Corp Halbleitervorrichtung
TW498102B (en) * 1998-12-28 2002-08-11 Futaba Denshi Kogyo Kk A process for preparing GaN fluorescent substance
US6372041B1 (en) * 1999-01-08 2002-04-16 Gan Semiconductor Inc. Method and apparatus for single crystal gallium nitride (GaN) bulk synthesis
US20020096674A1 (en) * 1999-01-08 2002-07-25 Cho Hak Dong Nucleation layer growth and lift-up of process for GaN wafer
JP2000216494A (ja) 1999-01-20 2000-08-04 Sanyo Electric Co Ltd 半導体発光素子およびその製造方法
EP1024524A2 (en) * 1999-01-27 2000-08-02 Matsushita Electric Industrial Co., Ltd. Deposition of dielectric layers using supercritical CO2
US6177057B1 (en) * 1999-02-09 2001-01-23 The United States Of America As Represented By The Secretary Of The Navy Process for preparing bulk cubic gallium nitride
US6711191B1 (en) * 1999-03-04 2004-03-23 Nichia Corporation Nitride semiconductor laser device
JP3957918B2 (ja) 1999-05-17 2007-08-15 独立行政法人科学技術振興機構 窒化ガリウム単結晶の育成方法
US6592663B1 (en) * 1999-06-09 2003-07-15 Ricoh Company Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate
JP4329229B2 (ja) 1999-06-30 2009-09-09 住友電気工業株式会社 Iii−v族窒化物半導体の成長方法および気相成長装置
KR100381742B1 (ko) 1999-06-30 2003-04-26 스미토모덴키고교가부시키가이샤 Ⅲ-ⅴ족 질화물반도체의 성장방법 및 기상성장장치
FR2796657B1 (fr) 1999-07-20 2001-10-26 Thomson Csf Procede de synthese de materiaux massifs monocristallins en nitrures d'elements de la colonne iii du tableau de la classification periodique
JP3968920B2 (ja) * 1999-08-10 2007-08-29 双葉電子工業株式会社 蛍光体
JP4646359B2 (ja) 1999-09-09 2011-03-09 シャープ株式会社 窒化物半導体発光素子の製造方法
JP2001085737A (ja) * 1999-09-10 2001-03-30 Sharp Corp 窒化物半導体発光素子
US6265322B1 (en) * 1999-09-21 2001-07-24 Agere Systems Guardian Corp. Selective growth process for group III-nitride-based semiconductors
KR100683364B1 (ko) 1999-09-27 2007-02-15 필립스 루미리즈 라이팅 캄파니 엘엘씨 완전한 형광 물질 변환에 의해 백색광을 생성하는 발광다이오드 소자
JP4145437B2 (ja) 1999-09-28 2008-09-03 住友電気工業株式会社 単結晶GaNの結晶成長方法及び単結晶GaN基板の製造方法と単結晶GaN基板
CN1113988C (zh) 1999-09-29 2003-07-09 中国科学院物理研究所 一种氮化镓单晶的热液生长方法
US6398867B1 (en) 1999-10-06 2002-06-04 General Electric Company Crystalline gallium nitride and method for forming crystalline gallium nitride
EP1104031B1 (en) * 1999-11-15 2012-04-11 Panasonic Corporation Nitride semiconductor laser diode and method of fabricating the same
JP2001168385A (ja) * 1999-12-06 2001-06-22 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体発光素子
US6653663B2 (en) * 1999-12-06 2003-11-25 Matsushita Electric Industrial Co., Ltd. Nitride semiconductor device
JP2001185718A (ja) 1999-12-24 2001-07-06 Hitachi Cable Ltd 窒化ガリウム系化合物半導体を用いた高電子移動度トランジスタ用エピタキシャルウェハの製造方法
US7315599B1 (en) * 1999-12-29 2008-01-01 Intel Corporation Skew correction circuit
US6355497B1 (en) * 2000-01-18 2002-03-12 Xerox Corporation Removable large area, low defect density films for led and laser diode growth
JP3335974B2 (ja) 2000-01-24 2002-10-21 星和電機株式会社 窒化ガリウム系半導体発光素子及びその製造方法
US20010015437A1 (en) * 2000-01-25 2001-08-23 Hirotatsu Ishii GaN field-effect transistor, inverter device, and production processes therefor
JP4429459B2 (ja) 2000-03-03 2010-03-10 古河電気工業株式会社 高抵抗GaN結晶層の製造方法
US6596079B1 (en) * 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
US6447604B1 (en) * 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
JP3946427B2 (ja) * 2000-03-29 2007-07-18 株式会社東芝 エピタキシャル成長用基板の製造方法及びこのエピタキシャル成長用基板を用いた半導体装置の製造方法
US6657232B2 (en) * 2000-04-17 2003-12-02 Virginia Commonwealth University Defect reduction in GaN and related materials
TW498583B (en) 2000-05-26 2002-08-11 Takayanagi Kenkyusho Kk Static eliminator
JP2001339121A (ja) * 2000-05-29 2001-12-07 Sharp Corp 窒化物半導体発光素子とそれを含む光学装置
GB2363518A (en) 2000-06-17 2001-12-19 Sharp Kk A method of growing a nitride layer on a GaN substrate
JP3646302B2 (ja) 2000-07-07 2005-05-11 ソニー株式会社 半導体レーザ
US6693935B2 (en) * 2000-06-20 2004-02-17 Sony Corporation Semiconductor laser
JP2002016285A (ja) * 2000-06-27 2002-01-18 National Institute Of Advanced Industrial & Technology 半導体発光素子
US6586762B2 (en) * 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
JP3968968B2 (ja) * 2000-07-10 2007-08-29 住友電気工業株式会社 単結晶GaN基板の製造方法
EP1176120A1 (en) * 2000-07-28 2002-01-30 Japan Pionics Co., Ltd. Process for purifying ammonia
JP4154558B2 (ja) * 2000-09-01 2008-09-24 日本電気株式会社 半導体装置
JP4416297B2 (ja) * 2000-09-08 2010-02-17 シャープ株式会社 窒化物半導体発光素子、ならびにそれを使用した発光装置および光ピックアップ装置
US6858882B2 (en) * 2000-09-08 2005-02-22 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and optical device including the same
JP2002094189A (ja) * 2000-09-14 2002-03-29 Sharp Corp 窒化物半導体レーザ素子およびそれを用いた光学装置
JP2002134416A (ja) 2000-10-19 2002-05-10 Ricoh Co Ltd p型3族窒化物の結晶成長方法および製造方法、並びに半導体素子
US6936488B2 (en) * 2000-10-23 2005-08-30 General Electric Company Homoepitaxial gallium-nitride-based light emitting device and method for producing
US7053413B2 (en) * 2000-10-23 2006-05-30 General Electric Company Homoepitaxial gallium-nitride-based light emitting device and method for producing
KR100831751B1 (ko) * 2000-11-30 2008-05-23 노쓰 캐롤라이나 스테이트 유니버시티 M'n 물의 제조 방법 및 장치
JP4063520B2 (ja) * 2000-11-30 2008-03-19 日本碍子株式会社 半導体発光素子
JP4003413B2 (ja) 2000-12-11 2007-11-07 日亜化学工業株式会社 13族窒化物結晶の製造方法
JP3785566B2 (ja) 2001-03-19 2006-06-14 株式会社日鉱マテリアルズ GaN系化合物半導体結晶の製造方法
US6806508B2 (en) * 2001-04-20 2004-10-19 General Electic Company Homoepitaxial gallium nitride based photodetector and method of producing
US6734530B2 (en) * 2001-06-06 2004-05-11 Matsushita Electric Industries Co., Ltd. GaN-based compound semiconductor EPI-wafer and semiconductor element using the same
PL207400B1 (pl) * 2001-06-06 2010-12-31 Ammono Społka Z Ograniczoną Odpowiedzialnością Sposób i urządzenie do otrzymywania objętościowego monokryształu azotku zawierającego gal
TWI277666B (en) * 2001-06-06 2007-04-01 Ammono Sp Zoo Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
PL350375A1 (en) 2001-10-26 2003-05-05 Ammono Sp Z Oo Epitaxial layer substrate
US6488767B1 (en) * 2001-06-08 2002-12-03 Advanced Technology Materials, Inc. High surface quality GaN wafer and method of fabricating same
US6562466B2 (en) * 2001-07-02 2003-05-13 Essilor International Compagnie Generale D'optique Process for transferring a coating onto a surface of a lens blank
EP1453158A4 (en) 2001-10-26 2007-09-19 Ammono Sp Zoo NITRIDE SEMICONDUCTOR LASER ELEMENT AND MANUFACTURING METHOD THEREFOR
JP4693351B2 (ja) 2001-10-26 2011-06-01 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン エピタキシャル成長用基板
US7097707B2 (en) * 2001-12-31 2006-08-29 Cree, Inc. GaN boule grown from liquid melt using GaN seed wafers
US20030209191A1 (en) 2002-05-13 2003-11-13 Purdy Andrew P. Ammonothermal process for bulk synthesis and growth of cubic GaN
JP4403067B2 (ja) 2002-05-17 2010-01-20 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン 超臨界アンモニアを用いるバルク単結晶生産設備
AU2002354467A1 (en) * 2002-05-17 2003-12-02 Ammono Sp.Zo.O. Light emitting element structure having nitride bulk single crystal layer
US20060138431A1 (en) * 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
EP1520329A2 (en) * 2002-06-26 2005-04-06 AMMONO Sp.z o.o. Nitride semiconductor laser device and a method for improving its performance
PL225422B1 (pl) * 2002-06-26 2017-04-28 Ammono Spółka Z Ograniczoną Odpowiedzialnością Sposób otrzymywania objętościowych monokryształów azotku zawierającego gal
US7099073B2 (en) * 2002-09-27 2006-08-29 Lucent Technologies Inc. Optical frequency-converters based on group III-nitrides
EP1590509B1 (en) * 2002-12-11 2014-02-12 Ammono S.A. Process for obtaining bulk monocrystalline gallium-containing nitride
PL225430B1 (pl) * 2002-12-11 2017-04-28 Ammono Spółka Z Ograniczoną Odpowiedzialnością Mineralizator do zastosowania w sposobie otrzymywania objętościowego monokrystalicznego azotku zawierającego gal w nadkrytycznym rozpuszczalniku amoniakalnym
DE60329713D1 (de) * 2002-12-11 2009-11-26 Ammono Sp Zoo Schabloneartiges substrat und verfahren zu seiner herstellung
US7098487B2 (en) * 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
CN1289867C (zh) 2003-02-21 2006-12-13 乐金电子(天津)电器有限公司 微波炉的刻度旋钮支持装置
CN100390329C (zh) 2003-04-03 2008-05-28 三菱化学株式会社 氧化锌单晶
US8754449B2 (en) * 2004-06-11 2014-06-17 Ammono Sp. Z O.O. High electron mobility transistor (HEMT) made of layers of Group XIII element nitrides and manufacturing method thereof
KR100848380B1 (ko) 2004-06-11 2008-07-25 암모노 에스피. 제트오. 오. 갈륨 함유 질화물의 벌크 단결정 및 그의 어플리케이션
PL371405A1 (pl) * 2004-11-26 2006-05-29 Ammono Sp.Z O.O. Sposób wytwarzania objętościowych monokryształów metodą wzrostu na zarodku
US7704324B2 (en) * 2005-01-25 2010-04-27 General Electric Company Apparatus for processing materials in supercritical fluids and methods thereof
CN101437987A (zh) 2006-04-07 2009-05-20 加利福尼亚大学董事会 生长大表面积氮化镓晶体
EP2092093A4 (en) * 2006-10-25 2017-06-14 The Regents of The University of California Method for growing group iii-nitride crystals in a mixture of supercritical ammonia and nitrogen, and group iii-nitride crystals grown thereby
TWI480435B (zh) * 2007-09-19 2015-04-11 Univ California 氮化鎵塊狀晶體(bulk crystals)及其生長方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6067310A (en) * 1996-09-06 2000-05-23 Sumitomo Electric Industries, Ltd. Semiconductor laser and method of making the same
JPH1070338A (ja) * 1997-08-07 1998-03-10 Sharp Corp 半導体レーザ素子の製造方法
JP2000082863A (ja) * 1998-09-04 2000-03-21 Sony Corp 半導体発光素子の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DWILINSKI R. ET AL., DIAMOND AND RELATED MATERIALS, vol. 7, no. 9, 1998, pages 1348 - 1350, XP000667687 *
KETCHUM D.R. ET AL., JOURNAL OF CRYSTAL GROWTH, vol. 222, 2001, pages 431 - 434, XP004314417 *
See also references of EP1453158A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813397B2 (en) 2004-04-02 2010-10-12 Nichia Corporation Nitride semiconductor laser device
US7408199B2 (en) 2004-04-02 2008-08-05 Nichia Corporation Nitride semiconductor laser device and nitride semiconductor device
JP2010068007A (ja) * 2004-12-20 2010-03-25 Sharp Corp 窒化物半導体レーザ素子
JP2009206526A (ja) * 2004-12-20 2009-09-10 Sharp Corp 窒化物半導体発光素子の製造方法
US7773648B2 (en) 2005-07-13 2010-08-10 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
JP2007081075A (ja) * 2005-09-14 2007-03-29 Sharp Corp 窒化物半導体レーザ素子およびその製造方法
JP2007103814A (ja) * 2005-10-07 2007-04-19 Sharp Corp 窒化物半導体発光素子およびその製造方法
JP2007258364A (ja) * 2006-03-22 2007-10-04 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
JP2008147363A (ja) * 2006-12-08 2008-06-26 Sharp Corp 窒化物系半導体素子
US7646798B2 (en) 2006-12-28 2010-01-12 Nichia Corporation Nitride semiconductor laser element
JP2008182208A (ja) * 2006-12-28 2008-08-07 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
US7668218B2 (en) 2007-02-20 2010-02-23 Nichia Corporation Nitride semiconductor laser element
US7764722B2 (en) 2007-02-26 2010-07-27 Nichia Corporation Nitride semiconductor laser element
US8102891B2 (en) 2007-07-06 2012-01-24 Nichia Corporation Nitride semiconductor laser element
US7701995B2 (en) 2007-07-06 2010-04-20 Nichia Corporation Nitride semiconductor laser element
JP2009027018A (ja) * 2007-07-20 2009-02-05 Sharp Corp 窒化物半導体レーザ素子およびその製造方法
US7939354B2 (en) 2008-03-07 2011-05-10 Sumitomo Electric Industries, Ltd. Method of fabricating nitride semiconductor laser
JP2009253047A (ja) * 2008-04-07 2009-10-29 Sumitomo Electric Ind Ltd Iii族窒化物発光素子及びエピタキシャルウエハ
WO2010134229A1 (ja) * 2009-05-20 2010-11-25 パナソニック株式会社 窒化物半導体発光装置
JP2010272641A (ja) * 2009-05-20 2010-12-02 Panasonic Corp 窒化物半導体発光装置
CN102484354A (zh) * 2009-05-20 2012-05-30 松下电器产业株式会社 氮化物半导体发光装置
US8437376B2 (en) 2009-05-20 2013-05-07 Panasonic Corporation Nitride semiconductor light-emitting device
JP2012044230A (ja) * 2011-11-30 2012-03-01 Sharp Corp 窒化物半導体発光素子
JP2019009348A (ja) * 2017-06-27 2019-01-17 住友電気工業株式会社 量子カスケード半導体レーザ
JP2020047635A (ja) * 2018-09-14 2020-03-26 旭化成株式会社 窒化物半導体レーザダイオード
JP7246038B2 (ja) 2018-09-14 2023-03-27 旭化成株式会社 窒化物半導体レーザダイオード

Also Published As

Publication number Publication date
US20080108162A1 (en) 2008-05-08
US7057211B2 (en) 2006-06-06
EP1453159A4 (en) 2007-10-03
CN1575533A (zh) 2005-02-02
JP4097601B2 (ja) 2008-06-11
KR100679387B1 (ko) 2007-02-05
CN1263206C (zh) 2006-07-05
KR100679377B1 (ko) 2007-02-05
EP1453159A1 (en) 2004-09-01
EP1453159B8 (en) 2017-12-13
KR20040047968A (ko) 2004-06-05
EP1453158A4 (en) 2007-09-19
WO2003043150A1 (fr) 2003-05-22
US20040238810A1 (en) 2004-12-02
JPWO2003036771A1 (ja) 2005-02-17
TW200400675A (en) 2004-01-01
PL214287B1 (pl) 2013-07-31
CN1300901C (zh) 2007-02-14
US7935550B2 (en) 2011-05-03
EP1453159B1 (en) 2017-09-06
CN1575534A (zh) 2005-02-02
TWI263387B (en) 2006-10-01
US7750355B2 (en) 2010-07-06
EP1453158A1 (en) 2004-09-01
PL374180A1 (en) 2005-10-03
US20040251471A1 (en) 2004-12-16
JPWO2003043150A1 (ja) 2005-03-10
JP4383172B2 (ja) 2009-12-16
PL374184A1 (en) 2005-10-03
KR20040049323A (ko) 2004-06-11

Similar Documents

Publication Publication Date Title
JP4097601B2 (ja) 窒化物半導体レーザ素子、及びその製造方法
JP3436128B2 (ja) 窒化物半導体の成長方法及び窒化物半導体素子
JP5028640B2 (ja) 窒化物半導体レーザ素子
JP3491538B2 (ja) 窒化物半導体の成長方法及び窒化物半導体素子
KR100874077B1 (ko) 질화물 반도체 레이저 소자 및 그 제조 방법
JP2005531154A (ja) 窒化物半導体レーザ素子及びその性能を向上させる方法
JP2000299532A (ja) 窒化物半導体レーザ素子
JP2000357843A (ja) 窒化物半導体の成長方法
JP3460581B2 (ja) 窒化物半導体の成長方法及び窒化物半導体素子
JP3446660B2 (ja) 窒化物半導体発光素子
WO2005006506A1 (ja) 窒化物半導体レーザ素子及びそれを用いたレーザー装置
JP4665394B2 (ja) 窒化物半導体レーザ素子
JP4291960B2 (ja) 窒化物半導体素子
JP3395631B2 (ja) 窒化物半導体素子及び窒化物半導体素子の製造方法
JP4985374B2 (ja) 窒化物半導体レーザ素子
JP2000196201A (ja) 窒化物半導体レ―ザ素子
JP3794530B2 (ja) 窒化物半導体レーザ素子
US20110026554A1 (en) Nitride semiconductor laser element
JP4097343B2 (ja) 窒化物半導体レーザ素子の製造方法
JP3888080B2 (ja) 半導体レーザ素子
JPH1027939A (ja) 窒化物半導体レーザ素子
JP2005101536A (ja) 窒化物半導体レーザ素子
JP2003283057A (ja) 窒化物半導体発光素子及びその製造方法
JPH09219560A (ja) 窒化物半導体発光素子の製造方法
JP2002280308A (ja) 窒化物半導体の成長方法及びそれを用いた素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020047006130

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 374180

Country of ref document: PL

Ref document number: 20028212312

Country of ref document: CN

Ref document number: 2003539145

Country of ref document: JP

Ref document number: 10493746

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002775396

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002775396

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载