+

WO2003033139A1 - Procede de production d'un catalyseur d'ammoxydation - Google Patents

Procede de production d'un catalyseur d'ammoxydation Download PDF

Info

Publication number
WO2003033139A1
WO2003033139A1 PCT/JP2002/009832 JP0209832W WO03033139A1 WO 2003033139 A1 WO2003033139 A1 WO 2003033139A1 JP 0209832 W JP0209832 W JP 0209832W WO 03033139 A1 WO03033139 A1 WO 03033139A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
liquid
catalyst
raw material
ammoxidation
Prior art date
Application number
PCT/JP2002/009832
Other languages
English (en)
French (fr)
Inventor
Kenichi Miyaki
Motoo Yanagita
Kunio Mori
Original Assignee
Dia-Nitrix Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia-Nitrix Co., Ltd. filed Critical Dia-Nitrix Co., Ltd.
Priority to US10/490,219 priority Critical patent/US7365041B2/en
Priority to EP02779893A priority patent/EP1452231B1/en
Priority to ES02779893T priority patent/ES2397949T3/es
Priority to ROA200400319A priority patent/RO122022B1/ro
Priority to KR1020047005133A priority patent/KR100905842B1/ko
Publication of WO2003033139A1 publication Critical patent/WO2003033139A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • B01J27/192Molybdenum with bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8878Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8898Manganese, technetium or rhenium containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing a composite oxide catalyst used for ammoxidation of an organic compound.
  • BACKGROUND ART Various catalysts have been disclosed as catalysts used for ammoxidation of organic compounds.
  • an oxide catalyst containing molybdenum, bismuth and iron is disclosed in JP-B-38-17967, No. 11 discloses an oxide catalyst containing iron and antimony.
  • Japanese Unexamined Patent Application Publication No. Sho 51-41091 Japanese Unexamined Patent Application Publication No. Sho 59-204163
  • Japanese Unexamined Patent Application Publication No. 7-47272 Japanese Unexamined Patent Application Publication No. No. 70
  • Japanese Unexamined Patent Publication No. H11-16971 Japanese Unexamined Patent Publication No. 2000-5603
  • JP-A-6-95030 discloses a method of heating a slurry containing molybdenum, bismuth, nickel, and cobalt at 90 ° C. for 3 hours.
  • a method for adjusting a slurry containing a catalyst component to pH 5 or less is disclosed in Japanese Patent No. 2640356, in which the pH of a slurry containing molybdenum and iron is adjusted to 5 or less, and 50 to 1
  • a method of performing a heat treatment in a temperature range of 20 ° C. is disclosed.
  • the present invention has been made to solve the above problems, and provides a method for producing a catalyst useful for ammoxidation of an organic compound, particularly for synthesis of acrylonitrile by ammoxidation of propylene.
  • DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted intensive studies to solve the above-described problems, and as a result, when producing a composite oxide catalyst used for ammoxidation of an organic compound, when mixing each raw material in a specific order. In addition, they have found that the yield of the desired product can be maintained at a high level over a long period of time, and arrived at the present invention.
  • the method for producing the catalyst for ammoxidation of the present invention is selected from the group consisting of molybdenum (component (1)), bismuth (component (2)), nickel, cobalt, zinc, magnesium, manganese, and copper.
  • Ammoxidation of organic compounds containing at least one element (component (3)) and at least one element selected from the group consisting of lanthanum, cerium, praseodymium and neodymium (component (4)) A method for producing a catalyst for use, wherein at least a part of the raw material of the component (1), at least a part of the raw material of the component (2), and at least a part of the raw material of the component (3)
  • the method for producing a catalyst for ammoxidation of the present invention preferably includes a heat treatment step of heating the second liquid in a range of 50 to 120 ° C for 10 minutes or more. H is preferably adjusted to a range of 1 to 6 before performing the heat treatment step.
  • the ammoxidation catalyst preferably has a composition represented by the following empirical formula (I).
  • the catalyst for ammoxidation is a catalyst for a fluidized bed reaction, and the composition thereof is represented by the following formula (II).
  • the organic compound is preferably propylene.
  • the catalyst for ammoxidation produced by the production method of the present invention is selected from the group consisting of molybdenum (component (1)), bismuth (component (2)), nickel, cobalt, zinc magnesium, manganese and copper.
  • a composite oxide catalyst comprising at least one element (component (3)) and at least one element selected from the group consisting of lanthanum, cerium, praseodymium and neodymium (component (4)).
  • they are suitably used for ammoxidation of organic compounds such as olefins, alcohols, ethers, aromatic compounds, and heterocyclic aromatic compounds.
  • the ammoxidation catalyst produced by the production method of the present invention may contain an element other than the components (1) to (4).
  • the organic compound examples include propylene, isobutene, methanol, ethanol, tertiary butanol, methyl tertiary butyl ether, toluene, xylene, picoline, quinaldine, and the like.
  • the catalyst is particularly suitable for use in synthesizing acrylonitrile by ammoxidizing propylene, and can produce acrylonitrile at a high yield, and can maintain the yield for a long time.
  • an ammoxidation catalyst of the present invention first, at least a part of a raw material of molybdenum (component (1)), at least a part of a raw material of bismuth (component (2)), nickel, cobalt, and zinc. At least one element selected from the group consisting of, magnesium, manganese and copper
  • the raw material of the component (1) is not particularly limited.
  • molybdenum oxide such as molybdenum trioxide
  • molybdic acid such as molybdic acid, ammonium paramolybdate, and ammonium metamolybdate
  • Ammonium salt phosphomolybdic acid, chamo Heteropolyacids containing molybdenum such as ribic acid
  • salts of these heteropolyacids and the like can be used.
  • the raw materials for component (1) may be used as they are, or may be used by dissolving or dispersing them in a solvent such as water in advance.
  • the raw material of the component (2) is not particularly limited as long as it is a metal bismuth or a compound thereof.
  • bismuth salts such as bismuth nitrate, bismuth carbonate, bismuth sulfate and bismuth acetate; bismuth trioxide and the like can be used.
  • the raw material of the component (2) may be used as a solid, or may be used as a solution previously dissolved in water or an aqueous nitric acid solution, or a bismuth compound containing a solid precipitated from the solution may be used. There is a method of using it as a slurry.
  • Component (3) that is, as a raw material of at least one element selected from the group consisting of nickel, cobalt, zinc, magnesium, manganese, and copper, these oxides or oxides obtained by heating It is possible to use nitrates, carbonates, organic acid salts, hydroxides, and mixtures thereof, which can be used.
  • each of the ingredients (1) to (3) may be added without adding the ingredient (4), and the ingredients (1) to (3) are not necessarily added. It is not necessary to mix all of them. In that case, the remaining raw materials of the components (1) to (3) may be appropriately added at an arbitrary stage after the first liquid preparation step.
  • the first liquid is prepared using a solvent such as water.
  • the solvent may be water, an acid solution such as a nitric acid aqueous solution, or an alkaline solution such as ammonia water, if necessary. A solution or the like may be used. These solvents may be used after being heated.
  • each of the components (1) to (3) there is no limitation on the mixing method and the mixing order.
  • the respective solutions or slurries may be mixed to form the first liquid or a solid.
  • the first liquid may be obtained by adding a solvent to a mixture of the raw materials of the components (1), (2) and (3) in the state.
  • the catalyst for ammoxidation produced here contains an element other than the components (1) to (4) (hereinafter, referred to as the component (5)), in the first liquid preparation step, The whole or a part thereof may be mixed.
  • oxides of these elements or nitrates, carbonates, organic acid salts, hydroxides, and mixtures thereof, which can become oxides when heated, can be used.
  • the form of the first liquid may be a solution state in which each component is dissolved, or a slurry state in which at least a part of each component is not dissolved.
  • the first solution obtained in the first solution preparation step contains at least the component (4), namely, lanthanum, cerium, praseodymium and neodymium.
  • a second liquid preparation step of adding a raw material of one or more elements selected from the group to prepare a second liquid is performed.
  • the raw material of the component (4) may be added here if necessary, or the components (1) to (3) ) May be added to the remaining amount of the raw material.
  • the solid material may be added to the first liquid as it is, or may be added to the first liquid after being dissolved or dispersed in a solvent in advance.
  • the form of the second liquid varies depending on the composition of the target catalyst for ammoxidation, the type of the compound used as a raw material, and the like.Even in the state of a solution in which each component is dissolved, at least a part of each component is dissolved A slurry that has not been used may be used.
  • the yield of the target product can be maintained at a high level over a long period of time. It is not yet clear why such an effect is manifested, but at least part of the raw material of component (1) and at least part of the raw material of component (2) By preparing a first liquid containing at least a part of the raw material of the component (3) and not containing the raw material of the component (4), and then adding the raw material of the component (4) to the first liquid, This is presumably because the formation of a catalyst structure preferable for ammoxidation or a catalyst precursor structure is promoted.
  • the pH of the second solution thus obtained is adjusted to a range of 1 to 6 as necessary.
  • the pH of the second liquid may be outside the range of 1 to 6, but if it is within the range of 1 to 6, the heat treatment step described later can be effectively performed, and the final The ammoxidation catalyst obtained in this manner can produce the target product in high yield. If the pH is less than 1 or more than 6, the yield of the desired product may decrease.
  • the lower limit of the pH of the second liquid is more preferably 1.5, and the upper limit is 5.5.
  • a method for adjusting the pH for example, a method in which an alkaline aqueous solution such as an aqueous ammonia solution is added to increase the pH can be exemplified, and a method in which an acidic aqueous solution such as a nitric acid aqueous solution is added to decrease the pH. Can be exemplified.
  • a chelating agent may be added to the first liquid or the second liquid and coexist.
  • the addition of these chelating agents is effective when the pH is high and gelation is likely to occur.However, even when the pH is adjusted to a relatively low value, for example, in the range of 1 to 3, a small amount is added. By doing so, the effect of improving the yield and activity of the target product may be exhibited.
  • the structure of the catalyst becomes more stable, and a high-performance ammoxidation catalyst can be stably manufactured with good reproducibility.
  • the heat treatment step may be performed under pressure or under normal pressure.
  • the treatment temperature is not particularly limited, but is preferably 50 ° C. or higher, more preferably 80 ° C. or higher. If the temperature is lower than 50 ° C, the effect of the heat treatment step may not be exhibited: the upper limit of the processing temperature is not particularly limited, but when the heat treatment is performed under normal pressure, it is usually 120 ° C. It is as follows. If the treatment time is too short, the effect may be insufficient. Therefore, the treatment time is preferably 10 minutes or more, more preferably 30 minutes or more.
  • the upper limit of the processing time is not particularly limited, but even if the processing is performed for a longer time than necessary, the obtained effect is almost the same, so that it is usually within 10 hours.
  • the raw material of the component (5) is added, or the remaining amount of the raw materials of the components (1) to (3) that were not added in the previous stages is added. May be.
  • the second liquid is dried and calcined to obtain an ammoxidation catalyst.
  • the drying method is not particularly limited, and a known method can be used.
  • this catalyst is used in the production of acrylonitrile by ammoxidizing propylene, it is preferable to dry it by a spray drying method to obtain substantially spherical catalyst particles usable in a fluidized bed.
  • a general spray drying device such as a rotating disk type or a nozzle type can be used.
  • the spray drying conditions are such that if the finally obtained catalyst for ammoxidation is used in a fluidized bed reactor, it will have a particle size range described below that can be preferably used in a fluidized bed. It is preferable that conditions be set appropriately.
  • the firing method is as follows.After firing at a low temperature in the range of 200 to 500 ° 0 for 0.1 to 20 hours, 500 to It is preferable to perform high-temperature baking in a range of 700 ° C. for 0.1 to 20 hours. If the calcination is performed in two stages, a low temperature and a high temperature, the performance of the obtained catalyst for ammoxidation may be improved. In addition, as long as firing is performed in two temperature ranges, a low temperature range and a high temperature range, firing may be performed a plurality of times at different temperatures within each temperature range.
  • Both low-temperature firing and high-temperature firing are preferably performed in an oxygen-containing gas atmosphere.
  • the firing is preferably performed in an atmosphere in which oxygen is appropriately mixed with nitrogen, carbon dioxide, steam, or the like. it can.
  • a box furnace, a tunnel furnace, a rotary firing furnace, a fluidized-bed firing furnace, or the like can be used, but when the ammoxidation catalyst is used as a fluidized-bed catalyst usable in a fluidized bed, the latter stage is used. It is preferable to use a fluidized-bed firing furnace during firing.
  • the catalyst thus produced preferably has a particle size of 5 to 200 xm.
  • the lower limit of the particle size is more preferably 10 m, and the upper limit is more preferably 150 m. With such a particle size, fluidity is excellent and fluidized bed reaction Suitable for use in vessels.
  • the particle size refers to the particle size of each particle, not the average particle size of the entire particle.
  • the catalyst for ammoxidation produced by the method described above is selected from the group consisting of molybdenum (component (1)), bismuth (component (2)), nickel, cobalt, zinc, magnesium, manganese and copper.
  • Composite oxide catalyst containing at least one element (component (3)) and at least one element selected from the group consisting of lanthanum, cerium, praseodymium and neodymium (component (4)) There is no limitation as long as it is, but those having the composition range represented by the following formula (I) are particularly preferable.
  • Mo, Bi, Fe, Cr, K, Sb, and Si represent molybdenum, bismuth, iron, chromium, potassium, antimony, and silicon, respectively.
  • X represents at least one element selected from the group consisting of nickel, cobalt, zinc, magnesium, manganese, and copper, and X preferably contains nickel and / or cobalt.
  • E represents at least one element selected from the group consisting of lanthanum, cerium, praseodymium, and neodymium, and E preferably contains lanthanum and / or cerium.
  • G is at least selected from the group consisting of calcium, strontium, norium, cadmium, titanium, zirconium, vanadium, niobium, tantalum, tungsten, germanium, tin, yttrium, samarium, aluminum, gallium and lead Represents a kind of element.
  • M represents at least one element selected from the group consisting of ruthenium, rhodium, palladium, rhenium, osmium, iridium, platinum, silver, boron, phosphorus and tellurium.
  • Z represents at least one element selected from the group consisting of lithium, sodium, rubidium and cesium.
  • O represents oxygen.
  • the lower limit of c is preferably 2, more preferably 3, and the upper limit is preferably 12 more preferably 10.
  • the lower limit of d is preferably 0.1, more preferably 0.2, and the upper limit is preferably 2.5, more preferably 2.
  • the lower limit of e is preferably 0.1, more preferably 0.2, and the upper limit is preferably 2.5, more preferably 2.
  • the lower limit of f is preferably 0.01, more preferably 0.05, and the upper limit is preferably 2, more preferably 1.5.
  • X is the number of oxygen of the metal oxide generated by combining the above components, and is a numerical value determined by itself.
  • the lower limit of g is 0, the upper limit is preferably 5, the lower limit of h is 0, the upper limit is preferably 20, the lower limit of m is 0, the upper limit is 3, the lower limit of n is 0, and the upper limit is 0.
  • the lower limit of y is 0, and the upper limit is preferably 200.
  • y is 10 to 200, preferably 20 to 150.
  • a preferred composition of the catalyst component when used as a fluidized bed reaction catalyst is represented by the following formula (II).
  • the target product yield is high, and A high yield is maintained for a long time, and a high-performance catalyst particularly suitable for producing acrylonitrile from propylene can be obtained.
  • ammoxidation catalyst produced here particularly contains iron and antimony
  • iron antimonate it is possible to use iron antimonate as a raw material.
  • antimony and iron are contained in the catalyst in the form of iron antimonate, the catalyst performance may be further improved.
  • Iron antimonate is a compound represented by the chemical formula FeSbO ⁇ described in JP-A-4-118501, JP-A-10-231125, and the like. And can be identified by X-ray diffraction. Various methods for preparing iron antimonate have been proposed, for example, from the methods described in Japanese Patent Application Laid-Open Nos. 4-118510 and 10-231125. It may be selected appropriately. Further, iron antimonate may contain a small amount of elements other than antimony and iron.
  • iron antimonate When iron antimonate is contained in the catalyst for ammoxidation, it is preferable to separately prepare and add iron antimonate according to the preparation methods disclosed in the above publications. Iron antimonate can be added at any point in the catalyst manufacturing process.
  • the obtained catalyst for ammoxidation can be used as it is or by being supported on a carrier.
  • this ammoxidation catalyst is used for the production of acrylonitrile by ammoxidation of propylene, it is particularly preferable to use silica as a carrier and to use it as a fluidized bed catalyst.
  • silica is used as a carrier
  • Silica sol, fumed silica, etc. are used as a raw material of silica.
  • silica sol is used because of its excellent handleability. Is preferred.
  • the ammoxidation catalyst produced by the production method of the present invention is used by being filled in a fixed-bed reactor or a fluidized-bed reactor when various organic compounds are ammoxidized.
  • the reaction temperature is from 370 to 500 ° C.
  • the reaction pressure is from normal pressure to 500 kPa.
  • the apparent contact time is in the range of 0.1 to 20 seconds.
  • an oxygen source besides using air alone, it may be used by diluting it with water vapor, nitrogen, carbon dioxide, saturated hydrocarbon, etc., or even if oxygen is enriched and oxygen concentration is further increased. Good.
  • the method for producing such an ammoxidation catalyst includes, in particular, at least one selected from the group consisting of molybdenum (component (1)), bismuth (component (2)), nickel, cobalt, zinc, magnesium, manganese, and copper.
  • the structure of the catalyst or the structure of the catalyst precursor is further stabilized by performing the heat treatment step of heating the second liquid in the range of 50 to 120 ° C for 10 minutes or more.
  • a high-performance ammoxidation catalyst can be stably produced with good reproducibility.
  • the yield of the target product when the finally obtained ammoxidation catalyst is used is improved.
  • the catalyst for ammoxidation produced by such a method is preferably one having the composition represented by the above formulas (I) and (II).
  • ammoxidation catalyst obtained by such a method is particularly suitable for the synthesis of acrylonitrile from propylene. Examples Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. Note that the present invention is not limited to the scope of the examples. [Catalyst activity test]
  • acrylonitrile synthesis was carried out by ammoxidation of propylene, and the activity of each catalyst was evaluated by determining the yield of acrylonitrile.
  • the yield of acrylonitrile was measured 50 hours, 500 hours, and 100 hours after the start of the reaction.
  • the reaction conditions are as follows.
  • a mixed gas of 5 / 0.5 (molar ratio) was passed at a gas linear velocity of 4.5 cmZ sec.
  • the reaction pressure was 200 kPa.
  • the supply gas flow rate is a value converted into the reaction conditions (temperature, pressure).
  • ammoxidation catalyst having a composition represented by the following formula was produced as follows.
  • solution A 30.7 g of ammonium paramolybdate was dissolved in 100 g of pure water (solution A).
  • First solution was prepared by sequentially mixing 3.9 g of 85% phosphoric acid and solution B with solution A. Subsequently, a liquid (solution C) in which 37.0 g of cerium nitrate was dissolved in 100 g of pure water, 204 6.5 g of 20% silica sol, and 270 g of pure water were added to the first liquid. A solution (solution D) in which 89.5 g of ferric nitrate and 20 g of citrate were dissolved was sequentially mixed with the mixture to prepare a second solution.
  • the obtained slurry was spray-dried with a rotating disk type spray dryer at an inlet temperature of 330 ° C and an outlet temperature of 160 ° C.
  • the obtained dried particles were heat-treated in an air atmosphere at 250 ° C. for 2 hours and at 400 ° C. for 2 hours, and finally fluid-fired at 65 ° C. for 3 hours.
  • Table 1 shows the composition of the catalyst.
  • Magnnesium nitrate was used as a raw material for magnesium in solution B, lanthanum nitrate in liquid C as a raw material for lanthanum, and ammonium metavanadate as a raw material for vanadium in liquid A. Used in combination.
  • the pH was adjusted to 2.2, and the final firing temperature was set at 640 ° C.
  • Table 1 shows the composition of the catalyst.
  • the liquid containing the raw material of the component (4) (the element represented by E in the formulas (I) and (II)), the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, Table 2 shows the reaction conditions and the yield of acrylonitrile.
  • a catalyst having a composition represented by MO! QB i U Fe N i jjM g 2J Z n y C r Y C e u P r K U5 w u (sio 2 ) 5 () was prepared in the same manner as in Example 1. Manufactured by the method.
  • magnesium nitrate was used as a raw material for magnesium
  • zinc nitrate was used as a raw material for zinc
  • liquid B was used as a raw material for braseodymium
  • liquid praseodymium nitrate was used as a liquid C.
  • ammonium paratungstate was mixed with the solution A and used.
  • the final firing temperature was set at 640 ° C.
  • Table 1 shows the composition of the catalyst.
  • the liquid containing the raw material of the component (4) (the element represented by E in the formulas (I) and (II)), the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, Table 2 shows the reaction conditions and the yield of acrylonitrile.
  • the pH was adjusted to 1.8, and the final firing temperature was set to 63 ° C.
  • Table 1 shows the composition of the catalyst.
  • component (4) (the element represented by E in the formulas (I) and (II)) 9832
  • Table 2 shows the pH of the liquid containing the raw materials No. 12, the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, the reaction conditions, and the yield of acrylonitrile.
  • the final firing temperature was set at 640 ° C.
  • Table 1 shows the composition of the catalyst.
  • the liquid containing the raw material of the component (4) (the element represented by E in the formulas (I) and (II)), the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, Table 2 shows the reaction conditions and the yield of acrylonitrile.
  • Composition was prepared in a M o 10 B i F e u N i 6J C r u C e 0J KP (S i 0 2) Catalyst Example 1 In the same manner as represented.
  • Table 1 shows the composition of the catalyst.
  • the liquid containing the raw material of the component (4) (the element represented by E in the formulas (I) and (II)), the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, Table 2 shows the reaction conditions and the yield of acrylonitrile.
  • Composition was prepared in a M o ie B i U F e M N i C o M n C r C e M K u (S io 2) the same method as the catalyst of Example 1 represented by 4Q.
  • the pH was adjusted to 2.2, and the final firing temperature was set at 640 ° C.
  • Table 1 shows the composition of the catalyst.
  • the liquid containing the raw material of the component (4) (the element represented by E in the formulas (I) and (II)), the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, Table 2 shows the reaction conditions and the yield of acrylonitrile.
  • Solution A was prepared by sequentially mixing 3.4 g of 85% phosphoric acid, 1.8 g of boric acid, and Solution B in Solution A. Subsequently, a liquid (solution C) obtained by dissolving 25.3 g of cerium nitrate and 12.8 g of neodymium nitrate in 100 g of pure water was added to the first liquid.
  • a solution (solution D) prepared by dissolving 2.2 g, pure water (270 g), ferric nitrate (64.8 g) and citric acid (20 g) was sequentially mixed to prepare a second solution. To the resulting slurry-like second liquid was added 15% aqueous ammonia to adjust the pH to 2.0, followed by heat treatment at 99 ° (: 1.5 hours).
  • the obtained slurry was spray-dried with a rotating disk type spray dryer at an inlet temperature of 330 ° (: and an outlet temperature of 160 ° C.
  • the dried particles were dried in an air atmosphere.
  • Heat treatment was performed at 250 ° C. for 2 hours and at 400 ° C. for 2 hours, and finally, fluid firing was performed at 65 ° C. for 3 hours.
  • Table 1 shows the composition of the catalyst.
  • the liquid containing the raw material of the component (4) (the element represented by E in the formulas (I) and (II)), the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, Table 2 shows the reaction conditions and the yield of acrylonitrile.
  • the iron antimonate slurry used here was prepared as follows. A mixture of 1815 g of nitric acid (65% by weight) and 106 g of pure water was mixed with nitric acid. Iron powder 21.8 g was added little by little. After the iron powder is completely dissolved, acid 7 and antimony trioxide powder 62.7.7 g are mixed, and while stirring, 15 g of ammonium hydroxide is dissolved in g and water is added dropwise. Adjusted to 8. The slurry was heated at 98 ° C. for 3 hours while stirring. This slurry was spray-dried at an inlet temperature of 3
  • the iron antimonate slurry thus prepared was used in the following Examples.
  • the composition is MoB i U Fe, N i c ° 2J C r C e l, 5 L a K (S i
  • the catalyst represented by 4 () was produced in the following manner.
  • Solution A was prepared by mixing Solution B with Solution A, and then a solution prepared by dissolving 37.lg of cerium nitrate and 7.4 g of lanthanum nitrate in 100 g of pure water was used as the first solution (C). Liquid) and 202.2 g of 20% silica sol were sequentially mixed to prepare a second liquid.
  • the resulting slurry-like second liquid was adjusted to pH 5.0 by adding 15% aqueous ammonia, and then heat-treated at 9.9 ° C. for 1.5 hours.
  • a solution (solution D) prepared by dissolving 89.7 g of ferric nitrate and 20 g of citrate in 270.0 g of pure water was prepared and mixed with the slurry-like second solution after the heat treatment.
  • the obtained slurry was spray-dried with a rotating disk type spray dryer at an inlet temperature of 330 ° C and an outlet temperature of 160 ° C. In the air atmosphere these dry particles
  • Heat treatment was performed at 250 ° C. for 2 hours and at 400 ° C. for 2 hours, and finally, fluid firing was performed at 66 ° C. for 3 hours.
  • Table 1 shows the composition of the catalyst.
  • the liquid containing the raw material of the component (4) (the element represented by E in the formulas (I) and (II)), the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, Table 2 shows the reaction conditions and the yield of acrylonitrile.
  • Composition was prepared in M oi U F e N i 2J C o 3J C r M C e M K 5 P u ⁇ (S i O 2) the same method as the catalyst of Example 9 represented by M.
  • Table 1 shows the composition of the catalyst.
  • the liquid containing the raw material of the component (4) (the element represented by E in the formulas (I) and (II)), the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, Table 2 shows the reaction conditions and the yield of acrylonitrile.
  • composition is M o lfl B i F e U N i 3J C o 2J M g lJ C r C e y L a K u
  • the catalyst represented by S b u P u (S i 0 2) was prepared in the following manner.
  • solution A 253.5 g of ammonium paramolybdate was dissolved in 100 g of pure water (solution A).
  • Solution A was mixed with 5.0 g of 85% phosphoric acid and Solution B in this order to prepare a first solution. Subsequently, 100 g of pure water and 24.9 g of cerium nitrate were added to the first solution. , Lanthanum nitrate 6.2 g solution (solution C), 20% silica sol 17 2 5.
  • the obtained slurry was spray-dried using a rotating disk type spray dryer at an inlet temperature of 330 ° C and an outlet temperature of 160 ° C.
  • the dried particles were heat-treated in an air atmosphere at 250 ° C. for 2 hours and at 400 ° C. for 2 hours, and finally fluidized at 6.5 ° C. for 3 hours.
  • Table 1 shows the composition of the catalyst.
  • the liquid containing the raw material of the component (4) (the element represented by E in the formulas (I) and (II)), the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, Table 2 shows the reaction conditions and the yield of acrylonitrile.
  • a catalyst having the same composition as in Example 1 was produced in the same manner as in Example 1. However, cerium nitrate was mixed with solution B.
  • Table 1 shows the composition of the catalyst.
  • the liquid containing the raw material of the component (4) (the element represented by E in the formulas (I) and (II)), the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, Table 2 shows the reaction conditions and the yield of acrylonitrile.
  • a catalyst having the same composition as in Example 3 was produced in the same manner as in Example 3. However, cerium nitrate and praseodymium nitrate were mixed in solution B.
  • Table 1 shows the composition of the catalyst.
  • the liquid containing the raw material of the component (4) (the element represented by E in the formulas (I) and (II)), the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, Table 2 shows the reaction conditions and the yield of acrylonitrile.
  • a catalyst having the same composition as in Example 4 was produced in the same manner as in Example 4. However, cerium nitrate and lanthanum nitrate were mixed in solution B.
  • Table 1 shows the composition of the catalyst.
  • the liquid containing the raw material of the component (4) (the element represented by E in the formulas (I) and (II)), the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, Table 2 shows the reaction conditions and the yield of acrylonitrile.
  • a catalyst having the same composition as in Example 9 was produced in the same manner as in Example 9. However, cerium nitrate and lanthanum nitrate were mixed in solution B.
  • Table 1 shows the composition of the catalyst.
  • the liquid containing the raw material of the component (4) (the element represented by E in the formulas (I) and (II)), the pH of the second liquid, the conditions of the heat treatment step, the firing conditions at the last stage, Table 2 shows the reaction conditions and the yield of acrylonitrile.
  • Example 1 Liquid C 99 1.5 650 3 440 3.0 82.9 82.5 81.7
  • the catalyst for ammoxidation obtained by the production method of the present invention is particularly suitable for the synthesis of acrylonitrile from propylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明細書 アンモ酸化用触媒の製造方法 技術分野 本発明は、 有機化合物のアンモ酸化に用いられる複合酸化物系触媒の 製造方法に関する。 背景技術 有機化合物のアンモ酸化に用いられる触媒として、 これまでに種々の 触媒が開示されている。
例えば、 プロピレンをアンモ酸化してアクリロニトリルを合成する触 媒として、 特公昭 3 8— 1 7 9 6 7号公報にはモリブデン、 ビスマスお よび鉄を含む酸化物触媒が、 特公昭 3 8— 1 9 1 1 1号公報には鉄およ びアンチモンを含む酸化物触媒が開示されている。
これらの触媒の改良はその後も精力的に続けられ、 近年、 希土類元素 を必須成分として含む触媒が数多く提案されている。
例えば、 特開昭 5 1 — 4 0 3 9 1号公報、 特開昭 5 9— 2 0 4 1 6 3 号公報、 特開平 7 - 4 7 2 7 2号公報、 特開平 7 - 5 1 5 7 0号公報、 特開平 1 1 一 1 6 9 7 1 5号公報、 特開 2 0 0 0 _ 5 6 0 3号公報、 特 開 2 0 0 1 — 1 1 4 7 4 0号公報などには、 モリブデンと、 ビスマスと, 鉄と、 ランタン、 セリウム、 プラセオジム、 ネオジム等の希土類元素と を含む触媒が開示されている。
また、 これらの触媒については、 目的生成物の収率をより向上させる ため、 触媒製造法の検討も行われている。
例えば、 特開平 6— 9 5 3 0号公報にはモリブデン、 ビスマス、 二ッ ケル、 コバルトを含むスラリーを 9 0 °Cで 3時間加熱する方法が、 特許 2 5 2 0 2 8 2号公報には触媒成分を含むスラリ一を p H 5以下に調整 する方法が、 特許 2 6 4 0 3 5 6号公報にはモリブデンおよび鉄を含む スラリーの p Hを 5以下に調整し、 5 0〜 1 2 0 °Cの範囲で加熱処理す る方法などが開示されている。
しかしながら、 これらの触媒製造法によれば、 目的生成物の収率の改 善や、 長時間にわたる反応成績の維持の面において、 ある程度の効果は 得られたものの、 そのレベルは工業的には必ずしも満足できるものでは なく、 目的生成物収率が高く、 しかもその収率を長時間維持できる触媒 の開発が強く求められていた。
本発明は上記の課題を解決するためになされたものであり、 有機化合 物のアンモ酸化、 特にプロピレンのアンモ酸化によるアクリロニトリル の合成に有用な触媒の製造方法を提供するものである。 発明の開示 本発明者らは、 上記の課題を解決するために鋭意検討した結果、 有機 化合物のアンモ酸化に用いられる複合酸化物系触媒を製造するに際し、 各原料を特定の順序で混合した場合に、 目的生成物の収率を、 長時間に わたって高レベルに維持できることを見出し、 本発明に到達した。
すなわち、 本発明のアンモ酸化用触媒の製造方法は、 モリブデン (成 分 ( 1 ) ) と、 ビスマス (成分 ( 2 ) ) と、 ニッケル、 コバルト、 亜鉛. マグネシウム、 マンガンおよび銅よりなる群から選ばれた少なく とも一 種の元素 (成分 ( 3 ) ) と、 ランタン、 セリウム、 プラセオジムおよび ネオジムよりなる群から選ばれた少なく とも一種の元素 (成分 ( 4 ) ) とを含有する、 有機化合物のアンモ酸化用触媒の製造方法であって、 前 記成分 ( 1 ) の原料の少なく とも一部と、 前記成分 ( 2 ) の原料の少な く とも一部と、 前記成分 ( 3 ) の原料の少なくとも一部とを含み、 前記 成分 ( 4) の原料を含まない第 1液を調製する第 1液調製工程と、 前記 第 1液に、 少なく とも前記成分 (4) の原料を添加して第 2液を調製す る第 2液調製工程とを有することを特徴とする。
本発明のアンモ酸化用触媒の製造方法は、 前記第 2液を、 5 0〜 1 2 0 °Cの範囲で 1 0分以上加熱する加熱処理工程を有することが好ましい, 前記第 2液の p Hは、 加熱処理工程を行う前に 1〜 6の範囲に調整す ることが好ましい。
前記アンモ酸化用触媒は、 下記の実験式 ( I ) で表される組成を有す ることが好ましい。
M o lflB i aF e bXcC r rf EeKf GgS b ^MfflZ„Ox(S i 02)y · · ·
( I ) (式中、 M o、 B i 、 F e、 C r、 K、 S bおよび S i は、 それ ぞれモリブデン、 ビスマス、 鉄、 クロム、 カリウム、 アンチモンおよび ケィ素を表し、 Xはニッケル、 コバルト、 亜鉛、 マグネシウム、 マンガ ンおよび銅よりなる群から選ばれた少なく とも一種の元素、 Eはランタ ン、 セリウム、 プラセオジムおよびネオジムよりなる群から選ばれた少 なく とも一種の元素、 Gはカルシウム、 ストロンチウム、 バリウム、 力 ドミゥム、 チタン、 ジルコニウム、 バナジウム、 ニオブ、 タンタル、 夕 ングステン、 ゲルマニウム、 スズ、 イッ トリウム、 サマリウム、 アルミ 二ゥム、 ガリウムおよび鉛よりなる群から選ばれた少なく とも一種の元 素、 Mはルテニウム、 ロジウム、 パラジウム、 レニウム、 オスミウム、 イリジウム、 白金、 銀、 ホウ素、 リンおよびテルルよりなる群から選ば れた少なく とも一種の元素、 Zはリチウム、 ナトリウム、 ルビジウムお よびセシウムよりなる群から選ばれた少なくとも一種の元素、 〇は酸素 を表す。 そして添字 a、 b、 c、 d、 e、 f、 g、 h、 m、 n、 xおよび yは原子比 を表し、 M o = 1 0のとき、 a = 0. 1〜 2. 5、 b = 0. 1〜 1 0、 c = 2〜 1 2、 d = 0. 1〜 2. 5、 e = 0. 1〜 2. 5、 f = 0. 0 1〜2、 g = 0〜 5、 h = 0〜 2 0、 m= 0〜 3、 n = 0〜 lであり、 xは上記各成分が結合して生成する金属酸化物の酸素の数である。 また- y = 0〜2 0 0である。 )
また、 前記アンモ酸化用触媒が流動層反応用触媒であり、 その組成が 下記式 ( I I ) で表されることが好ましい。
M o lflB i aF e bXcC EeKfGgS bhM Ox(S i Ο !卜 · ·
( I I )
また、 前記有機化合物は、 プロピレンであることが好ましい。 発明を実施するための最良の形態 以下、 本発明をさらに詳細に説明する。
本発明の製造方法で製造されるアンモ酸化用触媒は、 モリブデン (成 分 ( 1 ) ) と、 ビスマス (成分 ( 2 ) ) と、 ニッケル、 コバルト、 亜鉛 マグネシウム、 マンガンおよび銅よりなる群から選ばれた少なく とも一 種の元素 (成分 ( 3 ) ) と、 ランタン、 セリウム、 プラセオジムおよび ネオジムよりなる群から選ばれた少なく とも一種の元素 (成分 (4) ) とを含有する複合酸化物系触媒であって、 例えば、 ォレフィン、 アルコ ール、 エーテル、 芳香族化合物、 ヘテロ環芳香族化合物等の有機化合物 のアンモ酸化に好適に使用されるものである。 また、 本発明の製造方法 で製造されるアンモ酸化用触媒には、 成分 ( 1 ) 〜 (4 ) 以外の元素が 含まれていてもよい。
有機化合物の具体例としては、 プロピレン、 イソブテン、 メタノール エタノール、 ターシャリーブタノ一ル、 メチルターシャリーブチルエー テル、 トルエン、 キシレン、 ピコリン、 キナルジンなどを例示できるが 本発明の製造方法で得られるアンモ酸化触媒は、 中でもプロピレンをァ ンモ酸化して、 ァクリロ二トリルを合成する際の使用に特に適していて 高い収率でアク リロニトリルを製造でき、 しかもその収率を長時間維持 できる。
本発明のアンモ酸化用触媒の製造方法では、 まず、 モリブデン (成分 ( 1 ) ) の原料の少なくとも一部と、 ビスマス (成分 ( 2 ) ) の原料の 少なく とも一部と、 ニッケル、 コバルト、 亜鉛、 マグネシウム、 マンガ ンおよび銅よ り なる群か ら選ばれた少なく とも一種の元素 (成分
( 3 ) ) の原料の少なくとも一部と含み、 一方、 ランタン、 セリウム、 プラセオジムおよびネオジムよりなる群から選ばれた少なく とも一種の 元素 (成分 (4) ) の原料を含まない第 1液を調製する第 1液調製工程 を行う。
ここで、 成分 ( 1 ) の原料としては特に制限はなく、 例えば、 三酸化 モリブデンのようなモリブデン酸化物 ; モリブデン酸、 パラモリブデン 酸アンモニゥム、 メタモリブデン酸アンモニゥムのようなモリブデン 酸 ; これらモリブデン酸のアンモニゥム塩; リンモリブデン酸、 ケィモ リブデン酸のようなモリブデンを含むヘテロポリ酸 ; これらへテロポリ 酸の塩などを用いることができる。
これら成分 ( 1 ) の原料は、 固体のまま使用しても、 あらかじめ水な どの溶媒に溶解、 あるいは分散させて使用してもよい。
成分 ( 2 ) の原料としては、 金属ビスマスまたはその化合物であれば 特に制限はなく、 例えば、 硝酸ビスマス、 炭酸ビスマス、 硫酸ビスマス. 酢酸ビスマス等のビスマス塩; 三酸化ビスマス等を用いることができる, また、 これら成分 ( 2 ) の原料は、 固体のままで使用する以外に、 水 や硝酸水溶液などにあらかじめ溶解させた溶液として使用する方法、 あ るいは、 これら溶液から析出した固体を含むビスマス化合物のスラリー として使用する方法などがある。
成分 ( 3 ) 、 すなわち、 ニッケル、 コバルト、 亜鉛、 マグネシウム、 マンガンおよび銅よりなる群から選ばれた少なく とも一種の元素の原料 としては、 通常、 これらの酸化物、 あるいは強熱することにより酸化物 になり得る硝酸塩、 炭酸塩、 有機酸塩、 水酸化物や、 それらの混合物な どを用いることができる。
第 1液調製工程においては、 成分 (4) の原料を加えず、 成分 ( 1 ) 〜 ( 3 ) のそれぞれの原料の少なく とも一部を加えればよく、 必ずしも 成分 ( 1 ) 〜 ( 3 ) のそれぞれの全量を混合しなくてもよい。 その場合 には、 成分 ( 1 ) 〜 ( 3 ) の残りの原料を、 この第 1液調製工程よりも 後の任意の段階で適宜添加すればよい。
また、 第 1液調製工程では、 水などの溶媒が使用されて第 1液が調製 されるが、 溶媒としては水の他、 必要に応じて硝酸水溶液などの酸溶液 や、 アンモニア水などのアルカリ溶液等を使用してもよい。 また、 これ ら溶媒は加温して使用してもよい。
また、 成分 ( 4) の原料を含まず、 成分 ( 1 ) 〜 ( 3 ) のそれぞれの 原料の少なくとも一部を含む第 1液を調製する限りにおいては、 各成分 ( 1 ) 〜 ( 3 ) の混合方法、 混合順序には制限はない。
例えば、 成分 ( 1 ) 、 ( 2 ) 、 ( 3 ) の各原料をそれぞれ水などの溶 媒に溶解あるいは分散させた後、 各溶液あるいはスラリーを混合して、 第 1液としてもよいし、 固体状態にある成分 ( 1 ) 、 ( 2 ) 、 ( 3 ) の 各原料を混合したものに、 溶媒を加えて第 1液としてもよい。
また、 ここで製造するアンモ酸化用触媒が、 成分 ( 1 ) 〜 (4) 以外 の元素 (以下、 成分 ( 5 ) という。 ) を含む場合には、 この第 1液調製 工程で、 その原料の全量または一部を混合してもよい。
成分 ( 5 ) の原料としては、 これら元素の酸化物、 あるいは強熱する ことにより酸化物になり得る硝酸塩、 炭酸塩、 有機酸塩、 水酸化物や、 それらの混合物などを用いることができる。
なお、 第 1液の形態は、 各成分が溶解した溶液状態でも、 各成分の少 なく とも一部は溶解していないスラリー状態でもよい。
ついで、 第 1液調製工程で得られた第 1液に、 少なく とも成分 (4) すなわち、 ランタン、 セリウム、 プラセオジムおよびネオジムよりなる 群から選ばれた一種以上の元素の原料を添加して、 第 2液を調製する第 2液調製工程を行う。
この第 2液調製工程においては、 少なくとも成分 ( 4 ) の原料を第 1 液に添加する限りは、 必要に応じて成分 ( 5 ) の原料をここで添加した り、 成分 ( 1 ) 〜 ( 3 ) の原料の残量分を添加してもよい。 また、 成分 ( 4 ) を添加する場合には、 これの固体原料をそのまま第 1液に添加し てもよいし、 あらかじめ溶媒に溶解または分散させた後、 第 1液に添加 してもよい。
なお、 第 2液の形態は、 目的とするアンモ酸化用触媒の組成や、 原料 として使用する化合物の種類などによって異なり、 各成分が溶解した溶 液状態でも、 各成分の少なく とも一部が溶解していないスラリ一状態で もよい。
このようにして、 第 1液調製工程後に、 少なくとも成分 (4 ) の原料 を添加する第 2液調製工程を行うことによって、 目的生成物の収率を、 長時間にわたって高レベルに維持できるアンモ酸化用触媒を製造できる- このような効果が発現する理由については未だ明らかではないが、 ま ず、 成分 ( 1 ) の原料の少なくとも一部と、 成分 ( 2 ) の原料の少なく とも一部と、 成分 ( 3 ) の原料の少なく とも一部と含み、 前記成分 ( 4 ) の原料を含まない第 1液を調製し、 その後、 これに、 少なく とも 成分 ( 4 ) の原料を添加することにより、 アンモ酸化に好ましい触媒構 造、 あるいは触媒前駆体構造の生成が促進されるためと考えられる。
ついで、 このようにして得られた第 2液の p Hを必要に応じて 1〜 6 の範囲に調整する。
ここで、 第 2液の p Hは 1〜6の範囲外であってもよいが、 1〜6の 範囲内であると、 後述する加熱処理工程を効果的に行うことができ、 最 終的に得られるアンモ酸化用触媒が、 目的生成物を高収率で製造可能な ものとなる。 p Hが 1未満あるいは 6を超えると目的生成物収率が低下 することがある。
第 2液の p Hは、 より好ましくは下限が 1 . 5であり、 上限は 5 . 5 である。 p Hの調整方法としては、 例えば p Hを高くするにはアンモニ ァ水溶液などのアルカリ性水溶液を添加する方法が例示でき、 一方、 p Hを低くするには硝酸水溶液などの酸性水溶液を添加する方法を例示で きる。
また、 ここで、 特許 2 7 4 7 9 2 0号公報にも示されているように、 第 2液のゲル化抑制のために、 エチレンジァミン四酢酸、 乳酸、 クェン 酸、 酒石酸、 ダルコン酸などのキレート剤を第 1液または第 2液に添加 し、 これを共存させてもよい。 これらキレート剤の添加は、 p Hが高く ゲル化が起こりやすい場合に有効であるが、 p Hを、 例えば 1〜 3の範 囲など比較的低い値に調整する場合であっても、 少量添加することによ り、 目的生成物収率や活性の向上という効果を示すことがある。
ついで、 必要に応じて P H調整された第 2液を加熱する加熱処理工程 を行うことが好ましい。 加熱処理工程を行うことによって、 触媒の構造 あるいは、 触媒前駆体の構造がより安定となり、 高性能なアンモ酸化用 触媒を再現性よく、 安定に製造することができる。
加熱処理工程は加圧下で行っても常圧下で行ってもよい。 また、 処理 温度には特に制限はないが、 5 0 °C以上が好ましく、 8 0 °C以上がより 好ましい。 5 0 °C未満では加熱処理工程の効果が発現しない場合がある: また、 処理温度の上限にも特に制限はないが、 加熱処理が常圧下で行わ れる場合には、 通常 1 2 0 °C以下である。 処理時間は、 短すぎると、 そ の効果が不十分となる場合があるため、 好ましくは 1 0分以上であり、 より好ましくは 3 0分以上である。 処理時間の上限には特に制限はない が、 必要以上に長時間処理しても、 得られる効果は同程度であるので、 通常 1 0時間以内である。
こうして加熱処理工程を行った後に、 必要に応じて成分 ( 5 ) の原料 を添加したり、 これ以前の各段階で添加していなかった成分 ( 1 ) 〜 ( 3 ) の原料の残量を添加してもよい。
ついで、 第 2液を乾燥し、 焼成することによりアンモ酸化用触媒を得 ることができる。
乾燥方法には特に制限はなく、 公知の方法を用いることができる。 こ の触媒を、 プロピレンをアンモ酸化してァクリロ二トリルを製造する際 に使用する場合には、 噴霧乾燥法で乾燥して流動層で使用可能な略球形 の触媒粒子とすることが好ましい。
噴霧乾燥には、 回転円盤式、 ノズル式などの一般的な噴霧乾燥装置を 使用できる。 また、 ここで噴霧乾燥の条件は、 最終的に得られるアンモ 酸化用触媒が流動層反応器で使用されるものであれば、 流動層において 好ましく使用できるような後述の粒径範囲となるように適宜条件設定さ れることが好ましい。
ついで、 乾燥して得られた乾燥粒子を焼成するが、 焼成方法としては. 2 0 0〜 5 0 0 °0の範囲で 0 . 1 〜 2 0時間焼成する低温焼成の後に、 5 0 0 〜 7 0 0 °Cの範囲で 0 . 1 〜 2 0時間焼成する高温焼成を行うこ とが好ましい。 このように焼成を低温と高温の 2段階で行うと、 得ら れるアンモ酸化用触媒の性能が、 向上する場合がある。 また、 このよう に焼成を低温範囲と高温範囲の 2つの温度範囲でそれぞれ行う限り、 各 温度範囲内において異なる温度で複数回焼成してもよい。
また、 低温焼成および高温焼成は、 いずれも酸素含有ガス雰囲気中で 行うことが好ましく、 空気中の他、 酸素と、 窒素、 炭酸ガス、 水蒸気な どとが適宜混合された雰囲気中で行うことができる。
また、 焼成には、 箱型炉、 トンネル炉、 回転焼成炉、 流動焼成炉等を 用いることができるが、 アンモ酸化用触媒を流動層で使用可能な流動層 触媒とする場合には、 最も後段の焼成時に流動焼成炉を用いることが好 ましい。
このようにして製造された触媒の粒径は、 5〜 2 0 0 x mとすること が好ましい。 粒径の下限は 1 0 mがより好ましく、 上限は 1 5 0 m がより好ましい。 このような粒径であれば、 流動性が優れ、 流動層反応 器での使用に適する。
このような粒径の制御は、 前述した乾燥時の条件を制御することなど により行える。 なお、 ここでいう粒径とは、 粒子全体の平均粒径ではな く、 各々の粒子の粒径を表す。
以上説明した方法で製造されるアンモ酸化用触媒としては、 モリブデ ン (成分 ( 1 ) ) と、 ビスマス (成分 ( 2 ) ) と、 ニッケル、 コバルト. 亜鉛、 マグネシウム、 マンガンおよび銅よりなる群から選ばれた少なく とも一種の元素 (成分 ( 3 ) ) と、 ランタン、 セリウム、 プラセオジム およびネオジムよりなる群から選ばれた少なく とも一種の元素 (成分 ( 4) ) とを含有する複合酸化物系の触媒であれば制限はないが、 特に 下記 ( I ) 式で示される組成範囲のものが好ましい。
M o 10B i aF e ¾XcC r dEeK,GgS b
Figure imgf000009_0001
i 02)y - · ·
( I )
式 ( I ) 中、 M o、 B i 、 F e、 C r、 K、 S bおよび S i は、 それ ぞれモリブデン、 ビスマス、 鉄、 クロム、 カリウム、 アンチモンおよび ケィ素を表す。
Xはニッケル、 コバルト、 亜鉛、 マグネシウム、 マンガンおよび銅よ りなる群から選ばれた少なくとも一種の元素を表すが、 Xとしてニッケ ルおよび/またはコバルトを含むことが好ましい。
Eはランタン、 セリウム、 プラセオジムおよびネオジムよりなる群か ら選ばれた少なく とも一種の元素を表すが、 Eとしてはランタンおよび /またはセリウムを含むことが好ましい。
Gはカルシウム、 ストロンチウム、 ノ リウム、 カ ドミウム、 チタン、 ジルコニウム、 バナジウム、 ニオブ、 タンタル、 タングステン、 ゲルマ 二ゥム、 スズ、 イッ トリウム、 サマリウム、 アルミニウム、 ガリウムお よび鉛よりなる群から選ばれた少なくとも一種の元素を表す。
Mはルテニウム、 ロジウム、 パラジウム、 レニウム、 オスミウム、 ィ リジゥム、 白金、 銀、 ホウ素、 リンおよびテルルよりなる群から選ばれ た少なく とも一種の元素を表す。
Zはリチウム、 ナトリウム、 ルビジウムおよびセシゥムよりなる群か ら選ばれた少なくとも一種の元素を表す。 また、 Oは酸素を表す。
そして添字 a、 b、 c、 d、 e、 f 、 g、 h、 m、 n、 xおよび yは 原子比を表し、 M o = 1 0のとき、 aの下限は好ましくは 0. 1、 より 好ましくは 0. 2、 上限は好ましくは 2. 5、 より好ましくは 2である, bの下限は好ましくは 0. 1、 より好ましくは 0. 3、 上限は好まし くは 1 0、 より好ましくは 8である。
cの下限は好ましくは 2、 より好ましくは 3、 上限は好ましくは 1 2 より好ましくは 1 0である。
dの下限は好ましくは 0. 1、 より好ましくは 0. 2、 上限は好まし くは 2. 5、 より好ましくは 2である。
eの下限は好ましくは 0. 1、 より好ましくは 0. 2、 上限は好まし くは 2. 5、 より好ましくは 2である。
f の下限は好ましくは 0. 0 1、 より好ましくは 0. 0 5、 上限は好 ましくは 2、 より好ましくは 1. 5である。
Xは、 上記各成分が結合して生成する金属酸化物の酸素の数であって, 自ずから決まる数値である。
また、 gの下限は 0、 上限は好ましくは 5、 hの下限は 0、 上限は好 ましくは 2 0、 mの下限は 0、 上限は好ましくは 3、 nの下限は 0、 上 限は好ましくは 1である。 また、 yの下限は 0、 上限は好ましくは 2 0 0であるが、 特に触媒を流動層反応用触媒として用いる場合には、 yを 1 0〜 2 0 0、 好ましくは 2 0〜 1 5 0の範囲で用いると触媒強度と目 的生成物収率の向上の両立がはかれ好ましい。
すなわち、 流動層反応用触媒として用いる場合の、 好ましい触媒成分 の組成は下記式 ( I I ) で示される。
M o 10B i aF e bXcC r ^^K^^S bhM Ox(S i 02)10~ · ·
( I I )
このように上記式 ( I ) や ( I I ) で表される組成のアンモ酸化用触 媒を、 特に上述のような製造方法で製造することによって、 目的物収率 が高く、 また、 そのような高い収率が長時間維持され、 特にプロピレン からァクリロニトリルを製造する際に適した高性能な触媒が得られる。
また、 ここで製造されるアンモ酸化用触媒が、 特に、 鉄とアンチモン を含むものである場合には、 アンチモン酸鉄をその原料として使用する ことも可能である。 触媒中にアンチモンと鉄が、 アンチモン酸鉄の形態 で含まれると、 より一層触媒性能が向上する場合がある。
アンチモン酸鉄は、 特開平 4— 1 1 8 0 5 1号公報、 特開平 1 0 — 2 3 1 1 2 5号公報等に記載されている化学式 F e S b O^で表される化 合物であり、 X線回折により同定できる。 アンチモン酸鉄の調製法とし ては種々提案されているが、 例えば、 特開平 4 - 1 1 8 0 5 1号公報、 特開平 1 0 — 2 3 1 1 2 5号公報等に記載の方法から適宜選択すればよ い。 また、 アンチモン酸鉄は、 アンチモンと鉄以外の元素を少量含んで いてもよい。
アンモ酸化用触媒中にアンチモン酸鉄を含有させる場合には、 別途ァ ンチモン酸鉄を上記の各公報に開示された調製法などで調製し、 添加す ることが好ましい。 アンチモン酸鉄は触媒製造工程の中の任意の場所で 添加することができる。
得られたアンモ酸化用触媒は、 そのままでも、 あるいは担体に担持し て用いることもできる。
このアンモ酸化用触媒を、 プロピレンのアンモ酸化によるァクリロ二 トリルの製造に使用する場合には、 特に担体としてシリカを使用して、 流動層触媒として用いるのが好ましい。 担体としてシリカを用いる場合 シリカの原料としてはシリカゾル、 ヒュームド · シリカ等が用いられ、 これらの中では、 取り扱い性などに優れていることからシリカゾルを用 いるのが好ましい。
また、 担体として使用されるシリカは、 式 ( I ) および ( I I ) 中の S i の元素比内、 すなわち、 Μ ο = 1 0において 2 0 0以下の範囲で使 用されることが好ましい。
本発明の製造方法で製造されたアンモ酸化用触媒は、 種々の有機化合 物をアンモ酸化する際に、 固定床反応器や流動層反応器内に充填されて 使用される。
反応が、 気相流通系で行われる場合、 その好適な反応条件としては、 供給ガスの組成が、 原料有機化合物 Ζアンモニア Ζ空気 = 1 / 0. 1〜 3 Ζ 8〜 1 2 (モル比) の範囲で、 反応温度が 3 7 0〜 5 0 0 °C、 反応 圧力が常圧〜 5 0 0 k P aである。 また、 見掛け接触時間は 0. 1〜 2 0秒の範囲である。 なお、 酸素源としては空気を単独で用いる以外にも これを水蒸気、 窒素、 炭酸ガス、 飽和炭化水素等で希釈して用いてもよ いし、 酸素を富化して、 酸素濃度をより高めてもよい。
このようなアンモ酸化触媒の製造方法は、 特に、 モリブデン (成分 ( 1 ) ) と、 ビスマス (成分 ( 2 ) ) と、 ニッケル、 コバルト、 亜鉛、 マグネシウム、 マンガンおよび銅よりなる群から選ばれた少なく とも一 種の元素 (成分 ( 3 ) ) と、 ランタン、 セリウム、 プラセオジムおよび ネオジムよりなる群から選ばれた少なく とも一種の元素 (成分 ( 4) ) とを含有する有機化合物のアンモ酸化用触媒の製造方法であり、 前記成 分 ( 1 ) の原料の少なく とも一部と、 前記成分 ( 2 ) の原料の少なく と も一部と、 前記成分 ( 3 ) の原料の少なく とも一部とを含み、 前記成分 ( 4) の原料を含まない第 1液を調製する第 1液調製工程と、 前記第 1 液に、 少なく とも前記成分 (4) の原料を添加して第 2液を調製する第 2液調製工程とを有しているので、 目的生成物の収率が高く、 しかもそ の収率を長時間維持できる高性能触媒を製造することができる。
また、 第 2液を、 5 0〜 1 2 0 °Cの範囲で 1 0分以上加熱する加熱処 理工程を行う ことによって、 触媒の構造、 あるいは、 触媒前駆体の構造 がより安定化すると考えられ、 高性能なアンモ酸化用触媒を再現性よく 安定に製造することができる。
さらに、 加熱処理工程前に第 2液の p Hを、 1〜 6の範囲に調整する ことによって、 最終的に得られるアンモ酸化用触媒を使用した場合の目 的生成物の収率が向上する。
このような方法で製造されるアンモ酸化用触媒としては上記式 ( I ) および ( I I ) で示される組成のものが好ましい。
また、 このような方法で得られるアンモ酸化用触媒は、 特にプロピレ ンからのァクリロ二トリルの合成に適している。 実施例 以下、 本発明を実施例及び比較例により具体的に説明する。 なお、 本 発明は実施例の範囲に限定されるものではない。 [触媒の活性試験]
以下の実施例および比較例で製造したアンモ酸化用触媒を使用して、 プロピレンのァンモ酸化によるァクリロ二トリル合成を行い、 ァクリロ 二トリルの収率を求めることによって、 各触媒の活性評価をした。 なお. アクリロニトリルの収率は、 反応開始 5 0時間後、 5 0 0時間後、 1 0 0 0時間後にそれぞれ測定した。
反応条件は下記の通りである。
触媒流動部の内径が 2 5 mm, 高さ 4 0 0 mmの流動層反応器に触媒 を充填し、 反応ガスとして、 組成がプロピレン Zアンモニア/空気 Z水 蒸気 = 1 Z 1. 2 Z 9. 5 / 0. 5 (モル比)の混合ガスを、 ガス線速 度 4. 5 c mZ s e cで流通させた。 反応圧力は 2 0 0 k P aとした。
なお、 表 1 に示す接触時間、 アクリロニトリル収率は下記の式により 定義されるものである。
接触時間 ( s e c ) =見掛け嵩密度基準の触媒容積 (m l ) /供 給ガス流量 (m 1 Z s e c )
ここで、 供給ガス流量は、 反応条件 (温度、 圧力) に換算した値であ る。
アクリロニトリル収率 (%) = (生成したアクリ ロニトリルのモル 数 /供給したプロピレンのモル数) X I 0 0
[実施例 1 ]
下記式で示される組成のアンモ酸化用触媒を以下のようにして製造し た。
M oiOB 10.6F e UN i C °0,5C r C e ΰ.5ΚΙ.2Ρ U°x(S 1 ° 40 ここで、 酸素の原子比 xは他の元素の原子価により自然に決まる値で ある。 以降、 記載を省略する。
純水 1 0 0 0 gにパラモリブデン酸アンモニゥム 3 0 0. 7 gを溶解 した (A液) 。
別途、 3. 3 %硝酸 2 7 0 gに、 硝酸ビスマス 4 9. 6 g、 硝酸ニッ ケル 2 7 2 · 4 g、 硝酸コバルト 2 4. 8 g、 硝酸クロム 4 7. 7 g、 硝酸カリウム 3. 4 gを溶解した (B液) 。
A液に、 8 5 %リン酸 3. 9 g、 B液を順次混合して第 1液を調製し た。 続いてこの第 1液に、 純水 1 0 0 gに硝酸セリウム 3 7. 0 gを溶 解した液 ( C液) 、 2 0 %シリカゾル 2 0 4 6. 5 g、 純水 2 7 0 gに 硝酸第二鉄 8 9. 5 g、 クェン酸 2 0 gを溶解した液 (D液) を順次混 合して第 2液を調製した。
得られたスラリー状の第 2液に、 1 5 %アンモニア水を添加して p H を 2. 0に調整したのち、 9 9 で 1. 5時間加熱処理した。
得られたスラリーを回転円盤式噴霧乾燥機で、 入口温度を 3 3 0 °C, 出口温度を 1 6 0 °Cとして噴霧乾燥した。 得られた乾燥粒子を空気雰囲 気中 2 5 0 °Cで 2時間、 4 0 0 °Cで 2時間熱処理し、 最終的に 6 5 0 °C で 3時間流動焼成した。 9832
11 触媒の組成を表 1に示す。
また、 成分 ( 4 ) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む.液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
[実施例 2 ]
組成が、 M o lflB i u F e u N i u C o LjjM g JJ C r UC e UL a u Κ015νΟδ ( S i 〇2) ^で表される触媒を、 実施例 1 と同様の方法で製 造した。
ただし、 8 5 %リ ン酸は使用せず、 マグネシウムの原料として硝酸マ グネシゥムを B液に、 ランタンの原料として硝酸ランタンを C液に、 バ ナジゥムの原料としてメタバナジン酸アンモニゥムを A液にそれぞれ混 合して用いた。
また p Hは 2 . 2に調整し、 最終焼成温度は 6 4 0 °Cとした。
触媒の組成を表 1に示す。
また、 成分 ( 4 ) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
[実施例 3 ]
組成が、 M O !QB i UF e N i jjM g2JZ nyC r YC e uP r K U5wu (s i o2)5()で表される触媒を、 実施例 1 と同様の方法で製造し た。
ただし、 硝酸コバルト、 8 5 %リ ン酸は使用せず、 マグネシウムの原 料として硝酸マグネシウム、 亜鉛の原料として硝酸亜鉛を B液に、 ブラ セオジムの原料として硝酸プラセオジムを C液に、 タングステンの原料 としてパラタングステン酸アンモニゥムを A液にそれぞれ混合して用い た。
また、 最終焼成温度は 6 4 0 °Cとした。
触媒の組成を表 1に示す。
また、 成分 ( 4 ) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
[実施例 4 ]
組成が、 M o 10B i o.5F e 1 ()Ν i 2jC o UC r 1 0C e o.4L a uKjj ! R b (S i 02) で表される触媒を実施例 1 と同様の方法で製造した。 ただし、 8 5 %リン酸は使用せず、 ランタンの原料として硝酸ランタ ンを C液に、 ルビジウムの原料として硝酸ルビジウムを B液にそれぞれ 混合して用いた。
また、 p Hは 1. 8に調整し、 最終焼成温度を 6 3 0 °Cとした。
触媒の組成を表 1に示す。
また、 成分 (4 ) (式 ( I ) および ( I I ) 中、 Eで表される元素) 9832
12 の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
[実施例 5 ]
組成が、 M o1QB i F e UN i 3JC o3JM gyC r C eyL aMK0i 15S muT e UC s U(S i O 2) 4flで表される触媒を実施例 1 と同様の方法 で製造した。
ただし、 8 5 %リン酸は使用せず、 マグネシウムの原料として硝酸マ グネシゥム、 サマリウムの原料として硝酸サマリウム、 セシウムの原料 として硝酸セシウムを B液に、 ランタンの原料として硝酸ランタンを用 いて C液に、 テルルの原料としてテルル酸を A液にそれぞれ混合して用 いた。
また、 最終焼成温度は 6 4 0 °Cとした。
触媒の組成を表 1に示す。
また、 成分 (4 ) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
[実施例 6 ]
組成が、 M o 10B i F e uN i 6JC r u C e 0JK P ( S i 02) 表される触媒を実施例 1 と同様の方法で製造した。
ただし、 硝酸コバルトは使用しなかった。
触媒の組成を表 1に示す。
また、 成分 ( 4 ) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
[実施例 7 ]
組成が、 M o ieB i UF e MN i C o M n C r C e MKu ( S i o2) 4Qで表される触媒を実施例 1 と同様の方法で製造した。
ただし、 8 5 %リン酸は使用せず、 マンガンの原料として硝酸マンガ ンを B液に混合して用いた。
また、 p Hは 2. 2に調整し、 最終焼成温度は 6 4 0 °Cとした。
触媒の組成を表 1に示す。
また、 成分 ( 4 ) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
[実施例 8 ]
組成が、 M o 1QB i UF e uN i ^Mn^C u^C r yC euN duK0. ,Z r US b UP UBUR b ( S i 〇2) 4flで表される触媒を下記の要領 で製造した。
純水 1 0 0 0 gにパラモリブデン酸アンモニゥム 2 5 7. 5 gを溶解 した (A液) 。
別途、 3. 3 %硝酸 2 7 0 gに硝酸ビスマス 2 8. 3 g、 硝酸ニッケ ル 2 3 3. 2 g、 硝酸マンガン 2 0. 9 g、 硝酸銅 7. 1 g、 硝酸ク口 ム 3 5. 0 g、 硝酸カリウム 1. 5 g、 ォキシ硝酸ジルコニウム 3. 9 g、 硝酸ルビジウム 2. 2 gを溶解した (B液) 。
A液に 8 5 %リ ン酸 3. 4 g、 ホウ酸 1. 8 g、 B液を順次混合して 第 1液を調製した。 続いて、 この第 1液に、 純水 1 0 0 gに硝酸セリウ ム 2 5. 3 g、 硝酸ネオジム 1 2. 8 gを溶解した液 (C液) 、 2 0 % シリ力ゾル 1 7 5 2. 2 g、 純水 2 7 0 gに硝酸第二鉄 6 4. 8 g、 ク ェン酸 2 0 gを溶解した液 (D液) を順次混合して第 2液を調製した。 得られたスラリー状の第 2液に 1 5 %アンモニア水を添加して、 p H を 2. 0に調整したのち、 9 9 °(:で 1. 5時間加熱処理した。
加熱処理後のスラリー状の第 2液に、 別途後述の方法で調製した 4 0 %アンチモン酸鉄スラリー 2 9 0. 5 gを添加した。
得られたスラリ一を回転円盤式噴霧乾燥機で、 入口温度を 3 3 0 ° (:、 出口温度を 1 6 0 °Cとして噴霧乾燥した。 この乾燥粒子を空気雰囲気中
2 5 0 °Cで 2時間、 4 0 0 °Cで 2時間熱処理し、 最終的に 6 5 0 °Cで 3 時間流動焼成した。
触媒の組成を表 1に示す。
また、 成分 ( 4 ) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
なお、 ここで用いたアンチモン酸鉄スラリーは、 次の要領で調製した, 硝酸(6 5重量%) 1 8 1 5 gと純水 1 0 0 6 gとを混合し硝、 . 5これに電 解鉄粉 2 1 8. 0 gを少しずつ加えた。 鉄粉が完全に溶解した後酸 7、 三酸 化アンチモン粉末 6 2 5. 7 gを混合し、 撹拌しつつ 1 5 %アンモ二を gニア 溶、ッ 水を滴下し、 p Hを 1 . 8 に調整した。 このスラリーを撹拌しつつ解硝ケ 9 8 °Cで 3時間加熱した。 このスラリーを噴霧乾燥機により入口温度を 3
3 0 °C、 出口温度を 1 6 0 °Cとして乾燥後、 空気雰囲気中 2 5 0 °Cで 2 時間、 4 0 0 °Cで 2時間焼成した。 さらに窒素気流中 8 5 0 °Cで 3時間 焼成した。 焼成後、 粉砕し、 純水と混合して 4 0 %アンチモン酸鉄スラ リーとした。
以下の実施例でもこの様にして調製したアンチモン酸鉄スラリーを用 いた。
[実施例 9 ]
組成が M o B i UF e ,N i c °2JC r C e l,5L a K ( S i
2)4()で表される触媒を下記の要領で製造した。
純水 1 0 0 0 gにパラモリブデン酸アンモニゥム 3 0 1.
した (A液) 。
別途、 3. 3 %硝酸 2 7 0 gに硝酸ビスマス 4 1. 4 g、
ル 1 9 8. 7 g、 硝酸コバルト 9 9. 4 g、 硝酸クロム 5 4 酸カリウム 3. 5 gを溶解した (B液) 。
A液に B液を混合して第 1液を調製し、 続いてこの第 1液に、 純水 1 0 0 gに硝酸セリウム 3 7 . l g、 硝酸ランタン 7 . 4 gを溶解した液 ( C液) 、 2 0 %シリカゾル 2 0 5 2. 2 gを順次混合して第 2液を調 製した。
得られたスラリー状の第 2液に、 1 5 %アンモニア水を添加して p H 5 . 0に調整したのち、 9 9 °Cで 1 . 5時間加熱処理した。 別途、 純水 2 7 0 gに硝酸第二鉄 8 9 . 7 g、 クェン酸 2 0 gを溶解した液 (D 液) を調製し、 加熱処理後のスラリー状の第 2液に混合した。
得られたスラリーを回転円盤式噴霧乾燥機で、 入口温度を 3 3 0 °C、 出口温度を 1 6 0 °Cとして噴霧乾燥した。 この乾燥粒子を空気雰囲気中
2 5 0 °Cで 2時間、 4 0 0 °Cで 2時間熱処理し、 最終的に 6 6 0 °Cで 3 時間流動焼成した。
触媒の組成を表 1に示す。
また、 成分 ( 4 ) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
[実施例 1 0 ]
組成が M o i UF e N i 2JC o 3JC r M C e MK 5 P u · ( S i O 2) Mで表される触媒を実施例 9と同様の方法で製造した。
ただし、 硝酸ランタンは使用せず、 リンの原料として 8 5 %リン酸を B液の前に A液に混合して用いた。 また、 p Hは 4. 5に調整し、 最終 焼成温度は 6 3 0 X とした。
触媒の組成を表 1に示す。
また、 成分 ( 4 ) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
[実施例 1 1 ]
組成が M o lflB i F e UN i 3JC o 2JM g lJC r C e yL a Ku
S b uP u(S i 02) で表される触媒を下記の要領で製造した。
純水 1 0 0 0 gにパラモリブデン酸アンモニゥム 2 5 3 . 5 gを溶解 した (A液) 。
別途、 3 . 3 %硝酸 2 7 0 gに硝酸ビスマス 3 4. 9 g、 硝酸ニッケ ル 1 2 5 . 3 g、 硝酸コバルト 8 3 . 6 g、 硝酸マグネシウム 3 6 . 8 g、 硝酸クロム 3 4. 5 g、 硝酸カリウム 2 . 9 gを溶解した (B液) ,
A液に 8 5 %リン酸 5 . 0 g、 B液を順次混合して第 1液を調製した, 続いて、 この第 1液に、 純水 1 0 0 gに硝酸セリウム 2 4. 9 g、 硝酸 ランタン 6 . 2 gを溶解した液 (C液) 、 2 0 %シリカゾル 1 7 2 5.
3 gを順次混合して第 2液を調製した。 このスラリー状の第 2液に 1 5 %アンモニア水を添加して P Hを 5 . 2に調整したのち、 9 9 °<3で 1 5時間加熱処理した。 別途、 純水 2 7 0 gに硝酸第二鉄 6 3. 8 g、 ク ェン酸 2 0 gを溶解した液 (D液) を調製し、 加熱処理後のスラリ一状 の第 2液に混合した。
さらに実施例 7 と同様にして調製した 4 0 %アンチモン酸鉄スラリー 3 4 0. 7 gを混合した。
得られたスラリ一を回転円盤式噴霧乾燥機で、 入口温度を 3 3 0 °C、 出口温度を 1 6 0 °Cとして噴霧乾燥した。 この乾燥粒子を空気雰囲気中 2 5 0 で 2時間、 4 0 0 °Cで 2時間熱処理し、 最終的に 6 5 0 °Cで 3 時間流動焼成した。
触媒の組成を表 1に示す。
また、 成分 ( 4) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
[比較例 1 ]
実施例 1 と同一組成の触媒を実施例 1 と同様の方法で製造した。 ただ し、 硝酸セリウムは B液に混合した。
触媒の組成を表 1に示す。
また、 成分 ( 4 ) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
[比較例 2 ]
実施例 3 と同一組成の触媒を実施例 3と同様の方法で製造した。 ただ し、 硝酸セリウム、 硝酸プラセオジムは B液に混合した。
触媒の組成を表 1に示す。
また、 成分 ( 4) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
[比較例 3 ]
実施例 4と同一組成の触媒を実施例 4と同様の方法で製造した。 ただ し、 硝酸セリウム、 硝酸ランタンは B液に混合した。
触媒の組成を表 1に示す。
また、 成分 ( 4 ) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
[比較例 4]
実施例 9 と同一組成の触媒を実施例 9と同様の方法で製造した。 ただ し、 硝酸セリウム、 硝酸ランタンは B液に混合した。
触媒の組成を表 1に示す。
また、 成分 ( 4) (式 ( I ) および ( I I ) 中、 Eで表される元素) の原料を含む液、 第 2液の p H、 加熱処理工程の条件、 最後段の焼成条 件、 反応条件、 アクリロニトリルの収率を表 2に示す。
以上の実施例および比較例で得られたアンモ酸化用触媒を用い、 上記 の反応条件下、 プロピレンのアンモ酸化反応を行い、 触媒評価した。 そ の結果を表 2に示した。
(以下余白)
触媒組成 (原子比)
Mo Bi Fe X Cr E K G Sb M Z Si02 卖施 Μ
li ΐ 1 U c p
10 0.6 1.3 0.7 0.2 40 例 1 5.5 0.5 0.5 0.2
Y
Ni Co Mg Ce La 0.1
2 10 1.0 1.5 0.4 0.0 40
4.0 1.0 1.0 0.4 0.3 5
5
Ni Mg Zn Ce Pr 0.2 W
3 10 0.8 0.9 0.8 50
3.0 2.0 0.5 0.3 0.1 5 0.1
Ni Co Ce La Rb
4 10 0.5 1.0 1.0 0.1 40
2.0 4.0 0.4 0.2 0.1
Ni Co Mg Ce La 0.1 Sm Te Cs
5 10 0.3 1.0 0.5 40
3.0 3.0 1.0 0.4 0.4 5 0.1 0.2 0.1
Ni Ce P
6 10 0.5 1.1 0.6 0.2 60
6.0 0.5 0.2
Ni Co Mn Ce
7 10 0.6 1.1 0.8 0.2 40
5.5 0.5 0.2 0.4
Ni Mn Cu Ce Nd Zr P B Rb
8 10 0.4 4.3 0.6 0.1 3.5 40
5.5 0.5 0.2 0.4 0.2 0.1 0.2 0.2 0.1
Ni Co Ce La
9 10 0.5 1.3 0.8 0.2 40
4.0 2.0 0.5 0.1
Ni Co Ce 0.2 P
10 10 0.6 1.3 0.7 40
2.0 3.5 0.6 5 0.2
Ni Co Mg Ce La P
11 10 0.5 4.9 0.6 0.2 4.2 40
3.0 2.0 1.0 0.4 0.1 0.3
比較 〗 Ni Co Ce P
10 0.6 1.3 0.7 0.2 40 例 1 5.5 0.5 0.5 0.2
Ni Mg Zn Ce Pr 0.2 W
2 10 0.8 0.9 0.8 50
3.0 2.0 0.5 0.3 0.1 5 0.1
Ni Co Ce La Rb
3 10 0.5 1.0 1.0 0.1 40
2.0 4.0 0.4 0.2 0.1
Ni Co Ce La
4 10 0.5 1.3 0.8 0.2 40
4.0 2.0 0.5 0.1
ァクリ D二トリル収率 加熱処理 焼成条件 反応条件
E成分 [%] 表 2 m口 H 接触 1000 温度時間温度時間温度 50h 500h 方法 時間 h
[°C [hr] [hr] [°C 後 後
[sec]
2.
実施例 1 C液 99 1.5 650 3 440 3.0 82.9 82.5 81.7
0
2.
2 c液 99 1.5 640 3 440 2.7 82.3 82.0 81.2
2
2.
3 c液 99 1.5 640 3 440 3.2 83.1 82.4 81.2
0
1.
4 c液 99 1.5 630 3 440 3.0 82.5 81.9 81.2
8
2.
5 c液 99 1.5 640 3 440 3.0 82.6 81.8 81.1
0
2.
6 c液 99 1.5 650 3 440 2.8 83.0 82.4 81.6
0
c 2.
7 液 99 1.5 640 3 440 2.6 82.7 82.1 81.0
2
2.
8 c液 99 1.5 650 3 440 3.2 82.1 81.5 80.9
0
9 c 5.
液 99 1.5 660 3 440 3.0 82.8 82.3 81.6
0
4.
10 液 99 1.5 630 3 440 2.7 82.4 81.7 80.9
5
11 c 5.
液 99 1.5 650 3 440 3.2 82.5 81.9 81.1
2
2.
比較例 1 B液 99 1.5 650 3 440 3.0 83.0 81.9 80.8
0
2.
2 B液 99 1.5 640 3 440 3.2 82.9 81.5 80.3
0
2.
3 B液 99 1.5 630 3 440 3.0 82.3 80.8 79.7
0
5.
4 B液 99 1.5 660 3 440 3.0 82.6 81.3 80.1
0 表 2から明らかなように、 実施例の方法で得られたアンモ酸化用触媒 を使用すると、 反応開始後 5 0時間後のァクリロ二トリル収率が良好な だけでなく、 反応開始後 1 0 0 0時間後の収率も高く維持されていた。 一方、 比較例で得られた触媒は、 時間の経過に伴うアクリロニトリル収 率の低下が大きかった。 産業上の利用性 以上説明したように本発明のアンモ酸化触媒の製造方法によれば、 目 的生成物の収率が高く、 しかもその収率を長時間維持できる高性能触媒 を製造することができる。
本発明の製造方法で得られるアンモ酸化用触媒は、 特にプロピレンか らのアクリロニトリルの合成に適している。

Claims

請求の範囲
1. モリブデン (成分 ( 1 ) ) と、 ビスマス (成分 ( 2 ) ) と、 ニッ ケル、 コバルト、 亜鉛、 マグネシウム、 マンガンおよび銅よりなる群か ら選ばれた少なく とも一種の元素 (成分 ( 3 ) ) と、 ランタン、 セリウ ム、 プラセオジムおよびネオジムよりなる群から選ばれた少なく とも一 種の元素 (成分 ( 4) ) とを含有する、 有機化合物のアンモ酸化用触媒 の製造方法であって、
前記成分 ( 1 ) の原料の少なく とも一部と、 前記成分 ( 2 ) の原料の 少なく とも一部と、 前記成分 ( 3 ) の原料の少なく とも一部とを含み、 前記成分 (4) の原料を含まない第 1液を調製する第 1液調製工程と、 前記第 1液に、 少なく とも前記成分 ( 4) の原料を添加して第 2液を 調製する第 2液調製工程とを有することを特徴とするアンモ酸化用触媒 の製造方法。
2. 前記第 2液を、 5 0〜 1 2 0 °Cの範囲で 1 0分以上加熱する加熱 処理工程を有することを特徴とする請求項 1に記載のアンモ酸化用触媒 の製造方法。
3. 前記第 2液の p Hを 1〜 6の範囲に調整した後に加熱処理工程を 行うことを特徴とする請求項 2に記載のアンモ酸化用触媒の製造方法。
4. 前記アンモ酸化用触媒が、 下記式 ( I ) で表される組成を有する ことを特徴とする請求項 1ないし 3のいずれかに記載のアンモ酸化用触 媒の製造方法。
M o 10 B i 0 F e XCC E0Kf G„S b hMffl I Z n nO v ( S
( I ) (式中、 M o、 B i F e、 C r、 K、 S bおよび S i は、 それ ぞれモリブデン、 ビスマス 鉄、 クロム、 カリウム、 アンチモンおよび ケィ素を表し、 Xはニッケル、 コバルト、 亜鉛、 マグネシウム、 マンガ ンおよび銅よりなる群から選ばれた少なくとも一種の元素、 Eはランタ ン、 セリウム、 プラセオジムおよびネオジムよりなる群から選ばれた少 なく とも一種の元素、 Gはカルシウム、 ストロンチウム、 バリウム、 力 ドミゥム、 チタン、 ジルコニウム、 バナジウム、 ニオブ、 タンタル、 夕 ングステン、 ゲルマニウム、 スズ、 イッ トリウム、 サマリウム、 アルミ 二ゥム、 ガリゥムおよび鉛よりなる群から選ばれた少なく とも一種の元 素、 Mはルテニウム、 ロジウム、 パラジウム、 レニウム、 オスミウム、 イ リジウム、 白金、 銀、 ホウ素、 リ ンおよびテルルよ'りなる群から選ば れた少なく とも一種の元素、 Zはリチウム、 ナトリウム、 ルビジウムお よびセシウムよりなる群から選ばれた少なく とも一種の元素、 Oは酸素 を表す。 そして添字 a、 b、 c, d、 e、 f、 g、 h、 m、 n、 xおよび yは原子比 を表し、 M o = 1 0のとき、 a = 0. 1〜 2. 5、 b = 0. 1〜 1 0、 c = 2〜 1 2、 d = 0. 1〜 2. 5、 e = 0. 1〜 2. 5、 f = 0. 0 丄〜 2、 g = 0〜 5、 h = 0〜 2 0、 m= 0〜 3、 n = 0〜 lであり、 xは上記各成分が結合して生成する金属酸化物の酸素の数である。 また. y = 0〜 2 0 0である。 )
5. 前記アンモ酸化用触媒が流動層反応用触媒であり、 その組成が下 記式 ( I I ) で表されることを特徴とする請求項 4に記載のアンモ酸化 用触媒の製造方法。
M o 10B i aF e bXcC EeKfGgS bhMmZ„〇x(S i 0 卜 · · ·
( I I )
6. 前記有機化合物がプロピレンであることを特徴とする請求項 1な いし 5のいずれかに記載のアンモ酸化用触媒の製造方法。
PCT/JP2002/009832 2001-10-11 2002-09-25 Procede de production d'un catalyseur d'ammoxydation WO2003033139A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/490,219 US7365041B2 (en) 2001-10-11 2002-09-25 Method for producing ammoxidation catalyst
EP02779893A EP1452231B1 (en) 2001-10-11 2002-09-25 Catalyst for ammoxidation and preparation and use of the same for ammoxidation of organic compounds
ES02779893T ES2397949T3 (es) 2001-10-11 2002-09-25 Catalizador para amoxidación y preparación y uso del mismo para la amoxidación de compuestos orgánicos
ROA200400319A RO122022B1 (ro) 2001-10-11 2002-09-25 Procedeu pentru prepararea unui catalizator de amoxidare
KR1020047005133A KR100905842B1 (ko) 2001-10-11 2002-09-25 가암모니아 산화용 촉매의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-314054 2001-10-11
JP2001314054A JP4030740B2 (ja) 2001-10-11 2001-10-11 アンモ酸化用触媒の製造方法

Publications (1)

Publication Number Publication Date
WO2003033139A1 true WO2003033139A1 (fr) 2003-04-24

Family

ID=19132425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009832 WO2003033139A1 (fr) 2001-10-11 2002-09-25 Procede de production d'un catalyseur d'ammoxydation

Country Status (8)

Country Link
US (1) US7365041B2 (ja)
EP (1) EP1452231B1 (ja)
JP (1) JP4030740B2 (ja)
KR (1) KR100905842B1 (ja)
CN (1) CN1267189C (ja)
ES (1) ES2397949T3 (ja)
RO (1) RO122022B1 (ja)
WO (1) WO2003033139A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050240A1 (en) * 2002-12-02 2004-06-17 The Standard Oil Company Mixed oxide catalyst of k, cs, ce, cr, co, ni, fe, bi and mo for the manufacture of acrylonitrile
WO2004050238A1 (en) * 2002-12-02 2004-06-17 The Standard Oil Company Mixed oxide catalyst of rb, ce, cr, ni, fe, bi and mo for the manufacture of acrylonitrile
WO2004091776A1 (ja) 2003-04-18 2004-10-28 Dia-Nitrix Co., Ltd. アクリロニトリル合成用触媒
US8258073B2 (en) 2010-03-23 2012-09-04 Ineos Usa Llc Process for preparing improved mixed metal oxide ammoxidation catalysts
US8350075B2 (en) 2010-03-23 2013-01-08 Ineos Usa Llc Mixed metal oxide ammoxidation catalysts
US8420566B2 (en) 2010-03-23 2013-04-16 Ineos Usa Llc High efficiency ammoxidation process and mixed metal oxide catalysts
US8455388B2 (en) 2010-03-23 2013-06-04 Ineos Usa Llc Attrition resistant mixed metal oxide ammoxidation catalysts

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503315B2 (ja) * 2004-03-09 2010-07-14 ダイヤニトリックス株式会社 鉄・アンチモン・テルル含有金属酸化物触媒の製造方法
JP2006218395A (ja) * 2005-02-10 2006-08-24 Daiyanitorikkusu Kk 流動層触媒の製造方法及び製造装置
JP4606897B2 (ja) * 2005-02-15 2011-01-05 ダイヤニトリックス株式会社 流動層アンモ酸化プロセス用複合酸化物触媒の製造方法
JP4588533B2 (ja) * 2005-05-24 2010-12-01 ダイヤニトリックス株式会社 アクリロニトリル合成用触媒
DE102006015710A1 (de) * 2005-10-14 2007-04-26 Degussa Gmbh Mischoxidationskatalysatoren für die katalytische Gasphasenoxidation von Olefinen und Verfahren zu ihrer Herstellung
US7485596B2 (en) * 2005-12-28 2009-02-03 Saudi Basic Industries Corporation Process for synthesizing a heteropoly acid catalyst for oxidation of unsaturated aldehydes to unsaturated carboxylic acid
JP5020514B2 (ja) * 2006-01-16 2012-09-05 ダイヤニトリックス株式会社 流動層用触媒の製造方法およびニトリル類の製造方法
JP5063980B2 (ja) * 2006-10-24 2012-10-31 Dowaエレクトロニクス株式会社 排ガス浄化触媒用複合酸化物およびフィルター
KR101431293B1 (ko) 2006-10-26 2014-08-20 다이야니트릭스 가부시키가이샤 아크릴로니트릴 제조용 유동상 촉매 및 아크릴로니트릴의 제조 방법
JP4811666B2 (ja) * 2007-01-25 2011-11-09 株式会社豊田中央研究所 NOx吸蔵還元型触媒を製造するための複合粒子前駆体水溶液及びそれを用いたNOx吸蔵還元型触媒の製造方法
JP5011167B2 (ja) 2008-03-03 2012-08-29 ダイヤニトリックス株式会社 アクリロニトリル製造用触媒およびアクリロニトリルの製造方法
WO2009131118A1 (ja) * 2008-04-23 2009-10-29 Dowaエレクトロニクス株式会社 排ガス浄化触媒用複合酸化物とその製造方法および排ガス浄化触媒用塗料とディーゼル排ガス浄化用フィルタ
JP5163273B2 (ja) * 2008-05-16 2013-03-13 住友化学株式会社 不飽和アルデヒド及び/又は不飽和カルボン酸製造用触媒の製造方法、並びに不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法
JP4639247B2 (ja) * 2008-07-23 2011-02-23 石油資源開発株式会社 炭化水素リフォーミング用触媒およびその製造方法ならびにこれを用いた合成ガスの製法
JP5378041B2 (ja) * 2009-04-07 2013-12-25 三菱レイヨン株式会社 アクリロニトリル合成用複合酸化物触媒の製造方法
JP5387297B2 (ja) * 2009-09-30 2014-01-15 住友化学株式会社 複合酸化物触媒の製造方法
EP2422876A1 (en) * 2010-08-20 2012-02-29 Shell Internationale Research Maatschappij B.V. Process for preparing olefins from synthesis gas using a cobalt and manganese containing catalyst
EP2439185A1 (en) * 2010-08-20 2012-04-11 Shell Internationale Research Maatschappij B.V. Process for preparing olefins from synthesis gas using a cobalt and manganese containing catalyst
DE102010050312A1 (de) * 2010-11-03 2012-05-03 Süd-Chemie AG Ammoniak-Oxidationskatalysator mit geringer N2O Nebenproduktbildung
PL2694205T3 (pl) * 2011-04-01 2022-11-14 Dow Global Technologies Llc Katalizatory do konwersji gazu syntezowego do alkoholi
US8835666B2 (en) 2012-11-26 2014-09-16 Ineos Usa Llc Pre calcination additives for mixed metal oxide ammoxidation catalysts
ITMI20130043A1 (it) * 2013-01-15 2014-07-16 Sued Chemie Catalysts Italia S R L In Breve S Sistema catalitico per l'ammossidazione del propilene ad acrilonitrile.
CN105636691A (zh) * 2013-07-31 2016-06-01 沙特基础工业公司 用于转化合成气的催化剂
CN107684927B (zh) * 2016-08-03 2020-07-28 万华化学集团股份有限公司 一种用于氯化氢氧化制备氯气的催化剂及其制备方法和用途
US10479759B2 (en) * 2017-02-08 2019-11-19 Clariant Corporation Synthetic methods for the preparation of propylene ammoxidation catalysts
US10479760B2 (en) * 2017-02-08 2019-11-19 Clariant Corporation Synthetic methods for the preparation of propylene ammoxidation catalysts
CN109772356B (zh) * 2019-03-07 2020-06-02 营口市向阳催化剂有限责任公司 一种丙烯腈催化剂及其制备方法和应用
US12226753B2 (en) 2019-09-30 2025-02-18 Lg Chem, Ltd. Ammoxidation catalyst for propylene, manufacturing method of the same catalyst, ammoxidation method using the same catalyst
KR102519507B1 (ko) 2019-09-30 2023-04-07 주식회사 엘지화학 프로필렌의 암모산화용 촉매, 이의 제조 방법, 및 이를 이용한 프로필렌의 암모산화 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148757A (en) 1977-08-10 1979-04-10 The Standard Oil Company Process for forming multi-component oxide complex catalysts
EP0383598A1 (en) 1989-02-16 1990-08-22 Nitto Chemical Industry Co., Ltd. Process for producing molybdenumcontaining metal oxide fluidbed catalyst
JPH0321346A (ja) * 1989-06-20 1991-01-30 Mitsubishi Rayon Co Ltd 不飽和カルボン酸製造用触媒の調製法
JP2640356B2 (ja) 1988-04-15 1997-08-13 日東化学工業株式会社 アクリロニトリルの製造法
JPH1043595A (ja) * 1996-07-31 1998-02-17 Asahi Chem Ind Co Ltd アンモ酸化用触媒組成物
JPH1066874A (ja) * 1996-08-28 1998-03-10 Mitsubishi Rayon Co Ltd 不飽和アルデヒドおよび不飽和カルボン酸製造用触媒の調製法
WO2001028984A1 (fr) * 1999-10-18 2001-04-26 Mitsubishi Rayon Co., Ltd. Procede de production d'acrylonitrile, catalyseur utilise et procede de preparation de celui-ci
JP2001187771A (ja) 1999-10-18 2001-07-10 Mitsubishi Rayon Co Ltd アクリロニトリルの製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1523772A (en) 1974-07-22 1978-09-06 Standard Oil Co Oxidation catalysts
JPS59204163A (ja) 1983-05-04 1984-11-19 Mitsui Toatsu Chem Inc 不飽和ニトリルの製造法
JPH0763628B2 (ja) * 1987-02-24 1995-07-12 日東化学工業株式会社 アンチモン・テルル含有金属酸化物触媒の製法
JP2520282B2 (ja) * 1988-04-15 1996-07-31 日東化学工業株式会社 アクリロニトリルの製造方法
JP2701065B2 (ja) * 1989-03-23 1998-01-21 日東化学工業株式会社 モリブデン―ビスマス含有複合酸化物触媒の製法
JP2950851B2 (ja) * 1989-06-23 1999-09-20 三菱レイヨン株式会社 鉄・アンチモン・リン含有金属酸化物触媒組成物およびその製法
JP3142549B2 (ja) * 1990-09-10 2001-03-07 三菱レイヨン株式会社 鉄・アンチモン・モリブデン含有酸化物触媒組成物およびその製法
JP3371112B2 (ja) * 1990-09-18 2003-01-27 ダイヤニトリックス株式会社 鉄・アンチモン含有金属酸化物触媒組成物およびその製法
JPH069530A (ja) 1992-06-29 1994-01-18 Standard Oil Co:The プロピレンのアクリロニトリルへのアンモキシデーションの改良方法及び触媒
JP3534431B2 (ja) 1993-08-06 2004-06-07 旭化成ケミカルズ株式会社 不飽和ニトリルの製法
US5780664A (en) 1993-08-17 1998-07-14 Asahi Kasei Kogyo Kabushi Kaisha Ammoxidation catalyst composition
US5834394A (en) * 1996-08-06 1998-11-10 China-Petro-Chemical Corporation Fluidized-bed catalyst for propylene ammoxidation to acrylonitrile
JP3545188B2 (ja) 1996-12-18 2004-07-21 ダイヤニトリックス株式会社 圧縮強度の大きな微粒子状鉄・アンチモン含有酸化物組成物の製造法
DE19756249A1 (de) * 1996-12-18 1998-06-25 Nitto Chemical Industry Co Ltd Verfahren zur Herstellung einer aus kleinen Teilchen bestehenden Eisen-Antimon enthaltenden Oxid-Zusammensetzung, die hohe Druckfestigkeit aufweist
JPH10195036A (ja) 1997-01-13 1998-07-28 Mitsubishi Chem Corp 炭化水素の気相接触酸化反応法
US5840648A (en) 1997-09-02 1998-11-24 The Standard Oil Company Catalyst for the manufacture of acrylonitrile and hydrogen cyanide
US6479691B1 (en) * 1998-04-23 2002-11-12 Mitsubishi Rayon Co., Ltd. Catalyst for producing unsaturated nitrile
JP3573959B2 (ja) * 1998-05-12 2004-10-06 ダイヤニトリックス株式会社 モリブデン含有酸化物流動層触媒の再生法
JP2001029788A (ja) * 1999-07-21 2001-02-06 Mitsubishi Rayon Co Ltd モリブデン−ビスマス−鉄含有金属酸化物流動層触媒の製法
JP3819192B2 (ja) * 1999-10-18 2006-09-06 ダイヤニトリックス株式会社 アクリロニトリルの製造法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148757A (en) 1977-08-10 1979-04-10 The Standard Oil Company Process for forming multi-component oxide complex catalysts
JP2640356B2 (ja) 1988-04-15 1997-08-13 日東化学工業株式会社 アクリロニトリルの製造法
EP0383598A1 (en) 1989-02-16 1990-08-22 Nitto Chemical Industry Co., Ltd. Process for producing molybdenumcontaining metal oxide fluidbed catalyst
JPH0321346A (ja) * 1989-06-20 1991-01-30 Mitsubishi Rayon Co Ltd 不飽和カルボン酸製造用触媒の調製法
JPH1043595A (ja) * 1996-07-31 1998-02-17 Asahi Chem Ind Co Ltd アンモ酸化用触媒組成物
JPH1066874A (ja) * 1996-08-28 1998-03-10 Mitsubishi Rayon Co Ltd 不飽和アルデヒドおよび不飽和カルボン酸製造用触媒の調製法
WO2001028984A1 (fr) * 1999-10-18 2001-04-26 Mitsubishi Rayon Co., Ltd. Procede de production d'acrylonitrile, catalyseur utilise et procede de preparation de celui-ci
JP2001187771A (ja) 1999-10-18 2001-07-10 Mitsubishi Rayon Co Ltd アクリロニトリルの製造方法
EP1223162A1 (en) 1999-10-18 2002-07-17 Mitsubishi Rayon Co., Ltd. Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1452231A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050240A1 (en) * 2002-12-02 2004-06-17 The Standard Oil Company Mixed oxide catalyst of k, cs, ce, cr, co, ni, fe, bi and mo for the manufacture of acrylonitrile
WO2004050238A1 (en) * 2002-12-02 2004-06-17 The Standard Oil Company Mixed oxide catalyst of rb, ce, cr, ni, fe, bi and mo for the manufacture of acrylonitrile
US7071140B2 (en) 2002-12-02 2006-07-04 The Standard Oil Company Catalyst for the manufacture of acrylonitrile
US7348291B2 (en) 2002-12-02 2008-03-25 Ineos Usa Llc Catalyst for the manufacture of acrylonitrile
WO2004091776A1 (ja) 2003-04-18 2004-10-28 Dia-Nitrix Co., Ltd. アクリロニトリル合成用触媒
EP1634645A4 (en) * 2003-04-18 2012-03-07 Dia Nitrix Co Ltd CATALYST FOR ACRYLNITRILE SYNTHESIS
US8258073B2 (en) 2010-03-23 2012-09-04 Ineos Usa Llc Process for preparing improved mixed metal oxide ammoxidation catalysts
US8350075B2 (en) 2010-03-23 2013-01-08 Ineos Usa Llc Mixed metal oxide ammoxidation catalysts
US8420566B2 (en) 2010-03-23 2013-04-16 Ineos Usa Llc High efficiency ammoxidation process and mixed metal oxide catalysts
US8455388B2 (en) 2010-03-23 2013-06-04 Ineos Usa Llc Attrition resistant mixed metal oxide ammoxidation catalysts

Also Published As

Publication number Publication date
EP1452231A1 (en) 2004-09-01
KR20040045496A (ko) 2004-06-01
JP2003117397A (ja) 2003-04-22
KR100905842B1 (ko) 2009-07-02
CN1568223A (zh) 2005-01-19
ES2397949T3 (es) 2013-03-12
US7365041B2 (en) 2008-04-29
CN1267189C (zh) 2006-08-02
EP1452231A4 (en) 2009-08-26
RO122022B1 (ro) 2008-11-28
EP1452231B1 (en) 2012-10-31
JP4030740B2 (ja) 2008-01-09
US20040248734A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
WO2003033139A1 (fr) Procede de production d&#39;un catalyseur d&#39;ammoxydation
JP2747920B2 (ja) 酸化反応に適するモリブデン含有金属酸化物流動層触媒の製法
JP2701065B2 (ja) モリブデン―ビスマス含有複合酸化物触媒の製法
JP5919870B2 (ja) アクリロニトリル製造用触媒の製造方法および該アクリロニトリル製造用触媒を用いたアクリロニトリルの製造方法
JP3819192B2 (ja) アクリロニトリルの製造法
WO2001028985A1 (fr) Procédé de production d&#39;acrylonitrile, catalyseur utilisé et procédé de préparation de celui-ci
WO2001028984A1 (fr) Procede de production d&#39;acrylonitrile, catalyseur utilise et procede de preparation de celui-ci
WO1999058241A1 (fr) Procede de regeneration d&#39;un catalyseur a lit fluidise a oxyde contenant du molybdenum
JP4159759B2 (ja) モリブデン−ビスマス−鉄含有複合酸化物流動層触媒の製法
JP3680115B2 (ja) 不飽和ニトリル製造用触媒組成物
JP4823950B2 (ja) アクリロニトリル製造用触媒の製造方法
JP3720625B2 (ja) モリブデン−ビスマス−鉄含有複合酸化物触媒の調製法
JP4159729B2 (ja) アクリロニトリルの製造方法
JP3875011B2 (ja) アクリロニトリルの製法
JP3872270B2 (ja) シアン化水素の製造法
JP3796132B2 (ja) 気相アンモ酸化反応用複合酸化物触媒の調製法
JP3872269B2 (ja) シアン化水素の製造方法
JP3872268B2 (ja) シアン化水素の製法
JP3682211B2 (ja) アクリロニトリル製造用複合酸化物流動層触媒の調製法
JP3720626B2 (ja) モリブデン−ビスマス−テルル含有複合酸化物触媒の調製法
JPH11309374A (ja) モリブデン含有酸化物触媒の製法
WO2014129566A1 (ja) アクリロニトリル製造用触媒の製造方法およびアクリロニトリルの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR RO

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10490219

Country of ref document: US

Ref document number: 2002779893

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004 200400319

Country of ref document: RO

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020047005133

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20028199669

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002779893

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载