+

WO2003031873A1 - Chaudiere de combustion a allumage en u du type a fusion des cendres et procede de fonctionnement de la chaudiere - Google Patents

Chaudiere de combustion a allumage en u du type a fusion des cendres et procede de fonctionnement de la chaudiere Download PDF

Info

Publication number
WO2003031873A1
WO2003031873A1 PCT/JP2002/010384 JP0210384W WO03031873A1 WO 2003031873 A1 WO2003031873 A1 WO 2003031873A1 JP 0210384 W JP0210384 W JP 0210384W WO 03031873 A1 WO03031873 A1 WO 03031873A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
slag
combustion
ash
combustion furnace
Prior art date
Application number
PCT/JP2002/010384
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Oomura
Takashi Yoshiyama
Chikatoshi Kurata
Original Assignee
Kawasaki Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo Kabushiki Kaisha filed Critical Kawasaki Jukogyo Kabushiki Kaisha
Priority to CNB028240359A priority Critical patent/CN1318795C/zh
Priority to GB0406530A priority patent/GB2397115B/en
Priority to KR1020047004276A priority patent/KR100634411B1/ko
Priority to DE10297306T priority patent/DE10297306B4/de
Priority to US10/491,149 priority patent/US7077069B2/en
Publication of WO2003031873A1 publication Critical patent/WO2003031873A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/04Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air beyond the fire, i.e. nearer the smoke outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/06Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for completing combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers

Definitions

  • the present invention relates to an ash-melting u-firing combustion boiler that maintains the combustion temperature at a high temperature near the ash melting point in pulverized coal combustion, converts ash into molten slag, and discharges it as granulated slag, and its operating method.
  • a conventional ash-melting U-fired combustion boiler has a furnace body 101 with a refractory material coated on the inner surface of a water-cooled wall, and is mounted downward on the ceiling of the furnace body 101.
  • Burner 102 a flow outlet 103 for discharging molten slag provided at the bottom of the furnace body 101, and a place where the flame of the furnace body 101 turns upside down.
  • 8 is a combustion furnace consisting of a multi-array slag screen 104 of screen tubes 104 a shown in the figure, and a heat collection that exposes a steel shell provided downstream of the combustion furnace 105. It is composed of a convection heat transfer section 107 composed of a furnace 106 and a superheater tube.
  • the slag screen 104 shuts off the combustion furnace 105 and the heat storage furnace 106, prevents radiant heat in the combustion furnace 105 from escaping to the heat collection furnace 106, and It is installed for the purpose of preventing the temperature drop of ash and capturing the ash contained in the combustion gas, and reducing the load on the downstream equipment. It is indispensable.
  • Reference numeral 108 in FIG. 7 denotes a slag water tank, in which a slag discharge comparator 109 is provided.
  • Reference numeral 110 denotes a pressure detection nozzle provided in the furnace body 101.
  • Reference numeral 111 denotes a pressure detection nozzle provided in the heat storage furnace 106.
  • Reference numeral 112 denotes a two-stage combustion air blowing nozzle provided in the furnace body 101.
  • the refractory material of the combustion furnace 105 covers the area from the Pana 102 to the slope downstream of the slag screen, including the slag screen 104. Melts on the furnace inner surface and melts, causing the coal ash Maintained near high temperature.
  • the slag thickness of the ash attached to the inner surface of the combustion furnace 105 changes in proportion to the melting point or the melting point of the coal ash, and varies depending on the coal brand and the load.
  • a low burner air ratio may be used to reduce NOx.
  • the conventional ash-melting U-firing combustion boiler shown in Fig. 7 may be operated while reducing the amount of air supplied to the parner 102 to a burner air ratio of about 0.8.
  • the air-ratio of the burner is reduced to about 0.8, the amount of heat generated in the combustion furnace 105 also decreases by about 30%, and the temperature in the combustion furnace 105 decreases by about 100 ° C. Therefore, the thickness of the slag increases about 1.5 to 1.6 times.
  • the temperature of the discharged slag also decreases, making it difficult to discharge the slag in a stable manner, increasing the amount of slag adhering to the screen tube 104a of the slag screen 104 and increasing the slag outer diameter.
  • the cleansing power grows, making it difficult to maintain operation. Therefore, when reducing the burner air ratio to about 0.8 in order to reduce NOx in a conventional ash-melting U-firing combustion boiler, at the same time, two-stage combustion was performed upstream of the slag screen 104. It was necessary to maintain the air ratio in the slag screen 104 at 1 by blowing in baked air.
  • the air ratio at the slag screen 104 is set to 1 by supplying two-stage combustion air to the upstream side of the slag screen 104, and the combustion of coal And the temperature in the furnace decreases. It is necessary to prevent clogging due to clinker growth in the tube 104 of the slag screen 104. was difficult.
  • the 1, 2, boiler outlet N Ox value in combination 3 is 4 0 0 ⁇ 5 0 O ppm (0 2 6% conversion value) is at the lower limit
  • the 1, 2, 3, the 4 boiler outlet NO x value in combination 1 5 O ppm (0 2 6 % conversion value) is lower limit. Therefore, it was necessary to install a denitrification system downstream of the boiler in order to maintain the pollution control values.
  • the amount of N Ox of environmental pollutants emitted during the combustion of coal depends on the oxidizing atmosphere, the reducing atmosphere, and the combustion temperature at an air ratio of 1.In the oxidizing atmosphere, the higher the combustion temperature, the larger the amount. On the other hand, in a reducing atmosphere, the temperature decreases as the combustion temperature increases. At 140 ° C near the melting point of coal ash, the oxidizing atmosphere is several to ten to several hundred times higher than the reducing atmosphere.
  • the pressure at the pressure detection nozzle 111 provided in the heat-collecting furnace 106 was reduced to 0.1 by an induction fan provided downstream of the boiler.
  • the pressure was controlled so as to be about 0.2 kPa, and the pressure at the pressure detection nozzle 110 provided in the furnace body 101 was monitored as the pressure on the combustion air side.
  • the difference between the pressure at the pressure detection nozzle 110 and the pressure at the pressure detection nozzle 111 is the pressure loss at the slag screen 104, and the pressure at the pressure detection nozzle 110 is the pressure loss at the slag screen 104.
  • the value also changed depending on the slag thickness of the ash attached to the screen tube 104a, and the value was different for each coal brand and for each load.
  • the present invention is intended to solve the above-mentioned problems of the conventional ash-melting U-firing combustion boiler.
  • the present invention in the above-mentioned combustion boiler and the above-mentioned operation method, aims to detect the blockage of the slag screen accurately in a short time, release the blockage, and continue the operation safely. Disclosure of the invention
  • the present invention relates to a method for operating an ash-melting type U-fired combustion boiler, wherein even when the amount of air supplied from the burner to the combustion furnace is reduced to an air ratio of less than 1, the heat collection located at the combustion furnace and downstream thereof
  • the volume of the combustion furnace is set so that the temperature of the gas passing through the slag screen that separates the furnace from the furnace is maintained in a temperature range that allows the slag screen to function normally.
  • the amount of supplied air is reduced to an air ratio of less than 1 and pulverized coal is burned in an excessive amount of fuel in the combustion furnace to create a reducing atmosphere, and the temperature in the combustion furnace rises to near the ash melting point of coal.
  • the amount of NOx generated is reduced.
  • the volume of the combustion furnace is about 55 to 60% of the volume of the combustion furnace designed so that the air ratio in the slag screen is approximately 1, and from the parner to the combustion furnace.
  • Supply air volume is reduced to an air ratio of about 0.8.
  • the two-stage combustion air is blown into the heat recovery furnace to complete the combustion, and the NOx emission value is further reduced.
  • the heat flux of the screen tube is calculated, and when the calculated value becomes smaller than a predetermined heat flux value, the slag screen is detected as a closed state, and immediately after the detection, the amount of air supplied from the parner to the combustion furnace is increased. Then, the air ratio is made larger than a predetermined air ratio value, and the heat flux of the screen tube is made higher than the predetermined heat flux value to release the closed state of the slag screen.
  • the predetermined heat flux value is 35 kW / m 2 , and The air ratio value is 0.8.
  • the inlet of the screen pipe is based on the measurement values of thermometers provided near the inlet and outlet of the screen pipe of the slag screen, respectively.
  • the heat flow of the screen tube is calculated from the temperature difference between the part and the outlet part, and when the calculated value is smaller than a predetermined heat flux value, it is detected as a closed state of the slag screen.
  • Increasing the amount of fuel and the amount of supplied air to the combustion furnace, increasing the temperature of the gas passing through the slag screen, and closing the slag screen by setting the heat flux of the screen tube to the predetermined heat flux value or more. Release the state.
  • the predetermined heat flux value is 35 kW / m 2 .
  • the temperature difference between the inlet and the outlet of the screen tube is determined based on a measurement value of each thermometer provided near the inlet and the outlet of the screen tube of the slag screen.
  • the heat flux of the screen tube is calculated, and when the calculated value is smaller than a predetermined heat flux value, it is detected as a closed state of the slag screen, and immediately after the detection, a melting point depressant of ash is injected into the combustion furnace, The melting point of the slag is lowered to make it easier to flow down, the amount of slag adhering to the slag screen is reduced, and the closed state of the slag screen is released.
  • the predetermined heat flux value is 35 kW / m 2 .
  • An ash-melting type U-fired combustion boiler includes a combustion furnace having a burner for burning pulverized coal, a heat storage furnace disposed downstream of the combustion furnace, the combustion furnace, and the heat recovery furnace.
  • a slag screen including a screen tube for partitioning the slag, and a control device for controlling the amount of air supplied and the amount of fuel supplied from the parner to the combustion furnace, wherein the volume of the combustion furnace is from the parner to the combustion furnace.
  • the control device reduces the amount of air supplied from the parner to the combustion furnace to an air ratio of less than 1, burns the pulverized coal in an excessive amount of fuel in the combustion furnace to form a reducing atmosphere, and forms the reducing atmosphere. It is characterized by raising the temperature inside the furnace near the ash melting point of coal to reduce the amount of NOx generated. D Also, preferably, the volume of the combustion furnace is substantially equal to the air ratio in the slag screen.
  • control device reduces the amount of air supplied from the parner to the combustion furnace to an air ratio of about 0.8.
  • control device reduces the amount of air supplied from the parner to the combustion furnace to an air ratio of about 0.8.
  • further comprises a nozzle for the in heat absorption furnace to complete the combustion is blown two-stage combustion air, further reducing N_ ⁇ x emission values.
  • the screen tube further includes thermometers provided in the vicinity of an entrance and an exit of the screen tube, respectively, and the control device is configured to control the screen tube based on a measurement value of each thermometer.
  • the heat flux of the screen tube is calculated from the temperature difference between the inlet and the outlet of the slag screen, and when the calculated value becomes smaller than a predetermined heat flux value, the slag screen is detected as a closed state.
  • the amount of air supplied to the combustion furnace from above is increased to make the air ratio larger than a predetermined air ratio value, and the heat flux of the screen pipe is set to the predetermined heat flux value or more to close the slag screen. Release the blockage state.
  • the predetermined heat flux value is 35 kW / m 2
  • the predetermined air ratio value is 0.8.
  • the thermometer further includes thermometers provided in the vicinity of an inlet portion and an outlet portion of the screen tube, respectively, wherein the controller measures the thermometers when performing a partial load operation.
  • the heat flux of the screen tube is calculated from the temperature difference between the inlet and the outlet of the screen tube, and when the calculated value becomes smaller than a predetermined heat flux value, the slag screen is closed.
  • the fuel injection amount and the supply air amount from the parner to the combustion furnace are increased, the temperature of the gas passing through the slag screen is increased, and the heat flux of the screen tube is changed to the predetermined heat flux.
  • the slag screen is released from the closed state when the value exceeds the value.
  • the predetermined heat flux value is 35 kW / m 2 .
  • the screen tube further includes thermometers provided in the vicinity of an entrance and an exit of the screen tube, respectively, and the control device is configured to control the screen tube based on a measurement value of each thermometer.
  • the heat flux of the screen tube is calculated from the temperature difference between the inlet and outlet of the slag screen, and when the calculated value is smaller than a predetermined heat flux value, it is detected as a slag screen blockage state. Ash melting point depressant to furnace The slag is melted, the melting point of the slag is lowered to make it easier to flow down, the amount of slag attached to the slag screen is reduced, and the closed state of the slag screen is released.
  • the predetermined heat flux value is 35 kW / m 2 .
  • FIG. 1 is a schematic diagram showing an ash fusion type U firing combustion boiler according to one embodiment of the present invention.
  • Figure 2 shows the conventional method in which the two-stage combustion air was blown into the combustion furnace upstream of the slag screen and the method of one embodiment of the present invention in which the two-stage combustion air was blown into the regenerator downstream of the slag screen.
  • 7 is a graph showing the change in NOx value as a result of narrowing the burner air ratio and the result of plotting the residence time from the burner on the horizontal axis by shifting the blowing position of the two-stage combustion air while keeping the burner air ratio the same.
  • FIG. 3 is a schematic view showing an ash-melting U-firing combustion boiler according to another embodiment of the present invention.
  • FIG. 4 is a block diagram showing an evaporator system configured in the ash fusion type U-firing combustion boiler of FIG.
  • FIG. 4 is a chart showing a change over time in a relationship of a combustion air flow rate.
  • FIG. 6 shows the pressure inside the combustion furnace, the pressure inside the heat storage furnace, and the flow rate of the burner combustion air when the slag screen clogging avoidance operation according to one embodiment of the present invention is performed in the operation of the ash fusion type U firing combustion boiler.
  • FIG. 4 is a chart showing the change over time in the relationship between the second-stage combustion air flow rate and the slag screen heat flux.
  • FIG. 1 is a schematic diagram showing a conventional ash-melting U-firing combustion boiler.
  • FIG. 8 is an enlarged sectional view taken along line AA of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a schematic configuration of an ash-melting U-firing combustion boiler according to the present embodiment.
  • This combustion boiler has a furnace body 1 in which a refractory material is coated on an inner surface of a water cooling wall, and a furnace body 1 having a ceiling.
  • the furnace includes a combustion furnace 5 including a slag screen 4, a heat-collecting furnace 6 having an exposed steel shell provided downstream of the combustion furnace 5, and a convection heat transfer section 7 including a superheater tube.
  • the ash-melting U-firing combustion boiler according to the present embodiment is provided with a nozzle 13 for blowing two-stage combustion air downstream of the slag screen 4.
  • a nozzle for injecting the two-stage combustion air unlike the prior art is not provided upstream of the slag screen 4.
  • the ash-melting U-firing combustion boiler according to the present embodiment is configured to control the supply amount of the combustion air and pulverized coal from the parner 2 to the combustion furnace 5 and the supply amount of the two-stage combustion air to the regenerator 6.
  • the device 20 is provided.
  • the phantom line in Fig. 1 is a conventional ash-melting U-firing combustion boiler, that is, a conventional ash designed to blow two-stage combustion air upstream of the slag screen so that the air ratio becomes 1 at the slag screen.
  • the external view of the fusion type U firing combustion boiler is shown.
  • the amount of air supplied to the parner 102 to reduce NOx was reduced to a burner air ratio of about 0.8. If the two-stage combustion air is not blown into the upstream of the slatter screen 104, the amount of heat generated in the combustion furnace 105 also decreases by about 30%, The temperature drops by about 100 ° C and the slag thickness increases by a factor of 1.5 to 1.6. As a result, the temperature of the discharged slag also decreases, making it difficult to discharge the slag in a stable manner, increasing the amount of slag adhering to the screen tube 104a of the slag screen 104 and increasing the slag outer diameter.
  • the volume of the combustion furnace is changed to a conventional ash melting type shown by a virtual line.
  • the volume of the combustion furnace (100%) of the U-firing combustion boiler has been reduced to about 55-60%.
  • the reason for reducing the furnace volume of the combustion furnace 5 to about 55 to 60% is as follows.
  • the gas temperature when passing through the slag screen 4 becomes low, which may cause blockage in the slag screen 4, and if it is smaller than this, the gas passes through the slag screen 4.
  • the screen tube 4a is exposed, and the function of the ash melting furnace may be impaired.
  • the volume of the combustion furnace 5 is increased by two-stage combustion air on the upstream side of the slag screen so that the air ratio in the slag screen is designed to be 1.
  • reduce the capacity of the combustion furnace of the ash-melting U-firing combustion boiler to about 55 to 60% reduce the amount of air supplied from the parner 2 to the combustion furnace 5 by an air ratio of less than 1 (for example, approximately 0.8%).
  • the pulverized coal is burned in the combustion furnace 5 with a slight excess of fuel to form a reducing atmosphere, and the temperature in the combustion furnace 5 is raised to near the ash melting point of the coal.
  • the temperature inside the combustion furnace 5 becomes almost the same as that of the conventional combustion furnace indicated by the imaginary line so far, the slag thickness becomes equal, and stable slag discharge from the downflow port 3 is possible even in the reducing atmosphere.
  • the slag is discharged onto a slag discharge conveyor 9 in a slag tank 8 and transported.
  • the amount of NOx generated in the combustion furnace 5 is reduced. That is, the N content in the pulverized coal charged from the wrench 2 into the combustion furnace 5 together with the volatile components It is converted to HCN and NH 3 , released and oxidized, and partly becomes NO. In a high-temperature reducing atmosphere, some NO is reduced to N 2 and NOx is reduced.
  • pulverized coal is burned in the combustion furnace 5 with insufficient air, and the generated CO gas is sent into the regenerator 6, so that a point suitable for burning off CO, for example,
  • the two-stage combustion air is blown from the nozzle 13 to the point where the temperature in the heating furnace 6 is equal to or more than 1200 ° C. to complete the combustion. This further reduces NOx emissions.
  • Fig. 2 shows the two-stage combustion air blown from the nozzle 111 into the combustion furnace 105 upstream of the slag screen 104 in the combustion boiler of the conventional ash-melting U-firing combustion boiler shown in Fig. 7.
  • the combustion boiler of the ash-melting type U-firing combustion boiler of this embodiment shown in FIG. 1 and the conventional operation method shown in FIG. 1 two-stage combustion air is blown from the nozzle 13 into the heat collection furnace 6 downstream of the slag screen 4.
  • the change in the NO x value as a result of reducing the burner air ratio is shown for the operation method of the present embodiment.
  • Fig. 2 also shows the results of plotting the residence time from the burner 2 on the horizontal axis by shifting the injection position of the two-stage combustion air while maintaining the same air-fuel ratio. It can be seen that the longer the residence time before blowing, the greater the NO x reduction effect.
  • FIG. 3 shows a schematic configuration of an ash-melting U-firing combustion boiler according to the present embodiment.
  • Ash-melting U-firing combustion boilers generally use a once-through boiler because the boiler structure is complicated. Since the temperature of the water exiting the economizer 16 of this once-through boiler is lower than the evaporating temperature, as shown in Fig. 4, after exiting the economizer 16, the slag screen 4 is first entered.
  • An evaporator system is configured to supply water, pass through the combustion furnace 5 and the heat storage furnace 6 and reach the convection heat transfer section 7.
  • reference numeral 21 indicates an evening bin
  • reference numeral 22 indicates a condenser
  • reference numeral 23 indicates a boiler feed pump.
  • thermometer Ti is provided upstream of the slag screen 4 shown in FIG.
  • a thermometer T 2 is provided upstream near the outlet pipe 15.
  • the two thermometers T i and T 2 measure the temperature of the screen pipe near the inlet pipe 14 and the temperature of the screen pipe near the outlet pipe 15, and the controller 20 calculates the screen pipe from the temperature difference between the two temperatures. Calculate and monitor the heat flux of 4a.
  • the heat flux of the screen tube 4a is calculated by the following equation.
  • the heat flux 1 1 6 3 X feedwater flow X water specific heat X (outlet temperature - inlet temperature) / subscription over down tube surface area (W / m 2)
  • FIG. 6 shows an operation for avoiding clogging of the slag screen according to the present embodiment in the operation of the ash fusion type U firing combustion boiler according to the present embodiment shown in FIG. It shows the changes over time in the relationship between the pressure inside the combustion furnace, the pressure inside the heat storage furnace, the flow rate of the burner combustion air, the flow rate of the two-stage combustion air, and the heat flux of the slag screen.
  • the heat flux of the slag screen 4 shows that the pressure inside the combustion furnace 5 started to increase gradually. At around 13:30, the heat flux of the slag screen 4 became 35 kW. / m 2 or less, and the slag screen 4 is blocked.
  • the flow rate of the combustion air injected into the combustion furnace 5 from the parner 2 is increased as shown in FIG. 6, the flow rate of the two-stage combustion air into the heat collection furnace 6 is reduced, and the combustion is performed.
  • the air ratio in the furnace 5 is increased from 0.8, and the value of the heat flux of the screen tube 4 a of the slag screen 4 is set to 35 kW / m 2 or more to release the blocked state of the slag screen 4.
  • This operation increases the NOX value at the boiler outlet of the ash-melting U-firing combustion boiler. If a denitration device is provided downstream, increase the ammonia consumption and use no denitration device. Will increase the in-furnace air ratio to within the NO x regulation value.
  • the closed state of the slag screen 4 is detected in the same manner as described above, and the slag screen 4 is immediately turned off from the wrench 2.
  • the amount of fuel and the amount of air supplied to the combustion furnace 5 of the slag screen 4 were increased, the temperature of the gas passing through the slag screen 4 was increased, and the value of the heat flux of the screen tube 4a of the slag screen 4 was 35 kW / m 2
  • the closed state of the slag screen 4 is released. In this case, the power output will increase, so the load on other boilers in the system should be reduced.
  • an ash melting point depressant is immediately injected into the combustion furnace 5 to lower the slag melting point.
  • the thickness of the slag adhering to the inner surface of the combustion furnace is reduced to make it easier for the molten slag to flow down from the molten slag discharge outlet 3 and to reduce the amount of slag adhering to the slag screen 4 to block the slag screen 4.
  • Limestone, dolomite, iron ore, iron oxide powder, etc. are used as melting point depressants for ash.
  • the temperature drop in the combustion furnace 5 caused by limestone injection is as follows: pulverized coal is 100, the injection rate of 1% is 60 ° C, the injection rate of 2% is 90 ° C, At 8% input, it is 120 ° C.
  • the combustion furnace 5 is set to a high-temperature reducing atmosphere to stably discharge the coal ash molten slag. While maintaining this, it is possible to increase the residence time of C0 due to incomplete combustion of pulverized coal until the two-stage combustion air is blown into the heat-recovery furnace 6 downstream of the combustion furnace to reduce N0X, so that the conventional ash
  • the NOx emission can be reduced to about 1/3 compared with the fusion type U firing combustion boiler and its operation method.
  • the slag screen blockage is accurately detected in a short time, and the slag screen 4 is blocked.
  • the heat flux of the screen tube 4a of the slag screen 4 is increased, or the melting point of the slag is lowered by adding a ash melting point depressant to make it easier to flow down and the amount of slag adhering to the slag screen 4 Therefore, the operation of the slag screen 4 in which the blockage is released can be performed, so that the operation of the ash-melting U-fired combustion boiler can be safely continued.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

明 細 書 灰溶融型 uファイアリング燃焼ボイラ及ぴその運転方法 技術分野
本発明は、 微粉炭燃焼で燃焼温度を灰の溶流点近傍の高温に維持し、 灰を溶融 スラグ化させて水砕スラグとして排出する灰溶融型 uファイアリング燃焼ボイラ 及びその運転方法に関する。 背景技術
従来の灰溶融型 Uファイアリング燃焼ボイラは、 図 7に示すように水冷壁の内 面に耐火材を被覆した炉本体 1 0 1と、 炉本体 1 0 1の天井部に下向きに取り付 けられたバ一ナ 1 0 2と、 炉本体 1 0 1の底部に設けた溶融スラグ排出用の流下 口 1 0 3と炉本体 1 0 1の火炎が反転して上向きになる個所に設けた図 8の断面 図に示すスクリーン管 1 0 4 aの多重配列のスラグスクリーン 1 0 4とから成る 燃焼炉 1 0 5と、 該燃焼炉 1 0 5の下流に設けられた鉄皮がむき出しの収熱炉 1 0 6及び過熱器管から成る対流伝熱部 1 0 7で構成されている。
スラグスクリーン 1 0 4は、 燃焼炉 1 0 5と収熱炉 1 0 6とを遮断し、 燃焼炉 1 0 5内の輻射熱が収熱炉 1 0 6へ逃げるのを防止して、 燃焼炉側の温度降下を 防止することと、 燃焼ガス中に含まれる灰を捕捉し、 下流側装置の負荷を下げる ことを目的として設置され、 灰溶融型 Uフアイアリング燃焼ボイラの低 N 0 X運転 には欠くことのできないものである。 図 7中の符号 1 0 8はスラグ水槽で、 この 中にスラグ排出コンペァ 1 0 9が設けられている。 符号 1 1 0は炉本体 1 0 1に 設けた圧力検出ノズルである。 符号 1 1 1は収熱炉 1 0 6に設けた圧力検出ノズ ルである。 符号 1 1 2は炉本体 1 0 1に設けた二段燃焼空気吹き込み用のノズル である。
燃焼炉 1 0 5の耐火材は、 パーナ 1 0 2の部分からスラグスクリーン 1 0 4を 含めたスラグスクリーン後流の傾斜部までを被覆していて、 この範囲は、 石炭灰 が耐火材の表面に付着して炉内表面で溶融スラグ化して溶流し、 石炭灰の溶流点 近傍の高温度に維持される。 燃焼炉 1 0 5内の内表面に付着した灰のスラグ厚み は、 石炭灰の融点ないしは溶流点に比例して変化し、 石炭銘柄毎に、 また負荷毎 に異なった厚みになる。
上述した従来の灰溶融型 Uファイアリング燃焼ボイラに関連する技術が米国特 許第 6, 0 5 8 , 8 5 5号に記載されている。
これまで、 従来の灰溶融型 Uファイアリング燃焼ボイラの運転において、 低 N Ox化のために、
① 排ガス再循環
② パーナ供給空気から分離した三次空気の燃焼炉内吹き込み
③ 微粉炭の細粉化
④ 燃料の再燃焼 (リバ一二ング)
を試みてきた。
上記②のパーナ供給空気から分離した三次空気の燃焼炉内吹き込みについてさ らに説明すれば、 低 N Ox化のためにはバ一ナ空気比を小さくすればよいことが分 かっており、 例えば図 7に示した従来の灰溶融型 Uファイアリング燃焼ボイラで パーナ 1 0 2へ供給する空気量をバ一ナ空気比 0 . 8程度まで絞って運転するこ とが考えられる。 ところが、 パーナ空気比を 0 . 8程度まで絞ると、 燃焼炉 1 0 5内で発生する熱量も 3 0 %程度減少して、 燃焼炉 1 0 5内の温度は約 1 0 0 °C 低下して、 スラグの厚みは 1 . 5〜1 . 6倍程度増加する。 これによつて、 排出 されるスラグの温度も低下し、 安定したスラグの排出が難しくなり、 スラグスク リーン 1 0 4のスクリーン管 1 0 4 aに付着するスラグが増えて、 スラグ外径が 太くなつて、 一部でクリン力が成長して運転持続が困難となる。 そこで、 従来の 灰溶融型 Uファイアリング燃焼ボイラにおいて低 N Ox化のためにはバ一ナ空気比 を 0 . 8程度に絞る場合には、 同時にスラグスクリーン 1 0 4の上流側に二段燃 焼空気を吹き込んでスラグスクリーン 1 0 4での空気比を 1に維持する必要があ つた。
このように従来の灰溶融型 Uフアイアリング燃焼ボイラにおいては、 スラグス クリーン 1 0 4の上流側に二段燃焼空気を供給することによりスラグスクリーン 1 0 4での空気比を 1とし、 石炭の燃焼を完結させて、 燃焼炉内温度低下による 溶融スラグ排出用の流下口 1 0 3の閉塞ゃスラグスクリーン 1 0 4のスクリーン 管 1 0 4 aでのクリンカ成長による閉塞を防止する必要があり、 十分な低 N O xィ匕 効果を得ることが難しかった。 具体的には、 上記①、 ②、 ③の組み合わせでボイ ラ出口 N Ox値は 4 0 0〜5 0 O p p m ( 0 2 6 %換算値) が下限で、 上記①、 ②、 ③、 ④の組み合わせでボイラ出口 N O x値は 1 5 O p p m ( 02 6 %換算値) が下 限となる。 従って、 公害規制値を守るためにはボイラ後流に脱硝装置を設置する 必要があった。
ところで、 石炭の燃焼に伴って排出される環境汚染物質の N Ox量は、 空気比 1 を境にした酸化雰囲気と還元雰囲気並びに燃焼温度に依存し、 酸化雰囲気では燃 焼温度が高いほど多く、 一方、 還元雰囲気では燃焼温度が高いほど少なくなる。 石炭灰の融点付近の 1 4 0 0 °Cでは、 酸化雰囲気の方が還元雰囲気よりも数 1 0 から数 1 0 0倍高くなる。
また、 前記の灰溶融型 Uファイアリング燃焼ボイラの運転においては、 ボイラ 後流にある誘引ファンで、 収熱炉 1 0 6に設けられた圧力検出ノズル 1 1 1での 圧力が一 0 . 1〜一 0 . 2 k P aになるように制御し、 炉本体 1 0 1に設けられ た圧力検出ノズル 1 1 0での圧力は燃焼空気側の圧力として監視していた。 圧力 検出ノズル 1 1 0での圧力と圧力検出ノズル 1 1 1での圧力の差がスラグスクリ —ン 1 0 4での圧力損失で、 圧力検 ノズル 1 1 0での圧力はスラグスクリーン 1 0 4のスクリーン管 1 0 4 aに付着した灰のスラグ厚みによっても変化し、 石 炭銘柄毎に、 また負荷毎に異なった値となった。
従来、 圧力検出ノズル 1 i 0での圧力が増加した時、 スラグスクリーン 1 0 4 で閉塞が発生したと判断していたが、 上記の通り石炭銘柄毎にまた負荷毎に異な つた値となるため、 スラグスクリーン 1 0 4での閉塞の判断が難しい。 また、 圧 力の上昇は僅かずつであり、 閉塞と判断した時は、 かなり重症の閉塞状態で、 灰 溶融型 Uファイアリング燃焼ボイラの運転を継続することは不可能であった。 そこで本発明は、 従来の灰溶融型 Uファイアリング燃焼ボイラの前述の問題点 を解消しょうとするものであり、 上記石炭燃焼時の N Ox発生特性に着目して、 灰 溶融型 Uファイアリング燃焼ボイラに設置される脱硝装置の能力を小さく抑える か或いは脱硝装置自体を省略してしまつた場合でも、 石炭灰溶融スラグの排出を 安定して維持しつつ極めて低い N O x排出値を得ることができる灰溶融型 Uファィ ァリング燃焼ボイラ及びその運転方法を提供し、 もって灰溶融型 Uファイアリン グ燃焼ボイラの設備費及びランニングコストを低減しょうとするものである。 ま た、 本発明は、 上記燃焼ボイラ及び上記運転方法において、 スラグスクリーンの 閉塞を短時間に正確に検出し、 その閉塞を解除し、 運転を安全に継続しようとす るものである。 発明の開示
本発明は、 灰溶融型 Uファイアリング燃焼ボイラの運転方法において、 バ一ナ から燃焼炉への供給空気量を空気比 1未満に絞った場合でも、 前記燃焼炉とその 下流に位置する収熱炉とを区画するスラグスクリーンを通過するガスの温度が、 前記スラグスクリーンを正常に機能させ得る温度範囲に維持されるように、 前記 燃焼炉の容積を設定し、 前記パーナから前記燃焼炉への供給空気量を空気比 1未 満に絞り、 前記燃焼炉内で微粉炭を燃料過剰気味に燃焼させて還元雰囲気の状態 になし、 前記燃焼炉内の温度を石炭の灰溶流点近傍に上昇させて、 N Ox発生量を 低減させることを特徴とする。
また、 好ましくは、 前記燃焼炉の容積は、 前記スラグスクリーンで空気比が略 1になるように設計された燃焼炉の容積の 5 5〜6 0 %程度であり、 前記パーナ から前記燃焼炉への供給空気量は、 空気比 0 . 8程度に絞られる。
また、 好ましくは、 前記収熱炉内に二段燃焼空気を吹き込んで燃焼を完結させ、 N O x排出値をさらに低減させる。
また、 好ましくは、 前記スラグスクリーンのスクリーン管の入口部近傍及び出 口部近傍にそれぞれ設けられた各温度計の測定値に基づいて、 前記スクリーン管 の入口部と出口部との温度差から前記スクリーン管の熱流束を算出し、 その算出 値が所定の熱流束値よりも小さくなった時にスラグスクリーンの閉塞状態として 検出し、 検出後直ちに前記パーナから前記燃焼炉へ投入する供給空気量を増やし て空気比を所定の空気比値よりも大きくし、 前記スクリーン管の熱流束を前記所 定の熱流束値以上になして前記スラグスクリーンの閉塞状態を解除する。
また、 好ましくは、 前記所定の熱流束値は 3 5 kW/m2であり、 前記所定の空 気比値は 0 . 8である。
また、 好ましくは、 部分負荷運転を実施する際に、 前記スラグスクリーンのス クリーン管の入口部近傍及び出口部近傍にそれそれ設けられた各温度計の測定値 に基づいて、 前記スクリーン管の入口部と出口部との温度差から前記スクリーン 管の熱流朿を算出し、 その算出値が所定の熱流束値よりも小さくなった時にスラ グスクリーンの閉塞状態として検出し、 検出後直ちに前記パーナから前記燃焼炉 への燃料投入量及び供給空気量を増やし、 前記スラグスクリーンを通過するガス の温度を上昇させ、 前記スクリーン管の熱流束を前記所定の熱流束値以上になし て前記スラグスクリーンの閉塞状態を解除する。
また、 好ましくは、 前記所定の熱流束値は 3 5 kW/m2である。
また、 好ましくは、 前記スラグスクリーンのスクリーン管の入口部近傍及び出 口部近傍にそれそれ設けられた各温度計の測定値に基づいて、 前記スクリーン管 の入口部と出口部との温度差から前記スクリーン管の熱流束を算出し、 その算出 値が所定の熱流束値よりも小さくなった時にスラグスクリーンの閉塞状態として 検出し、 検出後直ちに前記燃焼炉へ灰の融点降下剤を投入し、 スラグの融点を下 げて流下し易くすると共に前記スラグスクリ一ンに付着するスラグ量を減少させ、 前記スラグスクリーンの閉塞状態を解除する。
また、 好ましくは、 前記所定の熱流束値は 3 5 kW/m2である。
本発明による灰溶融型 Uフアイアリング燃焼ボイラは、 微粉炭を燃焼させるバ ーナを有する燃焼炉と、 前記燃焼炉の下流側に配置された収熱炉と、 前記燃焼炉 と前記収熱炉とを区画するスクリーン管を含むスラグスクリーンと、 前記パーナ から前記燃焼炉への供給空気量及び燃料投入量を制御する制御装置と、 を備え、 前記燃焼炉の容積は、 前記パーナから前記燃焼炉への供給空気量を空気比 1未満 に絞った場合でも、 前記スラグスクリーンを通過するガスの温度が、 前記スラグ スクリーンを正常に機能させ得る温度範囲に維持されるように設定されており、 前記制御装置は、 前記パーナから前記燃焼炉への供給空気量を空気比 1未満に絞 り、 前記燃焼炉内で微粉炭を燃料過剰気味に燃焼させて還元雰囲気の状態になし、 前記燃焼炉内の温度を石炭の灰溶流点近傍に上昇させて、 N O x発生量を低減させ ることを特徴とする。 D また、 好ましくは、 前記燃焼炉の容積は、 前記スラグスクリーンで空気比が略
1になるように設計された燃焼炉の容積の 5 5〜6 0 %程度であり、 前記制御装 置は、 前記パーナから前記燃焼炉への供給空気量を空気比 0 . 8程度に絞る。 また、 好ましくは、 前記収熱炉内に二段燃焼空気を吹き込んで燃焼を完結させ、 N〇x排出値をさらに低減させるためのノズルをさらに有する。
また、 好ましくは、 前記スクリーン管の入口部近傍及び出口部近傍にそれそれ 設けられた各温度計をさらに有し、 前記制御装置は、 前記各温度計の測定値に基 づいて、 前記スクリーン管の入口部と出口部との温度差から前記スクリーン管の 熱流束を算出し、 その算出値が所定の熱流束値よりも小さくなった時にスラグス クリーンの閉塞状態として検出し、 検出後直ちに前記パーナから前記燃焼炉へ投 入する供給空気量を増やして空気比を所定の空気比値よりも大きくし、 前記スク リーン管の熱流束を前記所定の熱流束値以上になして前記スラグスクリーンの閉 塞状態を解除する。
また、 好ましくは、 前記所定の熱流束値は 3 5 kW/m2であり、 前記所定の空 気比値は 0 . 8である。
また、 好ましくは、 前記スクリーン管の入口部近傍及び出口部近傍にそれそれ 設けられた各温度計をさらに有し、 前記制御装置は、 部分負荷運転を実施する際 に、 前記各温度計の測定値に基づいて、 前記スクリーン管の入口部と出口部との 温度差から前記スクリーン管の熱流束を算出し、 その算出値が所定の熱流束値よ りも小さくなつた時にスラグスクリーンの閉塞状態として検出し、 検出後直ちに 前記パーナから前記燃焼炉への燃料投入量及び供給空気量を増やし、 前記スラグ スクリーンを通過するガスの温度を上昇させ、 前記スクリーン管の熱流束を前記 所定の熱流束値以上になして前記スラグスクリーンの閉塞状態を解除する。
また、 好ましくは、 前記所定の熱流束値は 3 5 kW/m2である。
また、 好ましくは、 前記スクリーン管の入口部近傍及び出口部近傍にそれそれ 設けられた各温度計をさらに有し、 前記制御装置は、 前記各温度計の測定値に基 づいて、 前記スクリーン管の入口部と出口部との温度差から前記スクリーン管の 熱流束を算出し、 その算出値が所定の熱流束値よりも小さくなった時にスラグス クリーンの閉塞状態として検出し、 検出後直ちに前記燃焼炉へ灰の融点降下剤を 投入し、 スラグの融点を下げて流下し易くすると共に前記スラグスクリーンに付 着するスラグ量を減少させ、 前記スラグスクリーンの閉塞状態を解除する。
また、 好ましくは、 前記所定の熱流束値は 3 5 kW/m2である。 図面の簡単な説明
図 1は、 本発明の一実施形態による灰溶融型 Uファイアリング燃焼ボイラを示 す概略図である。
図 2は、 スラグスクリーン上流で燃焼炉内に二段燃焼空気を吹き込んだ従来の 方法とスラグスクリーン下流の収熱炉内に二段燃焼空気を吹き込んだ本発明の一 実施形態の方法とで、 パーナ空気比を絞った結果の N O x値の変化及びバ一ナ空気 比を同じにして二段燃焼空気の吹き込み位置をずらしてパーナからの滞留時間を 横軸にした結果を示すグラフである。
図 3は、 本発明の他の実施形態による灰溶融型 Uファイアリング燃焼ボイラを 示す概略図である。
図 4は、 図 3の灰溶融型 Uファィァリング燃焼ボイラにおいて構成する蒸発器 系統を示すプロック図である。
図 5は、 灰溶融型 Uファイアリング燃焼ボイラの運転において、 従来技術によ るスラグスクリーン閉塞回避操作を行う際の燃焼炉内圧力、 収熱炉内圧力、 バー ナ燃焼空気流量、 及び二段燃焼空気流量の関係の経時変化を示したチャート図で おる。
図 6は、 灰溶融型 Uファイアリング燃焼ボイラの運転において、 本発明の一実 施形態によるスラグスクリーン閉塞回避操作を行う際の燃焼炉内圧力、 収熱炉内 圧力、 バ一ナ燃焼空気流量、 二段燃焼空気流量、 及びスラグスクリーン熱流束の 関係の経時変化を示したチャート図である。
図 Ίは、 従来の灰溶融型 Uファイアリング燃焼ボイラを示す概略図である。 図 8は、 図 7の A— A線拡大断面図である。 発明を実施するための最良の形態
先ず、 本発明による灰溶融型 Uファイアリング燃焼ボイラ及びその運転方法の 一実施形態について説明する。
図 1は本実施形態による灰溶融型 Uファィァリング燃焼ボイラの概略構成を示 しており、 この燃焼ボイラは、 水冷壁の内面に耐火材を被覆した炉本体 1と、 炉 本体 1の天井部に下向きに取り付けられたパーナ 2と、 炉本体 1の底部に設けた 溶融スラグ排出用の流下口 3と炉本体 1の火炎が反転して上向きになる個所に設 けたスクリーン管 4 aの多重配列のスラグスクリーン 4とから成る燃焼炉 5と、 燃焼炉 5の下流に設けられた鉄皮がむき出しの収熱炉 6及び過熱器管から成る対 流伝熱部 7を備えている。
また、 本実施形態による灰溶融型 Uファイアリング燃焼ボイラは、 スラグスク リーン 4の下流側に、 二段燃焼空気を吹き込むためのノズル 1 3が設けられてい る。 一方、 スラグスクリーン 4の上流側には、 従来技術のような二段燃焼空気を 吹き込むためのノズルは設けられていない。
さらに、 本実施形態による灰溶融型 Uファイアリング燃焼ボイラは、 パーナ 2 から燃焼炉 5への燃焼空気及び微粉炭の供給量並びに収熱炉 6への二段燃焼空気 の供給量を制御する制御装置 2 0を備えている。
図 1中の仮想線は、 従来の灰溶融型 Uファイアリング燃焼ボイラ、 即ちスラグ スクリーン上流側で二段燃焼空気を吹き込んでスラグスクリーン部で空気比が 1 となるように設計された従来の灰溶融型 Uファイアリング燃焼ボイラの外形を示 している。
既に述べたように、 図 7に示した従来の灰溶融型 Uファイアリング燃焼ボイラ において低 N O x化のためにパーナ 1 0 2へ供給する空気量をバ一ナ空気比 0 . 8 程度まで絞った場合、 スラタスクリーン 1 0 4の上流側へ二段燃焼空気を吹き込 まないと、 燃焼炉 1 0 5内で発生する熱量も 3 0 %程度減少して、 燃焼炉 1 0 5 内の温度は約 1 0 0 °C低下して、 スラグの厚みは 1 . 5〜1 . 6倍程度増加する。 これによつて、 排出されるスラグの温度も低下し、 安定したスラグの排出が難し くなり、 スラグスクリーン 1 0 4のスクリーン管 1 0 4 aに付着するスラグが増 えて、 スラグ外径が太くなつて、 一部でクリン力が成長して運転持続が困難とな る。 そして、 既述の如く従来の技術においては、 スラグスクリーン 1 0 4の上流 側にノズル 1 1 2から二段燃焼空気を吹き込むことにより前記の問題を解消して いた。
これに対して本実施形態においては、 図 1に示すように、 スラグスクリーン 4 の上流側に二段燃焼空気を吹き込むのではなく、 その燃焼炉の容積を、 仮想線に 示す従来の灰溶融型 Uフアイァリング燃焼ボイラの燃焼炉の容積 ( 1 0 0 % ) の 5 5 - 6 0 %程度に縮小している。
このように燃焼炉 5の炉容積を 5 5〜 6 0 %程度に縮小する理由は次の通りで ある。 パーナ 2へ供給する空気量を制御装置 2 0により空気比 0 . 8程度まで絞 つて運転すると、 微粉炭の一部は C Oまでの反応で止まり、 発生熱量は経験的に 空気比 1の時の 7 0 %程度となる。 従って、 スラグスクリーン 4を通過する時の ガス温度を、 スラグスクリーン 4の上流側に二段燃焼空気を吹き込むことなく従 来技術と同等に維持するためには 0 · 7 3/2 = 0 . 5 8 6の容積となる。 そこで、 本実施形態においては、 燃焼炉 5の容積を従来の燃焼炉 1 0 5の容積の 5 5〜 6 0 %程度の容積とするものである。 燃焼炉 5の容積がこれよりも大きいとスラグ スクリーン 4を通過する時のガス温度が低くなつてスラグスクリーン 4での閉塞 が生じる可能性があり、 これよりも小さいとスラグスクリーン 4を通過する時の ガス温度が高くなつてスクリーン管 4 aがむき出しとなり、 灰溶融炉としての機 能が損われる可能性がある。
そして、 本実施形態においては、 前記の如く燃焼炉 5の容積を、 スラグスクリ —ンの上流側で二段燃焼空気を吹き込んでスラグスクリーン部での空気比が 1に なるように設計された従来の灰溶融型 Uファイアリング燃焼ボイラの燃焼炉の容 積の 5 5 ~ 6 0 %程度に縮小した上、 燃焼炉 5へのパーナ 2からの供給空気量を 空気比 1未満 (例えば略 0 . 8 ) に絞って、 燃焼炉 5内で微粉炭を燃料過剰気味 に燃焼させて還元雰囲気の状態になし、 燃焼炉 5内の温度を石炭の灰溶流点近傍 に上昇させる。
これにより燃焼炉 5内の温度はこれまでの仮想線に示す従来の燃焼炉とほぼ同 等となって、 スラグ厚みも同等となり、 還元雰囲気の状態でも流下口 3から安定 したスラグ排出が可能となり、 スラグはスラグ水槽 8内のスラグ排出コンベア 9 上に排出されて搬送される。 同時に燃焼炉 5内での N Ox発生量が低減される。 即 ち、 パーナ 2から燃焼炉 5内に投入された微粉炭中の N分は、 揮発成分とともに H C N、 N H 3に転換されて放出され酸化されて一部が N Oとなる。 高温還元雰囲 気下では一部の N Oが N2に還元されて N Oxは低減される。
さらに、 本実施形態においては、 微粉炭は燃焼炉 5内で空気不足で燃焼し、 発 生した C Oガスは収熱炉 6内に送り込まれるので、 C Oの燃え切りに適したボイ ント、 例えば収熱炉 6内の温度が 1 2 0 0 °C以上のポイントに、 ノズル 1 3から 二段燃焼空気を吹き込んで燃焼を完結させる。 これにより、 N O x排出値がさらに 低減される。
図 2に、 図 7に示した従来の灰溶融型 Uファイアリング燃焼ボイラの燃焼ボイ ラにおいてスラグスクリーン 1 0 4の上流で燃焼炉 1 0 5内にノズル 1 1 2から 二段燃焼空気を吹き込んだ従来の運転方法と、 図 1に示した本実施形態の灰溶融 型 Uファイアリング燃焼ボイラの燃焼ボイラにおいてスラグスクリーン 4の下流 の収熱炉 6内にノズル 1 3から二段燃焼空気を吹き込んだ本実施形態の運転方法 とで、 バ一ナ空気比を絞った結果の N O x値の変化を示す。
図 2から判るように本実施形態の運転方法ではパーナ空気比を絞ってスラグス クリーン 4の下流の収熱炉 6内にノズル 1 3から二段燃焼空気を吹き込むと、 N O x低減効果が大きくなる。 また、 図 2にはパーナ空気比を同じにして二段燃焼 空気の吹き込み位置をずらしてバ一ナ 2からの滞留時間を横軸にした結果が示さ れていて、 パーナ 2から二段燃焼空気吹き込みまでの滞留時間が長いほど N O x低 減効果が大きくなることが判る。
次に、 本発明による灰溶融型 Uファイアリング燃焼ボイラ及びその運転方法の 他の 1つの実施形態を説明する。
図 3は本実施形態による灰溶融型 Uフアイァリング燃焼ボイラの概略構成を示 している。 灰溶融型 Uファイアリング燃焼ボイラは、 ボイラの構造が複雑なため、 ボイラ型式は貫流型ボイラが採用されるのが一般的である。 この貫流型ボイラの 節炭器 1 6を出た水の温度は蒸発温度よりも低いので、 図 4に示したように、 節 炭器 1 6を出た後、 一番始めにスラグスクリーン 4へ給水し、 燃焼炉 5、 収熱炉 6を経て対流伝熱部 7に至るように蒸発器系統が構成される。 なお、 図 4におい て符号 2 1は夕一ビンを示し、 符号 2 2は復水器を示し、 符号 2 3はボイラ給水 ポンプを示す。 本実施形態においては、 前記の如く蒸発器系統を構成した上で、 図 3に示すス ラグスクリーン 4のスクリ一ン管入口管寄 1 4の近傍の上流に温度計 T iを設け、 スクリーン管出口管寄 1 5の近傍の上流に温度計 T 2を設けている。 そして、 両温 度計 T i、 T 2によりスクリ一ン管入口管寄 1 4の温度とスクリーン管出口管寄 1 5の温度を測定し、 制御装置 2 0は両温度の温度差からスクリーン管 4 aの熱流 束を算出してこれを監視する。
スクリーン管 4 aの熱流束は次の式で算出される。
熱流束 = 1 . 1 6 3 X給水流量 X水の比熱 X (出口温度—入口温度) /スクリ ーン管表面積 (W/m2)
灰溶融型 Uファイアリング燃焼ボイラのスクリーン管 4 aの熱流束は、 石炭銘 柄毎に、 また負荷毎に異なった値となるが、 正常な状態で 1 4 0 ~ 1 4 5 kW/ m2であり、 3 5 kW/m2以下になるとスラグスクリーン 4は閉塞状態となる。 従って、 熱流束を算出し、 その値を監視し、 3 5 kW/m2以下になった時にスラ グスクリーン 4の閉塞状態として検出する。
上記のようにスラグスクリーン 4のスクリーン管 4 aの熱流束を算出し、 これ を監視することによりスラグスクリーン 4の閉塞を検出する理由を以下に述べる。 前述の図 1に示した灰溶融型 Uファイアリング燃焼ボイラにおいて燃焼炉 5へ のパーナ 2からの供給空気量を空気比 1未満として前述の運転方法のように低 N Ox運転すると、 図 5に示すように 1 3 : 0 0〜1 8 : 0 0まで収熱炉 6内の圧 力は殆んど変化していないのに燃焼炉 5内の圧力は徐々に増加し、 スラグスクリ ーン 4もしくはスラグスクリーン 4の後流でクリン力が成長して圧力損失が増加 していることがうかがえる。
そして、 前記の運転方法では、 燃焼炉 5内の圧力が徐々に増加してから圧力変 動が大きくなる約 3時間後の 1 6 : 0 0頃に、 燃焼炉 5へ投入するパーナ燃焼空 気流量を図 5に示すように増やし、 収熱炉 6内への二段燃焼空気流量を減らして、 燃焼炉 5内の燃焼量を増やしてやり、 燃焼炉 5内の圧力を低下させて、 閉塞回避 操作を行う。
一方、 図 6は、 図 3に示した本実施形態による灰溶融型 Uファイアリング燃焼 ボイラの運転において、 本実施形態によるスラグスクリーン閉塞回避操作を行う 際の燃焼炉内圧力、 収熱炉内圧力、 バ一ナ燃焼空気流量、 二段燃焼空気流量、 及 びスラグスクリ一ン熱流束の関係の経時変化を示している。 図 6から分かるよう に、 スラグスクリーン 4の熱流束を見ると、 燃焼炉 5内の圧力が徐々に増加し始 めた 1 3 : 3 0頃には、 スラグスクリーン 4の熱流束が 3 5 kW/m2以下に低下 し、 スラグスクリーン 4の閉塞が生じている。
そこで、 本実施形態では、 図 6に示すように、 スラグスクリーン 4の熱流束が 3 5 kW/m2以下に低下したことを検出した場合には、 パーナ燃焼空気流量を増 やし収熱炉 6内への二段燃焼空気流量を減らすことにより、 スラグスクリーン 4 の熱流束を 3 5 kW/m2以上に増加させ、 スラグスクリーン 4での閉塞を解消し ている。 燃焼炉 5内の圧力を監視していた場合は、 スラグスクリーン 4の閉塞を 判断するのに 3時間近くもかかるが、 本実施形態のようにスラグスクリーン 4の 熱流束を監視すれば短時間でスラグスクリーン 4の閉塞を判断でき、 直ちにスラ グスクリーン 4の閉塞回避の対応をとることができる。 即ち、 スラグスクリーン 4の閉塞状態を検出後、 直ちにパーナ 2から燃焼炉 5へ投入する燃焼空気流量を 図 6に示すように増やし、 収熱炉 6内への二段燃焼空気流量を減らし、 燃焼炉 5 の炉内空気比を 0 . 8よりも増やして、 スラグスクリーン 4のスクリーン管 4 a の熱流束の値を 3 5 kW/m2以上になしてスラグスクリーン 4の閉塞状態を解除 する。
この運転により灰溶融型 Uファイアリング燃焼ボイラのボイラ出口の N O X値が 大きくなるので、 後流に脱硝装置を備えている場合は、 アンモニアの消費量を増 やしてやり、 脱硝装置を備えていない場合は、 N O x規制値内まで炉内空気比を増 やしてやる。
また、 上述した低 N Ox運転を実施する場合において、 灰溶融型 Uファイアリン グ燃焼ボイラの部分負荷運転の際には、 前記と同様にスラグスクリーン 4の閉塞 状態を検出後、 直ちにパーナ 2からの燃焼炉 5への燃料投入量と供給空気量を増 やし、 スラグスクリーン 4を通過するガスの温度を上げ、 スラグスクリーン 4の スクリーン管 4 aの熱流束の値を 3 5 kW/m2以上になしてスラグスクリーン 4 の閉塞状態を解除する。 この場合、 発電出力が増えるので、 系統内の他のボイラ の負荷を下げてやるとよい。 また、 他の例としては、 前述の低 N O x運転において、 前記と同様にスラグスク リーン 4の閉塞状態を検出後、 直ちに燃焼炉 5へ灰の融点降下剤を投入し、 スラ グの融点を下げて燃焼炉内表面に付着するスラグ厚みを薄くすることで溶融スラ グ排出用の流下口 3から溶融スラグを流下し易くすると共にスラグスクリーン 4 に付着するスラグ量を減少させ、 スラグスクリーン 4の閉塞状態を解除する。 灰 の融点降下剤としては、 石灰石、 ドロマイ ト、 鉄鉱石、 酸化鉄粉等を用いる。 例 えば石灰石投入による燃焼炉 5内の温度降下は、 微粉炭を 1 0 0として 1 %の投 入量の場合は 6 0 °C、 2 %の投入量の場合は 9 0 °C、 2 . 8 %の投入量の場合は 1 2 0 °Cである。
以上の説明で判るように本発明の実施形態による灰溶融型 Uファイアリング燃 焼ボイラ及びその運転方法によれば、 燃焼炉 5を高温還元雰囲気になして石炭灰 溶融スラグの排出を安定して維持しつつ燃焼炉下流の収熱炉 6での二段燃焼空気 吹き込みまでの微粉炭不完全燃焼による C 0の滞留時間を長くとつて N 0 Xの低減 を図ることができるので、 従来の灰溶融型 Uファイアリング燃焼ボイラ及びその 運転方法に比べて N Oxェミッションを 1 / 3程度に低減することができる。 また、 灰溶融型 Uファイアリング燃焼ボイラに設置される脱硝装置を省略し、 或いは脱 硝装置の能力を小さく抑えることができ、 つまり低脱硝率の設備に小型化でき、 灰溶融型 Uフアイアリング燃焼ボイラの設備費及びランニングコストを低減でき る。
また、 本発明の実施形態による灰溶融型 Uファイアリング燃焼ボイラ及びその 運転方法によれば、 前記の低 N O x運転において、 スラグスクリーン閉塞を短時間 で正確に検出し、 そのスラグスクリーン 4の閉塞状態検出後、 直ちにスラグスク リーン 4のスクリーン管 4 aの熱流束の値を上げたり、 灰の融点降下剤の投入に よりスラグの融点を下げて流下し易くすると共にスラグスクリーン 4に付着する スラグ量を減少させて、 スラグスクリーン 4の閉塞を解除した運転を行うことが できるので、 灰溶融型 Uフアイアリング燃焼ボイラの運転を安全に継続すること ができる。 産業上の利用可能性
本発明は、 灰溶融型 Uフアイアリング燃焼ボイラ及びその運転方法に利用する とができる。

Claims

請 求 の 範 囲
1 . 灰溶融型 uファイアリング燃焼ボイラの運転方法において、
パーナから燃焼炉への供給空気量を空気比 1未満に絞った場合でも、 前記燃焼 炉とその下流に位置する収熱炉とを区画するスラグスクリーンを通過するガスの 温度が、 前記スラグスクリーンを正常に機能させ得る温度範囲に維持されるよう に、 前記燃焼炉の容積を設定し、
前記パーナから前記燃焼炉への供給空気量を空気比 1未満に絞り、 前記燃焼炉 内で微粉炭を燃料過剰気味に燃焼させて還元雰囲気の状態になし、 前記燃焼炉内 の温度を石炭の灰溶流点近傍に上昇させて、 N Ox発生量を低減させることを特徴 とする灰溶融型 Uファイアリング燃焼ボイラの運転方法。
2 . 前記燃焼炉の容積は、 前記スラグスクリーンで空気比が略 1になるよう に設計された燃焼炉の容積の 5 5〜6 0 %程度であり、
前記パーナから前記燃焼炉への供給空気量は、 空気比 0 . 8程度に絞られるこ とを特徴とする請求項 1記載の灰溶融型 Uファイアリング燃焼ボイラの運転方法。
3 . 前記収熱炉内に二段燃焼空気を吹き込んで燃焼を完結させ、 N O x排出値 をさらに低減させることを特徴とする請求項 1又は 2に記載の灰溶融型 Uフアイ ァリング燃焼ボイラの運転方法。
4 . 前記スラグスクリーンのスクリーン管の入口部近傍及び出口部近傍にそ れそれ設けられた各温度計の測定値に基づいて、 前記スクリーン管の入口部と出 口部との温度差から前記スクリーン管の熱流束を算出し、 その算出値が所定の熱 流束値よりも小さくなった時にスラグスクリーンの閉塞状態として検出し、 検出 後直ちに前記バ一ナから前記燃焼炉へ投入する供給空気量を増やして空気比を所 定の空気比値よりも大きくし、 前記スクリーン管の熱流束を前記所定の熱流束値 以上になして前記スラグスクリーンの閉塞状態を解除することを特徴とする請求 項 1乃至 3のいずれか一項に記載の灰溶融型 Uファイアリング燃焼ボイラの運転 方法。
5 . 前記所定の熱流束値は 3 5 k W/m2であり、 前記所定の空気比値は 0 - 8であることを特徴とする請求項 4記載の灰溶融型 Uファイアリング燃焼ボイラ の運転方法。
6 . 部分負荷運転を実施する際に、 前記スラグスクリーンのスクリーン管の 入口部近傍及び出口部近傍にそれそれ設けられた各温度計の測定値に基づいて、 前記スクリーン管の入口部と出口部との温度差から前記スクリーン管の熱流束を 算出し、 その算出値が所定の熱流束値よりも小さくなつた時にスラグスクリーン の閉塞状態として検出し、 検出後直ちに前記パーナから前記燃焼炉への燃料投入 量及び供給空気量を増やし、 前記スラグスクリ一ンを通過するガスの温度を上昇 させ、 前記スクリーン管の熱流束を前記所定の熱流束値以上になして前記スラグ スクリーンの閉塞状態を解除することを特徴とする請求項 1乃至 3のいずれか一 項に記載の灰溶融型 Uファィァリング燃焼ボイラの運転方法。
7 . 前記所定の熱流束値は 3 5 kW/m2であることを特徴とする請求項 6記 載の灰溶融型 Uファイアリング燃焼ボイラの運転方法。
8 . 前記スラグスクリーンのスクリーン管の入口部近傍及び出口部近傍にそ れそれ設けられた各温度計の測定値に基づいて、 前記スクリーン管の入口部と出 口部との温度差から前記スクリーン管の熱流束を算出し、 その算出値が所定の熱 流束値よりも小さくなつた時にスラグスクリーンの閉塞状態として検出し、 検出 後直ちに前記燃焼炉へ灰の融点降下剤を投入し、 スラグの融点を下げて流下し易 くすると共に前記スラグスクリーンに付着するスラグ量を減少させ、 前記スラグ スクリーンの閉塞状態を解除することを特徴とする請求項 1乃至 3のいずれか一 項に記載の灰溶融型 Uファイアリング燃焼ボイラの運転方法。
9 . 前記所定の熱流束値は 3 5 kW/m2であることを特徴とする請求項 8記 載の灰溶融型 Uファイアリング燃焼ボイラの運転方法。
1 0 . 微粉炭を燃焼させるパーナを有する燃焼炉と、
前記燃焼炉の下流側に配置された収熱炉と、
前記燃焼炉と前記収熱炉とを区画するスクリーン管を含むスラグスクリーンと、 前記パーナから前記燃焼炉への供給空気量及び燃料投入量を制御する制御装置 と、 を備え、
前記燃焼炉の容積は、 前記パーナから前記燃焼炉への供給空気量を空気比 1未 満に絞った場合でも、 前記スラグスクリーンを通過するガスの温度が、 前記スラ グスクリーンを正常に機能させ得る温度範囲に維持されるように設定されており、 前記制御装置は、 前記パーナから前記燃焼炉への供給空気量を空気比 1未満に 絞り、 前記燃焼炉内で微粉炭を燃料過剰気味に燃焼させて還元雰囲気の状態にな し、 前記燃焼炉内の温度を石炭の灰溶流点近傍に上昇させて、 N O x発生量を低減 させることを特徴とする灰溶融型 Uファイアリング燃焼ボイラ。
1 1 . 前記燃焼炉の容積は、 前記スラグスクリーンで空気比が略 1になるよ うに設計された燃焼炉の容積の 5 5〜 6 0 %程度であり、
前記制御装置は、 前記バーナから前記燃焼炉への供給空気量を空気比 0 . 8程 度に絞ることを特徴とする請求項 1 0記載の灰溶融型 Uフアイアリング燃焼ボイ ラ。
1 2 . 前記収熱炉内に二段燃焼空気を吹き込んで燃焼を完結させ、 N O x排出 値をさらに低減させるためのノズルをさらに有することを特徴とする請求項 1 0 又は 1 1に記載の灰溶融型 Uファィァリング燃焼ボイラ。
1 3 . 前記スクリーン管の入口部近傍及び出口部近傍にそれそれ設けられた 各温度計をさらに有し、
前記制御装置は、 前記各温度計の測定値に基づいて、 前記スクリーン管の入口 部と出口部との温度差から前記スクリーン管の熱流束を算出し、 その算出値が所 定の熱流束値よりも小さくなつた時にスラグスクリ一ンの閉塞状態として検出し、 検出後直ちに前記パーナから前記燃焼炉へ投入する供給空気量を増やして空気比 を所定の空気比値よりも大きくし、 前記スクリーン管の熱流朿を前記所定の熱流 束値以上になして前記スラグスクリーンの閉塞状態を解除することを特徴とする 請求項 1 0乃至 1 2のいずれか一項に記載の灰溶融型 Uファイアリング燃焼ボイ ラ。
1 4 . 前記所定の熱流束値は 3 5 kW/m2であり、 前記所定の空気比値は 0 . 8であることを特徴とする請求項 1 3記載の灰溶融型 Uファイアリング燃焼 ボイラ。
1 5 . 前記スクリーン管の入口部近傍及び出口部近傍にそれそれ設けられた 各温度計をさらに有し、
前記制御装置は、 部分負荷運転を実施する際に、 前記各温度計の測定値に基づ いて、 前記スクリーン管の入口部と出口部との温度差から前記スクリーン管の熱 流束を算出し、 その算出値が所定の熱流束値よりも小さくなつた時にスラグスク リーンの閉塞状態として検出し、 検出後直ちに前記パーナから前記燃焼炉への燃 料投入量及び供給空気量を増やし、 前記スラグスクリーンを通過するガスの温度 を上昇させ、 前記スクリーン管の熱流束を前記所定の熱流束値以上になして前記 スラグスクリーンの閉塞状態を解除することを特徴とする請求項 1 0乃至 1 2の いずれか一項に記載の灰溶融型 Uファイアリング燃焼ボイラ。
1 6 . 前記所定の熱流束値は 3 5 kW/m2であることを特徴とする請求項 1 5記載の灰溶融型 Uファイアリング燃焼ボイラ。
1 7 . 前記スクリーン管の入口部近傍及び出口部近傍にそれそれ設けられた 各温度計をさらに有し、
前記制御装置は、 前記各温度計の測定値に基づいて、 前記スクリーン管の入口 部と出口部との温度差から前記スクリーン管の熱流束を算出し、 その算出値が所 定の熱流束値よりも小さくなつた時にスラグスクリ一ンの閉塞状態として検出し、 検出後直ちに前記燃焼炉へ灰の融点降下剤を投入し、 スラグの融点を下げて流下 し易くすると共に前記スラグスクリ一ンに付着するスラグ量を減少させ、 前記ス ラグスクリーンの閉塞状態を解除することを特徴とする請求項 1 0乃至 1 2のい ずれか一項に記載の灰溶融型 Uファイアリング燃焼ボイラ。
1 8 . 前記所定の熱流束値は 3 5 kW/m2であることを特徴とする請求項 1 7記載の灰溶融型 Uフアイアリング燃焼ボイラ。
PCT/JP2002/010384 2001-10-05 2002-10-04 Chaudiere de combustion a allumage en u du type a fusion des cendres et procede de fonctionnement de la chaudiere WO2003031873A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CNB028240359A CN1318795C (zh) 2001-10-05 2002-10-04 液态排渣式u型燃烧锅炉及其运转方法
GB0406530A GB2397115B (en) 2001-10-05 2002-10-04 U-type slag-tap firing boiler and method of operating the boiler
KR1020047004276A KR100634411B1 (ko) 2001-10-05 2002-10-04 회용융식 u형 연소보일러 및 그 운전방법
DE10297306T DE10297306B4 (de) 2001-10-05 2002-10-04 U-förmiger Schmelzkammerverbrennungskessel und Verfahren zum Betrieb des Kessels
US10/491,149 US7077069B2 (en) 2001-10-05 2002-10-04 U-type slag-tap firing boiler and method of operating the boiler

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-309640 2001-10-05
JP2001309640 2001-10-05
JP2002267269A JP3781706B2 (ja) 2001-10-05 2002-09-12 灰溶融型uファイアリング燃焼ボイラの運転方法
JP2002-267269 2002-09-12

Publications (1)

Publication Number Publication Date
WO2003031873A1 true WO2003031873A1 (fr) 2003-04-17

Family

ID=26623742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010384 WO2003031873A1 (fr) 2001-10-05 2002-10-04 Chaudiere de combustion a allumage en u du type a fusion des cendres et procede de fonctionnement de la chaudiere

Country Status (7)

Country Link
US (1) US7077069B2 (ja)
JP (1) JP3781706B2 (ja)
KR (1) KR100634411B1 (ja)
CN (1) CN1318795C (ja)
DE (1) DE10297306B4 (ja)
GB (1) GB2397115B (ja)
WO (1) WO2003031873A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878550A (zh) * 2012-10-12 2013-01-16 浙江大学 燃水煤浆液态排渣旋风炉分级配风及再燃低NOx的方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20040296A1 (it) * 2004-05-11 2004-08-11 Itea Spa Combustori ad alta efficienza e impatto ambientale ridotto, e procedimenti per la produzione di energia elettrica da esso derivabili
BRPI0609999B1 (pt) * 2005-04-22 2016-04-19 Andritz Oy caldeira de recuperação de licor usado na indústria de polpa e papel e método para produzir energia em uma usina de polpa
DE102006004221A1 (de) * 2006-01-30 2007-08-09 Gks - Gemeinschaftskraftwerk Schweinfurt Gmbh Vorrichtung und Verfahren zum Abscheiden von Schadstoffen im Rauchgas einer thermischen Anlage
WO2009020739A2 (en) * 2007-08-03 2009-02-12 The Mcburney Corporation Biomass energy recovery apparatus
ATE533013T1 (de) * 2007-08-03 2011-11-15 Europ Sugar Holdings S R L Verbessertes verfahren zur effizienten energierückgewinnung aus biomasse
EP2411734A4 (en) * 2009-03-26 2014-12-17 Fadi Eldabbagh SYSTEM FOR REDUCING EMISSIONS AND ENHANCING THE ENERGY EFFICIENCY OF FOSSIL FUEL AND BIOFUEL COMBUSTION SYSTEMS
CN101629716B (zh) * 2009-08-26 2011-10-05 上海题桥纺织染纱有限公司 一种低NOx固、液态排渣煤粉燃烧器垂直布置方法
CN102384458A (zh) * 2010-08-30 2012-03-21 烟台龙源电力技术股份有限公司 注汽锅炉的蒸汽产生方法及锅炉
CN102425775A (zh) * 2011-12-06 2012-04-25 山西蓝天环保设备有限公司 燃烧器顶置u形火焰立式煤粉燃烧油田注气锅炉
US8936662B2 (en) 2012-10-02 2015-01-20 Integrated Global Services, Inc. Apparatus and methods for large particle ash separation from flue gas using screens having semi-elliptical cylinder surfaces
CN104121579A (zh) * 2014-08-06 2014-10-29 北京大邦实创节能技术服务有限公司 双调风煤粉燃烧器顶置的锅炉
JP6233810B2 (ja) * 2014-11-20 2017-11-22 株式会社日向製錬所 焼鉱シュートの詰り検知方法及び詰り検知機能を備えた焼鉱シュート
CN104534457A (zh) * 2014-12-24 2015-04-22 山西蓝天环保设备有限公司 一种燃用低挥发分、高灰分劣质煤的锅炉
CN104534458A (zh) * 2014-12-30 2015-04-22 山西蓝天环保设备有限公司 采用立式前置炉膛燃用低灰熔点煤的锅炉
GB201502891D0 (en) * 2015-02-20 2015-04-08 Doosan Babcock Ltd Downshot burner
CN105135420B (zh) * 2015-08-26 2018-06-26 烟台龙源电力技术股份有限公司 一种飞灰二次燃烧系统及提高飞灰锗品位的方法
CN105650625A (zh) * 2016-02-01 2016-06-08 哈尔滨红光锅炉总厂有限责任公司 一种高效煤粉工业锅炉
CN109253447B (zh) * 2017-07-12 2024-01-30 北京巴布科克·威尔科克斯有限公司 U型火焰低氮煤粉锅炉
CN109539247B (zh) * 2018-10-23 2020-02-14 山西大学 一种用于火电锅炉的煤气化低氮燃烧器系统
CN112797438B (zh) * 2019-07-15 2022-07-19 苏州西热节能环保技术有限公司 一种双切圆燃烧锅炉尾部烟气通道堵灰的防治方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165518A (ja) * 1985-01-16 1986-07-26 Central Res Inst Of Electric Power Ind スラグタツプ炉の運転法
JPS62102008A (ja) * 1985-10-30 1987-05-12 Hitachi Zosen Corp 融灰式燃焼室を持つ石炭だきボイラ
EP0301714A2 (en) * 1987-07-30 1989-02-01 Trw Inc. Sulfur removal by sorbent injection in secondary combustion zones
JPH01129510U (ja) * 1988-02-26 1989-09-04

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE271941C (ja)
DE1102333B (de) 1954-09-07 1961-03-16 Babcock & Wilcox Dampfkessel Verfahren zum Verbrennen eines festen, koernigen, aschearmen Brennstoffes in einer Zyklonfeuerung
DE3410945A1 (de) 1984-03-24 1985-10-03 Steag Ag, 4300 Essen Verfahren zur verminderung der no(pfeil abwaerts)x(pfeil abwaerts)-bildung in mit kohlenstaub betriebenen feuerungsanlagen, insbesondere schmelzkammerfeuerungen, und feuerungsanlage zur durchfuehrung des verfahrens
DE3614497A1 (de) 1986-04-29 1987-11-05 Saarbergwerke Ag Verfahren und anlage zur verringerung der stickoxidemission bei der verbrennung von festen brennstoffen
JPH0663611B2 (ja) 1987-08-25 1994-08-22 財団法人石炭利用総合センター 三段燃焼ボイラ
DE3805943A1 (de) 1988-02-25 1989-08-31 Steag Ag Verfahren und vorrichtung zum schmelzen fester ballaststoffe
DD271941A1 (de) * 1988-05-09 1989-09-20 Bergmann Borsig Veb Verfahren zur verbrennung stark wasser-, asche-, xylit- und quarzithaltiger rohbraunkohle mit gleichzeitiger entschwefelung der rauchgase
DE3943084A1 (de) 1989-12-27 1991-07-04 Saarbergwerke Ag Verfahren zur verringerung der stickoxidemission bei der verfeuerung von festen brennstoffen
US6058855A (en) 1998-07-20 2000-05-09 D. B. Riley, Inc. Low emission U-fired boiler combustion system
US6141380A (en) * 1998-09-18 2000-10-31 Sarnoff Corporation Frame-level rate control for video compression
JP2000165518A (ja) * 1998-11-26 2000-06-16 Nec Corp 局データ入力画面制御装置および方法
US6622645B2 (en) * 2001-06-15 2003-09-23 Honeywell International Inc. Combustion optimization with inferential sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165518A (ja) * 1985-01-16 1986-07-26 Central Res Inst Of Electric Power Ind スラグタツプ炉の運転法
JPS62102008A (ja) * 1985-10-30 1987-05-12 Hitachi Zosen Corp 融灰式燃焼室を持つ石炭だきボイラ
EP0301714A2 (en) * 1987-07-30 1989-02-01 Trw Inc. Sulfur removal by sorbent injection in secondary combustion zones
JPH01129510U (ja) * 1988-02-26 1989-09-04

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878550A (zh) * 2012-10-12 2013-01-16 浙江大学 燃水煤浆液态排渣旋风炉分级配风及再燃低NOx的方法

Also Published As

Publication number Publication date
DE10297306T5 (de) 2004-11-11
CN1318795C (zh) 2007-05-30
GB0406530D0 (en) 2004-04-28
KR20040035880A (ko) 2004-04-29
DE10297306B4 (de) 2008-03-20
US7077069B2 (en) 2006-07-18
JP3781706B2 (ja) 2006-05-31
CN1599854A (zh) 2005-03-23
KR100634411B1 (ko) 2006-10-16
GB2397115A (en) 2004-07-14
GB2397115B (en) 2005-05-18
JP2003176902A (ja) 2003-06-27
US20040237862A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
WO2003031873A1 (fr) Chaudiere de combustion a allumage en u du type a fusion des cendres et procede de fonctionnement de la chaudiere
US6748883B2 (en) Control system for controlling the feeding and burning of a pulverized fuel in a glass melting furnace
CN101484753B (zh) 炉排式焚烧炉及其燃烧控制方法
JP2004205161A (ja) 固体燃料ボイラ及びボイラ燃焼方法
JP2011523439A (ja) 高炉中への粉炭投入方法
USRE34298E (en) Method for waste disposal
JPS6323442B2 (ja)
EP2588809B1 (en) Method and system for low-emission incineration of low-calorific waste gas
EP1816396A1 (en) Treatment method and treatment apparatus for combustible gas in waste melting furnace
WO1988008504A1 (en) Combustion control method for fluidized bed incinerator
JP2007078239A (ja) 廃棄物ガス化溶融装置の溶融炉、並びに該溶融炉における制御方法及び装置
JP4343931B2 (ja) 燃焼溶融炉及び燃焼溶融炉の運転方法
JP3764634B2 (ja) 酸素バーナ式溶融炉
WO2007055125A1 (ja) 焼却処理システムにおける二次燃焼方法及び装置
JP3748364B2 (ja) 飛灰溶融炉
WO2003087669A1 (fr) Incinerateur, incinerateur de gazeification et procede de traitement des dechets
EP2863123A1 (en) Method of low-emission incineration of low and mean calorific value gases containing NH3, HCN, C5H5N, and other nitrogen-containing compounds in combustion chambers of industrial power equipment, and the system for practicing the method
WO2008029712A1 (fr) Incinérateur à distributeur automatique et procédé pour réguler la combustion dans l'incinérateur
JP2008224144A (ja) 廃棄物の焼却方法
CN2560850Y (zh) 竖炉半无焰式高炉煤气燃烧器
JP2002181319A (ja) ガス化溶融装置及び方法
AU621059B2 (en) A method and apparatus for waste disposal
JP2002005422A (ja) 燃焼溶融炉の燃焼方法および燃焼溶融炉
JPS6131761B2 (ja)
JP2005265410A (ja) 廃棄物焼却炉

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 0406530

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20021004

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047004276

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10491149

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20028240359

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 10297306

Country of ref document: DE

Date of ref document: 20041111

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10297306

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载