+

WO2003032407A1 - Element electroluminescent semi-conducteur et dispositif electroluminescent utilisant un tel element - Google Patents

Element electroluminescent semi-conducteur et dispositif electroluminescent utilisant un tel element Download PDF

Info

Publication number
WO2003032407A1
WO2003032407A1 PCT/JP2002/010128 JP0210128W WO03032407A1 WO 2003032407 A1 WO2003032407 A1 WO 2003032407A1 JP 0210128 W JP0210128 W JP 0210128W WO 03032407 A1 WO03032407 A1 WO 03032407A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light emitting
emitting device
semiconductor light
less
Prior art date
Application number
PCT/JP2002/010128
Other languages
English (en)
French (fr)
Inventor
Toshihide Maeda
Shozo Oshio
Katsuaki Iwama
Hiromi Kitahara
Original Assignee
Matsushita Electric Industrial Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co.,Ltd. filed Critical Matsushita Electric Industrial Co.,Ltd.
Priority to US10/491,411 priority Critical patent/US7294956B2/en
Priority to EP02775262A priority patent/EP1447853B1/en
Priority to JP2003535267A priority patent/JP3993854B2/ja
Priority to KR1020047004816A priority patent/KR100894372B1/ko
Publication of WO2003032407A1 publication Critical patent/WO2003032407A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials
    • H10H20/8513Wavelength conversion materials having two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • C09K11/7739Phosphates with alkaline earth metals with halogens
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a semiconductor light emitting element and a light emitting device that emit white light by combining a near ultraviolet light emitting diode (hereinafter, referred to as a near ultraviolet LED) and a plurality of phosphors.
  • a near ultraviolet LED a near ultraviolet light emitting diode
  • Background art a near ultraviolet LED
  • a near-ultraviolet LED (strictly, a near-ultraviolet LED chip) having an emission peak in the near-ultraviolet wavelength region exceeding 350 nm and 41 Onm or less, and absorbing near-ultraviolet light emitted by the near-ultraviolet LED, 2.
  • a semiconductor light emitting device that emits white light and is known in combination with a phosphor layer containing a plurality of inorganic phosphors that emit fluorescence having a light emission peak within a visible wavelength range of 380 nm or more and 780 nm or less is known.
  • the semiconductor light emitting device using an inorganic phosphor is widely used because it is superior in durability to a semiconductor light emitting device using an organic fluorescent substance.
  • the emission chromaticity point (X, y) force in the CIE chromaticity diagram ⁇ is within the range of 0.21 ⁇ x ⁇ 0.48, 0.19 ⁇ y ⁇ 0.45.
  • Light is defined as white light.
  • Such a semiconductor light emitting device is disclosed in, for example, JP-A-11-246857, JP-A-2000-183408, JP-T-2000-509912 or JP-A-2001-143869.
  • a known semiconductor light emitting device is known.
  • the lanthanum oxysulfide phosphor represented by (03) is a red phosphor, has a light-emitting layer composed of a gallium nitride-based compound semiconductor, and is a semiconductor light-emitting element in combination with a near-ultraviolet LED that emits light at a wavelength of about 370 nm.
  • JP-A-11-246857 discloses a semiconductor light emitting device that emits white light having an arbitrary color temperature by appropriately combining the red phosphor and other blue and green phosphors. Techniques relating to devices have been disclosed.
  • Japanese Patent Application Laid-Open No. 2000-183408 discloses an ultraviolet LED chip which has a light emitting layer composed of a gallium nitride-based compound semiconductor and emits ultraviolet light having an emission peak near 370 nm, A first phosphor layer containing a blue phosphor that emits blue light by absorbing the ultraviolet light, and a second phosphor that contains a yellow-orange phosphor that absorbs the blue light and emits yellow-orange light And a semiconductor light-emitting device comprising the layer.
  • the blue phosphor at least one blue phosphor selected from the following (1) to (3) is used.
  • a divalent europium-activated halophosphate phosphor substantially represented by:
  • (2) - indicates general formula a (M 2, Eu) 0 -bAI 2 0 3 (wherein, M2ttMg, Ca, Sr, Ba , Zn, mouth, at least one element selected from the group consisting of Rb and Cs, a and b are numerical values satisfying a> 0, b> 0, and 0.2 ⁇ a / b ⁇ 1.5), which is a divalent europium-activated aluminate phosphor substantially represented by the formula:
  • JP-T-2000-509912 discloses that an ultraviolet LED having an emission peak in a wavelength region of 300 nm or more and 370 nm or less, a blue phosphor having an emission peak in a wavelength region of 430 nm or more and 490 nm or less, Further, a semiconductor light emitting device is disclosed which combines a color recording phosphor having an emission peak in a wavelength region of 570 nm or less and a red phosphor having an emission peak in a wavelength region of 590 nm or less and 630 nm or less.
  • Japanese Patent Application Laid-Open No. 2001-143869 discloses that an organic material is used as a light emitting layer, and an organic LED having a light emission peak in a wavelength range of violet to 430 nm or less to near ultraviolet or an inorganic material is used as a light emitting layer.
  • a semiconductor light emitting device is described, which is a combination of an inorganic LED having an emission peak in a near ultraviolet wavelength range, a blue phosphor, a green phosphor, and a red phosphor.
  • a mixed color of light emitted by a blue phosphor, a green phosphor and a red phosphor, or light emitted by a blue phosphor and a yellow phosphor is emitted.
  • White light is obtained by mixing the colors.
  • the YAG phosphor is used as the yellow phosphor. Further, the YAG-based phosphor excites near-ultraviolet light of 360 nm or more and 400 nm or less emitted by a near-ultraviolet LED having a wavelength region exceeding 350 nm and 400 nm or less, particularly a gallium nitride-based compound semiconductor. Hardly emits light and emits yellow light with high efficiency under excitation of blue light of 400 nm or more and 530 nm or less. In conventional semiconductor light emitting devices using a YAG-based phosphor, a blue-based phosphor is indispensable, and the blue-based phosphor emits yellow light to excite the yellow-based phosphor. System light.
  • Semiconductor light-emitting elements that emit such white light are known as semiconductor light-emitting elements that are in great demand for light-emitting devices such as lighting devices and display devices.
  • a semiconductor light emitting device in which an inorganic compound phosphor other than the YAG-based phosphor is combined with an LED is conventionally known.
  • the JP 2001-143869 discloses the above-mentioned, Ba 2 Si_ ⁇ 4: Eu 2+, Sr 2 Si0 4: Eu 2 ⁇ Mg 2 Si0 4: Eu 2 ⁇ (BaSr) 2 Si0 4: Eu 2 ⁇ (BaMg A)
  • Semiconductor light emitting device using 2 SiO 4: Eu 2+ silicate phosphor is described.
  • any of the silicate phosphors is applied as a green phosphor, not as a yellow phosphor. It is also said that it is preferable to use an organic LED rather than an inorganic LED made of an inorganic compound from the viewpoint of luminous efficiency. That is, the invention described in this publication does not relate to a semiconductor light-emitting device in which a near-ultraviolet LED is combined with blue, green, yellow, and red phosphors.
  • the present invention relates to a semiconductor light emitting device comprising a combination of an LED and phosphors of three kinds of inorganic compounds of a blue type, a color recording type and a red type.
  • orthorhombic Sr 2 Si0 4: Eu 2+ (shed 'single Sr 2 Si_ ⁇ 4: Eu 2+) is a yellow light having an emission peak in the vicinity of a wavelength of 560 ⁇ 575nm a yellow phosphor emitting
  • monoclinic Sr 2 Si0 4: Eu 2+ (over Sr 2 Si 0 4: Eu 2+ ) is a green phosphor that emits green light having an emission peak in the vicinity of a wavelength of 545nm is there.
  • JP 2001- described in 143869 JP Sr 2 Si0 4: Eu 2+ green phosphor monoclinic Sr 2 Si0 4: can be regarded as E U 2+ phosphor.
  • Silicate phosphor conventionally, (S ri _ a3 _ b3 - x Ba a3 Ca b3 Eu x) 2 Si0 silicate phosphor represented by 4 of the formula (wherein, a 3, It is known that b3 and x each satisfy 0 ⁇ a3 ⁇ 1, 0 ⁇ b3 ⁇ 1, and 0 ⁇ x ⁇ 1).
  • Silicate fluorescence The phosphor is a phosphor that has been studied as a phosphor for fluorescent lamps. By changing the composition of Ba—Sr—Ca, the emission peak wavelength changes within the range of 505 nm or more and 598 nm or less. It is known to be a phosphor that emits light.
  • this phosphor emits light with relatively high efficiency under light irradiation in the range of 170 to 350 nm (J. Electrochemical Soc. Vol. 115, No. 11). (1968) ⁇ ⁇ 1181-1118).
  • the silicate phosphor emits light with high efficiency under near-ultraviolet light excitation conditions in a long wavelength region exceeding 350 nm. For this reason, the silicate phosphor emits light in the near-ultraviolet wavelength region exceeding 350 nm and 41 Onm or less, especially near 370-390 nm emitted by a near-ultraviolet LED having a light-emitting layer composed of a gallium nitride-based compound semiconductor. It has not been known that the phosphor is a highly efficient phosphor that emits yellow light of 55 Onm or more and less than 600 nm when excited by ultraviolet light.
  • semiconductor light-emitting elements and light-emitting devices that combine a near-ultraviolet LED and a phosphor layer containing a plurality of phosphors, blue phosphors, green phosphors, and red phosphors emit light.
  • the semiconductor light-emitting element and the light-emitting device have been configured to obtain white light by mixed light emission or mixed light emission of a blue phosphor and a yellow phosphor.
  • various display devices for example, LED information display terminal, LED traffic signal light, LED stop lamp of car, ED direction indicator light, etc.
  • various lighting devices LED indoor and outdoor lighting, LED light in car, LED emergency lights, LED surface light sources, etc.
  • the white light emitted from the semiconductor light emitting device and the semiconductor light emitting device is emitted.
  • the luminous flux of was low. This is because blue phosphors, blue phosphors, and red phosphors have not been developed enough to exhibit high luminous efficiency under near ultraviolet light excitation exceeding 350 nm and 41 Onm or less.
  • phosphors that can be used for white semiconductor light-emitting elements and light-emitting devices in all phosphors, and blue, green, and red phosphors that exhibit relatively high luminous efficiency are limited to a small number.
  • shape of the emission spectrum of white light is limited.
  • white light is obtained by mixing colors of light emitted by two types of phosphors, blue and yellow.
  • the present invention has been made to solve these problems, and a semiconductor emitting a white light with high luminous flux and high Ra, which is a combination of a near ultraviolet LED and a phosphor layer containing a plurality of phosphors. It is an object to provide a light emitting element and a semiconductor light emitting device.
  • a semiconductor light-emitting device includes a near-ultraviolet light-emitting diode that emits light having an emission peak in a wavelength region exceeding 350 nm and not more than 41 Onm, and the near-ultraviolet light emitting diode. Absorbs near-ultraviolet light emitted by a phosphor layer and emits fluorescent light having an emission peak in the visible wavelength range of 380 nm or more and 78 Onm or less.
  • a red phosphor which emits light characterized in that it comprises a yellow phosphor which emits fluorescent light of yellow having an emission peak in a wavelength region of less than 550nm or more and 600n m.
  • the near-ultraviolet LED is not particularly limited as long as it emits light having an emission peak in a wavelength region of 250 nm or more and 41 O nm or less, including an ultraviolet LED, but is easy to obtain and easy to manufacture.
  • a preferred LED is a near ultraviolet LED that emits light having an emission peak in a wavelength region of 30 Onm or more and 41 O nm or less, more preferably, a light emitting diode having a wavelength exceeding 350 nm and 41 nm. Emission peak in the wavelength range below On m A near-ultraviolet LED emitting light having a light emission peak in a wavelength region of more than 350 nm and less than 400 nm.
  • the semiconductor light emitting device emits blue light of 400 nm or more and less than 500 nm, green light of 500 nm or more and less than 550 nm, and red light of 600 nm or more and less than 660 nm. It emits light having four light colors, that is, light emission and yellow light emission of 550 nm or more and less than 600 ⁇ m, and emits white light by mixing the four light colors.
  • the luminous flux of the white light is increased because the yellow luminous light having relatively high luminosity compensates for the decrease in the luminous flux of the white light due to the red luminescence having good color purity but low visibility.
  • the yellow phosphor is preferably a silicate phosphor mainly composed of a compound represented by the following chemical formula.
  • al, bl, and ⁇ are numerical values that satisfy 0 ⁇ a1 ⁇ 0.3, 0 ⁇ b1 ⁇ 0.8, and 0 ⁇ x ⁇ 1, respectively.
  • the numerical values of al, bl, and x in the chemical formula are preferably 0 ⁇ 0 from the viewpoints of stability of the crystal to heat of the phosphor, temperature quenching resistance, emission intensity of yellow light emission, and light color. a1 ⁇ 0.2, 0 ⁇ b1 ⁇ 0.7, 0.005 ⁇ x ⁇ 0.1, more preferably 0 ⁇ a1 ⁇ 0.15, 0 ⁇ b1 ⁇ 0.6, 0.011x It is desirable that the value satisfies ⁇ 0.05.
  • the silicate phosphor has an excitation peak near 250 to 300 nm as shown in FIG. 4 showing an example of an excitation spectrum and an emission spectrum, and absorbs light in a wide wavelength range of 100 to 500 nm. It is a yellow phosphor that emits yellow fluorescence having an emission peak in the yellow-green to yellow-orange wavelength range of 550 to 600 nm. Therefore, the silicate phosphor has a relatively high efficiency when irradiated with near-ultraviolet light emitted by a near-ultraviolet LED even without a blue-based phosphor that converts near-ultraviolet light into blue light, such as a YAG-based phosphor. Since it emits yellow light, it is preferable in terms of luminous efficiency.
  • the silicate phosphor is preferably mainly composed of a compound represented by the following chemical formula.
  • al, b2, and X are each a numerical value satisfying 0 ⁇ a1 3 % 0 ⁇ b2 ⁇ 0.6 and 0 ⁇ ALA ⁇ 1, and from the same viewpoint as the above case, preferably 0 ⁇ a1 ⁇ 0.2, 0 ⁇ b2 ⁇ 0.4, 0.005 ⁇ x ⁇ 0.1, more preferably 0 ⁇ a1 ⁇ 0.15 0 ⁇ b2 ⁇ 0.3, 0.01 ⁇ x ⁇ 0,05, respectively Is desirable.
  • the blue phosphor is the blue phosphor described in (1) or (2) below, and the color recording phosphor is the green phosphor described in (3) or (4) below.
  • the red phosphor is preferably a red phosphor of the following (5).
  • M1 is at least one alkaline earth metal element selected from the group consisting of Ba, Sr, Ca and Mg
  • X is a numerical value satisfying 0 ⁇ x ⁇ 1.
  • M2 is at least one alkaline earth metal element selected from the group consisting of Ba, Sr and Ca
  • M3 is at least one element selected from the group consisting of Mg and Zn
  • x and y1 are each 0 ⁇ x ⁇ 1, 0 ⁇ y1 ⁇ 0.05.
  • M2 is at least one alkaline earth metal element selected from the group consisting of Ba, Sr and Ca
  • M3 is at least one element selected from the group consisting of Mg and Zn
  • M3 is the group consisting of Mg and Zn
  • At least one element selected from x and y2 is a numerical value satisfying 0 ⁇ x ⁇ 1, 0.05 ⁇ y2 ⁇ 1.
  • a silicate phosphor mainly composed of a compound represented by the following chemical formula.
  • Ml is at least one alkaline earth metal element selected from the group consisting of Ba, Sr, Ca and Mg
  • X is a numerical value satisfying 0 ⁇ x ⁇ 1.
  • n is at least one rare earth element selected from the group consisting of Sc, Y, La and Gd
  • X is a numerical value satisfying 0 ⁇ x ⁇ 1.
  • the above-mentioned blue phosphor, green phosphor, and red phosphor are all high-efficiency phosphors that emit strong light by the excitation of near-ultraviolet light.
  • the phosphor layer emits white light having a high emission intensity.
  • the near-ultraviolet LED is preferably a near-ultraviolet LED having a light-emitting layer composed of a gallium nitride-based compound semiconductor.
  • Near-UV LEDs with a light-emitting layer composed of a gallium nitride-based compound semiconductor exhibit high luminous efficiency and are capable of long-term continuous operation.
  • Using such near-UV LEDs enables long-term continuous operation.
  • a semiconductor light emitting device that emits white light with a high luminous flux can be obtained.
  • the average color rendering number Ra of white light emitted from the light emitting device is preferably 70 or more and less than 100.
  • This average color rendering number Ra is more preferably 80 or more and less than 100, and more preferably the layer is preferably 88 or more and less than 100. In this case, a semiconductor light emitting element particularly suitable for a lighting device is obtained. .
  • a first semiconductor light emitting device is a semiconductor light emitting device configured using any one of the semiconductor light emitting elements described above.
  • the semiconductor light emitting element emits white light with high luminous flux and high Ra
  • the semiconductor light emitting device emits white light with high luminous flux and high Ra. Is obtained.
  • the second semiconductor light emitting device includes a near-ultraviolet light emitting element that emits light having an emission peak in a wavelength region exceeding 350 nm and less than 41 Onm; Combined with a phosphor layer containing multiple phosphors that emit near-ultraviolet light emitted by the electron emitter and emit fluorescence having a peak emission in the visible wavelength range of 380 nm or more and 780 nm or less, and the emission chromaticity in the CIE chromaticity diagram A point (x, y) force ⁇ , 0.21 ⁇ x ⁇ 0.48, 0.19 ⁇ y ⁇ 0.45, wherein the semiconductor light emitting device emits white light; , A blue fluorescent material that emits blue fluorescent light having an emission peak in a wavelength region of 400 ⁇ m or more and less than 500 nm, and a green fluorescent light that emits green fluorescent light having an emission peak in a wavelength region of 500 nm or more and less than 550 nm Body, a red phosphor that
  • the semiconductor light emitting device include various display devices such as an LED information display terminal, an LED traffic signal light, an LED stop light of a car, an LED direction indicator light, an LED for indoor and outdoor lighting, an LED light in a car, and an LED.
  • display devices such as an LED information display terminal, an LED traffic signal light, an LED stop light of a car, an LED direction indicator light, an LED for indoor and outdoor lighting, an LED light in a car, and an LED.
  • various lighting devices such as emergency lights and LED surface light sources.
  • a similar effect can be obtained by using a light emitting element (not limited to a semiconductor light emitting element) that emits light having a light emission peak in the same wavelength region as a main light emitting component instead of the near ultraviolet LED in the present invention. It goes without saying that a similar white light emitting element can be obtained.
  • Examples of such a light emitting element include a laser diode, a surface emitting laser diode, an organic electroluminescent device, an organic electroluminescent device, and the like.
  • FIG. 1 is a longitudinal sectional view of a semiconductor light emitting device of the present invention.
  • FIG. 2 is a longitudinal sectional view of the semiconductor light emitting device of the present invention.
  • FIG. 3 is a longitudinal sectional view of the semiconductor light emitting device of the present invention.
  • FIG. 4 is a diagram showing emission and excitation spectra of a silicate phosphor and a YAG phosphor.
  • FIG. 5 is a diagram showing a lighting device as an example of the semiconductor light emitting device of the present invention.
  • FIG. 6 is a diagram showing an image display device as an example of the semiconductor light emitting device of the present invention.
  • FIG. 7 is a diagram showing a numeral display device as an example of the semiconductor light emitting device of the present invention.
  • FIG. 8 is a diagram showing an emission spectrum of the semiconductor light emitting device of Example 1.
  • FIG. 9 is a diagram showing an emission spectrum of the semiconductor light emitting device of Comparative Example 1.
  • FIG. 10 is a diagram showing an emission spectrum of the semiconductor light emitting device of Example 2.
  • FIG. 11 is a diagram showing an emission spectrum of the semiconductor light emitting device of Comparative Example 2.
  • FIG. 12 is a diagram showing an emission spectrum of the semiconductor light emitting device of Example 3.
  • FIG. 13 is a diagram showing an emission spectrum of white light by simulation.
  • FIG. 14 is a diagram showing an emission spectrum of white light by simulation.
  • FIG. 15 is a diagram showing an emission spectrum of the phosphor used in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 to 3 are longitudinal sectional views of different types of semiconductor light emitting devices.
  • a typical example of the semiconductor light emitting device is the semiconductor light emitting device shown in FIG. 1, FIG. 2, or FIG. Figure 1 shows a flip-chip type near-ultraviolet LED 1 conductively mounted on a sub-mount element 7, and a blue phosphor particle 3, a green phosphor particle 4, a red phosphor particle 5, and a yellow phosphor.
  • BGRY phosphor particles body particles
  • FIG. 2 shows the near-ultraviolet LED 1 conductively mounted on the cup 9 provided on the mount 'lead of the lead frame 8, and the resin containing BGRY phosphor particles (3, 4, 5, 6) inside the cup 9.
  • 1 shows a semiconductor light emitting device having a structure in which a phosphor layer 2 formed by is formed and the whole is sealed with a sealing resin 10.
  • Figure 3 shows the arrangement of a near-ultraviolet LED 1 in a housing 11 and a phosphor layer 2 made of a resin containing BGRY phosphor particles (3, 4, 5, 6) inside the housing 11.
  • 1 shows a chip-type semiconductor light emitting device having a structure provided with.
  • the near-ultraviolet LED 1 emits near-ultraviolet light having an emission peak in a wavelength region of more than 350 nm and not more than 41 Onm, preferably more than 350 nm and less than 400 nm.
  • the LED emits light and is a photoelectric conversion element (a so-called LED) that has a light emitting layer composed of an inorganic compound such as a gallium nitride compound semiconductor, silicon carbide compound semiconductor, zinc selenide compound semiconductor, zinc sulfide compound semiconductor, or an organic compound.
  • LED laser diode, surface emitting laser diode, inorganic electorum luminescence (EL) element, organic EL element).
  • the near-ultraviolet LED 1 is preferably an inorganic LED composed of an inorganic compound, and among them, a light-emitting layer composed of a gallium nitride-based compound semiconductor is preferable.
  • a near-UV LED having a luminous intensity is more preferable because of its high emission intensity.
  • the phosphor layer 2 absorbs near-ultraviolet light emitted by the near-ultraviolet LED 1, and the emission chromaticity point (X, y) in the CIE chromaticity diagram is 0.21 ⁇ x ⁇ 0.48, 0. 1
  • the emission chromaticity point (X, y) in the CIE chromaticity diagram is 0.21 ⁇ x ⁇ 0.48, 0. 1
  • a blue-based phosphor particle 3 that emits blue-based fluorescence and a green-based phosphor that absorbs near-ultraviolet light emitted by the near-ultraviolet LED 1 and emits green-based fluorescence having an emission peak in a wavelength region of 500 nm or more and less than 55 Onm.
  • the phosphor 4 and the near-ultraviolet LED 1 absorb the near-ultraviolet light and emit red-colored fluorescent light having an emission peak in a wavelength region of 600 nm or more and less than 660 nm, and the near-ultraviolet LED 1.
  • a yellow phosphor 6 that absorbs near-ultraviolet light emitted and emits yellow fluorescence having an emission peak in a wavelength region of 550 nm or more and less than 600 nm.
  • the phosphor layer 2 is formed by dispersing the BGRY phosphor particles (3, 4, 5, 6) in a base material.
  • a resin such as an epoxy resin, an acrylic resin, a polyimide resin, a urea resin, or a silicone resin can be used.
  • An epoxy resin or a silicone resin is preferable because it is easy to obtain and handle and is inexpensive.
  • the substantial thickness of the phosphor layer 2 is at least 10/7 m and at most 1 mm, preferably at least 100 / m and at most 700 m.
  • the blue phosphor particles 3 in the phosphor layer 2 absorb near-ultraviolet light emitted by the near-ultraviolet LED 1 and emit blue-fluorescent light having an emission peak in a wavelength region of 400 nm or more and less than 500 nm.
  • the phosphor 3 can be used, either an inorganic material or an organic material (for example, a fluorescent dye) can be used.
  • any one of the following (1) or (2) is used. It is preferable to use such a phosphor.
  • M1 is at least one alkaline earth metal element selected from the group consisting of Ba, Sr, Ca and Mg
  • X is a numerical value satisfying 0 ⁇ x ⁇ 1.
  • M2 is at least one alkaline earth metal element selected from the group consisting of Ba, Sr and Ca
  • M3 is at least one element selected from the group consisting of Mg and Zn
  • x and yl are each 0 ⁇ x ⁇ 1, 0 ⁇ y1 ⁇ 0.
  • the desirable blue phosphor include BaMgAI ⁇ G ⁇ Eu 2 (Ba, Sr) (Mg, Mn) AI 10 O 17 : Eu 2+ , (Sr, Ca, Ba, Mg) 10 (P0 4) 6 CI 2: Eu 2 ⁇ Sr 5 (PO 4) 3 C Eu 2+, (Sr, Ca, Ba) 5 (P0 4) 3 C1: Eu 2 ⁇ BaMg 2 AI 16 0 27: Eu 2 ⁇ (Ba, Ca) 5 ( P0 4) 3 CI: Eu 2+ and the like.
  • the green phosphor particles 4 in the phosphor layer 2 absorb near-ultraviolet light emitted by the near-ultraviolet LED 1 and emit green-based fluorescence having an emission peak in a wavelength region of 500 nm or more and less than 550 nm.
  • a body 4 either an inorganic material or an organic material can be used, but it is preferable to use any one of the following phosphors (3) and (4).
  • M2 is at least one alkaline earth metal element selected from the group consisting of Ba, Sr and Ca
  • M3 is at least one element selected from the group consisting of Mg and Zn
  • x and y2 are each 0 ⁇ x ⁇ 1, 0.05 ⁇ y2 ⁇ 1.
  • Ml is at least one alkaline earth metal element selected from the group consisting of Ba, Sr, Ca and Mg
  • X is a numerical value satisfying 0 ⁇ X ⁇ 1.
  • the desirable green phosphor is, (BaMg) AI 16 0 27 : E U 2+, Mn 2 ⁇ (BaMg) 2 Si0 4: Eu 2 ⁇ Ba 2 Si0 4: Eu 2 ⁇ Sr 2 Si0 4: Eu 2 ⁇ (BaSr) Si0 4: Eu 2+, (B a, Sr) Si0 4: Eu 2+ , etc. Can be mentioned.
  • the red phosphor particles 5 in the phosphor layer 2 absorb near-ultraviolet light emitted by the near-ultraviolet LED 1 and emit red fluorescence having an emission peak in a wavelength region of 600 nm or more and less than 660 nm.
  • Any material may be used as long as it is the body 5, and any of an inorganic material and an organic material can be used.
  • the phosphor of the following (5) is used.
  • Ln is at least one rare earth element selected from the group consisting of Sc, Y, La and Gd
  • X is a numerical value satisfying 0 ⁇ x ⁇ 1.
  • Ln 2 0 2 S: Eu 3 ⁇ Ln 2 0 2 S Eu 3+, Sm 3 ⁇ Gd 2 0 2 S: Eu 3+ and the like can be given.
  • the yellow phosphor particles 6 in the phosphor layer 2 absorb near-ultraviolet light emitted by the near-ultraviolet LED 1 and emit yellow fluorescence having an emission peak in a wavelength region of 550 nm or more and less than 600 nm. Any substance can be used, but from the viewpoint of ease of production and good light emission performance (high brightness, high yellow purity), it is desirable to use a silicate phosphor mainly composed of a compound represented by the following chemical formula. Good.
  • al, bl, and x are 0 ⁇ a1 ⁇ 0.3, 0 ⁇ b1 ⁇ 0.8, and 0 ⁇ x ⁇ 1, respectively, preferably 0 ⁇ a1 ⁇ 0.2. > 0 ⁇ b1 ⁇ 0.7, 0.005 ⁇ x ⁇ 0.1, more preferably 0 ⁇ a1 ⁇ 0.15 0 ⁇ b1 ⁇ 0.6, 0.01.x ⁇ 0.05 It is. More preferably, the silicate phosphor is mainly composed of a compound represented by the following chemical formula.
  • a1, b2, and x are numerical values that satisfy 0 ⁇ a1 ⁇ 0.3, 0 ⁇ b2 ⁇ 0.6, and 0 ⁇ x ⁇ 1, respectively.
  • the above-mentioned silicate phosphor can have an orthorhombic or monoclinic crystal structure.
  • the crystal structure of the silicate phosphor is either orthorhombic or monoclinic.
  • the following silicate phosphor (a) or (b) can be used.
  • al, b2, and X are respectively 0 ⁇ a1 ⁇ 0.3, 0 ⁇ b2 ⁇ 0.6, 0 ⁇ x ⁇ 1, and female or, respectively, 0 ⁇ a1 ⁇ 0.2, 0 ⁇ b2 ⁇ 0.4, 0.005 ⁇ 0.1, and more preferably 0 ⁇ a1 ⁇ 0.15, 0 ⁇ b2 ⁇ 0.3, and 0.01 ⁇ x ⁇ 0.05.
  • a2, bl, and x are 0 ⁇ a2 0.2.0 ⁇ b1 ⁇ 0.8, 0 ⁇ x ⁇ 1, respectively, preferably 0 ⁇ a2 ⁇ 0.15, 0b1 ⁇ 0 7, 0.005 ⁇ x ⁇ 0.1, more preferably, a numerical value satisfying 0 ⁇ a2 ⁇ 0.1, 0 ⁇ b1 ⁇ 0.6, and 0.01 ⁇ x ⁇ 0.05, respectively. If the composition is such that al, a2, bl, and b2 in each of the above formulas are smaller than the above ranges, the crystal structure of the silicate phosphor tends to be unstable.
  • the composition has a numerical value larger than the above range, the emitted light will be recorded and not a good yellow phosphor, but a green phosphor. Even if it is combined with the above phosphor, it will not be a semiconductor light emitting device that emits white light with high luminous flux and high Ra.
  • the amount X of Eu added is smaller than the above range, in a composition in which the luminescence intensity is weak and large, a problem of temperature quenching in which the luminescence intensity decreases with an increase in the ambient temperature occurs remarkably.
  • the yellow phosphor used in the semiconductor light emitting device of the present invention uses the silicate phosphor having the orthorhombic crystal structure because the color purity of the yellow light emitted by the silicate phosphor is excellent. It is more desirable to do. Further, for the purpose of stabilizing the crystal structure of the silicate phosphor or increasing the emission intensity, a part of Sr, Ba, and Ca can be replaced with Mg or Zn.
  • the silicate phosphor was evaluated for particle size distribution by a laser diffraction / scattering type particle size distribution analyzer (for example, LMS-30: manufactured by Seishin Enterprise Co., Ltd.) and found to have a center particle size of 0.1 m or more and 100 m or less. Anything is sufficient, but the center particle size is preferably 1 (1 or more and 20 17! Or less, for reasons such as easy synthesis of the phosphor, easy availability, and easy formation of the phosphor layer. More preferably 2 ⁇ m or more and 10 m or less.
  • a silicate phosphor having a distribution close to a normal distribution within a range of 1 j! M or more and 50 m or less is preferable.
  • 5 0 can be prepared I synthesis method Nyo according to (5 01.115,1 ⁇ 0.11 (1968) ⁇ .1181-1184).
  • FIG. 4 is a diagram showing an example of an excitation spectrum and an emission spectrum of the silicate phosphor.
  • FIG. 4 also shows an example of an excitation spectrum and an emission spectrum of a conventional YAG-based phosphor for comparison.
  • the YAG-based phosphor has excitation peaks at three locations around 100 nm to 300 nm, around 300 nm to 37 Onm, and around 370 nm to 550 nm, and absorbs light in each of these narrow wavelength ranges.
  • the silicate phosphor used in the present invention has a wavelength of 550 to 580 nm and emits yellow fluorescence having an emission peak in a yellow-green to yellow wavelength region, whereas the silicate phosphor used in the present invention has a wavelength of 250 to 300 nm.
  • Yellow fluorescence that has an excitation peak near it, absorbs light in a wide wavelength range of 100 to 500 nm, and emits yellow fluorescence with an emission peak in the yellow green to yellow to orange wavelength range of 550 to 600 nm Body. It can also be seen that under the excitation of near ultraviolet light exceeding 350 nm and less than 400 nm, the phosphor is a highly efficient phosphor far exceeding the YAG phosphor.
  • the phosphor layer 2 emits strong yellow light.
  • the excitation and emission spectra are similar to those of the silicate phosphor illustrated in FIG. Become.
  • FIG. 5 to 7 are views showing examples of the semiconductor light emitting device according to the present invention.
  • FIG. 5 shows a stand-type lighting device using the semiconductor light emitting device of the present invention
  • FIG. 6 shows a display device for image display using the semiconductor light emitting device of the present invention
  • FIG. 7 shows semiconductor light emitting device of the present invention.
  • 1 shows a display device for displaying numbers using elements. 5 to 7, a semiconductor light emitting device 12 is the semiconductor light emitting device of the present invention described in the first embodiment.
  • reference numeral 13 denotes a switch for turning on the semiconductor light emitting element 12.
  • the switch 13 When the switch 13 is turned on, the semiconductor light emitting element 12 is energized and emits light.
  • the lighting device of FIG. 5 is shown as a preferred example, and the semiconductor light emitting device according to the present invention is not limited to this embodiment.
  • the light emission color, size, number, shape of the light emitting portion, and the like of the semiconductor light emitting element 12 are not particularly limited.
  • the preferred color temperature is 2000K or more and 12000K or less, preferably 3000K or more and 10000K or less, more preferably 3500K or more and 8000K or less.
  • the lighting device is not limited to the above color temperature.
  • FIG. 6 and 7 show an image display device and a numerical display device as examples of a display device as a semiconductor light emitting device according to the present invention, but the semiconductor light emitting device according to the present invention is not limited to these. Absent.
  • a display device as an example of a semiconductor light emitting device may be configured using the semiconductor light emitting element 12 described in Embodiment 1 as in the case of the lighting device.
  • the emission color, size, number, shape of the light-emitting portion, arrangement of the semiconductor light-emitting elements, and the like of the semiconductor light-emitting elements 12 are not particularly limited, and the external shape is not particularly limited. .
  • the dimensions of the image display device can be arbitrarily manufactured within the range of 1 cm or more and 1 Om or less in width, 1 cm or more and 10 m or less in height, and 5 mm or more and 5 m or less in depth.
  • the number of light emitting elements can be set.
  • reference numeral 12 denotes the semiconductor light emitting device described in the first embodiment. Also in this numeric display device, similarly to the case of the image display device, the emission color, size, number, pixel shape, and the like of the semiconductor light emitting element 12 are not limited.
  • the display characters are not limited to numbers, but may be kanji, katakana, alphabets, and Greek characters.
  • the semiconductor light emitting device as shown in FIGS. 5 to 7, if the light emitting device is constituted by using a plurality of semiconductor light emitting elements 12 using only one kind of LED chip, the total Each semiconductor light-emitting element can operate at the same drive voltage and injection current, and the characteristics of the light-emitting element can be made almost the same due to external factors such as ambient temperature. The change rate of the light emission intensity and color tone of the element can be reduced, and the circuit configuration of the light emitting device can be simplified.
  • a semiconductor light-emitting device is formed using a semiconductor light-emitting element having a flat pixel surface
  • a light-emitting device having a flat light-emitting surface such as a display device having a flat display surface or a lighting device which emits surface light
  • good image quality can be obtained.
  • an illumination device having excellent design when a semiconductor light-emitting device is formed using a semiconductor light-emitting element having a flat pixel surface, a light-emitting device having a flat light-emitting surface such as a display device having a flat display surface or a lighting device which emits surface light can be provided, and good image quality can be obtained. And an illumination device having excellent design.
  • the semiconductor light emitting device is a light emitting device having a high luminous flux by using the semiconductor light emitting element described in Embodiment 1 and capable of obtaining white light with a high luminous flux.
  • the semiconductor light emitting device according to the present invention is not limited to a light emitting device using the semiconductor light emitting device described in Embodiment 1.
  • the semiconductor light emitting device according to the present invention includes a combination of the near-ultraviolet light emitting device and the phosphor layer. It may be a light emitting device. Even in this case, it is needless to say that the same operation and effect can be obtained, and the same semiconductor light emitting device can be obtained.
  • the structure of the semiconductor light-emitting device is shown in Fig. 2.As shown in Fig. 2, a near-ultraviolet LED is conductively mounted on a cup provided on the mount 'lead, and a phosphor formed of epoxy resin with BGRY phosphor particles inside the cup. A semiconductor light emitting device having a structure provided with a layer was obtained.
  • the near-UV LED is an InGaN-based near-UV LED having a light-emitting layer composed of a gallium nitride compound semiconductor and having a light emission peak at a wavelength of 380 nm.
  • the emission spectra of the blue phosphor, green phosphor, red phosphor, and silicate yellow phosphor under the excitation of near-ultraviolet light with a wavelength of 380 nm from the near-ultraviolet LED are shown in Figs. 15 (a) and (d). ), (F) and (g).
  • the mixture weight ratio of the blue phosphor, the green phosphor, the red phosphor, and the silicate yellow phosphor is 55: 14: 42: 24, and the weight ratio of the epoxy resin and these phosphors (mixed phosphor) is 20:
  • the semiconductor light-emitting device was constructed by setting the phosphor layer thickness to about 80 and the substantial thickness of the phosphor layer to about 600 / m.
  • a semiconductor light emitting device (Comparative Example 1) containing the same blue-based phosphor, green-based phosphor, and red-based phosphor as in Example 1 but not containing the yellow-based phosphor in the phosphor layer was used.
  • the semiconductor light emitting device of Comparative Example 1 the mixture weight ratio of the blue phosphor, the green phosphor, and the red phosphor was set to 29:26:52.
  • the substantial thickness of the layer was the same as that of the semiconductor light emitting device of Example 1.
  • the semiconductor light emitting device of Example 1 according to the present invention obtained a higher luminous flux (about 125%) and a higher Ra (68). ⁇ table 1 ⁇
  • the color-recording phosphor ( ⁇ , - ⁇ ⁇ ⁇ , where Ml is at least one alkaline earth metal element selected from the group consisting of Ba, Sr, Ca and Mg, and X satisfies 0 ⁇ x ⁇ 1 .
  • numerical a) represented by the formula (Ba, Sr) 2 Si0 4 : Eu 2+ silicate green phosphor (M1 0.
  • Example 2 A semiconductor light emitting device (Example 2) was manufactured under the same conditions as in Example 1.
  • the emission spectrum of the (Ba, Sr) 2 Si 0 17 : E U 2+ silicate-colored phosphor under excitation of near-ultraviolet light with a wavelength of 380 nm is shown in FIG.
  • Example 2 a semiconductor light-emitting device having the same edge color phosphor as in Example 2 but not including the yellow phosphor in the phosphor layer was also manufactured.
  • the mixed weight ratio of the blue phosphor, the green phosphor, and the red phosphor in the semiconductor light emitting device of Comparative Example 2 was 50:29:64.
  • Example 1 the relative values of (X, y), Ra, and luminous flux in the color temperature, Duv, CIE chromaticity diagram of the white light obtained by the operation of the near-ultraviolet LED of the semiconductor light emitting device described above. was evaluated. Table 2 shows the results.
  • FIG. 10 and 11 show emission spectra of white light emitted by the semiconductor light-emitting elements of Example 2 and Comparative Example 2.
  • M3 (However, M2 is at least one alkaline earth metal element selected from the group consisting of Ba, Sr and Ca, M3 is at least one element selected from the group consisting of Mg and Zn, x, y1 tt, etc.
  • the semiconductor light-emitting device was the same as in Example 1 except that the mixture weight ratio of the red phosphor and the yellow phosphor was 112: 12: 20: 77. (Example 3) was produced.
  • FIG. 15 (b) shows the emission spectrum of the BaMgAI 1Q 0 17 : Eu 2+ aluminate blue phosphor under the excitation of near ultraviolet light having a wavelength of 380 nm.
  • FIG. 12 shows an emission spectrum of white light emitted from the semiconductor light emitting device of Example 3.
  • the semiconductor light emitting device of Example 3 according to the present invention has a higher luminous flux (about 12 3%) and a high Ra (92) were obtained.
  • Ml is at least one alkaline earth metal element selected from the group consisting of Ba, Sr, Ca and Mg, and x is a numerical value satisfying 0 ⁇ x ⁇ 1.
  • the relative values of the color temperature, Duv, chromaticity, Ra, and luminous flux of the white light emitted by the semiconductor light emitting device of Example 4 were evaluated. The results are as shown in Table 4, and almost the same white light as that of the semiconductor light emitting device of Example 1 was obtained.
  • Wavelength as numerical data for simulation evaluation Emission spectrum data (measurement wavelength) of the following phosphors (1) to (4) measured using an instantaneous multi-photometry system (MCP-7000: manufactured by Otsuka Electronics Co., Ltd.) under excitation of near-ultraviolet light of 380 nm. Range: 390-780 nm, wavelength step: 5 nm).
  • the emission spectrum intensity ratio of blue light, green light, red light, and yellow light emitted by each of the phosphors of aluminate green phosphor, oxysulfide red phosphor, and silicate yellow phosphor is calculated by computer. After optimization, the relative value of the luminous flux of white light was calculated. Table 5 shows the results.
  • Table 5 shows the BaMgA ⁇ O ⁇ Eu 2 aluminate blue phosphor, (Ba, Sr) MgAI 10 O 17 : Eu 2+ , Mn 2+ aluminate green phosphor, La0 2 S : Eu 3+ acid
  • (Sr, Ba) 2 Si0 4: Eu 2+ silicate yellow phosphor to the sulfide red phosphor, it is possible to achieve a high luminous flux of white light, and up to a certain addition ratio, silicate yellow phosphor It shows that the luminous flux improves as the mixing ratio of the body increases.
  • 13 (a) shows (Sr, Ba) 2 Si0 4 : illuminance ratio by Eu 2+ silicate yellow fluorescent body 500 /.
  • Figure 13 (b) shows the case where the illuminance ratio is 0%,
  • Example 5 The same simulation evaluation as in Example 5 was performed for the following phosphors (1) to (4). Table 6 shows the results.
  • the relative value of the luminous flux of the obtained white light was calculated using the illuminance ratio of the yellow light emitted by the silicate yellow phosphor in the white light as a parameter.
  • Na us the relative value of the luminous flux of white light shown in Table 6, in Example 5 (Sr, Ba) 2 Si0 4: E u 2+ silicate yellow phosphor 1 when the illuminance ratio is 0% by 00 It is shown as a relative value when
  • Table 6 shows that, as in Example 5, Color phosphor, (Ba, S r ) 2 Si0 17: Ei4 2+ silicate green phosphor, La0 2 S: Eu 3+ oxysulfide red phosphor. (Sr, Ba) 2 Si0 4: Eu 2+
  • a silicate yellow phosphor By adding a silicate yellow phosphor, a high luminous flux of white light can be realized, and the mixing ratio of the silicate yellow phosphor is increased up to a certain addition ratio. This indicates that the luminous flux improves as the temperature increases. Further, a high luminous flux was obtained from the semiconductor light emitting device by further adding a silicate yellow phosphor to a phosphor layer formed by mixing a blue phosphor, a green phosphor and a red phosphor. It also theoretically supports the experimental results described above.
  • FIG 1 4 (a) is (Sr, Ba) 2 Si 0 4: when the illuminance ratio by Eu 2+ silicate yellow fluorescent body is 50%, Fig. 1 4 (b) If the illuminance ratio is 0%
  • the semiconductor light emitting device according to the present invention is a semiconductor light emitting device that emits white light with a higher luminous flux than a conventional semiconductor light emitting device.
  • the semiconductor light emitting device of the present invention emits near-ultraviolet LED and near-ultraviolet light emitted by the near-ultraviolet LED in the visible wavelength region of 380 nm or more and 780 nm or less by absorbing near-ultraviolet light near 350 to 41 Onm.
  • the phosphor layer includes four types of blue phosphor, green phosphor, red phosphor, and yellow phosphor.
  • the decrease in luminous flux due to red light emission with low visibility is compensated for by yellow light with relatively high visibility, and the resulting white light has a good color balance.
  • a semiconductor light emitting device that emits white light with high luminous flux and high Ra can be obtained.
  • a silicate phosphor as the yellow phosphor a highly efficient semiconductor light emitting device far exceeding the conventional semiconductor light emitting device using the YAG phosphor is obtained.
  • the semiconductor light emitting device of the present invention is a combination of a near-ultraviolet LED and a phosphor layer containing four kinds of phosphors of a blue phosphor, a green phosphor, a red phosphor, and a yellow phosphor. With this configuration, it is possible to provide a semiconductor light emitting device that emits white light with high luminous flux and high Ra.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

明 細 書
半導体発光素子とこれを用いた発光装置 技術分野
本発明は、近紫外発光ダイオード(以後、近紫外 LEDと記す)と複数の蛍光体とを 組み合わせて白色系光を放つ半導体発光素子及び発光装置に関するものである。 背景技術
従来から、 350nmを超え且つ 41 Onm以下の近紫外の波長領域に発光ピークを 有する近紫外 LED (厳密には近紫外 LEDチップ)と、この近紫外 LEDが放つ近紫 外光を吸収して、 380n m以上且つ 780nm以下の可視波長範囲内に発光ピーク を有する蛍光を放つ複数の無機蛍光体を含む蛍光体層とを組み合わせてなる、白 色系光を放つ半導体発光素子が知られている。無機蛍光体を用いる前記半導体発 光素子は、有機蛍光物質を用いる半導体発光素子よりも耐久性の面で優れるため. 広く用いられている。
なお、本明細書では、 CIE色度図における発光色度点(X, y)力《、0. 2 1≤x≤0. 48、 0. 1 9≤y≤0. 45の範囲内にある光を白色系光と定義している。
このような半導体発光素子としては、例えば、特開平 1 1—246857号公報、特 開 2000— 1 83408号公報、特表 2000— 5099 1 2号公報又は特開 2001—1 43869号公報などに開示される半導体発光素子が知られている。
特 13平 1 1—246857号公幸艮には、一 式(La,— x yEuxSmy) 202S (ただし、 0. 01≤x≤0. 1 5、 0. 0001≤y≤0. 03 )で表される酸硫化ランタン蛍光体を赤色 蛍光体とし、窒化ガリウム系化合物半導体で構成した発光層を有し、波長 370nm 前後の光を放つ近紫外 LEDと組み合わせてなる半導体発光素子が記載されている, また、特開平 1 1—246857号公報では、前記赤色蛍光体と、他の青色、緑色蛍光 体とを適正に組み合わせることにより、任意の色温度を有する白色光を放つ半導体 発光素子に関する技術が開示されている。
特開 2000— 1 83408号公報には、窒化ガリウム系化合物半導体で構成した発 光層を有し、 370n m付近に発光ピークを有する紫外光を放つ紫外 LEDチップと、 前記紫外光を吸収して青色光を発光する青色蛍光体を含む第 1の蛍光体層と、前 記青色光を吸収して黄橙色光を発光する黄橙色蛍光体を含む第 2の蛍光体層とを 具備する半導体発光素子が記載されている。また青色蛍光体としては、以下の(1) 〜(3)から選ばれる少なくとも 1種からなる青色蛍光体が用いられている。
(1)ー般式(1\/11, Ευ)1()(Ρ04)6〇Ι2(式中、 M1は Mg、 Ca、 Sr及び Baの群から 選ばれる少なくとも一つの元素を表す)で実質的に表される 2価のユーロピウム付 活ハロ燐酸塩蛍光体。
(2)—般式 a (M 2, Eu)0-bAI203(式中、 M2ttMg、 Ca、 Sr、 Ba、Zn、口、 Rb 及び Csの群から選ばれる少なくとも一つの元素を示し、 a及び bは a>0、 b>0、 0. 2≤a/b≤1. 5を満足する数値である)で実質的に表される 2価のユーロピウム付 活アルミン酸塩蛍光体。
(3)—般式 a(M2, Euv, Mnw) 0'bAI203(式中、 M2は Mg、 Ca、 Sr、 Ba、 Zn、 Li、 Rb及ぴ Csの群から選ばれる少なくとも一つの元素を示し、 a、 b、 v及び wは a >0、 b>0、 0. 2≤a/b≤1. 5、0. 001≤w/v≤0. 6を満足する数値である) で実質的に表される 2価のユーロピウム及びマンガン付活アルミン酸塩蛍光体。
また、黄橙色蛍光体としては、一般式(Y,_x_yGdxCey)3AI5012 (式中、 X及び yは
0. 1≤x≤0. 55、 0.01≤y≤0. 4を満足する数値である)で実質的に表される 3 価のセリウム付活アルミン酸塩蛍光体(以後、 YAG系蛍光体という)が用いられて いる。
また、特表 2000— 509912号公報には、 300nm以上且つ 370nm以下の波 長領域に発光ピークを有する紫外 LEDと、 430nm以上且つ 490nm以下の波長 領域に発光ピークを有する青色蛍光体と、 520nm以上且つ 570nm以下の波長 領域に発光ピークを有する録色蛍光体と、 590nm以上且つ 630nm以下の波長 領域に発光ピークを有する赤色蛍光体とを組み合わせてなる半導体発光素子が開 示されている。この半導体発光素子では、青色蛍光体としては、 BaMgA^C^^Eu Sr5(P04)3CI:Eu、ZnS:Ag (いずれも発光ピーク波長は 450nm)が、録色蛍光 体としては、∑113 :〇1_|(発光ピーク波長550111^)ゃ831\1§ 11。017:5|^ Mn (発光 ピーク波長 515nm)が、赤色蛍光体としては、 Y。02S: Eu3+(発光ピーク波長 628 nm;)、 YV04:Eu3+(発光ピーク波長 620nm)、 Y(V, P, B) 04 : Eu3+(発光ピーク 波長 615nm)、 YNb04:Eu3+(発光ピーク波長 615nm)、 YTa04:Eu3+(発光ピ ーク波長 615nm) [Eu(acac)3(phen)] (発光ピーク波長 611 nm)が用いられ ている。
一方、特開 2001— 143869号公報には、有機材料を発光層とし、 430nm以下 の青紫〜近紫外の波長範囲に発光ピークを有する有機 LED、又は、無機材料を発 光層とし、前記青紫〜近紫外の波長範囲に発光ピークを有する無機 LEDと、青色 蛍光体、緑色蛍光体及び赤色蛍光体を組み合わせてなる半導体発光素子が記載 されている。この半導体発光素子では、青色蛍光体としては、 Sr2P207: Sn4+、 Sr4 AI14025:Eu2+、 BaMgAI10O1v:Eu2\ SrGa2S4:Ce3\ CaGa2S4:Ce3\ (Ba, S r) (Mg, Mn)All0O17:Eu2\ (Sr, Ca, Ba, Mg) 10 ( POj 6CI2 : Eu2\ BaAI2SiO 8:Eu2+、 Sr2P207:Eu2+、 Sr5(P04)3CI:Eu2+、 (Sr, Ca, Ba) 5 ( P04) 3CI : Eu2\ BaMg2AI16027: Eu2\ (Ba, Ca) 5 ( P04) 3CI : Eu2\ Ba3MgSi208 : Eu2\ Sr3Mg Si208:Eu2+が用いられ、緑色蛍光体としては、 (BaMg)AI16027:Eu2+, Mn2+、 Sr 4Al 025:Eu2\ (SrBa)AI2Si208:Eu2\ (BaMg) 2Si04 : Eu2\ Y2Si05:Ce3+, Tb3+、 Sr2P207-Sr2B207:Eu2\ ( BaCaMg) 5 ( P04) 3CI : Eu2\ Sr2Si308— 2S rCI2:Eu2\ Zr2Si04-MgAI,,019: Ce3+, Tb3+、 Ba2Si04:Eu2\ Sr2Si 04 : Eu2+. (BaSr)Si04:Eu2+が用いられ、赤色蛍光体としては、 Y202S:Eu3+、 YAI03:Eu3+. Ca2Y2(Si04)6:Eu3\ LiY9 (Si04) 602: Eu3\ YV04:Eu3+、 CaS:Eu2+、 Gd203: Eu3+、 Gd2OzS:Eu3\ Y(P, V) 04 : Eu3+が用いられている。
このように、従来の白色系光を放つ半導体発光素子では、青色系蛍光体と緑色系 蛍光体と赤色系蛍光体が放つ発光の混色、又は、青色系蛍光体と黄色系蛍光体が 放つ発光の混色によって白色系光が得られている。
なお、青色系蛍光体と黄色系蛍光体が放つ発光の混色によって白色系光を得る 方式の従来の半導体発光素子では、黄色系蛍光体として、前記 YAG系蛍光体が用 いられている。また、前記 YAG系蛍光体が、 350nmを超え且つ 400nm以下の波 長領域、とくに窒化ガリウム系化合物半導体で構成した発光層を有する近紫外 LE Dが放つ 360nm以上且つ 400nm以下の近紫外光の励起によってほとんど発光 せず、 400nm以上且つ 530nm以下の青色系光の励起下で黄色光を高効率で放 つ蛍光体であるために、 YAG系蛍光体を用いた従来の半導体発光素子では、青色 系蛍光体を必須とし、前記青色系蛍光体が放つ青色光によって黄色系蛍光体を励 起して白色系光を得ている。
このような白色系光を放つ半導体発光素子は、照明装置や表示装置などの発光 装置用として需要の多い半導体発光素子として知られるものである。
一方、 YAG系蛍光体以外の無機化合物蛍光体を LEDと組み合わせた半導体発 光装置も従来公知である。前述した特開 2001—143869号公報には、 Ba2Si〇 4:Eu2+、 Sr2Si04:Eu2\ Mg2Si04:Eu2\ (BaSr)2Si04: Eu2\ (BaMg)2SiO 4:Eu2+珪酸塩蛍光体を用いた半導体発光素子が記載されている。
しかしながら、この特開 2001— 143869号公報に記載の半導体発光素子では, いずれの珪酸塩蛍光体も緑色系蛍光体としての応用であり、黄色系蛍光体として の応用ではない。また、無機化合物からなる無機 LEDよりも有機 LEDを用いること が発光効率の点から好ましいともされている。すなわち、この公開公報に記載の発 明は、近紫外 LEDと、青色系、緑色系、黄色系、赤色系の各蛍光体を組み合わせ てなる半導体発光素子に関するものではな 近紫外 LED、好ましくは有機 LEDと, 青色系、録色系、赤色系の 3種類の無機化合物の蛍光体を組み合わせてなる半導 体発光素子に関するものである。
なお、本発明者らの実験の限りでは、この特開 2001— 143869号公報に記載 される Sr2Si04:Eu2+珪酸塩蛍光体は、二つの結晶相(斜方晶と単斜晶)を持ちうる 蛍光体であり、少なくとも実用的に用いられる Eu2+発光中心添加量( = Eu原子の 数 Z(Sr原子の数 + Eu原子の数): X)が、 0. 01≤x≤0. 05の範囲内では、斜方 晶 Sr2Si04:Eu2+(ひ '一 Sr2Si〇4:Eu2+)は、波長 560〜575nm付近に発光ピー クを有する黄色光を放つ黄色系蛍光体であり、単斜晶 Sr2Si04:Eu2+( ー Sr2Si 04:Eu2+)は、波長 545nm付近に発光ピークを有する緑色光を放つ緑色系蛍光体 である。したがって、特開 2001— 143869号公報に記載の Sr2Si04:Eu2+緑色 蛍光体は、単斜晶 Sr2Si04:EU 2+蛍光体と見なすことができる。
ここで、前記珪酸塩蛍光体について説明すると、従来から、(Sri_a3_b3xBaa3Cab3 Eux)2Si04の化学式で表される珪酸塩蛍光体(ただし、 a3、 b3、xは、各々、 0≤a 3≤1、 0^b3≤1、0<x<1を満足する数値)が知られている。前記珪酸塩蛍光 体は、蛍光ランプ用の蛍光体として検討がなされた蛍光体であり、 Ba— Sr— Caの 組成を変えることによって、発光のピーク波長が 505 nm以上且つ 598 n m以下程 度の範囲内で変化する蛍光体であることが知られている。さらに、 1 70〜350n m の範囲内の光照射の下で比較的高効率の発光を示す蛍光体であることも知られて いる (J. Electrochemical Soc. Vol.1 1 5、 No.1 1 (1 968)ρρ·1 181 - 1 1 84参照)。
しかしながら、前記文献には、前記珪酸塩蛍光体が、 350nmを超える長い波長 領域の、近紫外光励起条件下において高効率の発光を示すことに関する記載は無 し、。このため、前記珪酸塩蛍光体が、前記 350nmを超え且つ 41 Onm以下の近紫 外の波長領域、とりわけ窒化ガリウム系化合物半導体で構成した発光層を有する 近紫外 LEDが放つ 370〜390nm付近の近紫外光励起によって、高効率の、 55 Onm以上且つ 600nm未満の黄色系発光を放つ蛍光体であることは、これまで知 られていなかった。
近紫外 LEDと複数の蛍光体を含む蛍光体層とを組み合わせてなる、従来の半導 体発光素子及び発光装置にあっては、青色系蛍光体と緑色系蛍光体と赤色系蛍光 体が放つ発光の混色、又は、青色系蛍光体と黄色系蛍光体が放つ発光の混色によ つて白色系光を得る方式で半導体発光素子及び発光装置を構成していた。
なお、本明細書では、各種表示装置(例えば LED情報表示端末、 LED交通信号 灯、自動車の LEDストップランプやし ED方向指示灯など)や各種照明装置(LED屋 内外照明灯、車内 LED灯、 LED非常灯、 LED面発光源など)を広く発光装置と定 義している。
ところで、近紫外 LEDと複数の蛍光体を含む蛍光体層とを組み合わせた、従来の 白色系半導体発光素子及び白色系半導体発光装置にあっては、半導体発光素子 及び半導体発光装置が放つ白色系光の光束が低かった。これは、 350n mを超え 且つ 41 Onm以下の近紫外光励起の下で、高い発光効率を示す蛍光体の開発がこ れまで十分なされていないために、青色系蛍光体、綠色系蛍光体、赤色系蛍光体 のすべてにおいて、白色系半導体発光素子及び発光装置用として使用し得る蛍光 体の種類が少なく、比較的高い発光効率を示す青色系、緑色系、赤色系の各蛍光 体が少数に限定されるだけでなく、白色系光の発光スペクトルの形状が限定される ことに起因する。また、青色系、緑色系、赤色系の三種類の蛍光体が放つ光の混色. 又は、青色系と黄色系の二種類の蛍光体が放つ光の混色によって白色系光を得て いることにも起因する。
青色系、緑色系、赤色系の三種類の蛍光体が放つ光の混色によって、高光束で 平均演色数 Raの高い(Ra = 70以上)白色系光を得るためには、青色系蛍光体、 緑色系蛍光体、赤色系蛍光体のすべての蛍光体が高効率でなければならず、これ ら蛍光体の中に、一つでも低発光効率の蛍光体があれば、白色系光の色バランス の関係で、白色系光の光束は低くなる。 発明の開示
本発明は、これらの問題を解決するためになされたものであり、近紫外 LEDと複 数の蛍光体を含む蛍光体層とを組み合わせてなる、高光束且つ高 Raの白色系光 を放つ半導体発光素子及び半導体発光装置を提供することを目的とする。
前記課題を解決するために、本発明に係る半導体発光素子は、 350n mを超え且 つ 41 On m以下の波長領域に発光ピークを有する発光を放つ近紫外発光ダイォー ドと、前記近紫外発光ダイオードが放つ近紫外光を吸収して、 380n m以上且つ 78 Onm以下の可視波長領域に発光ピークを有する蛍光を放つ複数の蛍光体を含む 蛍光体層とを組み合わせ、 CIE色度図における発光色度点(x, y)力 、 0. 2 1≤x≤ 0. 48、 0. 1 9≤y≤0. 45の範囲にある白色系光を放つ半導体発光素子であって. 前記蛍光体層が、 400n m以上且つ 500nm未満の波長領域に発光ピークを有す る青色系の蛍光を放つ青色系蛍光体と、 500 n m以上且つ 550n m未満の波長領 域に発光ピークを有する緑色系の蛍光を放つ緑色系蛍光体と、 600nm以上且つ 660 n m未満の波長領域に発光ピークを有する赤色系の蛍光を放つ赤色系蛍光体 と、 550nm以上且つ 600n m未満の波長領域に発光ピークを有する黄色系の蛍 光を放つ黄色系蛍光体とを含むことを特徴とする。
ここで、前記近紫外 LEDは、紫外 LEDを含む 250n m以上且つ 41 O n m以下の 波長領域に発光ピークを有する発光を放つ LEDであれば特に限定されないが、入 手の容易さ、製造の容易さ、コスト、発光強度などの観点から、好ましい LEDは 30 On m以上且つ 4 1 O n m以下の波長領域に発光ピークを有する発光を放つ近紫外 L ED、より好ましくは、 350 n mを超え且つ 41 On m以下の波長領域に発光ピークを 有する発光を放つ近紫外 LED、よリー層好ましくは 350nmを超え且つ 400nm未 満の波長領域に発光ピークを有する発光を放つ近紫外 LEDである。
蛍光体層として前記のような蛍光体層を用いると、半導体発光素子が、 400nm 以上且つ 500nm未満の青色系発光と、 500nm以上且つ 550nm未満の緑色系 発光と、 600nm以上且つ 660nm未満の赤色系発光と、 550nm以上且つ 600η m未満の黄色系発光の、四種類の光色を有する発光を放つようになり、この四種類 の光色の混色によって、白色系光を放つようになる。また、色純度は良好であるも のの視感度の低い赤色系発光による白色系光の光束低下分を、視感度の比較的 高い黄色系発光が補うので、白色系光の光束が高くなる。また、得られる白色系光 の分光分布が色バランスの面で優れたものになるので、平均演色数 Raも高くなる。 本発明に係る半導体発光素子において、黄色系蛍光体は、下記の化学式で表さ れる化合物を主体にしてなる珪酸塩蛍光体が好ましい。
(Sr1_al_b1_xBaa1Cab1Eux)2Si04
ただし、 al、 bl、 χίま、各々、 0≤a1≤0. 3, 0≤b1≤0. 8、 0<x<1を満足 する数値である。
ここで、前記化学式における al、 bl、 xの数値は、蛍光体の熱に対する結晶の安 定性、耐温度消光特性、黄色系発光の発光強度、及び光色の観点から好ましくは、 各々、 0<a1≤0. 2, 0≤b1≤0. 7、0. 005≤x≤0. 1、さらに好ましくは、各々 0<a1≤0. 15、 0≤b1≤0. 6、 0. 01≤x≤0. 05を満足する数値であることが 望ましい。
なお、前記珪酸塩蛍光体は、図 4に励起スペクトルと発光スペクトルの一例を示す ように、 250〜300nm付近に励起ピークを有し、 100〜 500nmの広い波長範囲 内の光を吸収して、 550〜600nmの黄緑〜黄〜橙の波長領域に発光ピークを有 する黄色系の蛍光を放つ黄色系蛍光体である。したがって、前記珪酸塩蛍光体は、 YAG系蛍光体のように、近紫外光を青色光に変換する青色系蛍光体が無くとも、 近紫外 LEDが放つ近紫外光を照射すると比較的高効率の黄色系発光を放つことに なるので、発光効率の面で好ましいものとなる。
なお、前記 alと blが、いずれも 0に近い場合には、斜方晶と単斜晶が混在した S 酸塩蛍光体になりやすくなリ、前記数値範囲よりも大きい場合には結晶場が弱くな つて、いずれの場合でも、緑味を帯びた蛍光体になって黄色の色純度が悪い発光 になる。また、 Xが前記数値範囲よりも小さい場合には、 Eu2+発光中心濃度が低い ために珪酸塩蛍光体の発光強度が弱くなるし、大きい場合には、珪酸塩蛍光体の 周囲温度の上昇とともに発光強度が低下する温度消光の問題が顕著になる。
本発明に係る半導体発光素子において、珪酸塩蛍光体は、下記の化学式で表さ れる化合物を主体にしてなることが好ましい。
(Sri-ai-b2-xBaa1Cab2Eux)2Si04
ただし、 al、 b2、 Xは、各々、 0≤a1 3% 0≤b2≤0. 6、 0<乂<1を満足す る数値であり、前述の場合と同じ観点から、好ましくは、各々、 0<a1≤0. 2、 0≤ b2≤0. 4、 0.005≤x≤0.1、より好ましくは、各々、 0<a1≤0. 15 0≤b2≤0. 3、 0.01≤x≤0,05を満足する数値であることが望ましい。
本発明に係る半導体発光素子において、青色系蛍光体は下記の(1)又は(2)の 青色系蛍光体であり、録色系蛍光体は下記の(3)又は(4)の緑色系蛍光体であり. 赤色系蛍光体は下記の(5)の赤色系蛍光体であることが好ましい。
(1)以下の化学式で表される化合物を主体にしてなるハロ燐酸塩蛍光体。
(M11_xEux)10(PO4)6CI2
ただし、 M1は、 Ba、 Sr、 Ca及び Mgの群から選ばれる少なくとも一つのアルカリ 土類金属元素、 Xは 0<x<1を満足する数値である。
(2)以下の化学式で表される化合物を主体にしてなるアルミン酸塩蛍光体。
(M2卜 xEux) (M31_y1Mny1)AI10O17
ただし、 M2は、 Ba、 Sr及び Caの群から選ばれる少なくとも一つのアルカリ土類 金属元素、 M3は、 Mg及び Znの群から選ばれる少なくとも一つの元素、 x、y1は、 各々、 0<x<1、 0≤y1 <0. 05を満足する数値である。
(3)以下の化学式で表される化合物を主体にしてなるアルミン酸塩蛍光体。
(M2,— xEux) (M3,_y2Mny2)All0O17
ただし、 M2は、 Ba、 Sr及ぴ Caの群から選ばれる少なくとも一つのアルカリ土類 金属元素、 M3は、 Mg及び Znの群から選ばれる少なくとも一つの元素、 M3は、 M g及び Znの群から選ばれる少なくとも一つの元素、 x、 y2は、各々、 0<x<1、 0. 05≤y2<1を満足する数値である。 (4)以下の化学式で表される化合物を主体にしてなる珪酸塩蛍光体。
(M l 1_xEux) 2Si 04
ただし、 M lは、 Ba、 Sr、 Ca及び M gの群から選ばれる少なくとも一つのアル力 リ土類金属元素、 Xは 0 < x < 1を満足する数値である。
( 5 )以下の化学式で表される化合物を主体にしてなる酸硫化物蛍光体。
( Ln1_xEux) 02S
ただし、し nは、 Sc、 Y、 La及び Gdの群から選ばれる少なくとも一つの希土類元素, Xは 0 < x < 1を満足する数値である。
前記の青色系蛍光体、緑色系蛍光体、赤色系蛍光体は、いずれも、近紫外光の 励起によって強い光を放つ高効率蛍光体であるので、このような蛍光体の組み合わ せにすると、前記蛍光体層が発光強度の大きな白色系光を放つようになる。
本発明に係る半導体発光素子において、近紫外 LEDは、窒化ガリウム系化合物 半導体で構成した発光層を有する近紫外 LEDであることが好ましい。
窒化ガリウム系化合物半導体で構成した発光層を有する近紫外 LEDは、高い発 光効率を示し、長期連続動作も可能であるので、このような近紫外 LEDを用いるこ とにより、長期連続動作が可能で、しかも、高光束の白色系光を放つ半導体発光素 子が得られる。
本発明に係る半導体発光素子において、発光素子から放たれる白色系光の平均 演色数 Raが 70以上且つ 1 00未満であることが好ましい。
この平均演色数 Raは、より好ましくは 80以上且つ 1 00未満、よリー層好ましくは 88以上且つ 1 00未満とするのが良く、このようにすると、とりわけ照明装置に適し た半導体発光素子になる。
本発明に係る第 1の半導体発光装置は、前述のいずれかの半導体発光素子を用 いて構成した半導体発光装置である。
前述の半導体発光素子は、高光束且つ高 Raの白色系光を放つので、本発明に 係る半導体発光素子を用いて発光装置を構成すると、高光束且つ高 Raの白色系 光を放つ半導体発光装置が得られる。
また、本発明に係る第 2の半導体発光装置は、 350nmを超え且つ 41 Onm未満の 波長領域に発光ピークを有する発光を放つ近紫外発光素子と、前記近紫外発光素 子が放つ近紫外光を吸収して、 380nm以上且つ 780nm以下の可視波長領域に 発光ピークを有する蛍光を放つ複数の蛍光体を含む蛍光体層とを組み合わせ、 CI E色度図における発光色度点(x, y)力《、 0. 21≤x≤0. 48、 0. 1 9≤y≤0. 45 の範囲にある白色系光を放つ半導体発光装置であって、前記蛍光体層力、 400η m以上且つ 500nm未満の波長領域に発光ピークを有する青色系の蛍光を放つ青 色系蛍光体と、 500nm以上且つ 550nm未満の波長領域に発光ピークを有する 緑色系の蛍光を放つ緑色系蛍光体と、 600nm以上且つ 660nm未満の波長領域 に発光ピークを有する赤色系の蛍光を放つ赤色系蛍光体と、 550nm以上且つ 60 Onm未満の波長領域に発光ピークを有する黄色系の蛍光を放つ黄色系蛍光体と を含むことを特徴とする。
このようにしても、高光束且つ高 Raの白色系光を放つ半導体発光装置が得られ る。
ここで、半導体発光装置の具体例としては、 LED情報表示端末、 LED交通信号 灯、自動車の LEDストップランプ、 LED方向指示灯などの各種表示装置や、 LED 屋内外照明灯、車内 LED灯、 LED非常灯、 LED面発光源などの各種照明装置を 挙げることができる。
なお、本発明における近紫外 LEDに代えて、同じ波長領域に発光ピークを有する 発光を主発光成分として放つ発光素子(半導体発光素子に限定されない)を用いて も、同様の作用効果が得られ、同様の白色系発光素子が得られることはいうまでも ない。
このような発光素子としては、レーザーダイオード、面発光レーザ一ダイオード、無 機エレクト口ルミネッセンス素子、有機エレクト口ルミネッセンス素子などがある。 図面の簡単な説明
図 1は本発明の半導体発光素子の縦断面図である。
図 2は本発明の半導体発光素子の縦断面図である。
図 3は本発明の半導体発光素子の縦断面図である。
図 4は珪酸塩蛍光体と YAG系蛍光体の発光及び励起スペクトルを示す図である。 図 5は本発明の半導体発光装置の一例としての照明装置を示す図である。 図 6は本発明の半導体発光装置の一例としての画像表示装置を示す図である。 図 7は本発明の半導体発光装置の一例としての数字表示装置を示す図である。 図 8は実施例 1の半導体発光素子の発光スペクトルを示す図である。
図 9は比較例 1の半導体発光素子の発光スペクトルを示す図である。
図 1 0は実施例 2の半導体発光素子の発光スペクトルを示す図である。
図 1 1は比較例 2の半導体発光素子の発光スペクトルを示す図である。
図 1 2は実施例 3の半導体発光素子の発光スペクトルを示す図である。
図 1 3はシミュレーションによる白色系光の発光スペクトルを示す図である。
図 1 4はシミュレーションによる白色系光の発光スペクトルを示す図である。
図 1 5は本発明で使用する蛍光体の発光スペクトルを示す図である。 発明を実施するための最良の形態
〔実施の形態 1〕
以下、本発明の半導体発光素子の実施の形態を、図面を用いて説明する。図 1〜 図 3はそれぞれ形式の異なる半導体発光素子の縦断面図である。
半導体発光素子の代表的な例としては、図 1、図 2又は図 3に示す半導体発光素 子が挙げられる。図 1は、サブマウント素子 7の上にフリップチップ型の近紫外 LED 1を導通搭載するとともに、青色系蛍光体粒子 3と緑色系蛍光体粒子 4と赤色系蛍 光体粒子 5と黄色系蛍光体粒子 6を含む蛍光体粒子(以後、 BGRY蛍光体粒子と いう)を内在し蛍光体層を兼ねる樹脂のパッケージによって、近紫外し ED 1を封止し た構造の半導体発光素子を示している。図 2は、リードフレーム 8のマウント'リード に設けたカップ 9に近紫外 LED 1を導通搭載するとともに、カップ 9内に、 BGRY蛍 光体粒子(3, 4, 5 , 6 )を内在した樹脂で形成した蛍光体層 2を設け、全体を封止 樹脂 1 0で封止した構造の半導体発光素子を示している。図 3は、筐体 1 1内に近紫 外 LED 1を配置するとともに、筐体 1 1内に BGRY蛍光体粒子(3, 4, 5, 6 )を内在 した樹脂で形成した蛍光体層 2を設けた構造のチップタイプの半導体発光素子を示 している。
図 1〜図 3において、近紫外 LED 1は、 350nmを超え且つ 41 Onm以下、好まし くは 350nmを超え且つ 400nm未満の波長領域に発光ピークを有する近紫外光を 放つ LEDであり、窒化ガリウム系化合物半導体、炭化シリコン系化合物半導体、セ レン化亜鉛系化合物半導体、硫化亜鉛系化合物半導体などの無機化合物や、有機 化合物で構成した発光層を有する光電変換素子(いわゆる LED、レーザーダイォ ード、面発光レーザーダイオード、無機エレクト口ルミネッセンス(EL)素子、有機 E L素子)である。これら近紫外 LED 1に電圧印加又は電流注入して、前記波長範囲 内に発光ピークを有する近紫外光を得る。
ここで、大きな近紫外光出力を、長期間安定して得るためには、近紫外 LED 1は、 無機化合物で構成した無機 LEDが好ましく、その中でも、窒化ガリウム系化合物半 導体で構成した発光層を有する近紫外 LEDが、発光強度が大きいのでより好まし い。
蛍光体層 2は、近紫外 LED 1が放つ近紫外光を吸収して、 CIE色度図における発 光色度点(X , y)が、 0. 2 1≤x≤0. 48、 0. 1 9≤y≤0. 45の範囲にある白色系 光に変換するためのものであり、近紫外 LED 1が放つ近紫外光を吸収して 400nm 以上且つ 500nm未満の波長領域に発光ピークを有する青色系の蛍光を放つ青色 系蛍光体粒子 3と、近紫外 LED 1が放つ近紫外光を吸収して 500nm以上且つ 55 On m未満の波長領域に発光ピークを有する緑色系の蛍光を放つ緑色系蛍光体 4と. 近紫外 LED 1が放つ近紫外光を吸収して 600nm以上且つ 660nm未満の波長領 域に発光ピークを有する赤色系の蛍光を放つ赤色系蛍光体 5と、近紫外 LED 1が 放つ近紫外光を吸収して 550nm以上且つ 600nm未満の波長領域に発光ピーク を有する黄色系の蛍光を放つ黄色系蛍光体 6を含む。
蛍光体層 2は、前記の BGRY蛍光体粒子(3 , 4, 5 , 6 )を母材中に分散させて形 成する。母材としては、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ユリア樹脂、 シリコーン樹脂などの樹脂を用いることができ、入手と取り扱いが容易でしかも安価 な点でエポキシ樹脂又はシリコーン樹脂が好ましい。蛍光体層 2の実質厚みは、 1 0 /7 m以上且つ 1 mm以下、好ましくは 1 00 / m以上且つ 700 m以下である。
蛍光体層 2中の青色系蛍光体粒子 3は、近紫外 LED 1が放つ近紫外光を吸収し て、 400nm以上且つ 500nm未満の波長領域に発光ピークを有する青色系の蛍 光を放つ青色系蛍光体 3であればよ 無機材料であっても有機材料(例えば蛍光 色素)であっても使用することができるが、望ましくは下記の(1 )又は(2 )のいずれ かの蛍光体とするのがよい。
(1)下記の化学式で表される化合物を主体にしてなるハロ燐酸塩蛍光体。
(M11_xEux)l0(PO4)6CI2
ただし、 M1は、 Ba、 Sr、 Ca及び Mgの群から選ばれる少なくとも一つのアルカリ 土類金属元素、 Xは 0<x<1を満足する数値である。
(2)下記の化学式で表される化合物を主体にしてなるアルミン酸塩蛍光体。
(M2,.xEux) (M3'— y1Mnyl)AI10O
ただし、 M2は、 Ba、 Sr及ぴ Caの群から選ばれる少なくとも一つのアルカリ土類 金属元素、 M3は、 Mg及び Znの群から選ばれる少なくとも一つの元素、 x、 ylは、 各々、 0<x<1、 0≤y1 <0. 05を満足する数値である。
なお、前記望ましい青色系蛍光体の具体例としては、 BaMgAI^G^^Eu2 (Ba, Sr) (Mg, Mn)AI10O17:Eu2+、 (Sr, Ca, Ba, Mg) 10 ( P04) 6CI2 : Eu2\ Sr5(PO 4)3C Eu2+、 (Sr, Ca, Ba) 5 ( P04) 3C1 : Eu2\ BaMg2AI16027 : Eu2\ (Ba, Ca)5 (P04)3CI:Eu2+などを挙げることができる。
蛍光体層 2中の緑色系蛍光体粒子 4は、近紫外 LED1が放つ近紫外光を吸収し て、 500nm以上且つ 550nm未満の波長領域に発光ピークを有する緑色系の蛍 光を放つ緑色系蛍光体 4であればよぐ無機材料であっても有機材料であっても使 用することができるが、望ましくは下記の(3)又は(4)のいずれかの蛍光体とする のがよい。
(3)下記の化学式で表される化合物を主体にしてなるアルミン酸塩蛍光体。
(M2ト xEux) (M3ト y2Mny2)AI10O,7
ただし、 M2は、 Ba、 Sr及び Caの群から選ばれる少なくとも一つのアルカリ土類 金属元素、 M3は、 Mg及び Znの群から選ばれる少なくとも一つの元素、 x、 y2は、 各々、 0<x<1、 0. 05≤y2<1を満足する数値である。
(4)下記の化学式で表される化合物を主体にしてなる珪酸塩蛍光体。
(M1,_xEux)2Si04
ただし、 Mlは、 Ba、 Sr、 Ca及び Mgの群から選ばれる少なくとも一つのアル力 リ土類金属元素、 Xは 0<Xく 1を満足する数値である。
前記望ましい緑色系蛍光体の具体例としては、(BaMg)AI16027:EU 2+, Mn2\ (BaMg)2Si04:Eu2\ Ba2Si04:Eu2\ Sr2Si04:Eu2\ (BaSr) Si04: Eu2+、 (B a, Sr)Si04:Eu2+などを挙げることができる。
蛍光体層 2中の赤色系蛍光体粒子 5は、近紫外 LED1が放つ近紫外光を吸収し て、 600nm以上且つ 660nm未満の波長領域に発光ピークを有する赤色系の蛍 光を放つ赤色系蛍光体 5であればよく、無機材料であっても有機材料であっても使 用することができるが、望ましくは下記(5)の蛍光体とするのがよい。
(5)下記の化学式で表される化合物を主体にしてなる酸硫化物蛍光体。
(Ln,_xEux)OzS
ただし、 Lnは、 Sc、 Y、 La及び Gdの群から選ばれる少なくとも一つの希土類元素, Xは 0<x<1を満足する数値である。
前記望ましい赤色系蛍光体 5の具体例としては、 Sc202S:Eu3+、 Y202S:Eu 3 +
Ln202S: Eu3\ Ln202S Eu3+, Sm3\ Gd202S: Eu3+などを挙げることができる。 蛍光体層 2中の黄色系蛍光体粒子 6は、近紫外 LED1が放つ近紫外光を吸収し て、 550nm以上且つ 600nm未満の波長領域に発光ピークを有する黄色系の蛍 光を放つ黄色系蛍光体であればよいが、製造の容易さや発光性能の良好さ(高輝 度、高黄色純度)などから、望ましくは下記の化学式で表される化合物を主体にして なる珪酸塩蛍光体とするのがよい。
(Sri_a1_b1.xBaa1Cab1Eux)2Si04
ただし、 al、 bl、 xは、各々、 0≤a1≤0. 3, 0≤b1≤0. 8、 0<x<1を満足す る数値、好ましくは、各々、 0<a1≤0. 2> 0≤b1≤0. 7、0. 005≤x≤0. 1、よ リ好ましくは、各々、 0<a1≤0. 15 0≤b1≤0. 6、0. 01≤x≤0. 05である。 よリー層好ましくは、下記の化学式で表される化合物を主体にしてなる珪酸塩蛍 光体とするのがよい。
(Sri- ai- b2- xBaa1Cab2Eux)2Si04
ただし、 a1、 b2、 xは、各々、 0≤a1≤0. 3, 0≤b2≤0. 6、0<x<1を満足す る数値である。
前記の珪酸塩蛍光体は、結晶構造として斜方晶と単斜晶を取り得るが、本発明の 半導体発光素子では、珪酸塩蛍光体の結晶構造は斜方晶と単斜晶のいずれであつ てもよく、下記(a)又は(b)の珪酸塩蛍光体を使用することができる。 (a)斜方晶の結晶構造を有する、以下の組成の珪酸塩蛍光体。
(Srl_a1_b2_xBaa1Cab2Eux)2Si04
ただし、 al、 b2、 Xは、各々、 0≤a1≤0. 3 0≤b2≤0. 6、 0<xく 1、女子ましく は、各々、 0く a1≤0. 2, 0≤b2≤0. 4、 0·005≤χ≤0·1、より好ましくは、各々 0<a1≤0. 15, 0≤b2≤0. 3、 0.01≤x≤0.05を満足する数値である。
(b)単斜晶の結晶構造を有する、以下の組成の珪酸塩蛍光体。
(S r1_a2_b1_xBaa2Oab1 n ux) 2 i04
ただし、 a2、 bl、 xは、各々、 0≤a2 0. 2.0≤b1≤0. 8、0<x<1、好まし くは、各々、 0≤a2≤0. 15、 0く b1≤0. 7、 0.005≤x≤0.1、より好ましくは、 各々、 0≤a2≤0. 1 , 0<b1≤0. 6、 0.01≤x≤0.05を満足する数値である。 前記各式における al、 a2、 bl、 b2が前記範囲内よりも小さい数値の組成では、 珪酸塩蛍光体の結晶構造が不安定になりやす 動作温度によって発光特性が変 化する問題が生じる。一方、前記範囲内よりも大きい数値の組成では発光が録味を 帯びたものとなり、良好な黄色系蛍光体にはならず、緑色系蛍光体となるために、 赤系、緑系、青系の蛍光体と組み合わせても、高光束、高 Raの白色系光を放つ半 導体発光素子にはならない。また、 Eu添加量 Xが前記範囲内よりも小さい数値の組 成では発光強度が弱 大きい数値の組成では、周囲温度の上昇とともに発光強度 が低下する温度消光の問題が顕著に生じる。
なお、本発明の半導体発光素子にあって用いる黄色系蛍光体は、珪酸塩蛍光体 が放つ黄色系光の色純度が優れる理由で、前記斜方晶の結晶構造を有する珪酸 塩蛍光体を使用することがより望ましい。また、珪酸塩蛍光体の結晶構造を安定化 したり、発光強度を高める目的で、 Sr、 Ba、 Caの一部を Mgや Znで置き換えること もできる。
前記珪酸塩蛍光体は、レーザー回折 ·散乱式粒度分布測定器(例えば LMS— 3 0:株式会社セイシン企業製)による粒度分布評価で、中心粒径が 0. 1 m以上且 つ 100 m以下のものであれば足りるが、蛍光体の合成の容易さ、入手の容易さ、 蛍光体層の形成の容易さなどの理由で、中心粒径が 1 ( 1以上且っ20 17!以下 が好ましく、 2 μ m以上且つ 10 m以下がより好ましい。粒度分布については、 0. 01 ji m未満及び lOOOj! mを超える粒子を含まなければよい力《、中心粒径と同じ 理由で、 1 j! m以上且つ 50 m以下の範囲内で正規分布に近似した分布を有する 珪酸塩蛍光体が好ましい。
なお、前記の珪酸塩蛍光体は、例えば、前記文献(丄 Electrochemical
50(5 01.115、1^0.11(1968)叩.1181-1184)に記載の合成方法にょって製造すること ができる。
以下、前記珪酸塩蛍光体の特性をさらに具体的に説明する。
図 4は、前記珪酸塩蛍光体の励起スペクトル及び発光スペクトルの例を示す図で ある。図 4には、比較のために、従来の YAG系蛍光体の励起スペクトル及び発光ス ベクトルの例もまとめて示している。
図 4からわかるように、 YAG系蛍光体が 100nm〜300nm付近、 300nm~37 Onm付近、 370nm〜550nm付近の三力所に励起ピークを有し、これら各々の狭 い波長範囲内の光を吸収して、 550〜580nmの黄緑〜黄の波長領域に発光ピー クを有する黄色系の蛍光を放つ蛍光体であるのに対して、本発明において使用す る珪酸塩蛍光体は、 250〜300nm付近に励起ピークを有し、 100〜500nmの 広い波長範囲内の光を吸収して、 550〜600nmの黄緑〜黄〜橙の波長領域に 発光ピークを有する黄色系の蛍光を放つ黄色系蛍光体である。また、 350nmを超 え且つ 400nm未満の近紫外光の励起下では、 YAG系蛍光体をはるかに凌ぐ高効 率の蛍光体であることもわかる。
したがって、前記珪酸塩蛍光体を黄色系蛍光体粒子 6として蛍光体層 2に含める ことによって、蛍光体層 2が強い黄色系光を放つようになる。
なお、前記した al、 a2、 bl、 b2、 xの数値範囲内の組成の珪酸塩蛍光体であれ ば、励起及び発光スペクトルは、図 4に例示した珪酸塩蛍光体のスペクトルに類似 したものとなる。
〔実施の形態 2〕
以下、本発明の半導体発光装置の実施の形態を図面を用いて説明する。図 5~ 図 7は本発明に係る半導体発光装置の例を示す図である。
図 5は本発明の半導体発光素子を用いたスタンド型の照明装置を示し、図 6は本 発明の半導体発光素子を用いた画像表示用の表示装置を示し、図 7は本発明の半 導体発光素子を用いた数字表示用の表示装置を示している。 図 5ないし図 7において、半導体発光素子 1 2は実施の形態 1で説明した本発明の 半導体発光素子である。
図 5において、 1 3は半導体発光素子 1 2を点灯させるためのスィッチであり、スィ ツチ 1 3を ONすると、半導体発光素子 1 2が通電して発光を放つようになる。
なお、図 5の照明装置は好ましい一例として示したもので、本発明に係る半導体 発光装置はこの実施形態に限定されるものではい。また、半導体発光素子 1 2の発 光色、大きさ、数、発光部分の形状なども特に限定されるものではない。
また、この例の照明装置において、好ましい色温度は 2000K以上且つ 1 2000K 以下、好ましくは 3000K以上且つ 1 0000K以下、さらに好ましくは 3500K以上 且つ 8000K以下であるが、本発明に係る半導体発光装置としての照明装置は前 記色温度に限定されるものではない。
図 6と図 7には、本発明に係る半導体発光装置としての表示装置の例として画像 表示装置と数字表示装置を示したが、本発明に係る半導体発光装置はこれらに限 定されるものではない。
半導体発光装置の一例としての表示装置は、前記照明装置の場合と同様に、実 施の形態 1で説明した半導体発光素子 1 2を用いて構成しておれぱい。また、半導 体発光素子 1 2の発光色、大きさ、数、発光部分の形状や半導体発光素子の配置 の仕方なども特に限定されるものではないし、外観形状も特に限定されるものでは ない。
画像表示装置としての寸法は幅 1 cm以上且つ 1 Om以下、高さ 1 cm以上且つ 1 0 m以下、奥行き 5mm以上且つ 5m以下の範囲で任意に製作することができ、この 寸法に応じて半導体発光素子の個数を設定することができる。
図 6に示す数字表示装置において、 1 2が実施の形態 1で説明した半導体発光素 子である。この数字表示装置においても、画像表示装置の場合と同様に、半導体発 光素子 1 2の発光色、大きさ、数、画素の形状などは限定されるものではない。また. 表示文字は数字に限定されるものではなぐ漢字、カタカナ、アルファベット、ギリシ ァ文字などであっても構わない。
なお、図 5〜図 7に示したような半導体発光装置にあっては、一種類の LEDチップ だけを用いた複数個の半導体発光素子 1 2を用いて構成した発光装置にすると、全 く同じ駆動電圧や注入電流での各半導体発光素子の動作が可能になるとともに、 周囲温度などの外部要因による発光素子の特性変動もほぼ同一にできるようにな リ、電圧変化や温度変化に対する発光素子の発光強度や色調の変化率を少なくで きるとともに、発光装置の回路構成をシンプルにできる。
また、画素面が平坦な半導体発光素子を用いて半導体発光装置を構成すると、 表示面が平坦な表示装置や面発光する照明装置など、発光面の平坦な発光装置 を提供でき、良好な画質を有する画像表示装置や、デザイン性に優れる照明装置を 提供できる。
本発明に係る半導体発光装置は、実施の形態 1に記載した、高光束の白色系光 が得られる半導体発光素子を用いて発光装置を構成することによって、高光束の発 光装置となる。
なお、実施の形態 1に記載の半導体発光素子を用いて構成した発光装置だけでなく. 本発明に係る半導体発光装置は、前記近紫外発光素子と前記蛍光体層とを組み合 わせてなる半導体発光装置であってもよい。このようにしても、同様の作用効果が 得られ、同様の半導体発光装置が得られることはいうまでもない。
(実施例 1)
青色系蛍光体を(M2,_xEux) (M3,— y1Mny1)AI10O17(ただし、 M2は、 Ba、 Sr及 び Caの群から選ばれる少なくとも一つのアルカリ土類金属元素、 M3は、 Mg及び Z nの群から選ばれる少なくとも一つの元素、 x、y1 tt、 々、 0<x<1、 0≤y1 <0. 05を満足する数値である。)の化学式で表される、(Ba, Sr)MgAI10Ol7:Eu2+, M n2+ァ レミン酸塩青色蛍光体(M2 = 0. 9Ba + 0. 1 Sr% x = 0. 1、y = 0. 015)と し、緑色系蛍光体を(MS EUx) (M3
Figure imgf000020_0001
(ただし、 M2は、 Ba、 Sr及 ぴ Caの群から選ばれる少なくとも一つのアルカリ土類金属元素、 M3は、 Mg及び Z nの群から選ばれる少なくとも一つの元素、 x、 y2は、各々、 0<x<1、 0. 05≤y2 く 1を満足する数値である。)の化学式で表される、
Figure imgf000020_0002
Mn2+ァ ルミン酸塩緑色蛍光体(x = 0. 1、y = 0. 3)とし、赤色系蛍光体を(ίη,-χΕι Ο
(ただし、 Lnは、 Sc、 Y、 La及び Gdの群から選ばれる少なくとも一つの希土類元素, Xは 0く Xく 1を満足する数値である。)の化学式で表される La02S:Eu3+酸硫化物 赤色蛍光体(x = 0. 1)とし、黄色系蛍光体を(S! a1b1 xBaa,Cab1Eux)2Si04(た だし、 a1、 b1、 xは、各々、 0≤a1≤0. 3, 0≤b1≤0. 8、 0<x< 1を満足する数 値である。)の化学式で表され、斜方晶の結晶構造を有する、(Sr, Ba)2Si04:Eu 2+珪酸塩黄色蛍光体(a1 =0. 1、 bl =0、 x = 0.02)とした半導体発光素子を製 作した。
半導体発光素子の構造は、図 2に示したような、マウント'リードに設けたカップに 近紫外 LEDを導通搭載するとともに、カップ内に BGRY蛍光体粒子が内在するェ ポキシ樹脂で形成した蛍光体層を設けた構造の半導体発光素子とした。また、近紫 外 LEDは、窒化ガリウム系化合物半導体で構成した発光層を有し、波長 380nm に発光ピークを有する、 InGaN系の近紫外 LEDとした。この近紫外 LEDからの波 長 380nmの近紫外光励起下での、青色蛍光体、緑色蛍光体、赤色蛍光体、珪酸 塩黄色蛍光体の蛍光体の発光スペクトルを図 15の(a)、(d)、(f)、(g)に示した。 前記青色蛍光体、緑色蛍光体、赤色蛍光体、珪酸塩黄色蛍光体の混合重量割合 を 55 :14:42 :24、エポキシ樹脂とこれら蛍光体(混合蛍光体)との重量割合を 2 0:80とし、蛍光体層の実質厚みを約 600 / mとして半導体発光素子を構成した。 比較のために、蛍光体層中に実施例 1と同じ青色系蛍光体と緑色系蛍光体と赤 色系蛍光体とを含み、黄色系蛍光体を含まない半導体発光素子(比較例 1 )を製作 した。この比較例 1の半導体発光素子においては、青色蛍光体、緑色蛍光体、赤色 蛍光体の混合重量割合を 29 :26 :52とした、なお、エポキシ樹脂と混合蛍光体と の重量割合、蛍光体層の実質厚みについては、実施例 1の半導体発光素子と同じ にした。
前記の実施例 1及び比較例 1の半導体発光素子の近紫外 LEDに 1 OmAを通電し て、近紫外 LEDを動作させて、半導体発光素子から白色系光を得た。この白色系 光の色温度、 Duv、 CIE色度図における(X, y)値、 Ra、光束の相対値を、瞬間マ ルチ測光システム(MCPD— 7000:大塚電子株式会社製)を用いて評価した。こ の結果を表 1に示す。また、実施例 1と比較例 1の半導体発光素子が放つ白色系光 の発光スペクトルを図 8と図 9に示す。表 1からわかるように、ほぼ同じ色温度(78
80~9500K)% Duv(-15. 6 8. 7)、色度(x = 0. 290~0. 301、y = 0.
278-0. 293)の白色系光のもとでは、本発明に係る実施例 1の半導体発光素子 の方が、高い光束(約 125%)と高い Ra(68)が得られた。 【表 1】
Figure imgf000022_0001
(実施例 2)
録色系蛍光体を(ΜΙ,-χΕι ^ίΟ ただし、 Mlは、 Ba、 Sr、 Ca及び Mgの群か ら選ばれる少なくとも一つのアルカリ土類金属元素、 Xは 0<x<1を満足する数値 である。)の化学式で表される(Ba, Sr)2Si04:Eu2+珪酸塩緑色蛍光体(M1 =0.
4Ba + 0.6Sr、x = 0. 02)としして、青色蛍光体、緑色蛍光体、赤色蛍光体、 E圭 酸塩黄色蛍光体の混合重量割合を、 92:3:33:48としたほ力、は実施例 1と同じ条 件で半導体発光素子(実施例 2)を製作した。波長 380nmの近紫外光励起下での 前記(Ba, Sr)2Si017:EU 2+珪酸塩縁色蛍光体の発光スペクトルを図 15の(e)【こ 示した。
比較のために、実施例 2と同じ縁色系蛍光体で、蛍光体層中に黄色系蛍光体を含 まない半導体発光素子(比較例 2)も製作した。比較例 2の半導体発光素子におけ る青色蛍光体、緑色蛍光体、赤色蛍光体の混合重量割合は 50:29:64とした。 実施例 1と同様に、前記の半導体発光素子の近紫外 LEDの動作によって得られ る白色系光の、色温度、 Duv、 CIE色度図における(X, y)値、 Ra、光束の相対値を 評価した。結果を表 2に示す。また、実施例 2と比較例 2の半導体発光素子が放つ 白色系光の発光スペクトルを図 10と図 11に示す。表 2からわかるように、ほぼ同じ 色温度(7880~9500K)、 Duv(— 15. 6〜- 8. 7)、色度(x = 0, 290-0. 3 01 y = 0. 278-0. 293)の白色系光のもとでは、本発明に係る実施例 2の半導 体発光素子の方が、高い光束(約 113。/0)と高い Ra(86)が得られた。また、実施 例 1の半導体発光素子と比較しても、高い光束と高い Raが得られた。 【表 2】
Figure imgf000023_0002
(実施例 3)
青色系蛍光体を xEux) (M3
Figure imgf000023_0001
(ただし、 M2は、 Ba、 Sr及 び Caの群から選ばれる少なくとも一つのアルカリ土類金属元素、 M3は、 Mg及び Z nの群から選ばれる少なくとも一つの元素、 x、y1 tt、 々、 0<x<1、 0≤y1 <0. 05を満足する数値である。)の化学式で表される、 BaMgAI^C^^Eu アルミン酸 塩青色蛍光体(x = 0. 1、y = 0:第 2のアルミン酸塩青色蛍光体)とし、緑色蛍光体. 赤色蛍光体、黄色蛍光体の混合重量割合を 112: 12:20:77としたほかは実施 例 1と同じ条件で半導体発光素子(実施例 3)を製作した。波長 380nmの近紫外光 励起下での、前記 BaMgAI1Q017:Eu2+アルミン酸塩青色蛍光体の発光スペクトル を図 15の(b)に示した。
実施例 1及び 2と同様に、前記した半導体発光素子が放つ白色系光の色温度、 D uv、 CIE色度図における(x, y)値、 Ra、光束の相対値を評価した。結果を表 3に示 す。また、実施例 3の半導体発光素子が放つ白色系光の発光スペクトルを図 12に 示す。表 3からわかるように、ほぼ同じ色温度、 Duv、色度の白色系光のもとでは、 本発明に係る実施例 3の半導体発光素子は実施例 1に比較して、高い光束(約 12 3%)と高い Ra (92)が得られた。 【表 3】
Figure imgf000024_0002
(実施例 4)
青色系蛍光体を(Ml
Figure imgf000024_0001
ただし、 Mlは、 Ba、 Sr、 Ca及び Mg の群から選ばれる少なくとも一つのアルカリ土類金属元素、 xは、 0<x<1を満足 する数値である。)の化学式で表される(Sr, B^ PO eC^Eu"ハロ燐酸塩青 色蛍光体(Ml =0. 75Sr + 0. 25Ba、 x = 0. 01 )としたほかは実施例 1と同じ条 件で半導体発光素子(実施例 4)を製作した。波長 380nmの近紫外光励起下での 前記(Sr, Ba)1()(P04)6CI2:EU 2+ハロ燐酸塩青色蛍光体の発光スペクトルを図 15 の(c)に示した。
実施例 4の半導体発光素子が放つ白色系光の、色温度、 Duv、色度、 Ra、光束 の相対値を評価した。結果は表 4に示す通りであり、実施例 1の半導体発光素子と ほぼ同じ白色系光が得られた。
【表 4】
Figure imgf000024_0003
(実施例 5)
本発明に係る半導体発光素子の発光特性をコンピュータを用いてシミュレーション 評価した結果について説明する。シミュレーション評価用の数値データとして、波長 380nmの近紫外光励起下で、瞬間マルチ測光システム( M CPD— 7000:大塚電 子株式会社製)を用いて実測した、下記(1)〜(4)の蛍光体の発光スペクトルデー タ(測定波長範囲: 390〜780nm、波長刻み: 5nm)を用いた。
("OBaMgAI^O Eu2+アルミン酸塩青色蛍光体(実施例 3参照)。
(2) (Ba, Sr)MgAI10O17:Eu2+, Mn2+アルミン酸塩緑色蛍光体(実施例 1参照)
(3) La02S: Eu3+酸硫化物赤色蛍光体(実施例 1参照)。
(4)斜方晶の結晶構造を有する(Sr, Ba)2Si04:Eu2+珪酸塩黄色蛍光体(実施 例 1参照)。
白色系光の中の、前記珪酸塩黄色蛍光体が放つ黄色系光による照度割合をパラ メータとし、色温度 8000K、 Duv = 0の白色系光が得られるように、前記アルミン 酸塩青色蛍光体、アルミン酸塩緑色蛍光体、酸硫化物赤色蛍光体、珪酸塩黄色蛍 光体のそれぞれの蛍光体が放つ青色光、緑色光、赤色光、黄色光の発光スぺクト ル強度比をコンピュータで最適化して、白色系光の光束の相対値を算出した。結果 を表 5に示す。
【表 5】
Figure imgf000026_0001
表 5は、 BaMgA^O^Eu2アルミン酸塩青色蛍光体、 (Ba, Sr) MgAI10O17: E u2+, Mn2+アルミン酸塩緑色蛍光体、 La02S:Eu3+酸硫化物赤色蛍光体に、(Sr, Ba)2Si04:Eu2+珪酸塩黄色蛍光体を加えることによって、白色系光の高光束化が 実現できることと、ある添加割合までは珪酸塩黄色蛍光体の混合割合を増やすに つれて、光束が向上することを示すものである。また、青色系蛍光体、緑色系蛍光 体、赤色系蛍光体を混合してなる蛍光体層に珪酸塩黄色蛍光体をさらに加えること によって、半導体発光素子から高光束を得た実施例 1, 3, 4の実験結果を理論的 に裏付けるものでもある。
図 13(a)、(b)に、前記シミュレーションした白色系光(色温度 8000K、 Duv = 0)の発光スペクトルの例を示す。図 13(a)は(Sr, Ba) 2Si04: Eu2+珪酸塩黄色蛍 光体による照度割合が 500/。の場合、図 13(b)は同照度割合が 0%の場合を示す,
(実施例 6)
下記(1)〜(4)の蛍光体について実施例 5と同様のシミュレーション評価を行った 結果を表 6に示す。
(•OBaMgAI^O^Eu アルミン酸塩青色蛍光体(実施例 3参照)。
(2) (Ba, Sr)2Si017:Eu2+珪酸塩録色蛍光体(実施例 2参照)。
(3) La02S: Eu3+酸硫化物赤色蛍光体(実施例 1參照)。
(4)斜方晶の結晶構造を有する(Sr, Ba)2Si04:Eu2+珪酸塩黄色蛍光体(実施 例 1参照)。
実施例 5の場合と同様に、白色系光の中の珪酸塩黄色蛍光体が放つ黄色系光に よる照度割合をパラメータとし、得られる白色系光の光束の相対値を算出した。な お、表 6に示す白色系光の光束の相対値は、実施例 5における(Sr, Ba)2Si04:E u2+珪酸塩黄色蛍光体による照度割合が 0%の場合を 100としたときの相対値で示 している。
【表 6】
Figure imgf000027_0002
表 6は、実施例 5の場合と同様に、
Figure imgf000027_0001
色蛍光体, (Ba, Sr)2Si017 : Ei42+珪酸塩緑色蛍光体、 La02S:Eu3+酸硫化物赤色蛍光体に. (Sr, Ba)2Si04:Eu2+珪酸塩黄色蛍光体を加えることによって、白色系光の高光 束化が実現できることと、ある添加割合までは珪酸塩黄色蛍光体の混合割合を増 やすにつれて光束が向上することを示すものである。また、青色系蛍光体、緑色系 蛍光体、赤色系蛍光体を混合してなる蛍光体層に、珪酸塩黄色蛍光体をさらに加 えることによって、半導体発光素子から高光束を得た実施例 2の実験結果を理論的 に裏付けるものでもある。
図 1 4 ( a)、(b)に、前記シミュレーションした白色系光(色温度 8000 :、 Duv = 0)の発光スペクトルの例を示す。図 1 4 ( a)は(Sr, Ba) 2Si 04: Eu2+珪酸塩黄色蛍 光体による照度割合が 50 %の場合、図 1 4 ( b)は同照度割合が 0 %の場合を示す, 以上のように、シミュレーション評価によっても、本発明に係る半導体発光素子が 従来の半導体発光素子よりも高光束の白色系光を放つ半導体発光素子であること が実証できた。 産業上の利用の可能性
本発明の半導体発光素子は、近紫外 LEDと、この近紫外 LEDが放つ 350〜41 Onm付近の近紫外光を吸収して、 380nm以上且つ 780nm以下の可視波長領域 に発光ピークを有する蛍光を放つ複数の蛍光体を含む蛍光体層とを組み合わせて なる半導体発光素子にあって、前記蛍光体層を青色系蛍光体、緑色系蛍光体、赤 色系蛍光体及び黄色系蛍光体の四種類の蛍光体を含む蛍光体層とすることによつ て、視感度の低い赤色系発光による光束低下分を視感度の比較的高い黄色系発 光で補うとともに、得られる白色系光が色バランスの面で優れたものになり、高光束 且つ高 Raの白色系光を放つ半導体発光素子を得ることができる。とくに黄色系蛍 光体として珪酸塩蛍光体を用いることにより、 YAG系蛍光体を用いた従来の半導 体発光素子をはるかに凌ぐ高効率の半導体発光素子となる。
また、本発明の半導体発光装置は、近紫外 LEDと、青色系蛍光体、緑色系蛍光 体、赤色系蛍光体、黄色系蛍光体の四種類の蛍光体を含む蛍光体層とを組み合わ せてなる構成にすることにより、高光束且つ高 Raの白色系光を放つ半導体発光装 置を提供することができる。

Claims

請 求 の 範 囲
1. 350nmを超え且つ 41 Onm未満の波長領域に発光ピークを有する発光を放 つ近紫外発光ダイオードと、前記近紫外発光ダイオードが放つ近紫外光を吸収して, 380nm以上且つ 780nm以下の可視波長領域に発光ピークを有する蛍光を放つ 複数の蛍光体を含む蛍光体層とを組み合わせ、 CIE色度図における発光色度点(X, y)力《、0. 21≤x≤0. 48及び 0. 19≤y≤0. 45の範囲にある白色系光を放つ半 導体発光素子であって、
前記蛍光体層は、 400nm以上且つ 500nm未満の波長領域に発光ピークを有 する青色系の蛍光を放つ青色系蛍光体と、 500nm以上且つ 550nm未満の波長 領域に発光ピークを有する緑色系の蛍光を放つ緑色系蛍光体と、 600nm以上且 つ 660nm未満の波長領域に発光ピークを有する赤色系の蛍光を放つ赤色系蛍光 体と、 550nm以上且つ 600nm未満の波長領域に発光ピークを有する黄色系の 蛍光を放つ黄色系蛍光体とを含むことを特徴とする半導体発光素子。
2. 前記黄色系蛍光体が、下記の化学式で表される化合物を主体にしてなる珪酸 塩蛍光体であることを特徴とする請求項 1記載の半導体発光素子。
(S
ただし、 al、 bl、 Xは、各々、 0≤a1≤0. 3, 0≤b1≤0. 8、 0<x<1を満足 する数値である。
3. 前記珪酸塩蛍光体が、斜方晶の結晶構造を有し下記の化学式で表される化 合物を主体にしてなる珪酸塩蛍光体であることを特徴とする請求項 2記載の半導体 発光素子。
(Sr1_a1_b2_xBaa1Cab2Eux)2Si04
ただし、 a1、 b2、 Xは、各々、 0≤a1≤0. 3, 0≤b2≤0. 6、0<x<1を満足 する数値である。
4. 前記青色系蛍光体が下記の(1)又は(2)の青色系蛍光体であり、前記緑色系 蛍光体が下記の(3)又は(4)の緑色系蛍光体であり、前記赤色系蛍光体が下記の (5)の赤色系蛍光体であることを特徴とする請求項 1 ~3のいずれか 1項に記載の 半導体発光素子。
(1)下記の化学式で表される化合物を主体にしてなるハロ燐酸塩蛍光体。 (M11.xEux)10(PO4)6CI2
ただし、 Mlは、 Ba、 Sr、 Ca及ぴ Mgの群から選ばれる少なくとも一つのアル力 リ土類金属元素、 Xは 0<x<1を満足する数値である。
(2)下記の化学式で表される化合物を主体にしてなるアルミン酸塩蛍光体。
(M2'— xEux) (M3
Figure imgf000030_0001
ただし、 M2は、 Ba、 Sr及び Caの群から選ばれる少なくとも一つのアルカリ土類 金属元素、 M3は、 Mg及び Znの群から選ばれる少なくとも一つの元素、 x、 ylは、 各々、 0<x<1、 0≤y1 <0. 05を満足する数値である。
(3)下記の化学式で表される化合物を主体にしてなるアルミン酸塩蛍光体。
(M2,_xEux) (M3,— y2Mny2)Al10On
ただし、 M2は、 Ba、 Sr及び Caの群から選ばれる少なくとも一つのアルカリ土類 金属元素、 M3は、 Mg及び Znの群から選ばれる少なくとも一つの元素、 x、 y2は、 各々、 0<x<1、 0. 05≤y2<1を満足する数値である。
(4)下記の化学式で表される化合物を主体にしてなる珪酸塩蛍光体。
(Ml 1_xEux)2Si04
ただし、 Mlは、 Ba、 Sr、 Ca及び Mgの群から選ばれる少なくとも一つのアル力 リ土類金属元素、 Xは 0<x<1を満足する数値である。
(5)下記の化学式で表される化合物を主体にしてなる酸硫化物蛍光体。
(Ln卜 xEux)02S
ただし、 Lnは、 Sc、 Y、 La及び Gdの群から選ばれる少なくとも一つの希土類元 素、 Xは 0<x< 1を満足する数値である。
5. 前記近紫外発光ダイオードが、窒化ガリウム系化合物半導体で構成した発光 層を有する近紫外発光ダイオードであることを特徴とする請求項 1〜4のいずれか 1 項に記載の半導体発光素子。
6. 発光素子から放たれる白色系光の平均演色評価数(Ra)が 70以上且つ 100 未満であることを特徴とする請求項 5記載の半導体発光素子。
7. 請求項 1〜6のいずれか 1項に記載の半導体発光素子を用いて構成したこと を特徴とする半導体発光装置。
8. 350nmを超え且つ 41 Onm未満の波長領域に発光ピークを有する発光を放 つ近紫外発光ダイオードと、前記近紫外発光ダイオードが放つ近紫外光を吸収して, 380nm以上且つ 780nm以下の可視波長領域に発光ピークを有する蛍光を放つ 複数の蛍光体を含む蛍光体層とを組み合わせ、 CIE色度図における発光色度点(X, y)が、 0. 21≤x≤0. 48、 0. 19≤y≤0. 45の範囲にある白色系光を放つ半導 体発光装置であって、
前記蛍光体層が、 400nm以上且つ 500nm未満の波長領域に発光ピークを有 する青色系の蛍光を放つ青色系蛍光体と、 500nm以上且つ 550nm未満の波長 領域に発光ピークを有する緑色系の蛍光を放つ緑色系蛍光体と、 600nm以上且 つ 660nm未満の波長領域に発光ピークを有する赤色系の蛍光を放つ赤色系蛍光 体と、 550nm以上且つ 600nm未満の波長領域に発光ピークを有する黄色系の 蛍光を放つ黄色系蛍光体とを含むことを特徴とする半導体発光装置。
PCT/JP2002/010128 2001-10-01 2002-09-27 Element electroluminescent semi-conducteur et dispositif electroluminescent utilisant un tel element WO2003032407A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/491,411 US7294956B2 (en) 2001-10-01 2002-09-27 Semiconductor light emitting element and light emitting device using this
EP02775262A EP1447853B1 (en) 2001-10-01 2002-09-27 Semiconductor light emitting element and light emitting device using this
JP2003535267A JP3993854B2 (ja) 2001-10-01 2002-09-27 半導体発光素子とこれを用いた発光装置
KR1020047004816A KR100894372B1 (ko) 2001-10-01 2002-09-27 반도체 발광소자와 이를 이용한 발광장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001305032 2001-10-01
JP2001-305032 2001-10-01

Publications (1)

Publication Number Publication Date
WO2003032407A1 true WO2003032407A1 (fr) 2003-04-17

Family

ID=19124883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010128 WO2003032407A1 (fr) 2001-10-01 2002-09-27 Element electroluminescent semi-conducteur et dispositif electroluminescent utilisant un tel element

Country Status (7)

Country Link
US (1) US7294956B2 (ja)
EP (1) EP1447853B1 (ja)
JP (1) JP3993854B2 (ja)
KR (1) KR100894372B1 (ja)
CN (1) CN100386888C (ja)
TW (1) TW573371B (ja)
WO (1) WO2003032407A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068403A (ja) * 2003-08-01 2005-03-17 Kasei Optonix Co Ltd 冷陰極蛍光ランプ用アルカリ土類アルミン酸塩蛍光体および冷陰極蛍光ランプ
JP2005093985A (ja) * 2003-09-17 2005-04-07 Nan Ya Plast Corp 二次励起方式で白色光を産出する方法とその白色発光デバイス
WO2005093860A1 (ja) * 2004-03-26 2005-10-06 Sharp Kabushiki Kaisha 発光装置
JP2006080443A (ja) * 2004-09-13 2006-03-23 Fujikura Ltd 発光ダイオード及び発光ダイオード製造方法
WO2006092838A1 (ja) * 2005-02-28 2006-09-08 Hitachi Plasma Patent Licensing Co., Ltd. 表示装置及び緑色蛍光体
JP2006299097A (ja) * 2005-04-21 2006-11-02 Matsushita Electric Works Ltd 発光装置
JP2006527501A (ja) * 2004-04-07 2006-11-30 エルジー イノテック カンパニー リミテッド 発光素子及び発光素子の蛍光体
US7176612B2 (en) 2003-04-21 2007-02-13 Sharp Kabushiki Kaisha LED device and portable telephone, digital camera and LCD apparatus using the same
JP2007042939A (ja) * 2005-08-04 2007-02-15 Sharp Corp 白色発光デバイスおよびカラー表示装置
JP2007506264A (ja) * 2003-09-15 2007-03-15 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. 白色発光照明システム
JP2007157831A (ja) * 2005-12-01 2007-06-21 Sharp Corp 発光装置
JP2007519221A (ja) * 2003-07-30 2007-07-12 松下電器産業株式会社 半導体発光装置、発光モジュール、および照明装置
JP2007184615A (ja) * 2006-01-09 2007-07-19 Mediana Electronic Co Ltd 複合波長の光を発生する発光ダイオード素子
JP2007191680A (ja) * 2005-09-01 2007-08-02 Sharp Corp 発光装置
CN100341163C (zh) * 2004-03-29 2007-10-03 宏齐科技股份有限公司 白光发光二极管单元
JP2007528606A (ja) * 2004-03-10 2007-10-11 ゲルコアー リミテッド ライアビリティ カンパニー Ledに使用するための蛍光体及びそれらの混合物
US7459846B2 (en) 2003-11-01 2008-12-02 Samsung Electro-Mechanics Co., Ltd. Red phosphor and method of preparing the same, and red light emitting diode, white light emitting diode, and active dynamic liquid crystal device using the red phosphor
JP2009506195A (ja) * 2005-08-31 2009-02-12 ルミネイション リミテッド ライアビリティ カンパニー Ledに使用する蛍光体及びその配合物
US7646032B2 (en) 2003-06-24 2010-01-12 Lumination Llc White light LED devices with flat spectra
US7646141B2 (en) * 2004-10-18 2010-01-12 Lg Innotek Co., Ltd. Phosphor, light emitting device by using the same and manufacturing method of the same
JP2010505243A (ja) * 2006-09-27 2010-02-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 発光装置
US7679672B2 (en) 2004-10-14 2010-03-16 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Electronic flash, imaging device and method for producing a flash of light having a wavelength spectrum in the visible range and the infrared range using a fluorescent material
US7723740B2 (en) 2003-09-18 2010-05-25 Nichia Corporation Light emitting device
JP2010157608A (ja) * 2008-12-26 2010-07-15 Mitsubishi Chemicals Corp 半導体発光装置
JP2011032416A (ja) * 2009-08-04 2011-02-17 Sumitomo Metal Mining Co Ltd 蛍光体とその製造方法
US7911127B2 (en) 2005-03-30 2011-03-22 Samsung Led Co., Ltd. Phosphor blend for wavelength conversion and white light emitting device using the same
CN102986044A (zh) * 2010-10-15 2013-03-20 三菱化学株式会社 白色发光装置及照明器具
KR101266130B1 (ko) * 2005-06-23 2013-05-27 렌슬러 폴리테크닉 인스티튜트 단파장 led들 및 다운-컨버젼 물질들로 백색광을생성하기 위한 패키지 설계
JP2018056140A (ja) * 2013-03-04 2018-04-05 シチズン電子株式会社 発光装置及び発光装置の製造方法

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1659479A (zh) * 2002-04-10 2005-08-24 富士胶片株式会社 曝光头及曝光装置和它的应用
TWI250664B (en) * 2004-01-30 2006-03-01 South Epitaxy Corp White light LED
US7083302B2 (en) * 2004-03-24 2006-08-01 J. S. Technology Co., Ltd. White light LED assembly
FR2869159B1 (fr) * 2004-04-16 2006-06-16 Rhodia Chimie Sa Diode electroluminescente emettant une lumiere blanche
KR100865624B1 (ko) 2004-04-27 2008-10-27 파나소닉 주식회사 형광체 조성물과 그 제조 방법, 및 그 형광체 조성물을이용한 발광 장치
KR100658458B1 (ko) * 2004-06-22 2006-12-15 한국에너지기술연구원 황적색 형광체, 이를 이용한 백색 led소자 및 황적색led 소자
WO2006005005A2 (en) 2004-07-06 2006-01-12 Sarnoff Corporation Efficient, green-emitting phosphors, and combinations with red-emitting phosphors
US20060038198A1 (en) * 2004-08-23 2006-02-23 Chua Janet B Y Device and method for producing output light having a wavelength spectrum in the visible range and the infrared range using a fluorescent material
US20060082995A1 (en) * 2004-10-14 2006-04-20 Chua Janet B Y Device and method for producing output light having a wavelength spectrum in the infrared wavelength range and the visble wavelength range
US9793247B2 (en) * 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
US7821023B2 (en) 2005-01-10 2010-10-26 Cree, Inc. Solid state lighting component
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
KR100719541B1 (ko) * 2005-01-11 2007-05-17 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
US7541728B2 (en) 2005-01-14 2009-06-02 Intematix Corporation Display device with aluminate-based green phosphors
CN1684279A (zh) * 2005-02-25 2005-10-19 炬鑫科技股份有限公司 发光元件
JP4104013B2 (ja) * 2005-03-18 2008-06-18 株式会社フジクラ 発光デバイス及び照明装置
US7276183B2 (en) 2005-03-25 2007-10-02 Sarnoff Corporation Metal silicate-silica-based polymorphous phosphors and lighting devices
JP2007049114A (ja) 2005-05-30 2007-02-22 Sharp Corp 発光装置とその製造方法
US20060279196A1 (en) * 2005-06-02 2006-12-14 Wei-Jen Hsu White LED
KR100612962B1 (ko) * 2005-06-29 2006-08-16 한국화학연구원 삼파장 형광체를 이용한 백색 발광 다이오드
JP4794235B2 (ja) * 2005-08-02 2011-10-19 シャープ株式会社 発光装置
US20070052342A1 (en) * 2005-09-01 2007-03-08 Sharp Kabushiki Kaisha Light-emitting device
JP2007204730A (ja) * 2005-09-06 2007-08-16 Sharp Corp 蛍光体及び発光装置
DE102005045182B4 (de) 2005-09-21 2018-05-03 Unify Gmbh & Co. Kg Verfahren und Anordnung zur Konfiguration eines mobilen Gerätes
US8906262B2 (en) 2005-12-02 2014-12-09 Lightscape Materials, Inc. Metal silicate halide phosphors and LED lighting devices using the same
KR101184957B1 (ko) * 2006-02-10 2012-10-02 미쓰비시 가가꾸 가부시키가이샤 형광체 및 그 제조 방법, 형광체 함유 조성물, 발광 장치, 그리고 화상 표시 장치 및 조명 장치
KR100828891B1 (ko) 2006-02-23 2008-05-09 엘지이노텍 주식회사 Led 패키지
US9335006B2 (en) 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
DE102006027026A1 (de) * 2006-06-08 2007-12-13 Merck Patent Gmbh Verfahren zur Herstellung eines Linienemitter-Leuchtstoffes
EP2084242A4 (en) 2006-10-03 2009-12-16 Sarnoff Corp METAL SILICATE HALIDE PHOSPHORES AND LED LIGHTING DEVICES USING THE SAME
US10295147B2 (en) 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
KR100687417B1 (ko) * 2006-11-17 2007-02-27 엘지이노텍 주식회사 형광체의 제조방법
JP5367218B2 (ja) 2006-11-24 2013-12-11 シャープ株式会社 蛍光体の製造方法および発光装置の製造方法
KR20080049947A (ko) * 2006-12-01 2008-06-05 엘지전자 주식회사 방송 시스템, 인터페이스 방법, 및 데이터 구조
WO2008096545A1 (ja) * 2007-02-09 2008-08-14 Kabushiki Kaisha Toshiba 白色発光ランプとそれを用いた照明装置
CN101755345A (zh) * 2007-07-19 2010-06-23 夏普株式会社 发光装置
US20090189168A1 (en) * 2008-01-29 2009-07-30 Kai-Shon Tsai White Light Emitting Device
WO2009107535A1 (ja) * 2008-02-25 2009-09-03 株式会社東芝 白色ledランプ、バックライト、発光装置、表示装置および照明装置
KR100986359B1 (ko) * 2008-03-14 2010-10-08 엘지이노텍 주식회사 발광 장치 및 이를 구비한 표시 장치
WO2009143283A1 (en) * 2008-05-20 2009-11-26 Lightscape Materials, Inc. Silicate-based phosphors and led lighting devices using the same
EP2293353B1 (en) * 2008-05-30 2019-02-27 Kabushiki Kaisha Toshiba White light led, and backlight and liquid crystal display device using the same
RU2377699C1 (ru) * 2008-08-21 2009-12-27 Открытое акционерное общество "Оптрон" Светоизлучающий элемент
US9425172B2 (en) 2008-10-24 2016-08-23 Cree, Inc. Light emitter array
JP5680278B2 (ja) * 2009-02-13 2015-03-04 シャープ株式会社 発光装置
KR101172143B1 (ko) * 2009-08-10 2012-08-07 엘지이노텍 주식회사 백색 발광다이오드 소자용 시온계 산화질화물 형광체, 그의 제조방법 및 그를 이용한 백색 led 소자
US8598809B2 (en) 2009-08-19 2013-12-03 Cree, Inc. White light color changing solid state lighting and methods
KR101163902B1 (ko) * 2010-08-10 2012-07-09 엘지이노텍 주식회사 발광 소자
US9909058B2 (en) * 2009-09-02 2018-03-06 Lg Innotek Co., Ltd. Phosphor, phosphor manufacturing method, and white light emitting device
TWI426629B (zh) 2009-10-05 2014-02-11 Everlight Electronics Co Ltd 白光發光裝置、其製造方法及應用
US8217406B2 (en) * 2009-12-02 2012-07-10 Abl Ip Holding Llc Solid state light emitter with pumped nanophosphors for producing high CRI white light
US8511851B2 (en) 2009-12-21 2013-08-20 Cree, Inc. High CRI adjustable color temperature lighting devices
EP2540798A4 (en) * 2010-02-26 2014-04-30 Mitsubishi Chem Corp Halophosphate Phosphorus and White Light Output Device
US8089207B2 (en) 2010-05-10 2012-01-03 Abl Ip Holding Llc Lighting using solid state device and phosphors to produce light approximating a black body radiation spectrum
CN102376860A (zh) 2010-08-05 2012-03-14 夏普株式会社 发光装置及其制造方法
JP5545866B2 (ja) * 2010-11-01 2014-07-09 シチズン電子株式会社 半導体発光装置
US9786811B2 (en) 2011-02-04 2017-10-10 Cree, Inc. Tilted emission LED array
CN103339750B (zh) 2011-03-15 2016-03-16 株式会社东芝 白色光源
JP5105132B1 (ja) * 2011-06-02 2012-12-19 三菱化学株式会社 半導体発光装置、半導体発光システムおよび照明器具
USD700584S1 (en) 2011-07-06 2014-03-04 Cree, Inc. LED component
US10842016B2 (en) 2011-07-06 2020-11-17 Cree, Inc. Compact optically efficient solid state light source with integrated thermal management
JP6081368B2 (ja) * 2011-10-24 2017-02-15 株式会社東芝 白色光源およびそれを用いた白色光源システム
CN104025321B (zh) * 2011-10-24 2018-06-19 株式会社东芝 白光源和包括所述白光源的白光源系统
CN102559175B (zh) * 2011-12-29 2014-04-16 湘能华磊光电股份有限公司 Sr2SiO4:XEu2+荧光粉及其制备方法
DE102012210083A1 (de) * 2012-06-15 2013-12-19 Osram Gmbh Optoelektronisches halbleiterbauelement
JP6045727B2 (ja) * 2013-03-11 2016-12-14 フィリップス ライティング ホールディング ビー ヴィ 調光可能な発光装置
WO2015030276A1 (ko) * 2013-08-30 2015-03-05 An Jong Uk 근자외선과 형광체를 이용한 백색 발광 조명용 소자
JP2015228443A (ja) * 2014-06-02 2015-12-17 豊田合成株式会社 発光素子及びその製造方法
KR101651342B1 (ko) * 2014-12-03 2016-08-26 주식회사 올릭스 미술 조명용 스펙트럼 특성을 만족하는 발광 다이오드 소자 및 모듈
EP3035395A1 (en) * 2014-12-16 2016-06-22 Ledst Co., Ltd. White light emitting diode device for illumination using near UV light and phosphor
JP6688116B2 (ja) * 2015-03-24 2020-04-28 株式会社半導体エネルギー研究所 撮像装置および電子機器
JP6944104B2 (ja) * 2016-11-30 2021-10-06 日亜化学工業株式会社 発光装置
US10347806B2 (en) * 2017-04-12 2019-07-09 Luminus, Inc. Packaged UV-LED device with anodic bonded silica lens and no UV-degradable adhesive
CN107936963B (zh) * 2017-11-02 2018-12-21 杨陈燕 一种绿色摩擦发光荧光粉及其制备方法
CN107936962B (zh) * 2017-11-02 2018-12-07 杭州鼎好新材料有限公司 一种绿色长余辉荧光粉及其制备方法
TW202042781A (zh) * 2019-05-03 2020-12-01 瑞士商歐米亞國際公司 在口腔保健組成物中作為白色顏料的經表面處理之含鎂離子材料
US11313671B2 (en) 2019-05-28 2022-04-26 Mitutoyo Corporation Chromatic confocal range sensing system with enhanced spectrum light source configuration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921568A2 (en) * 1997-11-25 1999-06-09 Matsushita Electric Works, Ltd. LED Luminaire
JPH11163418A (ja) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd 発光ダイオードを用いた光源
US6084250A (en) * 1997-03-03 2000-07-04 U.S. Philips Corporation White light emitting diode
JP2000347601A (ja) * 1999-06-02 2000-12-15 Toshiba Electronic Engineering Corp 発光装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JPH1139917A (ja) 1997-07-22 1999-02-12 Hewlett Packard Co <Hp> 高演色性光源
JP3950543B2 (ja) 1998-02-27 2007-08-01 東芝電子エンジニアリング株式会社 Ledランプ
CN1227749C (zh) * 1998-09-28 2005-11-16 皇家菲利浦电子有限公司 照明系统
JP4350183B2 (ja) 1998-12-16 2009-10-21 東芝電子エンジニアリング株式会社 半導体発光装置
US6656608B1 (en) * 1998-12-25 2003-12-02 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter
JP3968933B2 (ja) 1998-12-25 2007-08-29 コニカミノルタホールディングス株式会社 エレクトロルミネッセンス素子
EP1367655A4 (en) * 2001-09-03 2009-05-06 Panasonic Corp "SEMICONDUCTOR LIGHT EMISSION ELEMENT, LIGHT EMISSIONING APPARATUS, AND METHOD OF MANUFACTURING A SEMICONDUCTOR LIGHT EMISSION ELEMENT"
US7083302B2 (en) * 2004-03-24 2006-08-01 J. S. Technology Co., Ltd. White light LED assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084250A (en) * 1997-03-03 2000-07-04 U.S. Philips Corporation White light emitting diode
EP0921568A2 (en) * 1997-11-25 1999-06-09 Matsushita Electric Works, Ltd. LED Luminaire
JPH11163418A (ja) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd 発光ダイオードを用いた光源
JP2000347601A (ja) * 1999-06-02 2000-12-15 Toshiba Electronic Engineering Corp 発光装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POORT S.H.M. ET AL.: "Optical properties of Eu2+-activated orthosilicates and orthophosphates", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 260, no. 1, 12 September 1997 (1997-09-12), pages 93 - 97, XP004094706 *
See also references of EP1447853A4 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176612B2 (en) 2003-04-21 2007-02-13 Sharp Kabushiki Kaisha LED device and portable telephone, digital camera and LCD apparatus using the same
US7906790B2 (en) 2003-06-24 2011-03-15 GE Lighting Solutions, LLC Full spectrum phosphor blends for white light generation with LED chips
US7646032B2 (en) 2003-06-24 2010-01-12 Lumination Llc White light LED devices with flat spectra
JP2007519221A (ja) * 2003-07-30 2007-07-12 松下電器産業株式会社 半導体発光装置、発光モジュール、および照明装置
JP2005068403A (ja) * 2003-08-01 2005-03-17 Kasei Optonix Co Ltd 冷陰極蛍光ランプ用アルカリ土類アルミン酸塩蛍光体および冷陰極蛍光ランプ
US7492083B2 (en) 2003-08-01 2009-02-17 Kasei Optonix, Ltd. Alkaline earth aluminate phosphor for a cold cathode fluorescent lamp and cold cathode fluorescent lamp
KR101081347B1 (ko) 2003-08-01 2011-11-08 가세이 옵토닉스 가부시키가이샤 냉음극 형광램프용 알칼리토류 알루민산염 형광체 및냉음극 형광램프
JP4561194B2 (ja) * 2003-08-01 2010-10-13 三菱化学株式会社 冷陰極蛍光ランプ用アルカリ土類アルミン酸塩蛍光体および冷陰極蛍光ランプ
JP2007506264A (ja) * 2003-09-15 2007-03-15 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. 白色発光照明システム
JP2005093985A (ja) * 2003-09-17 2005-04-07 Nan Ya Plast Corp 二次励起方式で白色光を産出する方法とその白色発光デバイス
US7723740B2 (en) 2003-09-18 2010-05-25 Nichia Corporation Light emitting device
US7459846B2 (en) 2003-11-01 2008-12-02 Samsung Electro-Mechanics Co., Ltd. Red phosphor and method of preparing the same, and red light emitting diode, white light emitting diode, and active dynamic liquid crystal device using the red phosphor
JP2007528606A (ja) * 2004-03-10 2007-10-11 ゲルコアー リミテッド ライアビリティ カンパニー Ledに使用するための蛍光体及びそれらの混合物
WO2005093860A1 (ja) * 2004-03-26 2005-10-06 Sharp Kabushiki Kaisha 発光装置
CN100341163C (zh) * 2004-03-29 2007-10-03 宏齐科技股份有限公司 白光发光二极管单元
CN1788361B (zh) * 2004-04-07 2013-02-06 Lg伊诺特有限公司 发光器件及其磷光体
US7531956B2 (en) 2004-04-07 2009-05-12 Lg Innotek Co., Ltd. Light emitting device and phosphor for the same
EP1733441A4 (en) * 2004-04-07 2009-08-12 Lg Innotek Co Ltd LIGHT-EMITTING COMPONENT AND FLUORATE THEREFOR
JP2006527501A (ja) * 2004-04-07 2006-11-30 エルジー イノテック カンパニー リミテッド 発光素子及び発光素子の蛍光体
JP4729281B2 (ja) * 2004-09-13 2011-07-20 株式会社フジクラ 発光ダイオード及び発光ダイオード製造方法
JP2006080443A (ja) * 2004-09-13 2006-03-23 Fujikura Ltd 発光ダイオード及び発光ダイオード製造方法
US7679672B2 (en) 2004-10-14 2010-03-16 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Electronic flash, imaging device and method for producing a flash of light having a wavelength spectrum in the visible range and the infrared range using a fluorescent material
US7646141B2 (en) * 2004-10-18 2010-01-12 Lg Innotek Co., Ltd. Phosphor, light emitting device by using the same and manufacturing method of the same
JPWO2006092838A1 (ja) * 2005-02-28 2008-07-24 株式会社日立プラズマパテントライセンシング 表示装置及び緑色蛍光体
US8114312B2 (en) 2005-02-28 2012-02-14 Hitachi Plasma Patent Licensing Co., Ltd. Display device and green phosphor
JP4763685B2 (ja) * 2005-02-28 2011-08-31 株式会社日立プラズマパテントライセンシング 表示装置及び緑色蛍光体
WO2006092838A1 (ja) * 2005-02-28 2006-09-08 Hitachi Plasma Patent Licensing Co., Ltd. 表示装置及び緑色蛍光体
US7911127B2 (en) 2005-03-30 2011-03-22 Samsung Led Co., Ltd. Phosphor blend for wavelength conversion and white light emitting device using the same
JP2006299097A (ja) * 2005-04-21 2006-11-02 Matsushita Electric Works Ltd 発光装置
KR101266130B1 (ko) * 2005-06-23 2013-05-27 렌슬러 폴리테크닉 인스티튜트 단파장 led들 및 다운-컨버젼 물질들로 백색광을생성하기 위한 패키지 설계
JP2007042939A (ja) * 2005-08-04 2007-02-15 Sharp Corp 白色発光デバイスおよびカラー表示装置
JP2009506195A (ja) * 2005-08-31 2009-02-12 ルミネイション リミテッド ライアビリティ カンパニー Ledに使用する蛍光体及びその配合物
JP2007191680A (ja) * 2005-09-01 2007-08-02 Sharp Corp 発光装置
JP2007157831A (ja) * 2005-12-01 2007-06-21 Sharp Corp 発光装置
US7679277B2 (en) 2005-12-01 2010-03-16 Sharp Kabushiki Kaisha Light emitting device provided with semiconducting phosphor configured with four fluorescences having different emission peak wavelengths
JP2007184615A (ja) * 2006-01-09 2007-07-19 Mediana Electronic Co Ltd 複合波長の光を発生する発光ダイオード素子
US8748902B2 (en) 2006-01-09 2014-06-10 Samsung Electronics Co., Ltd. Light-emitting diode device generating light of multi-wavelengths
JP2010505243A (ja) * 2006-09-27 2010-02-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 発光装置
JP2010157608A (ja) * 2008-12-26 2010-07-15 Mitsubishi Chemicals Corp 半導体発光装置
JP2011032416A (ja) * 2009-08-04 2011-02-17 Sumitomo Metal Mining Co Ltd 蛍光体とその製造方法
CN102986044A (zh) * 2010-10-15 2013-03-20 三菱化学株式会社 白色发光装置及照明器具
CN102986044B (zh) * 2010-10-15 2015-05-06 三菱化学株式会社 白色发光装置及照明器具
JP2018056140A (ja) * 2013-03-04 2018-04-05 シチズン電子株式会社 発光装置及び発光装置の製造方法

Also Published As

Publication number Publication date
US7294956B2 (en) 2007-11-13
KR20040037229A (ko) 2004-05-04
CN100386888C (zh) 2008-05-07
JPWO2003032407A1 (ja) 2005-01-27
EP1447853A1 (en) 2004-08-18
KR100894372B1 (ko) 2009-04-22
JP3993854B2 (ja) 2007-10-17
TW573371B (en) 2004-01-21
CN1561549A (zh) 2005-01-05
EP1447853B1 (en) 2012-08-08
EP1447853A4 (en) 2008-12-24
US20040245532A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
WO2003032407A1 (fr) Element electroluminescent semi-conducteur et dispositif electroluminescent utilisant un tel element
JP3985486B2 (ja) 半導体発光素子とこれを用いた発光装置
JP6625582B2 (ja) 発光ダイオード用途に使用するための赤色線放出蛍光体
US6982045B2 (en) Light emitting device having silicate fluorescent phosphor
US7648649B2 (en) Red line emitting phosphors for use in led applications
JP4559496B2 (ja) 発光装置
CN101852352B (zh) 白光发射装置
TWI420710B (zh) White light and its use of white light-emitting diode lighting device
US7859182B2 (en) Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
TW200927886A (en) Red line emitting complex fluoride phosphors activated with Mn4+
JP2005264160A (ja) 蛍光体及びその製造方法並びにそれを用いた発光装置
KR100793463B1 (ko) 실리케이트계 형광체, 그 제조방법 및 이를 이용한발광장치
JP2009073914A (ja) 緑色発光蛍光体とそれを用いた発光モジュール
JP2004331934A (ja) 蛍光体とそれを用いた発光素子
CN116825932A (zh) 一种led器件
JP2002188084A (ja) 赤色発光蛍光体とそれを用いた発光装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003535267

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002819344X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10491411

Country of ref document: US

Ref document number: 1020047004816

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002775262

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002775262

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载